[go: up one dir, main page]

WO2025022897A1 - Microneedle array and method for producing same - Google Patents

Microneedle array and method for producing same Download PDF

Info

Publication number
WO2025022897A1
WO2025022897A1 PCT/JP2024/022741 JP2024022741W WO2025022897A1 WO 2025022897 A1 WO2025022897 A1 WO 2025022897A1 JP 2024022741 W JP2024022741 W JP 2024022741W WO 2025022897 A1 WO2025022897 A1 WO 2025022897A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
mold
raw material
skin
microneedle array
Prior art date
Application number
PCT/JP2024/022741
Other languages
French (fr)
Japanese (ja)
Inventor
翔 武富
良平 森
務 小日向
Original Assignee
冨士色素株式会社
Gsアライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冨士色素株式会社, Gsアライアンス株式会社 filed Critical 冨士色素株式会社
Publication of WO2025022897A1 publication Critical patent/WO2025022897A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin

Definitions

  • the present invention relates to a microneedle array and a method for manufacturing the same.
  • Microneedles come in two types: single-type, like a syringe, and array-type, in which multiple needles are arranged.
  • Array-type microneedles include integrated types, in which the needle base is integrated with an active substance (e.g., pharmaceutical composition, cosmetic drug), and hollow types, in which the active substance is contained within the hollow space of the needle base.
  • active substance e.g., pharmaceutical composition, cosmetic drug
  • hollow types in which the active substance is contained within the hollow space of the needle base.
  • integrated and hollow needles remain after being inserted into the skin, and dissolve within the skin.
  • Patent Document 1 discloses a dissolvable microneedle patch that is attached to human skin.
  • Patent Document 2 discloses a microneedle in which a groove is formed on the side of the microneedle to reduce the contact area.
  • conventional dissolvable microneedle arrays have multiple tapered needles arranged on a base.
  • an adhesive layer is provided on the surface of the base, which is attached to the skin to insert the needles into the skin and maintain them inserted.
  • the present disclosure provides a microneedle array and a method for producing the same that can be produced more easily than conventional methods and has improved solubility.
  • the microneedle array (1) of the present disclosure is a microneedle array (1) for delivering one or more active substances selected from physiologically active substances, cosmetic preparations, and pharmaceutical preparations into the body through the skin,
  • a needle support (10) having a base substrate (11) made of one or more types of resin and/or one or more types of metal and having two or more protrusions (12) formed thereon;
  • Two or more microneedles (2) are provided on each of the plurality of protrusions (12) and contain, as main materials, the effective substance and a substance soluble in the living body (skin) that dissolves within 24 hours in the living body (skin); has.
  • the microneedle is inserted into the skin and the microneedle separated from the base material and the protruding portion is left in the skin, and the left microneedle dissolves within 24 hours (preferably, the start and end times of dissolution can be controlled in minutes or hours), and the active substance is preferably delivered to the body (including the skin).
  • Another disclosed method for producing the above-described microneedle array includes the steps of: a mold setting step of setting a base substrate (11) (needle support 10) in a cavity (C1) of a first mold (M1) for molding microneedles so that a convex portion (12) is inserted therein, and setting the second mold (M2) with the set base substrate (11) and the convex portion (12) positioned therebetween so that the positions of the support through-holes (T10) penetrating the convex portion (12) and the base substrate (11) correspond to the positions of the raw material feed through-holes (M211) of the second mold (M2) for feeding raw material for the microneedles; a stamping step of feeding a raw material for the microneedle from the raw material storage section (M21) of the second mold (M2) to the first mold (M1) through the raw material feeding through hole (M211) and the support through hole (T10) of the second mold (M2) and hardening the raw material to form a microneedle;
  • Microneedle arrays can be manufactured more easily than before.
  • the microneedles can be placed in the skin, dissolve due to skin temperature, and deliver active substances to the skin.
  • FIG. 1 is a diagram showing an example of a shape of a microneedle.
  • FIG. 1 is a diagram showing an example of a microneedle array.
  • FIG. 1 is a diagram showing an example of a manufacturing flow of a microneedle.
  • FIG. 2 is a diagram showing an example of each means used in manufacturing.
  • FIG. 1 is a diagram showing an example of an operation of a manufacturing process of a microneedle.
  • a conceptual diagram of microneedle delivery to the skin is shown.
  • 1 is an example of a magnified image of a microneedle array.
  • FIG. 1 shows a dissolution experiment of a microneedle.
  • 1 shows an example of a microneedle array in which multiple microneedles are arranged radially.
  • the microneedle array 1 of FIG. 2 is used to deliver one or more active substances, including biologically active substances, cosmetic preparations, and pharmaceutical preparations, through the skin into the body.
  • the needle support 10 has a base substrate 11 and a plurality of protrusions 12.
  • the base substrate 11 is made of one or more types of resin and/or one or more types of metal.
  • the base substrate 11 has two or more protrusions 12 formed thereon in accordance with the arrangement of the needles.
  • the microneedles 2 are provided upright on each of the plurality of protrusions 12.
  • the microneedles 2 contain, as main materials, an effective substance and a substance soluble in the living body (skin) that dissolves within 24 hours in the living body (skin).
  • the biosoluble substance may contain one or more of glucose, maltose, water-soluble starch, and starch syrup.
  • the microneedle 2 may have a shape selected from, for example, a mushroom shape, a polygonal prism, a cylinder, a cone, a pyramid, and a polygonal pyramid.
  • the microneedle 2 may be configured with a combination of a plurality of shapes.
  • Fig. 1(a) shows, for example, a cone portion 21 having a pointed tip and a cone portion 22 having a planar tip side that contacts the bottom surface of the cone portion 21, which are configured as one unit.
  • Fig. 1(b) shows, for example, a cone portion 21 having a pointed tip and a column portion 23 that contacts the bottom surface of the cone portion 21, which are configured as one unit.
  • Fig. 1(a) shows, for example, a cone portion 21 having a pointed tip and a column portion 23 that contacts the bottom surface of the cone portion 21, which are configured as one unit.
  • the maximum width (diameter of the circular cross section of the conical base) of the microneedle 2 may be, for example, 0.5 mm or more and 0.9 mm or less.
  • the maximum width (diameter of the circular cross section of the conical base) of the pointed conical portion 21 may be, for example, 0.5 mm or more and 0.9 mm or less.
  • the maximum height of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less.
  • the cross-sectional width of the tip of the microneedle (the tip of the cone) may be 0.001 mm or more and 0.5 mm or less.
  • FIG. 2 shows an example of a cone-shaped microneedle array.
  • the thickness of the main surface of the base substrate 11 may be 0.1 mm or more, preferably 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, 0.7 mm or more, 0.8 mm or more, and may be 1.0 mm or less, 1.5 mm or less, 2.0 mm or less, 2.5 mm or less, or 3.0 mm or less.
  • the base substrate 11 may have a function of rotating or swinging as a mechanism for further relieving pain when the microneedle is inserted into the skin. Examples of this mechanism include a rotation mechanism for rotating the base substrate 11 and a swing mechanism for swinging the base substrate 11.
  • the maximum width of the cross section of the protrusion 12 may be 0.5 mm or more and 0.9 mm or less, and the height from the surface of the base substrate 11 may be 0.1 mm or more and 0.5 mm or less.
  • the maximum width of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less, and the height of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less.
  • FIG. 8 An example of a microneedle array in which multiple microneedles are arranged radially is shown in Fig. 8.
  • Fig. 8(a) and Fig. 8(b) multiple microneedles 2 are arranged radially at a substantially uniform angle on a circular sheet-like base substrate 11. Note that the description here may be omitted for the same contents as those described above.
  • the microneedle array 1 can be a collection of rows in which a plurality of microneedles 2 each extend along the radial direction of the sheet.
  • Each row can be composed of a plurality of microneedles 2 and a plurality of protrusions 12 supporting the microneedles. It is preferable that the plurality of rows extend radially from near the center of the sheet from the viewpoint of easily folding during use to place the microneedles in one's own skin (body). It is not necessary to place the microneedles in the center part of the sheet, since the microneedles do not break when used because they simply rotate.
  • the angle formed by two adjacent rows is not limited. For example, in FIG.
  • the microneedles are arranged almost uniformly at about 45°, and in FIG. 8(b), the angle is about 30°, but the angle may be 10°, 15°, 30°, 45°, 60°, 90°, 120°, or 180°, but it is preferable that the microneedles are arranged so as to be 15° or more and 60° or less. The angle may also be non-uniform.
  • the shape of the microneedle row is not limited to a straight line, but can be any shape, such as an arc.
  • the needle density (the density at which the microneedles 2 are arranged on the base substrate 11) is expressed by the number of microneedles per unit area. From the viewpoint of introducing more active ingredients into the skin, the needle density may be, for example, 10 needles/cm 2 or more, 50 needles/cm 2 or more, or 100 needles/cm 2 or more. From the viewpoint of reducing skin irritation, the needle density may be, for example, 850 needles/cm 2 or less, 500 needles/cm 2 or less, 200 needles/cm 2 or less, or 160 needles/cm 2 or less. The needle density is preferably, for example, 10 needles/cm 2 or more and 850 needles/cm 2 or less.
  • the shape of the base substrate 11 can be any shape to suit the application site (skin), but can also be a circular, elliptical, triangular, rectangular, polygonal, or other sheet shape, and can be further modified to suit the application site (skin).
  • the thickness of the sheet can be the same as that of the base substrate.
  • the lower limit of the sheet diameter can be any size to suit the dosage of the active ingredient, but can be 1 mm or 10 mm
  • the upper limit of the sheet diameter can be any size to suit the application site (skin), but can be 600 mm, 500 mm, 300 mm, or 200 mm.
  • the sheet diameter is preferably 1 mm or more and 600 mm or less.
  • the user uses the microneedle array 1 with the side on which the microneedles 2 are erected (the surface of the microneedle array) facing the user's skin. Specifically, the user presses the surface of the microneedle array toward the skin and rotates the microneedle array 1 clockwise or counterclockwise while holding down the back side, so that each microneedle 2 breaks and remains within the user's skin (body).
  • each microneedle 2 easily breaks within the user's skin (body), allowing the microneedles to be retained within the user's skin (body), and the active ingredient contained in the microneedle dissolves within 24 hours and can be administered within the user's skin (body).
  • the needle density of the microneedles can be set so that the microneedles 2 are densely packed in one portion of the base substrate 11. It is preferable to design the microneedles to be dense in one portion according to the application site (skin). Compared to a microneedle array with a uniform needle density, a larger number of needles can be reliably punctured into the skin, which increases the active ingredient content per unit area and ensures transdermal delivery of the active ingredient.
  • FIG. 3 shows an example of a manufacturing flow of a microneedle.
  • FIG. 4B shows an example of the operation of the manufacturing process of the microneedle corresponding to the manufacturing flow of FIG. 3.
  • FIG. 4A shows an example of each means used in the manufacturing.
  • M1 is a first mold
  • M2 is a second mold
  • M23 is a pressing means
  • 10 is a needle support.
  • the first mold M1 has a plurality of cavities C1 that define the shape of the microneedle.
  • the second mold M2 has a raw material storage section M21 and a raw material feed through hole M211.
  • the needle support 10 has a base substrate 11 and a plurality of protrusions 12.
  • Step S1 The raw materials for the microneedles are prepared. Temperature and mixing conditions are set. Contains active substances and biosoluble substances.
  • Step S2 A microneedle support 10 is prepared. The base substrate 11 and the protrusion 12 of the microneedle support 10 have a support through-hole T10 formed therein.
  • Step S3 Mold setting process
  • the micro support 10 is set on the first mold M1.
  • the needle support 10 is set in the cavity C1 of the first mold M1 for molding the microneedle 2 so that the protrusion 12 is inserted.
  • Step S4 Mold setting process
  • the second mold M2 is set on the first mold M1 and the needle support 10.
  • the needle support 10 is positioned between them so that the position of the support through hole T10 corresponds to the position of the raw material feed through hole M211 of the second mold M2 for feeding the raw material of the microneedle 2, and the second mold M2 is set.
  • Step S5 The needle raw material prepared in step S1 is charged into the raw material storage section M21 of the second mold M2.
  • Step S6-1 Filling process in embossing process
  • Pressure is applied from above the needle raw material, and the needle raw material is sent from the raw material feed through hole M211 of the second mold M2 through the support through hole T10 of the needle support 10 to the cavity C1 of the first mold M.
  • Step S6-2 Hardening treatment of the embossing process
  • the needle raw material is hardened to form a microneedle. With a predetermined pressure applied to the needle raw material, the temperature is lowered to a hardening temperature to harden the raw material.
  • Step S7 Remove the second mold M2.
  • Step S8 The first mold M1 is removed.
  • the microarray 2 and the convex portion 12 are separated from the cavity C1 to obtain the microneedle array 1 formed on the needle support 10.
  • the first mold M1 may be, for example, a metal mold or a resin mold
  • the second mold M2 may be, for example, a metal mold or a resin mold.
  • the temperature condition of the needle raw material e.g., 50° C. or higher
  • the pressure condition to be applied to the needle raw material when the needle raw material is sent from the second mold M2 to the first mold M1 may be set.
  • the hardening temperature condition e.g., 0° C. to 10° C., etc.
  • the hardening process time for hardening the needle raw material may be set.
  • a negative pressure may be set on the first mold M1 to draw in the needle raw material.
  • the pressure means for applying pressure to the needle raw material may be a pressing means M23 for applying pressure to the raw material in the raw material storage section M21 of the second mold M2.
  • the cross-sectional diameter (circular cross-sectional diameter) of the support through hole T10 may be set in the range of 1 ⁇ 2 to 2 ⁇ 3 of the cross-sectional diameter (circular cross-sectional diameter) of the protrusion 12.
  • the concept of delivering a microneedle to the skin is shown in Figure 5.
  • the microneedle 2 is pierced into the skin, and the microneedle 2 separated from the base substrate 11 and the protrusion 12 is left in the skin.
  • the left microneedle 2 dissolves within 24 hours, and the active substance is delivered into the body (including the skin).
  • It is preferable to control the solubility by selecting a substance that dissolves in the living body (skin) and setting the shape of the microneedle. For example, it is preferable that the start and end times of dissolution be controllable in minutes or hours.
  • Example 6 A needle raw material consisting of glucose, water-soluble starch, and water was pressed into the first mold, hardened, and then removed from the first mold to obtain a microneedle array.
  • FIG. 6 shows an enlarged image of an example of a microneedle array.
  • FIG. 7 shows a dissolution experiment of the microneedle.
  • the compounding ratio of the needle raw materials is shown below.
  • Glucose 60 wt %
  • Starch syrup 25 wt%
  • Food coloring Trace amount
  • Water Remainder
  • the above raw materials were weighed into a container and heated to melt at 155°C. After that, when it was cooled naturally and reached an appropriate viscosity, the mixture was pulled into a thread shape with a glass rod and cooled and hardened in that state to form a needle.
  • One needle was used for the dissolution experiment. Blue food coloring was mixed in to make it easy to check the dissolution status. It was pierced into pork with skin as shown in the photo and left to stand. After 30 minutes, the coloring began to bleed, so it was confirmed that it had dissolved in the pork.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Provided are a microneedle array that can be produced more easily than in the past and can improve solubility, and a method for producing the microneedle array. A microneedle array 1 has: a needle support 10 that is configured from one or more resins and/or one or more metals, the needle support 10 having a base substrate 11 on which two or more protrusions 12 are formed; and two or more microneedles 2 that are erected on each of the plurality of protrusions 12, the microneedles 2 including, as main materials, an active substance and a biosoluble substance that dissolves within 24 hours in vivo.

Description

マイクロニードルアレイおよびその製造方法Microneedle array and method for producing same

 本発明は、マイクロニードルアレイおよびその製造方法に関する。 The present invention relates to a microneedle array and a method for manufacturing the same.

 マイクロニードルには、注射器などの一本型、複数の針が配置されたアレイ型がある。アレイ型には、針の基材と有効物質(例えば、医薬組成物、化粧薬物)とを一体にした一体型と、有効物質を針の基材の内空に含ませた中空型がある。通常、一体型と中空型の針は、皮膚に刺されて残存し、皮膚内で溶解する。 Microneedles come in two types: single-type, like a syringe, and array-type, in which multiple needles are arranged. Array-type microneedles include integrated types, in which the needle base is integrated with an active substance (e.g., pharmaceutical composition, cosmetic drug), and hollow types, in which the active substance is contained within the hollow space of the needle base. Typically, integrated and hollow needles remain after being inserted into the skin, and dissolve within the skin.

 特許文献1は、ヒトの肌に貼付して使用する溶解性のマイクロニードルパッチを開示している。特許文献2は、マイクロニードルの側面に、接触面積を低減させるための溝部が形成されているマイクロニードルを開示している。 Patent Document 1 discloses a dissolvable microneedle patch that is attached to human skin. Patent Document 2 discloses a microneedle in which a groove is formed on the side of the microneedle to reduce the contact area.

 一般的に、従来の溶解性のマイクロニードルアレイは、ベース部の上に複数の先細り形状のニードルが配置されている。また、例えば、ベース部の表面に粘着剤層を設けてあり、皮膚に貼着してニードルを皮膚に刺し、この刺した状態を維持する。  Generally, conventional dissolvable microneedle arrays have multiple tapered needles arranged on a base. In addition, for example, an adhesive layer is provided on the surface of the base, which is attached to the skin to insert the needles into the skin and maintain them inserted.

 また、溶解型のマイクロニードルアレイの製造方法も多く提案されている。一般的にはマイクロニードルの形状のキャビティ型(雌型)を使用する。 Many methods for manufacturing dissolving microneedle arrays have also been proposed. Generally, a cavity mold (female mold) in the shape of the microneedle is used.

特開2022-145122号公報JP 2022-145122 A 特開2022-132921号公報JP 2022-132921 A

 本開示は、従来よりも簡単に製造でき、かつ溶解性を向上できるマイクロニードルアレイおよびその製造方法を提供する。 The present disclosure provides a microneedle array and a method for producing the same that can be produced more easily than conventional methods and has improved solubility.

 本開示のマイクロニードルアレイ(1)は、生理活性物質、化粧用製剤、医薬製剤のうち1種以上の有効物質を皮膚から体内へ送達するためのマイクロニードルアレイ(1)であって、
 樹脂の1種以上および/または金属の1種以上で構成され、2以上の凸部(12)が形成されているベース基材(11)を有するニードル支持体(10)と、
 前記複数の凸部(12)のそれぞれに立設され、前記有効物質および生体(皮膚)内で24時間以内に溶解する生体(皮膚)内溶解性物質を主材として含む、2以上のマイクロニードル(2)と、
 を有する。
The microneedle array (1) of the present disclosure is a microneedle array (1) for delivering one or more active substances selected from physiologically active substances, cosmetic preparations, and pharmaceutical preparations into the body through the skin,
A needle support (10) having a base substrate (11) made of one or more types of resin and/or one or more types of metal and having two or more protrusions (12) formed thereon;
Two or more microneedles (2) are provided on each of the plurality of protrusions (12) and contain, as main materials, the effective substance and a substance soluble in the living body (skin) that dissolves within 24 hours in the living body (skin);
has.

 前記マイクロニードルを皮膚に刺して前記ベース基材および凸部から分離した前記マイクロニードルを皮膚内に留置させることで、留置されたマイクロニードルが、24時間以内(好ましくは、溶解開始終了時間を分単位、時間単位で制御可能)に溶解し前記有効物質が体内(皮膚を含む)へ送達されることが好ましい。 The microneedle is inserted into the skin and the microneedle separated from the base material and the protruding portion is left in the skin, and the left microneedle dissolves within 24 hours (preferably, the start and end times of dissolution can be controlled in minutes or hours), and the active substance is preferably delivered to the body (including the skin).

 他の開示の上記に記載のマイクロニードルアレイの製造方法は、
 マイクロニードルの成型用の第一型(M1)のキャビティ(C1)に、凸部(12)を挿入するようにベース基材(11)(ニードル支持体10)をセットし、前記凸部(12)および前記ベース基材(11)を貫通する支持体貫通孔(T10)の位置と前記マイクロニードルの原料を送り込むための第二型(M2)の原料送込貫通孔(M211)の位置とを対応するように、前記セットしたベース基材(11)および前記凸部(12)を間に位置させて前記第二型(M2)をセットする型セット工程と、
 前記第二型(M2)の前記原料送込貫通孔(M211)と前記支持体貫通孔(T10)を通じて、前記マイクロニードルの原料を前記第二型(M2)の原料収納部(M21)から前記第一型(M1)へ送り込み、該原料を硬化させてマイクロニードルを形成する型押し工程と、
 前記第二型(M2)を取り外す工程と、
 前記第一型(M1)を取り外し、ニードル支持体(10)に形成されたマイクロニードルアレイを得る工程と、
 を含んでいてもよい。
Another disclosed method for producing the above-described microneedle array includes the steps of:
a mold setting step of setting a base substrate (11) (needle support 10) in a cavity (C1) of a first mold (M1) for molding microneedles so that a convex portion (12) is inserted therein, and setting the second mold (M2) with the set base substrate (11) and the convex portion (12) positioned therebetween so that the positions of the support through-holes (T10) penetrating the convex portion (12) and the base substrate (11) correspond to the positions of the raw material feed through-holes (M211) of the second mold (M2) for feeding raw material for the microneedles;
a stamping step of feeding a raw material for the microneedle from the raw material storage section (M21) of the second mold (M2) to the first mold (M1) through the raw material feeding through hole (M211) and the support through hole (T10) of the second mold (M2) and hardening the raw material to form a microneedle;
removing the second mold (M2);
removing the first mold (M1) to obtain a microneedle array formed on a needle support (10);
may also include

 (作用効果)
(1)従来よりも簡単にマイクロニードルアレイを製造できる。
(2)マイクロニードルが皮膚に留置し、皮膚温度によって溶解し、有効物質を皮膚に送達できる。
(Action and Effect)
(1) Microneedle arrays can be manufactured more easily than before.
(2) The microneedles can be placed in the skin, dissolve due to skin temperature, and deliver active substances to the skin.

マイクロニードルの形状の一例を示す図である。FIG. 1 is a diagram showing an example of a shape of a microneedle. マイクロニードルアレイの一例を示す図である。FIG. 1 is a diagram showing an example of a microneedle array. マイクロニードルの製造フローの一例を示す図である。FIG. 1 is a diagram showing an example of a manufacturing flow of a microneedle. 製造に使用される各手段の一例を示す図である。FIG. 2 is a diagram showing an example of each means used in manufacturing. マイクロニードルの製造工程の操作例を示す図である。FIG. 1 is a diagram showing an example of an operation of a manufacturing process of a microneedle. マイクロニードルを皮膚に送達させる概念図を示す。A conceptual diagram of microneedle delivery to the skin is shown. マイクロニードルアレイの拡大画像の一例である。1 is an example of a magnified image of a microneedle array. マイクロニードルの溶解実験を示す図である。FIG. 1 shows a dissolution experiment of a microneedle. 複数のマイクロニードルが放射状に配置されたマイクロニードルアレイの一例を示す。1 shows an example of a microneedle array in which multiple microneedles are arranged radially.

 以下に本開示のいくつかの実施形態について説明する。以下に説明する実施形態は、本開示の一例を説明するものである。本開示は以下の実施形態になんら限定されるものではなく、本開示の要旨を変更しない範囲において実施される各種の変形形態も含む。なお、以下で説明される構成の全てが本開示の必須の構成であるとは限らない。 Below, several embodiments of the present disclosure are described. The embodiments described below are examples of the present disclosure. The present disclosure is not limited to the following embodiments, and includes various modified forms that are implemented within the scope that does not change the gist of the present disclosure. Note that not all of the configurations described below are necessarily essential configurations of the present disclosure.

 (実施形態1)
 図2のマイクロニードルアレイ1は、生理活性物質、化粧用製剤、医薬製剤のうち1種以上の有効物質を皮膚から体内へ送達するために使用される。
 ニードル支持体10は、ベース基材11と複数の凸部12を有する。ベース基材11は、樹脂の1種以上および/または金属の1種以上で構成される。ベース基材11には、ニードルの配置に合わせて、2以上の凸部12が形成されている。
 マイクロニードル2は、複数の凸部12のそれぞれに立設される。マイクロニードル2は、有効物質および生体(皮膚)内で24時間以内に溶解する生体(皮膚)内溶解性物質を主材として含む。
(Embodiment 1)
The microneedle array 1 of FIG. 2 is used to deliver one or more active substances, including biologically active substances, cosmetic preparations, and pharmaceutical preparations, through the skin into the body.
The needle support 10 has a base substrate 11 and a plurality of protrusions 12. The base substrate 11 is made of one or more types of resin and/or one or more types of metal. The base substrate 11 has two or more protrusions 12 formed thereon in accordance with the arrangement of the needles.
The microneedles 2 are provided upright on each of the plurality of protrusions 12. The microneedles 2 contain, as main materials, an effective substance and a substance soluble in the living body (skin) that dissolves within 24 hours in the living body (skin).

 生体内溶解性物質は、グルコース、麦芽糖、水溶解性デンプン、水あめの内1種あるいは2種以上を含んでいてもよい。 The biosoluble substance may contain one or more of glucose, maltose, water-soluble starch, and starch syrup.

 図1に、マイクロニードルの形状の一例を示す。マイクロニードル2は、例えば、キノコ形状、多角柱、円柱、円錐、台錘、多角錘のうちから選択される形状であってもよい。マイクロニードル2は、複数の形状の組み合わせで構成されていてもよい。
 図1(a)は、例えば、先端が尖った円錐部21と、円錐部21の底面と接触する先端側が面状の台錘部22とを有し、一体に構成されている。図1(b)は、例えば、先端が尖った円錐部21と、円錐部21の底面と接触する円柱部23とを有し、一体に構成されている。図1(c)は、例えば、円錐形状である。
 マイクロニードル2の最大幅(円錐底面の円断面直径)が、例えば、0.5mm以上0.9mm以下であってもよい。先端が尖った円錐部21の最大幅(円錐底面の円断面直径)が、例えば、0.5mm以上0.9mm以下であってもよい。
 マイクロニードル2の最大高さが0.5mm以上0.9mm以下であってもよい。
 マイクロニードルの先端の断面幅(円錐の先端)が0.001mm以上0.5mm以下であってもよい。
An example of the shape of the microneedle is shown in Fig. 1. The microneedle 2 may have a shape selected from, for example, a mushroom shape, a polygonal prism, a cylinder, a cone, a pyramid, and a polygonal pyramid. The microneedle 2 may be configured with a combination of a plurality of shapes.
Fig. 1(a) shows, for example, a cone portion 21 having a pointed tip and a cone portion 22 having a planar tip side that contacts the bottom surface of the cone portion 21, which are configured as one unit. Fig. 1(b) shows, for example, a cone portion 21 having a pointed tip and a column portion 23 that contacts the bottom surface of the cone portion 21, which are configured as one unit. Fig. 1(c) shows, for example, a cone shape.
The maximum width (diameter of the circular cross section of the conical base) of the microneedle 2 may be, for example, 0.5 mm or more and 0.9 mm or less. The maximum width (diameter of the circular cross section of the conical base) of the pointed conical portion 21 may be, for example, 0.5 mm or more and 0.9 mm or less.
The maximum height of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less.
The cross-sectional width of the tip of the microneedle (the tip of the cone) may be 0.001 mm or more and 0.5 mm or less.

 図2に、円錐形状のマイクロニードルアレイの一例を示す。
 ベース基材11の主面の厚みが、0.1mm以上、好ましくは、0.2mm以上、0.3mm以上、0.4mm以上、0.5mm以上、0.6mm以上、0.7mm以上、0.8mm以上であってもよく、1.0mm以下、1.5mm以下、2.0mm以下、2.5mm以下、3.0mm以下であってもよい。
 ベース基材11は、マイクロニードルを皮膚に刺す際に、更に痛みを緩和する機構として回転若しくは揺動する機能を有していてもよい。この機構としては、例えば、ベース基材11を回転させる回転機構、ベース基材11を揺動させる揺動機構が例示される。これら機構は、ギア機構、モータなどの回転運動、直動アクチュエータの往復運動、カムなどによる運動で実現可能である。
 凸部12は、その断面の最大幅が、0.5mm以上0.9mm以下、ベース基材11の面からの高さが0.1mm以上0.5mm以下であってもよい。
 マイクロニードル2の最大幅が、0.5mm以上0.9mm以下、マイクロニードル2の高さが0.5mm以上0.9mm以下であってもよい。
FIG. 2 shows an example of a cone-shaped microneedle array.
The thickness of the main surface of the base substrate 11 may be 0.1 mm or more, preferably 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, 0.5 mm or more, 0.6 mm or more, 0.7 mm or more, 0.8 mm or more, and may be 1.0 mm or less, 1.5 mm or less, 2.0 mm or less, 2.5 mm or less, or 3.0 mm or less.
The base substrate 11 may have a function of rotating or swinging as a mechanism for further relieving pain when the microneedle is inserted into the skin. Examples of this mechanism include a rotation mechanism for rotating the base substrate 11 and a swing mechanism for swinging the base substrate 11. These mechanisms can be realized by a gear mechanism, a rotary motion of a motor, a reciprocating motion of a linear actuator, a motion by a cam, or the like.
The maximum width of the cross section of the protrusion 12 may be 0.5 mm or more and 0.9 mm or less, and the height from the surface of the base substrate 11 may be 0.1 mm or more and 0.5 mm or less.
The maximum width of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less, and the height of the microneedle 2 may be 0.5 mm or more and 0.9 mm or less.

 (実施形態2)
 図8に、複数のマイクロニードルが放射状に配置されたマイクロニードルアレイの一例を示す。図8(a)及び図8(b)のマイクロニードルアレイ1は、複数のマイクロニードル2が円形シート状のベース基材11上に放射状となるようほぼ均一な角度で配置されている。なお、前述に記載した内容と同様であるものについては、ここでの説明は省略する場合もある。
(Embodiment 2)
An example of a microneedle array in which multiple microneedles are arranged radially is shown in Fig. 8. In the microneedle array 1 in Fig. 8(a) and Fig. 8(b), multiple microneedles 2 are arranged radially at a substantially uniform angle on a circular sheet-like base substrate 11. Note that the description here may be omitted for the same contents as those described above.

 図8(a)に示す通り、マイクロニードルアレイ1は、複数のマイクロニードル2のそれぞれがシートの径方向に沿って延びる列の集合とすることができる。各列は、複数のマイクロニードル2と、それを支える複数の凸部12とから成ることができる。複数の列は、使用時に簡単に折れて自身の皮膚内(体内)にマイクロニードルを設置する観点から、シートの中心付近から放射状に延びていることが好ましい。なお、シートの中心部分は、使用時マイクロニードルが回転するだけで折れないため、マイクロニードルを設置しなくてもよい。隣り合う2列の成す角度は限定されるものではない。例えば、図8(a)では、約45°となるように、図8(b)では、約30°となるように、にほぼ均一に配置されているが、その角度は10°、15°、30°、45°、60°、90°、120°、あるいは180°であってもよいが、15°以上60°以下となるように配置されることが好ましい。また、その角度は不均一であってもよい。マイクロニードルの列の形状は、直線状に限定されず、弧状等、任意に定めることができる。 As shown in FIG. 8(a), the microneedle array 1 can be a collection of rows in which a plurality of microneedles 2 each extend along the radial direction of the sheet. Each row can be composed of a plurality of microneedles 2 and a plurality of protrusions 12 supporting the microneedles. It is preferable that the plurality of rows extend radially from near the center of the sheet from the viewpoint of easily folding during use to place the microneedles in one's own skin (body). It is not necessary to place the microneedles in the center part of the sheet, since the microneedles do not break when used because they simply rotate. The angle formed by two adjacent rows is not limited. For example, in FIG. 8(a), the microneedles are arranged almost uniformly at about 45°, and in FIG. 8(b), the angle is about 30°, but the angle may be 10°, 15°, 30°, 45°, 60°, 90°, 120°, or 180°, but it is preferable that the microneedles are arranged so as to be 15° or more and 60° or less. The angle may also be non-uniform. The shape of the microneedle row is not limited to a straight line, but can be any shape, such as an arc.

 針密度(マイクロニードル2がベース基材11上に配置される密度)は、単位面積あたりのマイクロニードルの本数で表される。より多くの有効成分を皮膚内に導入する観点から、針密度は、例えば、10本/cm以上、50本/cm以上、又は100本/cm以上であってよい。皮膚刺激を低減する観点から、針密度は、例えば、850本/cm以下、500本/cm以下、200本/cm以下、又は160本/cm以下であってよい。針密度は、例えば、10本/cm以上850本/cm以下であることが好ましい。 The needle density (the density at which the microneedles 2 are arranged on the base substrate 11) is expressed by the number of microneedles per unit area. From the viewpoint of introducing more active ingredients into the skin, the needle density may be, for example, 10 needles/cm 2 or more, 50 needles/cm 2 or more, or 100 needles/cm 2 or more. From the viewpoint of reducing skin irritation, the needle density may be, for example, 850 needles/cm 2 or less, 500 needles/cm 2 or less, 200 needles/cm 2 or less, or 160 needles/cm 2 or less. The needle density is preferably, for example, 10 needles/cm 2 or more and 850 needles/cm 2 or less.

 ベース基材11の形状は、適用部位(皮膚)に合わせて任意の形状とすることができるが、円形、楕円形、三角形、四角形、多角形等のシート状等とすることができ、適用部位(皮膚)に合わせてさらに変形したものであってもよい。シートの厚みは、ベース基材の厚みと同一とすることができる。ベース基材11を円形のシート状とした場合、例えば、シート直径の下限は、有効成分の投与量に合わせて任意の大きさとすることができるが、1mmでも10mmでもよく、シート直径の上限は、適用部位(皮膚)に合わせて任意の大きさとすることができるが、600mm、500mm、300mm、または200mmでもよい。例えば、シート直径は、1mm以上600mm以下であることが好ましい。 The shape of the base substrate 11 can be any shape to suit the application site (skin), but can also be a circular, elliptical, triangular, rectangular, polygonal, or other sheet shape, and can be further modified to suit the application site (skin). The thickness of the sheet can be the same as that of the base substrate. When the base substrate 11 is a circular sheet, for example, the lower limit of the sheet diameter can be any size to suit the dosage of the active ingredient, but can be 1 mm or 10 mm, and the upper limit of the sheet diameter can be any size to suit the application site (skin), but can be 600 mm, 500 mm, 300 mm, or 200 mm. For example, the sheet diameter is preferably 1 mm or more and 600 mm or less.

 ユーザは、マイクロニードル2が立設されている面側(マイクロニードルアレイの表面)を自身の皮膚に向けた状態でマイクロニードルアレイ1を使用する。具体的には、マイクロニードルアレイの表面を皮膚に向けて押し込み、裏面を押さえた状態で、マイクロニードルアレイ1を時計回り又は反時計回りの方向に回転させ、各マイクロニードル2が折れて自身の皮膚内(体内)に残るように使用する。このようにマイクロニードルアレイ1をねじることで、各マイクロニードル2が自身の皮膚内(体内)で簡単に折れて、自身の皮膚内(体内)にマイクロニードルを留置でき、マイクロニードル中に含まれる有効成分が24時間以内に溶解して、自身の皮膚内(体内)に投与することができる。 The user uses the microneedle array 1 with the side on which the microneedles 2 are erected (the surface of the microneedle array) facing the user's skin. Specifically, the user presses the surface of the microneedle array toward the skin and rotates the microneedle array 1 clockwise or counterclockwise while holding down the back side, so that each microneedle 2 breaks and remains within the user's skin (body). By twisting the microneedle array 1 in this way, each microneedle 2 easily breaks within the user's skin (body), allowing the microneedles to be retained within the user's skin (body), and the active ingredient contained in the microneedle dissolves within 24 hours and can be administered within the user's skin (body).

 また、図示していないが、マイクロニードルの針密度に密度差を設定することができる。例えば、図8(a)のマイクロニードル2が立設されていない部分に、さらに複数のマイクロニードル2を立設することができ、ベース基材11上の一部分にマイクロニードル2が密集するように針密度が設定することができる。適用部位(皮膚)に合わせて、一部分において密となるように設計することが好ましい。針密度が均一のマイクロニードルアレイに比べて、より数多くの針を確実に皮膚に穿刺することができ、それにより、単位面積あたりの有効成分含量をより大きくし、有効成分を確実に経皮送達することができる。 In addition, although not shown, it is possible to set a difference in needle density of the microneedles. For example, in the portion of FIG. 8(a) where no microneedles 2 are provided, a plurality of microneedles 2 can be provided, and the needle density can be set so that the microneedles 2 are densely packed in one portion of the base substrate 11. It is preferable to design the microneedles to be dense in one portion according to the application site (skin). Compared to a microneedle array with a uniform needle density, a larger number of needles can be reliably punctured into the skin, which increases the active ingredient content per unit area and ensures transdermal delivery of the active ingredient.

(製造方法)
 図3に、マイクロニードルの製造フローの一例を示す。図4Bに、図3の製造フローに対応したマイクロニードルの製造工程の操作例を示す。図4Aに、製造に使用される各手段の一例を示す。M1は第一型、M2は第二型、M23は押圧手段、10はニードル支持体をしめす。第一型M1は。マイクロニードルの形状を画定するキャビティC1を複数有する。第二型M2は、原料収納部M21、原料送込貫通孔M211を有する。ニードル支持体10は、ベース基材11と複数の凸部12を有する。
(Production method)
FIG. 3 shows an example of a manufacturing flow of a microneedle. FIG. 4B shows an example of the operation of the manufacturing process of the microneedle corresponding to the manufacturing flow of FIG. 3. FIG. 4A shows an example of each means used in the manufacturing. M1 is a first mold, M2 is a second mold, M23 is a pressing means, and 10 is a needle support. The first mold M1 has a plurality of cavities C1 that define the shape of the microneedle. The second mold M2 has a raw material storage section M21 and a raw material feed through hole M211. The needle support 10 has a base substrate 11 and a plurality of protrusions 12.

(ステップS1)
 マイクロニードルの原料を調整する。温度条件、混合条件が設定される。有効物質および生体内溶解性物質を含む。
(ステップS2)
 マイクロニードル支持体10を準備する。マイクロニードル支持体10のベース基材11と凸部12は、支持体貫通孔T10が形成されている。
(ステップS3:型セット工程)
 第一型M1に、マイクロ支持体10をセットする。マイクロニードル2の成型用の第一型M1のキャビティC1に、凸部12を挿入するようにニードル支持体10をセットする。
(ステップS4:型セット工程)
 第一型M1とニードル支持体10の上に第二型M2をセットする。支持体貫通孔T10の位置とマイクロニードル2の原料を送り込むための第二型M2の原料送込貫通孔M211の位置とを対応するように、セットしたニードル支持体10をそれらの間に位置させて第二型M2をセットする。
(Step S1)
The raw materials for the microneedles are prepared. Temperature and mixing conditions are set. Contains active substances and biosoluble substances.
(Step S2)
A microneedle support 10 is prepared. The base substrate 11 and the protrusion 12 of the microneedle support 10 have a support through-hole T10 formed therein.
(Step S3: Mold setting process)
The micro support 10 is set on the first mold M1. The needle support 10 is set in the cavity C1 of the first mold M1 for molding the microneedle 2 so that the protrusion 12 is inserted.
(Step S4: Mold setting process)
The second mold M2 is set on the first mold M1 and the needle support 10. The needle support 10 is positioned between them so that the position of the support through hole T10 corresponds to the position of the raw material feed through hole M211 of the second mold M2 for feeding the raw material of the microneedle 2, and the second mold M2 is set.

(ステップS5)
 第二型M2の原料収納部M21に、ステップS1で調整されたニードル原料を投入する。
(ステップS6-1:型押し工程の充填処理)
 ニードル原料を充填する。ニードル原料の上から圧力を与えて、ニードル原料を、第二型M2の原料送込貫通孔M211からニードル支持体10の支持体貫通孔T10を通じて第一型MのキャビティC1へ送る。
(ステップS6-2:型押し工程の硬化処理)
 ニードル原料を硬化させてマイクロニードルを形成する。ニードル原料に所定の圧力をかけた状態で、硬化温度まで下げて原料を硬化させる。
(Step S5)
The needle raw material prepared in step S1 is charged into the raw material storage section M21 of the second mold M2.
(Step S6-1: Filling process in embossing process)
Pressure is applied from above the needle raw material, and the needle raw material is sent from the raw material feed through hole M211 of the second mold M2 through the support through hole T10 of the needle support 10 to the cavity C1 of the first mold M.
(Step S6-2: Hardening treatment of the embossing process)
The needle raw material is hardened to form a microneedle. With a predetermined pressure applied to the needle raw material, the temperature is lowered to a hardening temperature to harden the raw material.

(ステップS7)
 第二型M2を取り除く。
(ステップS8)
 第一型M1を取り除く。キャビティC1からマイクロアレイ2および凸部12を分離して、ニードル支持体10に形成されたマイクロニードルアレイ1を得る。
(Step S7)
Remove the second mold M2.
(Step S8)
The first mold M1 is removed. The microarray 2 and the convex portion 12 are separated from the cavity C1 to obtain the microneedle array 1 formed on the needle support 10.

 第一型M1は、例えば、金属型、樹脂型でもよい。第二型M2は、例えば、金属型、樹脂型でもよい。
 型押し工程において、例えば、ニードル原料を第二型M2から第一型M1へ送り込む際の、ニードル原料の温度条件(例えば、50℃以上)、ニードル原料に付与させる圧力条件が設定されていてもよい。また、ニードル原料を硬化させるための硬化温度条件(例えば、0℃から10℃など)、硬化処理時間が設定されていてもよい。第二型M2のニードル原料に対し圧力を付与する代わりに、第一型M1のほうで負圧設定し、ニードル原料を引き込む構成であってもよい。
 ニードル原料に付与させる圧力手段として、第二型M2の原料収納部M21の原料に対し圧力を付与する押圧手段M23であってもよい。
 支持体貫通孔T10は、その断面径(円断面直径)は、凸部12の断面径(円断面直径)の1/2から2/3の範囲で設定されていてもよい。
The first mold M1 may be, for example, a metal mold or a resin mold, and the second mold M2 may be, for example, a metal mold or a resin mold.
In the embossing process, for example, the temperature condition of the needle raw material (e.g., 50° C. or higher) and the pressure condition to be applied to the needle raw material when the needle raw material is sent from the second mold M2 to the first mold M1 may be set. Also, the hardening temperature condition (e.g., 0° C. to 10° C., etc.) and the hardening process time for hardening the needle raw material may be set. Instead of applying pressure to the needle raw material of the second mold M2, a negative pressure may be set on the first mold M1 to draw in the needle raw material.
The pressure means for applying pressure to the needle raw material may be a pressing means M23 for applying pressure to the raw material in the raw material storage section M21 of the second mold M2.
The cross-sectional diameter (circular cross-sectional diameter) of the support through hole T10 may be set in the range of ½ to ⅔ of the cross-sectional diameter (circular cross-sectional diameter) of the protrusion 12.

 図5に、マイクロニードルを皮膚に送達させる概念を示す。マイクロニードル2を皮膚に刺してベース基材11および凸部12から分離したマイクロニードル2を皮膚内に留置させる。これにより、留置されたマイクロニードル2が、24時間以内に溶解し有効物質が体内(皮膚を含む)へ送達される。
 生体(皮膚)内溶解性物質の選択、マイクロニードルの形状を設定することで、その溶解性を制御することが好ましく、例えば、溶解開始終了時間を分単位、時間単位で制御可能に構成されることが好ましい。
The concept of delivering a microneedle to the skin is shown in Figure 5. The microneedle 2 is pierced into the skin, and the microneedle 2 separated from the base substrate 11 and the protrusion 12 is left in the skin. As a result, the left microneedle 2 dissolves within 24 hours, and the active substance is delivered into the body (including the skin).
It is preferable to control the solubility by selecting a substance that dissolves in the living body (skin) and setting the shape of the microneedle. For example, it is preferable that the start and end times of dissolution be controllable in minutes or hours.

(実施例)
 グルコースと水溶性デンプンと水からなるニードル原料を、第一型へ押圧して充填し、硬化させたのちに、第一型から取り外し、マイクロニードルアレイを得た。図6に、マイクロニードルアレイの一例の拡大画像を示す。
(Example)
A needle raw material consisting of glucose, water-soluble starch, and water was pressed into the first mold, hardened, and then removed from the first mold to obtain a microneedle array. FIG. 6 shows an enlarged image of an example of a microneedle array.

 図7に、マイクロニードルの溶解実験を示す。
 ニードル原料の配合比を以下に示す。
 グルコース : 60 wt%、
 水あめ   : 25 wt%
 食品色素  : 微量
 水     : 残部
 上記原料を容器に秤量し、155℃に加熱溶融した。その後、自然放冷にて適度な粘度となったところで、ガラス棒で混合物を糸状に引き上げその状態で冷却硬化し1本のニードルを形成した。溶解実験として1本のニードルを使用した。溶解状況確認を容易行うよう青色の食品色素を混練した。皮付きの豚肉に写真にあるように刺し、静置した。30分後に、色素が滲んできたので確認したところ、豚肉内で溶解を確認した。
FIG. 7 shows a dissolution experiment of the microneedle.
The compounding ratio of the needle raw materials is shown below.
Glucose: 60 wt %,
Starch syrup: 25 wt%
Food coloring: Trace amount Water: Remainder The above raw materials were weighed into a container and heated to melt at 155°C. After that, when it was cooled naturally and reached an appropriate viscosity, the mixture was pulled into a thread shape with a glass rod and cooled and hardened in that state to form a needle. One needle was used for the dissolution experiment. Blue food coloring was mixed in to make it easy to check the dissolution status. It was pierced into pork with skin as shown in the photo and left to stand. After 30 minutes, the coloring began to bleed, so it was confirmed that it had dissolved in the pork.

図面の符号の説明Description of symbols in the drawings

1   マイクロニードルアレイ
2   マイクロニードル
10  ニードル支持体
11  ベース基材
12  凸部
M1  第一型
M2  第二型
M21 原料収納部
M211 原料送込貫通孔
T10 支持体貫通孔
C1  キャビティ
REFERENCE SIGNS LIST 1 Microneedle array 2 Microneedle 10 Needle support 11 Base substrate 12 Convex portion M1 First mold M2 Second mold M21 Raw material storage portion M211 Raw material feed through hole T10 Support through hole C1 Cavity

Claims (4)

 生理活性物質、化粧用製剤、医薬製剤のうち1種以上の有効物質を皮膚から体内へ送達するためのマイクロニードルアレイであって、
 樹脂の1種以上および/または金属の1種以上で構成され、2以上の凸部が形成されているベース基材を有するニードル支持体と、
 前記複数の凸部のそれぞれに立設され、前記有効物質および生体内で24時間以内に溶解する生体内溶解性物質を主材として含む、2以上のマイクロニードルと、
 を有する、
マイクロニードルアレイ。
A microneedle array for delivering one or more active substances selected from the group consisting of a physiologically active substance, a cosmetic preparation, and a pharmaceutical preparation through the skin into the body, comprising:
a needle support having a base material made of one or more resins and/or one or more metals and having two or more protrusions formed thereon;
Two or more microneedles are provided on each of the plurality of protrusions and contain, as main materials, the effective substance and a biosoluble substance that dissolves in a living body within 24 hours;
having
Microneedle array.
 前記マイクロニードルを皮膚に刺して前記ベース基材および凸部から分離した前記マイクロニードルを皮膚内に留置させることで、留置されたマイクロニードルが、24時間以内に溶解し前記有効物質が体内へ送達される、
請求項1に記載のマイクロニードルアレイ。
The microneedle is pierced into the skin, and the microneedle separated from the base substrate and the convex portion is left in the skin, whereby the left microneedle dissolves within 24 hours and the active substance is delivered into the body.
The microneedle array according to claim 1 .
 前記ベース基材の主面の厚みが、0.1mm以上、
 前記凸部の断面の最大幅が、0.5mm以上0.9mm以下、前記ベース基材の面からの高さが0.1mm以上0.5mm以下、
 前記マイクロニードルの最大幅が、0.5mm以上0.9mm以下、前記マイクロニードルの高さが0.5mm以上0.9mm以下である、
請求項1に記載のマイクロニードルアレイ。
The thickness of the main surface of the base material is 0.1 mm or more,
The maximum width of the cross section of the protrusion is 0.5 mm or more and 0.9 mm or less, and the height from the surface of the base material is 0.1 mm or more and 0.5 mm or less,
The maximum width of the microneedle is 0.5 mm or more and 0.9 mm or less, and the height of the microneedle is 0.5 mm or more and 0.9 mm or less.
The microneedle array according to claim 1 .
 マイクロニードルの成型用の第一型のキャビティに、凸部を挿入するようにニードル支持体をセットし、前記凸部およびベース基材を貫通する支持体貫通孔の位置と前記マイクロニードルの原料を送り込むための第二型の原料送込貫通孔の位置とを対応するように、前記セットしたニードル支持体をそれら間に位置させて前記第二型をセットする型セット工程と、
 前記第二型の前記原料送込貫通孔と前記支持体貫通孔を通じて、前記マイクロニードルの原料を前記第二型の原料収納部から前記第一型へ送り込み、該原料を硬化させてマイクロニードルを形成する型押し工程と、
 前記第二型を取り外す工程と、
 前記第一型を取り外し、前記ニードル支持体に形成されたマイクロニードルアレイを得る工程と、
 を含む、
 マイクロニードルアレイの製造方法。
 
 
a mold setting step of setting a needle support in a cavity of a first mold for molding microneedles so that a convex portion is inserted into the cavity, and the second mold is set by positioning the set needle support between the support through-hole penetrating the convex portion and the base substrate so that the position of the support through-hole corresponds to the position of the raw material feed through-hole of a second mold for feeding raw material for the microneedle;
a stamping step of feeding a raw material for the microneedle from a raw material storage section of the second mold to the first mold through the raw material feed through hole and the support through hole of the second mold, and hardening the raw material to form a microneedle;
removing the second mold;
removing the first mold to obtain a microneedle array formed on the needle support;
Including,
A method for manufacturing a microneedle array.

PCT/JP2024/022741 2023-07-21 2024-06-24 Microneedle array and method for producing same WO2025022897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-118813 2023-07-21
JP2023118813 2023-07-21

Publications (1)

Publication Number Publication Date
WO2025022897A1 true WO2025022897A1 (en) 2025-01-30

Family

ID=94374281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022741 WO2025022897A1 (en) 2023-07-21 2024-06-24 Microneedle array and method for producing same

Country Status (1)

Country Link
WO (1) WO2025022897A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233674A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Microneedle sheet, method for using the same, and method for manufacturing the same
US20140005606A1 (en) * 2012-06-29 2014-01-02 Mei-Chin Chen Embeddable micro-needle patch for transdermal drug delivery and method of manufacturing the same
WO2015016235A1 (en) * 2013-07-30 2015-02-05 Asti株式会社 Microneedle array and microneedle array manufacturing method
JP2020505081A (en) * 2017-05-17 2020-02-20 ユニヴァーシティ メディカル ファーマスーティカル コーポレイション System and method for manufacturing a microneedle device
JP2022504856A (en) * 2018-10-08 2022-01-13 インダストリー-アカデミック コーポレーション ファウンデーション,ヨンセイ ユニバーシティ Microstructure
US20220047858A1 (en) * 2019-01-25 2022-02-17 Feroka Inc. Microneedle having layered structure
WO2023286916A1 (en) * 2021-07-15 2023-01-19 주식회사 페로카 Microneedle patch and microneedle patch manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233674A (en) * 2009-03-30 2010-10-21 Fujifilm Corp Microneedle sheet, method for using the same, and method for manufacturing the same
US20140005606A1 (en) * 2012-06-29 2014-01-02 Mei-Chin Chen Embeddable micro-needle patch for transdermal drug delivery and method of manufacturing the same
WO2015016235A1 (en) * 2013-07-30 2015-02-05 Asti株式会社 Microneedle array and microneedle array manufacturing method
JP2020505081A (en) * 2017-05-17 2020-02-20 ユニヴァーシティ メディカル ファーマスーティカル コーポレイション System and method for manufacturing a microneedle device
JP2022504856A (en) * 2018-10-08 2022-01-13 インダストリー-アカデミック コーポレーション ファウンデーション,ヨンセイ ユニバーシティ Microstructure
US20220047858A1 (en) * 2019-01-25 2022-02-17 Feroka Inc. Microneedle having layered structure
WO2023286916A1 (en) * 2021-07-15 2023-01-19 주식회사 페로카 Microneedle patch and microneedle patch manufacturing method

Similar Documents

Publication Publication Date Title
US9919141B2 (en) Needle-shaped body and method for manufacturing needle-shaped body
JP7141646B2 (en) Manufacturing method of microneedle patch
US10918845B2 (en) Transdermal administration device
JP2013153866A (en) Transdermal absorption sheet and method for manufacturing transdermal absorption sheet
JP6481613B2 (en) Microneedle and method for manufacturing microneedle
US10363406B2 (en) Method for producing acicular body
US10799691B2 (en) Needle assembly for transdermal administration and method of producing the same
WO2004108203A1 (en) Pad base for transdermal administration and needle
US10946181B2 (en) Transdermal administration device
CN111035849B (en) Method for manufacturing original plate having needle-like projections and method for manufacturing microneedle array
WO2025022897A1 (en) Microneedle array and method for producing same
JP6255759B2 (en) Micro needle
JP2019006798A (en) Acicular body
JP6714319B2 (en) Needle-like body manufacturing method
JP2009061144A (en) Needle-shaped body chip and manufacturing method thereof
CN217067416U (en) Soluble microneedle and microneedle patch
KR20160043186A (en) Oriental acupuncture for drug delivery, having seperating needle point formed with biodegraderable high module and its manufacture method.
JP2018135286A (en) Uneven structure, percutaneous administration device, and percutaneous administration device set
JP2017023511A (en) Acicular body
CN116474254A (en) Hierarchical microneedle patch and processing method
JP2017158937A (en) Method for manufacturing transdermal absorption device
JP2018134195A (en) Uneven structure, percutaneous administration device, and percutaneous administration device set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24845279

Country of ref document: EP

Kind code of ref document: A1