[go: up one dir, main page]

WO2025022649A1 - Optical coupling unit and optical switch - Google Patents

Optical coupling unit and optical switch Download PDF

Info

Publication number
WO2025022649A1
WO2025022649A1 PCT/JP2023/027583 JP2023027583W WO2025022649A1 WO 2025022649 A1 WO2025022649 A1 WO 2025022649A1 JP 2023027583 W JP2023027583 W JP 2023027583W WO 2025022649 A1 WO2025022649 A1 WO 2025022649A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrule
ferrules
optical
fiber
input
Prior art date
Application number
PCT/JP2023/027583
Other languages
French (fr)
Japanese (ja)
Inventor
千里 深井
幾太郎 大串
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/027583 priority Critical patent/WO2025022649A1/en
Publication of WO2025022649A1 publication Critical patent/WO2025022649A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means

Definitions

  • the present invention relates to an optical coupling unit used primarily to switch the path of an optical line using a single-mode optical fiber in an optical fiber network, and an optical switch using the same.
  • Non-Patent Document 1 Various methods have been proposed for all-optical switches that switch paths while keeping light as it is, as shown in Non-Patent Document 1, for example.
  • optical fiber-type mechanical optical switches which use a robot arm or motor to control the butting of optical fibers or optical connectors, are inferior to other methods in that they have a slow switching speed, but they have many advantages over other methods, such as low loss, low wavelength dependency, multi-port capability, and a self-holding function that maintains the switched state when power is lost.
  • Representative structures include a method in which a stage using an optical fiber V-groove is translated, a method in which a mirror or prism is translated or angle-changed to selectively couple to multiple optical fibers emitting from an input optical fiber, and a method in which a robot arm is used to connect a jumper cable with an optical connector.
  • a method has also been proposed in which a multicore fiber is used as the optical path for switching.
  • a multicore fiber is used as the optical path for switching.
  • a multicore fiber with a three-dimensional MEMS optical switch (see, for example, Non-Patent Document 2)
  • a cylindrical ferrule into which the multicore fiber is inserted see, for example, Patent Document 1
  • optical components such as lenses and prisms are not required, making it possible to simplify the configuration.
  • Non-Patent Document 1 has a problem that it is difficult to further reduce power consumption, miniaturize, and make it economical.
  • a motor is generally used as a drive source, but since it is a mechanism for linearly moving a heavy object such as a stage, a certain amount of torque is required for the motor, and power consumption is required to obtain an appropriate output to maintain the required torque.
  • the robot arm method using optical connectors has the problem that the robot arm itself, which controls the insertion and removal of the optical connector or ferrule, requires a large amount of power, over several tens of watts.
  • Non-Patent Document 2 Furthermore, in the optical path switching using the multicore fiber described in Non-Patent Document 2, a collimation mechanism for coupling to the optical fiber array on the output side and a vibration isolation mechanism for obtaining stable optical characteristics against external factors such as vibration are separately required in the process of manufacturing the optical switch, which causes the assembly process to become complicated.
  • Non-Patent Document 3 there is a method to prevent scratches on the fiber end surface due to contact by providing a gap in advance in a cylindrical ferrule into which an optical fiber is inserted, and using a connection configuration that does not involve fiber contact.
  • a connection configuration that does not involve fiber contact.
  • a special coating to prevent reflection is required, which creates the problem of increased costs.
  • Non-Patent Document 4 Another method for preventing reflections is to polish the ferrule end faces at an angle (for example, Non-Patent Document 4).
  • problems such as interference at the ferrule end faces when switching by rotation, or a large gap being required, resulting in large connection loss.
  • the ferrule is polished to a spherical surface, the fiber end face is polished at an angle, and the center of the ferrule is polished flat to minimize the gap that occurs on the fiber end face, so it is possible to prevent reflection while preventing scratches on the fiber end face due to contact and to keep connection loss due to gaps low.
  • the manufacturing process of the ferrule mold it is difficult to control the fiber hole position with high precision, and there is a problem that axial misalignment loss due to fiber hole position misalignment occurs as excess loss.
  • the present invention aims to provide an optical coupling section and an optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.
  • the optical coupling unit includes: An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve, A first ferrule of the two ferrules has a plurality of optical fibers arranged in a fiber hole in a bundle shape on the same circumference centered on a central axis of the ferrule, At least one of the two ferrules is rotatable about the ferrule central axis, The ends of the two ferrules that are butted together have a convex spherical shape having a center point on the central axis of the ferrule.
  • the optical coupling unit and optical switch disclosed herein may include two ferrules in which a single-core single-mode optical fiber is arranged parallel to and at the same distance from the central axis of the ferrule.
  • the ends of the two ferrules that are butted together have a convex spherical shape, and the tips of the ends of the two ferrules are butted together so that their central axes coincide, and one of the ferrules is rotated.
  • the optical coupling unit comprises: a first ferrule having a convex spherical end face, the first ferrule including a plurality of single-core single-mode optical fibers arranged in a bundle shape such that the core centers of the single-core single-mode optical fibers are aligned on the same circumference in a central portion of the ferrule cross section; a second ferrule having a convex spherical end face, in which the core centers of one or more single-core single-mode optical fibers are arranged on a circumference having the same diameter as the circumference on which the core centers of the single-mode optical fibers in the first ferrule are arranged, from the center in a ferrule cross section; and a cylindrical sleeve having a hollow portion into which the first ferrule and the second ferrule are inserted so that the central axes of the first ferrule and the second ferrule coincide, and a predetermined gap is provided between the outer diameters of the
  • the ends of two ferrules in which single-mode optical fibers are arranged parallel to and at the same distance from the central axis of the ferrule, have a convex spherical shape, and by butting the tips of the ends of the two ferrules together so that their central axes coincide and rotating them around the central axis of one of the ferrules, the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical characteristics such as connection loss caused by scratches on the end faces of the optical fibers due to contact.
  • the end faces of the opposing optical fibers are non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.
  • one of the input and output sides of the optical coupling section that performs optical switching is made into an axially rotatable mechanism, so it is possible to minimize the energy required by the actuator, i.e., the torque output, and to reduce power consumption. Also, the amount of optical axis deviation in directions other than the axial rotation of the input ferrule is guaranteed by the sleeve in the optical coupling section, making it possible to reduce loss.
  • the present invention does not include a collimator or special vibration isolation mechanism, and is composed of commonly used optical connection parts such as ferrules and sleeves, making it small and economical.
  • a dummy fiber may be arranged inside the optical fibers arranged in a bundle on the same circumference centered on the central axis of the ferrule, and the end face of the dummy fiber may form part of the convex spherical shape.
  • the return loss in the convex spherical shape may be equal to or greater than a predetermined value.
  • the angle between a cross section perpendicular to the central axis of the ferrule and the end face of the single mode optical fiber may be equal to or greater than 4.5 degrees in each of the first ferrule and the second ferrule. This allows the return loss in the convex spherical shape to be equal to or greater than 40 dB.
  • excess loss T G due to a gap between the butted end faces of the two ferrules may be suppressed.
  • a gap between an end face of the single mode optical fiber of the first ferrule and an end face of the single mode optical fiber of the second ferrule, the optical axis of which coincides with that of the single mode optical fiber may be 22 ⁇ m or less. This makes it possible to suppress excess loss T G due to the gap to 0.1 dB or less.
  • excess loss TR due to rotation angle misalignment of the two ferrules may be suppressed.
  • the distance from the central axis of the ferrule to the core center of each single mode optical fiber in the first ferrule and the second ferrule may be 250 ⁇ m or less. This makes it possible to suppress excess loss TR due to rotation angle misalignment to 0.1 dB or less.
  • the optical coupling unit according to the present disclosure may satisfy the conditions of the return loss in the convex spherical shape and the excess loss T G due to a gap between the end faces of the two ferrules where the end faces are butted together.
  • the optical fibers may be single mode optical fibers, and a radius of curvature in the convex spherical shape in each of the first ferrule and the second ferrule may be 0.7 mm or more and 3.2 mm or less.
  • the optical switch according to the present disclosure comprises: The optical coupling portion; and a rotation mechanism that rotates one of the two ferrules of the optical coupling portion about a central axis of the ferrule.
  • an optical switch may include: an actuator that rotates the rotation mechanism at a constant angular step and stops the rotation mechanism at an arbitrary angular step;
  • a bearing constituting the rotation mechanism; may further comprise:
  • the optical coupling unit has An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve, comprising: A first ferrule of the two ferrules has a plurality of optical fibers arranged in a fiber hole in a bundle shape on the same circumference centered on a central axis of the ferrule, At least one of the two ferrules is rotatable about the ferrule central axis, Rotation of at least the other of the two ferrules is restricted, Either of the two ferrules is pressed in a direction such that the ends of the two ferrules butt against each other.
  • the rotation of at least the other of the two ferrules is restricted, suppressing the degradation of optical properties at the butted ends of the ferrules caused by rotational misalignment.
  • one of the ferrules is pressed in the direction in which the ends of the two ferrules butt together, so the gap between the end faces of the optical fibers wired inside the ferrules can be kept to a necessary minimum. This makes it possible to suppress degradation of optical properties. In this way, according to the present disclosure, even when the optical switch is grounded outdoors where vibrations occur, it is possible to suppress degradation of optical properties, making it maintenance-free and economical.
  • optical coupling section may have a convex spherical shape with a center point on the central axis of the ferrules at the ends where the two ferrules are butted together.
  • the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical properties such as connection loss caused by scratches on the end faces of the optical fibers due to contact.
  • the end faces of the opposing optical fibers are non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.
  • the optical switch according to the present disclosure may also include a presser that restricts rotation of at least the other of the two ferrules and presses one of the two ferrules in a direction in which the ends of the two ferrules butt together.
  • the pressure device is fixed to the housing via a stopper, which allows the rotation of the ferrule to be restricted and pressure to be applied to the end face of the ferrule, resulting in low power consumption and economical use.
  • the optical switch according to the present disclosure is a housing that accommodates at least the other of the two ferrules, a flange that presses at least the other of the two ferrules, and the presser, in the order of the presser, the flange, and at least the other of the two ferrules;
  • a stopper that fixes the pressing device to the housing, The pressing device may restrict rotation of at least the other of the two ferrules relative to the housing via a stopper, and may press at least the other of the two ferrules via the flange.
  • the optical switch according to the present disclosure is a fixing jig that receives at least one of the two ferrules and is engageable with the housing;
  • the fixture further includes a protrusion that engages with the housing,
  • the housing may be positioned relative to the fixing jig by the projection engaging with a locking piece of the housing.
  • the optical switch according to the present disclosure is a rotation mechanism that rotates at least one of the two ferrules about a central axis of the ferrule; an actuator that rotates the rotation mechanism at a constant angular step and stops the rotation mechanism at an arbitrary angular step;
  • the rotating mechanism may further include a bearing.
  • This disclosure makes it possible to provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.
  • FIG. 1 shows an example of a schematic configuration of the present invention.
  • FIG. 2 is a front view of the end of the output ferrule.
  • FIG. 2 is a front view of the end of the input ferrule.
  • 1 is a diagram showing an optical coupling portion in a longitudinal direction.
  • FIG. 1 shows an example of the relationship between the excess loss and the clearance between the outer diameter of the ferrule and the inner diameter of the sleeve.
  • 3 shows the vicinity of an end of a ferrule in an optical coupling portion of the present invention.
  • 1 shows an example of the relationship between the angle between a cross section perpendicular to the central axis of the ferrule and the end face of a single mode optical fiber and the return loss.
  • 1 shows an example of the relationship of excess loss to the gap of an optical fiber.
  • 1 shows an example of the relationship between the radius of curvature of a convex spherical ferrule end face and the angle between a cross section perpendicular to the central axis and the end face of a single mode optical fiber.
  • 1 shows an example of the relationship between the radius of curvature of a convex spherical ferrule end face and the distance from the tip of the ferrule to the end face of a single mode optical fiber.
  • 1 shows an example of the relationship between the core arrangement radius and excess loss due to a rotation angle deviation.
  • 3 shows a coupling form of the optical coupling portion of the present invention according to the first embodiment.
  • 13 illustrates a coupling form of an optical coupling portion of the present invention according to a second embodiment.
  • 13 illustrates a cross section of an input ferrule of an optical coupling portion of the present invention according to a second embodiment.
  • 13 illustrates a cross section of an input ferrule of an optical coupling portion of the present invention according to a second embodiment.
  • 3 shows a side view of the output side flange of the present invention in accordance with embodiment 1.
  • 13 illustrates a coupling form of an optical coupling portion of the present invention according to a third embodiment.
  • FIG. 1 is a diagram showing an example of an embodiment of the present invention.
  • the present invention makes it possible to switch the input side optical fiber S01 connected to the front-stage optical switch configuration section S00 to a specific port of the inter-optical switch optical fiber S02 in the front-stage optical switch configuration section S00, and to switch the port of the inter-optical switch optical fiber S02 to a desired output side optical fiber S04 in the rear-stage optical switch configuration section S03.
  • the present invention is an optical switch corresponding to the front-stage optical switch configuration section S00 and the rear-stage optical switch configuration section S03.
  • the front-stage optical switch configuration section S00 will be abbreviated as the optical switch S00
  • the rear-stage optical switch configuration section S03 will be abbreviated as the optical switch S03.
  • the optical switch S00 and the optical switch S03 are in a left-right inversion relationship and have the same configuration, so the detailed configuration will be shown below using the optical switch S00.
  • FIG. 2 is a block diagram showing a configuration according to an embodiment of the present invention.
  • the optical coupling unit S8 of the optical switch S00 is a first ferrule in which the core centers of a plurality of single mode optical fibers are arranged on the same circumference from the center in a cross section of the ferrule; a second ferrule in which the core centers of one or more single mode optical fibers are arranged on a circumference having the same diameter as the circumference on which the core centers of the single mode optical fibers in the first ferrule are arranged from the center in a cross section of the ferrule; and a cylindrical sleeve S17 having a hollow portion into which the first ferrule and the second ferrule are inserted so that the central axes of the first ferrule and the second ferrule are aligned, and a predetermined gap is provided between the outer diameters of the first ferrule and the second ferrule and the inner diameter of the hollow portion so that the first ferrule and the second ferrul
  • the input optical fiber S1 is configured to be one single-core single-mode optical fiber, and the input ferrule S6 is the second ferrule.
  • the output optical fiber S9 is configured to be multiple single-core single-mode optical fibers, and the output ferrule S7 is the first ferrule.
  • the input optical fiber S1 corresponds to the input optical fiber S01 in FIG. 1, and the output optical fiber S9 corresponds to the inter-optical switch optical fiber S02 in FIG. 1.
  • the optical switch S00 shown in FIG. 2 has an optical coupling section S8 consisting of an input ferrule S6 into which an input optical fiber S1 is inserted, and an output ferrule S7 into which an output optical fiber S9 is inserted.
  • the input optical fiber S1 is fixed using an adhesive or the like at a predetermined position in a fiber hole in the input ferrule S6.
  • the output optical fiber S9 is fixed using an adhesive or the like at a predetermined position in a fiber hole in the output ferrule S7.
  • the output ferrule S7 When light is incident from the input optical fiber S1, the output ferrule S7 is fixed and the input ferrule S6 is rotated to connect the input optical fiber S1 to any one of the output optical fibers S9, and the incident light can be output from one of the output optical fibers S9.
  • This optical switch S00 can be used as a 1xN relay type optical switch.
  • the output side ferrule S7 is fixed and the input side ferrule S6 is rotated, but as long as either the input side ferrule S6 or the output side ferrule S7 is fixed and the opposing fiber can be switched by rotating the opposing side, the input side ferrule S6 may be fixed and the output side ferrule S7 may be rotated. Also, although one input side ferrule S6 is used, it is also possible to arrange multiple optical fibers.
  • the optical switch S00 which fixes the output ferrule S7 and rotates the input ferrule S6.
  • the output ferrule S7 is fixed by a rotation stop mechanism (not shown) so that it does not rotate about its axis.
  • the actuator S3 rotates at any angle in response to a signal from the control circuit S4.
  • the input ferrule S6 rotates when the output of the actuator S3 is transmitted via the rotation mechanism S5.
  • the input ferrule S6 is provided with a certain amount of excess length S2 to allow for twisting of the input optical fiber S1.
  • the optical coupling section S8 is configured to suppress axial misalignment of the ferrule central axis by an axial misalignment adjustment mechanism (not shown) and to avoid excess loss due to axial misalignment.
  • the optical coupling unit S8 of the optical switch S00 is
  • the input side ferrule S6 and the output side ferrule S7 are A convex spherical end portion is provided in the direction of the central axis.
  • the tip of the input ferrule S6 and the tip of the output ferrule S7 are butted against each other.
  • FIG. 3 is a schematic diagram showing the end of the output side ferrule S7 according to an embodiment of the present invention from the front.
  • a plurality of optical fibers are bundled together and arranged inside a fiber hole S11 of diameter S21 provided in the center of the output side ferrule S7, and the core center of each of the output side optical fibers S9 is arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center of the output side ferrule S7.
  • a dummy fiber S10 is arranged at the center and a total of six output side optical fibers S9 are arranged, but this is not limited as long as the core centers of the plurality of output side optical fibers S9 are arranged on the circumference of a circle having a core arrangement radius Rcore.
  • the dummy fiber S10 may be an optical fiber having the same strength and outer diameter as the output side optical fiber S9, and may be a fiber without a core, that is, a fiber that does not transmit light.
  • FIG. 4 is a schematic diagram showing the end of the input side ferrule S6 according to an embodiment of the present invention from the front. As shown in FIG. 4, a plurality of optical fibers are bundled together and arranged inside a fiber hole S11 provided in the center of the input side ferrule S6, and the core center of the input side optical fiber S1 is arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center of the input side ferrule S6.
  • FIG. 4 is a schematic diagram showing the end of the input side ferrule S6 according to an embodiment of the present invention from the front. As shown in FIG. 4, a plurality of optical fibers are bundled together and arranged inside a fiber hole S11 provided in the center of the input side ferrule S6, and the core center of the input side optical fiber S1 is arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center of the input side ferrule S6.
  • FIG. 4 is a schematic diagram showing the end of the input
  • the dummy fiber S10 may be any optical fiber that has the same strength and outer diameter as the input optical fiber S1, and may be a fiber that does not have a core, i.e., a fiber that does not transmit light.
  • the outer diameter of the dummy fiber S10 arranged at the center of the output ferrule S7 and the input ferrule S6 may be different from the output optical fiber S9 and the input optical fiber S1.
  • the outer diameter of the dummy fiber S10 arranged at the center larger than 125 ⁇ m, it becomes possible to arrange six or more output optical fibers S9 on the circumference of a circle with a core arrangement radius Rcore.
  • each core of the output optical fiber S9 it is important to minimize the transmission loss of the optical coupling section S8, and it is desirable for each core of the output optical fiber S9 to have the same optical characteristics as the core of the input optical fiber S1 in that it has a mode field diameter similar to that of the core of the input optical fiber S1. It is also important to minimize excess loss due to axial misalignment, and it is desirable for the ferrule outer diameter S15 of the output ferrule S7 to be approximately the same as the ferrule outer diameter S15 of the input ferrule S6.
  • the input side ferrule S6 and the output side ferrule S7 are made of zirconia, and the input side optical fiber S1 and the output side optical fiber S9 are made of quartz glass, but this is not limited and any optical fiber capable of communicating signal light in the communication wavelength band may be used.
  • FIG. 5 is a schematic diagram showing an optical coupling section S8 according to an embodiment of the present invention, viewed from a longitudinal surface.
  • An input ferrule S6 into which an input optical fiber S1 is inserted, and an output ferrule S7 into which an output optical fiber S9 is inserted, are aligned with a cylindrical sleeve S17 having a hollow portion with an inner diameter S16 that is approximately sub- ⁇ m larger than the outer diameter S15 of the ferrules, and a slight clearance C of approximately sub- ⁇ m is provided for the input ferrule S6 and the output ferrule S7 to control the axial misalignment within a certain tolerance range and not to interfere with the axial rotation of the input ferrule S6.
  • FIG. 6 is a diagram showing an example of the relationship between the excess loss T C and the clearance C between the ferrule outer diameter S15 and the sleeve inner diameter S16 of the input side ferrule S6 and the output side ferrule S7.
  • the axial misalignment of the fiber cores is a cause of excess loss. Since an increase in excess loss limits the total length of the optical path, it is necessary to reduce the axial misalignment of the fiber cores.
  • ⁇ 1 and ⁇ 2 are the mode field radii (unit: ⁇ m) of the input and output optical fiber S9 cores, respectively, and Fig. 6 is a diagram showing the loss when the mode field diameters of the input optical fiber S1 and the output optical fiber S9 cores are both 9 ⁇ m.
  • FIG. 7 is a schematic diagram showing in more detail the vicinity of the end of the ferrule of the optical coupling unit S8 according to the embodiment of the present invention.
  • the end of the input side ferrule S6 and the output side ferrule S7 has a convex spherical shape having a center point on the ferrule central axis AC .
  • the output side ferrule S7 of this embodiment has a dummy fiber S10 arranged at the center of the fiber hole S11, and the output side optical fiber S9 arranged around the dummy fiber S10.
  • the end faces of the output side optical fiber S9 and the dummy fiber S10 arranged in the output side ferrule S7 form the convex spherical shape of the end of the output side ferrule S7.
  • the output side ferrule S6 of this embodiment has a dummy fiber S10 arranged at the center of the fiber hole S11, and the input side optical fiber S1 and the dummy fiber S10 arranged around the dummy fiber S10.
  • the end faces of the input side optical fiber S1 and the dummy fiber S10 disposed in the output side ferrule S6 constitute the convex spherical shape of the end of the input side ferrule S6.
  • the dummy fibers S10 arranged in the input ferrule S6 and the output ferrule S7 are butted at their respective tips.
  • the input fiber S1 and the output fiber S9 are arranged at the position of the core arrangement radius Rcore from the ferrule central axis A C in the ferrule cross section.
  • the end faces of the input fiber S1 and the output fiber S9 are set back from their tips to prevent the end faces from coming into contact and being damaged when switching by rotation.
  • the angle ⁇ between the cross section perpendicular to the ferrule central axis A C and the end face of the single-core optical fiber is controlled at the end faces of the input fiber S1 and the output fiber S9 to suppress deterioration of signal characteristics due to reflection.
  • a convex spherical shape can be produced by using a polishing technique used in the production of general optical connectors.
  • the end faces of the dummy fibers S10 arranged on the respective ferrule central axes are butted against each other, but the arrangement is not limited thereto as long as the end faces of the input fiber S1 and the output fiber S9 do not come into contact with each other.
  • the amount of fiber retraction may be increased so that the end faces of the input side fiber S1 and the output side fiber S9 do not come into contact with each other when the input side ferrule S6 and the output side ferrule S7 are butted together.
  • Fig. 8 is a diagram showing an example of the relationship between the angle ⁇ between a cross section perpendicular to the ferrule central axis and the end face of a single mode optical fiber and the return loss R.
  • the optical coupling section S8 if there is an area with a different refractive index between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, the signal characteristics will be deteriorated by reflection.
  • Equation 2 The relationship between the angle ⁇ (unit: degree) between the cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber and the return loss R (unit: dB) can be expressed by Equation 2.
  • n1 , ⁇ 1 , and ⁇ are the refractive index of the optical fiber, the mode field radius of the optical fiber core (unit: ⁇ m), and the wavelength of the propagating light in a vacuum (unit: ⁇ m), respectively.
  • R0 is the return loss at the flat end face, which can be expressed by the following equation 3.
  • n2 is the refractive index of the light receiving medium, that is, the refractive index of air.
  • the return loss R0 at the flat end face is 14.7 dB, and for example, by making the angle ⁇ between the cross section perpendicular to the ferrule central axis A C and the end face of the single mode optical fiber 4.5 degrees or more, a return loss R of 40 dB or more can be maintained. Furthermore, it is possible to further improve the reflection characteristics by processing a reflective coating on the fiber end face.
  • FIG. 9 is a diagram showing an example of the relationship of excess loss T G to gap G.
  • the relationship between the gap G (unit: ⁇ m) and excess loss T G (unit: dB) can be expressed by Equation 4.
  • ⁇ , n clad , ⁇ 1 , and ⁇ 2 are the wavelength of the propagating light in a vacuum (unit: ⁇ m), the refractive index of the cladding of the optical fiber, i.e., pure quartz, and the mode field radius of the cores of the input side optical fiber S1 and the output side optical fiber S9 (unit: ⁇ m), and Fig. 9 is a diagram showing the loss when the mode field diameters of the cores of the input side optical fiber S1 and the output side optical fiber S9 are both 9 ⁇ m.
  • the excess loss can be suppressed to 0.1 dB or less.
  • FIG. 10 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the angle ⁇ between a cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber.
  • the relationship between the radius of curvature Rcur (unit: mm) of the convex spherical ferrule end face and the angle ⁇ (unit: degrees) between a cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber can be expressed by Equation 5 using the core arrangement radius Rcore (unit: ⁇ m).
  • FIG. 10 is a diagram showing the relationship between the angle ⁇ and the radius of curvature Rcur when the core arrangement radius Rcore is 125, 150, 200, and 250 ⁇ m. From Fig. 8, it can be seen that the angle ⁇ capable of maintaining a return loss R of 40 dB or more is 4.5 degrees or more, and a radius of curvature Rcur with an angle ⁇ of 4.5 degrees or more can be realized at a core arrangement radius Rcore of 250 ⁇ m or less.
  • the radius of curvature Rcur is adjusted to 1.5 mm or less, 1.9 mm or less, 2.5 mm or less, and 3.2 mm or less, respectively, so that the angle ⁇ becomes 4.5 degrees or more and a return loss R of 40 dB or more can be maintained.
  • a typical single mode optical fiber has an outer fiber diameter of 125 ⁇ m.
  • FIG. 11 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the distance D from the ferrule tip to the end face of the single mode optical fiber.
  • the distance D from the ferrule tip to the end face of the single mode optical fiber corresponds to half the gap G between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, and can be expressed by Equation 6 using the radius of curvature Rcur (unit: mm) of the convex spherical ferrule end face and the angle ⁇ (unit: degrees) between a cross section perpendicular to the ferrule central axis AC and the end face of the single mode optical fiber.
  • the radius of curvature Rcur is adjusted to be 0.7 mm or more, 1.0 mm or more, 1.8 mm or more, and 2.8 mm or more, respectively, so that the distance D from the ferrule tip to the fiber end face is 11 ⁇ m or less, that is, the gap G is 22 ⁇ m or less, and the excess loss T G due to the gap can be suppressed to 0.1 dB or less as shown in FIG.
  • a typical single mode optical fiber has an outer fiber diameter of 125 ⁇ m.
  • a return loss R of 40 dB or more and an excess loss T of 0.1 dB or less can be achieved by polishing the ferrule end face so that the radius of curvature R is 0.7 mm or more and 1.5 mm or less.
  • the optical coupling portion S8 of the optical switch S00 has a return loss of 40 dB or more and an excess loss due to a gap of 0.1 dB or less.
  • the radius of curvature of the convex spherical shape may be 0.7 mm or more and 3.2 mm or less.
  • the actuator S3 is a drive mechanism that rotates at any angle step by a pulse signal from the control circuit S4 and has a constant static torque for each angle step, and for example, a stepping motor is used. Note that the actuator S3 may use other methods as long as it rotates at any angle step by a pulse signal from the control circuit S4 and has a constant static torque for each angle step.
  • the rotation speed and rotation angle are determined by the period and pulse number of the pulse signal from the control circuit S4, and the angle step and static torque may be adjusted via a reduction gear.
  • the input side ferrule S6 in the optical coupling unit S8 is designed to rotate around the ferrule central axis A C , and therefore has a feature that the static torque required to hold the rotation angle of the input side ferrule S6 is applied by the actuator S3.
  • the static angular step number is characterized by being a natural number multiple of the number of cores having the same core arrangement radius Rcore in the output side optical fiber S9.
  • Equation 7 An example of the relationship of excess loss TR due to rotation angle misalignment with respect to core arrangement radius Rcore is shown in FIG. 12.
  • FIG. 12 is a diagram showing the relationship between core arrangement radius Rcore and excess loss TR due to rotation angle misalignment when the rotation angle misalignment ⁇ is 0.1 degrees, 0.15 degrees, 0.2 degrees, and 0.3 degrees.
  • the core arrangement radius Rcore is 125 ⁇ m, so according to FIG. 12, even with a rotation angle misalignment of 0.3 degrees, the excess loss TR due to rotation angle misalignment can be maintained at 0.1 dB or less.
  • a sleeve S17 is built into the inside of the fixing jig S27, and the input side ferrule S6 and the output side ferrule S7 are inserted into the sleeve S17 to align the ferrule central axes.
  • the output side ferrule S7 is fixed, and the input side ferrule S6 rotates within the sleeve S17 by the rotation mechanism S5 of the bearing S26 around the center of the ferrule cylinder as an axis. This rotates the core of the input optical fiber S1 inserted into the input ferrule S6, and switches the core of the output optical fiber S9 facing the input optical fiber S1.
  • the bearing S26 is made of, for example, zirconia, but other materials can be used as long as they can be manufactured with high dimensional accuracy.
  • the fixing jig S27 into, for example, a frame made of a hollow metal with low rigidity, it is possible to reduce the axial deviation of the input ferrule S6 caused by the axial wobble when the actuator S3 rotates.
  • FIG. 17 A side view of the output side flange S19 attached to the output side ferrule S7 is shown in Fig. 17.
  • the capillary S23 is arranged at a position where the fiber hole S30 of the output side ferrule S7 attached to the output side flange S19 and the ferrule central axis A C coincide with each other, and the capillary S23 is tapered in the longitudinal direction and the diameter of the tip is made close to the diameter of the fiber hole S30 of the output side ferrule S7, thereby preventing the output side optical fiber S9 from being caught by a step when being inserted into the output side ferrule S7, and further preventing the optical fiber from being broken.
  • the rotating flange S29 attached to the input side ferrule S6 is shown, but the shape of the inside of the flange is not limited to this as long as it is a shape that allows the optical fiber to be inserted into the fiber hole and a shape that allows the optical fiber to be protected when the optical coupling part is made.
  • the ends of two ferrules in which single-mode optical fibers are arranged parallel to and at the same distance from the central axis, are convex, and the tips of the ends of the two ferrules are butted together so that their central axes coincide, and one of the ferrules is rotated around its central axis, so that the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical characteristics such as connection loss caused by scratches on the end faces of the optical fibers due to contact.
  • the end faces of the opposing optical fibers are non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.
  • one of the input and output sides of the optical coupling section S8 that performs optical switching is made into an axially rotatable mechanism, so that it is possible to minimize the energy required by the actuator S3, i.e., the torque output, and to reduce power consumption. Also, the amount of optical axis deviation in directions other than the axial rotation of the input ferrule S6 is guaranteed by the sleeve S17 in the optical coupling section S8, making it possible to reduce loss.
  • the present invention does not include a collimator or special vibration isolation mechanism, and is composed of commonly used optical connection parts such as ferrules and sleeves, making it small and economical.
  • the present invention makes it possible to provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors such as temperature and vibration with low power consumption and in a more economical manner. As a result, it can be used as an optical switch that switches paths in optical lines using single-mode optical fibers in optical fiber networks, regardless of location, in any facility.
  • FIG. 14 is a schematic diagram showing the mating form of the optical coupling section S8 according to this embodiment.
  • the output side ferrule S7 is attached to the output side flange S19, and the output side flange S19 is attached to the fixing jig S27 with a fixing screw S25, and the axial direction and axial rotation direction are fixed.
  • the input side ferrule S6 is attached to the input side flange S18.
  • the input side flange S18 is attached to the fixing jig S27 with a removable fixing screw S25, and the axial direction and axial rotation direction are fixed. By loosening the fixing screw S25, the input side flange S18 becomes rotatable, and the input side ferrule S6 attached to the input side flange S18 can rotate accordingly.
  • the input side flange S18 may also have the structure shown in FIG. 15, as described later. At this time, a fixing screw (not shown) for fixing the axial direction may be provided separately.
  • the input side ferrule S6 has a ferrule outer diameter S15 smaller than that of the output side ferrule S7, is attached to a bearing S26, and rotates by the rotation mechanism S5 of the bearing S26.
  • the output side ferrule S7 is fixed and the input side flange S18 becomes rotatable, and the input side ferrule S6 rotates within the sleeve S17 around the center of the ferrule cylinder by the rotation mechanism S5 of the bearing S26. This causes the core of the input optical fiber S1 inserted into the input ferrule S6 to rotate, switching the core of the output optical fiber S9 opposite the input optical fiber S1.
  • FIG. 15 is a schematic diagram showing a cross section of the input ferrule S6 of the optical coupling unit S8 according to this embodiment.
  • a bearing S26 is attached around the input ferrule S6, and the input ferrule S6 can freely rotate in the sleeve S17.
  • FIG. 15 also shows an example of using a fixed spring S28 as a method of fixing the input flange S18.
  • a groove as shown in FIG. 15 is provided in advance in the input flange S18, and the input flange S18 and the input ferrule S6 fixed thereto are fixed by clamping the tip of the fixed spring S28 in the groove.
  • the fixed spring S28 releases the fixed input ferrule S6 by applying a force in the direction of the arrow D S , and the input ferrule S6 can be rotated.
  • a control circuit S4 (not shown) that controls the actuator S3
  • a magnet or a solenoid may be used in addition to the fixing spring S28.
  • the output ferrule S7 of the optical coupling section S8 is not attached to the output flange S19, but to a pressing force imparting flange S31 to which a pressing device S32 is attached, which applies a pressing force in the direction in which the end faces of the input ferrule S6 and the output ferrule S7 butt against each other in the longitudinal direction of the ferrule.
  • the pressing device S32 holds the output ferrule S7 via the pressing force imparting flange S31.
  • the pressing device S32 is attached to the housing S33 by a stopper S34. A method for fixing the output ferrule S7 will be described below. Note that the contents other than those described below are the same as those of the first embodiment.
  • the optical coupling unit S8 is An optical coupling unit that couples single-core optical fibers S1 and S9 disposed in two ferrules S6 and S7 using a sleeve S17,
  • the output side ferrule S7 has a plurality of optical fibers arranged in a bundle shape in the fiber hole on the same circumference centered on the central axis of the ferrule,
  • the input ferrule S6 is rotatable around the ferrule central axis, The rotation of the output ferrule S7 is restricted.
  • the output side ferrule S7 is characterized in that the ends of the two ferrules are pressed in a direction to butt together.
  • the optical switch S00 has In the optical coupling section S8,
  • the connector is characterized by including a pressing device S32 that restricts the rotation of the output ferrule S7 and presses the output ferrule S7 in a direction in which the ends of the two ferrules butt together.
  • FIG. 18 is a schematic diagram showing the mating form of the optical coupling unit S8 according to this embodiment.
  • the input side ferrule S6 is attached to the rotating flange S29, the rotating flange S29 is provided with a bearing S26, and the input side ferrule S6 is attached to the fixing jig S27 with a fixing screw S25, and the axial direction is fixed.
  • the input side configuration of the optical coupling unit S8 according to this embodiment is not limited to this.
  • the input side ferrule S6 is attached to the input side flange S18, and the input side flange S18 is attached to the fixing jig S27 with a removable fixing screw S25, and the axial direction and axial rotation direction are fixed.
  • the fixing screw S25 By loosening the fixing screw S25, the input side flange S18 becomes rotatable, and the input side ferrule S6 attached to the input side flange S18 can also be rotated.
  • the input side ferrule S6 may have a ferrule outer diameter S15 smaller than that of the output side ferrule S7, a bearing S26 is attached, and the input side ferrule S6 may be rotated by the rotation mechanism S5 of the bearing S26.
  • a pressing force applying flange S31 is attached to the output side ferrule S7.
  • a pressing force applying device S32 is attached to the pressing force applying flange S31 in the longitudinal direction of the input side ferrule S6 and the output side ferrule S7, which applies a pressing force in the direction in which the end faces of the input side ferrule S6 and the output side ferrule S7 butt against each other.
  • the pressing device S32 presses the pressing force applying flange S31 to the left in FIG. 18.
  • the output side ferrule S7 to which the pressing force applying flange S31 is attached is also pressed to the left.
  • the pressing device S32 is also attached to a stopper S34 and fixed in the rotational direction.
  • the stopper S34 is attached to the housing S33, and therefore the pressing device S32 is fixed in the rotational direction relative to the housing S33.
  • the front end of the pressing device S32 is fixed to the rear end of the pressing force applying flange S31. This fixes the output side ferrule S7 attached to the pressure applying flange S32 in the rotational direction relative to the housing S33.
  • the pressing device S32 may be a bellows-type, slit-type, disk-type coupling, or the like.
  • the material of the pressing device S32 may be a metal such as stainless steel or a polymeric compound such as rubber, and it is not limited to these as long as it holds the output ferrule S7 so that it does not rotate and applies a pressing force in the direction in which the end faces of the input ferrule and the output ferrule butt together.
  • the housing S33 accommodates the output side ferrule S7, the pressing force applying flange S31, and the pressing device S32 in the following order: pressing device S32, pressing force applying flange S31, output side ferrule S7.
  • the fixing jig S27 and the housing S33 may be mated by a mating method used for general optical connectors. That is, the housing S33 is inserted and fixed in the fixing jig S27 by providing a mating mechanism for an optical connector plug in an optical connector in the housing S33 and providing a mating mechanism for an optical connector adapter in an optical connector in the fixing jig S27.
  • a protrusion S35 is provided on the surface of the fixing jig S27 that contacts the housing S33 on the inside, and a locking piece S36 is provided on the housing S33, and the housing S33 is fixed (positioned) to the fixing jig S27 by mating the protrusion S35 and the locking piece S36.
  • the stopper S34 may be formed integrally with the housing S33.
  • the presser S32 is fixed in the rotational direction relative to the housing S33 by the stopper S34, and the presser S32 is fixed to the fixing jig S27 via the stopper S34 and the housing S33.
  • the output side ferrule S7 attached to the pressing force applying flange S31 fixed to the presser S32 is also fixed to the housing S32 and the fixing jig S27.
  • the presser S32 that presses the output side ferrule S7 can be accurately fixed to the housing S33 using the stopper 34, so that it is possible to suppress deterioration of the optical characteristics.
  • two stoppers S34 are provided, but the scope of the present disclosure is not limited to this.
  • the number of stoppers S34 may be only one, or may be three or more.
  • the housing S33 is fixed at a predetermined position relative to the fixing jig S27, so that an appropriate pressing force is applied to the ferrule end face.
  • the pressing device S32 contracts to apply a pressing force in the longitudinal direction of the ferrule. Specifically, as the pressing device S32 is pressed to the left, the pressing force applying flange S31 is pressed to the left.
  • the output side ferrule S7 to which the pressing force applying flange S31 is attached is also pressed to the left.
  • the pressing force is applied to the ferrule end face by pressing the output side ferrule S7 with the pressing device S32, but the scope of the present disclosure is not limited to this.
  • a pressing device S32 may be provided on the input side, and the input side ferrule S6 may be pressed against the pressing device S32 to apply a pressing force to the ferrule end face.
  • the presser S32 that can be attached to the stopper S34, it is possible to regulate the rotation of the output side ferrule S7 and apply a pressing force to the ferrule end face, which consumes low power and is economical.
  • the output ferrule S7 is fixed in the rotational direction with its end face pressed against the end face of the input ferrule, and the input ferrule S6 rotates around the center of the ferrule cylinder within the sleeve S17. This causes the core of the input optical fiber S1 inserted into the input ferrule S6 to rotate, switching the core of the output optical fiber S9 facing the input optical fiber S1.
  • the present invention can provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.
  • optical coupling section and optical switch disclosed herein can be applied to the optical communications industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The purpose of the present disclosure is to provide an optical coupling unit and an optical switch, which realize stable optical characteristics with respect to external factors with low power consumption and in a more economical manner. An optical coupling unit according to the present disclosure couples optical fibers of a single core disposed in two ferrules by using a sleeve in order to achieve the abovementioned purpose. In a first ferrule of the two ferrules, a plurality of optical fibers are disposed in a bundle shape, in a fiber hole, on the same circumference centered about the ferrule center axis. At least one of the two ferrules is rotatable about the ferrule center axis. The rotation of at least the other of the two ferrules is regulated. One of the two ferrules is pressed in the direction in which end parts of the two ferrules butt to each other.

Description

光結合部及び光スイッチOptical coupling section and optical switch

 本発明は、主に光ファイバネットワークにおいてシングルモード光ファイバを用いた光線路の経路を切り替えるために用いる光結合部及びこれを用いた光スイッチに関する。 The present invention relates to an optical coupling unit used primarily to switch the path of an optical line using a single-mode optical fiber in an optical fiber network, and an optical switch using the same.

 光を光のまま経路切替を行う全光スイッチには、例えば非特許文献1に示すように様々な方式が提案されている。このうち、光ファイバあるいは光コネクタ同士の突合せをロボットアームやモータ等で制御する光ファイバ型機械式光スイッチは、切替速度が遅いという点では他方式に劣るものの、低損失、低波長依存性、多ポート性、電源消失時に切替状態を保持する自己保持機能の具備などの点で他方式よりも優れている点を多く有している。この代表的な構造として、例えば光ファイバV溝を用いたステージを並行移動させる方式や、ミラーやプリズムを並行移動または角度変化させて入射光ファイバから出射する複数の光ファイバに対して選択的に結合させる方式、ロボットアームを用いて光コネクタ付きのジャンパーケーブルを接続する方式などがある。 Various methods have been proposed for all-optical switches that switch paths while keeping light as it is, as shown in Non-Patent Document 1, for example. Of these, optical fiber-type mechanical optical switches, which use a robot arm or motor to control the butting of optical fibers or optical connectors, are inferior to other methods in that they have a slow switching speed, but they have many advantages over other methods, such as low loss, low wavelength dependency, multi-port capability, and a self-holding function that maintains the switched state when power is lost. Representative structures include a method in which a stage using an optical fiber V-groove is translated, a method in which a mirror or prism is translated or angle-changed to selectively couple to multiple optical fibers emitting from an input optical fiber, and a method in which a robot arm is used to connect a jumper cable with an optical connector.

 また、切替を行う光経路として、マルチコアファイバを用いる方法が提案されている。例えば、マルチコアファイバに3次元MEMS光スイッチを組み合わせる(例えば、非特許文献2参照)ことにより、多経路を一括に切り替えることが可能となる。また、マルチコアファイバが挿入された円筒フェルールを回転させることによって切り替えを行う(例えば、特許文献1参照)ことにより、レンズやプリズム等の光学部品を不要とし、構成の簡略化が可能となる。 A method has also been proposed in which a multicore fiber is used as the optical path for switching. For example, by combining a multicore fiber with a three-dimensional MEMS optical switch (see, for example, Non-Patent Document 2), it becomes possible to switch multiple paths at once. Also, by performing switching by rotating a cylindrical ferrule into which the multicore fiber is inserted (see, for example, Patent Document 1), optical components such as lenses and prisms are not required, making it possible to simplify the configuration.

特開平2-82212号公報Japanese Patent Application Publication No. 2-82212

M.Stepanovsky,“A Comparative Review of MEMS-Based Optical Cross-Connects for All-Optical Networks From the Past to the Present Day,” IEEE Communications Surveys & Tutorials,vоl.21,nо.3,pp.2928-2946,2019.M. Stepanovsky, “A Comparative Review of MEMS-Based Optical Cross-Connects for All-Optical Networks From the Past to the Present Day, “IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2928-2946, 2019. K.Hiruma,T.Sugawara,K.Tanaka,E.Nomoto, and Y.Lee,“Proposal of High-capacity and High-reliability Optical Switch Equipmet with Multi-core Fibers,” 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching(OECC/PS),ThT1-2,2013.K. Hiruma, T. Sugawara, K. Tanaka, E. Nomoto, and Y. Lee, “Proposal of High-capacity and High-reliability Optical S witch Equipmet with Multi-core Fibers,” 18th OptoElectronics a nd Communications Conference held jointly with 2013 International nal Conference on Photonics in Switching (OECC/PS), ThT1-2, 2013. B.Jian,“The Non-Contact Connector:A New Category of Optical Fiber Connector,” 2015 Optical Fiber  Communications Conference and Exhibition(OFC),W2A.1,2015.B. Jian, “The Non-Contact Connector: A New Category of Optical Fiber Connector ,”2015 Optical Fiber Communications Conference and Exhibition (OFC), W2A. 1, 2015. 荒生 肇、矢加部 祥、上原 史也、佐々木 大、島津 貴之、“低損失/低嵌合力を特徴とする耐ダスト光多心コネクタFlexAirConnecT,” 2018 年7 月・SEIテクニカルレビュー、第193号、pp.26-31、2018.Hajime Arao, Yoshitaka Yagabe, Fumiya Uehara, Dai Sasaki, Takayuki Shimazu, "FlexAirConnecT: A dust-resistant optical multi-fiber connector featuring low loss and low mating force," SEI Technical Review, No. 193, pp. 26-31, July 2018. Chisato Fukai,Yoshiteru Abe,and Kazunori Katayama,“Multi-Fiber Cylindrical Ferrule for Remote Rotary Optical Fiber Switching,” 2022 Optical Fiber  Communications Conference and Exhibition(OFC),Th2A.11,2022.Chisato Fukai, Yoshiteru Abe, and Kazunori Katayama , “Multi-Fiber Cylindrical Ferrule for Remote Rotar y Optical Fiber Switching,”2022 Optical Fiber C communications Conference and Exhibition (OFC), Th2A. 11, 2022.

 しかしながら、前述の非特許文献1に記載の従来技術においては、さらなる低電力化および小型化、経済化が困難であるという問題がある。具体的には、前述の光ファイバV溝ステージあるいはプリズムを並行移動させる方式では、一般に駆動源にモータが用いられるが、ステージ等の重量物を直動させる機構のため、一定以上のトルクがモータに必要となり、必要トルクを維持するために相応の出力を得るための消費電力を要する。また、シングルモード光ファイバを用いた光軸調心には、1μm以下程度の精度が必要であることから、モータの回転運動を直動運動に変換させる機構(一般にはボールねじが用いられる)において、サブμmステップの直動運動に変換させる必要がある。通常用いられる出力側の光ファイバアレイの光ファイバピッチが光ファイバのクラッド外径125μmあるいは光ファイバの被覆外径250μm程度であることを考えると、出力側の光ファイバアレイが大きくなる程モータの実駆動時間は長くせざるを得ず、消費電力の増大となるという問題があった。このため、一般にこのような光ファイバ型機械式光スイッチは数百mW以上の電力を要する。また、光コネクタを用いたロボットアーム方式は、光コネクタあるいはフェルールを挿抜制御するロボットアームそのものに数十W以上の大きな電力を要してしまうという問題があった。 However, the conventional technology described in the above-mentioned Non-Patent Document 1 has a problem that it is difficult to further reduce power consumption, miniaturize, and make it economical. Specifically, in the method of translating the above-mentioned optical fiber V-groove stage or prism, a motor is generally used as a drive source, but since it is a mechanism for linearly moving a heavy object such as a stage, a certain amount of torque is required for the motor, and power consumption is required to obtain an appropriate output to maintain the required torque. In addition, since an accuracy of about 1 μm or less is required for optical axis alignment using a single mode optical fiber, it is necessary to convert the rotational motion of the motor into linear motion in a mechanism (generally using a ball screw) that converts the linear motion of the motor into linear motion in sub-μm steps. Considering that the optical fiber pitch of the optical fiber array on the output side that is normally used is an optical fiber cladding outer diameter of 125 μm or an optical fiber coating outer diameter of 250 μm, the larger the optical fiber array on the output side, the longer the actual driving time of the motor must be, which increases the power consumption. For this reason, such optical fiber-type mechanical optical switches generally require power of several hundred mW or more. Additionally, the robot arm method using optical connectors has the problem that the robot arm itself, which controls the insertion and removal of the optical connector or ferrule, requires a large amount of power, over several tens of watts.

 また、非特許文献2に記載のマルチコアファイバを用いた光経路切替では、光スイッチを製作する過程において、出力側の光ファイバアレイに結合させるためのコリメート機構や、振動等の外的要因に対して安定的な光学特性を得るための除振機構が別途必要となり、組立工程も複雑になるという問題があった。 Furthermore, in the optical path switching using the multicore fiber described in Non-Patent Document 2, a collimation mechanism for coupling to the optical fiber array on the output side and a vibration isolation mechanism for obtaining stable optical characteristics against external factors such as vibration are separately required in the process of manufacturing the optical switch, which causes the assembly process to become complicated.

 特許文献1に記載のマルチコアファイバが挿入された円筒フェルールを用いた光経路切替では、フェルールがスリーブに密着挿入することにより中心軸を合わせており、フェルールとスリーブ間の摩擦力により、回転の駆動に大きなエネルギーが必要であり大きな電力を要してしまうという問題があった。さらに、フェルールが回転する際に、向かい合うファイバ端面に傷をつけて接続損失などの光学特性の劣化を防ぐ目的で、フェルールが回転するたびにフェルール端面を引き離す機構が必要であり、回転の駆動に余計なエネルギーを要してしまうという問題があった。 In the optical path switching using a cylindrical ferrule into which a multicore fiber is inserted, as described in Patent Document 1, the central axis is aligned by tightly inserting the ferrule into the sleeve, and there is a problem that a large amount of energy is required to drive the rotation due to the friction between the ferrule and the sleeve, and a large amount of power is required. Furthermore, in order to prevent the deterioration of optical characteristics such as connection loss by scratching the opposing fiber end faces when the ferrule rotates, a mechanism is required to separate the ferrule end faces every time the ferrule rotates, which poses the problem of extra energy being required to drive the rotation.

 一方、光ファイバを挿入した円筒フェルールにおいて、あらかじめ間隙を設けてファイバ接触を行わない接続形態(例えば、非特許文献3)により接触によるファイバ端面の傷を防止する方法もある。しかし、間隙によりファイバ端面間に生じる空気層を原因とした反射による信号劣化を抑制するため、反射を防止するための特殊コーティングが必要となり、コストが増加するという問題があった。 On the other hand, there is a method to prevent scratches on the fiber end surface due to contact by providing a gap in advance in a cylindrical ferrule into which an optical fiber is inserted, and using a connection configuration that does not involve fiber contact (for example, Non-Patent Document 3). However, in order to suppress signal degradation due to reflection caused by an air layer that occurs between the fiber end surfaces due to the gap, a special coating to prevent reflection is required, which creates the problem of increased costs.

 また、反射を防止するための別の方法として、フェルール端面を斜めに研磨する方法(例えば、非特許文献4)もある。しかし、斜めに研磨したフェルールでは、回転による切替の際にフェルール端面の干渉が発生する、または、大きな間隙を要するために接続損失が大きくなってしまうという問題があった。 Another method for preventing reflections is to polish the ferrule end faces at an angle (for example, Non-Patent Document 4). However, with ferrules polished at an angle, there are problems such as interference at the ferrule end faces when switching by rotation, or a large gap being required, resulting in large connection loss.

 また、非特許文献5に記載の複数のファイバが挿入された円筒フェルールを用いた光経路切替では、フェルールを球面に研磨してファイバ端面が斜めに研磨され、かつ、フェルール中心部をフラットに研磨してファイバ端面に生じる間隙を最小限に抑えることができるため、接触によるファイバ端面の傷を防止しながら反射の防止と間隙による接続損失を低く抑えることが可能である。しかし、フェルール金型の製造過程において、ファイバ孔位置を高精度に制御することが困難であり、ファイバ孔位置ずれによる軸ずれ損失が過剰損失として生じてしまうという問題があった。さらに、フェルール端面においてファイバ孔を中心に近づけることが困難であり、ファイバ孔がフェルール端面の中心から遠くなることにより、切替を行う際の回転角度ずれ損失が大きくなってしまうという問題があった。 In addition, in the optical path switching using a cylindrical ferrule into which multiple fibers are inserted, as described in Non-Patent Document 5, the ferrule is polished to a spherical surface, the fiber end face is polished at an angle, and the center of the ferrule is polished flat to minimize the gap that occurs on the fiber end face, so it is possible to prevent reflection while preventing scratches on the fiber end face due to contact and to keep connection loss due to gaps low. However, in the manufacturing process of the ferrule mold, it is difficult to control the fiber hole position with high precision, and there is a problem that axial misalignment loss due to fiber hole position misalignment occurs as excess loss. Furthermore, there is a problem that it is difficult to bring the fiber hole close to the center on the ferrule end face, and the fiber hole is far from the center of the ferrule end face, which increases the rotation angle misalignment loss when switching.

 前記問題を解決するために、本発明は、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することを目的とする。 In order to solve the above problems, the present invention aims to provide an optical coupling section and an optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.

 本開示に係る光結合部は、
 スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、
 前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
 前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、
 前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有する。
The optical coupling unit according to the present disclosure includes:
An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve,
A first ferrule of the two ferrules has a plurality of optical fibers arranged in a fiber hole in a bundle shape on the same circumference centered on a central axis of the ferrule,
At least one of the two ferrules is rotatable about the ferrule central axis,
The ends of the two ferrules that are butted together have a convex spherical shape having a center point on the central axis of the ferrule.

 本開示の光結合部および光スイッチは、フェルール中心軸に平行かつフェルール中心軸から同一距離にシングルコアのシングルモード光ファイバが配置された2つのフェルールを備えていてもよい。この場合、2つのフェルールの突き合わされている端部が凸球面形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルールを回転させる。 The optical coupling unit and optical switch disclosed herein may include two ferrules in which a single-core single-mode optical fiber is arranged parallel to and at the same distance from the central axis of the ferrule. In this case, the ends of the two ferrules that are butted together have a convex spherical shape, and the tips of the ends of the two ferrules are butted together so that their central axes coincide, and one of the ferrules is rotated.

 より具体的には、本開示に係る光結合部は、
 フェルール断面において中心部に複数のシングルコアのシングルモード光ファイバのコア中心が同一円周上に並ぶようにバンドル状に配置された、凸球面の端面を有する第1のフェルールと、
 フェルール断面において中心から、前記第1のフェルールにおける前記シングルモード光ファイバのコア中心が配置された前記円周と同じ直径の円周上に1つまたは複数のシングルコアのシングルモード光ファイバのコア中心が配置され、凸球面の端面を有する第2のフェルールと、
 前記第1のフェルール及び前記第2のフェルールの中心軸が一致するように前記第1のフェルール及び前記第2のフェルールが挿入される中空部を有し、前記第1のフェルール及び前記第2のフェルールが回転可能なように、前記第1のフェルール及び前記第2のフェルールの各外径と前記中空部の内径との間に所定の隙間が設けられている円筒のスリーブと、を備える。
More specifically, the optical coupling unit according to the present disclosure comprises:
a first ferrule having a convex spherical end face, the first ferrule including a plurality of single-core single-mode optical fibers arranged in a bundle shape such that the core centers of the single-core single-mode optical fibers are aligned on the same circumference in a central portion of the ferrule cross section;
a second ferrule having a convex spherical end face, in which the core centers of one or more single-core single-mode optical fibers are arranged on a circumference having the same diameter as the circumference on which the core centers of the single-mode optical fibers in the first ferrule are arranged, from the center in a ferrule cross section;
and a cylindrical sleeve having a hollow portion into which the first ferrule and the second ferrule are inserted so that the central axes of the first ferrule and the second ferrule coincide, and a predetermined gap is provided between the outer diameters of the first ferrule and the second ferrule and the inner diameter of the hollow portion so that the first ferrule and the second ferrule can rotate.

 本発明は、フェルール中心軸に平行かつフェルール中心軸から同一距離にシングルモード光ファイバが配置された2つのフェルールの端部が凸球面形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルール中心軸を中心として回転させることにより、対向する光ファイバの端面同士が接触せず、接触によって光ファイバの端面にキズがつくことによる接続損失などの光学特性の劣化を防ぐことができる。また、対向する光ファイバの端面同士が非平行となるため、光の反射量を減らすことができるので、反射コーティングを要せず、より経済的な光結合部および光スイッチを提供することができる。 In the present invention, the ends of two ferrules, in which single-mode optical fibers are arranged parallel to and at the same distance from the central axis of the ferrule, have a convex spherical shape, and by butting the tips of the ends of the two ferrules together so that their central axes coincide and rotating them around the central axis of one of the ferrules, the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical characteristics such as connection loss caused by scratches on the end faces of the optical fibers due to contact. In addition, because the end faces of the opposing optical fibers are non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.

 さらに、本発明は、光スイッチングを行う光結合部の入力側および出力側の一方を軸回転可能な機構としているため、アクチュエータで必要となるエネルギー、すなわちトルク出力を限りなく小さくすることが可能であり、低消費電力化が可能である。また、入力側フェルールの軸回転以外の方向における光軸ずれ量は、光結合部においてスリーブにより保証されているために、低損失化が可能となる。加えて、本発明にはコリメートや特別な防振機構を具備しておらず、フェルールやスリーブといった一般的に広く用いられている光接続部品から構成されているため小型かつ経済的である。 Furthermore, in the present invention, one of the input and output sides of the optical coupling section that performs optical switching is made into an axially rotatable mechanism, so it is possible to minimize the energy required by the actuator, i.e., the torque output, and to reduce power consumption. Also, the amount of optical axis deviation in directions other than the axial rotation of the input ferrule is guaranteed by the sleeve in the optical coupling section, making it possible to reduce loss. In addition, the present invention does not include a collimator or special vibration isolation mechanism, and is composed of commonly used optical connection parts such as ferrules and sleeves, making it small and economical.

 ここで、フェルール中心軸を中心とする同一の円周上にバンドル状に配置された前記複数の光ファイバの内側にダミーファイバを配置し、前記ダミーファイバの端面が前記凸球面形状の一部を構成してもよい。 Here, a dummy fiber may be arranged inside the optical fibers arranged in a bundle on the same circumference centered on the central axis of the ferrule, and the end face of the dummy fiber may form part of the convex spherical shape.

 また、前記凸球面形状での反射減衰量は所定値以上であってもよい。例えば、本開示に係る光結合部は、前記第1のフェルール及び前記第2のフェルールのそれぞれにおいて、フェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度が4.5度以上であってもよい。これにより、前記凸球面形状での反射減衰量を40dB以上にすることができる。 Furthermore, the return loss in the convex spherical shape may be equal to or greater than a predetermined value. For example, in the optical coupling section according to the present disclosure, the angle between a cross section perpendicular to the central axis of the ferrule and the end face of the single mode optical fiber may be equal to or greater than 4.5 degrees in each of the first ferrule and the second ferrule. This allows the return loss in the convex spherical shape to be equal to or greater than 40 dB.

 また、前記2つのフェルールの突き合わされている端面の間隙による過剰損失Tを抑制してもよい。例えば、本開示に係る光結合部は、前記第1のフェルールのシングルモード光ファイバの端面と、当該シングルモード光ファイバに光軸が一致する前記第2のフェルールのシングルモード光ファイバの端面の間隙が22μm以下であってもよい。これにより、間隙による過剰損失Tを0.1dB以下に抑制することができる。 Also, excess loss T G due to a gap between the butted end faces of the two ferrules may be suppressed. For example, in the optical coupling unit according to the present disclosure, a gap between an end face of the single mode optical fiber of the first ferrule and an end face of the single mode optical fiber of the second ferrule, the optical axis of which coincides with that of the single mode optical fiber, may be 22 μm or less. This makes it possible to suppress excess loss T G due to the gap to 0.1 dB or less.

 また、前記2つのフェルールの回転角度ずれによる過剰損失Tを抑制してもよい。例えば、本開示に係る光結合部は、前記第1のフェルール及び前記第2のフェルールにおける各シングルモード光ファイバのコア中心の、フェルール中心軸からの距離が250μm以下であってもよい。これにより、回転角度ずれによる過剰損失Tを0.1dB以下にすることができる。 Also, excess loss TR due to rotation angle misalignment of the two ferrules may be suppressed. For example, in the optical coupling unit according to the present disclosure, the distance from the central axis of the ferrule to the core center of each single mode optical fiber in the first ferrule and the second ferrule may be 250 μm or less. This makes it possible to suppress excess loss TR due to rotation angle misalignment to 0.1 dB or less.

 前記凸球面形状での反射減衰量及び前記2つのフェルールの突き合わされている端面の間隙による過剰損失Tの条件を満たしてもよい。例えば、本開示に係る光結合部は、前記複数の光ファイバはシングルモード光ファイバであり、前記第1のフェルール及び前記第2のフェルールのそれぞれにおいて、前記凸球面形状における曲率半径が0.7mm以上3.2mm以下であってもよい。 The optical coupling unit according to the present disclosure may satisfy the conditions of the return loss in the convex spherical shape and the excess loss T G due to a gap between the end faces of the two ferrules where the end faces are butted together. For example, in the optical coupling unit according to the present disclosure, the optical fibers may be single mode optical fibers, and a radius of curvature in the convex spherical shape in each of the first ferrule and the second ferrule may be 0.7 mm or more and 3.2 mm or less.

 具体的には、本開示に係る光スイッチは、
 前記光結合部と、
 前記光結合部の前記2つのフェルールのどちらか一方を、前記フェルール中心軸を中心に回転させる回転機構と、を具備する。
Specifically, the optical switch according to the present disclosure comprises:
The optical coupling portion;
and a rotation mechanism that rotates one of the two ferrules of the optical coupling portion about a central axis of the ferrule.

 例えば、本開示に係る光スイッチは、
 前記回転機構を一定の角度ステップで回転させ、任意の角度ステップで静止させるアクチュエータと、
 前記回転機構を構成するベアリングと、
をさらに具備してもよい。
For example, an optical switch according to the present disclosure may include:
an actuator that rotates the rotation mechanism at a constant angular step and stops the rotation mechanism at an arbitrary angular step;
A bearing constituting the rotation mechanism;
may further comprise:

 さらに、本開示に係る光結合部は、
スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、
 前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
 前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、
 前記2つのフェルールの少なくとも他方の回転は、規制され、
 前記2つのフェルールのいずれかは、前記2つのフェルールの端部が突合する方向に押圧される。
Furthermore, the optical coupling unit according to the present disclosure has
An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve, comprising:
A first ferrule of the two ferrules has a plurality of optical fibers arranged in a fiber hole in a bundle shape on the same circumference centered on a central axis of the ferrule,
At least one of the two ferrules is rotatable about the ferrule central axis,
Rotation of at least the other of the two ferrules is restricted,
Either of the two ferrules is pressed in a direction such that the ends of the two ferrules butt against each other.

 これによれば、2つのフェルールの少なくとも他方の回転が規制されるため、回転ずれに起因するフェルールの突き合わされている端部における光学特性の低下が抑制される。また、いずれかのフェルールが2つのフェルールの端部が突合する方向に押圧されるため、フェルールの中に配線された光ファイバの端面間の間隙を必要最小限に抑えることができる。よって、光学特性の低下を抑制することができる。このように、本開示によれば、振動が発生する屋外に光スイッチを接地する場合でも、光学特性の低下を抑制することができ、メンテナンスフリーとなり経済的である。 As a result, the rotation of at least the other of the two ferrules is restricted, suppressing the degradation of optical properties at the butted ends of the ferrules caused by rotational misalignment. In addition, one of the ferrules is pressed in the direction in which the ends of the two ferrules butt together, so the gap between the end faces of the optical fibers wired inside the ferrules can be kept to a necessary minimum. This makes it possible to suppress degradation of optical properties. In this way, according to the present disclosure, even when the optical switch is grounded outdoors where vibrations occur, it is possible to suppress degradation of optical properties, making it maintenance-free and economical.

 また、本開示に係る光結合部は、前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有してもよい。 Furthermore, the optical coupling section according to the present disclosure may have a convex spherical shape with a center point on the central axis of the ferrules at the ends where the two ferrules are butted together.

 これによれば、いずれか一方のフェルール中心軸を中心として回転させることにより、対向する光ファイバの端面同士が接触せず、接触によって光ファイバの端面にキズがつくことによる接続損失などの光学特性の劣化を防ぐことができる。また、対向する光ファイバの端面同士が非平行となるため、光の反射量を減らすことができるので、反射コーティングを要せず、より経済的な光結合部および光スイッチを提供することができる。 By rotating one of the ferrules around its central axis, the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical properties such as connection loss caused by scratches on the end faces of the optical fibers due to contact. In addition, because the end faces of the opposing optical fibers are non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.

 また、本開示に係る光スイッチは、前記2つのフェルールの少なくとも他方の回転を規制するとともに、前記2つのフェルールの端部が突合する方向に前記2つのフェルールのいずれかを押圧する押圧器を備えていてもよい。 The optical switch according to the present disclosure may also include a presser that restricts rotation of at least the other of the two ferrules and presses one of the two ferrules in a direction in which the ends of the two ferrules butt together.

 これによれば、押圧器を介して好適にフェルールに押圧力を加えることができる。 This allows the pressing force to be applied to the ferrule in an optimal manner via the pressing device.

 前記押圧器がストッパーを介してハウジングに固定されることにより、フェルールの回転を規制することができるとともに、フェルール端面に押圧力を加えることができ、低消費電力かつ経済的である。 The pressure device is fixed to the housing via a stopper, which allows the rotation of the ferrule to be restricted and pressure to be applied to the end face of the ferrule, resulting in low power consumption and economical use.

 また、本開示に係る光スイッチは、
 前記2つのフェルールの少なくとも他方、前記2つのフェルールの少なくとも他方を押圧するフランジ、及び前記押圧器を、前記押圧器、前記フランジ、前記2つのフェルールの少なくとも他方の順に収容するハウジングと、
 前記押圧器を前記ハウジングに固定するストッパーと、をさらに備え、
 前記押圧器は、ストッパーを介して前記ハウジングに対する前記2つのフェルールの少なくとも他方の回転を規制するとともに、前記フランジを介して前記2つのフェルールの少なくとも他方を押圧してもよい。
In addition, the optical switch according to the present disclosure is
a housing that accommodates at least the other of the two ferrules, a flange that presses at least the other of the two ferrules, and the presser, in the order of the presser, the flange, and at least the other of the two ferrules;
A stopper that fixes the pressing device to the housing,
The pressing device may restrict rotation of at least the other of the two ferrules relative to the housing via a stopper, and may press at least the other of the two ferrules via the flange.

 また、本開示に係る光スイッチは、
前記2つのフェルールの少なくとも一方を収容するとともに、前記ハウジングとかん合可能な固定治具、をさらに備え、
 前記固定治具は、前記ハウジングと係合する突起を、さらに備え、
 前記突起が前記ハウジングの係止片とかん合することにより、前記固定治具に対して前記ハウジングが位置決めされていてもよい。
In addition, the optical switch according to the present disclosure is
a fixing jig that receives at least one of the two ferrules and is engageable with the housing;
The fixture further includes a protrusion that engages with the housing,
The housing may be positioned relative to the fixing jig by the projection engaging with a locking piece of the housing.

 これによれば、簡易な方法で、固定治具に対してハウジングを位置決めすることができる。 This allows the housing to be positioned relative to the fixture in a simple manner.

 また、本開示に係る光スイッチは、
 前記2つのフェルールの少なくとも一方を、前記フェルール中心軸を中心に回転させる回転機構と、
 前記回転機構を一定の角度ステップで回転させ、任意の角度ステップで静止させるアクチュエータと、
 前記回転機構を構成するベアリングと、をさらに備えていてもよい。
In addition, the optical switch according to the present disclosure is
a rotation mechanism that rotates at least one of the two ferrules about a central axis of the ferrule;
an actuator that rotates the rotation mechanism at a constant angular step and stops the rotation mechanism at an arbitrary angular step;
The rotating mechanism may further include a bearing.

 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.

 本開示によれば、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することができる。 This disclosure makes it possible to provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.

本発明の使用形態の一例を示す。An example of the usage of the present invention will be described below. 本発明の概略構成の一例を示す。1 shows an example of a schematic configuration of the present invention. 出力側フェルールの端部を正面から表した図である。FIG. 2 is a front view of the end of the output ferrule. 入力側フェルールの端部を正面から表した図である。FIG. 2 is a front view of the end of the input ferrule. 光結合部を長手方向に沿った面で表した図である。1 is a diagram showing an optical coupling portion in a longitudinal direction. FIG. フェルール外径とスリーブ内径のクリアランスに対する過剰損失の関係の一例を示す。1 shows an example of the relationship between the excess loss and the clearance between the outer diameter of the ferrule and the inner diameter of the sleeve. 本発明の光結合部のフェルールの端部近傍を示す。3 shows the vicinity of an end of a ferrule in an optical coupling portion of the present invention. フェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度と反射減衰量の関係の一例を示す。1 shows an example of the relationship between the angle between a cross section perpendicular to the central axis of the ferrule and the end face of a single mode optical fiber and the return loss. 光ファイバの間隙に対する過剰損失の関係の一例を示す。1 shows an example of the relationship of excess loss to the gap of an optical fiber. 凸球面形状のフェルール端面の曲率半径に対する、中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度の関係の一例を示す。1 shows an example of the relationship between the radius of curvature of a convex spherical ferrule end face and the angle between a cross section perpendicular to the central axis and the end face of a single mode optical fiber. 凸球面形状のフェルール端面の曲率半径に対する、フェルール先端からシングルモード光ファイバ端面までの距離の関係の一例を示す。1 shows an example of the relationship between the radius of curvature of a convex spherical ferrule end face and the distance from the tip of the ferrule to the end face of a single mode optical fiber. コア配置半径に対する回転角度ずれによる過剰損失の関係の一例を示す。1 shows an example of the relationship between the core arrangement radius and excess loss due to a rotation angle deviation. 実施形態1に係る本発明の光結合部のかん合形態を表す。3 shows a coupling form of the optical coupling portion of the present invention according to the first embodiment. 実施形態2に係る本発明の光結合部のかん合形態を表す。13 illustrates a coupling form of an optical coupling portion of the present invention according to a second embodiment. 実施形態2に係る本発明の光結合部の入力側フェルールの断面を表す。13 illustrates a cross section of an input ferrule of an optical coupling portion of the present invention according to a second embodiment. 実施形態2に係る本発明の光結合部の入力側フェルールの断面を表す。13 illustrates a cross section of an input ferrule of an optical coupling portion of the present invention according to a second embodiment. 実施形態1に係る本発明の出力側フランジの側面を表す。3 shows a side view of the output side flange of the present invention in accordance with embodiment 1. 実施形態3に係る本発明の光結合部のかん合形態を表す。13 illustrates a coupling form of an optical coupling portion of the present invention according to a third embodiment.

 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art. Note that components with the same reference numerals in this specification and drawings are mutually identical.

(実施形態1)
 図1は本発明の実施形態の一例を示す図である。本実施形態は、光が入力側光ファイバS01から入射され、出力側光ファイバS04へ出射する形態を説明するが、光の方向は逆でもよい。本発明は、前段光スイッチ構成部S00に接続された入力側光ファイバS01を、前段光スイッチ構成部S00において光スイッチ間光ファイバS02の特定のポートに切り替えて、光スイッチ間光ファイバS02のポートを、後段光スイッチ構成部S03において所望の出力側光ファイバS04に切り替えることを可能とする。本発明は、前段光スイッチ構成部S00及び後段光スイッチ構成部S03に該当する光スイッチである。以下、前段光スイッチ構成部S00を光スイッチS00と、後段光スイッチ構成部S03を光スイッチS03と略記する。光スイッチS00と光スイッチS03は左右反転の関係にあり、構成が同一であるため、以下、光スイッチS00を用いて詳細な構成を示す。
(Embodiment 1)
FIG. 1 is a diagram showing an example of an embodiment of the present invention. In this embodiment, a form in which light is input from an input side optical fiber S01 and output to an output side optical fiber S04 will be described, but the direction of light may be reversed. The present invention makes it possible to switch the input side optical fiber S01 connected to the front-stage optical switch configuration section S00 to a specific port of the inter-optical switch optical fiber S02 in the front-stage optical switch configuration section S00, and to switch the port of the inter-optical switch optical fiber S02 to a desired output side optical fiber S04 in the rear-stage optical switch configuration section S03. The present invention is an optical switch corresponding to the front-stage optical switch configuration section S00 and the rear-stage optical switch configuration section S03. Hereinafter, the front-stage optical switch configuration section S00 will be abbreviated as the optical switch S00, and the rear-stage optical switch configuration section S03 will be abbreviated as the optical switch S03. The optical switch S00 and the optical switch S03 are in a left-right inversion relationship and have the same configuration, so the detailed configuration will be shown below using the optical switch S00.

 図2は本発明の実施形態に係るブロック構成図である。
 本実施形態に係る光スイッチS00が有する光結合部S8は、
 フェルール断面において中心から同一の円周上に複数のシングルモード光ファイバのコア中心が配置された第1のフェルールと、
 フェルール断面において中心から、第1のフェルールにおけるシングルモード光ファイバのコア中心が配置された円周と同じ直径の円周上に1つまたは複数のシングルモード光ファイバのコア中心が配置された第2のフェルールと、
 第1のフェルール及び第2のフェルールの中心軸が一致するように第1のフェルール及び第2のフェルールが挿入される中空部を有し、第1のフェルール及び第2のフェルールが回転可能なように、第1のフェルール及び第2のフェルールの各外径と中空部の内径との間に所定の隙間が設けられている円筒のスリーブS17と、を備える。
FIG. 2 is a block diagram showing a configuration according to an embodiment of the present invention.
The optical coupling unit S8 of the optical switch S00 according to this embodiment is
a first ferrule in which the core centers of a plurality of single mode optical fibers are arranged on the same circumference from the center in a cross section of the ferrule;
a second ferrule in which the core centers of one or more single mode optical fibers are arranged on a circumference having the same diameter as the circumference on which the core centers of the single mode optical fibers in the first ferrule are arranged from the center in a cross section of the ferrule;
and a cylindrical sleeve S17 having a hollow portion into which the first ferrule and the second ferrule are inserted so that the central axes of the first ferrule and the second ferrule are aligned, and a predetermined gap is provided between the outer diameters of the first ferrule and the second ferrule and the inner diameter of the hollow portion so that the first ferrule and the second ferrule can rotate.

 図2において、入力側光ファイバS1を一のシングルコアのシングルモード光ファイバからなる構成とし、入力側フェルールS6を第2のフェルールとする。また、出力側光ファイバS9を複数のシングルコアのシングルモード光ファイバからなる構成とし、出力側フェルールS7を第1のフェルールとする。なお、入力側光ファイバS1は図1の入力側光ファイバS01に対応し、出力側光ファイバS9は図1の光スイッチ間光ファイバS02に対応する。 In FIG. 2, the input optical fiber S1 is configured to be one single-core single-mode optical fiber, and the input ferrule S6 is the second ferrule. The output optical fiber S9 is configured to be multiple single-core single-mode optical fibers, and the output ferrule S7 is the first ferrule. The input optical fiber S1 corresponds to the input optical fiber S01 in FIG. 1, and the output optical fiber S9 corresponds to the inter-optical switch optical fiber S02 in FIG. 1.

 図2に示す光スイッチS00は、入力側光ファイバS1が挿入された入力側フェルールS6と、出力側光ファイバS9が挿入された出力側フェルールS7とから構成される光結合部S8を有する。入力側光ファイバS1は、入力側フェルールS6に備わるファイバ孔の予め定められた位置で、接着剤などを用いて固定されている。出力側光ファイバS9は、出力側フェルールS7に備わるファイバ孔の予め定められた位置で、接着剤などを用いて固定されている。 The optical switch S00 shown in FIG. 2 has an optical coupling section S8 consisting of an input ferrule S6 into which an input optical fiber S1 is inserted, and an output ferrule S7 into which an output optical fiber S9 is inserted. The input optical fiber S1 is fixed using an adhesive or the like at a predetermined position in a fiber hole in the input ferrule S6. The output optical fiber S9 is fixed using an adhesive or the like at a predetermined position in a fiber hole in the output ferrule S7.

 入力側光ファイバS1から光を入射した場合、出力側フェルールS7を固定し、入力側フェルールS6を回転させることで入力側光ファイバS1を出力側光ファイバS9の任意の1本と接続させ、入射した光を出力側光ファイバS9の1本から出力させることのできる光スイッチS00であり、1xNのリレー型光スイッチとして使用できるものである。逆に、出力側光ファイバS9から光を入射することも可能である。例えば、出力側光ファイバS9のうちの複数のシングルモード光ファイバに光を入射し、出力側フェルールS7を固定し、入力側フェルールS6を回転させることで出力側光ファイバS9の任意の1本を入力側光ファイバS1と接続させ、入射した複数の光の中から選択した1つの光のみを入力側光ファイバS1から出力することができる。また、図1のように、光スイッチを複数組み合わせることにより、N×Nの光スイッチを構成することが可能である。ここで、出力側フェルールS7を固定して、入力側フェルールS6を回転させることとしたが、入力側フェルールS6又は出力側フェルールS7のいずれかを固定し、対向する側を回転させることによって対向するファイバの切り替えを可能とする形態であればよいため、入力側フェルールS6を固定し出力側フェルールS7を回転させてもよい。また、入力側フェルールS6を1本としたが、複数の光ファイバを配置することも可能である。 When light is incident from the input optical fiber S1, the output ferrule S7 is fixed and the input ferrule S6 is rotated to connect the input optical fiber S1 to any one of the output optical fibers S9, and the incident light can be output from one of the output optical fibers S9. This optical switch S00 can be used as a 1xN relay type optical switch. Conversely, it is also possible to input light from the output optical fiber S9. For example, light can be input to multiple single mode optical fibers among the output optical fibers S9, the output ferrule S7 is fixed, and the input ferrule S6 is rotated to connect any one of the output optical fibers S9 to the input optical fiber S1, and only one light selected from the multiple incident lights can be output from the input optical fiber S1. Also, as shown in FIG. 1, by combining multiple optical switches, it is possible to configure an NxN optical switch. Here, the output side ferrule S7 is fixed and the input side ferrule S6 is rotated, but as long as either the input side ferrule S6 or the output side ferrule S7 is fixed and the opposing fiber can be switched by rotating the opposing side, the input side ferrule S6 may be fixed and the output side ferrule S7 may be rotated. Also, although one input side ferrule S6 is used, it is also possible to arrange multiple optical fibers.

 以下では、出力側フェルールS7を固定し、入力側フェルールS6を回転させる光スイッチS00について説明する。出力側フェルールS7は回転止め機構(図示せず)により軸回転しないように固定される。アクチュエータS3は制御回路S4からの信号により任意の角度回転を行う。入力側フェルールS6は、アクチュエータS3の出力が回転機構S5を介して伝達されることにより回転する。また、入力側フェルールS6には入力側光ファイバS1のねじれを許容するための一定の余長部S2が設けられている。また、光結合部S8は、軸ずれ調整機構(不図示)によってフェルール中心軸の軸ずれを抑制し、軸ずれによる過剰損失を回避する構成になっている。 The following describes the optical switch S00, which fixes the output ferrule S7 and rotates the input ferrule S6. The output ferrule S7 is fixed by a rotation stop mechanism (not shown) so that it does not rotate about its axis. The actuator S3 rotates at any angle in response to a signal from the control circuit S4. The input ferrule S6 rotates when the output of the actuator S3 is transmitted via the rotation mechanism S5. The input ferrule S6 is provided with a certain amount of excess length S2 to allow for twisting of the input optical fiber S1. The optical coupling section S8 is configured to suppress axial misalignment of the ferrule central axis by an axial misalignment adjustment mechanism (not shown) and to avoid excess loss due to axial misalignment.

 本実施形態に係る光スイッチS00が有する光結合部S8は、
 入力側フェルールS6及び出力側フェルールS7はそれぞれ、
 中心軸方向に凸球面形状の端部を備え、
 入力側フェルールS6の先端と出力側フェルールS7の先端とが突き合わされる。
The optical coupling unit S8 of the optical switch S00 according to this embodiment is
The input side ferrule S6 and the output side ferrule S7 are
A convex spherical end portion is provided in the direction of the central axis.
The tip of the input ferrule S6 and the tip of the output ferrule S7 are butted against each other.

 図3は本発明の実施形態に係る出力側フェルールS7の端部を正面から表した模式図である。図に示すように複数の光ファイバを束ねてバンドル状にして出力側フェルールS7の中心部に設けた直径S21のファイバ孔S11の内部に配置し、出力側光ファイバS9のそれぞれのコア中心が出力側フェルールS7の中心に対してコア配置半径Rcoreの円の円周上に配置されていることを特徴とする。図3では中心にダミーファイバS10を配置し、合計6つの出力側光ファイバS9が配置された例を挙げているが、コア配置半径Rcoreを有する円の円周上に複数の出力側光ファイバS9のコア中心が配置されていればよく、これに限らない。ダミーファイバS10は、出力側光ファイバS9と同じ強度、かつ同じ外径となる光ファイバであればよく、コアを有しないファイバ、つまり、通光しないファイバであってもよい。 FIG. 3 is a schematic diagram showing the end of the output side ferrule S7 according to an embodiment of the present invention from the front. As shown in the figure, a plurality of optical fibers are bundled together and arranged inside a fiber hole S11 of diameter S21 provided in the center of the output side ferrule S7, and the core center of each of the output side optical fibers S9 is arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center of the output side ferrule S7. In FIG. 3, an example is given in which a dummy fiber S10 is arranged at the center and a total of six output side optical fibers S9 are arranged, but this is not limited as long as the core centers of the plurality of output side optical fibers S9 are arranged on the circumference of a circle having a core arrangement radius Rcore. The dummy fiber S10 may be an optical fiber having the same strength and outer diameter as the output side optical fiber S9, and may be a fiber without a core, that is, a fiber that does not transmit light.

 図4は本発明の実施形態に係る入力側フェルールS6の端部を正面から表した模式図である。図4に示すように複数の光ファイバを束ねてバンドル状にして入力側フェルールS6の中心部に設けたファイバ孔S11の内部に配置し、入力側光ファイバS1のコア中心が入力側フェルールS6の中心に対してコア配置半径Rcoreの円の円周上に配置されていることを特徴とする。図4では1本の入力側光ファイバS1がy軸(x=0)上に配置され、他の6つのダミーファイバS10とともに入力側フェルールS6の中心部に配置された例を挙げているが、入力側光ファイバS1のコア中心がコア配置半径Rcoreを有する円の円周上に配置されていればよく、これに限らない。例えば、入力側フェルールS6の中心軸に対してコア配置半径Rcoreの円の円周上に1本の光ファイバを配置可能なファイバ孔を1つまたは複数設けて、そのファイバ孔に入力側光ファイバS1を配置してもよい。また、ダミーファイバS10は、入力側光ファイバS1と同じ強度、かつ同じ外径となる光ファイバであればよく、コアを有しないファイバ、つまり、通光しないファイバであってもよい。 FIG. 4 is a schematic diagram showing the end of the input side ferrule S6 according to an embodiment of the present invention from the front. As shown in FIG. 4, a plurality of optical fibers are bundled together and arranged inside a fiber hole S11 provided in the center of the input side ferrule S6, and the core center of the input side optical fiber S1 is arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center of the input side ferrule S6. FIG. 4 shows an example in which one input side optical fiber S1 is arranged on the y axis (x = 0) and arranged in the center of the input side ferrule S6 together with six other dummy fibers S10, but this is not limited as long as the core center of the input side optical fiber S1 is arranged on the circumference of a circle having a core arrangement radius Rcore. For example, one or more fiber holes in which one optical fiber can be arranged on the circumference of a circle with a core arrangement radius Rcore relative to the center axis of the input side ferrule S6 may be provided, and the input side optical fiber S1 may be arranged in the fiber hole. In addition, the dummy fiber S10 may be any optical fiber that has the same strength and outer diameter as the input optical fiber S1, and may be a fiber that does not have a core, i.e., a fiber that does not transmit light.

 なお、出力側フェルールS7及び入力側フェルールS6の中心に配置されるダミーファイバS10の外径は、出力側光ファイバS9及び入力側光ファイバS1と異なっていてもよい。例えば、中心に配置されるダミーファイバS10の外径を125μmよりも大きくすることで、6本以上の出力側光ファイバS9をコア配置半径Rcoreの円の円周上に配置することが可能になる。 The outer diameter of the dummy fiber S10 arranged at the center of the output ferrule S7 and the input ferrule S6 may be different from the output optical fiber S9 and the input optical fiber S1. For example, by making the outer diameter of the dummy fiber S10 arranged at the center larger than 125 μm, it becomes possible to arrange six or more output optical fibers S9 on the circumference of a circle with a core arrangement radius Rcore.

 ただし、光結合部S8の透過損失をできるだけ小さくすることが重要であり、出力側光ファイバS9の各コアは、入力側光ファイバS1のコアと同程度のモードフィールド径を有する点で同じ光学特性である方が望ましい。また、軸ずれによる過剰損失をできるだけ小さくすることが重要であり、出力側フェルールS7のフェルール外径S15は、入力側フェルールS6のフェルール外径S15と同程度である方が望ましい。 However, it is important to minimize the transmission loss of the optical coupling section S8, and it is desirable for each core of the output optical fiber S9 to have the same optical characteristics as the core of the input optical fiber S1 in that it has a mode field diameter similar to that of the core of the input optical fiber S1. It is also important to minimize excess loss due to axial misalignment, and it is desirable for the ferrule outer diameter S15 of the output ferrule S7 to be approximately the same as the ferrule outer diameter S15 of the input ferrule S6.

 本実施形態では、入力側フェルールS6及び出力側フェルールS7はジルコニア、入力側光ファイバS1及び出力側光ファイバS9は石英ガラスで形成されることとするが、通信波長帯の信号光を通信可能な光ファイバであればよく、これに限らない。 In this embodiment, the input side ferrule S6 and the output side ferrule S7 are made of zirconia, and the input side optical fiber S1 and the output side optical fiber S9 are made of quartz glass, but this is not limited and any optical fiber capable of communicating signal light in the communication wavelength band may be used.

 図5は本発明の実施形態に係る光結合部S8を長手方向に沿った面で表した模式図である。入力側光ファイバS1を挿入した入力側フェルールS6と、出力側光ファイバS9を挿入した出力側フェルールS7が、それらのフェルール外径S15に対してサブμm程度一回り大きい内径S16の中空部を有する円筒のスリーブS17で調心されており、軸ずれを一定許容範囲に制御し、入力側フェルールS6の軸回転を妨げないようにするためにサブμm程度の僅かなクリアランスCを入力側フェルールS6及び出力側フェルールS7に対して設けている。 FIG. 5 is a schematic diagram showing an optical coupling section S8 according to an embodiment of the present invention, viewed from a longitudinal surface. An input ferrule S6 into which an input optical fiber S1 is inserted, and an output ferrule S7 into which an output optical fiber S9 is inserted, are aligned with a cylindrical sleeve S17 having a hollow portion with an inner diameter S16 that is approximately sub-μm larger than the outer diameter S15 of the ferrules, and a slight clearance C of approximately sub-μm is provided for the input ferrule S6 and the output ferrule S7 to control the axial misalignment within a certain tolerance range and not to interfere with the axial rotation of the input ferrule S6.

 図6は入力側フェルールS6及び出力側フェルールS7のフェルール外径S15とスリーブ内径S16のクリアランスCに対する過剰損失Tの関係の一例を示す図である。光ファイバ間の光結合において、ファイバコアの軸ずれは過剰損失の要因となる。過剰損失の増大は光経路の全長を制限する要因となるため、ファイバコアの軸ずれを小さくすることが必要となる。ここで、フェルール外径S15とスリーブ内径S16のクリアランスCはファイバコアの軸ずれに相当するため、フェルール外径S15とスリーブ内径S16のクリアランスC(単位:μm)と過剰損失T(単位:dB)の関係は数1に表すことができる。

Figure JPOXMLDOC01-appb-M000001
ここでω及びωはそれぞれ入力側及び出力側光ファイバS9コアのモードフィールド半径(単位:μm)であり、図6は入力側光ファイバS1及び出力側光ファイバS9コアのモードフィールド径が、ともに9μmの時の損失を示す図である。例えば、クリアランスCが0.7μm以下となるように、フェルール外径S15及びスリーブ内径S16を加工した場合、最大過剰損失を約0.1dB以下に抑えることができる。また、最大過剰損失を0.2dBに設定するとクリアランスCが1μm以下になるようにフェルール外径S15とスリーブ内径S16を加工する必要がある。 6 is a diagram showing an example of the relationship between the excess loss T C and the clearance C between the ferrule outer diameter S15 and the sleeve inner diameter S16 of the input side ferrule S6 and the output side ferrule S7. In optical coupling between optical fibers, the axial misalignment of the fiber cores is a cause of excess loss. Since an increase in excess loss limits the total length of the optical path, it is necessary to reduce the axial misalignment of the fiber cores. Here, since the clearance C between the ferrule outer diameter S15 and the sleeve inner diameter S16 corresponds to the axial misalignment of the fiber cores, the relationship between the clearance C (unit: μm) between the ferrule outer diameter S15 and the sleeve inner diameter S16 and the excess loss T C (unit: dB) can be expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Here, ω1 and ω2 are the mode field radii (unit: μm) of the input and output optical fiber S9 cores, respectively, and Fig. 6 is a diagram showing the loss when the mode field diameters of the input optical fiber S1 and the output optical fiber S9 cores are both 9 μm. For example, when the ferrule outer diameter S15 and the sleeve inner diameter S16 are processed so that the clearance C is 0.7 μm or less, the maximum excess loss can be suppressed to about 0.1 dB or less. Also, when the maximum excess loss is set to 0.2 dB, it is necessary to process the ferrule outer diameter S15 and the sleeve inner diameter S16 so that the clearance C is 1 μm or less.

 図7は本発明の実施形態に係る光結合部S8のフェルールの端部近傍をより詳細に示した模式図である。入力側フェルールS6及び出力側フェルールS7の端部は、フェルール中心軸A上に中心点を有する凸球面形状である。具体的には、本実施形態の出力側フェルールS7は、図3に示すように、ファイバ孔S11の中心にダミーファイバS10が配置され、ダミーファイバS10の周囲に出力側光ファイバS9が配置されている。出力側フェルールS7に配置されている出力側光ファイバS9及びダミーファイバS10の端面が、出力側フェルールS7の端部の前記凸球面形状を構成する。また本実施形態の出力側フェルールS6は、図4に示すように、ファイバ孔S11の中心にダミーファイバS10が配置され、ダミーファイバS10の周囲に入力側光ファイバS1及びダミーファイバS10が配置されている。出力側フェルールS6に配置されているに入力側光ファイバS1及びダミーファイバS10の端面が、入力側フェルールS6の端部の前記凸球面形状を構成する。 7 is a schematic diagram showing in more detail the vicinity of the end of the ferrule of the optical coupling unit S8 according to the embodiment of the present invention. The end of the input side ferrule S6 and the output side ferrule S7 has a convex spherical shape having a center point on the ferrule central axis AC . Specifically, as shown in FIG. 3, the output side ferrule S7 of this embodiment has a dummy fiber S10 arranged at the center of the fiber hole S11, and the output side optical fiber S9 arranged around the dummy fiber S10. The end faces of the output side optical fiber S9 and the dummy fiber S10 arranged in the output side ferrule S7 form the convex spherical shape of the end of the output side ferrule S7. Also, as shown in FIG. 4, the output side ferrule S6 of this embodiment has a dummy fiber S10 arranged at the center of the fiber hole S11, and the input side optical fiber S1 and the dummy fiber S10 arranged around the dummy fiber S10. The end faces of the input side optical fiber S1 and the dummy fiber S10 disposed in the output side ferrule S6 constitute the convex spherical shape of the end of the input side ferrule S6.

 入力側フェルールS6及び出力側フェルールS7に配置されているダミーファイバS10は、それぞれの先端が突き合わされている。入力側ファイバS1及び出力側ファイバS9は、前述したように、フェルール断面においてフェルール中心軸Aからコア配置半径Rcoreの位置に配置されている。入力側ファイバS1及び出力側ファイバS9は、回転による切り替えの際にそれぞれの端面が接触して傷つくことを防止するため、端面が先端より後退している。また、入力側ファイバS1及び出力側ファイバS9の端面では、反射による信号特性劣化を抑制するため、フェルール中心軸Aに対して垂直な断面とシングルコア光ファイバ端面とがなす角度θが制御されている。例えば、一般的な光コネクタの作製で用いられる研磨技術を使用することにより、凸球面形状を作製することができる。図7では、それぞれのフェルール中心軸に配置されたダミーファイバS10の端面同士が突き合わされているが、入力側ファイバS1と出力側ファイバS9のそれぞれの端面同士が接触しない配置になっていればよく、これに限らない。例えば、フェルール端面を研磨する際に、ファイバ引込量を多くすることによって、入力側フェルールS6と出力側フェルールS7を突合せた際に入力側ファイバS1と出力側ファイバS9の端面同士が接触しない構造としてもよい。 The dummy fibers S10 arranged in the input ferrule S6 and the output ferrule S7 are butted at their respective tips. As described above, the input fiber S1 and the output fiber S9 are arranged at the position of the core arrangement radius Rcore from the ferrule central axis A C in the ferrule cross section. The end faces of the input fiber S1 and the output fiber S9 are set back from their tips to prevent the end faces from coming into contact and being damaged when switching by rotation. In addition, the angle θ between the cross section perpendicular to the ferrule central axis A C and the end face of the single-core optical fiber is controlled at the end faces of the input fiber S1 and the output fiber S9 to suppress deterioration of signal characteristics due to reflection. For example, a convex spherical shape can be produced by using a polishing technique used in the production of general optical connectors. In FIG. 7, the end faces of the dummy fibers S10 arranged on the respective ferrule central axes are butted against each other, but the arrangement is not limited thereto as long as the end faces of the input fiber S1 and the output fiber S9 do not come into contact with each other. For example, when polishing the ferrule end faces, the amount of fiber retraction may be increased so that the end faces of the input side fiber S1 and the output side fiber S9 do not come into contact with each other when the input side ferrule S6 and the output side ferrule S7 are butted together.

 図8はフェルール中心軸に対して垂直な断面とシングルモード光ファイバ端面とがなす角度θと反射減衰量Rの関係の一例を示す図である。光結合部S8において、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間に屈折率の異なる領域があると反射によって信号特性が劣化する。図7に示す本発明の構成において、入力側光ファイバS1の端面と出力側光ファイバS9の端面の間に間隙Gがあり、石英ガラスと空気は屈折率が異なるため、反射を低減する工夫が必要である。本発明では角度θを制御することにより、反射を低減することとしている。フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)と反射減衰量R(単位:dB)の関係は数2に表すことができる。

Figure JPOXMLDOC01-appb-M000002
ここでn、ω、λはそれぞれ光ファイバの屈折率、光ファイバコアのモードフィールド半径(単位:μm)、伝搬光の真空中での波長(単位:μm)である。また、Rはフラット端面での反射減衰量であり、数3に表すことができる。
Figure JPOXMLDOC01-appb-M000003
ここでnは受光媒体の屈折率、つまり空気の屈折率である。本実施形態では、波長λが1310nmでモードフィールド半径ωが4.5μmの場合に、フラット端面での反射減衰量Rが14.7dBであり、例えば、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θを4.5度以上にすることによって、40dB以上の反射減衰量Rを保持することができる。さらに、ファイバ端面に反射コーティングを加工することにより、反射特性をさらに改善することも可能である。 Fig. 8 is a diagram showing an example of the relationship between the angle θ between a cross section perpendicular to the ferrule central axis and the end face of a single mode optical fiber and the return loss R. In the optical coupling section S8, if there is an area with a different refractive index between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, the signal characteristics will be deteriorated by reflection. In the configuration of the present invention shown in Fig. 7, there is a gap G between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, and since silica glass and air have different refractive indices, it is necessary to devise a way to reduce reflection. In the present invention, reflection is reduced by controlling the angle θ. The relationship between the angle θ (unit: degree) between the cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber and the return loss R (unit: dB) can be expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Here, n1 , ω1 , and λ are the refractive index of the optical fiber, the mode field radius of the optical fiber core (unit: μm), and the wavelength of the propagating light in a vacuum (unit: μm), respectively. Also, R0 is the return loss at the flat end face, which can be expressed by the following equation 3.
Figure JPOXMLDOC01-appb-M000003
Here, n2 is the refractive index of the light receiving medium, that is, the refractive index of air. In this embodiment, when the wavelength λ is 1310 nm and the mode field radius ω1 is 4.5 μm, the return loss R0 at the flat end face is 14.7 dB, and for example, by making the angle θ between the cross section perpendicular to the ferrule central axis A C and the end face of the single mode optical fiber 4.5 degrees or more, a return loss R of 40 dB or more can be maintained. Furthermore, it is possible to further improve the reflection characteristics by processing a reflective coating on the fiber end face.

 図9は間隙Gに対する過剰損失Tの関係の一例を示す図である。入力側光ファイバS1と出力側光ファイバS9との間の光結合において、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間に間隙Gが存在すると、入力側光ファイバS1の出射光の分布が広がり、出力側光ファイバS9のコアとの結合効率が減少するため、過剰損失の要因となる。間隙G(単位:μm)と過剰損失T(単位:dB)の関係は数4に表すことができる。

Figure JPOXMLDOC01-appb-M000004
ここでλ、nclad、ω、ωはそれぞれ伝搬光の真空中での波長(単位:μm)、光ファイバのクラッド、つまり純石英の屈折率、入力側光ファイバS1及び出力側光ファイバS9のコアのモードフィールド半径(単位:μm)であり、図9は入力側光ファイバS1及び出力側光ファイバS9のコアのモードフィールド径が、ともに9μmの時の損失を示す図である。例えば、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間の間隙Gが22μm以下となるように調整することによって、過剰損失を0.1dB以下に抑えることができる。 9 is a diagram showing an example of the relationship of excess loss T G to gap G. In optical coupling between an input optical fiber S1 and an output optical fiber S9, if a gap G exists between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, the distribution of the output light from the input optical fiber S1 spreads and the coupling efficiency with the core of the output optical fiber S9 decreases, causing excess loss. The relationship between the gap G (unit: μm) and excess loss T G (unit: dB) can be expressed by Equation 4.
Figure JPOXMLDOC01-appb-M000004
Here, λ, n clad , ω1 , and ω2 are the wavelength of the propagating light in a vacuum (unit: μm), the refractive index of the cladding of the optical fiber, i.e., pure quartz, and the mode field radius of the cores of the input side optical fiber S1 and the output side optical fiber S9 (unit: μm), and Fig. 9 is a diagram showing the loss when the mode field diameters of the cores of the input side optical fiber S1 and the output side optical fiber S9 are both 9 μm. For example, by adjusting the gap G between the end face of the input side optical fiber S1 and the end face of the output side optical fiber S9 to be 22 μm or less, the excess loss can be suppressed to 0.1 dB or less.

 図10は凸球面形状のフェルール端面の曲率半径Rcurに対する、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θの関係の一例を示す図である。凸球面形状のフェルール端面の曲率半径Rcur(単位:mm)と、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)の関係は、コア配置半径Rcore(単位:μm)を用いて、数5に表すことができる。

Figure JPOXMLDOC01-appb-M000005
 図10はコア配置半径Rcoreが125、150、200、250μmの時の角度θと曲率半径Rcurの関係を示す図である。図8より、40dB以上の反射減衰量Rを保持可能な角度θは4.5度以上であり、250μm以下のコア配置半径Rcoreにおいて角度θが4.5度以上となる曲率半径Rcurが実現可能であることがわかる。例えば、コア配置半径Rcoreが125μm、150μm、200μm、250μmのとき、曲率半径Rcurをそれぞれ1.5mm以下、1.9mm以下、2.5mm以下、3.2mm以下、となるように調整することにより、角度θが4.5度以上となり、40dB以上の反射減衰量Rを保持することができる。一般的なシングルモード光ファイバのファイバ外径は125μmであり、前記シングルモード光ファイバを図3のようにバンドル状に配置する場合、1.5mm以下の曲率半径Rcurとなるようにフェルール端面を研磨することによって、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θが4.5度以上となり、40dB以上の反射減衰量Rを実現することができる。 10 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the angle θ between a cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber. The relationship between the radius of curvature Rcur (unit: mm) of the convex spherical ferrule end face and the angle θ (unit: degrees) between a cross section perpendicular to the ferrule central axis A C and the end face of a single mode optical fiber can be expressed by Equation 5 using the core arrangement radius Rcore (unit: μm).
Figure JPOXMLDOC01-appb-M000005
Fig. 10 is a diagram showing the relationship between the angle θ and the radius of curvature Rcur when the core arrangement radius Rcore is 125, 150, 200, and 250 μm. From Fig. 8, it can be seen that the angle θ capable of maintaining a return loss R of 40 dB or more is 4.5 degrees or more, and a radius of curvature Rcur with an angle θ of 4.5 degrees or more can be realized at a core arrangement radius Rcore of 250 μm or less. For example, when the core arrangement radius Rcore is 125 μm, 150 μm, 200 μm, and 250 μm, the radius of curvature Rcur is adjusted to 1.5 mm or less, 1.9 mm or less, 2.5 mm or less, and 3.2 mm or less, respectively, so that the angle θ becomes 4.5 degrees or more and a return loss R of 40 dB or more can be maintained. A typical single mode optical fiber has an outer fiber diameter of 125 μm. When the single mode optical fibers are arranged in a bundle as shown in FIG. 3, by polishing the ferrule end face to have a radius of curvature Rcur of 1.5 mm or less, the angle θ between a cross section perpendicular to the ferrule central axis AC and the end face of the single mode optical fiber becomes 4.5 degrees or more, and a return loss R of 40 dB or more can be realized.

 また、図11は凸球面形状のフェルール端面の曲率半径Rcurに対する、フェルール先端からシングルモード光ファイバ端面までの距離Dの関係の一例を示す図である。フェルール先端からシングルモード光ファイバ端面までの距離Dは、入力側光ファイバS1の端面と出力側光ファイバS9の端面との間の間隙Gの半分に相当し、凸球面形状のフェルール端面の曲率半径Rcur(単位:mm)と、フェルール中心軸Aに対して垂直な断面とシングルモード光ファイバ端面とがなす角度θ(単位:度)を用いて、数6に表すことができる。

Figure JPOXMLDOC01-appb-M000006
11 is a diagram showing an example of the relationship between the radius of curvature Rcur of the convex spherical ferrule end face and the distance D from the ferrule tip to the end face of the single mode optical fiber. The distance D from the ferrule tip to the end face of the single mode optical fiber corresponds to half the gap G between the end face of the input optical fiber S1 and the end face of the output optical fiber S9, and can be expressed by Equation 6 using the radius of curvature Rcur (unit: mm) of the convex spherical ferrule end face and the angle θ (unit: degrees) between a cross section perpendicular to the ferrule central axis AC and the end face of the single mode optical fiber.
Figure JPOXMLDOC01-appb-M000006

 図11では、コア配置半径Rcoreが125、150、200、250μmの時の曲率半径Rcurとフェルール先端からファイバ端面までの距離Dの関係を示す。例えば、コア配置半径Rcoreが125μm、150μm、200μm、250μmのとき、曲率半径Rcurがそれぞれ0.7mm以上、1.0mm以上、1.8mm以上、2.8mm以上となるように調整することによって、フェルール先端からファイバ端面までの距離Dが11μm以下、つまり、間隙Gが22μm以下となり、図9に示したとおり間隙による過剰損失Tを0.1dB以下に抑制することができる。一般的なシングルモード光ファイバのファイバ外径は125μmであり、前記シングルモード光ファイバを図3のようにバンドル状に配置する場合、曲率半径Rcurを0.7mm以上1.5mm以下となるようにフェルール端面を研磨することによって、40dB以上の反射減衰量Rと0.1dB以下の過剰損失Tを実現することができる。 11 shows the relationship between the radius of curvature Rcur and the distance D from the ferrule tip to the fiber end face when the core arrangement radius Rcore is 125, 150, 200, and 250 μm. For example, when the core arrangement radius Rcore is 125 μm, 150 μm, 200 μm, and 250 μm, the radius of curvature Rcur is adjusted to be 0.7 mm or more, 1.0 mm or more, 1.8 mm or more, and 2.8 mm or more, respectively, so that the distance D from the ferrule tip to the fiber end face is 11 μm or less, that is, the gap G is 22 μm or less, and the excess loss T G due to the gap can be suppressed to 0.1 dB or less as shown in FIG. A typical single mode optical fiber has an outer fiber diameter of 125 μm. When the single mode optical fiber is arranged in a bundle as shown in FIG. 3, a return loss R of 40 dB or more and an excess loss T of 0.1 dB or less can be achieved by polishing the ferrule end face so that the radius of curvature R is 0.7 mm or more and 1.5 mm or less.

 本実施形態に係る光スイッチS00が有する光結合部S8は、40dB以上の反射減衰量と0.1dB以下の間隙による過剰損失を得るために、
 入力側フェルールS6及び出力側フェルールS7のそれぞれにおいて、
 凸球面形状における曲率半径が0.7mm以上3.2mm以下であってもよい。
The optical coupling portion S8 of the optical switch S00 according to this embodiment has a return loss of 40 dB or more and an excess loss due to a gap of 0.1 dB or less.
In each of the input side ferrule S6 and the output side ferrule S7,
The radius of curvature of the convex spherical shape may be 0.7 mm or more and 3.2 mm or less.

 次に、図2におけるアクチュエータS3と図3で述べた出力側フェルールS7、並びに図4で述べた入力側フェルールS6に係る要件について説明する。アクチュエータS3には、制御回路S4からのパルス信号により任意の角度ステップで回転を行い、角度ステップ毎で一定の静止トルクを有する駆動機構となっており、例えば、ステッピングモータが用いられる。なお、アクチュエータS3は、制御回路S4からのパルス信号により任意の角度ステップで回転を行い、角度ステップ毎で一定の静止トルクを有する駆動機構となっていれば、これ以外の方法を用いてもよい。回転速度や回転角度は制御回路S4からのパルス信号の周期とパルス数で決定され、角度ステップや静止トルクは減速ギヤを介して調整されたものでもよい。なお、前述のとおり、光結合部S8における入力側フェルールS6はフェルール中心軸Aを中心に回転するように設計されているため、入力側フェルールS6の回転角度の保持に必要な静止トルクはアクチュエータS3によって付与されるものであるという特徴を有する。 Next, the requirements for the actuator S3 in FIG. 2, the output side ferrule S7 described in FIG. 3, and the input side ferrule S6 described in FIG. 4 will be described. The actuator S3 is a drive mechanism that rotates at any angle step by a pulse signal from the control circuit S4 and has a constant static torque for each angle step, and for example, a stepping motor is used. Note that the actuator S3 may use other methods as long as it rotates at any angle step by a pulse signal from the control circuit S4 and has a constant static torque for each angle step. The rotation speed and rotation angle are determined by the period and pulse number of the pulse signal from the control circuit S4, and the angle step and static torque may be adjusted via a reduction gear. Note that, as described above, the input side ferrule S6 in the optical coupling unit S8 is designed to rotate around the ferrule central axis A C , and therefore has a feature that the static torque required to hold the rotation angle of the input side ferrule S6 is applied by the actuator S3.

 これにより、切り替え後の静止時において電力を必要としない自己保持機能を有し、かつ、光経路を切り替える際の駆動エネルギーを限りなく小さくすることが可能であり、低消費電力な光スイッチを提供することが可能である。 As a result, it is possible to provide a low-power optical switch that has a self-holding function that does not require power when stationary after switching, and that requires minimal drive energy when switching optical paths.

 ここで、ステッピングモータにおいて、電源供給停止時に角度位置が保持される角度ステップ数を静止角度ステップ数と定義すると、静止角度ステップ数は出力側光ファイバS9の同じコア配置半径Rcoreを有するコア数の自然数倍であることを特徴とする。 Here, in a stepping motor, if the number of angular steps at which the angular position is maintained when the power supply is stopped is defined as the static angular step number, the static angular step number is characterized by being a natural number multiple of the number of cores having the same core arrangement radius Rcore in the output side optical fiber S9.

 また、光結合部S8における回転角度ずれによる過剰損失をT(単位:dB)、ステッピングモータの静止角度精度に係る回転角度ずれをΦ(単位:°)、コア配置半径Rcore(単位:μm)とした場合、これらの関係は数7に表すことができる。

Figure JPOXMLDOC01-appb-M000007
コア配置半径Rcoreに対する回転角度ずれによる過剰損失Tの関係の一例を図12に示す。図12では、回転角度ずれΦが0.1度、0.15度、0.2度、0.3度の時のコア配置半径Rcoreと回転角度ずれによる過剰損失Tの関係を示す図である。コア配置半径Rcoreが大きいほど過剰損失が大きくなるが、例えば、モードフィールド半径ω及びωが4.5μm(MFD=9μm)のとき、コア配置半径が250μm以下において、0.15度の回転角度ずれにおいても、回転角度ずれによる過剰損失Tは0.1dB以下を保持することが可能である。ファイバ外径125μmのシングルモード光ファイバを図3のようにバンドル状に配置する場合、コア配置半径Rcoreは125μmになるため、図12により、0.3度の回転角度ずれにおいても、回転角度ずれによる過剰損失Tは0.1dB以下を保持することが可能である。 In addition, if the excess loss due to the rotational angle misalignment in the optical coupling portion S8 is T R (unit: dB), the rotational angle misalignment related to the stationary angle accuracy of the stepping motor is Φ (unit: °), and the core arrangement radius R core (unit: μm), the relationship between these can be expressed by Equation 7.
Figure JPOXMLDOC01-appb-M000007
An example of the relationship of excess loss TR due to rotation angle misalignment with respect to core arrangement radius Rcore is shown in FIG. 12. FIG. 12 is a diagram showing the relationship between core arrangement radius Rcore and excess loss TR due to rotation angle misalignment when the rotation angle misalignment Φ is 0.1 degrees, 0.15 degrees, 0.2 degrees, and 0.3 degrees. The larger the core arrangement radius Rcore is, the larger the excess loss becomes. For example, when the mode field radii ω1 and ω2 are 4.5 μm (MFD=9 μm), even with a rotation angle misalignment of 0.15 degrees, the excess loss TR due to rotation angle misalignment can be maintained at 0.1 dB or less when the core arrangement radius is 250 μm or less. When single mode optical fibers with a fiber outer diameter of 125 μm are arranged in a bundle shape as shown in FIG. 3, the core arrangement radius Rcore is 125 μm, so according to FIG. 12, even with a rotation angle misalignment of 0.3 degrees, the excess loss TR due to rotation angle misalignment can be maintained at 0.1 dB or less.

 図13は本発明の第1の実施形態に係る光結合部S8のかん合形態の一例を表す模式図である。出力側フェルールS7は出力側フランジS19に取り付けられ、出力側フランジS19は固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されている。入力側フェルールS6は回転フランジS29に取り付けられ、回転フランジS29にベアリングS26が設けられており、これも同様に固定ネジS25で固定治具S27に取り付けられ、軸方向が固定されている。固定治具S27の内側にスリーブS17が内蔵されており、入力側フェルールS6及び出力側フェルールS7がスリーブS17に挿入されることによってフェルール中心軸の軸合わせが行われる。出力側フェルールS7が固定され、入力側フェルールS6がスリーブS17内でフェルール円筒の中心を軸としてベアリングS26の回転機構S5により回転する。これにより、入力側フェルールS6に挿入された入力側光ファイバS1のコアが回転し、入力側光ファイバS1に対向する出力側光ファイバS9のコアが切り替わる。なお、ベアリングS26には、例えばジルコニアが用いられるが、高い寸法精度で作製することが可能であれば、これ以外の材質を用いることも可能である。また、固定治具S27を、例えば剛性の低い、中空形状の金属で構成されたフレームにすることにより、アクチュエータS3の回転時の軸ブレによる入力側フェルールS6の軸ずれを低減することが可能である。 Figure 13 is a schematic diagram showing an example of the mating form of the optical coupling section S8 according to the first embodiment of the present invention. The output side ferrule S7 is attached to the output side flange S19, which is attached to the fixing jig S27 with a fixing screw S25, and the axial direction and axial rotation direction are fixed. The input side ferrule S6 is attached to the rotating flange S29, and a bearing S26 is provided on the rotating flange S29, which is also attached to the fixing jig S27 with a fixing screw S25, and the axial direction is fixed. A sleeve S17 is built into the inside of the fixing jig S27, and the input side ferrule S6 and the output side ferrule S7 are inserted into the sleeve S17 to align the ferrule central axes. The output side ferrule S7 is fixed, and the input side ferrule S6 rotates within the sleeve S17 by the rotation mechanism S5 of the bearing S26 around the center of the ferrule cylinder as an axis. This rotates the core of the input optical fiber S1 inserted into the input ferrule S6, and switches the core of the output optical fiber S9 facing the input optical fiber S1. The bearing S26 is made of, for example, zirconia, but other materials can be used as long as they can be manufactured with high dimensional accuracy. In addition, by making the fixing jig S27 into, for example, a frame made of a hollow metal with low rigidity, it is possible to reduce the axial deviation of the input ferrule S6 caused by the axial wobble when the actuator S3 rotates.

 出力側フェルールS7に取り付けられた出力側フランジS19の側面図を図17に示す。キャピラリS23は、図17に示すように、出力側フランジS19に取り付けられた出力側フェルールS7のファイバ孔S30とフェルール中心軸Aが一致する位置に配置し、キャピラリS23を長手方向にテーパー形状にして、その先端の直径を出力側フェルールS7のファイバ孔S30の直径に近づけることによって、出力側光ファイバS9を出力側フェルールS7へ挿入する際に段差による引っ掛かりを防ぎ、さらには光ファイバの折れを予防することが可能になる。入力側フェルールS6に取り付けられた回転フランジS29も同様である。本実施例ではフランジの内部に長手方向にテーパー形状であるキャピラリを挿入する例を示したが、フランジ内部の形状は、光ファイバをファイバ孔に挿入可能な形状であり、かつ、光結合部作製時に光ファイバを保護することが可能な形状であればよく、この限りではない。 A side view of the output side flange S19 attached to the output side ferrule S7 is shown in Fig. 17. As shown in Fig. 17, the capillary S23 is arranged at a position where the fiber hole S30 of the output side ferrule S7 attached to the output side flange S19 and the ferrule central axis A C coincide with each other, and the capillary S23 is tapered in the longitudinal direction and the diameter of the tip is made close to the diameter of the fiber hole S30 of the output side ferrule S7, thereby preventing the output side optical fiber S9 from being caught by a step when being inserted into the output side ferrule S7, and further preventing the optical fiber from being broken. The same applies to the rotating flange S29 attached to the input side ferrule S6. In this embodiment, an example in which a capillary having a tapered shape in the longitudinal direction is inserted inside the flange is shown, but the shape of the inside of the flange is not limited to this as long as it is a shape that allows the optical fiber to be inserted into the fiber hole and a shape that allows the optical fiber to be protected when the optical coupling part is made.

 本発明は、中心軸に平行かつ中心軸から同一距離にシングルモード光ファイバが配置された2つのフェルールの端部が凸形状であり、2つのフェルールの端部の先端を中心軸が一致するように突き合わせ、いずれか一方のフェルールを中心軸を中心として回転させることにより、対向する光ファイバの端面同士が接触せず、接触によって光ファイバの端面にキズがつくことによる接続損失などの光学特性の劣化を防ぐことができる。また、対向する光ファイバの端面同士を非平行とすることで光の反射量を減らすことができるので、反射コーティングを要せず、より経済的な光結合部および光スイッチを提供することができる。 In the present invention, the ends of two ferrules, in which single-mode optical fibers are arranged parallel to and at the same distance from the central axis, are convex, and the tips of the ends of the two ferrules are butted together so that their central axes coincide, and one of the ferrules is rotated around its central axis, so that the end faces of the opposing optical fibers do not come into contact with each other, preventing deterioration of optical characteristics such as connection loss caused by scratches on the end faces of the optical fibers due to contact. In addition, by making the end faces of the opposing optical fibers non-parallel to each other, the amount of light reflection can be reduced, making it possible to provide a more economical optical coupling unit and optical switch without the need for a reflective coating.

 さらに、本発明は、光スイッチングを行う光結合部S8の入力側および出力側の一方を軸回転可能な機構としているため、アクチュエータS3で必要となるエネルギー、すなわちトルク出力を限りなく小さくすることが可能であり、低消費電力化が可能である。また、入力側フェルールS6の軸回転以外の方向における光軸ずれ量は、光結合部S8においてスリーブS17により保証されているために、低損失化が可能となる。加えて、本発明にはコリメートや特別な防振機構を具備しておらず、フェルールやスリーブといった一般的に広く用いられている光接続部品から構成されているため小型かつ経済的である。 Furthermore, in the present invention, one of the input and output sides of the optical coupling section S8 that performs optical switching is made into an axially rotatable mechanism, so that it is possible to minimize the energy required by the actuator S3, i.e., the torque output, and to reduce power consumption. Also, the amount of optical axis deviation in directions other than the axial rotation of the input ferrule S6 is guaranteed by the sleeve S17 in the optical coupling section S8, making it possible to reduce loss. In addition, the present invention does not include a collimator or special vibration isolation mechanism, and is composed of commonly used optical connection parts such as ferrules and sleeves, making it small and economical.

 従って、本発明により、温度や振動等の外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することが可能である。その結果、光ファイバネットワークのシングルモード光ファイバを用いた光線路において、場所を問わず、あらゆる設備において、経路を切り替える光スイッチに利用することが可能である。 Therefore, the present invention makes it possible to provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors such as temperature and vibration with low power consumption and in a more economical manner. As a result, it can be used as an optical switch that switches paths in optical lines using single-mode optical fibers in optical fiber networks, regardless of location, in any facility.

(実施形態2)
 以下、本実施形態に係る光スイッチS00の構成と動作について図14及び図15を用いて具体的に示す。本実施形態の光スイッチS00は、光結合部S8の入力側フェルールS6が回転フランジS29ではなく、入力側フランジS18に取り付けられ、ベアリングS26の設けられる位置が実施形態1の光スイッチS00と異なる。以下、入力側フェルールS6の回転機構について説明する。なお、以下に説明する内容以外は、実施形態1と同様とする。
(Embodiment 2)
The configuration and operation of the optical switch S00 according to this embodiment will be specifically described below with reference to Figures 14 and 15. In the optical switch S00 of this embodiment, the input ferrule S6 of the optical coupling section S8 is attached to the input flange S18 instead of the rotating flange S29, and the position at which the bearing S26 is provided is different from that of the optical switch S00 of the first embodiment. The rotation mechanism of the input ferrule S6 will be described below. Note that the contents other than those described below are the same as those of the first embodiment.

 図14は、本実施形態に係る光結合部S8のかん合形態を表す模式図である。第1の実施形態と同様に、出力側フェルールS7は出力側フランジS19に取り付けられ、出力側フランジS19は固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されている。 FIG. 14 is a schematic diagram showing the mating form of the optical coupling section S8 according to this embodiment. As in the first embodiment, the output side ferrule S7 is attached to the output side flange S19, and the output side flange S19 is attached to the fixing jig S27 with a fixing screw S25, and the axial direction and axial rotation direction are fixed.

 入力側フェルールS6は入力側フランジS18に取り付けられる。入力側フランジS18は取り外し可能な固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されており、固定ネジS25をゆるめることにより、入力側フランジS18が回転可能となり、それに伴い入力側フランジS18に取り付けられている入力側フェルールS6が回転できる。また、入力側フランジS18は後述するように、図15に示す構造であってもよい。この時、軸方向を固定する固定ネジ(不図示)を別途設けてもよい。入力側フェルールS6は出力側フェルールS7よりもフェルール外径S15を小さくし、ベアリングS26が取り付けられており、ベアリングS26の回転機構S5により回転する。つまり、出力側フェルールS7が固定され、入力側フランジS18が回転可能になることにより、入力側フェルールS6がスリーブS17内でフェルール円筒の中心を軸としてベアリングS26の回転機構S5により回転する。これにより、入力側フェルールS6に挿入された入力側光ファイバS1のコアが回転し、入力側光ファイバS1に対抗する出力側光ファイバS9のコアが切り替わる。 The input side ferrule S6 is attached to the input side flange S18. The input side flange S18 is attached to the fixing jig S27 with a removable fixing screw S25, and the axial direction and axial rotation direction are fixed. By loosening the fixing screw S25, the input side flange S18 becomes rotatable, and the input side ferrule S6 attached to the input side flange S18 can rotate accordingly. The input side flange S18 may also have the structure shown in FIG. 15, as described later. At this time, a fixing screw (not shown) for fixing the axial direction may be provided separately. The input side ferrule S6 has a ferrule outer diameter S15 smaller than that of the output side ferrule S7, is attached to a bearing S26, and rotates by the rotation mechanism S5 of the bearing S26. In other words, the output side ferrule S7 is fixed and the input side flange S18 becomes rotatable, and the input side ferrule S6 rotates within the sleeve S17 around the center of the ferrule cylinder by the rotation mechanism S5 of the bearing S26. This causes the core of the input optical fiber S1 inserted into the input ferrule S6 to rotate, switching the core of the output optical fiber S9 opposite the input optical fiber S1.

 図15は、本実施形態に係る光結合部S8の入力側フェルールS6の断面を表した模式図である。入力側フェルールS6の周囲にベアリングS26が取り付けられ、入力側フェルールS6がスリーブS17内で自由に回転できる構造となっている。また、図15では、入力側フランジS18の固定方法として、固定ばねS28を用いた例を示す。入力側フランジS18に図15に示すような溝をあらかじめ設けておき、その溝に固定ばねS28の先端を挟むことによって入力側フランジS18とそれに固定された入力側フェルールS6が固定されている。固定ばねS28は矢印の方向Dに力を加えることにより入力側フェルールS6の固定が解放されて回転可能となる。例えば、この固定ばねS28の固定と解放をアクチュエータS3を制御する制御回路S4(不図示)と連動させることによって、光ファイバ切り替えの一括制御が可能となる。また、図16のように入力側フランジS18の外周の形状を、入力側フェルールS6の長手方向に沿って溝がずれるように複数の歯車を配置したような形状にすることによって、より細かい回転角度制御を行うことも可能である。また、入力側フランジS18の固定と解放の方法として、固定ばねS28以外に磁石やソレノイドを用いてもよい。 FIG. 15 is a schematic diagram showing a cross section of the input ferrule S6 of the optical coupling unit S8 according to this embodiment. A bearing S26 is attached around the input ferrule S6, and the input ferrule S6 can freely rotate in the sleeve S17. FIG. 15 also shows an example of using a fixed spring S28 as a method of fixing the input flange S18. A groove as shown in FIG. 15 is provided in advance in the input flange S18, and the input flange S18 and the input ferrule S6 fixed thereto are fixed by clamping the tip of the fixed spring S28 in the groove. The fixed spring S28 releases the fixed input ferrule S6 by applying a force in the direction of the arrow D S , and the input ferrule S6 can be rotated. For example, by linking the fixing and releasing of the fixed spring S28 with a control circuit S4 (not shown) that controls the actuator S3, it is possible to control the optical fiber switching collectively. Also, by forming the outer periphery of the input flange S18 into a shape in which a plurality of gears are arranged so that the grooves are offset along the longitudinal direction of the input ferrule S6, as shown in Fig. 16, it is possible to perform more precise control of the rotation angle. Also, as a method for fixing and releasing the input flange S18, a magnet or a solenoid may be used in addition to the fixing spring S28.

 (実施形態3)
 以下、本実施形態に係る光スイッチS00の構成と動作について図18を用いて具体的に示す。本実施形態の光スイッチS00は、光結合部S8の出力側フェルールS7が出力側フランジS19ではなく、フェルールの長手方向において、入力側フェルールS6と出力側フェルールS7の両方の端面が突合する方向に押圧力を加える押圧器S32が取り付けられた押圧力付与フランジS31を用いる。押圧器S32は、押圧力付与フランジS31を介して、出力側フェルールS7を保持する。また、押圧器S32は、ストッパーS34によって、ハウジングS33に取り付けられている。以下、出力側フェルールS7の固定方法について説明する。なお、以下に説明する内容以外は、実施形態1と同様とする。
(Embodiment 3)
The configuration and operation of the optical switch S00 according to this embodiment will be specifically described below with reference to FIG. 18. In the optical switch S00 according to this embodiment, the output ferrule S7 of the optical coupling section S8 is not attached to the output flange S19, but to a pressing force imparting flange S31 to which a pressing device S32 is attached, which applies a pressing force in the direction in which the end faces of the input ferrule S6 and the output ferrule S7 butt against each other in the longitudinal direction of the ferrule. The pressing device S32 holds the output ferrule S7 via the pressing force imparting flange S31. The pressing device S32 is attached to the housing S33 by a stopper S34. A method for fixing the output ferrule S7 will be described below. Note that the contents other than those described below are the same as those of the first embodiment.

 具体的には、光結合部S8は、
 スリーブS17を用いて2つのフェルールS6、S7に配置されているシングルコアの光ファイバS1、S9を結合する光結合部であって、
 出力側フェルールS7は、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
 入力側フェルールS6は、フェルール中心軸を中心に回転可能であり、
 出力側フェルールS7の回転は、規制され、
 出力側フェルールS7は、2つのフェルールの端部が突合する方向に押圧される、ことを特徴とする。
Specifically, the optical coupling unit S8 is
An optical coupling unit that couples single-core optical fibers S1 and S9 disposed in two ferrules S6 and S7 using a sleeve S17,
The output side ferrule S7 has a plurality of optical fibers arranged in a bundle shape in the fiber hole on the same circumference centered on the central axis of the ferrule,
The input ferrule S6 is rotatable around the ferrule central axis,
The rotation of the output ferrule S7 is restricted.
The output side ferrule S7 is characterized in that the ends of the two ferrules are pressed in a direction to butt together.

 また、光スイッチS00は、
 光結合部S8において、
 出力側フェルールS7の回転を規制するとともに、出力側フェルールS7を、2つのフェルールの端部が突合する方向に押圧する押圧器S32、を備えることを特徴とする。
In addition, the optical switch S00 has
In the optical coupling section S8,
The connector is characterized by including a pressing device S32 that restricts the rotation of the output ferrule S7 and presses the output ferrule S7 in a direction in which the ends of the two ferrules butt together.

 図18は、本実施形態に係る光結合部S8のかん合形態を表す模式図である。第1の実施形態と同様に、入力側フェルールS6は回転フランジS29に取り付けられ、回転フランジS29にベアリングS26が設けられており、固定ネジS25で固定治具S27に取り付けられ、軸方向が固定されている。しかしながら、本実施形態に係る光結合部S8の入力側の構成はこれに限定されない。第2の実施形態と同様に、入力側フェルールS6は入力側フランジS18に取り付けられ、入力側フランジS18は取り外し可能な固定ネジS25で固定治具S27に取り付けられ、軸方向および軸回転方向が固定されており、固定ネジS25をゆるめることにより、入力側フランジS18が回転可能となり、それに伴い入力側フランジS18に取り付けられている入力側フェルールS6が回転できることとしてもよい。また、入力側フェルールS6を出力側フェルールS7よりもフェルール外径S15を小さくし、ベアリングS26を取り付けて、ベアリングS26の回転機構S5により回転してもよい。 FIG. 18 is a schematic diagram showing the mating form of the optical coupling unit S8 according to this embodiment. As in the first embodiment, the input side ferrule S6 is attached to the rotating flange S29, the rotating flange S29 is provided with a bearing S26, and the input side ferrule S6 is attached to the fixing jig S27 with a fixing screw S25, and the axial direction is fixed. However, the input side configuration of the optical coupling unit S8 according to this embodiment is not limited to this. As in the second embodiment, the input side ferrule S6 is attached to the input side flange S18, and the input side flange S18 is attached to the fixing jig S27 with a removable fixing screw S25, and the axial direction and axial rotation direction are fixed. By loosening the fixing screw S25, the input side flange S18 becomes rotatable, and the input side ferrule S6 attached to the input side flange S18 can also be rotated. In addition, the input side ferrule S6 may have a ferrule outer diameter S15 smaller than that of the output side ferrule S7, a bearing S26 is attached, and the input side ferrule S6 may be rotated by the rotation mechanism S5 of the bearing S26.

 出力側フェルールS7には、押圧力付与フランジS31が取り付けられている。当該押圧力付与フランジS31には、入力側フェルールS6及び出力側フェルールS7の長手方向において、入力側フェルールS6と出力側フェルールS7の両方の端面が突合する方向に押圧力を加える押圧器S32が取り付けられている。具体的には、押圧器S32は、図18の左方に押圧力付与フランジS31を押圧する。押圧力付与フランジS31が左方へ押圧されることに伴い、押圧力付与フランジS31が取り付けられた出力側フェルールS7も左方へ押圧される。また、押圧器S32はストッパーS34に取り付けられて回転方向に固定される。ストッパーS34はハウジングS33に取り付けられ、よって押圧器S32がハウジングS33に対して回転方向に固定される。また、押圧器S32の前端部は、押圧力付与フランジS31の後端部に固定されている。これにより、押圧力付与フランジS32に取り付けられた出力側フェルールS7がハウジングS33に対して回転方向に固定されている。 A pressing force applying flange S31 is attached to the output side ferrule S7. A pressing force applying device S32 is attached to the pressing force applying flange S31 in the longitudinal direction of the input side ferrule S6 and the output side ferrule S7, which applies a pressing force in the direction in which the end faces of the input side ferrule S6 and the output side ferrule S7 butt against each other. Specifically, the pressing device S32 presses the pressing force applying flange S31 to the left in FIG. 18. As the pressing force applying flange S31 is pressed to the left, the output side ferrule S7 to which the pressing force applying flange S31 is attached is also pressed to the left. The pressing device S32 is also attached to a stopper S34 and fixed in the rotational direction. The stopper S34 is attached to the housing S33, and therefore the pressing device S32 is fixed in the rotational direction relative to the housing S33. The front end of the pressing device S32 is fixed to the rear end of the pressing force applying flange S31. This fixes the output side ferrule S7 attached to the pressure applying flange S32 in the rotational direction relative to the housing S33.

 ここで押圧器S32はベローズ形、スリット形、ディスク形などのカップリングを用いてもよい。また、押圧器S32の材質はステンレスなどの金属やゴムなどの高分子化合物を用いることが可能であり、出力側フェルールS7が回転しないように保持され、かつ、入力側フェルールと出力側フェルールの2つのフェルールのそれぞれの端面が突合する方向に押圧力が加えられる機構であればよく、これらに限らない。 Here, the pressing device S32 may be a bellows-type, slit-type, disk-type coupling, or the like. The material of the pressing device S32 may be a metal such as stainless steel or a polymeric compound such as rubber, and it is not limited to these as long as it holds the output ferrule S7 so that it does not rotate and applies a pressing force in the direction in which the end faces of the input ferrule and the output ferrule butt together.

 ハウジングS33は、出力側フェルールS7、押圧力付与フランジS31、及び押圧器S32を、押圧器S32、押圧力付与フランジS31、出力側フェルールS7の順に収容している。本実施形態では、固定治具S27とハウジングS33とは、一般的な光コネクタに用いられるかん合方法でかん合されてもよい。つまり、ハウジングS33に光コネクタにおける光コネクタプラグのかん合機構を設け、固定治具S27に光コネクタにおける光コネクタアダプタのかん合機構を設けることによって、ハウジングS33は固定治具S27に挿入されて固定される。すなわち、固定治具S27の内側でハウジングS33と接触する面に突起S35を設け、ハウジングS33に係止片S36を設けることによって、当該突起S35と係止片S36がかん合することによってハウジングS33が固定治具S27に固定(位置決め)される。 The housing S33 accommodates the output side ferrule S7, the pressing force applying flange S31, and the pressing device S32 in the following order: pressing device S32, pressing force applying flange S31, output side ferrule S7. In this embodiment, the fixing jig S27 and the housing S33 may be mated by a mating method used for general optical connectors. That is, the housing S33 is inserted and fixed in the fixing jig S27 by providing a mating mechanism for an optical connector plug in an optical connector in the housing S33 and providing a mating mechanism for an optical connector adapter in an optical connector in the fixing jig S27. That is, a protrusion S35 is provided on the surface of the fixing jig S27 that contacts the housing S33 on the inside, and a locking piece S36 is provided on the housing S33, and the housing S33 is fixed (positioned) to the fixing jig S27 by mating the protrusion S35 and the locking piece S36.

しかしながら、本開示の範囲はこれに限られない。ストッパーS34は、ハウジングS33と一体に形成されていてもよい。 However, the scope of this disclosure is not limited to this. The stopper S34 may be formed integrally with the housing S33.

 上述のように、ストッパーS34によって押圧器S32がハウジングS33に対して回転方向に固定されるとともに、ストッパーS34とハウジングS33を介して、押圧器S32は、固定治具S27に対して固定される。また、押圧器S32に固定された押圧力付与フランジS31に取り付けられた出力側フェルールS7も、ハウジングS32及び固定治具S27に対して固定される。ここで、固定ネジを用いてフランジを固定する方法による場合、固定ネジの止め方により回転方向に設計通りの固定ができないことがある。これに対し、本実施形態では、ストッパー34を用いて、出力側フェルールS7を押圧する押圧器S32をハウジングS33に対して正確に固定することができるため、光学特性の低下を抑制することが可能である。なお、本実施形態では、ストッパーS34が2つ設けられているが、本開示の範囲はこれに限られない。ストッパーS34の数は1つだけでもいいし、3つ以上でもよい。 As described above, the presser S32 is fixed in the rotational direction relative to the housing S33 by the stopper S34, and the presser S32 is fixed to the fixing jig S27 via the stopper S34 and the housing S33. The output side ferrule S7 attached to the pressing force applying flange S31 fixed to the presser S32 is also fixed to the housing S32 and the fixing jig S27. Here, when using a method of fixing the flange using a fixing screw, it may not be possible to fix the flange in the rotational direction as designed depending on how the fixing screw is fastened. In contrast, in this embodiment, the presser S32 that presses the output side ferrule S7 can be accurately fixed to the housing S33 using the stopper 34, so that it is possible to suppress deterioration of the optical characteristics. Note that, in this embodiment, two stoppers S34 are provided, but the scope of the present disclosure is not limited to this. The number of stoppers S34 may be only one, or may be three or more.

 この時、固定治具S27に対してハウジングS33が所定の位置で固定されることによって、適切な押圧力でフェルール端面に押圧力が加えられる。つまり、出力側フェルールS7、押圧力付与フランジS31、押圧器S32が、ハウジングS33および固定治具S27に対して回転方向に固定された状態で、押圧器S32が収縮することによってフェルールの長手方向に押圧力が加えられる。具体的には、押圧器S32が左方へ押圧されることに伴い、押圧力付与フランジS31が左方へ押圧される。押圧力付与フランジS31が左方へ押圧されることに伴い、押圧力付与フランジS31が取り付けられた出力側フェルールS7も左方へ押圧される。これにより、フェルールの中に配線された光ファイバの端面間の間隙を必要最小限に抑えることができる。よって、光学特性の低下を抑制することができる。なお、本実施の形態においては、押圧器S32によって出力側フェルールS7が押圧されることでフェルール端面に押圧力が加えられているが、本開示の範囲はこれに限られない。押圧器S32が入力側に設けられ、入力側フェルールS6が押圧器S32に押圧されることで、フェルール端面に押圧力が加えられてもよい。 At this time, the housing S33 is fixed at a predetermined position relative to the fixing jig S27, so that an appropriate pressing force is applied to the ferrule end face. In other words, with the output side ferrule S7, the pressing force applying flange S31, and the pressing device S32 fixed in the rotational direction relative to the housing S33 and the fixing jig S27, the pressing device S32 contracts to apply a pressing force in the longitudinal direction of the ferrule. Specifically, as the pressing device S32 is pressed to the left, the pressing force applying flange S31 is pressed to the left. As the pressing force applying flange S31 is pressed to the left, the output side ferrule S7 to which the pressing force applying flange S31 is attached is also pressed to the left. This makes it possible to minimize the gap between the end faces of the optical fibers wired in the ferrule. Therefore, it is possible to suppress the deterioration of the optical characteristics. In this embodiment, the pressing force is applied to the ferrule end face by pressing the output side ferrule S7 with the pressing device S32, but the scope of the present disclosure is not limited to this. A pressing device S32 may be provided on the input side, and the input side ferrule S6 may be pressed against the pressing device S32 to apply a pressing force to the ferrule end face.

 上述の通り、本実施形態によれば、振動が発生する屋外に光スイッチS00を接地する場合でも、光学特性の低下を抑制することができ、メンテナンスフリーとなり経済的である。また、本実施形態によれば、ストッパーS34に取り付け可能な押圧器S32という一種類の部材を設けるだけで、出力側フェルールS7の回転を規制することができるとともに、フェルール端面に押圧力を加えることができ、低消費電力かつ経済的である。 As described above, according to this embodiment, even when the optical switch S00 is grounded outdoors where vibrations occur, degradation of the optical characteristics can be suppressed, making it maintenance-free and economical. Furthermore, according to this embodiment, by simply providing one type of member, the presser S32 that can be attached to the stopper S34, it is possible to regulate the rotation of the output side ferrule S7 and apply a pressing force to the ferrule end face, which consumes low power and is economical.

 本実施形態において、出力側フェルールS7が、その端面が入力側フェルールの端面に押し付けられた状態で回転方向に固定され、入力側フェルールS6がスリーブS17内でフェルール円筒の中心を軸として回転する。これにより、入力側フェルールS6に挿入された入力側光ファイバS1のコアが回転し、入力側光ファイバS1に対向する出力側光ファイバS9のコアが切り替わる。 In this embodiment, the output ferrule S7 is fixed in the rotational direction with its end face pressed against the end face of the input ferrule, and the input ferrule S6 rotates around the center of the ferrule cylinder within the sleeve S17. This causes the core of the input optical fiber S1 inserted into the input ferrule S6 to rotate, switching the core of the output optical fiber S9 facing the input optical fiber S1.

 以上説明したように、本発明によれば、外的要因に対して安定的な光学特性を低消費電力で、かつ、より経済的に実現できる光結合部及び光スイッチを提供することができる。 As described above, the present invention can provide an optical coupling section and optical switch that can achieve stable optical characteristics against external factors with low power consumption and in a more economical manner.

 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.

 本開示に係る光結合部および光スイッチは、光通信産業に適用することができる。 The optical coupling section and optical switch disclosed herein can be applied to the optical communications industry.

S00:前段光スイッチ構成部
S00:光スイッチ
S01:入力側光ファイバ
S02:光スイッチ間光ファイバ
S03:後段光スイッチ構成部
S03:光スイッチ
S04:出力側光ファイバ
S1:入力側光ファイバ
S2:余長部
S3:アクチュエータ
S4:制御回路
S5:回転機構
S6:入力側フェルール
S7:出力側フェルール
S8:光結合部
S9:出力側光ファイバ
S10:ダミーファイバ
S11:ファイバ孔
S15:フェルール外径
S16:スリーブ内径
S17:スリーブ
S18:入力側フランジ
S19:出力側フランジ
S21:ファイバ孔直径
S23:キャピラリ
S25:固定ネジ
S26:ベアリング
S27:固定治具
S28:固定ばね
S29:回転フランジ
S30:ファイバ孔
S31:押圧力付与フランジ
S32:押圧器
S33:ハウジング
S34:ストッパー
S35:突起
S36:係止片
S00: Front-stage optical switch component S00: Optical switch S01: Input side optical fiber S02: Optical fiber between optical switches S03: Rear-stage optical switch component S03: Optical switch S04: Output side optical fiber S1: Input side optical fiber S2: Excess length S3: Actuator S4: Control circuit S5: Rotation mechanism S6: Input side ferrule S7: Output side ferrule S8: Optical coupling section S9: Output side optical fiber S10: Dummy fiber S11: Fiber hole S15: Ferrule outer diameter S16: Sleeve inner diameter S17: Sleeve S18: Input side flange S19: Output side flange S21: Fiber hole diameter S23: Capillary S25: Fixing screw S26: Bearing S27: Fixing jig S28: Fixing spring S29: Rotating flange S30: Fiber hole S31: Pressing force applying flange S32: Pressing device S33: Housing S34: Stopper S35: Protrusion S36: Locking piece

Claims (6)

 スリーブを用いて2つのフェルールに配置されているシングルコアの光ファイバを結合する光結合部であって、
 前記2つのフェルールのうちの第1のフェルールは、ファイバ孔内に複数の光ファイバがフェルール中心軸を中心とする同一の円周上にバンドル状に配置されており、
 前記2つのフェルールの少なくとも一方は、前記フェルール中心軸を中心に回転可能であり、
 前記2つのフェルールの少なくとも他方の回転は、規制され、
 前記2つのフェルールのいずれかは、前記2つのフェルールの端部が突合する方向に押圧される、
 光結合部。
An optical coupling unit that couples single-core optical fibers arranged in two ferrules using a sleeve,
A first ferrule of the two ferrules has a plurality of optical fibers arranged in a fiber hole in a bundle shape on the same circumference centered on a central axis of the ferrule,
At least one of the two ferrules is rotatable about the ferrule central axis,
Rotation of at least the other of the two ferrules is restricted,
Either of the two ferrules is pressed in a direction in which the ends of the two ferrules are butted against each other.
Optical coupling section.
 前記2つのフェルールの突き合わされている端部が、前記フェルール中心軸上に中心点を有する凸球面形状を有する、
 請求項1に記載の光結合部。
The butted ends of the two ferrules have a convex spherical shape having a center point on the central axis of the ferrules.
The optical coupling section according to claim 1 .
 請求項1に記載の光結合部において、
 前記2つのフェルールの少なくとも他方の回転を規制するとともに、前記2つのフェルールのいずれかを前記2つのフェルールの端部が突合する方向に押圧する押圧器、を備える、
 光スイッチ。
2. The optical coupling section according to claim 1,
a pressing device that restricts rotation of at least the other of the two ferrules and presses one of the two ferrules in a direction in which the ends of the two ferrules butt against each other.
Light switch.
 前記2つのフェルールの少なくとも他方、前記2つのフェルールの少なくとも他方を押圧するフランジ、及び前記押圧器を、前記押圧器、前記フランジ、前記2つのフェルールの少なくとも他方の順に収容するハウジングと、
 前記押圧器を前記ハウジングに固定するストッパーと、をさらに備え、
 前記押圧器は、ストッパーを介して前記ハウジングに対する前記2つのフェルールの少なくとも他方の回転を規制するとともに、前記フランジを介して前記2つのフェルールの少なくとも他方を押圧する、
 請求項3に記載の光スイッチ。
a housing that accommodates at least the other of the two ferrules, a flange that presses at least the other of the two ferrules, and the presser, in the order of the presser, the flange, and at least the other of the two ferrules;
A stopper that fixes the pressing device to the housing,
the pressing device restricts rotation of at least the other of the two ferrules relative to the housing via a stopper, and presses at least the other of the two ferrules via the flange.
4. The optical switch according to claim 3.
 前記2つのフェルールの少なくとも一方を収容するとともに、前記ハウジングとかん合可能な固定治具、をさらに備え、
 前記固定治具は、前記ハウジングと係合する突起を、さらに備え、
 前記突起が前記ハウジングの係止片とかん合することにより、前記固定治具に対して前記ハウジングが位置決めされている、
 請求項4に記載の光スイッチ。
a fixing jig that receives at least one of the two ferrules and is engageable with the housing;
The fixture further includes a protrusion that engages with the housing.
The housing is positioned relative to the fixing jig by the projection engaging with a locking piece of the housing.
5. The optical switch according to claim 4.
 前記2つのフェルールの少なくとも一方を、前記フェルール中心軸を中心に回転させる回転機構と、
 前記回転機構を一定の角度ステップで回転させ、任意の角度ステップで静止させるアクチュエータと、
 前記回転機構を構成するベアリングと、をさらに備える、
 請求項3~5のいずれか一項に記載の光スイッチ。
a rotation mechanism that rotates at least one of the two ferrules about a central axis of the ferrule;
an actuator that rotates the rotation mechanism at a constant angular step and stops the rotation mechanism at an arbitrary angular step;
A bearing constituting the rotation mechanism is further provided.
The optical switch according to any one of claims 3 to 5.
PCT/JP2023/027583 2023-07-27 2023-07-27 Optical coupling unit and optical switch WO2025022649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/027583 WO2025022649A1 (en) 2023-07-27 2023-07-27 Optical coupling unit and optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/027583 WO2025022649A1 (en) 2023-07-27 2023-07-27 Optical coupling unit and optical switch

Publications (1)

Publication Number Publication Date
WO2025022649A1 true WO2025022649A1 (en) 2025-01-30

Family

ID=94374723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027583 WO2025022649A1 (en) 2023-07-27 2023-07-27 Optical coupling unit and optical switch

Country Status (1)

Country Link
WO (1) WO2025022649A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282212A (en) * 1988-09-20 1990-03-22 Fujitsu Ltd light switch
JPH0291609A (en) * 1988-09-29 1990-03-30 Fujitsu Ltd light switch
JPH0328816A (en) * 1989-01-19 1991-02-07 Alcatel Nv Optical fiber switch
WO2022018783A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282212A (en) * 1988-09-20 1990-03-22 Fujitsu Ltd light switch
JPH0291609A (en) * 1988-09-29 1990-03-30 Fujitsu Ltd light switch
JPH0328816A (en) * 1989-01-19 1991-02-07 Alcatel Nv Optical fiber switch
WO2022018783A1 (en) * 2020-07-20 2022-01-27 日本電信電話株式会社 Optical switch

Similar Documents

Publication Publication Date Title
US4239330A (en) Multiple optical switch
US6102581A (en) Optical adapter including a ferrule assembly
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
JPS61292109A (en) Coupler optically coupling pair of optical fiber in relationship in which end section thereof are butted
KR20020039320A (en) Optical fiber connector
US10775569B2 (en) Optical connector and optical connection structure
JPH08248266A (en) Optical fiber ferrule and optical coupler formed by using this optical fiber ferrule
US6104856A (en) Optical air-gap attenuator
JP7578393B2 (en) Optical Connector
US20050226563A1 (en) Optical fiber component
JP7400981B2 (en) light switch
JP7529157B2 (en) Cylindrical multi-core ferrule and polishing method thereof
JP7513124B2 (en) Optical coupling section and optical switch
JP7524952B2 (en) Optical Switch
US20030202737A1 (en) Optical switch
JP7709656B2 (en) Optical coupling section and optical switch
WO2025022649A1 (en) Optical coupling unit and optical switch
JP7513127B2 (en) Optical Switch
JP7641473B2 (en) Optical connection device and optical switch using the same
JP7552915B2 (en) Ferrule rotation fitting portion and optical switch
WO2024013820A1 (en) Optical coupling unit and optical switch
WO2023067772A1 (en) Optical connection module
JP7529053B2 (en) Cylindrical multi-core ferrule and optical connector
CN110418991B (en) Optical connector
Abe et al. 84-fiber MPO connector employing solid refractive index matching material formed on perpendicular polished MT ferrule end

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23946728

Country of ref document: EP

Kind code of ref document: A1