WO2025018113A1 - Method for manufacturing gas adsorption base material, gas adsorption method, and gas adsorption base material - Google Patents
Method for manufacturing gas adsorption base material, gas adsorption method, and gas adsorption base material Download PDFInfo
- Publication number
- WO2025018113A1 WO2025018113A1 PCT/JP2024/023119 JP2024023119W WO2025018113A1 WO 2025018113 A1 WO2025018113 A1 WO 2025018113A1 JP 2024023119 W JP2024023119 W JP 2024023119W WO 2025018113 A1 WO2025018113 A1 WO 2025018113A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas adsorption
- adsorption
- concentration
- substrate
- zeolite
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
Definitions
- the present invention relates to a method for producing a gas adsorption substrate, a gas adsorption method, and a gas adsorption substrate.
- Inorganic fibers are used to manufacture filter substrates because they have high heat resistance, high insulation, and non-flammability.
- inorganic fibers are formed into a sheet-like inorganic fiber sheet, which is processed by corrugating or other processes to form a honeycomb molded body, which is then fired to obtain the filter substrate.
- a technology has been proposed to manufacture honeycomb filters that are used for dehumidification, decomposition or removal of volatile organic compounds (VOCs), etc. by loading an adsorbent or catalyst onto the filter substrate (see, for example, Patent Publication No. 2925127).
- Zeolite is widely used as an adsorbent supported on a substrate.
- VOCs and amines especially alcohol and ammonia
- the present invention aims to provide a method for producing a gas adsorption substrate that can stably exhibit the adsorption performance of volatile organic compounds and amines, i.e., can exhibit a constant adsorption performance, a gas adsorption method, and a gas adsorption substrate.
- the present invention comprises: A method for producing a gas adsorption substrate, comprising the steps of: The method includes a step of contacting a substrate containing inorganic fibers with zeolite, a pH adjuster, and a solvent, The present invention relates to a method for producing a gas adsorbing substrate, wherein the pH in the contact step is 2 or more and 3 or less.
- the manufacturing method of the gas adsorption substrate it is possible to efficiently manufacture a gas adsorption substrate capable of reducing the variation in the adsorption performance of VOCs and amines (hereinafter, both are also referred to as "VOCs, etc.") and stably exhibiting the adsorption performance.
- VOCs VOCs and amines
- VOCs such as alcohol and amines are adsorbed relatively firmly to the zeolite by hydrogen bonding.
- the inventors closely examined a gas adsorption substrate with destabilized adsorption performance and found that the cations were exchanged from protons to sodium ions.
- the sodium ions are thought to be generated from the substrate, inorganic adhesive, adsorbent, etc. It is speculated that such cation exchange occurs during the manufacturing process of the gas adsorption substrate, and as a result of the hydrogen bonding ability of the zeolite with VOCs, etc. being reduced, the adsorption performance of the gas adsorption substrate becomes unstable.
- the substrate is a molded body of the inorganic fiber
- the formed body may be contacted with a slurry containing the zeolite, the pH adjuster, and the solvent.
- the contact may be by immersion or application.
- the pH adjuster is preferably an inorganic acid.
- the pH adjuster is preferably nitric acid.
- a binder in the contact step. This allows the zeolite to be more firmly supported on the substrate, stabilizing the adsorption performance of the gas adsorption substrate.
- the binder is preferably colloidal silica in terms of heat resistance, adhesion, and sodium ion reduction.
- the sodium ion concentration in the contact step is preferably 4000 ppm or less.
- salt exchange in the zeolite can be suppressed and the proton abundance rate can be increased, which in turn allows the gas adsorption substrate to stably exhibit its adsorption performance.
- the formed body is a honeycomb structure.
- the gas adsorption substrate is suitable for adsorbing alcohol or amines.
- the present invention comprises: adsorbing an object to be adsorbed by the gas adsorption substrate manufactured by the method for manufacturing a gas adsorption substrate.
- the present invention comprises:
- the present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
- the present invention relates to a gas adsorbing substrate having an alcohol adsorption amount of 20.0 mg/g or more according to the following alcohol adsorption test.
- Alcohol adsorption test Alcohol is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: alcohol concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 65% RH; air volume: 0.0045 m 3 /min, and the alcohol concentration at the inlet (inlet concentration) and the alcohol concentration at the outlet (outlet concentration) of the column are measured.
- the adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm).
- the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the outlet concentration reaching the inlet concentration (100 ppm) is integrated to obtain the alcohol adsorption amount (mg).
- This gas adsorption substrate exhibits excellent alcohol adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems.
- the alcohol is preferably ethanol.
- the present invention comprises:
- the present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
- the gas adsorption substrate has an amine adsorption amount of 2.0 mg/g or more according to the following amine adsorption test.
- Amine is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: amine concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 50% RH; air volume: 0.0045 m 3 /min, and the amine concentration at the inlet (inlet concentration) and the amine concentration at the outlet (outlet concentration) of the column are measured.
- the adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm).
- the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the time when the outlet concentration reaches the inlet concentration (100 ppm) is integrated to obtain the amine adsorption amount (mg).
- This gas adsorption substrate exhibits excellent amine adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems.
- the amine is preferably ammonia.
- FIG. 1 is a perspective view showing a gas adsorbing substrate according to one embodiment of the present invention.
- 2 is an enlarged view of a portion A of an opening surface of the gas adsorbing substrate of FIG. 1.
- FIG. 4 is an explanatory diagram showing a method for calculating the amount of ethanol adsorption.
- 1 is a graph showing the amount of ethanol adsorbed per amount of supported zeolite in Examples and Comparative Examples.
- 1 is a graph showing the Na 2 O content in zeolites of Examples and Comparative Examples.
- FIG. 4 is an explanatory diagram showing a method for calculating an ammonia adsorption amount.
- 1 is a graph showing the amount of ammonia adsorbed per amount of supported zeolite in Examples and Comparative Examples.
- FIG. 1 is a perspective view showing a gas adsorbing substrate according to one embodiment of the present invention
- Fig. 2 is an enlarged view of a portion A of an opening surface of the gas adsorbing substrate shown in Fig. 1.
- the gas adsorption substrate 1 is a honeycomb rotor that includes a substrate 8 containing inorganic fibers formed into the shape of the gas adsorption substrate 1, and zeolite as an adsorbent supported on the substrate 8.
- the honeycomb rotor is installed in a gas adsorption system (not shown).
- the gas adsorption system has a space partitioned into an adsorption zone that adsorbs substances to be adsorbed, such as VOCs, and a regeneration zone that desorbs the substances to be adsorbed, and adsorption and regeneration are repeated as the honeycomb rotor rotates in the gas adsorption system.
- the gas adsorption substrate 1 has an internal ventilation cavity 4 formed parallel to the rotor shaft 3 for ventilating the air to be treated, regeneration air, and purged air.
- the gas adsorption substrate 1 has opening surfaces 2a, 2b at both ends.
- the opening surfaces 2a, 2b are the inlets and outlets for the air to be treated, regeneration air, and purged air.
- the rotor shaft 3 is attached to the center of the gas adsorption substrate 1, and is the rotation axis for rotating the gas adsorption substrate 1 in the rotation direction 7.
- the ventilation cavity 4 is formed by alternately stacking flat portions 5 and corrugated portions 6.
- the gas adsorption substrate 1 has a structure in which inorganic fiber sheets forming the flat portions 5 and inorganic fiber sheets forming the corrugated portions 6 are stacked in multiple layers in the radial direction and circumferentially from the rotor shaft 3.
- the pitch p of the corrugated portion 6 shown in FIG. 2 is preferably 2.0 to 3.5 mm, more preferably 2.4 to 3.1 mm.
- the peak height t is preferably 0.8 to 2.0 mm, more preferably 1.3 to 1.7 mm.
- the pitch p refers to the distance between the peaks of adjacent waves of the corrugated portion 6, and the peak height t refers to the height of one wave of the corrugated portion 6.
- the thickness (axial length) s of the gas adsorption substrate 1 is preferably 200 to 500 mm, more preferably 300 to 450 mm.
- the gas adsorption substrate 1 can be efficiently manufactured by the following manufacturing method.
- the gas adsorption substrate 1 obtained by this manufacturing method is suitable as a substrate for adsorbing alcohols and amines, since the exchange of protons in the zeolite with sodium ions is suppressed and zeolite with a relatively large amount of protons is supported.
- alcohols include lower alcohols with 1 to 5 carbon atoms, such as methanol, ethanol, and n-propanol.
- amines include ammonia, as well as primary amines to tertiary amines, such as monomethylamine, dimethylamine, trimethylamine, and triethylamine.
- the alcohol adsorption amount in the alcohol adsorption test described below is 20.0 mg/g or more.
- Alcohol adsorption test Alcohol is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: alcohol concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 65% RH; air volume: 0.0045 m 3 /min, and the alcohol concentration at the inlet (inlet concentration) and the alcohol concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm).
- the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the outlet concentration reaching the inlet concentration (100 ppm) is integrated to obtain the alcohol adsorption amount (mg).
- This gas adsorption substrate exhibits excellent alcohol adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems. Details of the alcohol adsorption test are described in the Examples.
- the lower limit of the alcohol adsorption amount is preferably 20.5 mg/g, and more preferably 21.0 mg/g.
- the alcohol can be any of the above-mentioned components that can be suitably adsorbed, but ethanol is preferred.
- the amine adsorption amount in the amine adsorption test described below is 2.0 mg/g or more.
- Amine is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: amine concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 50% RH; air volume: 0.0045 m 3 /min, and the amine concentration at the inlet (inlet concentration) and the amine concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm).
- the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the time when the outlet concentration reaches the inlet concentration (100 ppm) is integrated to obtain the amine adsorption amount (mg).
- This gas adsorption substrate exhibits excellent amine adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems. Details of the amine adsorption test are described in the Examples.
- the lower limit of the amine adsorption amount is preferably 2.1 mg/g, and more preferably 2.2 mg/g.
- the upper limit of the alcohol adsorption amount is preferably as high as possible, but may be 3.0 mg/g or 2.8 mg/g.
- the amine can be any of the above-mentioned components, but ammonia is preferred.
- the method for producing a gas adsorption substrate includes a step of contacting a substrate containing inorganic fibers with zeolite, a pH adjuster, and a solvent.
- the substrate may be a molded body of inorganic fibers, or may be inorganic fibers themselves.
- the order and operation of the contact step and the molding step differ depending on the type of substrate. Each step will be described below for each type of substrate.
- the substrate is an inorganic fiber molded body.
- the molded body is contacted with a slurry containing zeolite, a pH adjuster, and a solvent (hereinafter, also referred to as a "supporting slurry").
- the contact is by immersion. That is, according to this embodiment, after forming an inorganic fiber molded body in the molding step, the molded body is immersed in the supporting slurry in the contact step to support zeolite on the substrate.
- a gas adsorption substrate can be manufactured by going through a drying step and a firing step.
- the inorganic fibers are molded to obtain a molded body.
- the molding step may be a single-stage or multi-stage process.
- the molding step also includes a process in which a plurality of molded bodies are combined to form a desired molded body.
- the molded body is preferably a honeycomb structure.
- the honeycomb-structured substrate as shown in FIG. 1 is typically manufactured by laminating a porous flat inorganic fiber sheet and a corrugated inorganic fiber sheet obtained by corrugating the flat inorganic fiber sheet, bonding the peaks of the corrugated inorganic fiber sheet with an inorganic adhesive. At this time, the roughly semi-cylindrical cavity formed between the flat inorganic fiber sheet and the corrugated inorganic fiber sheet becomes an air passage, so the two are laminated so that the cavity is formed in a direction parallel to the rotor shaft 3.
- Inorganic fiber sheets can be formed by known methods, for example, by wet-laid sheet material slurry containing inorganic fibers to produce a nonwoven fabric.
- the sheet material slurry generally contains water as a medium.
- the inorganic fibers are not particularly limited, and examples thereof include glass fibers such as E glass fiber, NCR glass fiber, ARG fiber, ECG fiber, S glass fiber, and A glass fiber, as well as chopped strands thereof, ceramic fibers, alumina fibers, mullite fibers, silica fibers, rock wool fibers, and inorganic fibers such as carbon fibers.
- glass fibers such as E glass fiber, NCR glass fiber, ARG fiber, ECG fiber, S glass fiber, and A glass fiber, as well as chopped strands thereof, ceramic fibers, alumina fibers, mullite fibers, silica fibers, rock wool fibers, and inorganic fibers such as carbon fibers.
- Biosoluble inorganic fibers may be used as the inorganic fibers.
- Biosoluble inorganic fibers are fibers that do not fall under the category of "WHO respirable fibers” or fibers that satisfy any one of the following four conditions (1) to (4) according to the NotaQ "Biosoluble Fiber Judgment Criteria" of EU Directive 97/69/EC.
- Biosoluble inorganic fibers include biosoluble ceramics, biosoluble rock wool, and the like.
- “WHO respirable fibers” are fibrous substances defined by the World Health Organization (WHO) that are inhaled into the body by breathing and reach the lungs, and have a length of more than 5 ⁇ m, a diameter of less than 3 ⁇ m, and an aspect ratio of more than 3.
- WHO World Health Organization
- the four conditions are as follows: (1) In short-term inhalation exposure animal experiments, the half-life of fibers longer than 20 ⁇ m was less than 10 days. (2) In short-term intratracheal instillation animal experiments, the half-life of fibers longer than 20 ⁇ m was less than 40 days. (3) No significant carcinogenicity has been shown in animal experiments involving intraperitoneal administration. (4) In long-term inhalation exposure animal experiments, there have been no pathological findings or tumor formation associated with carcinogenicity (however, the composition contains more than 18 mass% alkali and alkaline earth oxides (Na 2 O, K 2 O, CaO, MgO, BaO)).
- the length-weighted average fiber length of the inorganic fibers is preferably 1 to 20 mm, more preferably 2 to 10 mm, and particularly preferably 3 to 8 mm.
- the fiber diameter of the inorganic fibers is preferably 3 to 20 ⁇ m, more preferably 4 to 18 ⁇ m, and particularly preferably 5 to 16 ⁇ m.
- the sheet raw material slurry may contain components other than inorganic fibers.
- components other than inorganic fibers include synthetic fibers, natural fibers, organic or inorganic binders, auxiliaries, additives, fillers, etc.
- Wet papermaking can be carried out by preparing a sheet raw material slurry containing the above-mentioned components and water (medium), and then making paper from this sheet raw material slurry using a known papermaking machine.
- papermaking machines include cylinder papermaking machines, inclined papermaking machines, Fourdrinier papermaking machines, and short wire papermaking machines, and multi-layer papermaking can be carried out using the same or different types of papermaking machines in combination.
- dryers such as Yankee dryers, cylinder dryers, air dryers, and infrared dryers can be used.
- drying temperature There are no particular restrictions on the drying temperature, and it is usually around 100°C to 180°C.
- the thickness of the inorganic fiber sheet is not particularly limited, but is preferably 50 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, and particularly preferably 100 to 200 ⁇ m. A thickness within the above range is preferable because it provides good corrugation properties. Furthermore, the thickness of the inorganic fiber sheet used for the flat inorganic fiber sheet may be the same as or different from that used for the corrugated inorganic fiber sheet.
- Corrugated inorganic fiber sheets are obtained by corrugating a flat inorganic fiber sheet to give the sheet a corrugated cross section.
- One method of corrugating is, for example, passing a flat inorganic fiber sheet through a corrugated roll.
- the honeycomb structure may have any shape, but may be, for example, a laminated structure in which flat inorganic fiber sheets and corrugated inorganic fiber sheets are alternately laminated in the thickness direction, or a rotor structure obtained by winding a composite sheet in which flat inorganic fiber sheets and the peaks on one side of a corrugated inorganic fiber sheet are bonded.
- the rotor structure may be formed by combining fan-shaped members obtained by dividing the honeycomb rotor into a fan shape in the radial direction.
- the fan-shaped members are obtained by alternately stacking flat inorganic fiber sheets and corrugated inorganic fiber sheets from the rotor shaft 3 toward the outer periphery, with the sheets on the outer periphery being slightly longer.
- the adhesion between the flat inorganic fiber sheet and the corrugated inorganic fiber sheet during stacking or rolling is achieved, for example, by applying an adhesive to the peaks of the corrugated inorganic fiber sheet and stacking or rolling this and the flat inorganic fiber sheet.
- the adhesion between the sector-shaped members can be achieved by applying an adhesive to the surfaces of the sector-shaped members that correspond to the radius portions in a plan view and combining a plurality of sector-shaped members.
- adhesives include inorganic adhesives such as silica sol, alumina sol, silica-alumina sol, titania sol, and cement; and organic adhesives such as acrylic resin adhesives and vinyl acetate adhesives. Of these, inorganic adhesives are preferred because they do not contain organic components and have excellent heat resistance.
- the contact step described below may be carried out on the fan-shaped member, and the gas adsorption substrate 1 may be manufactured by combining multiple fan-shaped members carrying zeolite.
- a drying step may be carried out to dry the molded body.
- the drying method There are no particular limitations on the drying method, and it may be natural drying or drying by heating. Heat drying may be carried out by applying hot air at 40 to 250°C, by placing the molded body in a dryer set to the above temperature range, or by a combination of both.
- Contacting step In the contact step, the molded body obtained in the molding step is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent. Specifically, a supporting slurry containing predetermined components is prepared, and the molded body is immersed in the supporting slurry to perform the contact step.
- zeolites known as adsorbents can be suitably used as the zeolite.
- zeolites known as adsorbents can be suitably used. Specific examples include Y-type zeolite, USY-type zeolite, A-type zeolite, X-type zeolite, mordenite-type zeolite, ZSM-5-type zeolite, beta-type zeolite, ferrierite-type zeolite, L-type zeolite, etc.
- Zeolites can be used alone or in combination of multiple types.
- the zeolite is preferably a proton-type zeolite having protons as cations. Since not all of the protons in the proton-type zeolite are salt-exchanged, the use of proton-type zeolite as the slurry raw material allows the proton retention effect in the zeolite to be exerted at a higher level.
- the concentration of zeolite in the support slurry can be set appropriately taking into consideration the efficiency of the zeolite contacting (supporting) the substrate and the efficiency of the slurry impregnating the molded body.
- the zeolite concentration is preferably 10 to 50 mass%, more preferably 15 to 45 mass%, even more preferably 20 to 40 mass%, and particularly preferably 25 to 35 mass%.
- the pH adjuster is not particularly limited as long as it can adjust the pH in the contact step to a predetermined range
- examples of the pH adjuster include inorganic acids, organic acids, and combinations thereof.
- inorganic acids include nitric acid, hydrochloric acid, and sulfuric acid.
- organic acids include sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
- inorganic acids are preferred, and nitric acid is particularly preferred.
- the pH adjuster may be added directly or in the form of a diluted solution in an amount that will give the desired pH.
- Water or various organic solvents can be used as the solvent, but water is preferred from the standpoints of safety, low environmental impact, and solubility/dispersibility.
- a binder present in the contact step. This allows the zeolite to be more firmly supported on the substrate, and promotes stabilization of the adsorption performance of the gas adsorption substrate.
- binders include inorganic binders, organic binders, and combinations thereof.
- inorganic binders include colloidal silica, water glass, calcium silicate, silica sol, alumina sol, titania sol, silica-alumina sol, and alkoxysilane.
- organic binders include thermoplastic resins such as polyethylene resin, vinyl chloride resin, (meth)acrylic acid ester resin, styrene-acrylic acid ester copolymer, vinyl acetate resin, vinyl acetate-(meth)acrylic acid ester copolymer, ethylene-vinyl acetate copolymer, polyester resin, polyvinyl alcohol (PVA), and ethylene-vinyl alcohol copolymer; rubber emulsions such as styrene-butadiene rubber (SBR) and nitrile rubber (NBR); and thermosetting resins such as phenolic resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, polyurethane resin, and thermosetting polyimide resin.
- thermoplastic resins such as polyethylene resin, vinyl chloride resin, (meth)acrylic acid ester resin, styrene-acrylic acid ester copolymer, vinyl acetate resin, vinyl acetate-(meth)acrylic acid
- the binder concentration in the support slurry is preferably 10 to 50 mass%, more preferably 15 to 45 mass%, and even more preferably 20 to 35 mass%.
- the above components are added to water as a solvent to reach a specified concentration, and the support slurry can be prepared by stirring and mixing.
- the sodium ion concentration in the contact step is preferably 4000 ppm or less, more preferably 3500 ppm or less, even more preferably 3000 ppm or less, and particularly preferably 2500 ppm or less.
- the molded body is immersed in the prepared support slurry to bring the molded body into contact with the support slurry.
- the immersion time is not particularly limited and may be set appropriately taking into consideration the efficiency of supporting zeolite on the substrate.
- the immersion time is preferably 1 to 60 minutes, more preferably 3 to 30 minutes, and even more preferably 5 to 20 minutes.
- the temperature of the contact step (the temperature of the slurry in this embodiment) is not particularly limited and can be set appropriately within the range of 15 to 40°C.
- drying step it is preferable to carry out a drying step to dry the molded body.
- drying by heating is preferable.
- Heat drying can be carried out by applying hot air at 40 to 250°C, by placing the molded body in a dryer set to the above temperature range, or by combining both.
- the Na 2 O content in the zeolite after the contact step is preferably 0.10 mass % or less, preferably 0.03 mass % or less, and more preferably 0.01 mass % or less.
- the firing temperature is preferably 300 to 800°C, and the firing time is preferably 0.5 to 12 hours.
- the zeolite content in the gas adsorption substrate 1 is preferably 20 to 200 g/L in terms of gas adsorption performance, breathability, etc.
- the substrate is an inorganic fiber molded body.
- the molded body is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent.
- the contact is by application. That is, according to this embodiment, after forming an inorganic fiber molded body in the molding step, the supporting slurry is applied to the molded body in the contact step to support zeolite on the substrate.
- the supporting slurry is applied to the molded body in the contact step to support zeolite on the substrate.
- the formed body obtained in the forming step may be a sheet structure or a honeycomb structure. Considering the ease of application and the impregnation efficiency of the supporting slurry, the formed body preferably has a sheet structure.
- the formed body is an inorganic fiber sheet having a sheet structure, it is preferable to provide a lamination step in which flat and corrugated inorganic fiber sheets are laminated to form a honeycomb structure after the contact step described below.
- Examples of the method for applying the slurry to the molded body include spray coating, curtain coating, impregnation coating, bar coating, roll coating, blade coating, etc.
- the amount of coating may be adjusted so that the content of zeolite in the final gas adsorption substrate is the desired amount.
- the number of coatings is not particularly limited, and may be one or more than two coatings.
- a drying step and a firing step are performed to produce a gas adsorption substrate. If the molded body has a sheet structure, it is preferable to provide a lamination step between the drying step and the firing step.
- the substrate is the inorganic fiber itself.
- the contact step the inorganic fiber as the substrate is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent to obtain a mixture.
- a step of forming the mixture obtained in the contact step to obtain a molded body is performed. That is, according to this embodiment, zeolite is supported on the inorganic fiber in the contact step, and a molded body of the inorganic fiber supporting the zeolite is formed in the subsequent molding step.
- a predetermined amount of inorganic fibers is added to the support slurry, and the mixture is obtained by stirring and mixing.
- the mixing time is not particularly limited, and may be about 0.1 to 10 minutes.
- the content of inorganic fibers in the mixture is preferably 6 to 45 mass%, more preferably 8 to 35 mass%, and even more preferably 10 to 25 mass%.
- the content of zeolite in the mixture may be the same as or different from the content of zeolite in the support slurry in the first embodiment.
- the mixture obtained above is wet-laid into a nonwoven fabric to produce a molded body (inorganic fiber sheet) having a sheet structure. Thereafter, a drying process may be provided as necessary. Furthermore, it is preferable to provide a lamination process in which flat and corrugated inorganic fiber sheets are laminated to form a honeycomb structure.
- a firing process is carried out on the honeycomb structure to produce a gas adsorption substrate.
- the gas adsorption method includes the steps of: The method includes a step of adsorbing an object to be adsorbed by the gas adsorbing substrate manufactured by the method for manufacturing a gas adsorbing substrate.
- the substance to be adsorbed is preferably an alcohol or an amine.
- Suitable examples of alcohol and amine include the aforementioned components.
- Carrier gases used in the adsorption process include air, as well as inert gases such as nitrogen gas and argon gas.
- the temperature, humidity, flow rate, etc. during the adsorption process can be set appropriately taking into consideration the material to be adsorbed, adsorption efficiency, etc.
- a desorption step may be provided for desorbing the substance to be adsorbed in order to regenerate the gas adsorption substrate.
- the gas adsorption substrate may be heated, a desorption gas (air, etc.) may be circulated, or heating of the gas adsorption substrate and circulating the desorption gas may be combined.
- the adsorption step and desorption step may be repeated.
- a carrier made of a silica-alumina fiber sheet (thickness 0.2 mm) having a corrugated honeycomb structure with a pitch of 3.3 mm and a peak height of 1.6 mm was cut into a cylindrical shape with a diameter of 200 mm and a thickness of 20 mm to obtain a substrate.
- the substrate was immersed in the support slurry, dried, and then fired to obtain the gas adsorption substrate.
- Comparative Example A gas adsorbing base material was obtained in the same manner as in Example, except that nitric acid was not added in preparing the supporting slurry.
- Ethanol was adsorbed onto the gas adsorption substrate packed in a glass column under the following conditions: ethanol concentration: 100 ppm; carrier gas: air; temperature: 25°C; humidity: 65% RH; air volume: 0.0045 m3 /min, and an adsorption test was performed by measuring the ethanol concentration at the inlet (inlet concentration) and the ethanol concentration at the outlet (outlet concentration) of the column.
- the adsorption test was performed until the adsorption capacity of the zeolite was saturated. Specifically, the adsorption test was performed until the outlet concentration reached the inlet concentration (100 ppm).
- FIG. 3 is an explanatory diagram showing a method for calculating the amount of ethanol adsorption.
- ethanol gas was passed through the gas adsorption substrate under the above conditions, and the inlet and outlet concentrations were measured over time using a hydrocarbon meter (Shimadzu Corporation, "VMS-1000F").
- VMS-1000F hydrocarbon meter
- the measured concentration (ppm) was converted to mg/m 3 units.
- a chart was obtained in which the ethanol concentration (mg/m 3 ) was plotted against the elapsed time t (min) as shown in FIG. 3.
- minute sections were set every 0.05 min, and the area surrounded by the inlet concentration and the outlet concentration in this minute section was assumed to be a trapezoid (lightly filled trapezoid in FIG. 3), and the area (adsorption amount (mg) per unit volume (m 3 )) in the minute section was calculated. The product of the area and the air volume (m 3 /min) was calculated, and this was taken as the adsorption amount (mg) in the minute section. Finally, the amount of ethanol adsorbed (mg) was calculated by integrating the amount of adsorption (mg) in the small section from the start of the adsorption test (0 min) until the outlet concentration reached the inlet concentration (100 ppm).
- the adsorption capacity was 21.3 mg/g in the Example, whereas it was 16.2 mg/g in the Comparative Example, and the gas adsorption substrate of the Example showed excellent adsorption performance.
- the pH of the support slurry was adjusted to 2.5, so that the cations of the sodium ion type zeolite were exchanged with protons and supported on the gas adsorption substrate in the form of proton type zeolite, whereas in the Comparative Example, the cations of the sodium ion type zeolite were not sufficiently exchanged with protons, and the zeolite was supported in the form of sodium ions.
- the supporting slurry of the Example used the same amount of sodium ion type zeolite as the proton type zeolite, the Na 2 O content was extremely low (0.10 mass% or less). This is presumed to be due to the cations of the sodium ion type zeolite introduced being exchanged with protons.
- the supporting slurry of the Comparative Example had a high Na 2 O content, which is presumed to be due to the cations of the sodium ion type zeolite not being sufficiently exchanged with protons.
- Ammonia was adsorbed on the gas adsorption base material packed in a glass column under the following conditions: ammonia concentration: 100 ppm; carrier gas: air; temperature: 25°C; humidity: 50% RH; air volume: 0.0045 m3 /min, and an adsorption test was performed by measuring the ammonia concentration at the inlet (inlet concentration) and the ammonia concentration at the outlet (outlet concentration). The adsorption test was performed until the adsorption capacity of the zeolite was saturated. Specifically, the adsorption test was performed until the outlet concentration reached the inlet concentration (100 ppm).
- FIG. 6 is an explanatory diagram showing a method for calculating the ammonia adsorption amount.
- ammonia gas was passed through the gas adsorption substrate under the above conditions, and the inlet concentration and outlet concentration were measured over time using a detector tube (manufactured by Gastec Corporation, ammonia detector tubes "3La", “3L” and “3S”).
- the measured concentration (ppm) was converted to mg/m 3 units.
- a chart was obtained in which the ammonia concentration (mg/m 3 ) was plotted against the elapsed time t (min) as shown in FIG. 6.
- a minute section was set every 1 min, and the part surrounded by the inlet concentration and the outlet concentration in this minute section was assumed to be a trapezoid (the lightly filled trapezoid part in FIG. 6), and the area in the minute section (the adsorption amount (mg) per unit volume (m 3 )) was obtained. The product of the area and the air volume (m 3 /min) was obtained, and this was taken as the adsorption amount (mg) in the minute section. Finally, the amount of ammonia adsorbed (mg) was calculated by integrating the amount of adsorption (mg) in the small section from the start of the adsorption test (0 min) until the outlet concentration reached the inlet concentration (100 ppm).
- FIG. 7 is a graph showing the amount of ammonia adsorbed per amount of supported zeolite in the examples and comparative examples.
- ⁇ Calculation formula> Amount of supported zeolite: A (g) Ammonia adsorption amount: B (mg) Ammonia adsorption amount per amount of supported zeolite: C B/A (mg/g)
- the adsorption capacity was 2.36 mg/g in the Example, whereas it was 1.19 mg/g in the Comparative Example, showing that the gas adsorption substrate of the Example had excellent adsorption performance.
- the reason for this is the same as that considered in the ethanol adsorption test. That is, in the Example, the pH of the support slurry was adjusted to 2.5, so that the cations of the sodium ion type zeolite were exchanged with protons and supported on the gas adsorption substrate in the form of proton type zeolite, whereas in the Comparative Example, the cations of the sodium ion type zeolite were not sufficiently exchanged with protons, and were supported in the form of sodium ion type.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、ガス吸着用基材の製造方法、ガス吸着方法及びガス吸着用基材に関する。 The present invention relates to a method for producing a gas adsorption substrate, a gas adsorption method, and a gas adsorption substrate.
無機繊維は、高耐熱性、高断熱性、不燃性等を有することから、フィルタ基材の製造に用いられる。代表的に、無機繊維をシート状とした無機繊維シートをコルゲート加工等の加工を経てハニカム成形体とし、その後焼成してフィルタ基材を得る。次いで、該フィルタ基材に吸着材や触媒を担持することで、除湿や揮発性有機化合物(VOC)の分解または除去等に用いられるハニカムフィルタを製造する技術が提案されている(例えば、特許第2925127号公報参照)。 Inorganic fibers are used to manufacture filter substrates because they have high heat resistance, high insulation, and non-flammability. Typically, inorganic fibers are formed into a sheet-like inorganic fiber sheet, which is processed by corrugating or other processes to form a honeycomb molded body, which is then fired to obtain the filter substrate. A technology has been proposed to manufacture honeycomb filters that are used for dehumidification, decomposition or removal of volatile organic compounds (VOCs), etc. by loading an adsorbent or catalyst onto the filter substrate (see, for example, Patent Publication No. 2925127).
基材に担持させる吸着材としてゼオライトが多用されている。しかしながら、ゼオライトを担持させたガス吸着用基材によってはVOCやアミン類、特にアルコールやアンモニアの吸着性能がばらつくことが新たに判明している。 Zeolite is widely used as an adsorbent supported on a substrate. However, it has recently been discovered that the adsorption performance of VOCs and amines, especially alcohol and ammonia, varies depending on the gas adsorption substrate on which zeolite is supported.
本発明は、揮発性有機化合物やアミン類の吸着性能を安定して発揮可能な、即ち一定の吸着性能を発揮できるガス吸着用基材の製造方法、ガス吸着方法及びガス吸着用基材を提供することを目的とする。 The present invention aims to provide a method for producing a gas adsorption substrate that can stably exhibit the adsorption performance of volatile organic compounds and amines, i.e., can exhibit a constant adsorption performance, a gas adsorption method, and a gas adsorption substrate.
本発明者らは、前記課題を解決すべく鋭意検討したところ、下記構成を採用することにより上記目的を達成し得ることを見出し、本発明を完成するにいたった。 The inventors conducted extensive research to solve the above problems and discovered that the above object could be achieved by adopting the following configuration, which led to the completion of the present invention.
本発明は、一実施形態において、
ガス吸着用基材の製造方法であって、
無機繊維を含む基材とゼオライトとpH調整剤と溶媒とを接触させる工程を含み、
前記接触工程におけるpHが2以上3以下である、ガス吸着用基材の製造方法に関する。
In one embodiment, the present invention comprises:
A method for producing a gas adsorption substrate, comprising the steps of:
The method includes a step of contacting a substrate containing inorganic fibers with zeolite, a pH adjuster, and a solvent,
The present invention relates to a method for producing a gas adsorbing substrate, wherein the pH in the contact step is 2 or more and 3 or less.
当該ガス吸着用基材の製造方法によれば、VOCやアミン類(以下、両者を併せて「VOC等」ともいう。)の吸着性能のばらつきを低減し、吸着性能を安定して発揮可能なガス吸着用基材を効率的に製造することができる。この理由は定かではないものの、以下のように推察される。本発明者らは、吸着性能の不安定化の要因を検討した結果、ゼオライトを構成するカチオンが影響しているのではないかとの着想を得た。アルコール等のVOCやアミン類はゼオライトのカチオンがプロトン(水素イオン)である場合には、水素結合によって比較的強固にゼオライトに吸着される。これに対し、本発明者らは、吸着性能が不安定化したガス吸着用基材を精査したところ、カチオンがプロトンからナトリウムイオンに交換されていることを見出した。ナトリウムイオンは基材や無機接着剤、吸着剤等から生じていると考えられる。ガス吸着用基材の製造過程においてこのようなカチオン交換が生じてしまい、ゼオライトのVOC等との水素結合能が低下した結果、ガス吸着用基材の吸着性能が不安定化すると推測される。当該ガス吸着用基材の製造方法では、基材とゼオライトとの接触工程(担持工程)におけるpHを2以上3以下という低pH範囲に設定して接触環境の水素イオン濃度を高めているので、ゼオライト中のプロトンのナトリウムイオンへの交換が抑制され、相対的にプロトン量が多いゼオライトを担持したガス吸着用基材を製造することができる。その結果、得られるガス吸着用基材はVOC等の吸着性能を安定して発揮することができる。 According to the manufacturing method of the gas adsorption substrate, it is possible to efficiently manufacture a gas adsorption substrate capable of reducing the variation in the adsorption performance of VOCs and amines (hereinafter, both are also referred to as "VOCs, etc.") and stably exhibiting the adsorption performance. Although the reason for this is unclear, it is speculated as follows. As a result of examining the factors that destabilize the adsorption performance, the inventors came up with the idea that the cations that constitute the zeolite may have an effect. When the cation of the zeolite is a proton (hydrogen ion), VOCs such as alcohol and amines are adsorbed relatively firmly to the zeolite by hydrogen bonding. In contrast, the inventors closely examined a gas adsorption substrate with destabilized adsorption performance and found that the cations were exchanged from protons to sodium ions. The sodium ions are thought to be generated from the substrate, inorganic adhesive, adsorbent, etc. It is speculated that such cation exchange occurs during the manufacturing process of the gas adsorption substrate, and as a result of the hydrogen bonding ability of the zeolite with VOCs, etc. being reduced, the adsorption performance of the gas adsorption substrate becomes unstable. In the method for producing the gas adsorption substrate, the pH in the contact step (support step) between the substrate and zeolite is set to a low pH range of 2 to 3 to increase the hydrogen ion concentration in the contact environment, suppressing the exchange of protons in the zeolite for sodium ions, and producing a gas adsorption substrate supported by zeolite with a relatively large amount of protons. As a result, the resulting gas adsorption substrate can stably exhibit the adsorption performance of VOCs, etc.
一実施形態において、前記基材が、前記無機繊維の成形体であり、
前記接触工程において、前記成形体と、前記ゼオライトと前記pH調整剤と前記溶媒とを含むスラリーとを接触させてもよい。
In one embodiment, the substrate is a molded body of the inorganic fiber,
In the contacting step, the formed body may be contacted with a slurry containing the zeolite, the pH adjuster, and the solvent.
一実施形態において、前記接触が浸漬又は塗布であってもよい。 In one embodiment, the contact may be by immersion or application.
一実施形態において、当該製造方法は、前記接触工程により得られる混合物を成形して成形体を得る工程をさらに含んでもよい。 In one embodiment, the manufacturing method may further include a step of forming the mixture obtained in the contacting step to obtain a molded body.
一実施形態において、前記pH調整剤が無機酸であることが好ましい。中でも、前記pH調整剤が硝酸であることが好ましい。pH調整剤として上記成分を用いることで、接触環境において所定の水素イオン濃度が効率良く得られるとともに、基材の焼成時の焼成炉や周辺部材へのダメージを低減することができる。 In one embodiment, the pH adjuster is preferably an inorganic acid. In particular, the pH adjuster is preferably nitric acid. By using the above-mentioned component as a pH adjuster, a predetermined hydrogen ion concentration can be efficiently obtained in the contact environment, and damage to the firing furnace and surrounding components during firing of the base material can be reduced.
一実施形態において、前記ゼオライトがプロトン型ゼオライトであることが好ましい。pH調整によるプロトンからナトリウムイオンへの塩交換抑制に加え、スラリー原料としてカチオンがプロトンであるプロトン型ゼオライトを用いることで、ゼオライト中のプロトン維持作用をより高いレベルで発揮することができる。 In one embodiment, the zeolite is preferably a proton-type zeolite. In addition to suppressing salt exchange from protons to sodium ions by adjusting the pH, the use of a proton-type zeolite in which the cation is a proton as the slurry raw material can achieve a higher level of proton retention in the zeolite.
一実施形態において、前記接触工程においてバインダを共存させることが好ましい。これにより基材へゼオライトをより強固に担持させることができ、ガス吸着用基材の吸着性能を安定させることができる。 In one embodiment, it is preferable to use a binder in the contact step. This allows the zeolite to be more firmly supported on the substrate, stabilizing the adsorption performance of the gas adsorption substrate.
一実施形態において、前記バインダは、耐熱性や接着性、ナトリウムイオン低減性の点から、コロイダルシリカであることが好ましい。 In one embodiment, the binder is preferably colloidal silica in terms of heat resistance, adhesion, and sodium ion reduction.
一実施形態において、前記接触工程におけるナトリウムイオン濃度が4000ppm以下であることが好ましい。ゼオライト外部のナトリウムイオン濃度を低減させることで、ゼオライトにおける塩交換を抑制してプロトン存在率を高めることができ、ひいてはガス吸着用基材の吸着性能を安定して発揮することができる。 In one embodiment, the sodium ion concentration in the contact step is preferably 4000 ppm or less. By reducing the sodium ion concentration outside the zeolite, salt exchange in the zeolite can be suppressed and the proton abundance rate can be increased, which in turn allows the gas adsorption substrate to stably exhibit its adsorption performance.
一実施形態において、前記接触工程後の前記ゼオライト中のNa2Oの含有率が、0.10質量%以下であることが好ましい。これによりゼオライト中のナトリウムイオン量を低減することができ、言い換えれば、プロトン量を維持することができるので、ガス吸着用基材の吸着性能を高いレベルで安定させることができる。 In one embodiment, the content of Na 2 O in the zeolite after the contact step is preferably 0.10 mass% or less, which can reduce the amount of sodium ions in the zeolite, in other words, can maintain the amount of protons, thereby stabilizing the adsorption performance of the gas adsorption substrate at a high level.
一実施形態において、ガス吸着用基材のガス吸着脱着性能の点で、前記成形体がハニカム構造体であることが好ましい。 In one embodiment, in terms of the gas adsorption and desorption performance of the gas adsorption substrate, it is preferable that the formed body is a honeycomb structure.
一実施形態において、前記ガス吸着用基材はアルコール又はアミン吸着用として好適である。 In one embodiment, the gas adsorption substrate is suitable for adsorbing alcohol or amines.
本発明は、一実施形態において、
前記ガス吸着用基材の製造方法によって製造されるガス吸着用基材により吸着対象物を吸着する工程
を含む、ガス吸着方法に関する。
In one embodiment, the present invention comprises:
adsorbing an object to be adsorbed by the gas adsorption substrate manufactured by the method for manufacturing a gas adsorption substrate.
当該ガス吸着方法では、ゼオライト中のプロトンのナトリウムイオンへの交換が抑制され、相対的にプロトン量が多いゼオライトを担持したガス吸着用基材を用いて吸着対象物を吸着するので、効率的なガス吸着を行うことができる。 In this gas adsorption method, the exchange of protons in the zeolite with sodium ions is suppressed, and the substance to be adsorbed is adsorbed using a gas adsorption substrate that supports zeolite with a relatively large amount of protons, allowing for efficient gas adsorption.
一実施形態において、前記吸着対象物が、アルコール又はアミンであることが好ましい。 In one embodiment, the substance to be adsorbed is preferably an alcohol or an amine.
本発明は、一実施形態において、
無機繊維を含む基材と、該基材に担持されたゼオライトとを備え、
下記アルコール吸着試験によるアルコール吸着量が20.0mg/g以上である、ガス吸着用基材に関する。
(アルコール吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アルコール濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:65%RH;風量:0.0045m3/minの条件でアルコールを吸着させ、カラムの入口でのアルコール濃度(入口濃度)と出口でのアルコール濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアルコール濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アルコール吸着量(mg)を求める。
In one embodiment, the present invention comprises:
The present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
The present invention relates to a gas adsorbing substrate having an alcohol adsorption amount of 20.0 mg/g or more according to the following alcohol adsorption test.
(Alcohol adsorption test)
Alcohol is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: alcohol concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 65% RH; air volume: 0.0045 m 3 /min, and the alcohol concentration at the inlet (inlet concentration) and the alcohol concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the alcohol concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the outlet concentration reaching the inlet concentration (100 ppm) is integrated to obtain the alcohol adsorption amount (mg).
当該ガス吸着用基材は、優れたアルコール吸着性能を経時的に発揮することができ、ガス吸着システム用の吸着用基材として好適である。 This gas adsorption substrate exhibits excellent alcohol adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems.
一実施形態において、前記アルコールがエタノールであることが好ましい。 In one embodiment, the alcohol is preferably ethanol.
本発明は、一実施形態において、
無機繊維を含む基材と、該基材に担持されたゼオライトとを備え、
下記アミン吸着試験によるアミン吸着量が2.0mg/g以上である、ガス吸着用基材に関する。
(アミン吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アミン濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:50%RH;風量:0.0045m3/minの条件でアミンを吸着させ、カラムの入口でのアミン濃度(入口濃度)と出口でのアミン濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアミン濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アミン吸着量(mg)を求める。
In one embodiment, the present invention comprises:
The present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
The gas adsorption substrate has an amine adsorption amount of 2.0 mg/g or more according to the following amine adsorption test.
(Amine Adsorption Test)
Amine is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: amine concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 50% RH; air volume: 0.0045 m 3 /min, and the amine concentration at the inlet (inlet concentration) and the amine concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the amine concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the time when the outlet concentration reaches the inlet concentration (100 ppm) is integrated to obtain the amine adsorption amount (mg).
当該ガス吸着用基材は、優れたアミン吸着性能を経時的に発揮することができ、ガス吸着システム用の吸着用基材として好適である。 This gas adsorption substrate exhibits excellent amine adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems.
一実施形態において、前記アミンがアンモニアであることが好ましい。 In one embodiment, the amine is preferably ammonia.
本発明の一実施形態に係るガス吸着用基材の製造方法、ガス吸着方法及びガス吸着用基材について、図面を参照しつつ以下に説明する。まず、得られるガス吸着用基材を説明した後、当該製造方法の各工程及びガス吸着方法の各工程を説明する。本発明はこれらの実施形態に限定されない。図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大又は縮小等して図示した部分がある。図面を参照しながら言及される上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。 The manufacturing method of a gas adsorption substrate, the gas adsorption method, and the gas adsorption substrate according to one embodiment of the present invention will be described below with reference to the drawings. First, the obtained gas adsorption substrate will be described, and then each step of the manufacturing method and each step of the gas adsorption method will be described. The present invention is not limited to these embodiments. In some or all of the figures, parts that are not necessary for the explanation are omitted, and some parts are illustrated enlarged or reduced to facilitate the explanation. Terms indicating positional relationships such as up and down that are mentioned with reference to the drawings are used simply to facilitate the explanation, and are in no way intended to limit the configuration of the present invention.
《ガス吸着用基材》
図1は、本発明の一実施形態に係るガス吸着用基材を模式的に示す斜視図である。図2は、図1のガス吸着用基材の開口面のA部分の拡大図である。
<Gas adsorption substrate>
Fig. 1 is a perspective view showing a gas adsorbing substrate according to one embodiment of the present invention, Fig. 2 is an enlarged view of a portion A of an opening surface of the gas adsorbing substrate shown in Fig. 1.
図1に示すように、ガス吸着用基材1は、ガス吸着用基材1の形状に成形された無機繊維を含む基材8と、基材8に担持された吸着材としてのゼオライトを備えるハニカムロータである。一般的にハニカムロータはガス吸着システム(図示せず)内に設置される。ガス吸着システムは、VOC等の吸着対象物を吸着する吸着ゾーンと、吸着対象物を脱着する再生ゾーンとに区画された空間を有しており、ハニカムロータがガス吸着システム内で回転することにより、吸着と再生とが繰り返される。
As shown in FIG. 1, the
ガス吸着用基材1は、内部に、ロータ軸3に対して平行に、被処理空気、再生空気及びパージ空気を通気するための通気空洞4が形成されている。ガス吸着用基材1は、両端に、開口面2a、2bを有する。開口面2a、2bは、被処理空気、再生空気及びパージ空気の出入り口である。ロータ軸3は、ガス吸着用基材1の中心に付設されており、ガス吸着用基材1が回転方向7に回転するための回転軸である。
The
図2に示すように、該通気空洞4は、平坦部5及びコルゲート状部6が、交互に積層されることにより形成されている。ガス吸着用基材1は、平坦部5をなす無機繊維シート及びコルゲート状部6をなす無機繊維シートがロータ軸3から半径方向かつ円周状に複数積層された構造を有する。
As shown in FIG. 2, the
図2に示すコルゲート状部6のピッチpは、好ましくは2.0~3.5mm、より好ましくは2.4~3.1mmである。山高さtは、好ましくは0.8~2.0mm、より好ましくは1.3~1.7mmである。なお、ピッチpとは、該コルゲート状部6の隣り合わせの波の頂点間の距離を指し、山高さtとは、該コルゲート状部6の1つの波の高さを指す。ガス吸着用基材1の厚み(軸方向の長さ)sは、好ましくは200~500mm、より好ましくは300~450mmである。ガス吸着用基材1においてピッチp、山高さt及び厚みsが、上記範囲にあることにより、VOCの吸着性能を向上させることができる。
The pitch p of the
ガス吸着用基材1は、以下の製造方法により効率良く製造することができる。当該製造方法により得られるガス吸着用基材1は、ゼオライト中のプロトンのナトリウムイオンへの交換が抑制され、相対的にプロトン量が多いゼオライトが担持されているので、アルコールやアミンの吸着用基材として好適である。アルコールとしては、メタノール、エタノール、n-プロパノール等の炭素数1~5の低級アルコールが挙げられる。アミンとしては、アンモニアの他、モノメチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミン等の第一級アミンから第三級アミン等が挙げられる。
The
本実施形態に係るガス吸着用基材によれば、下記アルコール吸着試験によるアルコール吸着量が20.0mg/g以上である。
(アルコール吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アルコール濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:65%RH;風量:0.0045m3/minの条件でアルコールを吸着させ、カラムの入口でのアルコール濃度(入口濃度)と出口でのアルコール濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアルコール濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アルコール吸着量(mg)を求める。
According to the gas adsorbing substrate of this embodiment, the alcohol adsorption amount in the alcohol adsorption test described below is 20.0 mg/g or more.
(Alcohol adsorption test)
Alcohol is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: alcohol concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 65% RH; air volume: 0.0045 m 3 /min, and the alcohol concentration at the inlet (inlet concentration) and the alcohol concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the alcohol concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the outlet concentration reaching the inlet concentration (100 ppm) is integrated to obtain the alcohol adsorption amount (mg).
当該ガス吸着用基材は、優れたアルコール吸着性能を経時的に発揮することができ、ガス吸着システム用の吸着用基材として好適である。なお、アルコール吸着試験の詳細は実施例の記載による。 This gas adsorption substrate exhibits excellent alcohol adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems. Details of the alcohol adsorption test are described in the Examples.
前記アルコール吸着量の下限は20.5mg/gが好ましく、21.0mg/gがより好ましい。前記アルコール吸着量の上限は高いほど好ましいものの、30.0mg/gであってもよく、28.0mg/gであってもよい。 The lower limit of the alcohol adsorption amount is preferably 20.5 mg/g, and more preferably 21.0 mg/g. The higher the upper limit of the alcohol adsorption amount, the better, but it may be 30.0 mg/g or 28.0 mg/g.
前記アルコールとしては前述の成分を好適に吸着対象物とすることができるものの、エタノールであることが好ましい。 The alcohol can be any of the above-mentioned components that can be suitably adsorbed, but ethanol is preferred.
本実施形態に係るガス吸着用基材によれば、下記アミン吸着試験によるアミン吸着量が2.0mg/g以上である。
(アミン吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アミン濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:50%RH;風量:0.0045m3/minの条件でアミンを吸着させ、カラムの入口でのアミン濃度(入口濃度)と出口でのアミン濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアミン濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アミン吸着量(mg)を求める。
According to the gas adsorption substrate of this embodiment, the amine adsorption amount in the amine adsorption test described below is 2.0 mg/g or more.
(Amine Adsorption Test)
Amine is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: amine concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 50% RH; air volume: 0.0045 m 3 /min, and the amine concentration at the inlet (inlet concentration) and the amine concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the amine concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the time when the outlet concentration reaches the inlet concentration (100 ppm) is integrated to obtain the amine adsorption amount (mg).
当該ガス吸着用基材は、優れたアミン吸着性能を経時的に発揮することができ、ガス吸着システム用の吸着用基材として好適である。なお、アミン吸着試験の詳細は実施例の記載による。 This gas adsorption substrate exhibits excellent amine adsorption performance over time, making it suitable as an adsorption substrate for gas adsorption systems. Details of the amine adsorption test are described in the Examples.
前記アミン吸着量の下限は2.1mg/gが好ましく、2.2mg/gがより好ましい。前記アルコール吸着量の上限は高いほど好ましいものの、3.0mg/gであってもよく、2.8mg/gであってもよい。 The lower limit of the amine adsorption amount is preferably 2.1 mg/g, and more preferably 2.2 mg/g. The upper limit of the alcohol adsorption amount is preferably as high as possible, but may be 3.0 mg/g or 2.8 mg/g.
前記アミンとしては前述の成分を好適に吸着対象物とすることができるものの、アンモニアであることが好ましい。 The amine can be any of the above-mentioned components, but ammonia is preferred.
《ガス吸着用基材の製造方法》
本実施形態に係るガス吸着用基材の製造方法は、無機繊維を含む基材とゼオライトとpH調整剤と溶媒とを接触させる工程を含む。基材は無機繊維の成形体であってもよく、無機繊維自体であってもよい。基材の態様によって接触工程及び成形工程の順序や操作が異なる。以下、基材の態様ごとに各工程を説明する。
<<Method for manufacturing gas adsorption substrate>>
The method for producing a gas adsorption substrate according to this embodiment includes a step of contacting a substrate containing inorganic fibers with zeolite, a pH adjuster, and a solvent. The substrate may be a molded body of inorganic fibers, or may be inorganic fibers themselves. The order and operation of the contact step and the molding step differ depending on the type of substrate. Each step will be described below for each type of substrate.
<第1実施形態>
本実施形態において、基材は無機繊維の成形体である。接触工程において、成形体と、ゼオライトとpH調整剤と溶媒とを含むスラリー(以下、「担持用スラリー」ともいう。)とを接触させる。接触は浸漬である。すなわち、本実施形態によれば、成形工程において無機繊維の成形体を形成した後、接触工程において成形体を担持用スラリーに浸漬することで基材にゼオライトを担持させる。接触工程後、乾燥工程及び焼成工程を経ることでガス吸着用基材を製造することができる。
First Embodiment
In this embodiment, the substrate is an inorganic fiber molded body. In the contact step, the molded body is contacted with a slurry containing zeolite, a pH adjuster, and a solvent (hereinafter, also referred to as a "supporting slurry"). The contact is by immersion. That is, according to this embodiment, after forming an inorganic fiber molded body in the molding step, the molded body is immersed in the supporting slurry in the contact step to support zeolite on the substrate. After the contact step, a gas adsorption substrate can be manufactured by going through a drying step and a firing step.
(成形工程)
成形工程では、無機繊維を成形して成形体を得る。成形工程は一段階であってもよく、多段階であってもよい。複数の成形体を組み合わせて目的の成形体を形成する場合も成形工程に含まれる。成形体はハニカム構造体であることが好ましい。
(Molding process)
In the molding step, the inorganic fibers are molded to obtain a molded body. The molding step may be a single-stage or multi-stage process. The molding step also includes a process in which a plurality of molded bodies are combined to form a desired molded body. The molded body is preferably a honeycomb structure.
図1に示すようなハニカム構造の基材は、代表的には、多孔質の平坦状無機繊維シート及び該平坦状無機繊維シートをコルゲート加工して得られるコルゲート状無機繊維シートを、無機接着剤を用いて、コルゲート状無機繊維シートの山部で接着し、積層して製造される。このとき、平坦状無機繊維シート及びコルゲート状無機繊維シートの間に形成される略半円柱形状の空洞が、空気の流路となるので、両者は、空洞がロータ軸3と平行方向に形成されるように積層される。
The honeycomb-structured substrate as shown in FIG. 1 is typically manufactured by laminating a porous flat inorganic fiber sheet and a corrugated inorganic fiber sheet obtained by corrugating the flat inorganic fiber sheet, bonding the peaks of the corrugated inorganic fiber sheet with an inorganic adhesive. At this time, the roughly semi-cylindrical cavity formed between the flat inorganic fiber sheet and the corrugated inorganic fiber sheet becomes an air passage, so the two are laminated so that the cavity is formed in a direction parallel to the
無機繊維シートは公知の方法で形成することができ、例えば、無機繊維を含有するシート原料スラリーを湿式抄紙して不織布状にすることで製造することができる。シート原料スラリーは媒体として一般的に水を含む。 Inorganic fiber sheets can be formed by known methods, for example, by wet-laid sheet material slurry containing inorganic fibers to produce a nonwoven fabric. The sheet material slurry generally contains water as a medium.
無機繊維としては特に制限されず、Eガラス繊維、NCRガラス繊維、ARG繊維、ECG繊維、Sガラス繊維、Aガラス繊維などのガラス繊維やそのチョップドストランド、セラミック繊維、アルミナ繊維、ムライト繊維、シリカ繊維、ロックウール繊維、炭素繊維等の無機繊維が挙げられる。 The inorganic fibers are not particularly limited, and examples thereof include glass fibers such as E glass fiber, NCR glass fiber, ARG fiber, ECG fiber, S glass fiber, and A glass fiber, as well as chopped strands thereof, ceramic fibers, alumina fibers, mullite fibers, silica fibers, rock wool fibers, and inorganic fibers such as carbon fibers.
無機繊維として生体溶解性無機繊維を用いてもよい。生体溶解性無機繊維とは、「WHO吸入性繊維」に該当しない繊維であるか、または、EU指令97/69/ECのNotaQ「生体溶解性繊維判定基準」により、以下の4条件(1)~(4)のうち、いずれか1つを満足する繊維である。生体溶解性無機繊維には、生体溶解性セラミック、生体溶解性ロックウールなどが含まれる。「WHO吸入性繊維」とは、世界保健機関(WHO)により定義された、呼吸により体内に吸入され、肺まで到達する繊維状物質をいい、長さ5μm超、直径3μm未満、アスペクト比3超のものである。
上記4条件とは、以下のとおりである。
(1)短期吸入暴露の動物実験で、長さ20μm超の繊維の半減期が10日未満のもの。
(2)短期気管内注入の動物実験で、長さ20μm超の繊維の半減期が40日未満のもの。
(3)腹腔内投与の動物実験で、有意な発がん性がないもの。
(4)長期吸入暴露の動物実験で、発がん性と結びつく病理所見や腫瘍形成がないもの(但し、組成としてアルカリおよびアルカリ土類酸化物(Na2O、K2O、CaO、MgO、BaO)を18質量%より超えて含有するもの)。
Biosoluble inorganic fibers may be used as the inorganic fibers. Biosoluble inorganic fibers are fibers that do not fall under the category of "WHO respirable fibers" or fibers that satisfy any one of the following four conditions (1) to (4) according to the NotaQ "Biosoluble Fiber Judgment Criteria" of EU Directive 97/69/EC. Biosoluble inorganic fibers include biosoluble ceramics, biosoluble rock wool, and the like. "WHO respirable fibers" are fibrous substances defined by the World Health Organization (WHO) that are inhaled into the body by breathing and reach the lungs, and have a length of more than 5 μm, a diameter of less than 3 μm, and an aspect ratio of more than 3.
The four conditions are as follows:
(1) In short-term inhalation exposure animal experiments, the half-life of fibers longer than 20 μm was less than 10 days.
(2) In short-term intratracheal instillation animal experiments, the half-life of fibers longer than 20 μm was less than 40 days.
(3) No significant carcinogenicity has been shown in animal experiments involving intraperitoneal administration.
(4) In long-term inhalation exposure animal experiments, there have been no pathological findings or tumor formation associated with carcinogenicity (however, the composition contains more than 18 mass% alkali and alkaline earth oxides (Na 2 O, K 2 O, CaO, MgO, BaO)).
無機繊維の繊維長には特に制限はないが、無機繊維の長さ加重平均繊維長が、1~20mmであることが好ましく、2~10mmがより好ましく、3~8mmが特に好ましい。また、無機繊維の繊維径には特に制限はないが、平均値として、3~20μmであることが好ましく、4~18μmがより好ましく、5~16μmが特に好ましい。無機繊維の繊維長や繊維径を上記範囲とすることで、無機繊維シートの強度や取り扱い性等を向上させることができる。無機繊維は、異なる繊維長や繊維径のものを併用してもよい。 There are no particular restrictions on the fiber length of the inorganic fibers, but the length-weighted average fiber length of the inorganic fibers is preferably 1 to 20 mm, more preferably 2 to 10 mm, and particularly preferably 3 to 8 mm. There are no particular restrictions on the fiber diameter of the inorganic fibers, but the average value is preferably 3 to 20 μm, more preferably 4 to 18 μm, and particularly preferably 5 to 16 μm. By setting the fiber length and fiber diameter of the inorganic fibers within the above ranges, the strength and handleability of the inorganic fiber sheet can be improved. Inorganic fibers with different fiber lengths and fiber diameters may be used in combination.
シート原料スラリーは、無機繊維以外の他の成分を含有していてもよい。他の成分としては、合成繊維、天然繊維、有機系又は無機系バインダ、助剤、添加剤、充填剤等が挙げられる。 The sheet raw material slurry may contain components other than inorganic fibers. Examples of other components include synthetic fibers, natural fibers, organic or inorganic binders, auxiliaries, additives, fillers, etc.
湿式抄紙は、上述した各成分と水(媒体)を含有するシート原料スラリーを調製し、このシート原料スラリーを公知の抄紙機で抄紙する方法により行うことができる。抄紙機としては、円網抄紙機、傾斜型抄紙機、長網抄紙機、短網抄紙機が挙げられ、これら抄紙機の同種または異種を組み合わせて多層抄紙を行ってもよい。抄紙後の脱水および乾燥の方法に特に制限はなく、たとえばヤンキードライヤー、シリンダードライヤー、エアドライヤー、赤外線ドライヤー等の公知のドライヤーを用いることができる。乾燥温度は特に制限されず、通常100℃~180℃程度である。 Wet papermaking can be carried out by preparing a sheet raw material slurry containing the above-mentioned components and water (medium), and then making paper from this sheet raw material slurry using a known papermaking machine. Examples of papermaking machines include cylinder papermaking machines, inclined papermaking machines, Fourdrinier papermaking machines, and short wire papermaking machines, and multi-layer papermaking can be carried out using the same or different types of papermaking machines in combination. There are no particular restrictions on the method of dehydration and drying after papermaking, and known dryers such as Yankee dryers, cylinder dryers, air dryers, and infrared dryers can be used. There are no particular restrictions on the drying temperature, and it is usually around 100°C to 180°C.
無機繊維シートの厚さは、特に限定されないが、50~300μmであることが好ましく、100~250μmがより好ましく、100~200μmが特に好ましい。厚さが前記範囲内にあるとコルゲート性がよいため好ましい。また、無機繊維シートの厚さは、平板状無機繊維シートに用いるものとコルゲート状無機繊維シートに用いるものとが同一であっても相違していてもよい。 The thickness of the inorganic fiber sheet is not particularly limited, but is preferably 50 to 300 μm, more preferably 100 to 250 μm, and particularly preferably 100 to 200 μm. A thickness within the above range is preferable because it provides good corrugation properties. Furthermore, the thickness of the inorganic fiber sheet used for the flat inorganic fiber sheet may be the same as or different from that used for the corrugated inorganic fiber sheet.
コルゲート状無機繊維シートは、平板状無機繊維シートをコルゲート加工することによりシート断面を波形形状にして得られる。コルゲート加工の方法としては、例えば、平板状の無機繊維シートを波形段ロールに通す方法が挙げられる。 Corrugated inorganic fiber sheets are obtained by corrugating a flat inorganic fiber sheet to give the sheet a corrugated cross section. One method of corrugating is, for example, passing a flat inorganic fiber sheet through a corrugated roll.
ハニカム構造体の形態としては、特に限定されないが、例えば、平板状無機繊維シートとコルゲート状無機繊維シートとが交互に厚さ方向に積層された積層構造、又は平板状無機繊維シートとコルゲート状無機繊維シートの片面の山部とが接着された複合シートを巻回して得られるロータ構造が挙げられる。ロータ構造は、ハニカムロータを半径方向に扇型となるように分割した扇型部材を組み合わせて形成してもよい。扇型部材は、ロータ軸3から外周に向かうように、外周側のシートが少し長くなるようにして平板状無機繊維シートとコルゲート状無機繊維シートとを交互に積層することで得られる。
The honeycomb structure may have any shape, but may be, for example, a laminated structure in which flat inorganic fiber sheets and corrugated inorganic fiber sheets are alternately laminated in the thickness direction, or a rotor structure obtained by winding a composite sheet in which flat inorganic fiber sheets and the peaks on one side of a corrugated inorganic fiber sheet are bonded. The rotor structure may be formed by combining fan-shaped members obtained by dividing the honeycomb rotor into a fan shape in the radial direction. The fan-shaped members are obtained by alternately stacking flat inorganic fiber sheets and corrugated inorganic fiber sheets from the
積層又は巻回の際における平板状無機繊維シートとコルゲート状無機繊維シートとの接着は、例えば、コルゲート状無機繊維シートの山部に接着剤を塗布し、これと平板状無機繊維シートとを積層又は巻回することにより行われる。前記扇形部材同士の接着は、扇形部材の平面視で半径部分に対応する面に接着剤を塗布し、扇形部材を複数組み合わせることで行うことができる。接着剤としては、例えば、シリカゾル、アルミナゾル、シリカ・アルミナゾル、チタニアゾル、セメント等の無機系接着剤;アクリル樹脂系接着剤、酢酸ビニル系接着剤等の有機系接着剤が挙げられる。このうち、無機系接着剤は有機成分を含まず耐熱性に優れるため好ましい。 The adhesion between the flat inorganic fiber sheet and the corrugated inorganic fiber sheet during stacking or rolling is achieved, for example, by applying an adhesive to the peaks of the corrugated inorganic fiber sheet and stacking or rolling this and the flat inorganic fiber sheet. The adhesion between the sector-shaped members can be achieved by applying an adhesive to the surfaces of the sector-shaped members that correspond to the radius portions in a plan view and combining a plurality of sector-shaped members. Examples of adhesives include inorganic adhesives such as silica sol, alumina sol, silica-alumina sol, titania sol, and cement; and organic adhesives such as acrylic resin adhesives and vinyl acetate adhesives. Of these, inorganic adhesives are preferred because they do not contain organic components and have excellent heat resistance.
なお、ガス吸着用基材1のサイズによっては、扇形部材の状態で後述の接触工程を行い、ゼオライトを担持させた扇形部材を複数組み合わせることでガス吸着用基材1を製造してもよい。
Depending on the size of the
必要に応じて、成形体を乾燥する乾燥工程を行ってもよい。乾燥方法は特に限定されず、自然乾燥でもよく、加熱による乾燥でもよい。加熱乾燥は、40~250℃の熱風を当てて行ってもよく、前記温度範囲に設定した乾燥機内に投入して行ってもよく、両者を組み合わせて行ってもよい。 If necessary, a drying step may be carried out to dry the molded body. There are no particular limitations on the drying method, and it may be natural drying or drying by heating. Heat drying may be carried out by applying hot air at 40 to 250°C, by placing the molded body in a dryer set to the above temperature range, or by a combination of both.
(接触工程)
接触工程においては、成形工程にて得られた成形体と、ゼオライトとpH調整剤と溶媒とを含む担持用スラリーとを接触させる。具体的には、所定成分を含む担持用スラリーを調製し、この担持用スラリーに成形体を浸漬して接触工程を行う。
(Contacting step)
In the contact step, the molded body obtained in the molding step is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent. Specifically, a supporting slurry containing predetermined components is prepared, and the molded body is immersed in the supporting slurry to perform the contact step.
ゼオライトとしては、吸着材として公知のゼオライトを好適に用いることができる。具体例としては、Y型ゼオライト、USY型ゼオライト、A型ゼオライト、X型ゼオライト、モルデナイト型ゼオライト、ZSM-5型ゼオライト、ベータ型ゼオライト、フェリエライト型ゼオライト、L型ゼオライト等が挙げられる。ゼオライトは一種又は複数種組み合わせて用いることができる。 As the zeolite, zeolites known as adsorbents can be suitably used. Specific examples include Y-type zeolite, USY-type zeolite, A-type zeolite, X-type zeolite, mordenite-type zeolite, ZSM-5-type zeolite, beta-type zeolite, ferrierite-type zeolite, L-type zeolite, etc. Zeolites can be used alone or in combination of multiple types.
ゼオライトは、カチオンとしてプロトンを有するプロトン型ゼオライトであることが好ましい。プロトン型ゼオライト中のプロトンが全て塩交換されるわけではないので、スラリー原料としてプロトン型ゼオライトを用いることで、ゼオライト中のプロトン維持作用をより高いレベルで発揮することができる。 The zeolite is preferably a proton-type zeolite having protons as cations. Since not all of the protons in the proton-type zeolite are salt-exchanged, the use of proton-type zeolite as the slurry raw material allows the proton retention effect in the zeolite to be exerted at a higher level.
担持用スラリー中のゼオライトの濃度は、基材へのゼオライトの接触(担持)効率や成形体へのスラリーの含浸効率等を考慮して適宜設定することができる。ゼオライト濃度としては、10~50質量%が好ましく、15~45質量%がより好ましく、20~40質量%がさらに好ましく、25~35質量%が特に好ましい。 The concentration of zeolite in the support slurry can be set appropriately taking into consideration the efficiency of the zeolite contacting (supporting) the substrate and the efficiency of the slurry impregnating the molded body. The zeolite concentration is preferably 10 to 50 mass%, more preferably 15 to 45 mass%, even more preferably 20 to 40 mass%, and particularly preferably 25 to 35 mass%.
pH調整剤としては、接触工程におけるpHを所定範囲に調整とすることができる限り特に限定されず、無機酸、有機酸又はこれらの組み合わせが挙げられる。無機酸としては、硝酸、塩酸、硫酸等が挙げられる。有機酸としては、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等のスルホン酸が挙げられる。中でも、無機酸が好ましく、硝酸が特に好ましい。pH調整剤は目的とするpHが得られるような量を直接又は希釈液の形態で配合すればよい。 The pH adjuster is not particularly limited as long as it can adjust the pH in the contact step to a predetermined range, and examples of the pH adjuster include inorganic acids, organic acids, and combinations thereof. Examples of inorganic acids include nitric acid, hydrochloric acid, and sulfuric acid. Examples of organic acids include sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid. Among these, inorganic acids are preferred, and nitric acid is particularly preferred. The pH adjuster may be added directly or in the form of a diluted solution in an amount that will give the desired pH.
溶媒としては水や各種有機溶媒を用いることができるが、安全性や低環境負荷、溶解分散性の点から、水が好ましい。 Water or various organic solvents can be used as the solvent, but water is preferred from the standpoints of safety, low environmental impact, and solubility/dispersibility.
接触工程においてバインダを共存させることが好ましい。基材へのゼオライトのより強固な担持が可能となり、ガス吸着用基材の吸着性能の安定化を促進することができる。バインダとしては、無機バインダ、有機バインダ又はこれらの組み合わせが挙げられる。無機バインダとしては、例えば、コロイダルシリカ、水ガラス、珪酸カルシウム、シリカゾル、アルミナゾル、チタニアゾル、シリカ・アルミナゾル、アルコキシラン等が挙げられる。有機バインダとしては、例えば、ポリエチレン樹脂、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン-アクリル酸エステル共重合体、酢酸ビニル樹脂、酢酸ビニル-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体、ポリエステル系樹脂、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体等の熱可塑性樹脂;スチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)等のゴム系エマルジョン;フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、熱硬化性ポリイミド樹脂等の熱硬化型樹脂等が挙げられる。中でも、無機バインダが好ましく、コロイダルシリカが特に好ましい。 It is preferable to have a binder present in the contact step. This allows the zeolite to be more firmly supported on the substrate, and promotes stabilization of the adsorption performance of the gas adsorption substrate. Examples of binders include inorganic binders, organic binders, and combinations thereof. Examples of inorganic binders include colloidal silica, water glass, calcium silicate, silica sol, alumina sol, titania sol, silica-alumina sol, and alkoxysilane. Examples of organic binders include thermoplastic resins such as polyethylene resin, vinyl chloride resin, (meth)acrylic acid ester resin, styrene-acrylic acid ester copolymer, vinyl acetate resin, vinyl acetate-(meth)acrylic acid ester copolymer, ethylene-vinyl acetate copolymer, polyester resin, polyvinyl alcohol (PVA), and ethylene-vinyl alcohol copolymer; rubber emulsions such as styrene-butadiene rubber (SBR) and nitrile rubber (NBR); and thermosetting resins such as phenolic resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, polyurethane resin, and thermosetting polyimide resin. Among these, inorganic binders are preferred, with colloidal silica being especially preferred.
担持用スラリー中のバインダ濃度としては、10~50質量%が好ましく、15~45質量%がより好ましく、20~35質量%がさらに好ましい。 The binder concentration in the support slurry is preferably 10 to 50 mass%, more preferably 15 to 45 mass%, and even more preferably 20 to 35 mass%.
担持用スラリーには、その他の成分として、分散剤、保液剤、粘度調整剤、充填剤等を必要に応じ配合してもよい。 Other components such as dispersants, liquid retaining agents, viscosity adjusters, and fillers may be added to the support slurry as necessary.
以上の成分を溶媒としての水に所定濃度となるように投入し、撹拌・混合することにより担持用スラリーを調製することができる。 The above components are added to water as a solvent to reach a specified concentration, and the support slurry can be prepared by stirring and mixing.
接触工程におけるナトリウムイオン濃度は4000ppm以下であることが好ましく、3500ppm以下であることがより好ましく、3000ppm以下であることがさらに好まし、2500ppm以下であることが特に好ましい。ゼオライト外部のナトリウムイオン濃度を低減させることで、ゼオライトにおける塩交換を抑制してプロトン存在率を高めることができ、ひいてはガス吸着用基材の吸着性能を安定して発揮することができる。 The sodium ion concentration in the contact step is preferably 4000 ppm or less, more preferably 3500 ppm or less, even more preferably 3000 ppm or less, and particularly preferably 2500 ppm or less. By reducing the sodium ion concentration outside the zeolite, salt exchange in the zeolite can be suppressed and the proton abundance rate can be increased, which in turn allows the gas adsorption substrate to stably exhibit its adsorption performance.
調製した担持用スラリーに成形体を浸漬することで成形体と担持用スラリーとの接触を行う。浸漬時間は特に限定されず、基材へのゼオライトの担持効率を考慮して適宜設定すればよい。浸漬時間は、1~60分であることが好ましく、3~30分がより好ましく、5~20分がさらに好ましい。 The molded body is immersed in the prepared support slurry to bring the molded body into contact with the support slurry. The immersion time is not particularly limited and may be set appropriately taking into consideration the efficiency of supporting zeolite on the substrate. The immersion time is preferably 1 to 60 minutes, more preferably 3 to 30 minutes, and even more preferably 5 to 20 minutes.
接触工程の温度(本実施形態ではスラリーの温度)は特に限定されず、15~40℃の範囲で適宜設定することができる。 The temperature of the contact step (the temperature of the slurry in this embodiment) is not particularly limited and can be set appropriately within the range of 15 to 40°C.
次いで、成形体を乾燥する乾燥工程を行うことが好ましい。乾燥方法は特に限定されないものの、加熱による乾燥が好ましい。加熱乾燥は、40~250℃の熱風を当てて行ってもよく、前記温度範囲に設定した乾燥機内に投入して行ってもよく、両者を組み合わせて行ってもよい。 Next, it is preferable to carry out a drying step to dry the molded body. Although there are no particular limitations on the drying method, drying by heating is preferable. Heat drying can be carried out by applying hot air at 40 to 250°C, by placing the molded body in a dryer set to the above temperature range, or by combining both.
接触工程後の前記ゼオライト中のNa2Oの含有率は、0.10質量%以下であることが好ましく、0.03質量%以下であることが好ましく、0.01質量%以下であることが好ましい。 The Na 2 O content in the zeolite after the contact step is preferably 0.10 mass % or less, preferably 0.03 mass % or less, and more preferably 0.01 mass % or less.
乾燥工程後、成形体を焼成する焼成工程を行うことで本実施形態に係るガス吸着用基材を製造することができる。焼成温度は300~800℃が好ましく、焼成時間は0.5~12時間が好ましい。 After the drying process, a firing process is carried out to fire the molded body, thereby producing the gas adsorption substrate according to this embodiment. The firing temperature is preferably 300 to 800°C, and the firing time is preferably 0.5 to 12 hours.
ガス吸着用基材1におけるゼオライトの含有量は、ガスの吸着性能や通気性能等の点から、20~200g/Lであることが好ましい。
The zeolite content in the
<第2実施形態>
本実施形態において、基材は無機繊維の成形体である。接触工程において、成形体と、ゼオライトとpH調整剤と溶媒とを含む担持用スラリーとを接触させる。接触は塗布である。すなわち、本実施形態によれば、成形工程において無機繊維の成形体を形成した後、接触工程において成形体に担持用スラリーを塗布することで基材にゼオライトを担持させる。以下、第1実施形態と異なる部分を中心に説明する。
Second Embodiment
In this embodiment, the substrate is an inorganic fiber molded body. In the contact step, the molded body is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent. The contact is by application. That is, according to this embodiment, after forming an inorganic fiber molded body in the molding step, the supporting slurry is applied to the molded body in the contact step to support zeolite on the substrate. The following mainly describes the differences from the first embodiment.
(成形工程)
成形工程で得られる成形体としては、シート構造でもよく、ハニカム構造体でもよい。塗布の容易性や担持用スラリーの含浸効率等を考慮すると、成形体はシート構造を有することが好ましい。なお、成形体がシート構造を有する無機繊維シートである場合、後述の接触工程後に平坦状及びコルゲート状の無機繊維シートを積層してハニカム構造体を形成する積層工程を設けることが好ましい。
(Molding process)
The formed body obtained in the forming step may be a sheet structure or a honeycomb structure. Considering the ease of application and the impregnation efficiency of the supporting slurry, the formed body preferably has a sheet structure. When the formed body is an inorganic fiber sheet having a sheet structure, it is preferable to provide a lamination step in which flat and corrugated inorganic fiber sheets are laminated to form a honeycomb structure after the contact step described below.
(接触工程)
成形体への担持用スラリーの塗布方法としては、スプレー塗布、カーテン塗布、含浸塗布、バー塗布、ロール塗布、ブレード塗布等が挙げられる。塗布量は、最終的に得られるガス吸着用基材におけるゼオライトの含有量が目的量となるように調整すればよい。塗布回数も特に限定されず、1回又は2回以上の複数回行ってもよい。
(Contacting step)
Examples of the method for applying the slurry to the molded body include spray coating, curtain coating, impregnation coating, bar coating, roll coating, blade coating, etc. The amount of coating may be adjusted so that the content of zeolite in the final gas adsorption substrate is the desired amount. The number of coatings is not particularly limited, and may be one or more than two coatings.
次いで、乾燥工程及び焼成工程を行うことでガス吸着用基材を製造することができる。成形体がシート構造を有する場合は、乾燥工程と焼成工程との間に積層工程を設けることが好ましい。 Then, a drying step and a firing step are performed to produce a gas adsorption substrate. If the molded body has a sheet structure, it is preferable to provide a lamination step between the drying step and the firing step.
<第3実施形態>
本実施形態において、基材は無機繊維自体である。接触工程において、基材である無機繊維と、ゼオライトとpH調整剤と溶媒とを含む担持用スラリーとを接触させて混合物を得る。さらに、接触工程により得られる混合物を成形して成形体を得る工程を行う。すなわち、本実施形態によれば、接触工程において無機繊維にゼオライトを担持し、その後の成形工程においてゼオライトを担持した無機繊維の成形体を形成する。以下、第1実施形態と異なる部分を中心に説明する。
Third Embodiment
In this embodiment, the substrate is the inorganic fiber itself. In the contact step, the inorganic fiber as the substrate is contacted with a supporting slurry containing zeolite, a pH adjuster, and a solvent to obtain a mixture. In addition, a step of forming the mixture obtained in the contact step to obtain a molded body is performed. That is, according to this embodiment, zeolite is supported on the inorganic fiber in the contact step, and a molded body of the inorganic fiber supporting the zeolite is formed in the subsequent molding step. Below, the differences from the first embodiment will be mainly described.
(接触工程)
担持用スラリーに所定量の無機繊維を投入し、撹拌・混合することにより混合物を得る。混合時間は特に限定されず、0.1~10分程度であればよい。混合物中の無機繊維の含有量は、6~45質量%であることが好ましく、8~35質量%がより好ましく、10~25質量%がさらに好ましい。混合物中のゼオライトの含有量は、第1実施形態における担持用スラリー中のゼオライトの含有量と同じでもよく、異なっていてもよい。
(Contacting step)
A predetermined amount of inorganic fibers is added to the support slurry, and the mixture is obtained by stirring and mixing. The mixing time is not particularly limited, and may be about 0.1 to 10 minutes. The content of inorganic fibers in the mixture is preferably 6 to 45 mass%, more preferably 8 to 35 mass%, and even more preferably 10 to 25 mass%. The content of zeolite in the mixture may be the same as or different from the content of zeolite in the support slurry in the first embodiment.
(成形工程)
第1実施形態のシート原料スラリーに代えて上記で得られた混合物を湿式抄紙して不織布状にすることでシート構造を有する成形体(無機繊維シート)を製造することができる。その後、必要に応じて乾燥工程を設けてもよい。さらに、平坦状及びコルゲート状の無機繊維シートを積層してハニカム構造体を形成する積層工程を設けることが好ましい。
(Molding process)
Instead of the sheet raw material slurry of the first embodiment, the mixture obtained above is wet-laid into a nonwoven fabric to produce a molded body (inorganic fiber sheet) having a sheet structure. Thereafter, a drying process may be provided as necessary. Furthermore, it is preferable to provide a lamination process in which flat and corrugated inorganic fiber sheets are laminated to form a honeycomb structure.
次いで、ハニカム構造体の焼成工程を行うことでガス吸着用基材を製造することができる。 Then, a firing process is carried out on the honeycomb structure to produce a gas adsorption substrate.
《ガス吸着方法》
本実施形態に係るガス吸着方法は、
前記ガス吸着用基材の製造方法によって製造されるガス吸着用基材により吸着対象物を吸着する工程
を含む。
Gas adsorption method
The gas adsorption method according to the present embodiment includes the steps of:
The method includes a step of adsorbing an object to be adsorbed by the gas adsorbing substrate manufactured by the method for manufacturing a gas adsorbing substrate.
当該ガス吸着方法では、ゼオライト中のプロトンのナトリウムイオンへの交換が抑制され、相対的にプロトン量が多いゼオライトを担持したガス吸着用基材を用いて吸着対象物を吸着するので、効率的なガス吸着を経時的に行うことができる。 In this gas adsorption method, the exchange of protons in the zeolite with sodium ions is suppressed, and the substance to be adsorbed is adsorbed using a gas adsorption substrate that supports zeolite with a relatively large amount of protons, so efficient gas adsorption can be achieved over time.
前記吸着対象物は、アルコール又はアミンであることが好ましい。アルコール及びアミンとしては前述の成分が好適に挙げられる。 The substance to be adsorbed is preferably an alcohol or an amine. Suitable examples of alcohol and amine include the aforementioned components.
吸着工程でのキャリアガスとしては、空気のほか、窒素ガス、アルゴンガス等の不活性ガスが挙げられる。 Carrier gases used in the adsorption process include air, as well as inert gases such as nitrogen gas and argon gas.
吸着工程での温度、湿度、流量等は、吸着対象物や吸着効率等を考慮しつつ、適宜設定すればよい。 The temperature, humidity, flow rate, etc. during the adsorption process can be set appropriately taking into consideration the material to be adsorbed, adsorption efficiency, etc.
吸着工程後、ガス吸着用基材を再生するために、吸着対象物を脱着するための脱着工程を設けてもよい。脱着工程では、ガス吸着用基材を加熱したり、脱着用のガス(空気等)を流通させたり、ガス吸着用基材の加熱と脱着ガスの流通とを組み合わせて行ったりすることができる。吸着工程と脱着工程とを繰り返してもよい。 After the adsorption step, a desorption step may be provided for desorbing the substance to be adsorbed in order to regenerate the gas adsorption substrate. In the desorption step, the gas adsorption substrate may be heated, a desorption gas (air, etc.) may be circulated, or heating of the gas adsorption substrate and circulating the desorption gas may be combined. The adsorption step and desorption step may be repeated.
以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 The present invention will be described in detail below using examples, but the present invention is not limited to the following examples as long as it does not deviate from the gist of the invention.
<実施例>
シリカアルミナ繊維製のシート(厚さ0.2mm)からなり、ピッチ3.3mm、山高さ1.6mmのコルゲート状ハニカム構造の担体を、直径200mm、厚さ20mmの円筒状に切り出し、基材を得た。
<Example>
A carrier made of a silica-alumina fiber sheet (thickness 0.2 mm) having a corrugated honeycomb structure with a pitch of 3.3 mm and a peak height of 1.6 mm was cut into a cylindrical shape with a diameter of 200 mm and a thickness of 20 mm to obtain a substrate.
別途、ZSM-5型ゼオライト(プロトン型)16.2質量部、ZSM-5型ゼオライト(ナトリウムイオン型)16.2重量部、コロイダルシリカ35.5質量部、及び水32.1質量部を混合し、硝酸を添加してpHを2.5に調整した担持用スラリーを得た。 Separately, 16.2 parts by weight of ZSM-5 zeolite (proton type), 16.2 parts by weight of ZSM-5 zeolite (sodium ion type), 35.5 parts by weight of colloidal silica, and 32.1 parts by weight of water were mixed, and nitric acid was added to adjust the pH to 2.5 to obtain a support slurry.
担持用スラリーに基材を浸漬し、乾燥後、焼成して、ガス吸着用基材を得た。 The substrate was immersed in the support slurry, dried, and then fired to obtain the gas adsorption substrate.
<比較例>
担持用スラリーの調整において硝酸を添加しなかったこと以外は、実施例と同様にしてガス吸着用基材を得た。
Comparative Example
A gas adsorbing base material was obtained in the same manner as in Example, except that nitric acid was not added in preparing the supporting slurry.
<評価:エタノール吸着試験>
実施例及び比較例のガス吸着用基材を用い、次の手順にてエタノール吸着試験を行った。
<Evaluation: Ethanol adsorption test>
An ethanol adsorption test was carried out using the gas adsorption substrates of the Examples and Comparative Examples according to the following procedure.
<エタノール吸着試験>
ガラス製カラムに充填したガス吸着用基材に対して、エタノール濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:65%RH;風量:0.0045m3/minの条件でエタノールを吸着させ、カラムの入口でのエタノール濃度(入口濃度)と出口でのエタノール濃度(出口濃度)を計測する形で吸着試験を実施した。なお、吸着試験時間については、ゼオライトの吸着容量が飽和するまで実施した。具体的には、出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施した。
<Ethanol adsorption test>
Ethanol was adsorbed onto the gas adsorption substrate packed in a glass column under the following conditions: ethanol concentration: 100 ppm; carrier gas: air; temperature: 25°C; humidity: 65% RH; air volume: 0.0045 m3 /min, and an adsorption test was performed by measuring the ethanol concentration at the inlet (inlet concentration) and the ethanol concentration at the outlet (outlet concentration) of the column. The adsorption test was performed until the adsorption capacity of the zeolite was saturated. Specifically, the adsorption test was performed until the outlet concentration reached the inlet concentration (100 ppm).
エタノール吸着量は、次の手順で算出した。図3は、エタノール吸着量の算出方法を示す説明図である。まず、前記条件でエタノールガスをガス吸着用基材に流通させ、炭化水素計(島津製作所社製、「VMS-1000F」)により入口濃度及び出口濃度を経時的に測定した。次に、測定した濃度(ppm)をmg/m3単位に換算した。これにより、図3に示すような経過時間t(min)に対してエタノール濃度(mg/m3)をプロットしたチャートを得た。このチャートにおいて、0.05minごとに微小区間を設定し、この微小区間において入口濃度と出口濃度とで囲まれた部分を台形と仮定して(図3中、薄く塗りつぶした台形部分)微小区間での面積(単位体積(m3)あたりの吸着量(mg))を求めた。前記面積と風量(m3/min)との積を求め、これを微小区間における吸着量(mg)とした。最後に、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で前記微小区間での吸着量(mg)を積分して、エタノール吸着量(mg)を求めた。 The amount of ethanol adsorption was calculated by the following procedure. FIG. 3 is an explanatory diagram showing a method for calculating the amount of ethanol adsorption. First, ethanol gas was passed through the gas adsorption substrate under the above conditions, and the inlet and outlet concentrations were measured over time using a hydrocarbon meter (Shimadzu Corporation, "VMS-1000F"). Next, the measured concentration (ppm) was converted to mg/m 3 units. As a result, a chart was obtained in which the ethanol concentration (mg/m 3 ) was plotted against the elapsed time t (min) as shown in FIG. 3. In this chart, minute sections were set every 0.05 min, and the area surrounded by the inlet concentration and the outlet concentration in this minute section was assumed to be a trapezoid (lightly filled trapezoid in FIG. 3), and the area (adsorption amount (mg) per unit volume (m 3 )) in the minute section was calculated. The product of the area and the air volume (m 3 /min) was calculated, and this was taken as the adsorption amount (mg) in the minute section. Finally, the amount of ethanol adsorbed (mg) was calculated by integrating the amount of adsorption (mg) in the small section from the start of the adsorption test (0 min) until the outlet concentration reached the inlet concentration (100 ppm).
その後、下記算出式により担持ゼオライト量あたりのエタノール吸着量を算出した。結果を図4に示す。図4は、実施例及び比較例の担持ゼオライト量あたりのエタノール吸着量を示すグラフである。
<算出式>
担持ゼオライト量:A(g)
エタノール吸着量:B(mg)
担持ゼオライト量あたりのエタノール吸着量:C=B/A(mg/g)
Thereafter, the amount of ethanol adsorbed per amount of supported zeolite was calculated by the following calculation formula. The results are shown in Figure 4. Figure 4 is a graph showing the amount of ethanol adsorbed per amount of supported zeolite in the examples and comparative examples.
<Calculation formula>
Amount of supported zeolite: A (g)
Ethanol adsorption amount: B (mg)
Ethanol adsorption amount per amount of supported zeolite: C=B/A (mg/g)
その結果、実施例では21.3mg/gであったのに対し、比較例では16.2mg/gであり、実施例のガス吸着用基材は優れた吸着性能を示した。これは、実施例では担持用スラリーのpHを2.5に調整することで、ナトリウムイオン型ゼオライトのカチオンがプロトンと交換し、ガス吸着用基材にプロトン型ゼオライトの状態で担持されたのに対し、比較例ではナトリウムイオン型ゼオライトのカチオンが十分にプロトンに交換せず、ナトリウムイオン型の状態で担持されたことに起因すると推察される。 As a result, the adsorption capacity was 21.3 mg/g in the Example, whereas it was 16.2 mg/g in the Comparative Example, and the gas adsorption substrate of the Example showed excellent adsorption performance. This is presumably due to the fact that in the Example, the pH of the support slurry was adjusted to 2.5, so that the cations of the sodium ion type zeolite were exchanged with protons and supported on the gas adsorption substrate in the form of proton type zeolite, whereas in the Comparative Example, the cations of the sodium ion type zeolite were not sufficiently exchanged with protons, and the zeolite was supported in the form of sodium ions.
<評価:カチオン交換評価試験>
実施例及び比較例において調製した各担持用スラリーについて、調製後1時間撹拌した後のゼオライト中のNa2O含有率を測定した。具体的には、調製した担持用スラリーを1時間撹拌した後、ろ過することでゼオライトをろ取した。ろ取したゼオライトをイオン交換水で十分に洗浄し、乾燥することで測定用サンプルを得た。測定用サンプルについて蛍光X線分析(XRF)を行い、Na2O含有率(質量%)を求めた。結果を図5に示す。図5は、実施例及び比較例のゼオライト中のNa2O含有率を示すグラフである。
<Evaluation: Cation exchange evaluation test>
For each of the supporting slurries prepared in the examples and comparative examples, the Na 2 O content in the zeolite after stirring for 1 hour after preparation was measured. Specifically, the prepared supporting slurry was stirred for 1 hour, and then filtered to collect the zeolite. The filtered zeolite was thoroughly washed with ion-exchanged water and dried to obtain a measurement sample. X-ray fluorescence analysis (XRF) was performed on the measurement sample to determine the Na 2 O content (mass%). The results are shown in FIG. 5. FIG. 5 is a graph showing the Na 2 O content in the zeolite of the examples and comparative examples.
実施例の担持用スラリーではナトリウムイオン型ゼオライトをプロトン型ゼオライトと同量使用したにもかかわらず、極めて低いNa2O含有率(0.10質量%以下)であった。これは、投入したナトリウムイオン型ゼオライトのカチオンが、プロトンと交換したことに起因すると推測される。一方、比較例の担持用スラリーではNa2O含有率が高く、ナトリウムイオン型ゼオライトのカチオンが十分にプロトンと交換しなかったことに起因すると推測される。 Although the supporting slurry of the Example used the same amount of sodium ion type zeolite as the proton type zeolite, the Na 2 O content was extremely low (0.10 mass% or less). This is presumed to be due to the cations of the sodium ion type zeolite introduced being exchanged with protons. On the other hand, the supporting slurry of the Comparative Example had a high Na 2 O content, which is presumed to be due to the cations of the sodium ion type zeolite not being sufficiently exchanged with protons.
<評価:アンモニア吸着試験>
実施例及び比較例のガス吸着用基材を用い、次の手順にてアンモニア吸着試験を行った。
<Evaluation: Ammonia adsorption test>
An ammonia adsorption test was carried out using the gas adsorption substrates of the Examples and Comparative Examples according to the following procedure.
<アンモニア吸着試験>
ガラス製カラムに充填したガス吸着用基材に対して、アンモニア濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:50%RH;風量:0.0045m3/minの条件でアンモニアを吸着させ、カラムの入口でのアンモニア濃度(入口濃度)と出口でのアンモニア濃度(出口濃度)を計測する形で吸着試験を実施した。なお、吸着試験時間については、ゼオライトの吸着容量が飽和するまで実施した。具体的には、出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施した。
<Ammonia adsorption test>
Ammonia was adsorbed on the gas adsorption base material packed in a glass column under the following conditions: ammonia concentration: 100 ppm; carrier gas: air; temperature: 25°C; humidity: 50% RH; air volume: 0.0045 m3 /min, and an adsorption test was performed by measuring the ammonia concentration at the inlet (inlet concentration) and the ammonia concentration at the outlet (outlet concentration). The adsorption test was performed until the adsorption capacity of the zeolite was saturated. Specifically, the adsorption test was performed until the outlet concentration reached the inlet concentration (100 ppm).
アンモニア吸着量は、次の手順で算出した。図6は、アンモニア吸着量の算出方法を示す説明図である。まず、前記条件でアンモニアガスをガス吸着用基材に流通させ、検知管(ガステック社製、アンモニア検知管「3La」、「3L」及び「3S」)により入口濃度及び出口濃度を経時的に測定した。次に、測定した濃度(ppm)をmg/m3単位に換算した。これにより、図6に示すような経過時間t(min)に対してアンモニア濃度(mg/m3)をプロットしたチャートを得た。このチャートにおいて、1minごとに微小区間を設定し、この微小区間において入口濃度と出口濃度とで囲まれた部分を台形と仮定して(図6中、薄く塗りつぶした台形部分)微小区間での面積(単位体積(m3)あたりの吸着量(mg))を求めた。前記面積と風量(m3/min)との積を求め、これを微小区間における吸着量(mg)とした。最後に、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で前記微小区間での吸着量(mg)を積分して、アンモニア吸着量(mg)を求めた。 The ammonia adsorption amount was calculated by the following procedure. FIG. 6 is an explanatory diagram showing a method for calculating the ammonia adsorption amount. First, ammonia gas was passed through the gas adsorption substrate under the above conditions, and the inlet concentration and outlet concentration were measured over time using a detector tube (manufactured by Gastec Corporation, ammonia detector tubes "3La", "3L" and "3S"). Next, the measured concentration (ppm) was converted to mg/m 3 units. As a result, a chart was obtained in which the ammonia concentration (mg/m 3 ) was plotted against the elapsed time t (min) as shown in FIG. 6. In this chart, a minute section was set every 1 min, and the part surrounded by the inlet concentration and the outlet concentration in this minute section was assumed to be a trapezoid (the lightly filled trapezoid part in FIG. 6), and the area in the minute section (the adsorption amount (mg) per unit volume (m 3 )) was obtained. The product of the area and the air volume (m 3 /min) was obtained, and this was taken as the adsorption amount (mg) in the minute section. Finally, the amount of ammonia adsorbed (mg) was calculated by integrating the amount of adsorption (mg) in the small section from the start of the adsorption test (0 min) until the outlet concentration reached the inlet concentration (100 ppm).
その後、下記算出式により担持ゼオライト量あたりのアンモニア吸着量を算出した。結果を図7に示す。図7は、実施例及び比較例の担持ゼオライト量あたりのアンモニア吸着量を示すグラフである。
<算出式>
担持ゼオライト量:A(g)
アンモニア吸着量:B(mg)
担持ゼオライト量あたりのアンモニア吸着量:C=B/A(mg/g)
Thereafter, the amount of ammonia adsorbed per amount of supported zeolite was calculated by the following calculation formula. The results are shown in Figure 7. Figure 7 is a graph showing the amount of ammonia adsorbed per amount of supported zeolite in the examples and comparative examples.
<Calculation formula>
Amount of supported zeolite: A (g)
Ammonia adsorption amount: B (mg)
Ammonia adsorption amount per amount of supported zeolite: C=B/A (mg/g)
その結果、実施例では2.36mg/gであったのに対し、比較例では1.19mg/gであり、実施例のガス吸着用基材は優れた吸着性能を示した。この理由は、エタノール吸着試験における考察と同様である。すなわち、実施例では担持用スラリーのpHを2.5に調整することで、ナトリウムイオン型ゼオライトのカチオンがプロトンと交換し、ガス吸着用基材にプロトン型ゼオライトの状態で担持されたのに対し、比較例ではナトリウムイオン型ゼオライトのカチオンが十分にプロトンに交換せず、ナトリウムイオン型の状態で担持されたことに起因すると推察される。 As a result, the adsorption capacity was 2.36 mg/g in the Example, whereas it was 1.19 mg/g in the Comparative Example, showing that the gas adsorption substrate of the Example had excellent adsorption performance. The reason for this is the same as that considered in the ethanol adsorption test. That is, in the Example, the pH of the support slurry was adjusted to 2.5, so that the cations of the sodium ion type zeolite were exchanged with protons and supported on the gas adsorption substrate in the form of proton type zeolite, whereas in the Comparative Example, the cations of the sodium ion type zeolite were not sufficiently exchanged with protons, and were supported in the form of sodium ion type.
1 ガス吸着用基材
2a、2b 開口面
3 ロータ軸
4 通気空洞
5 平坦状部
6 コルゲート状部
7 回転方向
8 基材
p ピッチ
t 山高さ
s 厚さ
Claims (19)
無機繊維を含む基材とゼオライトとpH調整剤と溶媒とを接触させる工程を含み、
前記接触工程におけるpHが2以上3以下である、ガス吸着用基材の製造方法。 A method for producing a gas adsorption substrate, comprising the steps of:
The method includes a step of contacting a substrate containing inorganic fibers with a zeolite, a pH adjuster, and a solvent,
The method for producing a gas adsorption substrate, wherein the pH in the contacting step is 2 or more and 3 or less.
前記接触工程において、前記成形体と、前記ゼオライトと前記pH調整剤と前記溶媒とを含むスラリーとを接触させる、請求項1に記載のガス吸着用基材の製造方法。 the substrate is a molded body of the inorganic fibers,
2. The method for producing a gas adsorbing substrate according to claim 1, wherein in the contacting step, the formed body is contacted with a slurry containing the zeolite, the pH adjuster, and the solvent.
を含む、ガス吸着方法。 A gas adsorption method comprising: adsorbing an object to be adsorbed by a gas adsorption substrate manufactured by the method for manufacturing a gas adsorption substrate according to claim 1.
下記アルコール吸着試験によるアルコール吸着量が20.0mg/g以上である、ガス吸着用基材。
(アルコール吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アルコール濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:65%RH;風量:0.0045m3/minの条件でアルコールを吸着させ、カラムの入口でのアルコール濃度(入口濃度)と出口でのアルコール濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアルコール濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アルコール吸着量(mg)を求める。 The present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
A gas adsorption substrate having an alcohol adsorption amount of 20.0 mg/g or more according to the following alcohol adsorption test.
(Alcohol adsorption test)
Alcohol is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: alcohol concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 65% RH; air volume: 0.0045 m 3 /min, and the alcohol concentration at the inlet (inlet concentration) and the alcohol concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the alcohol concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the outlet concentration reaching the inlet concentration (100 ppm) is integrated to obtain the alcohol adsorption amount (mg).
下記アミン吸着試験によるアミン吸着量が2.0mg/g以上である、ガス吸着用基材。
(アミン吸着試験)
ガラス製カラムに充填したガス吸着用基材に対して、アミン濃度:100ppm;キャリアガス:空気;温度:25℃;湿度:50%RH;風量:0.0045m3/minの条件でアミンを吸着させ、カラムの入口でのアミン濃度(入口濃度)と出口でのアミン濃度(出口濃度)を計測する。出口濃度が入口濃度(100ppm)に到達するまで吸着試験を実施する。経過時間t(min)に対してアミン濃度(mg/m3)をプロットしたチャートにおいて、吸着試験の開始(0min)から出口濃度が入口濃度(100ppm)に到達するまでの区間で入口濃度と出口濃度とで囲まれた部分の吸着量(mg)を積分して、アミン吸着量(mg)を求める。 The present invention comprises a substrate containing inorganic fibers and zeolite supported on the substrate,
A gas adsorption substrate having an amine adsorption amount of 2.0 mg/g or more according to the amine adsorption test described below.
(Amine Adsorption Test)
Amine is adsorbed on the gas adsorption base material packed in a glass column under the following conditions: amine concentration: 100 ppm; carrier gas: air; temperature: 25° C.; humidity: 50% RH; air volume: 0.0045 m 3 /min, and the amine concentration at the inlet (inlet concentration) and the amine concentration at the outlet (outlet concentration) of the column are measured. The adsorption test is carried out until the outlet concentration reaches the inlet concentration (100 ppm). In a chart plotting the amine concentration (mg/m 3 ) against the elapsed time t (min), the adsorption amount (mg) of the part surrounded by the inlet concentration and the outlet concentration in the section from the start of the adsorption test (0 min) to the time when the outlet concentration reaches the inlet concentration (100 ppm) is integrated to obtain the amine adsorption amount (mg).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023116569 | 2023-07-18 | ||
JP2023-116569 | 2023-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025018113A1 true WO2025018113A1 (en) | 2025-01-23 |
Family
ID=94281382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/023119 WO2025018113A1 (en) | 2023-07-18 | 2024-06-26 | Method for manufacturing gas adsorption base material, gas adsorption method, and gas adsorption base material |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202504681A (en) |
WO (1) | WO2025018113A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316015A (en) * | 1996-05-31 | 1997-12-09 | Toray Ind Inc | Separation of 2,4-dichlorotoluene or 2,6dichlorotoluene |
JP2003103165A (en) * | 2001-09-28 | 2003-04-08 | Nichias Corp | Chemical filter and regeneration method thereof |
JP2007260582A (en) * | 2006-03-29 | 2007-10-11 | Nichias Corp | Dehumidification rotor, manufacturing method thereof, and dehumidifier |
WO2019151283A1 (en) * | 2018-02-02 | 2019-08-08 | 東レ株式会社 | Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent |
JP2021161019A (en) * | 2020-03-31 | 2021-10-11 | 三菱ケミカル株式会社 | Composite material, nitrogen oxide adsorbent, nitrogen oxide adsorbing method, and nitrogen oxide removing device |
-
2024
- 2024-06-26 WO PCT/JP2024/023119 patent/WO2025018113A1/en active Application Filing
- 2024-07-02 TW TW113124621A patent/TW202504681A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316015A (en) * | 1996-05-31 | 1997-12-09 | Toray Ind Inc | Separation of 2,4-dichlorotoluene or 2,6dichlorotoluene |
JP2003103165A (en) * | 2001-09-28 | 2003-04-08 | Nichias Corp | Chemical filter and regeneration method thereof |
JP2007260582A (en) * | 2006-03-29 | 2007-10-11 | Nichias Corp | Dehumidification rotor, manufacturing method thereof, and dehumidifier |
WO2019151283A1 (en) * | 2018-02-02 | 2019-08-08 | 東レ株式会社 | Gas adsorbent, deodorant fiber sheet, and method for preparing gas adsorbent |
JP2021161019A (en) * | 2020-03-31 | 2021-10-11 | 三菱ケミカル株式会社 | Composite material, nitrogen oxide adsorbent, nitrogen oxide adsorbing method, and nitrogen oxide removing device |
Also Published As
Publication number | Publication date |
---|---|
TW202504681A (en) | 2025-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2579767B2 (en) | Ultra-low concentration gas adsorption element and gas adsorption removal device | |
JPH0628173Y2 (en) | Moisture exchange element | |
JP3346680B2 (en) | Adsorbent for moisture exchange | |
AU2017208389A1 (en) | Desiccant based honeycomb chemical filter and method of manufacture thereof | |
KR101228278B1 (en) | Porous ceramic structure and apparatus combined with dehumidifier and humidifier comprising the same | |
CN105289491A (en) | Active carbon material doped molecular sieve adsorption concentration rotating wheel, and preparation method thereof | |
JP2008246438A (en) | Dehumidifier and dehumidifying method | |
WO2002045847A2 (en) | Adsorbent sheet, process of preparing, and desiccant process for using the sheet | |
JP4958459B2 (en) | Manufacturing method of dehumidifying rotor | |
AU2010307987B2 (en) | Honey comb matrix comprising macro porous desiccant, process and use thereof | |
JP2019209268A (en) | Adsorption rotor and adsorption treatment device | |
JP2019209269A (en) | Adsorption rotor and adsorption processing device | |
WO2025018113A1 (en) | Method for manufacturing gas adsorption base material, gas adsorption method, and gas adsorption base material | |
JP2015509832A (en) | Desiccant-supporting honeycomb chemical filter and manufacturing method thereof | |
JP3874187B2 (en) | Dehumidifying element and dehumidifying device | |
JPH06165934A (en) | Gas adsorption element, production and use therefor | |
US20030056884A1 (en) | Heat and moisture exchange media | |
JPH07204451A (en) | Dehumidifying sheet and dehumidifying element using organic moisture absorbent | |
JP2010240554A (en) | Hygroscopic sheet, hygroscopic structure and production method thereof | |
JP3322519B2 (en) | Rotor of rotary organic solvent vapor adsorption device | |
JP4239084B2 (en) | Adsorption element | |
JP7373112B2 (en) | gas filter | |
WO2022230536A1 (en) | Inorganic-fiber sheet and production method therefor | |
JP2002361025A (en) | Gas exchange apparatus | |
JP2005177673A (en) | Adsorption element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24842908 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025533936 Country of ref document: JP |