WO2025017960A1 - Method for manufacturing flash butt welding rail - Google Patents
Method for manufacturing flash butt welding rail Download PDFInfo
- Publication number
- WO2025017960A1 WO2025017960A1 PCT/JP2024/009130 JP2024009130W WO2025017960A1 WO 2025017960 A1 WO2025017960 A1 WO 2025017960A1 JP 2024009130 W JP2024009130 W JP 2024009130W WO 2025017960 A1 WO2025017960 A1 WO 2025017960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rail
- cooling
- less
- welded joint
- head
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/04—Flash butt welding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/04—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to a method for manufacturing a flash butt welded rail.
- Flash butt welding is a widely used method for welding rails. Flash butt welding is known to have the advantages of being able to be automated, having high quality stability, and a short welding time.
- Flash butt welding is a technique in which the rail ends are melted by heating, and then the molten surfaces are pressed together to join the rails.
- the rail is heated from room temperature up to nearly its melting point, and then cooled.
- flash butt welding causes changes in the metal structure and hardness of the rail.
- the area where the metallurgical and mechanical properties have changed due to the heat from welding, cutting, etc. is called the heat affected zone (HAZ).
- the metal structure becomes austenitic and transforms into pearlite when it is heated to above the A1 point during welding, and partial austenitization of the metal structure and decomposition of the pearlite structure occurs when it is heated to near the A1 point.
- forced cooling such as air cooling
- the martensite structure is prone to becoming the starting point of fracture, and when it forms, rails are prone to breakage.
- This martensite structure tends to form easily in the head of the welded joint of the rail, where the cooling rate is relatively fast.
- the head is an area that requires wear resistance, and needs to be cooled faster than other areas to prevent softening.
- martensite is prone to form due to supercooling.
- Patent Document 1 describes a cooling method for rail welds, characterized by cooling the column, base, and head in a temperature range until the transformation from austenite to pearlite is complete.
- the technology described in Patent Document 1 aims to reduce residual stress in rail welds and improve the fatigue resistance of rail welded joints.
- Patent document 2 describes a welding method and a cooling method that are characterized by performing flash butt welding with an upset amount of 20 mm or more, starting cooling of the rail head within 70 seconds after welding is completed, and completing cooling 25 to 60 seconds after cooling starts.
- Patent Document 3 describes a heat treatment method for rail welding in which either or both of the rail head and bottom are heated to a temperature range of 800-900°C, where the austenite and cementite phases are mixed, and then accelerated cooling is performed at a cooling rate of 1-10°C/sec from a temperature range of 750°C or higher, and accelerated cooling is stopped when the temperature of either or both of the rail head and bottom reaches 680-550°C, after which the rail is allowed to cool naturally or slowly so as not to exceed 680°C, suppressing the formation of pro-eutectoid cementite structures and improving the toughness of the rail welded joint.
- Patent Document 1 the purpose of the technology in Patent Document 1 is not to control the formation of martensite structures in the jaws of the head, which promote rail breakage. Therefore, this technology does not have the effect of improving the breakage resistance of rails. Furthermore, the technology in Patent Document 1 does not control the cooling rate of the jaws of the head, where martensite structures that are harmful to toughness form. This technology controls the cooling rate at a position 20 mm away from the center of the weld in the axial direction of the rail. This position is outside the general HAZ (within 20 mm) where martensite forms. Therefore, the temperature control by this technology does not control the formation of martensite structures in the weld joint.
- Patent Document 2 aims to reduce defects in rail welds, ensure the hardness of the welded joints, and improve the service life of rail welded joints.
- the technology described in Patent Document 2 does not aim to control the formation of martensite structures in the jaws of the heads, which promote rail breakage. Therefore, this technology does not have the effect of improving the breakage resistance of rails.
- Patent Document 3 aims to suppress the formation of pro-eutectoid cementite structures that reduce the toughness of rail welded joints and improve the breakage resistance of rail welded joints.
- the technology described in Patent Document 3 does not control the formation of martensite structures that promote rail breakage, and does not have the effect of fundamentally improving the breakage resistance of rails.
- the technology described in Patent Document 3 mainly controls the cooling rate of the rail head and bottom, and does not control the formation of structures in the jaw part of the head where martensite structures that are harmful to toughness form.
- the present invention was devised in consideration of the above-mentioned problems, and aims to improve the breakage resistance of the welded joints of flash-butt welded rails.
- the objective is to provide a manufacturing method that can satisfy the extremely strict requirements for breakage resistance of the welded joints of flash-butt welded rails for freight railways, which have a harsh track environment.
- a method for manufacturing a flash butt welded rail according to one aspect of the present invention is a method for manufacturing a flash butt welded rail having a plurality of rail portions and a weld joint portion joining the plurality of rail portions, the method comprising the steps of: C: 0.70-1.20%, Si: 0.05-2.00%, Mn: 0.05-2.00%, P ⁇ 0.0300%, S ⁇ 0.0300%, Cr: 0-2.00%, Mo: 0-0.50%, Co: 0-1.00%, B: 0-0.0050%, Cu: 0-1.00%, Ni: 0-1.00%, V: 0-0.200%, Nb: 0-0.0500%, Ti: 0-0.0500%, Mg ...
- the method includes the steps of flash butt welding a rail containing Fe: 0-0.0200%, Ca: 0-0.0200%, REM: 0-0.0500%, N: 0-0.0200%, Zr: 0-0.0200%, and Al: 0-1.0000%, with the balance being Fe and impurities, and immediately after completion of the flash butt welding, forcibly cooling the welded joint, wherein in the forcible cooling from the austenite temperature range, the cooling stop temperature (TC) of the outer surface of the head corner side at the weld center of the welded joint is 560°C or higher and 850°C or lower, and the cooling stop temperature (TA) of the outer surface of the head and jaw is 650°C or higher and 950°C or lower.
- TC cooling stop temperature
- TA cooling stop temperature
- the cooling stop temperature (TC) of the outer surface of the head corner side and the cooling stop temperature (TA) of the outer surface of the head jaw portion satisfy the following formulas 1 and 2.
- the rail has, as the chemical components, in mass%, one or two of the following: group a: Cr: 0.05% or more and 2.00% or less, Mo: 0.01% or more and 0.50% or less, group b: Co: 0.01% or more and 1.00% or less, group c: B: 0.0001% or more and 0.0050% or less, group d: Cu: 0.01% or more and 1.00% or less, and Ni: 0.01% or more and 1.00% or less, group e: V: 0.005% or more and 0.200% or less, b: one or more of 0.0010% or more and 0.0500% or less, and Ti: 0.0010% or more and 0.0500% or less; f group: one or more of Mg: 0.0005% or more and 0.0200% or less, Ca: 0.0005% or more and 0.0200%
- the above aspect of the present invention makes it possible to improve the breakage resistance of the welded joint in flash butt welded rails and significantly improve their service life.
- FIG. 1 is a perspective view illustrating the position of a longitudinal cross section of a welded joint of a welded rail; Schematic diagram of the cross-sectional hardness distribution 5 mm below the outer surface of the head jaw part of the longitudinal cross section of the welded joint part of the welded rail Schematic diagram of martensite structure evaluation area in a longitudinal cross section of a welded joint of a welded rail Schematic diagram of drop weight test Relationship between number of martensite structures formed in the head jaw and rail breakage (when the falling weight height is 5.0 m and the falling weight energy is 49.0 kN m) Relationship between number of martensite structures formed in the head jaw and rail breakage (when the falling weight height is 7.0 m and the falling weight energy is 73.5 kN m) Relationship between the cooling end temperature (TC) of the outer surface of the head corner and the number of martensite structures formed in the head jaw Relationship between the cooling end temperature (TC) of the outer surface of the head corner and the number of martensite structures formed in the head
- FIG. 1 is a schematic diagram of an example of a cooling device suitable for implementing a method for manufacturing a welded rail.
- the inventors investigated the causes of breakage in welded joints and considered ways to prevent breakage caused by brittle fracture that occurs in the jaw of the head of a welded joint. As a result, they confirmed that breakage often begins with a brittle crack that occurs in the jaw of the rail head, and that martensite structures are formed at the origin of the brittle crack. As a result of analyzing the relationship between this martensite structure and the cooling conditions of the welded joint, the inventors clarified that there is a correlation between the cooling conditions and the formation of martensite structures. They also confirmed that the formation of martensite structures can be suppressed by controlling the cooling conditions of the welded joint. The inventors have discovered a manufacturing method for rails that stably improves the performance of welded joints of welded rails used in harsh operating environments.
- the manufacturing method of a flash butt welded rail is a manufacturing method of a flash butt welded rail 1 having a plurality of rail portions 11 and a welded joint portion 12 that joins the plurality of rail portions 11, and includes a step of flash butt welding a rail containing, as chemical components, in mass %, C: 0.70-1.20%, Si: 0.05-2.00%, Mn: 0.05-2.00%, P ⁇ 0.0300%, S ⁇ 0.0300%, with the balance being Fe and impurities, and a step of immediately forcibly cooling the welded joint portion 12 after the flash butt welding is completed, and in the forced cooling from the austenite temperature range, the cooling stop temperature (TC) of the outer surface 1214 of the head corner side at the weld center A of the welded joint portion 12 is 560°C or higher, and the cooling stop temperature (TA) of the outer surface 1212 of the head jaw portion is 650°C or higher.
- the manufacturing method of the flash butt welded rail according to this embodiment will
- a flash butt welded rail (hereinafter simply referred to as "welded rail 1") comprises a plurality of rail portions 11 and a welded joint portion 12 that joins these rail portions 11.
- the inventors have conducted extensive research into methods for improving the breakage resistance of the welded joint portion 12.
- the inventors have discovered that the breakage resistance of the welded joint portion 12 can be improved by controlling the cooling stop temperature of the outer surface 1214 of the top corner side at the weld center A of the welded joint portion 12 and the cooling stop temperature of the outer surface 1212 of the head jaw portion of the welded joint portion 12 to a certain temperature or higher.
- the inventors then optimized the heat treatment conditions after welding was completed, thereby reducing the amount of martensite structure formed in the martensite structure evaluation region C of the head jaw portion of the head 121 of the welded joint 12, as shown in Figure 5. As a result, the inventors were able to improve the breakage resistance of the welded joint 12 and significantly increase its service life.
- a flash butt welded rail 1 is a rail obtained by joining rails together using flash butt welding.
- the flash butt welded rail 1 will be referred to simply as "welded rail 1.”
- the welded rail 1 comprises multiple rail sections 11 each having a rail head section 111, a rail column section 112, and a rail bottom section 113, and a welded joint section 12 that joins these rail sections 11.
- the symbol "A" in Figure 1 indicates the weld center, which will be described later.
- rail when simply referred to as “rail,” it means the rail before welding, and when referred to as “rail section,” it means the base material section of the welded rail 1.
- the rail head 111 of the rail section 11 refers to the portion above the narrowed portion at the vertical center of the rail section 11 in the cross section perpendicular to the longitudinal direction of the rail section 11 shown in Figure 2.
- the rail column section 112 refers to the narrowed portion at the vertical center of the rail section 11 in the cross section of the rail section 11 shown in Figure 2.
- the rail bottom section 113 refers to the portion below the narrowed portion at the vertical center of the rail section 11 in the cross section of the rail section 11 shown in Figure 2.
- the outer surface of the upper part of the rail head 111 is referred to as the rail head top surface or rail head outer surface 1111
- the outer surface on the corner side of the upper part is referred to as the rail head corner side outer surface 1114
- the outer surface of the side of the upper part is referred to as the rail head side outer surface 1113.
- the narrowed portion at the lower part of the rail head 111 is referred to as the rail head jaw outer surface 1112.
- the rail head corner side outer surface 1114 is an outer surface located 0.25W to 0.35W away from the center (B) of the width (W) of the rail head 111 toward the rail head side outer surface 1113 as shown in Figure 2.
- the rail head jaw outer surface 1112 is an outer surface located 0.25W to 0.35W away from the center (B) of the width (W) of the rail head toward the rail head side outer surface 1113 as shown in Figure 2.
- the up-down direction of the welded rail 1 means the up-down direction when the welded rail 1 is used as a track.
- a dashed line is shown that is 0.25W away from the center of the width of the rail head 111 and runs along the vertical direction of the rail portion 11, and a dashed line is shown that is 0.35W away from the center of the width of the rail head 111 and runs along the vertical direction of the rail portion 11.
- the area of the rail head top surface that is located between these dashed lines is the rail head corner side outer surface 1114.
- the area of the surface of the rail head jaw that is located between these dashed lines is the rail head jaw outer surface 1112.
- the welded joint 12 is a "welded joint" as defined in JIS Z 3001-1:2018, and refers to a joint where members are joined together by welding.
- the member refers to the rail that is the material of the rail portion 11.
- the shape of the welded joint 12 is approximately the same as that of the rail portion 11.
- the welded joint 12 also has a head 121, a column portion 122, and a bottom portion 123.
- the head 121 of the welded joint 12 has a top outer surface 1211, a top corner side outer surface 1214, a head side outer surface 1213, and a head jaw outer surface 1212.
- the name of the head in the rail portion 11 will be referred to as the "rail head 111”
- the name of the head in the welded joint 12 will be simply referred to as the "head 121".
- the rail portion 11 For other parts, if they are included in the rail portion 11, they will be referred to as “rail”, and if they are included in the welded joint 12, they will not be referred to as "rail".
- Heat-affected zone (HAZ) 12H is JIS Z As defined in JIS C 3001-1:2018, the term refers to a non-melted base material portion whose metallurgical properties, mechanical properties, etc. have been changed by heat from welding, cutting, etc.
- the base material refers to the rail portion 11.
- the welded rail 1 has a width of the heat-affected zone 12H along the longitudinal direction of the welded rail 1, i.e., the HAZ width.
- the HAZ width is defined based on the hardness distribution of the welded joint 12 measured on a cross section that is parallel to the longitudinal direction of the welded rail 1 and passes through a cross section located 0.25W to 0.35W away from the center (B) of the width of the head of the welded rail 1 toward the head side outer surface 1213.
- the cross section that is parallel to the longitudinal direction of the welded rail 1 and passes through a cross section located 0.25W to 0.35W away from the center (B) of the width of the head of the welded rail 1 toward the head side outer surface 1213 is referred to as the "longitudinal cross section.”
- a dashed line is drawn that is 0.25W away from the center of the width direction of the rail head 111 and that runs along the vertical direction of the rail portion 11
- a dashed line is drawn that is 0.35W away from the center of the width direction of the rail head 111 and that runs along the vertical direction of the rail portion 11.
- the longitudinal cross section is a cut surface that runs along the vertical direction of the rail and is formed at any point between these dashed lines.
- Figure 4 shows a schematic diagram of the hardness distribution in the longitudinal cross section of the welded joint 12.
- This graph was obtained by continuously measuring Vickers hardness along the head jaw outer surface 1212 at a depth of 5 mm from the head jaw outer surface 1212 of the welded joint 12 toward the top corner outer surface 1214 in the longitudinal cross section of the welded joint 12.
- the weld center A shown in this graph refers to a straight line along the vertical direction of the welded rail that passes through the center of the heat-affected zone 12H in the longitudinal cross section of the welded joint 12.
- the weld center A roughly coincides with the rail seam.
- a region is formed in which the welded joint is heated to above the A1 point by the welding heat, becomes austenitic overall, and then transforms into pearlite as the temperature is lowered after welding is completed.
- the hardness is significantly lower. Therefore, in a graph of the hardness distribution of a welded rail 1 obtained by flash butt welding, there are usually two Vickers hardness valleys, as shown in Figure 4. The locations where these Vickers hardness valleys occur are defined as the softest parts of the welded rail 1 according to this embodiment. The distance between the two softest parts is defined as the HAZ width. The weld center A approximately coincides with the center of this HAZ width.
- the martensite structure evaluation area C refers to the area (C) in the longitudinal cross section that is within a range of ⁇ 5 mm (width 10 mm) in the longitudinal direction of the welded rail 1 centered on the weld center A, and has a depth of 1 to 5 mm from the head jaw outer surface 1212 toward the head corner side outer surface 1214.
- the technical significance of the martensite structure evaluation area C will be described later.
- the martensite structure evaluation region (C) is a region included in a longitudinal cross section located 0.25W to 0.35W away from the center (B) of the head width of the welded rail toward the head side outer surface 1213.
- This longitudinal cross section is also a cross section that passes through the head jaw outer surface 1212. Therefore, the lower end of this cross section coincides with the head jaw outer surface 1212.
- the lower end of the cross section can be regarded as the head jaw outer surface 1212.
- Forced cooling of the welded joint 12 means spraying a coolant such as air, water, or mist onto the welded joint 12.
- a coolant such as air, water, or mist onto the welded joint 12.
- the cooling stop temperature of the top corner side outer surface 1214 at the welding center A means the temperature of the top corner side outer surface 1214 measured at the time when the forced cooling is stopped, i.e., when the blowing of the coolant is stopped.
- the cooling stop temperature of the head jaw outer surface 1212 at the welding center A means the temperature of the head jaw outer surface 1212 at the welding center A measured at the time when the blowing of the coolant is stopped.
- the inventors investigated damage that occurs in the welded joint 12 of the welded rail 1. As a result of investigating damaged rails that occurred on an actual track, it was confirmed that the most common form of damage was breakage that originated from a brittle crack that occurred at the head of the welded rail.
- the inventors identified the starting point of the breakage in the welded rail. As a result, they confirmed that in many cases, the breakage occurred in the heat-affected zone (HAZ).
- the rail, flash butt welding conditions, cooling conditions for the welded joint 12 after welding, characteristics of the welded joint 12, evaluation method for the martensitic structure, and drop weight test conditions are as shown below.
- Rails as welding base material Composition 0.70-1.20% C, Si, Mn, balance iron and impurities Rail shape: 136 pounds (weight: 67 kg/m). Hardness: 420 HV (top surface)
- Cooling conditions for the welded joint 12 after welding Location: Weld center (A) Cooling start time: 15 seconds after welding is completed Cooling stop temperature (TA) of head jaw outer surface 1212: 500 to 800° C. Cooling stop temperature (TC) of the outer surface 1214 on the corner side of the top part: 550 to 900° C. Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
- the statement “immediately after completion of flash butt welding, the welded joint is forcedly cooled” means that forced cooling is started within 5 to 30 seconds after completion of flash butt welding.
- the time when flash butt welding is completed means the time when trimming is completed. In trimming, burrs formed on the welded joint in the upset process of flash butt welding are removed. Forced cooling started under the above conditions is considered to be forced cooling started immediately after completion of flash butt welding.
- Polishing conditions buff polishing with 1 ⁇ m diamond paste Martensite etching conditions
- Etching solution alcohol + 5% nitric acid (nital)
- Etching time 5 to 10 seconds
- Equipment Optical microscope Magnification: 400x
- 400x Method for evaluating structure Martensite structures that could be confirmed under an optical microscope at 400x were evaluated.
- the target martensite structure had a major axis of 25 to 100 ⁇ m, and when martensite structures were generated, the number of martensite structures was investigated.
- Drop weight test conditions (see Figure 6) Position: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and a drop weight is dropped onto the bottom of the rail.
- Span length (distance between the two support points): 1000 mm Falling weight: 1000kgf (9.8kN)
- the inventors investigated the relationship between the heat treatment conditions after flash butt welding and the generation of martensite structure in martensite structure evaluation region C.
- a flash butt welding test was performed using a hypereutectoid steel rail (0.70-1.20% C), and the rail drop weight test shown in Figure 6 was performed to evaluate the relationship between the amount of martensite structure generated in martensite structure evaluation region C and the presence or absence of rail breakage.
- the amount of martensite structure generated was controlled mainly by controlling the cooling stop temperature of the head jaw outer surface 1212 and the head corner side outer surface 1214 in the region ⁇ 5 mm (width 10 mm) from the weld center (A) in the weld joint 12 where the martensite structure was generated.
- the rail, flash butt welding conditions, the characteristics of the weld joint 12, and the method of evaluating the martensite structure are as described above.
- Cooling conditions for the welded joint 12 after welding Location: Weld center (A) Cooling start time: 15 seconds after welding is completed
- Cooling stop temperature (TA) of head jaw outer surface 1212 740° C.
- Cooling stop temperature (TC) of the outer surface 1214 on the corner side of the top part 510 to 700° C.
- Cooling stop temperature (TA) of the outer surface of the head jaw part ⁇ Cooling stop temperature (TC) of the outer surface of the corner side of the top part
- Cooling stop temperature of head jaw outer surface 1212 620 to 800° C.
- Cooling stop temperature of the outer surface 1214 on the corner side of the top part 620° C.
- Cooling stop temperature (TA) of the outer surface of the head jaw part ⁇
- Cooling stop temperature (TC) of the outer surface of the top corner part Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
- Drop weight test conditions Posture: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and the drop weight falls on the rail bottom.
- Span length (distance between the two support points): 1000 mm Falling weight: 1000kgf (9.8kN)
- the inventors have investigated a method for further reducing the amount of martensite structure produced and further improving the breakage resistance of the welded joint 12.
- a flash butt welding test was performed using hypereutectoid steel rails (0.70-1.20% C), and then the cooling stop temperature (TA) of the head jaw outer surface 1212 of the welded joint 12 and the cooling stop temperature (TC) of the head corner outer surface 1214 were changed to evaluate the relationship between the cooling stop temperature conditions and the amount of martensite structure generated.
- the rail, flash butt welding conditions, characteristics of the welded joint 12, and the method for evaluating the martensitic structure are as described above.
- TA+TC 1400 (fixed) TA: 700-800°C, TC: 600-700°C T A ⁇ T C Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
- the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 when controlling the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214, and the difference between the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is in the range of 160 to 240°C, as shown in Figure 13, even if the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 becomes 1340°C or more, the number of martensite structures formed in the martensite structure evaluation region C will not be 5 or less.
- the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 if the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is in the range of 1250 to 1330°C, as shown in Figure 14, even if the difference between the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is 140°C or less, the number of martensite structures formed in the martensite structure evaluation region C will not be 5 or less.
- the manufacturing method of the welded rail 1 according to this embodiment includes a process of flash butt welding the rail that is the material for the welded rail 1.
- the reasons for limiting the chemical composition of the rail before welding are explained in detail below.
- the chemical composition of the rail before welding is the same as the chemical composition of the rail portion 11 of the welded rail 1. Therefore, the upper and lower limit values of the alloying elements explained for the chemical composition of the rail also apply to the chemical composition of the rail portion 11.
- C (C: 0.70-1.20%) C is an element that promotes pearlite transformation and is effective in ensuring the wear resistance of the welded joint 12. If the C content is less than 0.70%, the minimum wear resistance required for the welded joint 12 cannot be obtained. On the other hand, if the C content exceeds 1.20%, a large amount of pro-eutectoid cementite structure is formed in the welded joint 12, and the breakage resistance of the welded joint 12 decreases. For this reason, the C content is limited to 0.70 to 1.20%.
- the C content is preferably 0.72% or more, 0.75% or more, or 0.80% or more. Preferably, the C content is 1.18% or less, 1.15% or less, or 1.10% or less. In order to stabilize the formation of pearlite structures, the C content is set to 0.80 to 1.10%. It is desirable.
- Silicon is an element that dissolves in the ferrite phase of the pearlite structure, increases the hardness of the welded joint 12, and improves the wear resistance. However, if the amount of silicon is less than 0.05%, these effects are not achieved. On the other hand, if the Si content exceeds 2.00%, the toughness of the pearlite structure decreases, and the fracture resistance of the welded joint 12 decreases. For this reason, the Si content is set to 0.05 to 2.00%.
- the Si content is preferably 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more.
- the Si content is preferably 1.80%.
- the Si content is set to 0.40 to 1.60%, or 1.50%. It is preferable that the content be 2.00%.
- Mn 0.05-2.00%
- Mn is an element that increases the hardenability of the welded rail 1 and stabilizes the pearlite transformation, while at the same time, refines the lamellar spacing of the pearlite structure, ensures the hardness of the welded joint 12, and further improves the wear resistance.
- the Mn content is less than 0.05%, the effect is small and the wear resistance of the welded joint 12 decreases.
- the Mn content exceeds 2.00%, the excessive amount of Mn This promotes Mn concentration in the segregated areas, promotes the formation of martensite structures in the welded joint 12, and reduces the breakage resistance. For this reason, the Mn content is limited to 0.05 to 2.00%.
- the Mn content is preferably 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more.
- the Mn content is preferably 1.80% or less, 1.60% or less. or less, or 1.50% or less.
- the Mn content is preferably set to 0.40 to 1.50%.
- P is an impurity element contained in steel. If the P content exceeds 0.0300%, the pearlite structure becomes embrittled, and the fracture resistance of the welded joint 12 decreases. For this reason, the P content
- the lower limit of the P content does not need to be limited, and may be, for example, 0%, but taking into consideration the dephosphorization capacity of the refining process, the lower limit of the P content is set to 0.
- the P content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more.
- the P content is preferably 0.0250% or less, 0.0200% or less. In order to stably maintain the toughness of the pearlite structure, the P content is preferably 0.0050 to 0.0150%.
- S is an impurity element contained in steel. If the S content exceeds 0.0300%, stress concentration occurs around the inclusions of coarse MnS-based sulfides, and the durability of the welded joint 12 is reduced. For this reason, the S content is limited to 0.0300% or less. It is not necessary to set a lower limit for the S content, and it may be, for example, 0%, but it is necessary to set the lower limit in consideration of the desulfurization capacity of the refining process. In this case, the lower limit of the S content may be set to about 0.0020%. The S content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more. In order to stably maintain the fracture resistance of the pearlite structure, the S content is set to 0.0050 to 0.0150%. % is preferable.
- the remainder of the chemical components of the rail which is the material for the welded rail, includes iron and impurities.
- Impurities are, for example, components that are mixed in with raw materials such as ore or scrap during the industrial production of steel, or due to various factors in the manufacturing process, and are acceptable within the range that does not adversely affect the welded rail 1 according to this embodiment.
- the rail which is the material of the welded rail, may contain one or more of the following elements as necessary: Cr and Mo in group a, Co in group b, B in group c, Cu and one or two of Ni in group d, V, Nb, and Ti in group e, Mg, Ca, and one or two of REM in group f, N in group g, Zr in group h, and Al in group i.
- the manufacturing method of the welded rail 1 according to this embodiment can exert its effect even if these elements are not contained in the rail, the lower limit of the content of these elements is 0%.
- Cr is an element that increases the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the degree of supercooling, improves the hardness of the pearlite structure, and improves the wear resistance of the welded joint 12.
- the Cr content exceeds 2.00%, an excessive amount of Cr may promote Cr concentration in the segregation portion, promote the formation of the martensite structure of the welded joint, and reduce the breakage resistance. For this reason, it is desirable to set the Cr content to 0.05 to 2.00%.
- the Cr content is preferably 0.06% or more, 0.08% or more, or 0.10% or more.
- the Cr content is preferably 1.80% or less, 1.50% or less, or 1.20% or less. Therefore, in order to stabilize the formation of pearlite structure and improve the wear resistance and damage resistance of the welded joint 12, the Cr content is preferably set to 0.10 to 1.20%.
- Mo is an element that increases the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the degree of supercooling, improves the hardness of the pearlite structure, and improves the wear resistance of the welded joint 12.
- Mo content it is preferable to set the Mo content to 0.01% or more.
- Mo content exceeds 0.50%, an excessive amount of Mo promotes Mo concentration in the segregation portion, promotes the formation of the martensite structure of the welded joint 12, and may reduce the breakage resistance. For this reason, it is desirable to set the Mo content to 0.01 to 0.50%.
- the Mo content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
- the Mo content is preferably 0.45% or less, 0.40% or less, or 0.30% or less. Therefore, in order to stably improve the hardness of the pearlite structure and improve the wear resistance and damage resistance of the welded joint 12, it is desirable to set the Mo content to 0.10 to 0.30%.
- Co is an element that dissolves in the ferrite phase of the pearlite structure, refines the lamellar structure of the pearlite structure immediately below the rolling surface where deformation occurs due to contact with the wheel, improves the hardness of the rolling surface, and improves the wear resistance of the welded joint portion 12.
- the Co content exceeds 1.00%, the above-mentioned effect is saturated and it is not possible to refine the lamellar structure according to the Co content.
- the Co content exceeds 1.00%, the economic efficiency may decrease due to an increase in alloy cost.
- the Co content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
- the Co content is preferably 0.90% or less, 0.80% or less, or 0.60% or less. Therefore, in order to stably improve the wear resistance of the pearlite structure and improve the wear resistance of the welded joint 12, the Co content is preferably set to 0.10 to 0.60%.
- B is an element that forms iron boride (Fe 23 (CB) 6 ) at the austenite grain boundary, reduces the cooling rate dependency of the pearlite transformation temperature by promoting the pearlite transformation, uniforms the hardness distribution from the head surface to the inside of the welded joint 12, and extends the life of the welded joint 12 by improving the wear resistance.
- the B content is 0.0001% or more.
- the B content exceeds 0.0050%, coarse iron boride is generated, which promotes brittle fracture and may reduce the breakage resistance of the welded joint 12.
- the B content is preferably 0.0002% or more, 0.0003% or more, or 0.0005% or more.
- the B content is preferably 0.0040% or less, 0.0030% or less, or 0.0025% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, the B content is preferably set to 0.0005 to 0.0025%.
- Cu is an element that dissolves in the ferrite phase of the pearlite structure, improves the hardness of the welded joint 12 by solid solution strengthening, and improves the wear resistance of the welded joint 12.
- the Cu content exceeds 1.00%, an excessive amount of Cu promotes Cu concentration in the segregation portion, promotes the formation of the martensite structure of the welded joint 12, and may reduce the breakage resistance. For this reason, it is preferable to set the Cu content to 0.01 to 1.00%.
- the Cu content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
- the Cu content is preferably 0.90% or less, 0.80% or less, or 0.70% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, it is desirable to set the Cu content to 0.10 to 0.70%.
- Ni is an element that improves the toughness of the pearlite structure, and at the same time, improves the hardness of the welded joint 12 by solid solution strengthening, thereby improving the wear resistance of the welded joint 12. Furthermore, in the heat-affected zone, Ni combines with Ti to precipitate as a fine Ni 3 Ti intermetallic compound, and is an element that suppresses the softening of the welded joint 12 by precipitation strengthening. Furthermore, when Cu is contained in the rail, Ni suppresses the embrittlement of the grain boundary. In order to obtain the above-mentioned effect, it is preferable to set the Ni content to 0.01% or more.
- Ni content exceeds 1.00%, an excessive amount of Ni may promote Ni concentration in the segregation portion, promote the formation of the martensite structure of the welded joint 12, and reduce the breakage resistance. For this reason, it is desirable to set the Ni content to 0.01 to 1.00%.
- the Ni content is preferably 0.02% or more, 0.05% or more, or 0.10% or more.
- the Ni content is preferably 0.90% or less, 0.80% or less, or 0.70% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, it is desirable to set the Ni content to 0.10 to 0.70%.
- V is an element that increases the hardness (strength) of the pearlite structure by precipitation hardening due to V carbo-nitrides formed during the cooling process after hot rolling, and improves the fatigue damage resistance of the welded joint 12.
- V content it is preferable to set the V content to 0.005% or more.
- the V content exceeds 0.200%, the number of fine V carbo-nitrides becomes excessive, the pearlite structure becomes embrittled, and the fracture resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the V content to 0.005 to 0.200%.
- the V content is preferably 0.010% or more, 0.015% or more, or 0.020% or more.
- the V content is preferably 0.180% or less, 0.150% or less, or 0.100% or less. Therefore, in order to stably maintain the breakage resistance of the welded joint 12 and improve the fatigue damage resistance of the welded joint 12, it is desirable to set the V content to 0.020 to 0.100%.
- Nb is an element that increases the hardness of the pearlite structure and improves the fatigue damage resistance of the welded joint 12 by precipitation hardening due to Nb carbides and Nb nitrides generated during the cooling process after hot rolling in the manufacture of rails.
- Nb is an element that stably generates Nb carbides and Nb nitrides in a wide temperature range from low to high temperatures, and is effective in preventing softening of the heat-affected zone 12H of the welded joint 12.
- the Nb content is 0.0010% or more.
- the Nb content is preferably 0.0020% or more, 0.0025% or more, or 0.0030% or more.
- the Nb content is preferably 0.0400% or less, 0.0300% or less, or 0.0200% or less. Therefore, in order to stably maintain the breakage resistance of the welded joint 12 and improve the fatigue damage resistance of the welded joint 12, it is desirable to set the V content to 0.0030 to 0.0200%.
- Ti is an element that increases the hardness of the pearlite structure by precipitation hardening due to Ti carbides and Ti nitrides generated during the cooling process after hot rolling in the manufacture of rails, thereby improving the fatigue damage resistance of the welded joint 12.
- Ti is also an element that refines the structure of the heat-affected zone 12H that is reheated to the austenite region by utilizing the fact that Ti carbides and Ti nitrides precipitated during reheating after welding do not dissolve in the matrix, thereby improving the breakage resistance of the welded joint 12.
- the Ti content is 0.0010% or more, or 0.0060% or more.
- the Ti content is 0.0040 to 0.0500%.
- the Ti content is preferably 0.0040% or more, 0.0050% or more, or 0.0060% or more.
- the Ti content is preferably 0.0400% or less, 0.0300% or less, or 0.0200% or less. Therefore, in order to improve the fatigue damage resistance and breakage resistance of the welded joint 12, it is desirable to set the Ti content to 0.0060 to 0.0200%.
- Mg is an element that combines with S to form fine sulfides (MgS), which finely disperse MnS, relieve stress concentration around MnS, and improve the fatigue damage resistance of the welded joint 12.
- MgS fine sulfides
- the Mg content exceeds 0.0200%, coarse oxides of Mg are generated, and fatigue cracks are likely to be generated due to stress concentration around the coarse oxides, and the fatigue damage resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the Mg content to 0.0005 to 0.0200%.
- the Mg content is preferably 0.0010% or more, 0.0015% or more, or 0.0030% or more.
- the Mg content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, the Mg content is preferably set to 0.0030 to 0.0120%.
- Ca preferably 0.0200% or less
- Ca has a strong bond with S and forms sulfides (CaS), which finely disperse MnS, reduce stress concentration around MnS, and improve the fatigue damage resistance of the welded joint 12.
- CaS sulfides
- the Ca content exceeds 0.0200%, coarse oxides of Ca are generated, and fatigue cracks are likely to be generated due to stress concentration around the coarse oxides, and the fatigue damage resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the Ca content to 0.0005 to 0.0200%.
- the Ca content is preferably 0.0010% or more, 0.0020% or more, or 0.0030% or more.
- the Ca content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, the Ca content is preferably set to 0.0030 to 0.0120%.
- REM is a deoxidizing and desulfurizing element, and generates REM oxysulfide (REM 2 O 2 S), which becomes the nucleus for the formation of Mn sulfide-based inclusions.
- Oxysulfide (REM 2 O 2 S) has a high melting point, and suppresses the elongation of Mn sulfide-based inclusions after rolling. As a result, REM finely disperses MnS, relieves stress concentration around MnS, and improves fatigue damage resistance of the welded joint 12.
- the REM content is 0.0005% or more.
- the REM content exceeds 0.0500%, coarse and hard REM oxysulfide (REM 2 O 2 S) is generated, and fatigue cracks are easily generated due to stress concentration around this oxysulfide, and the fatigue damage resistance of the welded joint 12 may be reduced. For this reason, it is desirable to set the REM content to 0.0005 to 0.0500%.
- the REM content is preferably 0.0010% or more, 0.0020% or more, or 0.0030% or more.
- the REM content is preferably 0.0400% or less, 0.0300% or less, or 0.0250% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, it is desirable to set the REM content to 0.0030 to 0.0250%.
- REM refers to a total of 17 elements consisting of Sc, Y, and La (lanthanoid).
- "REM content” refers to the total content of all these REM elements. As long as the total content is within the above range, the same effect can be obtained whether there is one type of REM element or two or more types.
- N is an element that may be mixed into rails as an impurity in the steelmaking process. Even if degassing is actively performed, about 0.0025% N may remain in the steel. In normal rail refining, the N content is about 0.0030 to 0.0050%. It is possible to make the N content less than 0.0025%, but in order to avoid an increase in refining costs, 0.0025% or more of N may be contained in the rail.
- N is an element that is effective in improving the toughness of the welded joint 12 by promoting pearlite transformation from the austenite grain boundary by segregating at the austenite grain boundary, mainly by refining the pearlite block size.
- the N content is 0.0060% or more.
- the N content is preferably 0.0060% or more, 0.0070% or more, or 0.0080% or more.
- the N content is preferably 0.0180% or less, 0.0160% or less, or 0.0150% or less. Therefore, in order to stably improve toughness and fatigue damage resistance, it is desirable to set the N content to 0.0080 to 0.0150%.
- ⁇ H group> Zr: preferably 0.0200% or less
- Zr forms ZrO2 inclusions that have good lattice matching with ⁇ -Fe, and thus serves as the solidification nucleus of high-carbon rail steel in which ⁇ -Fe is the solidification primary crystal, and by increasing the equiaxed crystallization rate of the solidification structure, it suppresses the formation of a segregation zone in the center of the slab and suppresses alloy concentration in the segregation portion.
- Zr suppresses the formation of a martensite structure in the welded joint 12, improving the breakage resistance and fatigue damage resistance.
- the Zr content is 0.0001% or more.
- the Zr content is 0.0001 to 0.0200%.
- the Zr content is preferably 0.0005% or more, 0.0010% or more, or 0.0015% or more.
- the Zr content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to stably improve the breakage resistance and fatigue damage resistance, it is desirable to set the Zr content to 0.0015 to 0.0120%.
- Al is a component that functions as a deoxidizer.
- the Al content is 0.0005% or more, or 0.0010% or more.
- the Al content exceeds 1.0000%, coarse alumina-based inclusions are generated, and fatigue cracks are likely to occur from these coarse inclusions, and the fatigue damage resistance of the welded joint 12 may decrease.
- the Al content exceeds 1.0000%, oxides may be generated during welding of the rail, and the weldability of the rail may decrease significantly. For this reason, it is preferable that the Al content is 0.0005 to 1.0000%.
- the Al content is preferably 0.5000% or less, 0.4000% or less, or 0.3000% or less. Therefore, in order to stably perform deoxidation, it is preferable that the Al content is 0.0005 to 0.3000%.
- the manufacturing method of the welded rail 1 includes a process of immediately forcibly cooling the welded joint 12 obtained by flash butt welding the rails after the flash butt welding is completed.
- the forced cooling increases the hardness of the welded joint 12 and improves the wear resistance of the welded joint 12.
- excessive forced cooling will cause martensite to form in the welded joint 12. Therefore, the forced cooling conditions need to be appropriately managed.
- forced cooling means spraying a coolant such as air, water, or mist onto the welded joint 12. Examples of forced cooling include air cooling, water cooling, and air-water cooling.
- Natural cooling is considered to be a different concept from forced cooling.
- the cooling rate after flash butt welding is influenced by the heat input in flash butt welding and the width of the HAZ formed by flash butt welding. The larger the HAZ width, the slower the cooling rate tends to be.
- the average cooling rate of the outer surface of the top corner side in the temperature range from 900°C to 600°C is usually within the range of about 1.0 to 2.0°C/sec.
- the average cooling rate of the outer surface of the top corner side in the temperature range from 900°C to 600°C is usually within the range of about 1.5 to 5.0°C/sec.
- the cooling rate by natural cooling is always slower than the cooling rate by forced cooling.
- the "average cooling rate V in the temperature range from X°C to Y°C" is a value calculated by the following formula when the time required for the temperature of the object to be cooled to decrease from X°C to Y°C is defined as t.
- the average cooling rate can be measured using a radiation thermometer, which is capable of measuring the temperature of the surface of an object in a non-contact manner.
- the description "immediately after the completion of flash butt welding, the welded joint is forcedly cooled” means that forced cooling is started within 5 to 30 seconds after the completion of flash butt welding.
- the time of the end of flash butt welding is the time of the end of trimming, as described above. After the completion of flash butt welding, it usually takes 5 seconds or more to install a cooling device on the welded joint to start cooling.
- forced cooling is started more than 30 seconds after the completion of flash butt welding, pearlite transformation may start in a high temperature range before forced cooling, and the hardness of the welded joint may be impaired.
- the cooling stop temperature (TC) of the outer surface 1214 of the top corner at the weld center A and the cooling stop temperature (TA) of the outer surface 1212 of the head jaw at the weld center A are each controlled independently.
- the reason for limiting the cooling stop temperature (TC) of the outer surface 1214 of the top corner at the weld center A of the welded joint 12 to 560°C or higher in the forced cooling from the austenite temperature range after completion of flash butt welding in the manufacturing method of the welded rail 1 according to this embodiment will be explained.
- the cooling stop temperature (TC) of the outer surface 1214 on the corner side of the top of the head is less than 560°C, the number of martensite structures formed in the martensite structure evaluation area C near the head jaw exceeds 10, and as shown in FIG. 7, the breakage of the welded joint 12 cannot be prevented.
- the cooling stop temperature (TC) of the outer surface 1214 on the corner side of the top of the head is limited to 560°C or more.
- TC may be 580°C or more, 600°C or more, 620°C or more, or 650°C or more.
- TC may be, for example, 850°C or less, 800°C or less, 750°C or less, or 720°C or less.
- TC cooling stop temperature
- the cooling start temperature for the forced cooling from the above austenite temperature range is not particularly limited, but there is no problem as long as it is within the austenite temperature range.
- the temperature of the outer surface 1214 on the corner side of the top portion immediately after the flash butt welding of the rail is completed is about 1200°C, so the upper limit of the austenite temperature range in this embodiment is essentially 1200°C.
- the austenite temperature range differs depending on the carbon content and alloy components of the rail. In order to accurately determine the austenite temperature range, it is most preferable to directly measure the transformation point by a reheating and cooling experiment or the like. However, since actual measurement is not necessarily easy, it may be simply determined by reading from an equilibrium phase diagram of the Fe-Fe 3 C system based only on the carbon content.
- Fig. 15 shows a phase diagram of the Fe-Fe 3 C system, quoted from Izumi Osamu et al., "Lecture on Current Metal Science, Materials, Vol. 4, Steel Materials," 2nd Edition, Japan Institute of Metals, December 1985, p. 19.
- the austenite temperature range in the component system of a rail is a region higher than the A3 line and the Acm line in the parallel phase diagram.
- Ar3 is about 715°C to 750°C
- Arcm is about 715°C to 900°C.
- the A3 line is the solubility line of the ferrite phase in the austenite phase
- the Acm line is the solubility line of the cementite phase in the austenite phase.
- the cooling stop temperature (TA) of the head jaw outer surface 1212 is limited to 650 ° C. or more.
- TA may be 680 ° C. or more, 700 ° C. or more, 720 ° C. or more, or 750 ° C. or more. It is not necessary to limit the upper limit of TA, but TA may be, for example, 950 ° C. or less, 900 ° C.
- the cooling stop temperature TA
- the welded joint 12 is allowed to cool naturally. If the welded joint 12 is forced to cool again after the forced cooling is stopped, martensite may be generated in the welded joint 12.
- the welded joint 12 is preferably left in the air until its temperature reaches room temperature.
- the average cooling rate of the outer surface on the corner side of the top portion is usually about 0.5°C/second in the temperature range from 600°C to 200°C.
- the cooling start temperature for forced cooling from the above austenite temperature range is not particularly limited, but there is no problem as long as it is within the austenite temperature range.
- the austenite temperature range is specified as described above.
- a method is generally used in which a refrigerant such as air is sprayed onto the top outer casing surface 1211, top corner outer casing surface 1214, and head side outer casing surface 1213 shown in Figure 2.
- the cooling stop temperature (TC) of the top corner outer casing surface 1214 is adjusted mainly by controlling the amount of refrigerant sprayed onto the top outer casing surface 1211 and top corner outer casing surface 1214.
- the cooling stop temperature (TA) of the head jaw outer casing surface 1212 is adjusted mainly by controlling the amount of refrigerant sprayed onto the head side outer casing surface 1213.
- the cooling stop temperature (TC) of the top corner outer surface 1214 and the cooling stop temperature (TA) of the head chin outer surface 1212 can be controlled by adjusting the distance between the refrigerant spray holes and the outer surfaces of the top outer surface 1211, the top corner outer surface 1214, and the head side outer surface 1213.
- the device for performing the cooling in the above-mentioned procedure is not particularly limited.
- a cooling device 2 as illustrated in FIG. 17 may be used as the cooling means for the welded rail 1 according to this embodiment.
- This cooling device 2 includes a rail installation section, a plurality of refrigerant injection means 21 having refrigerant injection holes, a refrigerant supply means 23, and a control means 24.
- the rail installation section is configured so that the welded joints 12 of the welded rail 1 can be placed thereon.
- FIG. 17 shows the state in which the welded joints 12 of the welded rail 1 are placed in the rail installation section.
- the cooling device 2 may also include a drive device for moving the welded rail 1 placed in the rail installation section in its longitudinal direction. This allows the multiple welded joints 12 provided on the welded rail 1 to be continuously cooled.
- the plurality of coolant injection means 21 are arranged so as to surround the rail installation portion.
- the coolant injection direction of the coolant injection means 21 is directed toward the rail installation portion.
- the coolant injection means 21 may be configured so that the installation location thereof can be changed.
- the coolant injection means 21 may be configured so that the coolant injection direction thereof can be changed. This allows the cooling device 2 to be used for welded rails 1 of various shapes. In addition, it is preferable that the cooling device 2 does not inject the refrigerant toward the column portion 122 of the welded joint portion 12. A part of the refrigerant injected into the column portion 122 flows to the head jaw outer surface 1212 of the welded joint portion 12, lowering the temperature of the head jaw outer surface 1212.
- the refrigerant injection means 21 positioned to inject the refrigerant toward the column portion 122 is omitted.
- the cooling device 2 has the refrigerant injection means 21 positioned to inject the refrigerant toward the column portion 122, it is preferable to suppress the amount of refrigerant injected into the column portion 122 using the control means 24 described later.
- the refrigerant supplying means 23 supplies refrigerant to the refrigerant injection means 21.
- the control means 24 is configured to start and end the injection of refrigerant from the refrigerant injection means 21.
- the control means 24 can also independently control the start and end of the injection of refrigerant from each of the multiple refrigerant injection means 21.
- optimization of the amount of coolant injection using the control means 24 and/or the coolant injection means 21 is extremely important for controlling the cooling conditions of the welded joint 12 as described above. It is necessary to set the distance between the coolant injection means 21 and the welded joint 12 within a specified range and to set the amount of coolant injection for each of the multiple coolant injection means 21 independently. Therefore, it is preferable that the control means 24 be able to independently control the amount of coolant injected for each of the multiple coolant injection means 21. This allows the cooling stop temperature to be preferably controlled as described above. Furthermore, if the control means cannot control the amount of coolant injection, it is necessary to preferably control the cooling stop temperature as described above by changing the position of the coolant injection means 21 and adjusting the distance between the coolant injection hole and the outer surface.
- the method for measuring the cooling stop temperature and the average cooling rate is as follows.
- B) The welded joint 12 is installed on the rail installation portion of the cooling device. Installation may be performed by moving the welded joint 12 while the cooling device is stationary. Alternatively, installation may be performed by moving the cooling device while the welded joint 12 is stationary.
- the time required to install the welded joint 12 in the cooling device and start cooling is approximately 5 to 10 seconds.
- C Cool the welded joint 12.
- D After cooling is completed, the cooling device is removed from the welded joint 12. When removing the cooling device, the welded joint 12 may be moved, or the cooling device may be moved. In either case, the time required to remove the cooling device from the welded joint 12 is approximately 5 to 10 seconds.
- E Immediately after removing the cooling device from the welded joint 12, a radiation thermometer is used to measure the temperatures of the outer surface of the top corner side and the outer surface of the head jaw of the welded joint 12. These temperatures are the cooling stop temperature (TC) of the outer surface of the top corner side and the cooling stop temperature (TA) of the outer surface of the head jaw.
- TC cooling stop temperature
- TA cooling stop temperature
- the above-mentioned temperature measurement procedure is applied to a cooling device 2 that is not equipped with a temperature measuring means.
- the cooling device 2 may further include a temperature measuring means that is connected to the control means 24 and is arranged facing the rail installation portion.
- the temperature measuring means is a radiation thermometer.
- the radiation thermometer can measure the surface temperature of an object.
- the cooling conditions of the welded joint 12 can be controlled with high accuracy according to the temperature of the welded joint 12. Note that, when the cooling device 2 is equipped with a temperature measuring means, it is desirable to start cooling 5 to 10 seconds after the completion of the measurement of the cooling start temperature. It is also desirable to measure the cooling stop temperature 5 to 10 seconds after the completion of cooling.
- the temperature distribution of the welded joint 12 disposed in the rail installation portion will also be approximately constant, and therefore it is possible to cool the welded joint 12 under the same coolant injection conditions. Therefore, if the coolant injection conditions that can bring the cooling conditions within the range of the manufacturing method according to this embodiment are determined in advance, there is no need to measure the temperature using a temperature measuring means.
- the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the head corner outer surface 1214 is 1340°C or higher, the temperatures of the head corner outer surface 1214 and the head jaw outer surface 1212 are secured, and the cooling rate of the head jaw outer surface 1212 during the cooling process after cooling is stopped is relaxed, and as shown in FIG. 8, the number of martensite structures formed in the martensite structure evaluation area C near the head jaw is 5 or less, and the breakage resistance of the welded joint 12 can be further improved. For this reason, it is preferable to set TA+TC ⁇ 1340. To stably control the number of martensite structures formed in the martensite structure evaluation area C to 5 or less, it is even more preferable to control TA+TC to 1360°C or higher and 1500°C or less.
- TA-TC to 20°C or more and 120°C or less. As described below, it is expected that there will be few cases where TA-TC will be below 0°C, so the lower limit of TA-TC will be set to 0°C.
- the difference between the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is in the range of 160 to 240°C, as shown in Figure 13, even if the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is 1340°C or higher, the number of martensite structures formed will not be 5 or less.
- the sum of the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is in the range of 1250 to 1330°C, as shown in Figure 14, even if the difference between the cooling stop temperature (TA) of the head jaw outer surface 1212 and the cooling stop temperature (TC) of the top corner outer surface 1214 is 140°C or less, the number of martensite structures formed will not be 5 or less.
- TA cooling stop temperature
- TC cooling stop temperature
- the flash butt welding conditions are not particularly limited.
- Welding conditions suitable for rails having the above-mentioned chemical components can be adopted as appropriate.
- the cooling means for the welded joint 12 is also not limited. Cooling means that can set the cooling stop temperature (TC) of the head corner side outer surface 1214 at the weld center A and the cooling stop temperature (TA) of the head jaw outer surface 1212 within the above-mentioned ranges can be adopted as appropriate.
- the steel expelled from the weld in the upset process remains as a weld metal in the weld joint 12.
- the weld metal is removed immediately after welding is completed.
- trimming or bead cutting
- a weld metal of several mm in thickness may still remain on the surface of the head jaw after welding is completed.
- the evaluation area (C) of the martensitic structure needs to be identified based on the head jaw surface of the base rail, regardless of this remaining weld metal.
- the metal structure in the martensite structure evaluation region C is pearlite. It has been confirmed that pearlite structure is best for ensuring the wear resistance of not only this region but also the rail head. Therefore, for the head of the rail welded joint (the region from the top surface to a depth of 1/3h), it is preferable that the parts other than the martensite structure limited above be pearlite structure. For other parts, the parts other than the martensite structure limited above may be metal structures other than pearlite structure as long as they can ensure the strength, ductility, and toughness required for the rail. In the manufacturing method of the welded rail according to this embodiment, the rail components and cooling stop temperature are within the above-mentioned ranges, so that the metal structure of the welded joint is mainly composed of pearlite.
- the conditions in the example are merely one example of conditions adopted to confirm the feasibility and effect of the present invention.
- the present invention is not limited to this one example of conditions.
- Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and the object of the present invention is achieved.
- the inventors manufactured welded rails under various conditions and evaluated their breakage resistance.
- the test conditions are as follows:
- Cooling conditions for welded joints after welding Location Weld center (A) Cooling start time: 15 seconds after welding is completed Cooling method: Air Cooling area: Top outer surface 1211, top corner outer surface 1214, side outer surface 1213 Cooling after air cooling: Cool naturally (up to 50°C) ⁇ Characteristics of flash butt welded joint HAZ width: 32mm Hardness at the center of the weld: 390-440 HV Hardness of softest part: 280 HV
- Polishing conditions buff polishing with 1 ⁇ m diamond paste Martensite etching conditions
- Etching solution alcohol + 5% nitric acid (nital)
- Etching time 5 to 10 seconds
- Equipment Optical microscope Magnification: 400x
- 400x Method for evaluating structure Martensite structures that could be confirmed under an optical microscope at 400x were evaluated.
- the target martensite structure had a major axis of 25 to 100 ⁇ m, and when martensite structures were generated, the number of martensite structures was investigated.
- Drop weight test conditions (see Figure 6) Position: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and a drop weight is dropped onto the bottom of the rail.
- Span length (distance between the two support points): 1000 mm Falling weight: 1000kgf (9.8kN)
- the chemical composition of the rails used in flash butt welding is shown in Tables 1A, 1B, 2A, 2B, 3A, and 3B.
- the cooling stop temperature (TC) of the outer surface of the top corner and the cooling stop temperature (TA) of the outer surface of the head jaw are shown in Tables 4A and 4B.
- Tables 4A and 4B also show the calculation results of TA+TC and TA-TC.
- Tables 4A and 4B also show the number of martensites in the martensite structure evaluation region C of the welded rail and the evaluation results of the breakage resistance of the welded rail.
- the evaluation criteria were as follows. Number of martensites in martensite structure evaluation area C: 5 or less: A More than 5 but less than 10: B Over 10: C ⁇ Breakage resistance evaluation No breakage when dropped from a weight height of 7.5 m: A B: Breakage occurred at a drop height of 7.5 m, but no breakage occurred at a drop height of 5.0 m Breakage occurred at a falling weight height of 5.0 m: C Welded rails whose breakage resistance was rated as "B" or "A" were determined to have excellent breakage resistance.
- the welded rails obtained by the manufacturing methods of Examples 31 and 32 lacked resistance to breakage.
- the amount of martensite in these welded rails was excessive. This was thought to be because the cooling stop temperature (TA) of the outer surface of the head jaw at the weld center of the weld joint was too low.
- TA cooling stop temperature
- the welded rails obtained by the manufacturing method of Example 37 had insufficient breakage resistance.
- the amount of martensite in these welded rails was excessive. This is thought to be because the cooling stop temperature (TC) of the outer surface on the corner side of the top of the weld joint at the weld center was too low.
- the welded rail obtained by the manufacturing method of Example 38 had insufficient breakage resistance.
- the number of martensite particles in this welded rail was excessive. This was thought to be because both TA and TC were too low.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Machines For Laying And Maintaining Railways (AREA)
Abstract
Description
本発明は、フラッシュバット溶接レールの製造方法に関する。
本願は、2023年7月20日に、日本に出願された特願2023-118424号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a flash butt welded rail.
This application claims priority based on Japanese Patent Application No. 2023-118424, filed on July 20, 2023, the contents of which are incorporated herein by reference.
フラッシュバット溶接は、レールの溶接方法として広く普及している。フラッシュバット溶接の特徴として、自動化が可能であり、品質の安定性が高く、溶接時間が短いなどの長所を有することが知られている。 Flash butt welding is a widely used method for welding rails. Flash butt welding is known to have the advantages of being able to be automated, having high quality stability, and a short welding time.
フラッシュバット溶接は、加熱によりレール端面を溶かした後、溶融面を加圧密着させて、互いのレールを接合する技術である。フラッシュバット溶接の際、レールは室温から最大で融点近くまで加熱され、次いで冷却される。そのため、フラッシュバット溶接によって、レールの金属組織及び硬さに変化が生じる。溶接、切断などの熱で冶金的性質、機械的性質などが変化を生じた部分は、熱影響部(HAZ:Heat Affected Zone)と呼ばれる。 Flash butt welding is a technique in which the rail ends are melted by heating, and then the molten surfaces are pressed together to join the rails. During flash butt welding, the rail is heated from room temperature up to nearly its melting point, and then cooled. As a result, flash butt welding causes changes in the metal structure and hardness of the rail. The area where the metallurgical and mechanical properties have changed due to the heat from welding, cutting, etc. is called the heat affected zone (HAZ).
HAZでは、溶接時にA1点以上まで加熱されることに伴う、金属組織のオーステナイト化及びパーライト変態、並びにA1点近傍まで加熱されることに伴う、金属組織の部分的なオーステナイト化及びパーライト組織の分解が生じる。フラッシュバット溶接時にオーステナイト化した部分では、溶接部の硬さを確保するために溶接直後に行われる空冷等の強制冷却により、靭性に有害なマルテンサイト組織が生成するといった問題があった。 In the HAZ, the metal structure becomes austenitic and transforms into pearlite when it is heated to above the A1 point during welding, and partial austenitization of the metal structure and decomposition of the pearlite structure occurs when it is heated to near the A1 point. In the areas that become austenitic during flash butt welding, there is a problem in that forced cooling, such as air cooling, performed immediately after welding to ensure the hardness of the welded part can produce martensite structures that are harmful to toughness.
マルテンサイト組織は破壊の起点となり易く、マルテンサイト組織が生成すると、レールの折損が発生し易いといった問題があった。このマルテンサイト組織は、冷却速度が比較的早いレールの溶接継手部の頭部に生成し易いという特徴があった。なお、頭部は耐摩耗性を必要とする部位であり、軟化を抑制するために他部位より高速で冷却する必要がある一方、過冷却によりマルテンサイト組織が生成しやすいという特徴がある。 The martensite structure is prone to becoming the starting point of fracture, and when it forms, rails are prone to breakage. This martensite structure tends to form easily in the head of the welded joint of the rail, where the cooling rate is relatively fast. The head is an area that requires wear resistance, and needs to be cooled faster than other areas to prevent softening. However, it also has the characteristic that martensite is prone to form due to supercooling.
レールのフラッシュバット溶接等によって得られた溶接継手部の冷却については、残留応力制御により溶接継手の疲労強度を向上させるため、次のような技術が提案されている。 The following technologies have been proposed for cooling welded joints obtained by flash butt welding of rails, etc., to improve the fatigue strength of the welded joints by controlling residual stress.
特許文献1においては、レール溶接部の冷却において、オーステナイトからパーライトへの変態が完了するまでの温度範囲において柱部、さらには、足部、頭部を冷却することを特徴とする冷却方法が記されている。特許文献1に記載の技術は、レール溶接部の残留応力を低減させて、レール溶接継手部の耐疲労性を向上させることが目的である。
また、フラッシュバット溶接レールの溶接継手部においては、溶接条件および頭部の冷却条件を制御し、溶接継手の寿命を向上させるため、次のような技術が提案されている。 In addition, for the welded joints of flash butt welded rails, the following technologies have been proposed to control the welding conditions and head cooling conditions and improve the life of the welded joints.
特許文献2においては、アプセット量20mm以上でフラッシュバット溶接し、溶接終了後70秒以内にレール頭部の冷却を開始し、冷却開始後25~60秒で冷却を終了することを特徴とする溶接方法や冷却方法が記されている。
さらに、高炭素成分のレールにおいては、炭素量を増加させると、溶接レールの溶接継手部に靭性の低い初析セメンタイト組織の生成が促進され、レールの折損等の可能性が増すと言った問題があった。そこで、溶接継手部の靭性を向上させるため、次のような技術が提案されている。 Furthermore, in rails with high carbon content, increasing the carbon content promotes the formation of pro-eutectoid cementite structures with low toughness in the welded joints of welded rails, increasing the possibility of rail breakage. Therefore, the following technologies have been proposed to improve the toughness of welded joints.
特許文献3においては、レールの溶接において、オーステナイト相とセメンタイト相が混在する2相状態の800~900℃の範囲に加熱されたレール頭部と底部のいずれか一方または両方を、750℃以上の温度域から冷却速度1~10℃/secで加速冷却し、前記鋼レールの頭部と底部のいずれか一方または両方の温度が680~550℃に達した時点で加速冷却を停止し、その後、680℃を超えないように放冷または緩冷却し、初析セメンタイト組織の生成を抑制し、レール溶接継手部の靭性を向上させる溶接継手部の熱処理方法が記されている。
しかしながら、特許文献1の技術の目的は、レール折損を促進する頭部の顎部のマルテンサイト組織の生成を制御することではない。したがって当該技術には、レールの耐折損性を向上させる効果はなかった。また、特許文献1の技術においては、靭性に有害なマルテンサイト組織が生成する頭部の顎部の冷却速度の制御が行われていない。当該技術では、溶接中心からレール軸方向に20mm離れた位置の冷却速度を制御している。この位置は、マルテンサイトが生成する一般的なHAZ部(20mm以内)の外側である。従って、当該技術による温度制御は、溶接継手部のマルテンサイト組織の生成を制御するものではなかった。
However, the purpose of the technology in
特許文献2に記載の技術は、レール溶接部の欠陥を低減し、さらに、溶接継手部の硬さを確保し、レール溶接継手部の寿命を向上させることが目的である。しかしながら、特許文献2に記載の技術は、レール折損を促進する頭部の顎部のマルテンサイト組織の生成を制御することを目的としていない。従って当該技術には、レールの耐折損性を向上させる効果はなかった。
The technology described in
特許文献3に記載の技術は、レール溶接継手部の靭性を低下させる初析セメンタイト組織の生成を抑制し、レール溶接継手部の耐折損性を向上させることを目的としている。しかしながら、特許文献3に記載の技術は、レール折損を促進するマルテンサイト組織の生成を制御するものではなく、レールの耐折損性を抜本的に向上させる効果はなかった。また、特許文献3に記載の技術は、レール頭部、底部の冷却速度の制御が主であり、靭性に有害なマルテンサイト組織が生成する頭部の顎部の組織の生成を制御するものではなかった。
The technology described in
本発明は、上述した問題点に鑑み案出されたものであり、フラッシュバット溶接レールの溶接継手部における耐折損性を向上させることを目的としたものである。好ましくは、軌道環境が厳しい貨物鉄道用のフラッシュバット溶接レールの溶接継手部における、極めて厳しい耐折損性の要求を満足することができる製造方法を提供することを課題とする。 The present invention was devised in consideration of the above-mentioned problems, and aims to improve the breakage resistance of the welded joints of flash-butt welded rails. Preferably, the objective is to provide a manufacturing method that can satisfy the extremely strict requirements for breakage resistance of the welded joints of flash-butt welded rails for freight railways, which have a harsh track environment.
本発明の要旨は以下の通りである。
(1)本発明の一態様に係るフラッシュバット溶接レールの製造方法は、複数のレール部と、複数の前記レール部を接合する溶接継手部とを有するフラッシュバット溶接レールの製造方法であって、化学成分として、単位質量%で、C:0.70~1.20%、Si:0.05~2.00%、Mn:0.05~2.00%、P≦0.0300%、S≦0.0300%、Cr:0~2.00%、Mo:0~0.50%、Co:0~1.00%、B:0~0.0050%、Cu:0~1.00%、Ni:0~1.00%、V:0~0.200%、Nb:0~0.0500%、Ti:0~0.0500%、Mg:0~0.0200%、Ca:0~0.0200%、REM:0~0.0500%、N:0~0.0200%、Zr:0~0.0200%、及びAl:0~1.0000%を含有し、残部はFe及び不純物からなるレールをフラッシュバット溶接する工程と、前記フラッシュバット溶接の終了後、直ちに前記溶接継手部を強制冷却する工程とを備え、オーステナイト温度域からの前記強制冷却において、前記溶接継手部の溶接中心における頭頂部コーナー側外郭表面の冷却停止温度(TC)を560℃以上850℃以下とし、頭部顎部外郭表面の冷却停止温度(TA)を650℃以上950℃以下とする。
(2)好ましくは、上記(1)に記載のフラッシュバット溶接レールの製造方法では、前記頭頂部コーナー側外郭表面の前記冷却停止温度(TC)、及び前記頭部顎部外郭表面の前記冷却停止温度(TA)が、下記の1式および2式を満たす。
TA+TC≧1340 1式
0≦TA-TC≦140 2式
(3)好ましくは、上記(1)又は(2)に記載のフラッシュバット溶接レールの製造方法では、前記レールが、前記化学成分として、単位質量%で、a群:Cr:0.05%以上2.00%以下、Mo:0.01%以上0.50%以下、b群:Co:0.01%以上1.00%以下、c群:B:0.0001%以上0.0050%以下、d群:Cu:0.01%以上1.00%以下、及びNi:0.01%以上1.00%以下の1種または2種、e群:V:0.005%以上0.200%以下、Nb:0.0010%以上0.0500%以下、及びTi:0.0010%以上0.0500%以下の1種または2種以上、f群:Mg:0.0005%以上0.0200%以下、Ca:0.0005%以上0.0200%以下、及びREM:0.0005%以上0.0500%以下の1種または2種以上、g群:N:0.0025%以上0.0200%以下、h群:Zr:0.0001%以上0.0200%以下、i群:Al:0.0010%以上1.0000%以下、の1種又は2種以上を含有する。
(4)好ましくは、上記(1)~(3)の何れか一項に記載のフラッシュバット溶接レールの製造方法では、前記強制冷却が空冷である。
The gist of the present invention is as follows.
(1) A method for manufacturing a flash butt welded rail according to one aspect of the present invention is a method for manufacturing a flash butt welded rail having a plurality of rail portions and a weld joint portion joining the plurality of rail portions, the method comprising the steps of: C: 0.70-1.20%, Si: 0.05-2.00%, Mn: 0.05-2.00%, P≦0.0300%, S≦0.0300%, Cr: 0-2.00%, Mo: 0-0.50%, Co: 0-1.00%, B: 0-0.0050%, Cu: 0-1.00%, Ni: 0-1.00%, V: 0-0.200%, Nb: 0-0.0500%, Ti: 0-0.0500%, Mg ... The method includes the steps of flash butt welding a rail containing Fe: 0-0.0200%, Ca: 0-0.0200%, REM: 0-0.0500%, N: 0-0.0200%, Zr: 0-0.0200%, and Al: 0-1.0000%, with the balance being Fe and impurities, and immediately after completion of the flash butt welding, forcibly cooling the welded joint, wherein in the forcible cooling from the austenite temperature range, the cooling stop temperature (TC) of the outer surface of the head corner side at the weld center of the welded joint is 560°C or higher and 850°C or lower, and the cooling stop temperature (TA) of the outer surface of the head and jaw is 650°C or higher and 950°C or lower.
(2) Preferably, in the manufacturing method of a flash butt welded rail described above in (1), the cooling stop temperature (TC) of the outer surface of the head corner side and the cooling stop temperature (TA) of the outer surface of the head jaw portion satisfy the following
TA+TC≧1340 1 0≦TA−TC≦140 2 (3) Preferably, in the manufacturing method of a flash butt welded rail described in (1) or (2) above, the rail has, as the chemical components, in mass%, one or two of the following: group a: Cr: 0.05% or more and 2.00% or less, Mo: 0.01% or more and 0.50% or less, group b: Co: 0.01% or more and 1.00% or less, group c: B: 0.0001% or more and 0.0050% or less, group d: Cu: 0.01% or more and 1.00% or less, and Ni: 0.01% or more and 1.00% or less, group e: V: 0.005% or more and 0.200% or less, b: one or more of 0.0010% or more and 0.0500% or less, and Ti: 0.0010% or more and 0.0500% or less; f group: one or more of Mg: 0.0005% or more and 0.0200% or less, Ca: 0.0005% or more and 0.0200% or less, and REM: 0.0005% or more and 0.0500% or less; g group: N: 0.0025% or more and 0.0200% or less; h group: Zr: 0.0001% or more and 0.0200% or less; i group: Al: 0.0010% or more and 1.0000% or less.
(4) Preferably, in the method for manufacturing a flash-butt welded rail described in any one of (1) to (3) above, the forced cooling is air cooling.
本発明の上記態様によれば、フラッシュバット溶接レールにおいて、溶接継手部の耐折損性を向上させ、使用寿命を大きく向上させることが可能となる。 The above aspect of the present invention makes it possible to improve the breakage resistance of the welded joint in flash butt welded rails and significantly improve their service life.
課題解決にあたり、発明者らは溶接継手部の折損性の発生原因を調査し、溶接継手部の頭部の顎部から発生する脆性破壊起因の折損を防止することを検討した。その結果、折損はレール頭部の顎部から発生する脆性き裂を起点とする場合が多いこと、さらには、脆性き裂の起点部にはマルテンサイト組織が生成していることを確認した。そこで、このマルテンサイト組織と溶接継手部の冷却条件との関係を解析した結果、冷却条件とマルテンサイト組織の生成との間には相関があることを本発明者らは明らかにした。そして、溶接継手部の冷却条件を制御することにより、マルテンサイト組織の生成が抑制されることを確認した。そして本発明者らは、過酷な使用環境下で使用される溶接レールの溶接継手部の使用性能を安定的に向上させるレールの製造方法を見出した。 In order to solve this problem, the inventors investigated the causes of breakage in welded joints and considered ways to prevent breakage caused by brittle fracture that occurs in the jaw of the head of a welded joint. As a result, they confirmed that breakage often begins with a brittle crack that occurs in the jaw of the rail head, and that martensite structures are formed at the origin of the brittle crack. As a result of analyzing the relationship between this martensite structure and the cooling conditions of the welded joint, the inventors clarified that there is a correlation between the cooling conditions and the formation of martensite structures. They also confirmed that the formation of martensite structures can be suppressed by controlling the cooling conditions of the welded joint. The inventors have discovered a manufacturing method for rails that stably improves the performance of welded joints of welded rails used in harsh operating environments.
本発明の一実施形態に係るフラッシュバット溶接レールの製造方法は、複数のレール部11と、複数のレール部11を接合する溶接継手部12とを有するフラッシュバット溶接レール1の製造方法であって、化学成分として、単位質量%で、C:0.70~1.20%、Si:0.05~2.00%、Mn:0.05~2.00%、P≦0.0300%、S≦0.0300%を含有し、残部はFe及び不純物からなるレールをフラッシュバット溶接する工程と、フラッシュバット溶接の終了後、直ちに溶接継手部12を強制冷却する工程とを備え、オーステナイト温度域からの強制冷却において、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)を560℃以上とし、頭部顎部外郭表面1212の冷却停止温度(TA)を650℃以上とする。本実施形態に係るフラッシュバット溶接レールの製造方法につき、以下に詳細に説明する。
The manufacturing method of a flash butt welded rail according to one embodiment of the present invention is a manufacturing method of a flash butt welded
フラッシュバット溶接レール(以下、単に「溶接レール1」と称する)は、図1に示されるように、複数のレール部11と、これらレール部11を接合する溶接継手部12とを備える。本発明者らは、溶接継手部12の耐折損性を向上させる方法について鋭意検討を重ねた。そして本発明者らは、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度、及び溶接継手部12の頭部顎部外郭表面1212の冷却停止温度をある一定の温度以上に制御することにより、溶接継手部12の耐折損性が向上することを知見した。
As shown in FIG. 1, a flash butt welded rail (hereinafter simply referred to as "welded
そして本発明者らは、溶接完了後の熱処理条件を最適化することにより、図5に示される、溶接継手部12の頭部121の頭部顎部のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成量を減少させた。これにより本発明者らは、溶接継手部12の耐折損性を向上させ、その使用寿命を大きく向上させることができた。
The inventors then optimized the heat treatment conditions after welding was completed, thereby reducing the amount of martensite structure formed in the martensite structure evaluation region C of the head jaw portion of the
以上の知見に基づいて得られた、本発明の一実施形態に係るフラッシュバット溶接レールの製造方法につき、詳細に説明する。まず、本実施形態において用いられる用語を説明する。 A method for manufacturing a flash butt welded rail according to one embodiment of the present invention, which was developed based on the above findings, will now be described in detail. First, the terms used in this embodiment will be explained.
フラッシュバット溶接レール1とは、レールをフラッシュバット溶接してつなぎ合わせることによって得られるレールである。以下、フラッシュバット溶接レール1を単に「溶接レール1」と称する。
A flash butt welded
溶接レール1は、図1及び図2に示されるように、レール頭部111、レール柱部112、及びレール底部113を有する複数のレール部11と、これらレール部11を接合する溶接継手部12とを備えるものである。なお、図1中の符号「A」は、後述する溶接中心を示す。以下、単に「レール」と記載した場合は、溶接前のレールを意味し、「レール部」と記載した場合は、溶接レール1の母材部を意味する。
As shown in Figures 1 and 2, the
レール部11のレール頭部111とは、図2に示されるレール部11の長手方向に垂直な断面において、レール部11の上下方向中央における括れた部分よりも上側の部分をいう。また、レール柱部112とは、図2に示されるレール部11の断面において、レール部11の上下方向中央における括れた部分をいう。さらに、レール底部113とは、図2に示されるレール部11の断面において、レール部11の上下方向中央における括れた部分よりも下側の部分をいう。
The
また、レール頭部111において、上部の外郭表面をレール頭頂面、又はレール頭頂部外郭表面1111と称し、上部のコーナー側の外郭表面をレール頭頂部コーナー側外郭表面1114と称し、上部の側部の外郭表面をレール頭側部外郭表面1113と称する。また、レール頭部111の下部の括れた部分を、レール頭部顎部外郭表面1112と称する。
In addition, the outer surface of the upper part of the
レール頭頂部コーナー側外郭表面1114は、図2に示されるように、レール頭部111の幅(W)の中心(B)からレール頭側部外郭表面1113側に0.25W~0.35W離れた位置の外郭表面である。また、レール頭部顎部外郭表面1112は、図2に示されるようにレール頭部の幅(W)の中心(B)からレール頭側部外郭表面1113側に0.25W~0.35W離れた位置の外郭表面である。なお、当然ながら、溶接レール1の上下方向とは、溶接レール1が軌道として使用される際の上下方向を意味する。
The rail head corner side
図2には、レール頭部111の幅方向の中心から0.25W離隔され、且つ、レール部11の上下方向に沿った破線と、レール頭部111の幅方向の中心から0.35W離隔され、且つ、レール部11の上下方向に沿った破線とが記載されている。レール頭頂面のうち、これらの破線の間に位置する領域が、レール頭頂部コーナー側外郭表面1114である。また、レール頭部の顎部の表面のうち、これらの破線の間に位置する領域が、レール頭部顎部外郭表面1112である。
In FIG. 2, a dashed line is shown that is 0.25W away from the center of the width of the
溶接継手部12とは、JIS Z 3001-1:2018に規定された「溶接継手」のことであり、部材を溶接で一つにした結合部を意味する。本実施形態において、部材とはレール部11の材料となるレールのことである。
The welded joint 12 is a "welded joint" as defined in JIS Z 3001-1:2018, and refers to a joint where members are joined together by welding. In this embodiment, the member refers to the rail that is the material of the
溶接レール1において溶接継手部12の形状はレール部11と略同一となる。従って、溶接継手部12も、レール部11と同様に、頭部121、柱部122、及び底部123を有する。溶接継手部12の頭部121は、頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214、頭側部外郭表面1213、及び頭部顎部外郭表面1212を有する。以下、レール部11における頭部の名称を「レール頭部111」と称し、溶接継手部12における頭部の名称を単に「頭部121」と称する。他の部位に関しても、レール部11に含まれる場合は「レール」という用語を付し、溶接継手部12に含まれる場合は、「レール」という用語を付さない。
In the welded
熱影響部(heat-affected zone、HAZ)12Hとは、JIS Z
3001-1:2018に規定される通り、溶接、切断等の熱で、冶金的性質、機械的性質等が変化を生じた、溶融していない母材の部分を意味する。本実施形態において、母材とはレール部11のことである。
Heat-affected zone (HAZ) 12H is JIS Z
As defined in JIS C 3001-1:2018, the term refers to a non-melted base material portion whose metallurgical properties, mechanical properties, etc. have been changed by heat from welding, cutting, etc. In this embodiment, the base material refers to the
本実施形態に係る溶接レール1は、図3に示すように、溶接レール1の長手方向に沿った熱影響部12Hの幅、即ちHAZ幅を有している。本実施形態に係る溶接レール1では、HAZ幅を、溶接レール1の長手方向に平行であり、且つ、溶接レール1の頭部の幅の中心(B)から頭側部外郭表面1213側に0.25W~0.35W離れた位置の断面を通る切断面において測定される、溶接継手部12の硬さ分布に基づいて定義する。溶接レール1の長手方向に平行であり、且つ、溶接レール1の頭部の幅の中心(B)から頭側部外郭表面1213側に0.25W~0.35W離れた位置の断面を通る切断面を、本実施形態において「長手方向断面」と称する。なお、図3には、レール頭部111の幅方向の中心から0.25W離隔され、且つ、レール部11の上下方向に沿った破線と、レール頭部111の幅方向の中心から0.35W離隔され、且つ、レール部11の上下方向に沿った破線とが記載されている。長手方向断面とは、これらの破線の間の任意の箇所に形成された、レールの上下方向に沿った切断面である。以下、溶接継手部12の硬さ分布の概要を説明し、次いで、HAZ幅の定義について説明する。
As shown in Figure 3, the welded
図4に、溶接継手部12の長手方向断面の硬度分布を模式的に示す。このグラフは、溶接継手部12の長手方向断面において、溶接継手部12の頭部顎部外郭表面1212から頭頂部コーナー側外郭表面1214へと向かって5mm深さの位置を、頭部顎部外郭表面1212に沿って連続的にビッカース硬さ測定を行うことにより得られる。なお、このグラフに記載された溶接中心Aとは、溶接継手部12の長手方向断面において、熱影響部12Hの中心を通る、溶接レールの上下方向に沿った直線を意味する。通常、溶接中心Aは、レールの継目とおおむね一致する。
Figure 4 shows a schematic diagram of the hardness distribution in the longitudinal cross section of the welded joint 12. This graph was obtained by continuously measuring Vickers hardness along the head jaw
溶接継手部12には、溶接熱によってA1点以上に加熱されて全体的にオーステナイト化し、次いで溶接完了後の降温によってパーライト変態した領域が形成される。また、この領域の両側には、溶接熱によってA1点近傍に加熱されて部分的にオーステナイト化し、次いで溶接完了後の降温によってパーライト組織の分解が発生する領域が存在する。これらの領域では、硬度が著しく低くなる。そのため、通常、フラッシュバット溶接によって得られた溶接レール1の硬さ分布のグラフにおいては、図4に示されるように、2つのビッカース硬さの谷が存在する。これらのビッカース硬さの谷が生じる場所を、本実施形態に係る溶接レール1の最軟化部と定義する。2つの最軟化部の間隔を、HAZ幅と定義する。溶接中心AはこのHAZ幅の中心とほぼ一致する。
In the welded joint 12, a region is formed in which the welded joint is heated to above the A1 point by the welding heat, becomes austenitic overall, and then transforms into pearlite as the temperature is lowered after welding is completed. In addition, on both sides of this region, there are regions in which the welded joint is heated to near the A1 point by the welding heat, becomes partially austenitic, and then the pearlite structure decomposes as the temperature is lowered after welding is completed. In these regions, the hardness is significantly lower. Therefore, in a graph of the hardness distribution of a welded
マルテンサイト組織評価領域Cは、図5に示されるように、長手方向断面において、溶接中心Aを中心として溶接レール1の長手方向に±5mm(幅10mm)の範囲内であり、且つ、頭部顎部外郭表面1212から頭頂部コーナー側外郭表面1214方向の深さが1~5mmである領域(C)を意味する。マルテンサイト組織評価領域Cの技術的意義については後述する。
As shown in Figure 5, the martensite structure evaluation area C refers to the area (C) in the longitudinal cross section that is within a range of ±5 mm (
なお、マルテンサイト組織評価領域(C)は溶接レールの頭部の幅の中心(B)から頭側部外郭表面1213側に0.25W~0.35W離れた位置の長手方向断面に含まれる領域である。この長手方向断面は、頭部の幅の中心から左右に2つ断面が存在する。この2つの断面のいずれの断面を設定してもよい。また、この長手方向断面は頭部顎部外郭表面1212を通る断面である。したがって、この断面の下端は、頭部顎部外郭表面1212と一致する。マルテンサイト組織評価領域Cを上述の定義に従って特定する際には、断面の下端を頭部顎部外郭表面1212とみなせばよい。
The martensite structure evaluation region (C) is a region included in a longitudinal cross section located 0.25W to 0.35W away from the center (B) of the head width of the welded rail toward the head side
溶接継手部12の強制冷却とは、溶接継手部12にエアー、水、及びミスト等の冷媒を吹き付けることを意味する。溶接後の溶接継手部12を大気中に放置することによって生じる温度低下は、本実施形態においては溶接継手部12の放冷と称し、溶接継手部12の強制冷却とは異なる概念とみなす。
溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度とは、強制冷却の停止の時点、即ち冷媒の吹き付けを停止した時点で測定された、頭頂部コーナー側外郭表面1214の温度を意味する。同じく、溶接中心Aにおける頭部顎部外郭表面1212の冷却停止温度とは、冷媒の吹き付けを停止した時点で測定された、溶接中心Aにおける頭部顎部外郭表面1212の温度を意味する。
Forced cooling of the welded joint 12 means spraying a coolant such as air, water, or mist onto the welded joint 12. In this embodiment, the temperature drop that occurs when the welded joint 12 is left in the atmosphere after welding is referred to as natural cooling of the welded joint 12, and is considered to be a different concept from forced cooling of the welded joint 12.
The cooling stop temperature of the top corner side
次に、本発明の技術思想について説明する。本発明者らは、溶接レール1の溶接継手部12に発生する損傷を調査した。実軌道で発生した損傷レールを調査した結果、損傷の発生形態は、溶接レールの頭部から発生する脆性き裂を起点とする折損が多いことを確認した。
Next, the technical concept of the present invention will be explained. The inventors investigated damage that occurs in the welded joint 12 of the welded
まず本発明者らは、溶接レールの折損の起点部の特定を行った。その結果、多くの事例において、折損は熱影響部(HAZ)から発生していることを確認した。 First, the inventors identified the starting point of the breakage in the welded rail. As a result, they confirmed that in many cases, the breakage occurred in the heat-affected zone (HAZ).
次に、詳細に折損の発生部位の特定を行った。その結果、多くの事例において、図5に示した領域Cから折損が発生しており、この領域Cにマルテンサイト組織が生成していることが確認された。 Next, the location of the breakage was identified in detail. As a result, it was confirmed that in many cases, breakage occurred in region C shown in Figure 5, and that martensite structure was formed in this region C.
そこで、まず、この部位のマルテンサイト組織の生成状況とレール溶接継手部の折損の関係を詳細に調査した。過共析鋼レール(0.80~1.20%C)を用いて、フラッシュバット溶接試験を行い、図6に示すレールの落重試験を行い、マルテンサイト組織の生成量とレール折損の有無の関係を評価した。なお、マルテンサイト組織の生成量の制御は、主に、マルテンサイト組織が生成している溶接継手部において、溶接中心(A)から±5mmの領域(幅10mm)の頭部顎部外郭表面、頭頂部コーナー側外郭表面の冷却停止温度を制御することにより実現した。
First, the relationship between the formation of martensite structure in this area and breakage of rail welded joints was investigated in detail. A flash butt welding test was performed using hypereutectoid steel rails (0.80-1.20% C), and the rail drop weight test shown in Figure 6 was performed to evaluate the relationship between the amount of martensite structure formed and the presence or absence of rail breakage. The amount of martensite structure formed was mainly controlled by controlling the cooling stop temperature of the head jaw outer surface and the outer surface of the top corner side in an area ±5 mm (
レール、フラッシュバット溶接条件、溶接後の溶接継手部12の冷却条件、溶接継手部12の特性、マルテンサイト組織の評価方法、落重試験の条件は下記に示すとおりである。 The rail, flash butt welding conditions, cooling conditions for the welded joint 12 after welding, characteristics of the welded joint 12, evaluation method for the martensitic structure, and drop weight test conditions are as shown below.
●溶接母材となるレール
成分:0.70~1.20%C、Si、Mnを含有し、残部が鉄及び不純物
レール形状:136ポンド(重さ:67kg/m)。
硬さ:420 HV(頭頂面)
Rails as welding base material Composition: 0.70-1.20% C, Si, Mn, balance iron and impurities Rail shape: 136 pounds (weight: 67 kg/m).
Hardness: 420 HV (top surface)
●フラッシュバット溶接条件(予熱フラッシュ方式)
初期フラッシュ時間:15sec
予熱回数:10回
後期フラッシュ時間:25sec
平均的な後期フラッシュ速度:1.0mm/sec
アプセット直前(3sec間)の後期フラッシュ速度:2.0mm/sec
アプセット荷重:65KN
● Flash butt welding conditions (preheating flash method)
Initial flash time: 15 sec
Preheat times: 10 times Late flash time: 25 sec
Average late flash velocity: 1.0 mm/sec
Late flash velocity just before upsetting (for 3 seconds): 2.0 mm/sec
Upset load: 65KN
●溶接後の溶接継手部12の冷却条件
部位:溶接中心(A)
冷却開始時間:溶接終了後15sec
頭部顎部外郭表面1212の冷却停止温度(TA):500~800℃
頭頂部コーナー側外郭表面1214の冷却停止温度(TC):550~900℃
その後の冷却(頭部顎部外郭表面、頭頂部コーナー側外郭表面):放冷(50℃まで)
なお、本実施形態において「フラッシュバット溶接の終了後、直ちに溶接継手部を強制冷却する」という記載は、フラッシュバット溶接の終了後、5sec以上30sec以内に強制冷却を開始することを意味する。フラッシュバット溶接の終了の時点とは、トリミングの終了の時点のことである。トリミングにおいては、フラッシュバット溶接のアプセット工程において溶接継手部に形成されるバリが除去される。上述の条件で開始される強制冷却は、フラッシュバット溶接の終了後、直ちに開始された強制冷却とみなされる。
Cooling conditions for the welded joint 12 after welding: Location: Weld center (A)
Cooling start time: 15 seconds after welding is completed
Cooling stop temperature (TA) of head jaw outer surface 1212: 500 to 800° C.
Cooling stop temperature (TC) of the
Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
In this embodiment, the statement "immediately after completion of flash butt welding, the welded joint is forcedly cooled" means that forced cooling is started within 5 to 30 seconds after completion of flash butt welding. The time when flash butt welding is completed means the time when trimming is completed. In trimming, burrs formed on the welded joint in the upset process of flash butt welding are removed. Forced cooling started under the above conditions is considered to be forced cooling started immediately after completion of flash butt welding.
●溶接継手部12の特性
HAZ幅:32mm
溶接中心Aの硬さ:390~440 HV
最軟化部の硬さ:280 HV
Characteristics of welded joint 12 HAZ width: 32 mm
Hardness of weld center A: 390 to 440 HV
Hardness of softest part: 280 HV
●マルテンサイト組織の評価
評価部位(図5参照)
溶接継手部の長手方向の断面において、溶接中心(A)から溶接レール長手方向に±5mm(幅10mm)の範囲内であり、且つ、頭部顎部外郭表面1212から頭頂部コーナー側外郭表面側に深さ1~5mmの範囲内の領域(マルテンサイト組織評価領域:C)を意味する。
評価部位の選定理由
レール折損の起点が発生する位置であるためである。
マルテンサイト組織の現出方法
マルテンサイト組織評価領域(C)を研磨後、ナイタールエッチを行い、光学顕微鏡により観察を行う。
研磨条件:1μmダイヤペーストでのバフ研磨
マルテンサイトエッチ条件
エッチング液:アルコール+5%硝酸(ナイタール)
エッチング時間:5~10秒
組織の調査方法
装置:光学顕微鏡
倍率:400倍
組織の評価方法
光学顕微鏡の400倍で確認できるマルテンサイト組織を評価対称とした。
対象とするマルテンサイト組織は長径25~100μm、マルテンサイト組織が発生している場合はその個数を調査した。
Evaluation of martensite structure Evaluation area (see Figure 5)
In a longitudinal cross section of the welded joint, this means a region within a range of ±5 mm (
Reason for selecting the evaluation area: This is the location where the starting point of rail breakage occurs.
Method for Revealing Martensite Structure After the martensite structure evaluation region (C) is polished, it is etched with nital and observed under an optical microscope.
Polishing conditions: buff polishing with 1 μm diamond paste Martensite etching conditions Etching solution: alcohol + 5% nitric acid (nital)
Etching time: 5 to 10 seconds Method for examining structure Equipment: Optical microscope Magnification: 400x Method for evaluating structure Martensite structures that could be confirmed under an optical microscope at 400x were evaluated.
The target martensite structure had a major axis of 25 to 100 μm, and when martensite structures were generated, the number of martensite structures was investigated.
●落重試験条件(図6参照)
姿勢:頭部を下側、底部を上側として溶接レールを2点支持し、レール底部に落錘落下
スパン長(2つの支持点の間隔):1000mm
落錘重量:1000kgf(9.8kN)
落錘高さ(X):5.0、7.5m
落錘エネルギー:49.0、73.5kN・m
Drop weight test conditions (see Figure 6)
Position: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and a drop weight is dropped onto the bottom of the rail. Span length (distance between the two support points): 1000 mm
Falling weight: 1000kgf (9.8kN)
Drop height (X): 5.0, 7.5 m
Falling weight energy: 49.0, 73.5 kN.m
その結果、落錘高さ5.0m(落錘エネルギー49.0kN・m)の場合、図7に示すように、頭部顎部外郭表面1212付近のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が10個以下になると、レール溶接継手部の折損が防止できることが確認された。
As a result, it was confirmed that when the falling weight height was 5.0 m (falling weight energy was 49.0 kN·m), as shown in Figure 7, breakage of the rail welded joint could be prevented when the number of martensite structures formed in the martensite structure evaluation area C near the head jaw
さらに、落錘高さ7.5m(落錘エネルギー73.5kN・m)の場合、図8に示すように、頭部顎部外郭表面1212付近のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下になると、レール溶接継手部の折損が防止できることが確認された。この場合、さらに過酷な使用環境においても、溶接レールの折損を効果的に抑制することができると考えられる。
Furthermore, in the case of a falling weight height of 7.5 m (falling weight energy of 73.5 kN·m), as shown in FIG. 8, it was confirmed that breakage of the rail welded joint can be prevented when the number of martensite structures formed in the martensite structure evaluation region C near the head jaw
さらに、本発明者らは、マルテンサイト組織評価領域Cのマルテンサイト組織の生成量を制御するため、フラッシュバット溶接後の熱処理条件と、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成との関係を調査した。 Furthermore, in order to control the amount of martensite structure generated in martensite structure evaluation region C, the inventors investigated the relationship between the heat treatment conditions after flash butt welding and the generation of martensite structure in martensite structure evaluation region C.
過共析鋼レール(0.70~1.20%C)を用いて、フラッシュバット溶接試験を行い、図6に示すレールの落重試験を行い、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成量と、レール折損の有無との関係を評価した。なお、マルテンサイト組織の生成量の制御は、主に、マルテンサイト組織が生成している溶接継手部12において、溶接中心(A)から±5mmの領域(幅10mm)の頭部顎部外郭表面1212、頭頂部コーナー側外郭表面1214の冷却停止温度を制御することにより実現した。レール、フラッシュバット溶接条件、溶接継手部12の特性、マルテンサイト組織の評価方法は上記に示したとおりである。
A flash butt welding test was performed using a hypereutectoid steel rail (0.70-1.20% C), and the rail drop weight test shown in Figure 6 was performed to evaluate the relationship between the amount of martensite structure generated in martensite structure evaluation region C and the presence or absence of rail breakage. The amount of martensite structure generated was controlled mainly by controlling the cooling stop temperature of the head jaw
●溶接後の溶接継手部12の冷却条件
部位:溶接中心(A)
冷却開始時間:溶接終了後15sec
頭頂部コーナー側外郭表面1214の停止温度制御の場合(図9)
頭部顎部外郭表面1212の冷却停止温度(TA):740℃
頭頂部コーナー側外郭表面1214の冷却停止温度(TC):510~700℃
頭部顎部外郭表面の冷却停止温度(TA)≧頭頂部コーナー側外郭表面の冷却停止温度(TC)
頭部顎部外郭表面1212の冷却停止温度制御の場合(図10)
頭部顎部外郭表面1212の冷却停止温度:620~800℃
頭頂部コーナー側外郭表面1214の冷却停止温度:620℃
頭部顎部外郭表面の冷却停止温度(TA)≧頭頂部コーナー部外郭表面の冷却停止温度(TC)
その後の冷却(頭部顎部外郭表面、頭頂部コーナー側外郭表面):放冷(50℃まで)
Cooling conditions for the welded joint 12 after welding: Location: Weld center (A)
Cooling start time: 15 seconds after welding is completed
In the case of stop temperature control of the
Cooling stop temperature (TA) of head jaw outer surface 1212: 740° C.
Cooling stop temperature (TC) of the
Cooling stop temperature (TA) of the outer surface of the head jaw part ≧ Cooling stop temperature (TC) of the outer surface of the corner side of the top part
In the case of cooling stop temperature control of the head jaw outer surface 1212 (FIG. 10)
Cooling stop temperature of head jaw outer surface 1212: 620 to 800° C.
Cooling stop temperature of the
Cooling stop temperature (TA) of the outer surface of the head jaw part ≧ Cooling stop temperature (TC) of the outer surface of the top corner part
Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
●落重試験条件(図6参照)
姿勢:頭部を下側、底部を上側として溶接レールを2点支持し、レール底部に落錘落下スパン長(2つの支持点の間隔):1000mm
落錘重量:1000kgf(9.8kN)
落錘高さ(X):5.0m
落錘エネルギー:49.0kN・m
Drop weight test conditions (see Figure 6)
Posture: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and the drop weight falls on the rail bottom. Span length (distance between the two support points): 1000 mm
Falling weight: 1000kgf (9.8kN)
Drop height (X): 5.0 m
Falling weight energy: 49.0 kN m
その結果、図9に示すように、頭頂部コーナー側外郭表面1214の冷却停止温度が560℃以上になると、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が10個以下となることが確認された。
As a result, as shown in FIG. 9, it was confirmed that when the cooling stop temperature of the
さらに、図10に示すように、頭部顎部外郭表面1212の冷却停止温度が650℃以上になると、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が10個以下となることが確認された。
Furthermore, as shown in FIG. 10, it was confirmed that when the cooling stop temperature of the head jaw
これらのことから、頭部顎部外郭表面1212の冷却停止温度、及び頭頂部コーナー側外郭表面1214の冷却停止温度を制御することにより、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成量を10個以下に制御し、レール溶接継手部の折損を防止できることを確認した。
From these findings, it was confirmed that by controlling the cooling stop temperature of the head jaw
さらに、本発明者らは、マルテンサイト組織の生成量をさらに低減し、溶接継手部12の耐折損性を一層向上させる方法を検討した。 Furthermore, the inventors have investigated a method for further reducing the amount of martensite structure produced and further improving the breakage resistance of the welded joint 12.
マルテンサイト組織の生成量の低減のためには、頭部顎部外郭表面1212の冷却停止温度、及び頭頂部コーナー側外郭表面1214の冷却停止温度を相互に制御することが好ましいと本発明者らは考えた。そして、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の和、並びに頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の差に着目した実験を行った。
The inventors considered that in order to reduce the amount of martensite structure produced, it would be preferable to mutually control the cooling stop temperature of the head jaw
過共析鋼レール(0.70~1.20%C)を用いて、フラッシュバット溶接試験を行い、その後、溶接継手部12の頭部顎部外郭表面1212の冷却停止温度(TA)、及び頭頂部コーナー側外郭表面1214の冷却停止温度(TC)を変化させ、冷却停止温度条件とマルテンサイト組織の生成量との間の関係を評価した。
A flash butt welding test was performed using hypereutectoid steel rails (0.70-1.20% C), and then the cooling stop temperature (TA) of the head jaw
レール、フラッシュバット溶接条件、溶接継手部12の特性、及びマルテンサイト組織の評価方法は上記に示したとおりである。 The rail, flash butt welding conditions, characteristics of the welded joint 12, and the method for evaluating the martensitic structure are as described above.
●溶接後の溶接継手部の冷却条件
溶接中心(A)の頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の和の制御の場合(図11)
TA-TC=50(固定)
TA:650~800℃、TC:600~750℃
TA≧TC
溶接中心(A)の頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の差の制御の場合(図12)
TA+TC=1400(固定)
TA:700~800℃、TC:600~700℃
TA≧TC
その後の冷却(頭部顎部外郭表面、頭頂部コーナー側外郭表面):放冷(50℃まで)
Cooling conditions for welded joints after welding In the case of controlling the sum of the cooling stop temperature (TA) of the head jaw
TA-TC=50 (fixed)
TA: 650-800℃, TC: 600-750℃
T A ≧ T C
In the case of controlling the difference between the cooling stop temperature (TA) of the head jaw
TA+TC=1400 (fixed)
TA: 700-800℃, TC: 600-700℃
T A ≧ T C
Subsequent cooling (outer surface of head jaw, outer surface of top corner): Cool naturally (until 50°C)
その結果、図11に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1340℃以上になると、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下となることが確認された。
As a result, as shown in FIG. 11, it was confirmed that when the sum of the cooling stop temperature (TA) of the head jaw
さらに、図12に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差が140℃以下になると、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下となることが確認された。
Furthermore, as shown in FIG. 12, it was confirmed that when the difference between the cooling stop temperature (TA) of the head jaw
これらのことから、頭部顎部外郭表面1212の冷却停止温度(TA)、及び頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の和や差を制御することにより、マルテンサイト組織の生成量を5個以下に制御することが可能で、レール溶接継手部の耐折損性をさらに向上できることが確認された。
From these findings, it was confirmed that by controlling the sum or difference between the cooling stop temperature (TA) of the head jaw
なお、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和の制御をする場合であって、且つ頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差が160~240℃の範囲にある場合は、図13に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1340℃以上となっても、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下になることはない。
In addition, when controlling the sum of the cooling stop temperature (TA) of the head jaw
同様に、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差の制御の場合、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1250~1330℃の範囲にある場合は、図14に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差が140℃以下となっても、マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下になることはない。
Similarly, in the case of controlling the difference between the cooling stop temperature (TA) of the head jaw
したがって、マルテンサイト組織の生成数を5個以下に制御するためには、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和、及び差の両方をそれぞれ制御することが好ましい。
Therefore, in order to control the number of martensite structures formed to 5 or less, it is preferable to control both the sum and the difference between the cooling stop temperature (TA) of the head jaw
これらの結果から、フラッシュバット溶接レール1において、その溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)、及び頭部顎部外郭表面1212の冷却停止温度(TA)を制御し、長手方向断面のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成量を抑制することにより、溶接レール1の頭部121から発生する脆性き裂に起因する折損を一層抑制して、溶接レール1の使用寿命を大きく向上させることが可能となる。
From these results, it is possible to control the cooling stop temperature (TC) of the head corner side
上述の知見に基づいて得られた、フラッシュバット溶接レール1の製造方法につき、以下に詳細に説明する。以下、合金成分の含有量の単位「質量%」は、単に「%」と記載する。
The manufacturing method for flash butt welded
(1)レールの化学成分の限定理由
本実施形態に係る溶接レール1の製造方法は、溶接レール1の素材となるレールをフラッシュバット溶接する工程を有する。以下、溶接前のレールの化学成分の限定理由について詳細に説明する。ただし、溶接前のレールの化学成分と、溶接レール1のレール部11の化学成分とは同一である。従って、レールの化学成分に関して説明される合金元素の上下限値は、レール部11の化学成分にも当てはまる。
(1) Reasons for Limiting the Chemical Composition of the Rail The manufacturing method of the welded
(C:0.70~1.20%)
Cは、パーライト変態を促進させて、溶接継手部12の耐摩耗性を確保するために有効な元素である。C量が0.70%未満になると、溶接継手部12に要求される最低限の強度及び耐摩耗性が維持できない。一方、C量が1.20%を超えると、溶接継手部12に初析セメンタイト組織が多量に生成し、溶接継手部12の耐折損性が低下する。このため、C含有量を0.70~1.20%に限定した。C含有量は好ましくは0.72%以上、0.75%以上、又は0.80%以上である。C含有量は好ましくは1.18%以下、1.15%以下、又は1.10%以下である。なお、パーライト組織の生成を安定化するには、C含有量を0.80~1.10%とすることが望ましい。
(C: 0.70-1.20%)
C is an element that promotes pearlite transformation and is effective in ensuring the wear resistance of the welded joint 12. If the C content is less than 0.70%, the minimum wear resistance required for the welded joint 12 cannot be obtained. On the other hand, if the C content exceeds 1.20%, a large amount of pro-eutectoid cementite structure is formed in the welded joint 12, and the breakage resistance of the welded joint 12 decreases. For this reason, the C content is limited to 0.70 to 1.20%. The C content is preferably 0.72% or more, 0.75% or more, or 0.80% or more. Preferably, the C content is 1.18% or less, 1.15% or less, or 1.10% or less. In order to stabilize the formation of pearlite structures, the C content is set to 0.80 to 1.10%. It is desirable.
(Si:0.05~2.00%)
Siは、パーライト組織のフェライト相に固溶し、溶接継手部12の硬さを上昇させ、耐摩耗性を向上させる元素である。しかし、Si量が0.05%未満では、これらの効果が十分に期待できない。一方、Si量が2.00%を超えると、パーライト組織の靭性が低下し、溶接継手部12の耐折損性が低下する。このため、Si含有量を0.05~2.00%に限定した。Si含有量は好ましくは0.10%以上、0.20%以上、0.30%以上、又は0.40%以上である。Si含有量は好ましくは1.80%以下、1.60%以下、又は1.50%以下である。なお、パーライト組織の生成を安定化し、溶接継手部12の耐折損性を向上させるためには、Si含有量を0.40~2.00%とすることが望ましい。
(Si: 0.05-2.00%)
Silicon is an element that dissolves in the ferrite phase of the pearlite structure, increases the hardness of the welded joint 12, and improves the wear resistance. However, if the amount of silicon is less than 0.05%, these effects are not achieved. On the other hand, if the Si content exceeds 2.00%, the toughness of the pearlite structure decreases, and the fracture resistance of the welded joint 12 decreases. For this reason, the Si content is set to 0.05 to 2.00%. The Si content is preferably 0.10% or more, 0.20% or more, 0.30% or more, or 0.40% or more. The Si content is preferably 1.80%. In order to stabilize the formation of pearlite structure and improve the fracture resistance of the welded joint 12, the Si content is set to 0.40 to 1.60%, or 1.50%. It is preferable that the content be 2.00%.
(Mn:0.05~2.00%)
Mnは、溶接レール1の焼入れ性を高め、パーライト変態を安定化すると同時に、パーライト組織のラメラ間隔を微細化し、溶接継手部12の硬さを確保し、耐摩耗性をより一層向上させる元素である。しかし、Mn量が0.05%未満では、その効果が小さく、溶接継手部12の耐摩耗性が低下する。一方、Mn量が2.00%を超える場合、過剰な量のMnが、偏析部のMn濃化を助長し、溶接継手部12のマルテンサイト組織の生成を促進し、耐折損性が低下する。このため、Mn含有量を0.05~2.00%に限定した。Mn含有量は好ましくは0.10%以上、0.20%以上、0.30%以上、又は0.40%以上である。Mn含有量は好ましくは1.80%以下、1.60%以下、又は1.50%以下である。なお、パーライト組織の生成を安定化し、溶接継手部12の耐摩耗性及び耐折損性を向上させるためには、Mn含有量を0.40~1.50%とすることが望ましい。
(Mn: 0.05-2.00%)
Mn is an element that increases the hardenability of the welded
(P≦0.0300%)
Pは、鋼中に含有される不純物元素である。P量が0.0300%を超えると、パーライト組織の脆化により、溶接継手部12の耐折損性が低下する。このため、P含有量を0.0300%以下に限定した。なお、P含有量の下限は限定する必要はなく、例えば0%でもよいが、精錬工程の脱燐能力を考慮すると、P含有量の下限値を0.0020%程度としてもよい。P含有量は好ましくは0.0025%以上、0.0030%以上、又は0.0050%以上である。P含有量は好ましくは0.0250%以下、0.0200%以下、又は0.0150%以下である。なお、パーライト組織の靭性を安定的に維持するには、P含有量を0.0050~0.0150%とすることが望ましい。
(P≦0.0300%)
P is an impurity element contained in steel. If the P content exceeds 0.0300%, the pearlite structure becomes embrittled, and the fracture resistance of the welded joint 12 decreases. For this reason, the P content The lower limit of the P content does not need to be limited, and may be, for example, 0%, but taking into consideration the dephosphorization capacity of the refining process, the lower limit of the P content is set to 0. The P content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more. The P content is preferably 0.0250% or less, 0.0200% or less. In order to stably maintain the toughness of the pearlite structure, the P content is preferably 0.0050 to 0.0150%.
(S≦0.0300%)
Sは、鋼中に含有される不純物元素である。S含有量が0.0300%を超えると、粗大なMnS系硫化物の介在物の周囲に応力集中が生成し、溶接継手部12の耐折損性が低下する。このため、S含有量を0.0300%以下に限定した。なお、S含有量の下限は限定する必要はなく、例えば0%でもよいが、精錬工程の脱硫能力を考慮すると、S含有量の下限値を0.0020%程度としてもよい。S含有量は好ましくは0.0025%以上、0.0030%以上、又は0.0050%以上である。S含有量は好ましくは0.0250%以下、0.0200%以下、又は0.0150%以下である。なお、パーライト組織の耐折損性を安定的に維持するには、S含有量を0.0050~0.0150%とすることが望ましい。
(S≦0.0300%)
S is an impurity element contained in steel. If the S content exceeds 0.0300%, stress concentration occurs around the inclusions of coarse MnS-based sulfides, and the durability of the welded joint 12 is reduced. For this reason, the S content is limited to 0.0300% or less. It is not necessary to set a lower limit for the S content, and it may be, for example, 0%, but it is necessary to set the lower limit in consideration of the desulfurization capacity of the refining process. In this case, the lower limit of the S content may be set to about 0.0020%. The S content is preferably 0.0025% or more, 0.0030% or more, or 0.0050% or more. In order to stably maintain the fracture resistance of the pearlite structure, the S content is set to 0.0050 to 0.0150%. % is preferable.
溶接レールの素材であるレールの化学成分の残部は、鉄及び不純物を含む。不純物とは、例えば鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る溶接レール1に悪影響を与えない範囲で許容されるものを意味する。
The remainder of the chemical components of the rail, which is the material for the welded rail, includes iron and impurities. Impurities are, for example, components that are mixed in with raw materials such as ore or scrap during the industrial production of steel, or due to various factors in the manufacturing process, and are acceptable within the range that does not adversely affect the welded
さらに、溶接レールの素材であるレールには、溶接継手部12の硬さの増加による耐摩耗性の向上、靭性の向上、熱影響部12Hの軟化の防止、並びに頭部内部の断面硬度分布を制御する目的で、a群のCr、及びMo、b群のCo、c群のB、d群のCu、及びNiの1種又は2種、e群のV、Nb、及びTiの1種又は2種以上、f群のMg、Ca、及びREMの1種又は2種以上、g群のN、h群のZr、並びにi群のAlの元素を、必要に応じて1群又は2群以上を含有させてもよい。ただし、これら元素がレールに含有されなくても、本実施形態に係る溶接レール1の製造方法はその効果を発揮することができるので、これら元素の含有量の下限値は0%である。
Furthermore, the rail, which is the material of the welded rail, may contain one or more of the following elements as necessary: Cr and Mo in group a, Co in group b, B in group c, Cu and one or two of Ni in group d, V, Nb, and Ti in group e, Mg, Ca, and one or two of REM in group f, N in group g, Zr in group h, and Al in group i. However, since the manufacturing method of the welded
<a群> <Group A>
(Cr:好ましくは2.00%以下)
Crは、平衡変態温度を上昇させ、過冷度の増加により、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬さを向上させ、溶接継手部12の耐摩耗性を向上させる元素である。これらの効果を十分に得るためには、Cr量を0.03%以上、又は0.05%以上とすることが好ましい。一方、Cr量が2.00%を超える場合、過剰な量のCrが、偏析部のCr濃化を助長し、溶接継手部のマルテンサイト組織の生成を促進し、耐折損性が低下する場合がある。このため、Cr含有量を0.05~2.00%とすることが望ましい。Cr含有量は好ましくは0.06%以上、0.08%以上、又は0.10%以上である。Cr含有量は好ましくは1.80%以下、1.50%以下、又は1.20%以下である。したがって、パーライト組織の生成を安定化し、溶接継手部12の耐摩耗性及び耐損傷性を向上させるためには、Cr含有量を0.10~1.20%とすることが望ましい。
(Cr: preferably 2.00% or less)
Cr is an element that increases the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the degree of supercooling, improves the hardness of the pearlite structure, and improves the wear resistance of the welded joint 12. In order to fully obtain these effects, it is preferable to set the Cr content to 0.03% or more, or 0.05% or more. On the other hand, if the Cr content exceeds 2.00%, an excessive amount of Cr may promote Cr concentration in the segregation portion, promote the formation of the martensite structure of the welded joint, and reduce the breakage resistance. For this reason, it is desirable to set the Cr content to 0.05 to 2.00%. The Cr content is preferably 0.06% or more, 0.08% or more, or 0.10% or more. The Cr content is preferably 1.80% or less, 1.50% or less, or 1.20% or less. Therefore, in order to stabilize the formation of pearlite structure and improve the wear resistance and damage resistance of the welded joint 12, the Cr content is preferably set to 0.10 to 1.20%.
(Mo:好ましくは0.50%以下)
Moは、平衡変態温度を上昇させ、過冷度の増加により、パーライト組織のラメラ間隔を微細化し、パーライト組織の硬さを向上させ、溶接継手部12の耐摩耗性を向上させる元素である。上述の効果を得るためには、Mo量を0.01%以上とすることが好ましい。一方、Mo量が0.50%を超える場合、過剰な量のMoが、偏析部のMo濃化を助長し、溶接継手部12のマルテンサイト組織の生成を促進し、耐折損性が低下する場合がある。このため、Mo含有量を0.01~0.50%とすることが望ましい。Mo含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Mo含有量は好ましくは0.45%以下、0.40%以下、又は0.30%以下である。したがって、パーライト組織の硬さを安定的に向上させ、溶接継手部12の耐摩耗性及び耐損傷性を向上させるためには、Mo含有量を0.10~0.30%とすることが望ましい。
(Mo: preferably 0.50% or less)
Mo is an element that increases the equilibrium transformation temperature, refines the lamellar spacing of the pearlite structure by increasing the degree of supercooling, improves the hardness of the pearlite structure, and improves the wear resistance of the welded joint 12. In order to obtain the above-mentioned effects, it is preferable to set the Mo content to 0.01% or more. On the other hand, if the Mo content exceeds 0.50%, an excessive amount of Mo promotes Mo concentration in the segregation portion, promotes the formation of the martensite structure of the welded joint 12, and may reduce the breakage resistance. For this reason, it is desirable to set the Mo content to 0.01 to 0.50%. The Mo content is preferably 0.02% or more, 0.05% or more, or 0.10% or more. The Mo content is preferably 0.45% or less, 0.40% or less, or 0.30% or less. Therefore, in order to stably improve the hardness of the pearlite structure and improve the wear resistance and damage resistance of the welded joint 12, it is desirable to set the Mo content to 0.10 to 0.30%.
<b群>
(Co:好ましくは1.00%以下)
Coは、パーライト組織のフェライト相に固溶し、車輪との接触による変形が生じるころがり面直下のパーライト組織のラメラ組織を微細化し、ころがり面の硬さを向上させ、溶接継手部12の耐摩耗性を向上させる元素である。上述の効果を得るためには、Co量を0.01%以上とすることが好ましい。一方、Co量が1.00%を超えると、上記の効果が飽和し、Co含有量に応じたラメラ組織の微細化が図れない。また、Co量が1.00%を超えると、合金コストの増大により経済性が低下する場合がある。このため、Co含有量を0.01~1.00%とすることが望ましい。Co含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Co含有量は好ましくは0.90%以下、0.80%以下、又は0.60%以下である。したがって、パーライト組織の耐摩耗性を安定的に向上させ、溶接継手部12の耐摩耗性を向上させるためには、Co含有量を0.10~0.60%とすることが望ましい。
<Group B>
(Co: preferably 1.00% or less)
Co is an element that dissolves in the ferrite phase of the pearlite structure, refines the lamellar structure of the pearlite structure immediately below the rolling surface where deformation occurs due to contact with the wheel, improves the hardness of the rolling surface, and improves the wear resistance of the welded
<c群>
(B:好ましくは0.0050%以下)
Bは、オーステナイト粒界に鉄炭ほう化物(Fe23(CB)6)を形成し、パーライト変態の促進効果により、パーライト変態温度の冷却速度依存性を低減させ、溶接継手部12の頭表面から内部までの硬度分布を均一化し、耐摩耗性の向上により溶接継手部12を高寿命化する元素である。上述の効果を得るためには、B量を0.0001%以上とすることが好ましい。一方、B量が0.0050%を超えると、粗大な鉄炭ほう化物が生成し、脆性破壊を助長し、溶接継手部12の耐折損性が低下する場合がある。このため、B含有量を0.0001~0.0050%とすることが望ましい。B含有量は好ましくは0.0002%以上、0.0003%以上、又は0.0005%以上である。B含有量は好ましくは0.0040%以下、0.0030%以下、又は0.0025%以下である。したがって、パーライト組織の靭性を安定的に維持し、溶接継手部12の耐摩耗性を向上させるためには、B含有量を0.0005~0.0025%とすることが望ましい。
<Group C>
(B: preferably 0.0050% or less)
B is an element that forms iron boride (Fe 23 (CB) 6 ) at the austenite grain boundary, reduces the cooling rate dependency of the pearlite transformation temperature by promoting the pearlite transformation, uniforms the hardness distribution from the head surface to the inside of the welded joint 12, and extends the life of the welded joint 12 by improving the wear resistance. In order to obtain the above-mentioned effect, it is preferable that the B content is 0.0001% or more. On the other hand, if the B content exceeds 0.0050%, coarse iron boride is generated, which promotes brittle fracture and may reduce the breakage resistance of the welded joint 12. For this reason, it is desirable to set the B content to 0.0001 to 0.0050%. The B content is preferably 0.0002% or more, 0.0003% or more, or 0.0005% or more. The B content is preferably 0.0040% or less, 0.0030% or less, or 0.0025% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, the B content is preferably set to 0.0005 to 0.0025%.
<d群>
(Cu:好ましくは1.00%以下)
Cuは、パーライト組織のフェライト相に固溶し、固溶強化により溶接継手部12の硬さを向上させ、溶接継手部12の耐摩耗性を向上させる元素である。上述の効果を得るためには、Cu量を0.01%以上とすることが好ましい。一方、Cu量が1.00%を超えると、過剰な量のCuが、偏析部のCu濃化を助長し、溶接継手部12のマルテンサイト組織の生成を促進し、耐折損性が低下する場合がある。このため、Cu含有量を0.01~1.00%にすることが好ましい。Cu含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Cu含有量は好ましくは0.90%以下、0.80%以下、又は0.70%以下である。したがって、パーライト組織の靭性を安定的に維持し、溶接継手部12の耐摩耗性を向上させるためには、Cu含有量を0.10~0.70%とすることが望ましい。
<Group d>
(Cu: preferably 1.00% or less)
Cu is an element that dissolves in the ferrite phase of the pearlite structure, improves the hardness of the welded joint 12 by solid solution strengthening, and improves the wear resistance of the welded joint 12. In order to obtain the above-mentioned effect, it is preferable to set the Cu content to 0.01% or more. On the other hand, if the Cu content exceeds 1.00%, an excessive amount of Cu promotes Cu concentration in the segregation portion, promotes the formation of the martensite structure of the welded joint 12, and may reduce the breakage resistance. For this reason, it is preferable to set the Cu content to 0.01 to 1.00%. The Cu content is preferably 0.02% or more, 0.05% or more, or 0.10% or more. The Cu content is preferably 0.90% or less, 0.80% or less, or 0.70% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, it is desirable to set the Cu content to 0.10 to 0.70%.
(Ni:好ましくは1.00%以下)
Niは、パーライト組織の靭性を向上させ、同時に、固溶強化により溶接継手部12の硬さを向上させ、溶接継手部12の耐摩耗性を向上させる元素である。さらに、熱影響部においては、NiはTiと結びついて微細なNi3Tiの金属間化合物として析出し、析出強化により溶接継手部12の軟化を抑制する元素である。また、Cuがレールに含有されている場合、Niは粒界の脆化を抑制する。上述の効果を得るためには、Ni量を0.01%以上にすることが好ましい。Ni量が1.00%を超えると、過剰な量のNiが、偏析部のNi濃化を助長し、溶接継手部12のマルテンサイト組織の生成を促進し、耐折損性が低下する場合がある。このため、Ni含有量を0.01~1.00%とすることが望ましい。Ni含有量は好ましくは0.02%以上、0.05%以上、又は0.10%以上である。Ni含有量は好ましくは0.90%以下、0.80%以下、又は0.70%以下である。したがって、パーライト組織の靭性を安定的に維持し、溶接継手部12の耐摩耗性を向上させるためには、Ni含有量を0.10~0.70%とすることが望ましい。
(Ni: preferably 1.00% or less)
Ni is an element that improves the toughness of the pearlite structure, and at the same time, improves the hardness of the welded joint 12 by solid solution strengthening, thereby improving the wear resistance of the welded joint 12. Furthermore, in the heat-affected zone, Ni combines with Ti to precipitate as a fine Ni 3 Ti intermetallic compound, and is an element that suppresses the softening of the welded joint 12 by precipitation strengthening. Furthermore, when Cu is contained in the rail, Ni suppresses the embrittlement of the grain boundary. In order to obtain the above-mentioned effect, it is preferable to set the Ni content to 0.01% or more. If the Ni content exceeds 1.00%, an excessive amount of Ni may promote Ni concentration in the segregation portion, promote the formation of the martensite structure of the welded joint 12, and reduce the breakage resistance. For this reason, it is desirable to set the Ni content to 0.01 to 1.00%. The Ni content is preferably 0.02% or more, 0.05% or more, or 0.10% or more. The Ni content is preferably 0.90% or less, 0.80% or less, or 0.70% or less. Therefore, in order to stably maintain the toughness of the pearlite structure and improve the wear resistance of the welded joint 12, it is desirable to set the Ni content to 0.10 to 0.70%.
<e群>
(V:好ましくは0.200%以下)
Vは、熱間圧延後の冷却過程で生成するVの炭・窒化物による析出硬化により、パーライト組織の硬さ(強度)を高め、溶接継手部12の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、V量を0.005%以上にすることが好ましい。一方、V量が0.200%を超えると、微細なVの炭・窒化物の数が過剰となり、パーライト組織が脆化し、溶接継手部12の耐折損性が低下する場合がある。このため、V含有量を0.005~0.200%とすることが望ましい。V含有量は好ましくは0.010%以上、0.015%以上、又は0.020%以上である。V含有量は好ましくは0.180%以下、0.150%以下、又は0.100%以下である。したがって、溶接継手部12の耐折損性を安定的に維持し、溶接継手部12の耐疲労損傷性を向上させるためには、V含有量を0.020~0.100%とすることが望ましい。
<Group e>
(V: preferably 0.200% or less)
V is an element that increases the hardness (strength) of the pearlite structure by precipitation hardening due to V carbo-nitrides formed during the cooling process after hot rolling, and improves the fatigue damage resistance of the welded joint 12. In order to obtain the above-mentioned effect, it is preferable to set the V content to 0.005% or more. On the other hand, if the V content exceeds 0.200%, the number of fine V carbo-nitrides becomes excessive, the pearlite structure becomes embrittled, and the fracture resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the V content to 0.005 to 0.200%. The V content is preferably 0.010% or more, 0.015% or more, or 0.020% or more. The V content is preferably 0.180% or less, 0.150% or less, or 0.100% or less. Therefore, in order to stably maintain the breakage resistance of the welded joint 12 and improve the fatigue damage resistance of the welded joint 12, it is desirable to set the V content to 0.020 to 0.100%.
(Nb:好ましくは0.0500%以下)
Nbは、レールの製造における熱間圧延後の冷却過程で生成したNb炭化物及びNb窒化物による析出硬化により、パーライト組織の硬さを高め、溶接継手部12の耐疲労損傷性を向上させる元素である。また、Ac1点以下の温度域に再加熱された熱影響部12Hにおいて、Nbは低温度域から高温度域までの幅広い温度域においてNb炭化物及びNb窒化物等を安定的に生成させ、溶接継手部12の熱影響部12Hの軟化を防止するのに有効な元素である。上述の効果を得るためには、Nb量を0.0010%以上とすることが好ましい。一方、Nb量が0.0500%を超えると、Nbの炭化物及び窒化物等の析出硬化が過剰となり、パーライト組織自体が脆化し、溶接継手部12の耐折損性が低下する場合がある。このため、Nb含有量を0.0010~0.0500%とすることが望ましい。Nb含有量は好ましくは0.0020%以上、0.0025%以上、又は0.0030%以上である。Nb含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0200%以下である。したがって、溶接継手部12の耐折損性を安定的に維持し、溶接継手部12の耐疲労損傷性を向上させるためには、V含有量を0.0030~0.0200%とすることが望ましい。
(Nb: preferably 0.0500% or less)
Nb is an element that increases the hardness of the pearlite structure and improves the fatigue damage resistance of the welded joint 12 by precipitation hardening due to Nb carbides and Nb nitrides generated during the cooling process after hot rolling in the manufacture of rails. In addition, in the heat-affected
(Ti:好ましくは0.0500%以下)
Tiは、レールの製造における熱間圧延後の冷却過程で生成したTi炭化物及びTi窒化物による析出硬化により、パーライト組織の硬さを高め、溶接継手部12の耐疲労損傷性を向上させる元素である。また、Tiは、溶接後の再加熱において析出したTi炭化物及びTi窒化物がマトリックス中に溶解しないことを利用して、オーステナイト域まで再加熱される熱影響部12Hの組織を微細化し、溶接継手部12の耐折損性を向上させる元素である。上述の効果を得るためには、Ti量を0.0010%以上、又は0.0060%以上とすることが好ましい。一方、Ti量が0.0500%を超えると、粗大なTiの炭化物、Tiの窒化物が生成し、これらの周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。このため、Ti含有量を0.0040~0.0500%とすることが望ましい。Ti含有量は好ましくは0.0040%以上、0.0050%以上、又は0.0060%以上である。Ti含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0200%以下である。したがって、溶接継手部12の耐疲労損傷性や耐折損性を向上させるためには、Ti含有量を0.0060~0.0200%とすることが望ましい。
(Ti: preferably 0.0500% or less)
Ti is an element that increases the hardness of the pearlite structure by precipitation hardening due to Ti carbides and Ti nitrides generated during the cooling process after hot rolling in the manufacture of rails, thereby improving the fatigue damage resistance of the welded joint 12. Ti is also an element that refines the structure of the heat-affected
<f群>
(Mg:好ましくは0.0200%以下)
Mgは、Sと結合して微細な硫化物(MgS)を形成し、このMgSがMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継手部12の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、Mg量を0.0005%以上とすることが好ましい。一方、Mg量が0.0200%を超える場合、Mgの粗大酸化物が生成し、この粗大酸化物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。このため、Mg量を0.0005~0.0200%とすることが望ましい。Mg含有量は好ましくは0.0010%以上、0.0015%以上、又は0.0030%以上である。Mg含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。したがって、溶接継手部12の耐疲労損傷性を向上させるためには、Mg含有量を0.0030~0.0120%とすることが望ましい。
<f group>
(Mg: preferably 0.0200% or less)
Mg is an element that combines with S to form fine sulfides (MgS), which finely disperse MnS, relieve stress concentration around MnS, and improve the fatigue damage resistance of the welded joint 12. In order to obtain the above-mentioned effect, it is preferable to set the Mg content to 0.0005% or more. On the other hand, if the Mg content exceeds 0.0200%, coarse oxides of Mg are generated, and fatigue cracks are likely to be generated due to stress concentration around the coarse oxides, and the fatigue damage resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the Mg content to 0.0005 to 0.0200%. The Mg content is preferably 0.0010% or more, 0.0015% or more, or 0.0030% or more. The Mg content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, the Mg content is preferably set to 0.0030 to 0.0120%.
(Ca:好ましくは0.0200%以下)
Caは、Sとの結合力が強いので硫化物(CaS)を形成し、このCaSがMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継手部12の耐疲労損傷性を向上させる元素である。上述の効果を得るためには、Ca量を0.0005%以上とすることが好ましい。一方、Ca量が0.0200%を超える場合、Caの粗大酸化物が生成し、この粗大酸化物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。このため、Ca量を0.0005~0.0200%とすることが望ましい。Ca含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0030%以上である。Ca含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。したがって、溶接継手部12の耐疲労損傷性を向上させるためには、Ca含有量を0.0030~0.0120%とすることが望ましい。
(Ca: preferably 0.0200% or less)
Ca has a strong bond with S and forms sulfides (CaS), which finely disperse MnS, reduce stress concentration around MnS, and improve the fatigue damage resistance of the welded joint 12. In order to obtain the above-mentioned effect, it is preferable to set the Ca content to 0.0005% or more. On the other hand, if the Ca content exceeds 0.0200%, coarse oxides of Ca are generated, and fatigue cracks are likely to be generated due to stress concentration around the coarse oxides, and the fatigue damage resistance of the welded joint 12 may decrease. For this reason, it is desirable to set the Ca content to 0.0005 to 0.0200%. The Ca content is preferably 0.0010% or more, 0.0020% or more, or 0.0030% or more. The Ca content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, the Ca content is preferably set to 0.0030 to 0.0120%.
(REM:好ましくは0.0500%以下)
REMは、脱酸・脱硫元素であり、REMのオキシサルファイド(REM2O2S)を生成し、Mn硫化物系介在物の生成核となる。オキシサルファイド(REM2O2S)は、融点が高いので、圧延後のMn硫化物系介在物の延伸を抑制する。この結果、REMはMnSを微細に分散させ、MnSの周囲における応力集中を緩和し、溶接継手部12の耐疲労損傷性を向上させる。上述の効果を得るためには、REM量を0.0005%以上とすることが好ましい。一方、REM量が0.0500%を超えると、粗大で硬質なREMのオキシサルファイド(REM2O2S)が生成し、このオキシサルファイドの周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。このため、REM含有量を0.0005~0.0500%とすることが望ましい。REM含有量は好ましくは0.0010%以上、0.0020%以上、又は0.0030%以上である。REM含有量は好ましくは0.0400%以下、0.0300%以下、又は0.0250%以下である。したがって、溶接継手部12の耐疲労損傷性を向上させるためには、REM含有量を0.0030~0.0250%とすることが望ましい。
(REM: preferably 0.0500% or less)
REM is a deoxidizing and desulfurizing element, and generates REM oxysulfide (REM 2 O 2 S), which becomes the nucleus for the formation of Mn sulfide-based inclusions. Oxysulfide (REM 2 O 2 S) has a high melting point, and suppresses the elongation of Mn sulfide-based inclusions after rolling. As a result, REM finely disperses MnS, relieves stress concentration around MnS, and improves fatigue damage resistance of the welded joint 12. In order to obtain the above-mentioned effect, it is preferable that the REM content is 0.0005% or more. On the other hand, if the REM content exceeds 0.0500%, coarse and hard REM oxysulfide (REM 2 O 2 S) is generated, and fatigue cracks are easily generated due to stress concentration around this oxysulfide, and the fatigue damage resistance of the welded joint 12 may be reduced. For this reason, it is desirable to set the REM content to 0.0005 to 0.0500%. The REM content is preferably 0.0010% or more, 0.0020% or more, or 0.0030% or more. The REM content is preferably 0.0400% or less, 0.0300% or less, or 0.0250% or less. Therefore, in order to improve the fatigue damage resistance of the welded joint 12, it is desirable to set the REM content to 0.0030 to 0.0250%.
なお、REMとはSc、Y及びLa(ランタノイド)からなる合計17元素である。「REMの含有量」とは、これらの全REM元素の含有量の合計値を意味する。全含有量が上記範囲内であれば、REM元素の種類が1種類であっても2種類以上であっても、同様な効果が得られる。 Note that REM refers to a total of 17 elements consisting of Sc, Y, and La (lanthanoid). "REM content" refers to the total content of all these REM elements. As long as the total content is within the above range, the same effect can be obtained whether there is one type of REM element or two or more types.
<g群>
(N:好ましくは0.0200%以下)
Nは、製鋼工程で不純物としてレールに混入しうる元素である。脱ガスを積極的に行っても、0.0025%程度のNは鋼中に残留しうる。通常のレール精錬では、N含有量は0.0030~0.0050%程度となる。N含有量を0.0025%未満にすることも可能であるが、精錬コストの高騰を回避するために、レールに0.0025%以上のNを含有させてもよい。また、Nはオーステナイト粒界に偏析することにより、オーステナイト粒界からのパーライト変態を促進させ、主に、パーライトブロックサイズを微細化することにより、溶接継手部12の靭性を向上させるのに有効な元素である。また、NとVとを同時に含有させると、レールの溶接後の溶接継手部12の冷却過程で、Vの炭窒化物の析出を促進させ、パーライト組織の硬さを高め、溶接継手部12の耐疲労損傷性を向上させる。上述の効果を得るためには、N量を0.0060%以上とすることが好ましい。一方、N量が0.0200%を超えると、Nを鋼中に固溶させることが困難となり、疲労損傷の起点となる気泡が生成し易くなる場合がある。このため、N含有量を0.0060~0.0200%とすることが望ましい。N含有量は好ましくは0.0060%以上、0.0070%以上、又は0.0080%以上である。N含有量は好ましくは0.0180%以下、0.0160%以下、又は0.0150%以下である。したがって、靭性や耐疲労損傷性を安定的に向上させるためには、N含有量を0.0080~0.0150%とすることが望ましい。
<Group g>
(N: preferably 0.0200% or less)
N is an element that may be mixed into rails as an impurity in the steelmaking process. Even if degassing is actively performed, about 0.0025% N may remain in the steel. In normal rail refining, the N content is about 0.0030 to 0.0050%. It is possible to make the N content less than 0.0025%, but in order to avoid an increase in refining costs, 0.0025% or more of N may be contained in the rail. In addition, N is an element that is effective in improving the toughness of the welded joint 12 by promoting pearlite transformation from the austenite grain boundary by segregating at the austenite grain boundary, mainly by refining the pearlite block size. In addition, when N and V are simultaneously contained, the precipitation of V carbonitrides is promoted during the cooling process of the welded joint 12 after welding of the rail, the hardness of the pearlite structure is increased, and the fatigue damage resistance of the welded joint 12 is improved. In order to obtain the above-mentioned effect, it is preferable that the N content is 0.0060% or more. On the other hand, if the N content exceeds 0.0200%, it becomes difficult to dissolve N in the steel, and bubbles that are the starting point of fatigue damage may be easily generated. For this reason, it is desirable to set the N content to 0.0060 to 0.0200%. The N content is preferably 0.0060% or more, 0.0070% or more, or 0.0080% or more. The N content is preferably 0.0180% or less, 0.0160% or less, or 0.0150% or less. Therefore, in order to stably improve toughness and fatigue damage resistance, it is desirable to set the N content to 0.0080 to 0.0150%.
<h群>
(Zr:好ましくは0.0200%以下)
Zrは、γ-Feとの格子整合性が良いZrO2介在物を生成するので、γ-Feが凝固初晶である高炭素レール鋼の凝固核となり、凝固組織の等軸晶化率を高めることにより、鋳片中心部の偏析帯の形成を抑制し、偏析部の合金濃化を抑制する。その結果、Zrは、溶接継手部12のマルテンサイト組織の生成を抑制し、耐折損性および耐疲労損傷性を向上させる。上述の効果を得るためには、Zr量を0.0001%以上とすることが好ましい。一方、Zr量が0.0200%を超えると、粗大なZr系介在物が多量に生成し、この粗大介在物の周囲における応力集中により、疲労き裂が生成しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。このため、Zr含有量を0.0001~0.0200%とすることが望ましい。Zr含有量は好ましくは0.0005%以上、0.0010%以上、又は0.0015%以上である。Zr含有量は好ましくは0.0180%以下、0.0150%以下、又は0.0120%以下である。したがって、耐折損性や耐疲労損傷性を安定的に向上させるためには、Zr含有量を0.0015~0.0120%とすることが望ましい。
<H group>
(Zr: preferably 0.0200% or less)
Zr forms ZrO2 inclusions that have good lattice matching with γ-Fe, and thus serves as the solidification nucleus of high-carbon rail steel in which γ-Fe is the solidification primary crystal, and by increasing the equiaxed crystallization rate of the solidification structure, it suppresses the formation of a segregation zone in the center of the slab and suppresses alloy concentration in the segregation portion. As a result, Zr suppresses the formation of a martensite structure in the welded joint 12, improving the breakage resistance and fatigue damage resistance. In order to obtain the above-mentioned effect, it is preferable that the Zr content is 0.0001% or more. On the other hand, if the Zr content exceeds 0.0200%, a large amount of coarse Zr-based inclusions are formed, and fatigue cracks are easily generated due to stress concentration around these coarse inclusions, and the fatigue damage resistance of the welded joint 12 may decrease. For this reason, it is preferable that the Zr content is 0.0001 to 0.0200%. The Zr content is preferably 0.0005% or more, 0.0010% or more, or 0.0015% or more. The Zr content is preferably 0.0180% or less, 0.0150% or less, or 0.0120% or less. Therefore, in order to stably improve the breakage resistance and fatigue damage resistance, it is desirable to set the Zr content to 0.0015 to 0.0120%.
<i群>
(Al:好ましくは1.0000%以下)
Alは、脱酸材として機能する成分である。上述の効果を得るためには、Al量を0.0005%以上、又は0.0010%以上とすることが好ましい。一方、Al量が1.0000%を超えると、粗大なアルミナ系介在物が生成し、この粗大な介在物から疲労き裂が発生しやすくなり、溶接継手部12の耐疲労損傷性が低下する場合がある。さらに、Al量が1.0000%を超えると、レールの溶接時に酸化物が生成し、レールの溶接性が著しく低下する場合がある。このため、Al含有量を0.0005~1.0000%とすることが望ましい。Al含有量は好ましくは0.5000%以下、0.4000%以下、又は0.3000%以下である。したがって、脱酸を安定的に実行させるためには、Al含有量を0.0005~0.3000%とすることが望ましい。
<i group>
(Al: preferably 1.0000% or less)
Al is a component that functions as a deoxidizer. In order to obtain the above-mentioned effect, it is preferable that the Al content is 0.0005% or more, or 0.0010% or more. On the other hand, if the Al content exceeds 1.0000%, coarse alumina-based inclusions are generated, and fatigue cracks are likely to occur from these coarse inclusions, and the fatigue damage resistance of the welded joint 12 may decrease. Furthermore, if the Al content exceeds 1.0000%, oxides may be generated during welding of the rail, and the weldability of the rail may decrease significantly. For this reason, it is preferable that the Al content is 0.0005 to 1.0000%. The Al content is preferably 0.5000% or less, 0.4000% or less, or 0.3000% or less. Therefore, in order to stably perform deoxidation, it is preferable that the Al content is 0.0005 to 0.3000%.
(2)溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の限定理由
本実施形態に係る溶接レール1の製造方法は、レールをフラッシュバット溶接することによって得られた溶接継手部12を、フラッシュバット溶接の終了後、直ちに強制冷却する工程を含む。強制冷却によって、溶接継手部12の硬さが高められ、溶接継手部12の耐摩耗性が向上する。ただし、過度な強制冷却は、溶接継手部12にマルテンサイトを生成させる。そのため、強制冷却条件は適切に管理される必要がある。
なお、強制冷却とは、上述の通り溶接継手部12にエアー、水、及びミスト等の冷媒を吹き付けることを意味する。強制冷却の例は、空冷、水冷、及び気水冷却等である。放冷は、強制冷却とは異なる概念であるとみなす。
強制冷却、及び放冷のいずれの場合においても、フラッシュバット溶接後の冷却速度は、フラッシュバット溶接における入熱量、及びフラッシュバット溶接によって形成されたHAZの幅に影響される。HAZ幅が大きいほど、冷却速度が遅くなる傾向にある。レールをフラッシュバット溶接して溶接継手部を製造し、次いで溶接継手部を放冷した場合における、900℃から600℃までの温度範囲の頭頂部コーナー側外郭表面の平均冷却速度は、約1.0~2.0℃/secの範囲内となることが通常である。一方、レールをフラッシュバット溶接して溶接継手部を製造し、次いで溶接継手部を空冷した場合における、900℃から600℃までの温度範囲の頭頂部コーナー側外郭表面の平均冷却速度は、約1.5~5.0℃/secの範囲内となることが通常である。溶接するレールの断面形状、及びフラッシュバット溶接の条件が同一である場合、放冷による冷却速度は、強制冷却による冷却速度よりも必ず遅くなる。なお、「X℃からY℃までの温度範囲の平均冷却速度V」とは、冷却対象の温度がX℃からY℃まで低下するのに要した時間をtと定義した場合に、以下の式によって算出される値である。
V=(X-Y)/t
平均冷却速度は、放射温度計を用いて測定可能である。放射温度計は、物体の表面の温度を非接触測定することができる。
また、本実施形態において「フラッシュバット溶接の終了後、直ちに溶接継手部を強制冷却する」という記載は、フラッシュバット溶接の終了後、5sec以上30sec以内に強制冷却を開始することを意味する。フラッシュバット溶接の終了の時点とは、上述の通り、トリミングの終了の時点のことである。フラッシュバット溶接の終了後、冷却を開始するために冷却装置を溶接継手部に設置するために、5sec以上の時間を要することが通常である。また、フラッシュバット溶接の終了後、30sec超の時間が経過してから強制冷却を開始すると、強制冷却前に高い温度域でパーライト変態が開始して、溶接継手部の硬さが損なわれる場合がある。
(2) Reason for limiting the cooling stop temperature (TC) of the
As described above, forced cooling means spraying a coolant such as air, water, or mist onto the welded joint 12. Examples of forced cooling include air cooling, water cooling, and air-water cooling. Natural cooling is considered to be a different concept from forced cooling.
In both forced cooling and natural cooling, the cooling rate after flash butt welding is influenced by the heat input in flash butt welding and the width of the HAZ formed by flash butt welding. The larger the HAZ width, the slower the cooling rate tends to be. When a rail is flash butt welded to produce a welded joint and then the welded joint is natural cooling, the average cooling rate of the outer surface of the top corner side in the temperature range from 900°C to 600°C is usually within the range of about 1.0 to 2.0°C/sec. On the other hand, when a rail is flash butt welded to produce a welded joint and then the welded joint is air-cooled, the average cooling rate of the outer surface of the top corner side in the temperature range from 900°C to 600°C is usually within the range of about 1.5 to 5.0°C/sec. When the cross-sectional shape of the rail to be welded and the flash butt welding conditions are the same, the cooling rate by natural cooling is always slower than the cooling rate by forced cooling. The "average cooling rate V in the temperature range from X°C to Y°C" is a value calculated by the following formula when the time required for the temperature of the object to be cooled to decrease from X°C to Y°C is defined as t.
V = (X - Y) / t
The average cooling rate can be measured using a radiation thermometer, which is capable of measuring the temperature of the surface of an object in a non-contact manner.
In addition, in this embodiment, the description "immediately after the completion of flash butt welding, the welded joint is forcedly cooled" means that forced cooling is started within 5 to 30 seconds after the completion of flash butt welding. The time of the end of flash butt welding is the time of the end of trimming, as described above. After the completion of flash butt welding, it usually takes 5 seconds or more to install a cooling device on the welded joint to start cooling. In addition, if forced cooling is started more than 30 seconds after the completion of flash butt welding, pearlite transformation may start in a high temperature range before forced cooling, and the hardness of the welded joint may be impaired.
溶接継手部12の強制冷却では、溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)、及び溶接中心Aにおける頭部顎部外郭表面1212の冷却停止温度(TA)のそれぞれを独立的に制御する。以下、本実施形態に係る溶接レール1の製造方法における、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却において、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)を560℃以上に限定した理由について説明する。
In the forced cooling of the welded joint 12, the cooling stop temperature (TC) of the
図9に示したように、頭頂部コーナー側外郭表面1214の冷却停止温度(TC)が560℃未満では、頭部顎部の近傍にあるマルテンサイト組織評価領域Cのマルテンサイト組織の生成数が10個超となり、図7に示した様に溶接継手部12の折損の防止ができない。このため、頭頂部コーナー側外郭表面1214の冷却停止温度(TC)を560℃以上に限定した。TCを580℃以上、600℃以上、620℃以上、又は650℃以上としてもよい。なお、TCの上限値を限定する必要はないが、例えばTCを850℃以下、800℃以下、750℃以下、又は720℃以下としてもよい。マルテンサイト組織評価領域Cのマルテンサイト組織の生成数を安定的に10個以下に制御するには、冷却停止温度(TC)は600℃以上、750℃以下に制御することが望ましい。
As shown in FIG. 9, if the cooling stop temperature (TC) of the
なお、上記のオーステナイト温度域からの強制冷却における冷却開始温度については特に限定していないが、オーステナイト温度域であれば問題はない。レールのフラッシュバット溶接の終了直後の、頭頂部コーナー側外郭表面1214の温度は1200℃程度であり、従って、本実施形態におけるオーステナイト温度域の上限は実質1200℃となる。
The cooling start temperature for the forced cooling from the above austenite temperature range is not particularly limited, but there is no problem as long as it is within the austenite temperature range. The temperature of the
また、オーステナイト温度域は、レールの炭素量や合金成分によりそれぞれ異なる。オーステナイト温度域を正確に求めるには、再加熱冷却実験などにより、直接変態点を測定することが最も好ましい。しかし、実測は必ずしも容易ではないので、炭素量のみを基準に、Fe-Fe3C系の平衡状態図から読み取ることにより、簡便に求めてもよい。 The austenite temperature range differs depending on the carbon content and alloy components of the rail. In order to accurately determine the austenite temperature range, it is most preferable to directly measure the transformation point by a reheating and cooling experiment or the like. However, since actual measurement is not necessarily easy, it may be simply determined by reading from an equilibrium phase diagram of the Fe-Fe 3 C system based only on the carbon content.
例えば図15に、和泉修ら「講座・現在の金属学 材料編 第4巻 鉄鋼材料」、第2版、社団法人日本金属学会、昭和60年12月、p19から引用した、Fe-Fe3C系の状態図を示す。レールの成分系におけるオーステナイト温度域は、それぞれ平行状態図のA3線及びAcm線よりも高温側の領域である。上述したレールの炭素量の範囲では、Ar3は715℃から750℃程度であり、Arcmは715℃から900℃程度である。なお、A3線はオーステナイト相に対するフェライト相の溶解度線、Acm線はオーステナイト相に対するセメンタイト相の溶解度線である。 For example, Fig. 15 shows a phase diagram of the Fe-Fe 3 C system, quoted from Izumi Osamu et al., "Lecture on Current Metal Science, Materials, Vol. 4, Steel Materials," 2nd Edition, Japan Institute of Metals, December 1985, p. 19. The austenite temperature range in the component system of a rail is a region higher than the A3 line and the Acm line in the parallel phase diagram. In the above-mentioned range of carbon content of the rail, Ar3 is about 715°C to 750°C, and Arcm is about 715°C to 900°C. The A3 line is the solubility line of the ferrite phase in the austenite phase, and the Acm line is the solubility line of the cementite phase in the austenite phase.
(3)溶接継手部12の溶接中心Aにおける頭部顎部外郭表面1212の冷却停止温度(TA)の限定理由
次に、本実施形態において、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却において、溶接継手部12の溶接中心Aにおける頭部顎部外郭表面1212の冷却停止温度(TA)を650℃以上に限定した理由について説明する。
(3) Reason for limiting the cooling stop temperature (TA) of the head jaw
図10に示したように、頭部顎部外郭表面1212の冷却停止温度(TA)が650℃未満になると、頭部顎部外郭表面1212の近傍にあるマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が10個超となり、図7に示した様に溶接継手部12の折損の防止ができない。このため、頭部顎部外郭表面1212の冷却停止温度(TA)を650℃以上に限定した。TAを680℃以上、700℃以上、720℃以上、又は750℃以上としてもよい。なお、TAの上限値を限定する必要はないが、例えばTAを950℃以下、900℃以下、850℃以下、又は820℃以下としてもよい。マルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数を安定的に10個以下に制御するには、冷却停止温度(TA)は670℃以上、850℃以下に制御することが望ましい。
強制冷却を停止した後は、溶接継手部12は放冷される。強制冷却の停止後に再び溶接継手部12を強制冷却すると、溶接継手部12にマルテンサイトが生じるおそれがある。溶接継手部12は、好ましくはその温度が室温に至るまで大気中に放置される。強制冷却が600℃以上の温度で停止され、次いで溶接継手部12が放冷された場合、600℃から200℃までの温度範囲における頭頂部コーナー側外郭表面の平均冷却速度は、約0.5℃/秒となることが通常である。
As shown in FIG. 10, when the cooling stop temperature (TA) of the head jaw
After the forced cooling is stopped, the welded joint 12 is allowed to cool naturally. If the welded joint 12 is forced to cool again after the forced cooling is stopped, martensite may be generated in the welded joint 12. The welded joint 12 is preferably left in the air until its temperature reaches room temperature. When the forced cooling is stopped at a temperature of 600°C or higher and then the welded joint 12 is allowed to cool naturally, the average cooling rate of the outer surface on the corner side of the top portion is usually about 0.5°C/second in the temperature range from 600°C to 200°C.
なお、上記のオーステナイト温度域からの強制冷却における冷却開始温度については特に限定していないが、オーステナイト温度域であれば問題はない。また、オーステナイト温度域の特定は上記に示したとおりである。 The cooling start temperature for forced cooling from the above austenite temperature range is not particularly limited, but there is no problem as long as it is within the austenite temperature range. The austenite temperature range is specified as described above.
(4)溶接継手部12の溶接中心Aにおける頭部外郭表面の望ましい温度制御方法
次に、本実施形態において、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却において、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)を560℃以上に、頭部顎部外郭表面1212の冷却停止温度(TA)を650℃以上にそれぞれ制御する方法について説明する。
(4) Desirable temperature control method for the head outer surface at the weld center A of the welded joint 12 Next, a method for controlling the cooling stop temperature (TC) of the head corner side
レールの頭部を強制冷却する場合、一般に、図2に示した頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214、頭側部外郭表面1213にエアー等の冷媒を噴射する方法が用いられる。頭頂部コーナー側外郭表面1214の冷却停止温度(TC)は、主に頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214に吹き付けられる冷媒の噴射量を制御することにより調整する。また、頭部顎部外郭表面1212の冷却停止温度(TA)は、主に頭側部外郭表面1213に吹き付けられる冷媒の噴射量を制御することにより調整する。
When forcibly cooling the head of a rail, a method is generally used in which a refrigerant such as air is sprayed onto the top
また、冷媒噴射量が制御できない場合は、頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214、頭側部外郭表面1213において、冷媒噴射孔と外郭表面との距離を調整することにより、頭頂部コーナー側外郭表面1214の冷却停止温度(TC)、及び頭部顎部外郭表面1212の冷却停止温度(TA)をそれぞれ制御することが可能である。
In addition, if the amount of refrigerant sprayed cannot be controlled, the cooling stop temperature (TC) of the top corner
上述の手順で冷却を行うための装置は特に限定されない。例えば図17に例示されるような冷却装置2を、本実施形態に係る溶接レール1の冷却手段として用いてもよい。この冷却装置2は、レール設置部と、冷媒噴射孔を有する複数の冷媒噴射手段21と、冷媒供給手段23と、制御手段24とを備える。
The device for performing the cooling in the above-mentioned procedure is not particularly limited. For example, a
レール設置部は、溶接レール1の溶接継手部12が配置可能に構成される。図17には、レール設置部に溶接レール1の溶接継手部12が配置された状態を開示している。なお、冷却装置2が、レール設置部に配置された溶接レール1をその長手方向に移動させるための駆動装置を備えていてもよい。これにより、溶接レール1に設けられた複数の溶接継手部12を、連続的に冷却することができる。
The rail installation section is configured so that the welded
複数の冷媒噴射手段21は、レール設置部を囲むように配置されている。また、冷媒噴射手段21の冷媒噴射方向は、レール設置部に向けられている。冷媒噴射手段21は、その設置場所が変更可能に構成されていてもよい。また、冷媒噴射手段21は、その冷媒噴射方向が変更可能に構成されていてもよい。これにより、様々な形状の溶接レール1に対して、冷却装置2を用いることができる。
なお、冷却装置2は、溶接継手部12の柱部122に向けて冷媒を噴射しないことが好ましい。柱部122に噴射された冷媒の一部は、溶接継手部12の頭部顎部外郭表面1212に流れて、頭部顎部外郭表面1212の温度を低下させる。その結果、頭部顎部外郭表面1212の冷却停止温度(TA)が過剰に低下したり、TA≧TCの関係が満たされなくなったりするおそれがある。従って、冷却装置2においては、柱部122に向けて冷媒を噴射するように位置決めされた冷媒噴射手段21が省略されていることが好ましい。冷却装置2が、柱部122に向けて冷媒を噴射するように位置決めされた冷媒噴射手段21を有している場合は、後述する制御手段24を用いて、柱部122への冷媒の噴射量を抑制することが好ましい。
The plurality of coolant injection means 21 are arranged so as to surround the rail installation portion. The coolant injection direction of the coolant injection means 21 is directed toward the rail installation portion. The coolant injection means 21 may be configured so that the installation location thereof can be changed. The coolant injection means 21 may be configured so that the coolant injection direction thereof can be changed. This allows the
In addition, it is preferable that the
冷媒供給手段23は、冷媒噴射手段21に冷媒を供給する。制御手段24は、冷媒噴射手段21からの冷媒の噴射を開始させ、終了させるように構成されている。また、制御手段24は、複数の冷媒噴射手段21それぞれにおける冷媒の噴射の開始及び終了を、独立的に制御することができる。 The refrigerant supplying means 23 supplies refrigerant to the refrigerant injection means 21. The control means 24 is configured to start and end the injection of refrigerant from the refrigerant injection means 21. The control means 24 can also independently control the start and end of the injection of refrigerant from each of the multiple refrigerant injection means 21.
制御手段24、及び/又は冷媒噴射手段21を用いた、冷媒噴射量の最適化は、溶接継手部12の冷却条件を上述の通り制御するために極めて重要である。冷媒噴射手段21と溶接継手部12との間隔を所定範囲内にしたり、複数の冷媒噴射手段21それぞれの冷媒噴射量を独立的に設定したりすることが必要とされる。そのため、制御手段24は、冷媒の噴射量を、複数の冷媒噴射手段21それぞれに対して独立的に制御可能であることが好ましい。これにより、冷却停止温度を上述のように好ましく制御することができる。また、制御手段が冷媒噴射量を制御できない場合は、冷媒噴射手段21の配置を変更し、冷媒噴射孔と外郭表面との距離を調整することにより、冷却停止温度を上述のように好ましく制御する必要がある。 Optimization of the amount of coolant injection using the control means 24 and/or the coolant injection means 21 is extremely important for controlling the cooling conditions of the welded joint 12 as described above. It is necessary to set the distance between the coolant injection means 21 and the welded joint 12 within a specified range and to set the amount of coolant injection for each of the multiple coolant injection means 21 independently. Therefore, it is preferable that the control means 24 be able to independently control the amount of coolant injected for each of the multiple coolant injection means 21. This allows the cooling stop temperature to be preferably controlled as described above. Furthermore, if the control means cannot control the amount of coolant injection, it is necessary to preferably control the cooling stop temperature as described above by changing the position of the coolant injection means 21 and adjusting the distance between the coolant injection hole and the outer surface.
測温手段が備え付けられていない冷却装置2を用いて溶接継手部12を冷却する場合、冷却停止温度、及び平均冷却速度の測定方法は以下の通りである。
(A)フラッシュバット溶接の終了後、且つ冷却装置の配置の直前に、放射温度計を用いて溶接継手部12の頭頂部コーナー側外郭表面及び頭部顎部外郭表面の温度を測定する。この温度が、頭頂部コーナー側外郭表面の冷却開始温度、及び頭部顎部外郭表面の冷却開始温度である。
(B)冷却装置のレール設置部に、溶接継手部12を設置する。冷却装置を静止させた状態で、溶接継手部12を移動させることによって、設置を行ってもよい。一方、溶接継手部12を静止させた状態で、冷却装置を移動させることによって、設置を行ってもよい。いずれの場合においても、冷却装置に溶接継手部12を設置して、冷却を開始するために要する時間は概ね5~10秒である。
(C)溶接継手部12を冷却する。
(D)冷却の終了後に、溶接継手部12から冷却装置を取り外す。冷却装置の取り外しの際に、溶接継手部12を移動させてもよいし、冷却装置を移動させてもよい。いずれの場合においても、溶接継手部12から冷却装置を取り外すために要する時間は概ね5~10秒である。
(E)溶接継手部12から冷却装置を取り外した直後に、放射温度計を用いて溶接継手部12の頭頂部コーナー側外郭表面及び頭部顎部外郭表面の温度を測定する。この温度が、頭頂部コーナー側外郭表面の冷却停止温度(TC)、及び頭部顎部外郭表面の冷却停止温度(TA)である。(F)冷却開始温度と冷却終了温度との差を、1回目の温度測定(A)から2回目の温度測定(E)までに要した時間で割ることにより、平均冷却速度を算出する。
When the welded joint 12 is cooled using a
(A) After flash butt welding is completed and immediately before the cooling device is placed, a radiation thermometer is used to measure the temperatures of the outer surface of the top corner side and the outer surface of the head jaw of the welded joint 12. These temperatures are the cooling start temperature of the outer surface of the top corner side and the cooling start temperature of the outer surface of the head jaw.
(B) The welded joint 12 is installed on the rail installation portion of the cooling device. Installation may be performed by moving the welded joint 12 while the cooling device is stationary. Alternatively, installation may be performed by moving the cooling device while the welded joint 12 is stationary. In either case, the time required to install the welded joint 12 in the cooling device and start cooling is approximately 5 to 10 seconds.
(C) Cool the welded joint 12.
(D) After cooling is completed, the cooling device is removed from the welded joint 12. When removing the cooling device, the welded joint 12 may be moved, or the cooling device may be moved. In either case, the time required to remove the cooling device from the welded joint 12 is approximately 5 to 10 seconds.
(E) Immediately after removing the cooling device from the welded joint 12, a radiation thermometer is used to measure the temperatures of the outer surface of the top corner side and the outer surface of the head jaw of the welded joint 12. These temperatures are the cooling stop temperature (TC) of the outer surface of the top corner side and the cooling stop temperature (TA) of the outer surface of the head jaw. (F) The average cooling rate is calculated by dividing the difference between the cooling start temperature and the cooling end temperature by the time required from the first temperature measurement (A) to the second temperature measurement (E).
上述の温度測定の手順は、測温手段が備え付けられていない冷却装置2に適用される。一方、冷却装置2が、制御手段24に接続され、且つレール設置部に面して配置された測温手段をさらに備えてもよい。測温手段は、放射温度計である。放射温度計は、物体の表面温度を測定することができる。冷却装置2に備え付けられた測温手段を用いることにより、溶接継手部12の冷却条件の制御を、溶接継手部12の温度に応じて高精度に行うことができる。なお、冷却装置2に測温手段が備え付けられている場合、冷却は、冷却開始温度の測定の完了後5~10秒経過してから開始することが望ましい。また、冷却停止温度は、冷却の完了後5~10秒経過してから測定することが望ましい。
ただし、溶接継手部12の形状、及びフラッシュバット溶接条件が一定であれば、レール設置部に配された溶接継手部12の温度分布もほぼ一定となるので、同一の冷媒噴射条件で溶接継手部12の冷却を実施可能である。従って、冷却条件を本実施形態に係る製造方法の範囲内とすることができる冷媒噴射条件が予め確定されている場合、測温手段を用いた温度測定は不要である。
The above-mentioned temperature measurement procedure is applied to a
However, if the shape of the welded joint 12 and the flash butt welding conditions are constant, the temperature distribution of the welded joint 12 disposed in the rail installation portion will also be approximately constant, and therefore it is possible to cool the welded joint 12 under the same coolant injection conditions. Therefore, if the coolant injection conditions that can bring the cooling conditions within the range of the manufacturing method according to this embodiment are determined in advance, there is no need to measure the temperature using a temperature measuring means.
(5)好ましくはTA≧TC(即ち、0≦TA-TC)とされる理由
次に、本実施形態に係る製造方法において、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却の際に、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)と頭部顎部外郭表面1212の冷却停止温度(TA)を、TA≧TCの関係を満たすように制御することが好ましい理由について説明する。
(5) Why TA≧TC (i.e., 0≦TA-TC) is preferable Next, we will explain why, in the manufacturing method of this embodiment, it is preferable to control the cooling stop temperature (TC) of the head corner side
レール頭部を強制冷却する場合、図2に示した頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214、頭側部外郭表面1213にエアー等の冷媒を噴射する方法が用いられる。しかし、頭部顎部外郭表面1212の過剰な冷却は、溶接継手部12にマルテンサイトを生成させるおそれがある。特に、TA<TCとなった場合、溶接継手部12にマルテンサイトが生成しやすい傾向にある。上記の理由により、TA≧TCにすることが好ましいと判断された。例えば、溶接継手部12の柱部122に向けての冷媒の吹き付けを抑制することにより、TA≧TCの関係を満たすことが容易となる。
When forcibly cooling the rail head, a method of spraying a coolant such as air onto the head top
(6)好ましくは、TA+TC≧1340とされる理由
次に、本実施形態に係る製造方法において、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却の際に、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)と頭部顎部外郭表面1212の冷却停止温度(TA)を、TA+TC≧1340の関係を満たすように制御することが好ましい理由について説明する。
(6) Why TA + TC ≧ 1340 is preferable Next, an explanation will be given of why, in the manufacturing method according to this embodiment, it is preferable to control the cooling stop temperature (TC) of the head corner side
図11に示したように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1340℃以上になると、頭頂部コーナー側外郭表面1214及び頭部顎部外郭表面1212の温度が確保され、冷却停止の後の放冷過程での頭部顎部外郭表面1212の冷却速度が緩和され、図8に示したように、頭部顎部の近傍のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下となり、溶接継手部12の耐折損性をさらに向上させることができる。このため、TA+TC≧1340とすることが好ましい。マルテンサイト組織評価領域Cのマルテンサイト組織の生成数を安定的に5個以下に制御するには、TA+TCは1360℃以上、1500℃以下に制御することがさらに望ましい。
As shown in FIG. 11, when the sum of the cooling stop temperature (TA) of the head jaw
(7)好ましくは、0≦TA-TC≦140とされる理由
次に、本実施形態に係る製造方法において、フラッシュバット溶接の終了後のオーステナイト温度域からの強制冷却の際に、溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)と頭部顎部外郭表面1212の冷却停止温度(TA)を、0≦TA-TC≦140の関係を満たすように制御することが好ましい理由について説明する。
(7) Why 0≦TA-TC≦140 is preferable Next, we will explain why, in the manufacturing method according to this embodiment, it is preferable to control the cooling stop temperature (TC) of the head corner side
図12に示したように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差を140℃以下に制御すると、頭頂部コーナー側外郭表面1214と頭部顎部外郭表面1212との間の温度差が低減し、マルテンサイト組織が生成する頭部顎部において、放冷過程での頭部顎部外郭表面1212の冷却速度が緩和され、図9に示したように、頭部顎部の近傍のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成数が5個以下となり、溶接継手部12の耐折損性がさらに向上する。このため、TA-TC≦140にすることが好ましい。マルテンサイト組織評価領域Cのマルテンサイト組織の生成数を安定的に5個以下に制御するには、TA-TCは20℃以上、120℃以下に制御することが一層望ましい。なお、後述するように、TA-TCが0℃未満となる場合は少ないと想定されるので、TA-TCの下限値は0℃とする。
As shown in Figure 12, when the difference between the cooling stop temperature (TA) of the head jaw
なお、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との差が160~240℃の範囲にある場合は、図13に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1340℃以上となっても、マルテンサイト組織の生成数が5個以下になることはない。
In addition, if the difference between the cooling stop temperature (TA) of the head jaw
また、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)との和が1250~1330℃の範囲にある場合は、図14に示すように、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の差が140℃以下となっても、マルテンサイト組織の生成数が5個以下になることはない。
Furthermore, when the sum of the cooling stop temperature (TA) of the head jaw
したがって、マルテンサイト組織の生成数を5個以下に制御するためには、頭部顎部外郭表面1212の冷却停止温度(TA)と頭頂部コーナー側外郭表面1214の冷却停止温度(TC)の和及び差の両方をそれぞれ制御することが好ましい。そして、TA+TC≧1340及び0≦TA-TC≦140の両方が満たされることが好ましい。
Therefore, in order to control the number of martensite structures formed to 5 or less, it is preferable to control both the sum and difference of the cooling stop temperature (TA) of the head jaw
(8)溶接継手部12の溶接中心Aにおける頭頂部コーナー側外郭表面1214と頭部顎部外郭表面1212の温度測定位置の限定理由
(8) Reasons for limiting the temperature measurement positions of the
図5に示した、頭部顎部の近傍のマルテンサイト組織評価領域Cにおけるマルテンサイト組織の生成を制御するには、その近傍である頭部顎部外郭表面1212の温度制御が有効と本発明者らは考えた。また、頭部顎部外郭表面1212のマルテンサイト組織の生成に影響を与える温度制御位置を検討した結果、図9、図11、及び図12に示したように、頭頂部コーナー側外郭表面1214の温度とマルテンサイト組織の生成量との相関が強いことが明らかとなった。このため、マルテンサイト組織評価領域Cのマルテンサイト組織の生成を制御するには、頭部顎部外郭表面1212に加えて、頭頂部コーナー側外郭表面1214の温度制御が有効と本発明者らは考えた。
The inventors considered that in order to control the generation of martensite structure in the martensite structure evaluation area C near the head jaw shown in Figure 5, it would be effective to control the temperature of the head jaw
本実施形態に係る溶接レール1の製造方法において、上述された以外の事項は特に限定されない。例えば、フラッシュバット溶接条件は特に限定されない。上述した化学成分を有するレールに適した溶接条件を、適宜採用することができる。また、溶接継手部12の冷却手段も限定されない。溶接中心Aにおける頭頂部コーナー側外郭表面1214の冷却停止温度(TC)及び頭部顎部外郭表面1212の冷却停止温度(TA)を上述の範囲内とすることが可能な冷却手段を、適宜採用することができる。
In the manufacturing method of the welded
なお、フラッシュバット溶接直後の溶接継手部12には、アプセット工程によって溶接部から排出された鋼が、余盛として残存している。余盛は、溶接終了の直後に取り除かれる。しかしながら図16A及び図16Bに示したように、溶接終了後の頭部顎部の表面には、余盛を取り除く作業であるトリミング(又はビードカット)後に、部分的に数mm厚さの余盛が依然として残存する場合がある。マルテンサイト組織の評価領域(C)は、この残った余盛に関係なく、母材レールの頭部顎部表面を基準に特定される必要がある。 Incidentally, immediately after flash butt welding, the steel expelled from the weld in the upset process remains as a weld metal in the weld joint 12. The weld metal is removed immediately after welding is completed. However, as shown in Figures 16A and 16B, after trimming (or bead cutting), which is the process of removing the weld metal, a weld metal of several mm in thickness may still remain on the surface of the head jaw after welding is completed. The evaluation area (C) of the martensitic structure needs to be identified based on the head jaw surface of the base rail, regardless of this remaining weld metal.
また、マルテンサイト組織評価領域Cにおける金属組織はパーライトとされることが好ましい。当該領域のみならず、レール頭部の耐摩耗性を確保するためにはパーライト組織が最もよいことが確認された。そこで、レール溶接継ぎ手部の頭部(頭頂面から深さ1/3hまでの領域)については、上記限定のマルテンサイト組織以外の部分はパーライト組織が望ましい。なお、それ以外の部位については、レールに必要な強度、延性、靭性を確保できるものであれば、上記限定のマルテンサイト組織以外の部分は、パーライト組織以外の金属組織でもよい。本実施形態に係る溶接レールの製造方法においては、レールの成分、及び冷却停止温度が上述の範囲内とされるので、溶接継手部の金属組織は主にパーライトから構成されるものとなる。 Furthermore, it is preferable that the metal structure in the martensite structure evaluation region C is pearlite. It has been confirmed that pearlite structure is best for ensuring the wear resistance of not only this region but also the rail head. Therefore, for the head of the rail welded joint (the region from the top surface to a depth of 1/3h), it is preferable that the parts other than the martensite structure limited above be pearlite structure. For other parts, the parts other than the martensite structure limited above may be metal structures other than pearlite structure as long as they can ensure the strength, ductility, and toughness required for the rail. In the manufacturing method of the welded rail according to this embodiment, the rail components and cooling stop temperature are within the above-mentioned ranges, so that the metal structure of the welded joint is mainly composed of pearlite.
実施例により本発明の一態様の効果を更に具体的に説明する。ただし、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例に過ぎない。本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。 The effect of one aspect of the present invention will be explained in more detail using an example. However, the conditions in the example are merely one example of conditions adopted to confirm the feasibility and effect of the present invention. The present invention is not limited to this one example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and the object of the present invention is achieved.
本発明者らは、種々の条件で溶接レールを製造し、その耐折損性を評価した。試験条件は下記の通りである。 The inventors manufactured welded rails under various conditions and evaluated their breakage resistance. The test conditions are as follows:
●フラッシュバット溶接条件(予熱フラッシュ方式)
初期フラッシュ時間:15sec
予熱回数:10回
後期フラッシュ時間:25sec
平均的な後期フラッシュ速度:1.0mm/sec
アプセット直前(3sec間)の後期フラッシュ速度:2.0mm/sec
アプセット荷重:65KN
● Flash butt welding conditions (preheating flash method)
Initial flash time: 15 sec
Preheat times: 10 times Late flash time: 25 sec
Average late flash velocity: 1.0 mm/sec
Late flash velocity just before upsetting (for 3 seconds): 2.0 mm/sec
Upset load: 65KN
●溶接後の溶接継手部の冷却条件
部位:溶接中心(A)
冷却開始時間:溶接終了後15sec
冷却方法:エアー
冷却部位:頭頂部外郭表面1211、頭頂部コーナー側外郭表面1214、頭側部外郭表面1213
エアー冷却後の冷却:放冷(50℃まで)
●フラッシュバット溶接継手部の特性
HAZ幅:32mm
溶接中心の硬さ:390~440 HV
最軟化部の硬さ:280 HV
Cooling conditions for welded joints after welding Location: Weld center (A)
Cooling start time: 15 seconds after welding is completed
Cooling method: Air Cooling area: Top
Cooling after air cooling: Cool naturally (up to 50°C)
●Characteristics of flash butt welded joint HAZ width: 32mm
Hardness at the center of the weld: 390-440 HV
Hardness of softest part: 280 HV
●マルテンサイト組織の評価
評価部位(図5参照)
溶接継手部の長手方向の断面において、溶接中心(A)から±5mm(幅10mm)の範囲であり、且つ、頭部顎部外郭表面1212から頭頂部コーナー側外郭表面側に深さ1~5mmの領域(マルテンサイト組織評価領域:C)を意味する。
評価部位の選定理由
マルテンサイト組織を起点としてレール折損が発生する位置であるためである。
マルテンサイト組織の現出方法
マルテンサイト組織評価領域(C)を研磨後、ナイタールエッチを行い、光学顕微鏡により観察を行う。
研磨条件:1μmダイヤペーストでのバフ研磨
マルテンサイトエッチ条件
エッチング液:アルコール+5%硝酸(ナイタール)
エッチング時間:5~10秒
組織の調査方法
装置:光学顕微鏡
倍率:400倍
組織の評価方法
光学顕微鏡の400倍で確認できるマルテンサイト組織を評価対称とした。
対象とするマルテンサイト組織は長径25~100μm、マルテンサイト組織が発生している場合はその個数を調査した。
Evaluation of martensite structure Evaluation area (see Figure 5)
In the longitudinal cross section of the welded joint, this refers to a range of ±5 mm (
Reason for selecting the evaluation site: This is because this is the location where rail breakage occurs starting from the martensite structure.
Method for Revealing Martensite Structure After the martensite structure evaluation region (C) is polished, it is etched with nital and observed under an optical microscope.
Polishing conditions: buff polishing with 1 μm diamond paste Martensite etching conditions Etching solution: alcohol + 5% nitric acid (nital)
Etching time: 5 to 10 seconds Method for examining structure Equipment: Optical microscope Magnification: 400x Method for evaluating structure Martensite structures that could be confirmed under an optical microscope at 400x were evaluated.
The target martensite structure had a major axis of 25 to 100 μm, and when martensite structures were generated, the number of martensite structures was investigated.
●落重試験条件(図6参照)
姿勢:頭部を下側、底部を上側として溶接レールを2点支持し、レール底部に落錘落下
スパン長(2つの支持点の間隔):1000mm
落錘重量:1000kgf(9.8kN)
落錘高さ(X):5.0、7.5m
落錘エネルギー:49.0、73.5kN・m
Drop weight test conditions (see Figure 6)
Position: The welded rail is supported at two points with the head on the bottom and the bottom on the top, and a drop weight is dropped onto the bottom of the rail. Span length (distance between the two support points): 1000 mm
Falling weight: 1000kgf (9.8kN)
Drop height (X): 5.0, 7.5 m
Falling weight energy: 49.0, 73.5 kN.m
フラッシュバット溶接に供したレールの化学成分を、表1A、表1B、表2A表2B、表3A、及び表3Bに示す。頭頂部コーナー側外郭表面の冷却停止温度(TC)及び頭部顎部外郭表面の冷却停止温度(TA)を表4A及び表4Bに示す。 The chemical composition of the rails used in flash butt welding is shown in Tables 1A, 1B, 2A, 2B, 3A, and 3B. The cooling stop temperature (TC) of the outer surface of the top corner and the cooling stop temperature (TA) of the outer surface of the head jaw are shown in Tables 4A and 4B.
参考のために、表4A及び表4Bには、TA+TCの算出結果、及びTA-TCの算出結果も示す。 For reference, Tables 4A and 4B also show the calculation results of TA+TC and TA-TC.
加えて、表4A及び表4Bには、溶接レールのマルテンサイト組織評価領域Cにおけるマルテンサイトの個数、及び溶接レールの耐折損性評価結果も示す。評価基準は以下の通りとした。
●マルテンサイト組織評価領域Cにおけるマルテンサイトの個数
5個以下:A
5個超10個以下:B
10個超:C
●耐折損性評価
落錘高さ7.5mで折損なし:A
落錘高さ7.5mで折損したが、落錘高さ5.0mで折損無し:B
落錘高さ5.0mで折損あり:C
耐折損性が「B」又は「A」と評価された溶接レールは、耐折損性に優れると判断した。
In addition, Tables 4A and 4B also show the number of martensites in the martensite structure evaluation region C of the welded rail and the evaluation results of the breakage resistance of the welded rail. The evaluation criteria were as follows.
Number of martensites in martensite structure evaluation area C: 5 or less: A
More than 5 but less than 10: B
Over 10: C
●Breakage resistance evaluation No breakage when dropped from a weight height of 7.5 m: A
B: Breakage occurred at a drop height of 7.5 m, but no breakage occurred at a drop height of 5.0 m
Breakage occurred at a falling weight height of 5.0 m: C
Welded rails whose breakage resistance was rated as "B" or "A" were determined to have excellent breakage resistance.
例31及び例32の製造方法によって得られた溶接レールでは、耐折損性が不足していた。これらの溶接レールでは、マルテンサイトの個数が過大であった。これは、溶接継手部の溶接中心における頭部顎部外郭表面の冷却停止温度(TA)が低すぎたからであると考えられる。 The welded rails obtained by the manufacturing methods of Examples 31 and 32 lacked resistance to breakage. The amount of martensite in these welded rails was excessive. This was thought to be because the cooling stop temperature (TA) of the outer surface of the head jaw at the weld center of the weld joint was too low.
例37の製造方法によって得られた溶接レールでは、耐折損性が不足していた。これらの溶接レールでは、マルテンサイトの個数が過大であった。これは、溶接継手部の溶接中心における頭頂部コーナー側外郭表面の冷却停止温度(TC)が低すぎたからであると考えられる。 The welded rails obtained by the manufacturing method of Example 37 had insufficient breakage resistance. The amount of martensite in these welded rails was excessive. This is thought to be because the cooling stop temperature (TC) of the outer surface on the corner side of the top of the weld joint at the weld center was too low.
例38の製造方法によって得られた溶接レールでは、耐折損性が不足していた。この溶接レールでは、マルテンサイトの個数が過大であった。これは、TA及びTCの両方が低すぎたからであると考えられる。 The welded rail obtained by the manufacturing method of Example 38 had insufficient breakage resistance. The number of martensite particles in this welded rail was excessive. This was thought to be because both TA and TC were too low.
一方、レールの化学成分、TA、及びTCの全てが適切であった製造方法によって得られた溶接レールは全て、耐折損性に優れた。 On the other hand, all welded rails obtained by manufacturing methods in which the chemical composition, TA, and TC of the rails were all appropriate had excellent breakage resistance.
1 フラッシュバット溶接レール(溶接レール)
11 レール部
111 レール頭部
1111 レール頭頂部外郭表面
1112 レール頭部顎部外郭表面
1113 レール頭側部外郭表面
1114 レール頭頂部コーナー側外郭表面
112 レール柱部
113 レール底部
12 溶接継手部
121 (溶接継手部の)頭部
1211 (溶接継手部の)頭頂部外郭表面
1212 (溶接継手部の)頭部顎部外郭表面
1213 (溶接継手部の)頭側部外郭表面
1214 (溶接継手部の)頭頂部コーナー側外郭表面
122 (溶接継手部の)柱部
123 (溶接継手部の)底部
12H 熱影響部(HAZ)
A 溶接中心
B 幅方向の中心
C マルテンサイト組織評価領域
2 冷却装置
21 冷媒噴射手段
22 レール設置部
23 冷媒供給手段
24 制御手段
1. Flash butt welded rail (welded rail)
11
A: welding center B: width direction center C: martensite structure evaluation area 2: cooling device 21: coolant injection means 22: rail installation section 23: coolant supply means 24: control means
Claims (4)
化学成分として、単位質量%で、C:0.70~1.20%、Si:0.05~2.00%、Mn:0.05~2.00%、P≦0.0300%、S≦0.0300%、Cr:0~2.00%、Mo:0~0.50%、Co:0~1.00%、B:0~0.0050%、Cu:0~1.00%、Ni:0~1.00%、V:0~0.200%、Nb:0~0.0500%、Ti:0~0.0500%、Mg:0~0.0200%、Ca:0~0.0200%、REM:0~0.0500%、N:0~0.0200%、Zr:0~0.0200%、及びAl:0~1.0000%を含有し、残部はFe及び不純物からなるレールをフラッシュバット溶接する工程と、
前記フラッシュバット溶接の終了後、直ちに前記溶接継手部を強制冷却する工程と
を備え、
オーステナイト温度域からの前記強制冷却において、前記溶接継手部の溶接中心における頭頂部コーナー側外郭表面の冷却停止温度(TC)を560℃以上850℃以下とし、
頭部顎部外郭表面の冷却停止温度(TA)を650℃以上950℃以下とする
ことを特徴とするフラッシュバット溶接レールの製造方法。 A method for manufacturing a flash butt welded rail having a plurality of rail portions and a welded joint portion that joins the plurality of rail portions,
The chemical components, in mass%, are: C: 0.70-1.20%, Si: 0.05-2.00%, Mn: 0.05-2.00%, P≦0.0300%, S≦0.0300%, Cr: 0-2.00%, Mo: 0-0.50%, Co: 0-1.00%, B: 0-0.0050%, Cu: 0-1.00%, Ni: 0-1.00%, V: 0-0. 200%, Nb: 0-0.0500%, Ti: 0-0.0500%, Mg: 0-0.0200%, Ca: 0-0.0200%, REM: 0-0.0500%, N: 0-0.0200%, Zr: 0-0.0200%, and Al: 0-1.0000%, with the balance being Fe and impurities;
and immediately after completion of the flash butt welding, forcibly cooling the welded joint.
In the forced cooling from the austenite temperature range, the cooling stop temperature (TC) of the outer surface of the top corner side at the weld center of the weld joint is set to 560° C. or more and 850° C. or less;
A method for manufacturing a flash butt welded rail, characterized in that the cooling stop temperature (TA) of the head and jaw outer surface is 650°C or higher and 950°C or lower.
ことを特徴とする請求項1に記載のフラッシュバット溶接レールの製造方法。
TA+TC≧1340 1式
0≦TA-TC≦140 2式 2. A method for manufacturing a flash butt welded rail as claimed in claim 1, characterized in that the cooling stop temperature (TC) of the outer surface of the top corner side and the cooling stop temperature (TA) of the outer surface of the head jaw satisfy the following formulas 1 and 2.
TA+TC≧1340 1st formula 0≦TA-TC≦140 2nd formula
a群:Cr:0.05%以上2.00%以下、Mo:0.01%以上0.50%以下、
b群:Co:0.01%以上1.00%以下、
c群:B:0.0001%以上0.0050%以下、
d群:Cu:0.01%以上1.00%以下、及びNi:0.01%以上1.00%以下の1種または2種、
e群:V:0.005%以上0.200%以下、Nb:0.0010%以上0.0500%以下、及びTi:0.0010%以上0.0500%以下の1種または2種以上、
f群:Mg:0.0005%以上0.0200%以下、Ca:0.0005%以上0.0200%以下、及びREM:0.0005%以上0.0500%以下の1種または2種以上、
g群:N:0.0025%以上0.0200%以下、
h群:Zr:0.0001%以上0.0200%以下、
i群:Al:0.0010%以上1.0000%以下、
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載のフラッシュバット溶接レールの製造方法。 The rail has, as the chemical composition, in mass %,
Group a: Cr: 0.05% or more and 2.00% or less, Mo: 0.01% or more and 0.50% or less,
Group b: Co: 0.01% or more and 1.00% or less,
Group c: B: 0.0001% or more and 0.0050% or less,
Group d: Cu: 0.01% or more and 1.00% or less, and Ni: 0.01% or more and 1.00% or less, or one or two of these;
Group e: one or more of V: 0.005% or more and 0.200% or less, Nb: 0.0010% or more and 0.0500% or less, and Ti: 0.0010% or more and 0.0500% or less;
Group f: one or more of Mg: 0.0005% or more and 0.0200% or less, Ca: 0.0005% or more and 0.0200% or less, and REM: 0.0005% or more and 0.0500% or less;
Group g: N: 0.0025% or more and 0.0200% or less,
Group h: Zr: 0.0001% or more and 0.0200% or less,
Group i: Al: 0.0010% or more and 1.0000% or less,
3. The method for manufacturing a flash butt welded rail according to claim 1, further comprising the step of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024537321A JP7553882B1 (en) | 2023-07-20 | 2024-03-08 | Manufacturing method for flash butt welded rails |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-118424 | 2023-07-20 | ||
JP2023118424 | 2023-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025017960A1 true WO2025017960A1 (en) | 2025-01-23 |
Family
ID=94281772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/009130 WO2025017960A1 (en) | 2023-07-20 | 2024-03-08 | Method for manufacturing flash butt welding rail |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025017960A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010180443A (en) * | 2009-02-04 | 2010-08-19 | Nippon Steel Corp | Method for heat-treating high-carbon pearlitic rail |
US20190105693A1 (en) * | 2017-10-10 | 2019-04-11 | Pangang Group Research Institute Co., Ltd. | High-toughness and plasticity hypereutectoid rail and manufacturing method thereof |
JP2019081917A (en) * | 2017-10-27 | 2019-05-30 | 東鉄工業株式会社 | Cooling method and mist cooling device for high-temperature rail |
WO2022071007A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Welded rail |
-
2024
- 2024-03-08 WO PCT/JP2024/009130 patent/WO2025017960A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010180443A (en) * | 2009-02-04 | 2010-08-19 | Nippon Steel Corp | Method for heat-treating high-carbon pearlitic rail |
US20190105693A1 (en) * | 2017-10-10 | 2019-04-11 | Pangang Group Research Institute Co., Ltd. | High-toughness and plasticity hypereutectoid rail and manufacturing method thereof |
JP2019081917A (en) * | 2017-10-27 | 2019-05-30 | 東鉄工業株式会社 | Cooling method and mist cooling device for high-temperature rail |
WO2022071007A1 (en) * | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Welded rail |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4819183B2 (en) | Rail welded portion cooling method, rail welded portion cooling device, and rail welded joint | |
WO2022071007A1 (en) | Welded rail | |
JP4824141B2 (en) | Perlite rail with excellent wear resistance and toughness | |
JP6288262B2 (en) | Rail and manufacturing method thereof | |
CA2869964C (en) | Pearlite rail, flash butt welding method for pearlite rail, and method for manufacturing pearlite rail | |
JPH09316598A (en) | Perlite rail with excellent wear resistance and weldability, and method of manufacturing the same | |
JP5217092B2 (en) | Manufacturing method of steel material with excellent fatigue crack propagation resistance | |
JP4644105B2 (en) | Heat treatment method for bainite steel rail | |
JPH11152520A (en) | Manufacturing method of high-strength bainite-based rail with excellent surface damage resistance and wear resistance | |
JP4949144B2 (en) | Perlite rail excellent in surface damage resistance and wear resistance and method for producing the same | |
JP2013014847A (en) | Method for producing pearlitic rail excellent in wear resistance and ductility | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
JP3631712B2 (en) | Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method | |
JP7553882B1 (en) | Manufacturing method for flash butt welded rails | |
JP3522613B2 (en) | Bainitic rails with excellent rolling fatigue damage resistance, internal fatigue damage resistance, and welded joint characteristics, and manufacturing methods thereof | |
WO2025017960A1 (en) | Method for manufacturing flash butt welding rail | |
JPH1192867A (en) | Low-segregation pearlitic rail with excellent wear resistance and weldability and method for producing the same | |
CN118159675A (en) | Steel pipe welding joint | |
JP7684624B1 (en) | Welded joint of welded rail and manufacturing method of welded joint of welded rail | |
JP2006057128A (en) | Manufacturing method of pearlite rails with excellent drop weight resistance | |
AU2022382226B2 (en) | Welded rail | |
JP5126790B2 (en) | Steel material excellent in fatigue crack growth resistance and method for producing the same | |
JP4332066B2 (en) | High-strength liquid phase diffusion bonding joint with excellent weld toughness, high-strength steel for liquid phase diffusion bonding, and liquid phase diffusion bonding method | |
JPH11152521A (en) | Manufacturing method of high-strength pearlitic rail with excellent wear resistance | |
WO2024127454A1 (en) | Heat treatment method for welded joint part of flash-butt-welded rail and production method for flash-butt-welded rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024537321 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24842761 Country of ref document: EP Kind code of ref document: A1 |