[go: up one dir, main page]

WO2025013394A1 - Resin material, cured article, and multilayer printed wiring board - Google Patents

Resin material, cured article, and multilayer printed wiring board Download PDF

Info

Publication number
WO2025013394A1
WO2025013394A1 PCT/JP2024/017367 JP2024017367W WO2025013394A1 WO 2025013394 A1 WO2025013394 A1 WO 2025013394A1 JP 2024017367 W JP2024017367 W JP 2024017367W WO 2025013394 A1 WO2025013394 A1 WO 2025013394A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
inorganic particles
compound
cured product
hollow inorganic
Prior art date
Application number
PCT/JP2024/017367
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 大當
奨 馬場
さやか 脇岡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2025013394A1 publication Critical patent/WO2025013394A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin material containing a maleimide compound.
  • the present invention also relates to a cured product of the above resin material.
  • the present invention also relates to a multilayer printed wiring board using the above resin material.
  • resin materials have been used to obtain electronic components such as semiconductor devices, laminates, and printed wiring boards.
  • resin materials are used to form insulating layers for insulating between internal layers and to form insulating layers located on the surface.
  • Wiring which is generally metal, is laminated on the surface of the insulating layer.
  • film-like resin materials resin films
  • the resin materials are used as insulating materials for multilayer printed wiring boards, including build-up films.
  • Patent Document 1 discloses a resin composition containing (A) epoxy resin, (B) hardener, (C) hollow silica, and (D) fused silica.
  • this resin composition when the non-volatile components in the resin composition are taken as 100% by mass, the content of (C) hollow silica is 5 to 22% by mass, and the total content of (C) hollow silica and (D) fused silica is 50 to 70% by mass.
  • Patent Document 2 discloses a resin composition that contains a thermosetting resin (A) and a filler (B), where the filler (B) contains hollow particles (b) that satisfy a specific formula and have an average particle size of 0.01 to 10 ⁇ m.
  • a resin material containing a thermosetting compound and hollow inorganic particles is known.
  • hollow inorganic particles the dielectric constant and dielectric tangent of the cured resin material can be lowered to a certain degree.
  • the glass transition temperature of the cured product may not be sufficiently high.
  • wiring When manufacturing electronic components such as printed wiring boards, wiring may be formed by laminating a resin material onto a substrate, heating, desmearing, or ultrasonic treatment.
  • the hollow inorganic particles may crack during these treatments.
  • hollow inorganic particles are particularly susceptible to cracking during ultrasonic treatment.
  • the chemical solution used to form the wiring seeps into the cracked area, increasing the amount of copper seeping in, which can cause a short circuit between the wires.
  • the object of the present invention is to provide a resin material that can increase the glass transition temperature of the cured product, can reduce the dielectric constant and dielectric tangent of the cured product, and has hollow inorganic particles that are less likely to break even when subjected to ultrasonic treatment.
  • Another object of the present invention is to provide a cured product of the above resin material.
  • Still another object of the present invention is to provide a multilayer printed wiring board using the above resin material.
  • This specification discloses the following resin material, cured product, and multilayer printed wiring board.
  • a resin material comprising a maleimide compound (A) and hollow inorganic particles (B), the BET specific surface area of the hollow inorganic particles (B) satisfying the following formula (1):
  • Item 2 The resin material according to item 1, in which the content of the maleimide compound (A) is 20% by weight or more and 70% by weight or less, based on 100% by weight of the components excluding the solvent in the resin material.
  • Item 3 The resin material according to item 1 or 2, wherein the maleimide compound (A) has a skeleton derived from dimer diamine.
  • Item 4 The resin material according to any one of items 1 to 3, wherein the maleimide compound (A) has a skeleton derived from a dimer diamine and a skeleton derived from a diamine compound having an alicyclic skeleton other than a dimer diamine.
  • Item 5 The resin material according to Item 4, wherein the diamine compound having an alicyclic skeleton other than the dimer diamine is tricyclodecane diamine, norbornane diamine, or isophorone diamine.
  • Item 6 The resin material according to any one of items 1 to 5, in which the content of the hollow inorganic particles (B) is 60% by weight or less based on 100% by weight of the components excluding the solvent in the resin material.
  • Item 7 The resin material according to any one of items 1 to 6, further comprising solid inorganic particles (C).
  • Item 8 The resin material according to any one of items 1 to 7, further comprising a thermosetting compound (D) having a functional group capable of reacting with a maleimide group.
  • thermosetting compound (D) includes a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, a methacryloyl group, or an acryloyl group.
  • Item 10 A resin material according to any one of items 1 to 9, in which when the resin material is heated at 180°C for 30 minutes and then heated at 200°C for 60 minutes to obtain a cured product of the resin material, the resulting cured product has a dielectric constant of 2.5 or less at 10 GHz.
  • Item 11 The resin material according to any one of items 1 to 10, which is a resin film.
  • Item 12 The resin material according to any one of items 1 to 11, which is used to form an insulating layer in a multilayer printed wiring board.
  • Item 13 A cured product of a resin material, the resin material being the resin material described in any one of items 1 to 12.
  • a multilayer printed wiring board comprising a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a metal layer disposed between the plurality of insulating layers, at least one of the plurality of insulating layers being a cured product of the resin material described in any one of items 1 to 12.
  • the resin material according to the present invention contains a maleimide compound (A) and hollow inorganic particles (B), and the BET specific surface area of the hollow inorganic particles (B) satisfies a specific formula (1). Since the resin material according to the present invention has the above-mentioned configuration, the glass transition temperature of the cured product can be increased, the dielectric constant and dielectric tangent of the cured product can be reduced, and the hollow inorganic particles are less likely to break even when subjected to ultrasonic treatment.
  • FIG. 1 is a cross-sectional view showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a method for calculating the plating penetration amount evaluated in the examples.
  • the resin material according to the present invention contains a maleimide compound (A) and hollow inorganic particles (B), and the BET specific surface area of the hollow inorganic particles (B) satisfies the following formula (1).
  • the resin material according to the present invention has the above-mentioned configuration, so that the glass transition temperature of the cured product can be increased, the dielectric constant and dielectric tangent of the cured product can be decreased, and the hollow inorganic particles are less likely to break even when subjected to ultrasonic treatment.
  • the resin material according to the present invention can maintain low dielectric constant and dielectric tangent of the cured product before and after ultrasonic treatment.
  • the hollow inorganic particles are prone to cracking even when laminated.
  • the hollow inorganic particles are less likely to crack even when laminated. Therefore, with the resin material of the present invention, the dielectric constant and dielectric tangent of the cured product can be reduced even when used in a laminated state.
  • the hollow inorganic particles in the resin material of the present invention are less likely to crack, so short circuits between wiring can be effectively prevented.
  • the resin material according to the present invention may be a resin composition or a resin film.
  • the resin composition has fluidity.
  • the resin composition may be in a paste form.
  • the paste form includes a liquid form. Since this has excellent handleability, the resin material according to the present invention is preferably a resin film.
  • the resin material according to the present invention is preferably a thermosetting resin material.
  • the resin film is preferably a thermosetting resin film.
  • 100% by weight of components in the resin material excluding the solvent means 100% by weight of components in the resin material excluding the solvent when the resin material contains a solvent, and means 100% by weight of the resin material when the resin material does not contain a solvent.
  • 100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent means 100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent when the resin material contains hollow inorganic particles (B), solid inorganic particles (C) and solvent.
  • “100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent” means 100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent when the resin material contains hollow inorganic particles (B) and solvent but does not contain solid inorganic particles (C).
  • “100% by weight of the components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent” means 100% by weight of the components in the resin material excluding the hollow inorganic particles (B) when the resin material contains hollow inorganic particles (B) but does not contain solid inorganic particles (C) and solvent.
  • the resin material contains a maleimide compound (A).
  • a maleimide compound (A) a conventionally known maleimide compound can be used.
  • the maleimide compound (A) may be used alone or in combination of two or more kinds.
  • the maleimide compound (A) may have one maleimide group, two maleimide groups, two or more maleimide groups, three or more maleimide groups, four or more maleimide groups, 800 or less maleimide groups, 500 or less maleimide groups, or 300 or less maleimide groups.
  • the maleimide compound (A) preferably contains a maleimide compound having two maleimide groups, and is more preferably a maleimide compound having two maleimide groups. Therefore, the maleimide compound (A) preferably contains a bismaleimide compound, and is more preferably a bismaleimide compound.
  • the maleimide compound (A) preferably has an aliphatic skeleton or an alicyclic skeleton, and more preferably has an aliphatic skeleton and an alicyclic skeleton. In this case, the effects of the present invention can be more effectively exhibited. In addition, the desmear property and plating peel strength can be improved.
  • the aliphatic skeleton may be a chain aliphatic skeleton, for example, a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the aliphatic skeleton is preferably an aliphatic skeleton having 4 or more carbon atoms.
  • the number of carbon atoms in an aliphatic skeleton having 4 or more carbon atoms is preferably 5 or more, more preferably 6 or more, even more preferably 7 or more, preferably 60 or less, more preferably 50 or less, even more preferably 40 or less.
  • the aliphatic skeleton may be an alkyl group having 4 to 60 carbon atoms (preferably an alkyl group having 6 to 40 carbon atoms).
  • the maleimide compound (A) may have only one type of the aliphatic skeleton, or may have two or more types.
  • the alicyclic skeleton may include a monocycloalkane ring, a bicycloalkane ring, a tricycloalkane ring, a tetracycloalkane ring, and a dicyclopentadiene ring.
  • the maleimide compound (A) may have only one type of the alicyclic skeleton, or two or more types.
  • the maleimide compound (A) has an aromatic skeleton.
  • the aromatic skeleton includes a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, a chrysene ring, a triphenylene ring, a tetraphene ring, a pyrene ring, a pentacene ring, a picene ring, and a perylene ring.
  • the maleimide compound (A) may have only one type of the aromatic skeleton, or two or more types.
  • the maleimide compound (A) preferably has a skeleton derived from dimer diamine. Since a maleimide compound having a skeleton derived from dimer diamine has an aliphatic skeleton and an alicyclic skeleton, the use of this maleimide compound can further reduce the dielectric constant and dielectric tangent of the cured product.
  • dimer diamine examples include “VERSAMINE 551” (3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene) manufactured by BASF Japan, “VERSAMINE 552” (hydrogenated product of VERSAMINE 551) manufactured by Cognix Japan, and “PRIAMINE 1075” and “PRIAMINE 1074” manufactured by Croda Japan. Only one type of the above dimer diamine may be used, or two or more types may be used in combination.
  • the maleimide compound (A) has a skeleton derived from a dimer diamine and a skeleton derived from a second diamine compound other than the dimer diamine. In this case, the effects of the present invention can be more effectively achieved.
  • the second diamine compound may be tricyclodecanediamine, norbornanediamine, isophoronediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, bis(aminomethyl)norbornane, 3(4),8(9)-bis(aminomethyl)tricyclo[5.2.1.02,6]decane, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-methylenebis(cyclohexylamine), 4,4'-methylenebis(2-methylcyclohexylamine), 1,4-diamino
  • Examples of the second diamine compound include butane, 1,10-diaminodecane, 1,12-diaminododecane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,8-diaminooc
  • the second diamine compound may or may not have an aliphatic skeleton.
  • the second diamine compound may or may not have an alicyclic skeleton.
  • the second diamine compound may or may not have an aromatic skeleton.
  • the second diamine compound preferably contains a diamine compound having an alicyclic skeleton other than dimer diamine.
  • the maleimide compound (A) preferably has a skeleton derived from dimer diamine and a skeleton derived from a diamine compound having an alicyclic skeleton other than dimer diamine. In this case, the effect of the present invention can be exerted even more effectively.
  • the diamine compound having an alicyclic skeleton other than the above dimer diamine is preferably tricyclodecane diamine, norbornane diamine, or isophorone diamine. In this case, the effects of the present invention can be more effectively exerted.
  • the maleimide compound (A) preferably has a skeleton derived from an acid dianhydride, more preferably has a skeleton derived from a reaction product of a diamine compound and an acid dianhydride, and even more preferably has a skeleton derived from a reaction product of a dimer diamine and an acid dianhydride.
  • Examples of the acid dianhydride include tetracarboxylic dianhydrides.
  • Examples of the tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3',4,4'-tetraphenylsilane tetracarboxylic dianhydride, 1,2,3,4-furan tetracarbox
  • dianhydride examples include 4,4'-bis(3,4-dicarboxyphenoxy)diphenylsulfone dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidenediphthalic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid)phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenylphthalic acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenylether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride.
  • the above dianhydrides may be used alone or in combination of two or more.
  • the molecular weight of the maleimide compound (A) is preferably 200 or more, more preferably 500 or more, even more preferably 1,000 or more, and preferably 200,000 or less, more preferably 100,000 or less, even more preferably 50,000 or less.
  • the molecular weight is equal to or greater than the lower limit and equal to or less than the upper limit, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be obtained. Furthermore, because good lamination properties can be obtained, the plating peel strength of the cured product can be further increased.
  • the molecular weight of the maleimide compound (A) means the molecular weight that can be calculated from the structural formula when the maleimide compound (A) is not a polymer and when the structural formula of the maleimide compound (A) can be identified.
  • the maleimide compound (A) is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • maleimide compounds (A) include “NE-X-9470S” manufactured by DIC Corporation, “MIR-5000-60T” and “MIR-3000-70MT” manufactured by Nippon Kayaku Co., Ltd., "BMI-3000J”, “BMI-2500”, “BMI-1500” and “BMI-689” manufactured by Designer Molecules Inc., and "BMI”, “BMI-70” and “BMI-80” manufactured by Kei-I Chemicals Co., Ltd.
  • the maleimide compound (A) can also be obtained by reacting an acid dianhydride, such as a tetracarboxylic dianhydride, with a diamine compound to obtain a reaction product, and then reacting the reaction product with maleic anhydride.
  • an acid dianhydride such as a tetracarboxylic dianhydride
  • the content of the maleimide compound (A) in 100% by weight of the components excluding the solvent in the resin material is preferably 20% by weight or more, more preferably 25% by weight or more, even more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 65% by weight or less, and even more preferably 60% by weight or less.
  • the content of the maleimide compound (A) is equal to or more than the above lower limit and equal to or less than the above upper limit, the lamination properties can be further improved.
  • the surface roughness after the roughening treatment can be further reduced, and the plating peel strength of the cured product can be further increased.
  • the resin material contains hollow inorganic particles (B).
  • the hollow inorganic particles (B) may be used alone or in combination of two or more kinds.
  • the hollow inorganic particles (B) are inorganic particles having a hollow space.
  • the hollow inorganic particles (B) have a hollow space and an outer shell surrounding the hollow space.
  • the number of the hollow spaces surrounded by the outer shell is usually one.
  • the hollow inorganic particles (B) are formed from an inorganic material. More specifically, the outer shell of the hollow inorganic particles (B) is formed from an inorganic material.
  • Inorganic substances that form the hollow inorganic particles (B) include silica, aluminosilicate, silsesquioxane, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate.
  • the above inorganic substances may be used alone or in combination of two or more.
  • the inorganic material forming the hollow inorganic particles (B) preferably contains silica, aluminosilicate, or silsesquioxane, more preferably contains silica or aluminosilicate, even more preferably contains silica, and particularly preferably is silica.
  • the hollow inorganic particles (B) preferably contain hollow silica particles, hollow aluminosilicate particles, or hollow silsesquioxane particles, more preferably contains hollow silica particles or hollow aluminosilicate particles, even more preferably contains hollow silica particles, and particularly preferably is hollow silica particles. In this case, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced.
  • the BET specific surface area of the hollow inorganic particles (B) satisfies the following formula (1).
  • (3/rd) means the theoretical value of the specific surface area, i.e., surface area/(volume x true density).
  • the inventors have found that the effects of the present invention can be exerted by using hollow inorganic particles whose BET specific surface area is appropriately larger than the theoretical value of the specific surface area.
  • the BET specific surface area (S) of the hollow inorganic particles (B) is preferably 1 m2 /g or more, more preferably 5 m2 /g or more, and preferably 200 m2 /g or less, more preferably 150 m2 /g or less.
  • the BET specific surface area (S) is equal to or more than the lower limit and equal to or less than the upper limit, the dispersibility of the hollow inorganic particles (B) in the resin material can be further improved.
  • the BET specific surface area (S) of the hollow inorganic particles (B) can be measured using a specific surface area/pore distribution measuring device (e.g., "NOVA4200e” manufactured by Quantachrome Instruments).
  • a specific surface area/pore distribution measuring device e.g., "NOVA4200e” manufactured by Quantachrome Instruments.
  • the average particle radius (r) of the hollow inorganic particles (B) is preferably 50 nm or more, more preferably 75 nm or more, even more preferably 100 nm or more, and preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the average particle radius (r) is equal to or greater than the lower limit and equal to or less than the upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be further improved. In addition, short circuits between wiring can be further suppressed.
  • the average particle radius (r) of hollow inorganic particles (B) is calculated by multiplying the average particle diameter of hollow inorganic particles (B) by 0.5.
  • the value of the median diameter (d50) at 50% is used as the average particle diameter of hollow inorganic particles (B).
  • the average particle diameter of hollow inorganic particles (B) can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method. Note that when hollow inorganic particles (B) are agglomerated particles, the average particle diameter of hollow inorganic particles (B) means the primary particle diameter.
  • the true density (d) of the hollow inorganic particles (B) is preferably 0.2 g/ cm3 or more, more preferably 0.3 g/ cm3 or more, and preferably 2 g/cm3 or less , more preferably 1.5 g/cm3 or less.
  • the true density (d) is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced.
  • the strength of the hollow inorganic particles (B) can be further increased.
  • the true density (d) of the hollow inorganic particles (B) can be measured using a true density measuring device (e.g., "Ultrapyc1200e” manufactured by QUANTACROME).
  • a true density measuring device e.g., "Ultrapyc1200e” manufactured by QUANTACROME.
  • the shape of the hollow inorganic particles (B) is not particularly limited, but it is preferable that they are spherical. In this case, the surface roughness of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the hollow inorganic particles (B) is preferably 1 or more, preferably 2 or less, and more preferably 1.5 or less.
  • the number of holes (number of hollows) contained inside the hollow inorganic particle (B) is not particularly limited, but it is preferable that the number is one.
  • the porosity of the hollow inorganic particles (B) is preferably 20% by volume or more, more preferably 30% by volume or more, even more preferably 40% by volume or more, and preferably 90% by volume or less, more preferably 85% by volume or less, and even more preferably 80% by volume or less. If the porosity is equal to or greater than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced.
  • the porosity can be calculated as follows. Photograph hollow inorganic particles (B) using a transmission electron microscope (TEM). From the obtained micrograph, the particle diameters of 50 arbitrary hollow inorganic particles (B) are measured, and the average value is taken as the average particle diameter (X). In addition, hollow inorganic particles (B) are cut in half, and the cut hollow inorganic particles (B) are photographed using a transmission electron microscope (TEM). From the obtained micrograph, the diameters of the cavities of the cut surfaces of 50 arbitrary cut hollow inorganic particles (B) are measured, and the average value is taken as the average diameter of the cavities (Y). Calculate the porosity using the following formula.
  • Porosity (volume %) (Y 3 /X 3 ) ⁇ 100
  • X Average particle diameter (X)
  • Y average diameter of the cavity (Y)
  • the above porosity can also be calculated using a transmission electron microscope (TEM) from the volume of the hollow inorganic particles (B) calculated from the particle diameter of the hollow inorganic particles (B) and the volume of the hollow parts calculated from the diameter of the hollow parts.
  • TEM transmission electron microscope
  • the hollow inorganic particles (B) are preferably surface-treated hollow inorganic particles, and more preferably surface-treated with a coupling agent.
  • a coupling agent By surface-treating the hollow inorganic particles (B), the surface roughness of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • finer wiring can be formed on the surface of the cured product, and better inter-wiring insulation reliability and inter-layer insulation reliability can be imparted to the cured product.
  • the above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • the above-mentioned silane coupling agents include methacrylsilane, acrylic silane, phenylaminosilane, phenylsilane, imidazole silane, vinyl silane, alkylaminosilane, and epoxy silane.
  • the hollow inorganic particles (B) are preferably hollow inorganic particles that have been surface-treated with a silane coupling agent, and more preferably hollow inorganic particles that have been surface-treated with vinyl silane, phenylamino silane, or phenyl silane.
  • the lamination properties can be further improved.
  • the plating peel strength of the cured product can be further increased.
  • the content of hollow inorganic particles (B) in 100% by weight of the components excluding the solvent in the resin material is preferably 5% by weight or more, more preferably 10% by weight or more, even more preferably 15% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, and even more preferably 50% by weight or less.
  • the content of hollow inorganic particles (B) is equal to or more than the lower limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced.
  • the thermal dimensional stability can be improved, and warping of the cured product can be effectively suppressed.
  • the content of hollow inorganic particles (B) is equal to or more than the lower limit and equal to or less than the upper limit, the surface roughness of the cured product can be further reduced, and short circuits between wirings can be further suppressed, so that even finer wiring can be formed on the surface of the cured product. Furthermore, with this content of hollow inorganic particles (B), it is possible to lower the thermal expansion coefficient of the cured product and at the same time improve smear removal properties.
  • the resin material may contain solid inorganic particles (C).
  • the solid inorganic particles (C) may be used alone or in combination of two or more kinds.
  • Solid inorganic particles (C) are inorganic particles that do not have hollow spaces.
  • solid inorganic particles (C) include solid silica particles, solid talc particles, solid clay particles, solid mica particles, solid hydrotalcite particles, solid alumina particles, solid magnesium oxide particles, solid aluminum hydroxide particles, solid aluminum nitride particles, and solid boron nitride particles.
  • the solid inorganic particles (C) are preferably solid silica particles or solid alumina particles, and more preferably solid silica particles.
  • the average particle size of the solid inorganic particles (C) is preferably 50 nm or more, more preferably 100 nm or more, even more preferably 500 nm or more, and preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the average particle size of the solid inorganic particles (C) is equal to or greater than the above lower limit and equal to or less than the above upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be further improved.
  • the median diameter (d50) at 50% is used as the average particle size of the solid inorganic particles (C).
  • the above average particle size can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method.
  • the shape of the solid inorganic particles (C) is not particularly limited, but it is preferable that they are spherical. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the solid inorganic particles (C) is preferably 1 or more, preferably 2 or less, and more preferably 1.5 or less.
  • the solid inorganic particles (C) are preferably surface-treated, more preferably surface-treated with a coupling agent, and even more preferably surface-treated with a silane coupling agent.
  • a coupling agent preferably surface-treated with a coupling agent
  • a silane coupling agent preferably surface-treated with a silane coupling agent.
  • the above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • the above-mentioned silane coupling agents include methacrylsilane, acrylic silane, aminosilane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the solid inorganic particles (C) in the resin material is preferably 1% by weight or more, more preferably 5% by weight or more, preferably 75% by weight or less, more preferably 70% by weight or less, and even more preferably 65% by weight or less, based on 100% by weight of the components excluding the solvent. If the content of the solid inorganic particles (C) is equal to or greater than the lower limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced. In addition, the thermal dimensional stability can be improved, and warping of the cured product can be effectively suppressed.
  • the content of the solid inorganic particles (C) is equal to or greater than the lower limit and equal to or less than the upper limit, the surface roughness of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Furthermore, with this content of the solid inorganic particles (C), it is possible to lower the thermal expansion coefficient of the cured product and at the same time improve the smear removal properties.
  • the resin material preferably contains a thermosetting compound (D) having a functional group capable of reacting with a maleimide group.
  • the thermosetting compound (D) is different from a maleimide compound.
  • the thermosetting compound (D) does not have a maleimide group.
  • the thermosetting compound (D) has a functional group capable of reacting with a maleimide group.
  • a conventionally known thermosetting compound can be used. Only one type of the thermosetting compound (D) may be used, or two or more types may be used in combination.
  • Thermosetting compound (D) preferably contains a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, a methacryloyl group, or an acryloyl group. It is more preferable that the thermosetting compound (D) contains a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, or a methacryloyl group. In this case, the effects of the present invention can be exerted even more effectively.
  • the molecular weight of the thermosetting compound (D) is preferably 100 or more, more preferably 200 or more, even more preferably 300 or more, and preferably 200,000 or less, more preferably 100,000 or less, even more preferably 50,000 or less. If the molecular weight is equal to or greater than the lower limit and equal to or less than the upper limit, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be achieved. Furthermore, because good lamination properties can be achieved, the plating peel strength of the cured product can be further increased.
  • the molecular weight of the thermosetting compound (D) means the molecular weight that can be calculated from the structural formula when the thermosetting compound (D) is not a polymer and when the structural formula of the thermosetting compound (D) can be identified.
  • the thermosetting compound (D) is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the thermosetting compound (D) in 100% by weight of the components excluding the solvent in the resin material is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less.
  • the content of the thermosetting compound (D) is equal to or more than the above lower limit and equal to or less than the above upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the content of the thermosetting compound (D) in 100% by weight of the components in the resin material excluding the hollow inorganic particles (B), solid inorganic particles (C) and solvent is preferably 5% by weight or more, more preferably 10% by weight or more, and preferably 100% by weight or less, more preferably 95% by weight or less.
  • the content of the thermosetting compound (D) is equal to or more than the above lower limit and equal to or less than the above upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • thermosetting compound (D) may contain a thermosetting compound having an epoxy group (epoxy compound), or may be a thermosetting compound having an epoxy group (epoxy compound).
  • the above epoxy compounds may be used alone or in combination of two or more kinds.
  • the above epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol E type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, naphthalene type epoxy compounds, fluorene type epoxy compounds, phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, anthracene type epoxy compounds, epoxy compounds having an adamantane skeleton, epoxy compounds having a tricyclodecane skeleton, naphthylene ether type epoxy compounds, and epoxy compounds having a triazine nucleus in the skeleton.
  • the epoxy compound may be a glycidyl ether compound.
  • the glycidyl ether compound is a compound having at least one glycidyl ether group.
  • the epoxy compound preferably contains an epoxy compound having an aromatic ring, more preferably contains an epoxy compound having a naphthalene skeleton or a phenyl skeleton, and even more preferably is an epoxy compound having an aromatic ring.
  • the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the epoxy compound contains an epoxy compound that is liquid at 25°C, and it is more preferable that the epoxy compound contains an epoxy compound that is liquid at 25°C and an epoxy compound that is solid at 25°C.
  • the epoxy compound contains an epoxy compound that is liquid at 25°C, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be achieved.
  • the plating peel strength of the cured product can be further increased.
  • the viscosity of the epoxy compound that is liquid at 25°C is preferably 10,000 mPa ⁇ s or less, and more preferably 5,000 mPa ⁇ s or less.
  • the viscosity of the epoxy compound that is liquid at 25°C may be 1 mPa ⁇ s or more, 10 mPa ⁇ s or more, or 100 mPa ⁇ s or more.
  • the viscosity of the epoxy compound can be measured, for example, using a dynamic viscoelasticity measuring device ("VAR-100" manufactured by Rheologica Instruments).
  • the molecular weight of the epoxy compound is preferably 1000 or less. In this case, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be obtained. In addition, since good lamination properties can be obtained, the plating peel strength of the cured product can be further increased.
  • the molecular weight of the epoxy compound may be 100 or more, or may be 200 or more.
  • the molecular weight of the epoxy compound means the molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified.
  • the epoxy compound is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the epoxy compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the epoxy compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • thermosetting compound (D) may contain a thermosetting compound (vinyl compound) having a vinyl group, or may be a thermosetting compound (vinyl compound) having a vinyl group.
  • the above vinyl compounds may be used alone or in combination of two or more kinds.
  • the vinyl compound may be a divinylbenzyl ether compound.
  • the content of the vinyl compound is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less, out of 100% by weight of the components excluding the solvent in the resin material.
  • the content of the vinyl compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the thermosetting compound (D) may contain a thermosetting compound having a styryl group (a styryl compound), or may be a thermosetting compound having a styryl group (a styryl compound).
  • the styryl compound may be used alone or in combination of two or more kinds.
  • styryl compounds include “OPE-2St” and “OPE-1200” manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • the content of the styryl compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less.
  • the content of the styryl compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the thermosetting compound (D) may contain a thermosetting compound having a benzoxazine group (benzoxazine compound), or may be a thermosetting compound having a benzoxazine group (benzoxazine compound).
  • the above-mentioned benzoxazine compound may be used alone or in combination of two or more kinds.
  • the above benzoxazine compounds include P-d type benzoxazine and Fa type benzoxazine.
  • the content of the benzoxazine compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the benzoxazine compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the thermosetting compound (D) may contain a thermosetting compound having a cyanate group (cyanate compound), or may be a thermosetting compound having a cyanate group (cyanate compound).
  • the above cyanate compounds may be used alone or in combination of two or more.
  • the above cyanate compound is preferably a cyanate ester compound.
  • the above cyanate ester compounds include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized.
  • the above novolac-type cyanate ester resins include phenol novolac-type cyanate ester resins and alkylphenol-type cyanate ester resins.
  • the above bisphenol-type cyanate ester resins include bisphenol A-type cyanate ester resins, bisphenol E-type cyanate ester resins, and tetramethylbisphenol F-type cyanate ester resins.
  • cyanate ester compounds include bisphenol A cyanate ester resin ("P-201” manufactured by Mitsubishi Gas Chemical Co., Ltd.), phenol novolac cyanate ester resin ("PT-30” and “PT-60” manufactured by Lonza Japan), and prepolymers in which bisphenol cyanate ester resins have been trimerized ("BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S” manufactured by Lonza Japan).
  • the content of the cyanate compound in 100% by weight of the components excluding the solvent in the resin material is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less.
  • the content of the cyanate compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the thermosetting compound (D) may contain a thermosetting compound having a methacryloyl group (methacrylic compound), or may be a thermosetting compound having a methacryloyl group (methacrylic compound).
  • the above-mentioned methacrylic compound may be used alone or in combination of two or more kinds.
  • the content of the methacrylic compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the methacrylic compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.
  • the resin material preferably contains a curing accelerator (E).
  • the use of the curing accelerator (E) further accelerates the curing speed. By quickly curing the resin material, the crosslinked structure in the cured product becomes uniform, and the number of unreacted functional groups is reduced, resulting in a high crosslink density.
  • the use of the curing accelerator (E) allows the resin material to be cured well even at a relatively low temperature. Only one type of curing accelerator (E) may be used, or two or more types may be used in combination.
  • curing accelerator (E) examples include anionic curing accelerators such as imidazole compounds; cationic curing accelerators such as amine compounds; curing accelerators other than anionic and cationic curing accelerators such as organophosphorus compounds and organometallic compounds; and radical curing accelerators such as peroxides and azo compounds.
  • the above imidazole compounds include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-
  • the above amine compounds include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, diethylenetriamine, ethylenediamine, tris(dimethylaminomethyl)phenol, benzyldimethylamine, m-xylylenedi(dimethylamine), N,N'-dimethylpiperazine, N-methylpyrrolidine, N-methylhydroxypiperidine, m-xylylenediamine, isophoronediamine, N-aminoethylpiperazine, polyoxypropylenepolyamine, and 4,4-dimethylaminopyridine.
  • the amine compounds may also be modified versions of these amine compounds.
  • organic phosphorus compounds include organic phosphine compounds such as triphenylphosphine, tricyclohexylphosphine, tribenzylphosphine, diphenyl(alkylphenyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkylalkoxyphenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, and alkyldiarylphosphine, as well as phosphonium salt compounds such as triphenylpho
  • organometallic compounds include zinc naphthenate, cobalt naphthenate, tin octoate, cobalt octoate, cobalt bisacetylacetonate (II), and cobalt trisacetylacetonate (III).
  • the above peroxides include diacyl peroxides, peroxy esters, peroxy dicarbonates, monoperoxy carbonates, peroxy ketals, dialkyl peroxides, dibenzyl peroxide, dicumyl peroxide, hydroperoxides, and ketone peroxides.
  • the curing accelerator (E) preferably contains an amine compound, an imidazole compound, a peroxide, an azo compound, or an organic phosphorus compound, and more preferably contains an imidazole compound or a peroxide. In this case, the effect of the present invention can be exerted even more effectively.
  • the content of the curing accelerator (E) relative to 100 parts by weight of the total of the maleimide compound (A) and the thermosetting compound (D) is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the content of the curing accelerator (E) is equal to or more than the above lower limit and equal to or less than the above upper limit, the effects of the present invention can be more effectively exhibited.
  • the resin material preferably contains a curing agent (F).
  • the curing agent (F) is not particularly limited.
  • the curing agent (F) may be used alone or in combination of two or more kinds.
  • the curing agent (F) examples include a compound having an active ester group (active ester compound), a compound having a hydroxyl group, a compound having a thiol group, and a compound having an amino group. It is preferable that the curing agent (F) contains an active ester compound.
  • the content of the curing agent (F) in the resin material is appropriately selected depending on, for example, the content of the maleimide compound (A) and the content of the thermosetting compound (D) in the resin material.
  • the resin material does not contain or contains a solvent.
  • the resin material may or may not contain a solvent.
  • the solvent By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved.
  • the solvent may be used to obtain a slurry containing hollow inorganic particles (B). Only one type of the solvent may be used, or two or more types may be used in combination.
  • the above solvents include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone, and naphtha, which is a mixture.
  • the boiling point of the solvent is preferably 200°C or less, more preferably 180°C or less.
  • the boiling point of the solvent may be 30°C or more, 50°C or more, or 100°C or more.
  • the content of the solvent in the resin composition can be changed as appropriate, taking into account the coatability of the resin composition, etc.
  • the content of the solvent in 100% by weight of the B-stage film is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.
  • the resin material may contain other components in addition to the above-mentioned components (maleimide compound (A), hollow inorganic particles (B), solid inorganic particles (C), thermosetting compound (D), curing accelerator (E), curing agent (F) and solvent).
  • the other components include thermoplastic resins; organic fillers; leveling agents; flame retardants; coupling agents; colorants; antioxidants; ultraviolet degradation inhibitors; defoamers; thickeners; thixotropy-imparting agents, etc.
  • the other components may be used alone or in combination of two or more.
  • thermoplastic resins include polyimide resins, phenoxy resins, and polyvinyl acetal resins.
  • the above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • the above-mentioned silane coupling agents include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • the resin material may or may not contain glass cloth. It is preferable that the resin material does not contain glass cloth. It is preferable that the resin material is not a prepreg.
  • the resin composition described above is molded into a film to obtain a resin film (B-stage product/B-stage film).
  • the resin material is preferably a resin film.
  • the resin film is preferably a B-stage film.
  • Methods for forming a resin composition into a film to obtain a resin film include the following: Extrusion molding, in which the resin composition is melt-kneaded and extruded using an extruder, and then molded into a film using a T-die or circular die. Casting molding, in which a resin composition containing a solvent is cast into a film. Other conventionally known film molding methods. Extrusion molding and casting molding are preferred because they can be made thinner. Films include sheets.
  • the resin composition is molded into a film and dried by heating for 1 to 10 minutes at, for example, 50°C to 150°C, to the extent that the heat does not cause excessive curing, to obtain a resin film that is a B-stage film.
  • the film-like resin composition that can be obtained by the drying process described above is called a B-stage film.
  • the B-stage film is in a semi-cured state. A semi-cured product is not completely cured, and curing can continue.
  • the resin film does not have to be a prepreg. If the resin film is not a prepreg, migration will not occur along the glass cloth or the like. In addition, when the resin film is laminated or precured, irregularities caused by the glass cloth will not occur on the surface.
  • the resin film can be used in the form of a laminated film comprising a metal foil or a base film and a resin film laminated on the surface of the metal foil or base film.
  • the metal foil is preferably a copper foil.
  • the base film of the laminated film may be a polyester resin film such as a polyethylene terephthalate film or a polybutylene terephthalate film, an olefin resin film such as a polyethylene film or a polypropylene film, or a polyimide resin film.
  • the surface of the base film may be subjected to a release treatment, if necessary.
  • the thickness of the resin film is preferably 5 ⁇ m or more and preferably 200 ⁇ m or less.
  • the thickness of the insulating layer formed by the resin film is preferably equal to or greater than the thickness of the conductor layer (metal layer) that forms the circuit.
  • the thickness of the insulating layer is preferably 5 ⁇ m or more and preferably 200 ⁇ m or less.
  • the dielectric constant (Dk) of the obtained cured product at 10 GHz is preferably 2.5 or less, more preferably less than 2.5, even more preferably 2.2 or less, even more preferably 2.0 or less, and particularly preferably less than 2.0.
  • the dielectric constant (Dk) of the obtained cured product at 10 GHz may be 0 or more, or may exceed 0.
  • the dielectric constant (Dk) of the cured product at 10 GHz can be measured as follows.
  • the resin material is heated at 180°C for 30 minutes, and then heated at 200°C for 60 minutes to obtain a cured product of the resin material.
  • the dielectric constant (Dk) of the resulting cured product is measured by the cavity resonance method using a dielectric constant measuring device (for example, the "Cavity Resonance Perturbation Method Dielectric Constant Measuring Device CP521" manufactured by Kanto Electronics Application Development Co., Ltd.) at room temperature (23°C) and a frequency of 10 GHz.
  • a dielectric constant measuring device for example, the "Cavity Resonance Perturbation Method Dielectric Constant Measuring Device CP521" manufactured by Kanto Electronics Application Development Co., Ltd.
  • the resin material When using the above resin material to manufacture electronic components such as multilayer boards, the resin material may be heated at 180°C for 30 minutes and then at 200°C for 60 minutes to obtain a cured product, or the resin material may be heated under heating conditions other than these to obtain a cured product.
  • the above resin material can be used for various applications.
  • the above resin material is suitable for use in forming a molded resin for embedding a semiconductor chip in a semiconductor device.
  • the above resin material is also suitable for use as an alternative to liquid crystal polymer (LCP), for millimeter wave antenna applications, and for rewiring layer applications.
  • LCP liquid crystal polymer
  • the above resin material is not limited to the above applications, and is suitable for use in general wiring formation applications.
  • the above resin material is preferably used as an adhesive material.
  • the above resin material is preferably used as, for example, an adhesive material for power overlay packages, an adhesive material for printed wiring boards, an adhesive material for coverlays of flexible printed circuit boards, and an adhesive material for semiconductor bonding.
  • the above resin material is preferably an adhesive material.
  • the above resin material is preferably used as an insulating material.
  • the above resin material is preferably used to form an insulating layer in a printed wiring board, and more preferably used to form an insulating layer in a multilayer printed wiring board.
  • the above resin material is preferably an insulating material, and more preferably an interlayer insulating material.
  • the above insulating material may also function as an adhesive material.
  • the cured product according to the present invention is a cured product of a resin material obtained by curing the resin material described above.
  • the cured product according to the present invention is a cured product of a resin material, and the resin material is the resin material described above.
  • the cured product according to the present invention can be obtained by curing the resin material described above.
  • the heating conditions for the resin material when obtaining the cured product according to the present invention are not particularly limited, as long as the resin material is cured.
  • a laminated structure can be obtained by laminating a laminated target member having a metal layer on one or both sides of the resin film.
  • the laminated structure includes a laminated target member having a metal layer on its surface and a resin film laminated on the surface of the metal layer, and the resin film is the above-mentioned resin material.
  • the method of laminating the resin film and the laminated target member is not particularly limited, and a known method can be used.
  • the resin film can be laminated on the laminated target member while applying pressure with or without heating using a device such as a parallel plate press or a roll laminator.
  • the material of the metal layer is preferably copper.
  • the laminated member having the metal layer on its surface may be a metal foil such as copper foil.
  • the above resin material is preferably used to obtain a copper-clad laminate.
  • One example of the above copper-clad laminate is a copper-clad laminate that includes copper foil and a resin film laminated on one surface of the copper foil, the resin film being made of the above resin material.
  • the thickness of the copper foil of the copper-clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the copper foil has fine irregularities on its surface.
  • the method of forming the irregularities is not particularly limited. Examples of the method of forming the irregularities include a method of forming the irregularities by treatment using a known chemical solution, a method of forming the irregularities by known plasma treatment, and a method of forming the irregularities by known UV treatment.
  • circuit board with insulating layer The resin material is preferably used to obtain a circuit board with an insulating layer.
  • the circuit board with an insulating layer is a circuit board with an insulating layer that includes a circuit board and an insulating layer disposed on a surface of the circuit board, the insulating layer being a cured product of the resin material described above.
  • the insulating layer is laminated on the surface of the circuit board on which the circuits are provided. In the circuit board with an insulating layer, it is preferable that a portion of the insulating layer is embedded between the circuits.
  • the above-mentioned circuit board with insulating layer can be obtained by a conventional method.
  • the resin material is preferably used to obtain a multilayer board.
  • An example of the multilayer board is a multilayer board including a circuit board and an insulating layer laminated on the circuit board.
  • the insulating layer of the multilayer board is a cured product of the resin material.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit (metal layer) is provided. A part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite the surface on which the circuit board is laminated is roughened.
  • the roughening method can be a conventionally known roughening method, and is not particularly limited.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment. After the roughening treatment, it is preferable to perform ultrasonic treatment in order to remove the hollow inorganic particles (B) (and the solid inorganic particles (C)) from the surface of the insulating layer.
  • the multilayer substrate further comprises a copper plating layer laminated on the roughened surface of the insulating layer.
  • the multilayer board is a multilayer board comprising a circuit board, an insulating layer laminated on the surface of the circuit board, and copper foil laminated on the surface of the insulating layer opposite to the surface on which the circuit board is laminated.
  • the insulating layer is formed by using a copper-clad laminate comprising copper foil and a resin film laminated on one surface of the copper foil, and curing the resin film.
  • the copper foil is etched to form a copper circuit.
  • the multilayer board is a multilayer board comprising a circuit board and a plurality of insulating layers laminated on a surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed using the resin material. It is preferable that the multilayer board further comprises a circuit laminated on at least one surface of the insulating layer formed using the resin film.
  • the above resin materials are suitable for use in forming insulating layers in multilayer printed wiring boards.
  • the multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the insulating layers.
  • at least one of the insulating layers is a cured product of the resin material described above.
  • FIG. 1 is a cross-sectional view showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
  • a plurality of insulating layers 13-16 are laminated on the upper surface 12a of the circuit board 12.
  • the insulating layers 13-16 are hardened layers.
  • a metal layer 17 is formed on a partial area of the upper surface 12a of the circuit board 12.
  • the insulating layers 13-15 other than the insulating layer 16 located on the outer surface opposite the circuit board 12 side have a metal layer 17 formed on a partial area of the upper surface.
  • the metal layer 17 is a circuit.
  • the metal layer 17 is disposed between the circuit board 12 and the insulating layer 13, and between each of the laminated insulating layers 13-16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of a via hole connection and a through hole connection, not shown.
  • the insulating layers 13 to 16 are formed from a cured product of the above-mentioned resin material.
  • the surfaces of the insulating layers 13 to 16 are roughened, so that fine holes (not shown) are formed in the surfaces of the insulating layers 13 to 16.
  • the metal layer 17 extends into the fine holes.
  • the width dimension (L) of the metal layer 17 and the width dimension (S) of the portion where the metal layer 17 is not formed can be reduced.
  • good insulation reliability is provided between the upper metal layer and the lower metal layer that are not connected by via hole connections and through hole connections (not shown).
  • Maleimide compound A1 (“BMI1500” manufactured by Designer Molecules Inc., a maleimide compound having an aromatic skeleton and a linear aliphatic skeleton, number of maleimide groups: 2, weight average molecular weight: 1500)
  • Maleimide compound A2 (synthesized according to Synthesis Example A2 below, number of maleimide groups: 2, weight average molecular weight: 4300)
  • Maleimide compound A3 (synthesized according to Synthesis Example A3 below, number of maleimide groups: 2, weight average molecular weight: 12,000)
  • Thermosetting compound (D) Divinylbenzene (viscosity at 25°C: 1 mPa ⁇ s) Polyphenylene ether-methacrylic acid compound (SABIC SA9000-111, solid at 25°C) Oligophenylene ether-styrene compound ("OPE-2St” manufactured by Mitsubishi Gas Chemical Co., Ltd.) Biphenyl-type epoxy compound ("NC-3000” manufactured by Nippon Kayaku Co., Ltd., solid at 25°C)
  • Hollow silica particles B1 (AGC "HS-070", BET specific surface area (S): 18.5 m 2 /g, average particle radius (r): 0.3 ⁇ m, true density (d): 0.58 g/cm 3 , Porosity: 70% by volume
  • Hollow silica particles B2 (“HS-200” manufactured by AGC, BET specific surface area (S): 12.8 m 2 /g, average particle radius (r): 1 ⁇ m, true density (d): 0.45 g/cm 3 , Porosity: 75% by volume)
  • Hollow silica particles X (“L6SZ-AC1” manufactured by Admatechs Co., Ltd., BET specific surface area (S): 12.4 m 2 /g, average particle radius (r): 0.3 ⁇ m, true density (d): 0.8 g/cm 3 , porosity: 40% by volume)
  • Hollow aluminosilicate particles (“CellSpheres-NF (small particle size)” manufactured by Taiheiyo Cement Corporation), BET specific surface area (S): 4.0 m 2 /g, average particle radius (r): 0.5 ⁇ m, true density (d): 0.55 g/cm 3 , porosity: 75% by volume
  • the BET specific surface area (S), average particle radius (r), true density (d) and porosity of the hollow inorganic particles were measured according to the method described above.
  • the device used to measure the BET specific surface area (S) was the "NOVA4200e” manufactured by Quantachrome Instruments, and the device used to measure the true density (d) was the "Ultrapyc1200e” manufactured by Quantachrome.
  • composition of the hollow inorganic particles is shown in Table 1 below.
  • Solid silica particles (“SC2050-HNG” manufactured by Admatechs Co., Ltd., average particle radius: 0.25 ⁇ m)
  • Examples 1 to 11 and Comparative Examples 1 to 4 The components shown in Tables 2 to 5 below were mixed in the amounts (unit: parts by weight of solid content) shown in Tables 2 to 5 below, and stirred at room temperature until a homogeneous solution was obtained, to obtain a resin material.
  • Preparation of resin film The obtained resin material was applied to the release-treated surface of a release-treated polyethylene terephthalate film (PET film, Toray Industries, Inc., "XG284", thickness 25 ⁇ m) using an applicator, and then dried for 2 minutes and 30 seconds in a gear oven at 100° C. to volatilize the solvent. In this way, a laminated film (a laminated film of a PET film and a resin film) was obtained in which a resin film (B-stage film) having a thickness of 40 ⁇ m was laminated on the PET film.
  • PET film polyethylene terephthalate film
  • Dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product The obtained resin film (B-stage film) having a thickness of 40 ⁇ m was heated at 180° C. for 30 minutes, and then heated at 200° C. for 60 minutes to obtain a cured product.
  • the obtained cured product was cut into a size of 2 mm wide and 80 mm long, and 10 sheets were stacked together to obtain a measurement sample.
  • the dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product were measured at room temperature (23° C.) and a frequency of 10 GHz by the cavity resonance method using a "Cavity Resonance Perturbation Method Dielectric Constant Measurement Device CP521” manufactured by Kanto Electronics Application Development Co., Ltd. and a “Network Analyzer N5224A PNA” manufactured by Keysight Technologies, Inc.
  • Dielectric constant is less than 2.0 ⁇ : Dielectric constant is 2.0 or more and 2.5 or less ⁇ : Dielectric constant is more than 2.5
  • Dielectric loss tangent is less than 0.003 ⁇ : Dielectric loss tangent is 0.003 or more and less than 0.005 ⁇ : Dielectric loss tangent is 0.005 or more
  • Glass transition temperature is 120° C. or higher
  • Glass transition temperature is 100° C. or higher and less than 120° C.
  • Glass transition temperature is less than 100° C.
  • the lamination conditions were as follows: decompression for 30 seconds to make the air pressure 13 hPa or less, then lamination at 100 ° C. and pressure 0.7 MPa for 30 seconds, and further pressing for 60 seconds at a press pressure of 0.8 MPa and a press temperature of 100 ° C.
  • the PET film was peeled off, and the resin film was semi-cured by heating at 100° C. for 30 minutes and then further heating at 180° C. for 30 minutes.
  • the surface of the semi-cured resin film in the portion where the copper pattern was present (the surface opposite the substrate) and the surface of the semi-cured resin film in the portion where the copper pattern was not present (the surface opposite the substrate) were observed, and the maximum height difference between adjacent concave and convex portions was determined using an optical step gauge.
  • the maximum height difference is less than 1.5 ⁇ m ⁇ : The maximum height difference is 1.5 ⁇ m or more and less than 2 ⁇ m ⁇ : The maximum height difference is 2 ⁇ m or more
  • Roughening treatment (a) Swelling treatment: The laminate of the substrate and the semi-cured resin film obtained in the above "(3) Lamination property” was placed in a swelling liquid ("Swelling Dip Securigant P" manufactured by Atotech Japan) at 60°C and swung for 10 minutes. Thereafter, it was washed with pure water.
  • Electroless plating treatment The roughened surface of the cured product was treated with an alkaline cleaner at 60° C. (Atotech Japan's "Cleaner Securigant 902") for 5 minutes, and degreased and washed. After washing, the cured product was treated with a pre-dip liquid at 25° C. (Atotech Japan's "Pre-dip Neogant B") for 2 minutes. Thereafter, the cured product was treated with an activator liquid at 40° C. (Atotech Japan's "Activator Neogant 834”) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing liquid at 30° C. (Atotech Japan's "Reducer Neogant WA”) for 5 minutes.
  • the cured product was placed in a chemical copper liquid (Atotech Japan's "Basic Printgant MSK-DK”, “Copper Printgant MSK”, “Stabilizer Printgant MSK”, and “Reducer Cu”), and electroless plating was performed until the plating thickness reached about 0.5 ⁇ m.
  • the plate was annealed for 30 minutes at 120° C. to remove residual hydrogen gas. All steps up to the electroless plating step were carried out using 2 L of treatment solution in a beaker scale while the cured product was being rocked. In this way, a cured product was obtained with a copper plating layer laminated on the upper surface.
  • a line that contacts the copper plating at the bottom of the microscope image and is parallel to the interface between the copper plating layer and the cured product was designated as line L2.
  • the distance between line L1 and line L2 was designated as the plating penetration amount D.
  • the smaller the plating penetration amount D the more the short circuit between the wirings can be suppressed.
  • the plating penetration amount D is less than 3 ⁇ m.
  • the plating penetration amount D is 3 ⁇ m or more.
  • circuit board 12a upper surface 13-16: insulating layers 17: metal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a resin material capable of increasing a glass transition temperature of a cured article, reducing a dielectric constant and a dielectric loss tangent of a cured article, and hardly causing cracking of hollow inorganic particles even when subjected to ultrasonic treatment. A resin material according to the present invention contains a maleimide compound (A) and hollow inorganic particles (B), and the hollow inorganic particles (B) have a BET specific surface area satisfying formula (1). (1): 1.05×(3/rd)<S<2.00×(3/rd), wherein S is the BET specific surface area (m2/g) of the hollow inorganic particles (B); r is the average particle radius (μm) of the hollow inorganic particles (B); and d is the true density (g/cm3) of the hollow inorganic particles (B).

Description

樹脂材料、硬化物及び多層プリント配線板Resin materials, cured products and multi-layer printed wiring boards

 本発明は、マレイミド化合物を含む樹脂材料に関する。また、本発明は、上記樹脂材料の硬化物に関する。さらに、本発明は、上記樹脂材料を用いた多層プリント配線板に関する。 The present invention relates to a resin material containing a maleimide compound. The present invention also relates to a cured product of the above resin material. Furthermore, the present invention also relates to a multilayer printed wiring board using the above resin material.

 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂材料が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂材料が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、上記絶縁層を形成するために、フィルム状の樹脂材料(樹脂フィルム)が用いられることがある。上記樹脂材料は、ビルドアップフィルムを含む多層プリント配線板用の絶縁材料等として用いられている。 Traditionally, various resin materials have been used to obtain electronic components such as semiconductor devices, laminates, and printed wiring boards. For example, in multilayer printed wiring boards, resin materials are used to form insulating layers for insulating between internal layers and to form insulating layers located on the surface. Wiring, which is generally metal, is laminated on the surface of the insulating layer. Also, film-like resin materials (resin films) are sometimes used to form the insulating layers. The resin materials are used as insulating materials for multilayer printed wiring boards, including build-up films.

 下記の特許文献1には、(A)エポキシ樹脂と、(B)硬化剤と、(C)中空シリカと、(D)溶融シリカとを含む樹脂組成物が開示されている。この樹脂組成物では、樹脂組成物中の不揮発成分を100質量%とした場合、(C)中空シリカの含有量が5~22質量%であり、(C)中空シリカと(D)溶融シリカとの合計含有量が50~70質量%である。 Patent Document 1 below discloses a resin composition containing (A) epoxy resin, (B) hardener, (C) hollow silica, and (D) fused silica. In this resin composition, when the non-volatile components in the resin composition are taken as 100% by mass, the content of (C) hollow silica is 5 to 22% by mass, and the total content of (C) hollow silica and (D) fused silica is 50 to 70% by mass.

 下記の特許文献2には、熱硬化性樹脂(A)と、充填材(B)とを含み、上記充填材(B)が、特定の式を満たしかつ平均粒子径が0.01~10μmである中空粒子(b)を含む樹脂組成物が開示されている。 Patent Document 2 below discloses a resin composition that contains a thermosetting resin (A) and a filler (B), where the filler (B) contains hollow particles (b) that satisfy a specific formula and have an average particle size of 0.01 to 10 μm.

特開2013-173841号公報JP 2013-173841 A WO2019/230661A1WO2019/230661A1

 上記特許文献1,2に記載のように、熱硬化性化合物と中空無機粒子とを含む樹脂材料が知られている。中空無機粒子を用いることにより、樹脂材料の硬化物の誘電率及び誘電正接をある程度低くすることができる。 As described in Patent Documents 1 and 2 above, a resin material containing a thermosetting compound and hollow inorganic particles is known. By using hollow inorganic particles, the dielectric constant and dielectric tangent of the cured resin material can be lowered to a certain degree.

 しかしながら、熱硬化性化合物と中空無機粒子とを含む従来の樹脂材料では、硬化物のガラス転移温度が十分に高くならないことがある。 However, with conventional resin materials that contain a thermosetting compound and hollow inorganic particles, the glass transition temperature of the cured product may not be sufficiently high.

 ところで、プリント配線板等の電子部品を製造する際、樹脂材料の基板等へのラミネート処理、加熱処理、デスミア処理、超音波処理を行い、配線を形成することがある。しかしながら、中空無機粒子を含む従来の樹脂材料を用いた場合には、これらの処理の際に、中空無機粒子が割れることがある。これらの処理の中でも、超音波処理の際に中空無機粒子が特に割れやすい。中空無機粒子が割れると、割れた部分に配線形成用の薬液が浸入して銅の潜り込み量が増えるため、配線間でショートすることがある。 When manufacturing electronic components such as printed wiring boards, wiring may be formed by laminating a resin material onto a substrate, heating, desmearing, or ultrasonic treatment. However, when using conventional resin materials containing hollow inorganic particles, the hollow inorganic particles may crack during these treatments. Among these treatments, hollow inorganic particles are particularly susceptible to cracking during ultrasonic treatment. When hollow inorganic particles crack, the chemical solution used to form the wiring seeps into the cracked area, increasing the amount of copper seeping in, which can cause a short circuit between the wires.

 本発明の目的は、硬化物のガラス転移温度を高くすることができ、硬化物の誘電率及び誘電正接を低くすることができ、かつ、超音波処理されても中空無機粒子が割れにくい樹脂材料を提供することである。また、本発明は、上記樹脂材料の硬化物を提供することも目的とする。さらに、本発明は、上記樹脂材料を用いた多層プリント配線板を提供することも目的とする。 The object of the present invention is to provide a resin material that can increase the glass transition temperature of the cured product, can reduce the dielectric constant and dielectric tangent of the cured product, and has hollow inorganic particles that are less likely to break even when subjected to ultrasonic treatment. Another object of the present invention is to provide a cured product of the above resin material. Still another object of the present invention is to provide a multilayer printed wiring board using the above resin material.

 本明細書において、以下の樹脂材料、硬化物及び多層プリント配線板を開示する。  This specification discloses the following resin material, cured product, and multilayer printed wiring board.

 項1.マレイミド化合物(A)と、中空無機粒子(B)とを含み、前記中空無機粒子(B)のBET比表面積が、下記式(1)を満足する、樹脂材料。 Item 1. A resin material comprising a maleimide compound (A) and hollow inorganic particles (B), the BET specific surface area of the hollow inorganic particles (B) satisfying the following formula (1):

 1.05×(3/rd)<S<2.00×(3/rd)   ・・・(1)
 S:中空無機粒子(B)のBET比表面積(m/g)
 r:中空無機粒子(B)の平均粒子半径(μm)
 d:中空無機粒子(B)の真密度(g/cm
1.05×(3/rd)<S<2.00×(3/rd)...(1)
S: BET specific surface area (m 2 /g) of hollow inorganic particles (B)
r: average particle radius of hollow inorganic particles (B) (μm)
d: true density of hollow inorganic particles (B) (g/cm 3 )

 項2.樹脂材料中の溶剤を除く成分100重量%中、前記マレイミド化合物(A)の含有量が、20重量%以上70重量%以下である、項1に記載の樹脂材料。 Item 2. The resin material according to item 1, in which the content of the maleimide compound (A) is 20% by weight or more and 70% by weight or less, based on 100% by weight of the components excluding the solvent in the resin material.

 項3.前記マレイミド化合物(A)が、ダイマージアミンに由来する骨格を有する、項1又は2に記載の樹脂材料。 Item 3. The resin material according to item 1 or 2, wherein the maleimide compound (A) has a skeleton derived from dimer diamine.

 項4.前記マレイミド化合物(A)が、ダイマージアミンに由来する骨格と、ダイマージアミン以外の脂環式骨格を有するジアミン化合物に由来する骨格とを有する、項1~3のいずれか1項に記載の樹脂材料。 Item 4. The resin material according to any one of items 1 to 3, wherein the maleimide compound (A) has a skeleton derived from a dimer diamine and a skeleton derived from a diamine compound having an alicyclic skeleton other than a dimer diamine.

 項5.前記ダイマージアミン以外の脂環式骨格を有するジアミン化合物が、トリシクロデカンジアミン、ノルボルナンジアミン又はイソホロンジアミンである、項4に記載の樹脂材料。 Item 5. The resin material according to Item 4, wherein the diamine compound having an alicyclic skeleton other than the dimer diamine is tricyclodecane diamine, norbornane diamine, or isophorone diamine.

 項6.樹脂材料中の溶剤を除く成分100重量%中、前記中空無機粒子(B)の含有量が、60重量%以下である、項1~5のいずれか1項に記載の樹脂材料。 Item 6. The resin material according to any one of items 1 to 5, in which the content of the hollow inorganic particles (B) is 60% by weight or less based on 100% by weight of the components excluding the solvent in the resin material.

 項7.中実無機粒子(C)をさらに含む、項1~6のいずれか1項に記載の樹脂材料。 Item 7. The resin material according to any one of items 1 to 6, further comprising solid inorganic particles (C).

 項8.マレイミド基と反応可能な官能基を有する熱硬化性化合物(D)をさらに含む、項1~7のいずれか1項に記載の樹脂材料。 Item 8. The resin material according to any one of items 1 to 7, further comprising a thermosetting compound (D) having a functional group capable of reacting with a maleimide group.

 項9.前記熱硬化性化合物(D)が、エポキシ基、ビニル基、スチリル基、ベンゾオキサジン基、シアネート基、アリル基、メタクリロイル基又はアクリロイル基を有する熱硬化性化合物を含む、項8に記載の樹脂材料。 Item 9. The resin material according to Item 8, wherein the thermosetting compound (D) includes a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, a methacryloyl group, or an acryloyl group.

 項10.樹脂材料を180℃で30分間加熱した後、200℃で60分間加熱して樹脂材料の硬化物を得たときに、得られた硬化物の10GHzでの誘電率が2.5以下である、項1~9のいずれか1項に記載の樹脂材料。 Item 10. A resin material according to any one of items 1 to 9, in which when the resin material is heated at 180°C for 30 minutes and then heated at 200°C for 60 minutes to obtain a cured product of the resin material, the resulting cured product has a dielectric constant of 2.5 or less at 10 GHz.

 項11.樹脂フィルムである、項1~10のいずれか1項に記載の樹脂材料。 Item 11. The resin material according to any one of items 1 to 10, which is a resin film.

 項12.多層プリント配線板において、絶縁層を形成するために用いられる、項1~11のいずれか1項に記載の樹脂材料。 Item 12. The resin material according to any one of items 1 to 11, which is used to form an insulating layer in a multilayer printed wiring board.

 項13.樹脂材料の硬化物であって、前記樹脂材料が、項1~12のいずれか1項に記載の樹脂材料である、硬化物。 Item 13. A cured product of a resin material, the resin material being the resin material described in any one of items 1 to 12.

 項14.回路基板と、前記回路基板の表面上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、項1~12のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。 Item 14. A multilayer printed wiring board comprising a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a metal layer disposed between the plurality of insulating layers, at least one of the plurality of insulating layers being a cured product of the resin material described in any one of items 1 to 12.

 本発明に係る樹脂材料は、マレイミド化合物(A)と、中空無機粒子(B)とを含み、上記中空無機粒子(B)のBET比表面積が、特定の式(1)を満足する。本発明に係る樹脂材料では、上記の構成が備えられているので、硬化物のガラス転移温度を高くすることができ、硬化物の誘電率及び誘電正接を低くすることができ、かつ、超音波処理されても中空無機粒子が割れにくい。 The resin material according to the present invention contains a maleimide compound (A) and hollow inorganic particles (B), and the BET specific surface area of the hollow inorganic particles (B) satisfies a specific formula (1). Since the resin material according to the present invention has the above-mentioned configuration, the glass transition temperature of the cured product can be increased, the dielectric constant and dielectric tangent of the cured product can be reduced, and the hollow inorganic particles are less likely to break even when subjected to ultrasonic treatment.

図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention. 図2は、実施例で評価しためっき潜り込み量の算出方法を説明するための図である。FIG. 2 is a diagram for explaining a method for calculating the plating penetration amount evaluated in the examples.

 以下、本発明の詳細を説明する。 The details of the present invention are explained below.

 (樹脂材料)
 本発明に係る樹脂材料は、マレイミド化合物(A)と、中空無機粒子(B)とを含み、上記中空無機粒子(B)のBET比表面積が、下記式(1)を満足する。
(Resin material)
The resin material according to the present invention contains a maleimide compound (A) and hollow inorganic particles (B), and the BET specific surface area of the hollow inorganic particles (B) satisfies the following formula (1).

 1.05×(3/rd)<S<2.00×(3/rd)   ・・・(1)
 S:中空無機粒子(B)のBET比表面積(m/g)
 r:中空無機粒子(B)の平均粒子半径(μm)
 d:中空無機粒子(B)の真密度(g/cm
1.05×(3/rd)<S<2.00×(3/rd)...(1)
S: BET specific surface area (m 2 /g) of hollow inorganic particles (B)
r: average particle radius of hollow inorganic particles (B) (μm)
d: true density of hollow inorganic particles (B) (g/cm 3 )

 本発明に係る樹脂材料では、上記の構成が備えられているので、硬化物のガラス転移温度を高くすることができ、硬化物の誘電率及び誘電正接を低くすることができ、かつ、超音波処理されても中空無機粒子が割れにくい。 The resin material according to the present invention has the above-mentioned configuration, so that the glass transition temperature of the cured product can be increased, the dielectric constant and dielectric tangent of the cured product can be decreased, and the hollow inorganic particles are less likely to break even when subjected to ultrasonic treatment.

 本発明に係る樹脂材料では、超音波処理前後において、硬化物の誘電率及び誘電正接を低く維持することができる。 The resin material according to the present invention can maintain low dielectric constant and dielectric tangent of the cured product before and after ultrasonic treatment.

 中空無機粒子を含む従来の樹脂材料では、ラミネートされたときにも、中空無機粒子が割れやすい。これに対して、本発明に係る樹脂材料では、ラミネートされても中空無機粒子が割れにくい。したがって、本発明に係る樹脂材料では、ラミネートされて用いられた場合でも、硬化物の誘電率及び誘電正接を低くすることができる。 In conventional resin materials containing hollow inorganic particles, the hollow inorganic particles are prone to cracking even when laminated. In contrast, in the resin material of the present invention, the hollow inorganic particles are less likely to crack even when laminated. Therefore, with the resin material of the present invention, the dielectric constant and dielectric tangent of the cured product can be reduced even when used in a laminated state.

 また、本発明に係る樹脂材料では、中空無機粒子が割れにくいので、配線間のショートを効果的に抑えることができる。 In addition, the hollow inorganic particles in the resin material of the present invention are less likely to crack, so short circuits between wiring can be effectively prevented.

 本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。 The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in a paste form. The paste form includes a liquid form. Since this has excellent handleability, the resin material according to the present invention is preferably a resin film.

 本発明に係る樹脂材料は、熱硬化性樹脂材料であることが好ましい。上記樹脂材料が樹脂フィルムである場合には、該樹脂フィルムは、熱硬化性樹脂フィルムであることが好ましい。 The resin material according to the present invention is preferably a thermosetting resin material. When the resin material is a resin film, the resin film is preferably a thermosetting resin film.

 なお、以下の説明において、「上記樹脂材料中の溶剤を除く成分100重量%」は、上記樹脂材料が溶剤を含む場合には、上記樹脂材料中の上記溶剤を除く成分100重量%を意味し、上記樹脂材料が溶剤を含まない場合には、上記樹脂材料100重量%を意味する。「上記樹脂材料中の中空無機粒子(B)、中実無機粒子(C)及び溶剤を除く成分100重量%」は、上記樹脂材料が中空無機粒子(B)、中実無機粒子(C)及び溶剤を含む場合には、上記樹脂材料中の上記中空無機粒子(B)、上記中実無機粒子(C)及び上記溶剤を除く成分100重量%を意味する。「上記樹脂材料中の中空無機粒子(B)、中実無機粒子(C)及び溶剤を除く成分100重量%」は、上記樹脂材料が中空無機粒子(B)及び溶剤を含みかつ中実無機粒子(C)を含まない場合には、上記樹脂材料中の上記中空無機粒子(B)及び上記溶剤を除く成分100重量%を意味する。「上記樹脂材料中の中空無機粒子(B)、中実無機粒子(C)及び溶剤を除く成分100重量%」は、上記樹脂材料が中空無機粒子(B)含みかつ中実無機粒子(C)及び溶剤を含まない場合には、上記樹脂材料中の上記中空無機粒子(B)を除く成分100重量%を意味する。 In the following description, "100% by weight of components in the resin material excluding the solvent" means 100% by weight of components in the resin material excluding the solvent when the resin material contains a solvent, and means 100% by weight of the resin material when the resin material does not contain a solvent. "100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent" means 100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent when the resin material contains hollow inorganic particles (B), solid inorganic particles (C) and solvent. "100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent" means 100% by weight of components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent when the resin material contains hollow inorganic particles (B) and solvent but does not contain solid inorganic particles (C). "100% by weight of the components in the resin material excluding hollow inorganic particles (B), solid inorganic particles (C) and solvent" means 100% by weight of the components in the resin material excluding the hollow inorganic particles (B) when the resin material contains hollow inorganic particles (B) but does not contain solid inorganic particles (C) and solvent.

 以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。  Below, we will explain the details of each component used in the resin material according to the present invention, as well as applications of the resin material according to the present invention.

 [マレイミド化合物(A)]
 上記樹脂材料は、マレイミド化合物(A)を含む。マレイミド化合物(A)として、従来公知のマレイミド化合物を使用可能である。マレイミド化合物(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Maleimide compound (A)]
The resin material contains a maleimide compound (A). As the maleimide compound (A), a conventionally known maleimide compound can be used. The maleimide compound (A) may be used alone or in combination of two or more kinds.

 マレイミド化合物(A)は、マレイミド基を1個有していてもよく、2個有していてもよく、2個以上有していてもよく、3個以上有していてもよく、4個以上有していてもよく、800個以下有していてもよく、500個以下有していてもよく、300個以下有していてもよい。 The maleimide compound (A) may have one maleimide group, two maleimide groups, two or more maleimide groups, three or more maleimide groups, four or more maleimide groups, 800 or less maleimide groups, 500 or less maleimide groups, or 300 or less maleimide groups.

 硬化物の誘電率及び誘電正接をより一層低くする観点からは、マレイミド化合物(A)は、マレイミド基を2個有するマレイミド化合物を含むことが好ましく、マレイミド基を2個有するマレイミド化合物であることがより好ましい。したがって、マレイミド化合物(A)は、ビスマレイミド化合物を含むことが好ましく、ビスマレイミド化合物であることがより好ましい。 From the viewpoint of further reducing the dielectric constant and dielectric tangent of the cured product, the maleimide compound (A) preferably contains a maleimide compound having two maleimide groups, and is more preferably a maleimide compound having two maleimide groups. Therefore, the maleimide compound (A) preferably contains a bismaleimide compound, and is more preferably a bismaleimide compound.

 マレイミド化合物(A)は、脂肪族骨格又は脂環式骨格を有することが好ましく、脂肪族骨格と脂環式骨格とを有することがより好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。また、デスミア性及びメッキピール強度も良好にすることができる。 The maleimide compound (A) preferably has an aliphatic skeleton or an alicyclic skeleton, and more preferably has an aliphatic skeleton and an alicyclic skeleton. In this case, the effects of the present invention can be more effectively exhibited. In addition, the desmear property and plating peel strength can be improved.

 上記脂肪族骨格としては、鎖状脂肪族骨格等が挙げられ、例えば、飽和炭化水素基及び不飽和炭化水素基等が挙げられる。上記脂肪族骨格は、炭素数4以上の脂肪族骨格であることが好ましい。炭素数4以上の脂肪族骨格が有する炭素数は、好ましくは5以上、より好ましくは6以上、更に好ましくは7以上、好ましくは60以下、より好ましくは50以下、更に好ましくは40以下である。上記脂肪族骨格としては、より具体的には、炭素数4以上60以下のアルキル基(好ましくは炭素数6以上40以下のアルキル基)等が挙げられる。マレイミド化合物(A)は、上記脂肪族骨格を1種のみ有していてもよく、2種以上有していてもよい。 The aliphatic skeleton may be a chain aliphatic skeleton, for example, a saturated hydrocarbon group or an unsaturated hydrocarbon group. The aliphatic skeleton is preferably an aliphatic skeleton having 4 or more carbon atoms. The number of carbon atoms in an aliphatic skeleton having 4 or more carbon atoms is preferably 5 or more, more preferably 6 or more, even more preferably 7 or more, preferably 60 or less, more preferably 50 or less, even more preferably 40 or less. More specifically, the aliphatic skeleton may be an alkyl group having 4 to 60 carbon atoms (preferably an alkyl group having 6 to 40 carbon atoms). The maleimide compound (A) may have only one type of the aliphatic skeleton, or may have two or more types.

 上記脂環式骨格としては、モノシクロアルカン環、ビシクロアルカン環、トリシクロアルカン環、テトラシクロアルカン環、及びジシクロペンタジエン環等が挙げられる。マレイミド化合物(A)は、上記脂環式骨格を1種のみ有していてもよく、2種以上有していてもよい。 The alicyclic skeleton may include a monocycloalkane ring, a bicycloalkane ring, a tricycloalkane ring, a tetracycloalkane ring, and a dicyclopentadiene ring. The maleimide compound (A) may have only one type of the alicyclic skeleton, or two or more types.

 硬化物のガラス転移温度をより一層大きくする観点からは、マレイミド化合物(A)は、芳香族骨格を有することが好ましい。 From the viewpoint of further increasing the glass transition temperature of the cured product, it is preferable that the maleimide compound (A) has an aromatic skeleton.

 上記芳香族骨格としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環及びペリレン環等が挙げられる。マレイミド化合物(A)は、上記芳香族骨格を1種のみ有していてもよく、2種以上有していてもよい。 The aromatic skeleton includes a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, a chrysene ring, a triphenylene ring, a tetraphene ring, a pyrene ring, a pentacene ring, a picene ring, and a perylene ring. The maleimide compound (A) may have only one type of the aromatic skeleton, or two or more types.

 マレイミド化合物(A)は、ダイマージアミンに由来する骨格を有することが好ましい。ダイマージアミンに由来する骨格を有するマレイミド化合物は脂肪族骨格及び脂環式骨格を有するため、該マレイミド化合物を用いることにより、硬化物の誘電率及び誘電正接をより一層低くすることができる。 The maleimide compound (A) preferably has a skeleton derived from dimer diamine. Since a maleimide compound having a skeleton derived from dimer diamine has an aliphatic skeleton and an alicyclic skeleton, the use of this maleimide compound can further reduce the dielectric constant and dielectric tangent of the cured product.

 上記ダイマージアミン(上記ダイマージアミンの市販品)としては、BASFジャパン社製「バーサミン551」(3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、コグニクスジャパン社製「バーサミン552」(バーサミン551の水添物)、並びに、クローダジャパン社製「PRIAMINE1075」及び「PRIAMINE1074」等が挙げられる。上記ダイマージアミンは、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the above dimer diamine (commercially available dimer diamine) include "VERSAMINE 551" (3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene) manufactured by BASF Japan, "VERSAMINE 552" (hydrogenated product of VERSAMINE 551) manufactured by Cognix Japan, and "PRIAMINE 1075" and "PRIAMINE 1074" manufactured by Croda Japan. Only one type of the above dimer diamine may be used, or two or more types may be used in combination.

 マレイミド化合物(A)は、ダイマージアミンに由来する骨格と、ダイマージアミン以外の第2のジアミン化合物に由来する骨格とを有することが好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 It is preferable that the maleimide compound (A) has a skeleton derived from a dimer diamine and a skeleton derived from a second diamine compound other than the dimer diamine. In this case, the effects of the present invention can be more effectively achieved.

 上記第2のジアミン化合物としては、トリシクロデカンジアミン、ノルボルナンジアミン、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、1,4-ジアミノブタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、1,7-ジアミノヘプタン、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,8-ジアミノオクタン、1,3-ジアミノプロパン、1,11-ジアミノウンデカン、2-メチル-1,5-ジアミノペンタン、1,1-ビス(4-アミノフェニル)シクロヘキサン、2,7-ジアミノフルオレン、4,4’-エチレンジアニリン、4,4’-メチレンビス(2,6-ジエチルアニリン)、及び4,4’-メチレンビス(2-エチル-6-メチルアニリン)等が挙げられる。上記第2のジアミン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The second diamine compound may be tricyclodecanediamine, norbornanediamine, isophoronediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, bis(aminomethyl)norbornane, 3(4),8(9)-bis(aminomethyl)tricyclo[5.2.1.02,6]decane, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-methylenebis(cyclohexylamine), 4,4'-methylenebis(2-methylcyclohexylamine), 1,4-diamino Examples of the second diamine compound include butane, 1,10-diaminodecane, 1,12-diaminododecane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,8-diaminooctane, 1,3-diaminopropane, 1,11-diaminoundecane, 2-methyl-1,5-diaminopentane, 1,1-bis(4-aminophenyl)cyclohexane, 2,7-diaminofluorene, 4,4'-ethylenedianiline, 4,4'-methylenebis(2,6-diethylaniline), and 4,4'-methylenebis(2-ethyl-6-methylaniline). Only one type of the second diamine compound may be used, or two or more types may be used in combination.

 上記第2のジアミン化合物は、脂肪族骨格を有していてもよく、有していなくてもよい。上記第2のジアミン化合物は、脂環式骨格を有していてもよく、有していなくてもよい。上記第2のジアミン化合物は、芳香族骨格を有していてもよく、有していなくてもよい。 The second diamine compound may or may not have an aliphatic skeleton. The second diamine compound may or may not have an alicyclic skeleton. The second diamine compound may or may not have an aromatic skeleton.

 上記第2のジアミン化合物は、ダイマージアミン以外の脂環式骨格を有するジアミン化合物を含むことが好ましい。マレイミド化合物(A)は、ダイマージアミンに由来する骨格と、ダイマージアミン以外の脂環式骨格を有するジアミン化合物に由来する骨格とを有することが好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 The second diamine compound preferably contains a diamine compound having an alicyclic skeleton other than dimer diamine. The maleimide compound (A) preferably has a skeleton derived from dimer diamine and a skeleton derived from a diamine compound having an alicyclic skeleton other than dimer diamine. In this case, the effect of the present invention can be exerted even more effectively.

 上記ダイマージアミン以外の脂環式骨格を有するジアミン化合物は、トリシクロデカンジアミン、ノルボルナンジアミン又はイソホロンジアミンであることが好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 The diamine compound having an alicyclic skeleton other than the above dimer diamine is preferably tricyclodecane diamine, norbornane diamine, or isophorone diamine. In this case, the effects of the present invention can be more effectively exerted.

 マレイミド化合物(A)は、酸二無水物に由来する骨格を有することが好ましく、ジアミン化合物と酸二無水物との反応物に由来する骨格を有することがより好ましく、ダイマージアミンと酸二無水物との反応物に由来する骨格を有することが更に好ましい。 The maleimide compound (A) preferably has a skeleton derived from an acid dianhydride, more preferably has a skeleton derived from a reaction product of a diamine compound and an acid dianhydride, and even more preferably has a skeleton derived from a reaction product of a dimer diamine and an acid dianhydride.

 上記酸二無水物としては、テトラカルボン酸二無水物等が挙げられる。上記テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。上記酸二無水物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the acid dianhydride include tetracarboxylic dianhydrides. Examples of the tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3',4,4'-tetraphenylsilane tetracarboxylic dianhydride, 1,2,3,4-furan tetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylsulfonate, and 4,4'-bis(3,4-dicarboxyphenoxy)diphenylsulfonate. Examples of the dianhydride include 4,4'-bis(3,4-dicarboxyphenoxy)diphenylsulfone dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidenediphthalic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid)phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenylphthalic acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenylether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride. The above dianhydrides may be used alone or in combination of two or more.

 マレイミド化合物(A)の分子量は、好ましくは200以上、より好ましくは500以上、更に好ましくは1000以上、好ましくは20万以下、より好ましくは10万以下、更に好ましくは5万以下である。上記分子量が上記下限以上及び上記上限以下であると、絶縁層の形成時に流動性が高い樹脂材料が得られやすく、ラミネート性を良好にすることができる。また、ラミネート性を良好にすることができるので、硬化物のメッキピール強度をより一層高めることができる。 The molecular weight of the maleimide compound (A) is preferably 200 or more, more preferably 500 or more, even more preferably 1,000 or more, and preferably 200,000 or less, more preferably 100,000 or less, even more preferably 50,000 or less. When the molecular weight is equal to or greater than the lower limit and equal to or less than the upper limit, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be obtained. Furthermore, because good lamination properties can be obtained, the plating peel strength of the cured product can be further increased.

 マレイミド化合物(A)の分子量は、マレイミド化合物(A)が重合体ではない場合、及びマレイミド化合物(A)の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、マレイミド化合物(A)が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 The molecular weight of the maleimide compound (A) means the molecular weight that can be calculated from the structural formula when the maleimide compound (A) is not a polymer and when the structural formula of the maleimide compound (A) can be identified. When the maleimide compound (A) is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

 マレイミド化合物(A)の市販品としては、DIC社製「NE-X-9470S」、日本化薬社製「MIR-5000-60T」及び「MIR-3000-70MT」、Designer Molecules Inc.社製「BMI-3000J」、「BMI-2500」、「BMI-1500」及び「BMI-689」、並びに、ケイ・アイ化成社製「BMI」、「BMI-70」及び「BMI-80」等が挙げられる。 Commercially available maleimide compounds (A) include "NE-X-9470S" manufactured by DIC Corporation, "MIR-5000-60T" and "MIR-3000-70MT" manufactured by Nippon Kayaku Co., Ltd., "BMI-3000J", "BMI-2500", "BMI-1500" and "BMI-689" manufactured by Designer Molecules Inc., and "BMI", "BMI-70" and "BMI-80" manufactured by Kei-I Chemicals Co., Ltd.

 また、マレイミド化合物(A)は、例えば、テトラカルボン酸二無水物等の酸二無水物と、ジアミン化合物とを反応させて反応物を得た後、該反応物と無水マレイン酸とを反応させて得ることもできる。 The maleimide compound (A) can also be obtained by reacting an acid dianhydride, such as a tetracarboxylic dianhydride, with a diamine compound to obtain a reaction product, and then reacting the reaction product with maleic anhydride.

 上記樹脂材料中の溶剤を除く成分100重量%中、マレイミド化合物(A)の含有量は、好ましくは20重量%以上、より好ましくは25重量%以上、更に好ましくは30重量%以上、好ましくは70重量%以下、より好ましくは65重量%以下、更に好ましくは60重量%以下である。マレイミド化合物(A)の含有量が上記下限以上及び上記上限以下であると、ラミネート性をより一層良好にすることができる。また、粗化処理後の表面粗度をより一層小さくすることができ、さらに、硬化物のメッキピール強度をより一層高めることもできる。 The content of the maleimide compound (A) in 100% by weight of the components excluding the solvent in the resin material is preferably 20% by weight or more, more preferably 25% by weight or more, even more preferably 30% by weight or more, preferably 70% by weight or less, more preferably 65% by weight or less, and even more preferably 60% by weight or less. When the content of the maleimide compound (A) is equal to or more than the above lower limit and equal to or less than the above upper limit, the lamination properties can be further improved. In addition, the surface roughness after the roughening treatment can be further reduced, and the plating peel strength of the cured product can be further increased.

 [中空無機粒子(B)]
 上記樹脂材料は、中空無機粒子(B)を含む。中空無機粒子(B)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Hollow inorganic particles (B)]
The resin material contains hollow inorganic particles (B). The hollow inorganic particles (B) may be used alone or in combination of two or more kinds.

 中空無機粒子(B)は、中空を有する無機粒子である。中空無機粒子(B)は、中空と、該中空を囲む外殻とを有する。上記外殻で囲まれた上記中空の個数は、通常、1個である。 The hollow inorganic particles (B) are inorganic particles having a hollow space. The hollow inorganic particles (B) have a hollow space and an outer shell surrounding the hollow space. The number of the hollow spaces surrounded by the outer shell is usually one.

 中空無機粒子(B)は、無機物により形成されている。より具体的には、中空無機粒子(B)の上記外殻は、無機物により形成されている。 The hollow inorganic particles (B) are formed from an inorganic material. More specifically, the outer shell of the hollow inorganic particles (B) is formed from an inorganic material.

 中空無機粒子(B)を形成する無機物としては、シリカ、アルミノシリケート、シルセスキオキサン、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレイ、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。上記無機物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Inorganic substances that form the hollow inorganic particles (B) include silica, aluminosilicate, silsesquioxane, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate. The above inorganic substances may be used alone or in combination of two or more.

 中空無機粒子(B)を形成する無機物は、シリカ、アルミノシリケート又はシルセスキオキサンを含むことが好ましく、シリカ又はアルミノシリケートを含むことがより好ましく、シリカを含むことが更に好ましく、シリカであることが特に好ましい。中空無機粒子(B)は、中空シリカ粒子、中空アルミノシリケート粒子又は中空シルセスキオキサン粒子を含むことが好ましく、中空シリカ粒子又は中空アルミノシリケート粒子を含むことがより好ましく、中空シリカ粒子を含むことが更に好ましく、中空シリカ粒子であることが特に好ましい。この場合には、樹脂材料の硬化物の誘電率及び誘電正接をより一層低くすることができる。 The inorganic material forming the hollow inorganic particles (B) preferably contains silica, aluminosilicate, or silsesquioxane, more preferably contains silica or aluminosilicate, even more preferably contains silica, and particularly preferably is silica. The hollow inorganic particles (B) preferably contain hollow silica particles, hollow aluminosilicate particles, or hollow silsesquioxane particles, more preferably contains hollow silica particles or hollow aluminosilicate particles, even more preferably contains hollow silica particles, and particularly preferably is hollow silica particles. In this case, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced.

 本発明の効果を発揮する観点から、中空無機粒子(B)のBET比表面積は、下記式(1)を満足する。下記式(1)における(3/rd)は、比表面積の理論値、すなわち、表面積/(体積×真密度)を意味している。本発明者らは、BET比表面積が比表面積の理論値よりも適度に大きい中空無機粒子を用いることにより、本発明の効果を発揮することができることを見出した。 From the viewpoint of exerting the effects of the present invention, the BET specific surface area of the hollow inorganic particles (B) satisfies the following formula (1). In the following formula (1), (3/rd) means the theoretical value of the specific surface area, i.e., surface area/(volume x true density). The inventors have found that the effects of the present invention can be exerted by using hollow inorganic particles whose BET specific surface area is appropriately larger than the theoretical value of the specific surface area.

 1.05×(3/rd)<S<2.00×(3/rd)   ・・・(1)
 S:中空無機粒子(B)のBET比表面積(m/g)
 r:中空無機粒子(B)の平均粒子半径(μm)
 d:中空無機粒子(B)の真密度(g/cm
1.05×(3/rd)<S<2.00×(3/rd)...(1)
S: BET specific surface area (m 2 /g) of hollow inorganic particles (B)
r: average particle radius of hollow inorganic particles (B) (μm)
d: true density of hollow inorganic particles (B) (g/cm 3 )

 中空無機粒子(B)のBET比表面積(S)は、好ましくは1m/g以上、より好ましくは5m/g以上、好ましくは200m/g以下、より好ましくは150m/g以下である。上記BET比表面積(S)が上記下限以上及び上記上限以下であると、樹脂材料中での中空無機粒子(B)の分散性をより一層高めることができる。 The BET specific surface area (S) of the hollow inorganic particles (B) is preferably 1 m2 /g or more, more preferably 5 m2 /g or more, and preferably 200 m2 /g or less, more preferably 150 m2 /g or less. When the BET specific surface area (S) is equal to or more than the lower limit and equal to or less than the upper limit, the dispersibility of the hollow inorganic particles (B) in the resin material can be further improved.

 中空無機粒子(B)のBET比表面積(S)は、比表面積/細孔分布測定装置(例えば、カンタクローム・インスツルメンツ社製「NOVA4200e」)により測定することができる。 The BET specific surface area (S) of the hollow inorganic particles (B) can be measured using a specific surface area/pore distribution measuring device (e.g., "NOVA4200e" manufactured by Quantachrome Instruments).

 中空無機粒子(B)の平均粒子半径(r)は、好ましくは50nm以上、より好ましくは75nm以上、更に好ましくは100nm以上、好ましくは10μm以下、より好ましくは5μm以下、更に好ましくは2μm以下である。上記平均粒子半径(r)が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性をより一層高めることができる。また、配線間のショートをより一層抑制することができる。 The average particle radius (r) of the hollow inorganic particles (B) is preferably 50 nm or more, more preferably 75 nm or more, even more preferably 100 nm or more, and preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 2 μm or less. When the average particle radius (r) is equal to or greater than the lower limit and equal to or less than the upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be further improved. In addition, short circuits between wiring can be further suppressed.

 中空無機粒子(B)の平均粒子半径(r)は、中空無機粒子(B)の平均粒子径に0.5を乗じた値として求められる。中空無機粒子(B)の平均粒子径として、50%となるメディアン径(d50)の値が採用される。中空無機粒子(B)の平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。なお、中空無機粒子(B)が凝集粒子の場合には、中空無機粒子(B)の平均粒径は、一次粒子径を意味する。 The average particle radius (r) of hollow inorganic particles (B) is calculated by multiplying the average particle diameter of hollow inorganic particles (B) by 0.5. The value of the median diameter (d50) at 50% is used as the average particle diameter of hollow inorganic particles (B). The average particle diameter of hollow inorganic particles (B) can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method. Note that when hollow inorganic particles (B) are agglomerated particles, the average particle diameter of hollow inorganic particles (B) means the primary particle diameter.

 中空無機粒子(B)の真密度(d)は、好ましくは0.2g/cm以上、より好ましくは0.3g/cm以上、好ましくは2g/cm以下、より好ましくは1.5g/cm以下である。上記真密度(d)が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができる。また、中空無機粒子(B)の強度をより一層高めることができる。 The true density (d) of the hollow inorganic particles (B) is preferably 0.2 g/ cm3 or more, more preferably 0.3 g/ cm3 or more, and preferably 2 g/cm3 or less , more preferably 1.5 g/cm3 or less. When the true density (d) is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced. In addition, the strength of the hollow inorganic particles (B) can be further increased.

 中空無機粒子(B)の真密度(d)は、真密度測定装置(例えば、QUANTACHROME社製「Ultrapyc1200e」)により測定することができる。 The true density (d) of the hollow inorganic particles (B) can be measured using a true density measuring device (e.g., "Ultrapyc1200e" manufactured by QUANTACROME).

 中空無機粒子(B)の形状は特に限定されないが、球状であることが好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。中空無機粒子(B)が球状である場合には、中空無機粒子(B)のアスペクト比は、好ましくは1以上、好ましくは2以下、より好ましくは1.5以下である。 The shape of the hollow inorganic particles (B) is not particularly limited, but it is preferable that they are spherical. In this case, the surface roughness of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the hollow inorganic particles (B) are spherical, the aspect ratio of the hollow inorganic particles (B) is preferably 1 or more, preferably 2 or less, and more preferably 1.5 or less.

 中空無機粒子(B)の内部に含まれる空孔の数(中空の数)は、特に限定されないが、1個であることが好ましい。 The number of holes (number of hollows) contained inside the hollow inorganic particle (B) is not particularly limited, but it is preferable that the number is one.

 中空無機粒子(B)の空孔率は、好ましくは20体積%以上、より好ましくは30体積%以上、更に好ましくは40体積%以上、好ましくは90体積%以下、より好ましくは85体積%以下、更に好ましくは80体積%以下である。上記空孔率が上記下限以上及び上記上限以下であると、樹脂材料の硬化物の誘電率及び誘電正接をより一層低くすることができる。 The porosity of the hollow inorganic particles (B) is preferably 20% by volume or more, more preferably 30% by volume or more, even more preferably 40% by volume or more, and preferably 90% by volume or less, more preferably 85% by volume or less, and even more preferably 80% by volume or less. If the porosity is equal to or greater than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced.

 中空無機粒子(B)の内部に含まれる空孔の数(中空の数)が1個の場合の空孔率は以下のようにして算出することができる。透過電子顕微鏡(TEM)を用いて、中空無機粒子(B)を撮影する。得られた顕微鏡写真から、任意の中空無機粒子(B)50個の粒子径をそれぞれ測定し、その平均値を平均粒子径(X)とする。また、中空無機粒子(B)を半分に切断し、透過電子顕微鏡(TEM)を用いて、切断された中空無機粒子(B)を撮影する。得られた顕微鏡写真から、任意の切断された中空無機粒子(B)50個の切断面の空洞部の直径を測定し、その平均値を空洞部の平均直径(Y)とする。下記式により空孔率を算出する。 When the number of holes (number of hollows) contained inside hollow inorganic particles (B) is one, the porosity can be calculated as follows. Photograph hollow inorganic particles (B) using a transmission electron microscope (TEM). From the obtained micrograph, the particle diameters of 50 arbitrary hollow inorganic particles (B) are measured, and the average value is taken as the average particle diameter (X). In addition, hollow inorganic particles (B) are cut in half, and the cut hollow inorganic particles (B) are photographed using a transmission electron microscope (TEM). From the obtained micrograph, the diameters of the cavities of the cut surfaces of 50 arbitrary cut hollow inorganic particles (B) are measured, and the average value is taken as the average diameter of the cavities (Y). Calculate the porosity using the following formula.

 空孔率(体積%)=(Y/X)×100
 X:平均粒子径(X)
 Y:空洞部の平均直径(Y)
Porosity (volume %)=(Y 3 /X 3 )×100
X: Average particle diameter (X)
Y: average diameter of the cavity (Y)

 中空無機粒子(B)の内部に含まれる空孔の数(中空の数)が2個以上の場合の上記空孔率も、透過電子顕微鏡(TEM)を用いて、中空無機粒子(B)の粒子径から求められる中空無機粒子(B)の体積と、空洞部の直径から求められる空洞部の体積とから求めることができる。 When the number of holes (number of hollows) contained inside the hollow inorganic particles (B) is 2 or more, the above porosity can also be calculated using a transmission electron microscope (TEM) from the volume of the hollow inorganic particles (B) calculated from the particle diameter of the hollow inorganic particles (B) and the volume of the hollow parts calculated from the diameter of the hollow parts.

 中空無機粒子(B)は、表面処理された中空無機粒子であることが好ましく、カップリング剤により表面処理された中空無機粒子であることがより好ましい。中空無機粒子(B)が表面処理されていることにより、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、中空無機粒子(B)が表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The hollow inorganic particles (B) are preferably surface-treated hollow inorganic particles, and more preferably surface-treated with a coupling agent. By surface-treating the hollow inorganic particles (B), the surface roughness of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Furthermore, by surface-treating the hollow inorganic particles (B), finer wiring can be formed on the surface of the cured product, and better inter-wiring insulation reliability and inter-layer insulation reliability can be imparted to the cured product.

 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、フェニルアミノシラン、フェニルシラン、イミダゾールシラン、ビニルシラン、アルキルアミノシラン、及びエポキシシラン等が挙げられる。 The above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents. The above-mentioned silane coupling agents include methacrylsilane, acrylic silane, phenylaminosilane, phenylsilane, imidazole silane, vinyl silane, alkylaminosilane, and epoxy silane.

 中空無機粒子(B)は、シランカップリング剤により表面処理された中空無機粒子であることが好ましく、ビニルシラン、フェニルアミノシラン又はフェニルシランにより表面処理された中空無機粒子であることがより好ましい。この場合には、ラミネート性をより一層良好にすることができる。また、ラミネート性を良好にすることができるので、硬化物のメッキピール強度をより一層高めることができる。 The hollow inorganic particles (B) are preferably hollow inorganic particles that have been surface-treated with a silane coupling agent, and more preferably hollow inorganic particles that have been surface-treated with vinyl silane, phenylamino silane, or phenyl silane. In this case, the lamination properties can be further improved. In addition, because the lamination properties can be improved, the plating peel strength of the cured product can be further increased.

 上記樹脂材料中の溶剤を除く成分100重量%中、中空無機粒子(B)の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上、好ましくは60重量%以下、より好ましくは55重量%以下、更に好ましくは50重量%以下である。中空無機粒子(B)の含有量が上記下限以上であると、樹脂材料の硬化物の誘電率及び誘電正接をより一層低くすることができる。また、熱寸法安定性を高め、硬化物の反りを効果的に抑えることができる。中空無機粒子(B)の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ配線間のショートをより一層抑制することができるため、硬化物の表面により一層微細な配線を形成することができる。さらに、この中空無機粒子(B)の含有量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。 The content of hollow inorganic particles (B) in 100% by weight of the components excluding the solvent in the resin material is preferably 5% by weight or more, more preferably 10% by weight or more, even more preferably 15% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less, and even more preferably 50% by weight or less. When the content of hollow inorganic particles (B) is equal to or more than the lower limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced. In addition, the thermal dimensional stability can be improved, and warping of the cured product can be effectively suppressed. When the content of hollow inorganic particles (B) is equal to or more than the lower limit and equal to or less than the upper limit, the surface roughness of the cured product can be further reduced, and short circuits between wirings can be further suppressed, so that even finer wiring can be formed on the surface of the cured product. Furthermore, with this content of hollow inorganic particles (B), it is possible to lower the thermal expansion coefficient of the cured product and at the same time improve smear removal properties.

 [中実無機粒子(C)]
 上記樹脂材料は、中実無機粒子(C)を含んでいてもよい。中実無機粒子(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Solid inorganic particles (C)]
The resin material may contain solid inorganic particles (C). The solid inorganic particles (C) may be used alone or in combination of two or more kinds.

 中実無機粒子(C)は、中空を有さない無機粒子である。 Solid inorganic particles (C) are inorganic particles that do not have hollow spaces.

 中実無機粒子(C)としては、中実シリカ粒子、中実タルク粒子、中実クレイ粒子、中実マイカ粒子、中実ハイドロタルサイト粒子、中実アルミナ粒子、中実酸化マグネシウム粒子、中実水酸化アルミニウム粒子、中実窒化アルミニウム粒子、及び中実窒化ホウ素粒子等が挙げられる。 Examples of solid inorganic particles (C) include solid silica particles, solid talc particles, solid clay particles, solid mica particles, solid hydrotalcite particles, solid alumina particles, solid magnesium oxide particles, solid aluminum hydroxide particles, solid aluminum nitride particles, and solid boron nitride particles.

 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、中実無機粒子(C)は、中実シリカ粒子又は中実アルミナ粒子であることが好ましく、中実シリカ粒子であることがより好ましい。 From the viewpoint of reducing the surface roughness of the cured product, further increasing the adhesive strength between the cured product and the metal layer, forming finer wiring on the surface of the cured product, and imparting better insulation reliability to the cured product, the solid inorganic particles (C) are preferably solid silica particles or solid alumina particles, and more preferably solid silica particles.

 中実無機粒子(C)の平均粒径は、好ましくは50nm以上、より好ましくは100nm以上、更に好ましくは500nm以上、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下である。中実無機粒子(C)の平均粒径が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性をより一層高めることができる。 The average particle size of the solid inorganic particles (C) is preferably 50 nm or more, more preferably 100 nm or more, even more preferably 500 nm or more, and preferably 5 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less. When the average particle size of the solid inorganic particles (C) is equal to or greater than the above lower limit and equal to or less than the above upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be further improved.

 中実無機粒子(C)の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 The median diameter (d50) at 50% is used as the average particle size of the solid inorganic particles (C). The above average particle size can be measured using a particle size distribution measuring device that uses a laser diffraction scattering method.

 中実無機粒子(C)の形状は特に限定されないが、球状であることが好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。中実無機粒子(C)が球状である場合には、中実無機粒子(C)のアスペクト比は、好ましくは1以上、好ましくは2以下、より好ましくは1.5以下である。 The shape of the solid inorganic particles (C) is not particularly limited, but it is preferable that they are spherical. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the solid inorganic particles (C) are spherical, the aspect ratio of the solid inorganic particles (C) is preferably 1 or more, preferably 2 or less, and more preferably 1.5 or less.

 中実無機粒子(C)は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。中実無機粒子(C)が表面処理されていることにより、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、中実無機粒子(C)が表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The solid inorganic particles (C) are preferably surface-treated, more preferably surface-treated with a coupling agent, and even more preferably surface-treated with a silane coupling agent. By surface-treating the solid inorganic particles (C), the surface roughness of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Furthermore, by surface-treating the solid inorganic particles (C), finer wiring can be formed on the surface of the cured product, and better inter-wiring insulation reliability and inter-layer insulation reliability can be imparted to the cured product.

 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 The above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents. The above-mentioned silane coupling agents include methacrylsilane, acrylic silane, aminosilane, imidazole silane, vinyl silane, and epoxy silane.

 上記樹脂材料中の溶剤を除く成分100重量%中、中実無機粒子(C)の含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、好ましくは75重量%以下、より好ましくは70重量%以下、更に好ましくは65重量%以下である。中実無機粒子(C)の含有量が上記下限以上であると、樹脂材料の硬化物の誘電率及び誘電正接をより一層低くすることができる。また、熱寸法安定性を高め、硬化物の反りを効果的に抑えることができる。中実無機粒子(C)の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができる。さらに、この中実無機粒子(C)の含有量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。 The content of the solid inorganic particles (C) in the resin material is preferably 1% by weight or more, more preferably 5% by weight or more, preferably 75% by weight or less, more preferably 70% by weight or less, and even more preferably 65% by weight or less, based on 100% by weight of the components excluding the solvent. If the content of the solid inorganic particles (C) is equal to or greater than the lower limit, the dielectric constant and dielectric tangent of the cured product of the resin material can be further reduced. In addition, the thermal dimensional stability can be improved, and warping of the cured product can be effectively suppressed. If the content of the solid inorganic particles (C) is equal to or greater than the lower limit and equal to or less than the upper limit, the surface roughness of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Furthermore, with this content of the solid inorganic particles (C), it is possible to lower the thermal expansion coefficient of the cured product and at the same time improve the smear removal properties.

 [マレイミド基と反応可能な官能基を有する熱硬化性化合物(D)]
 上記樹脂材料は、マレイミド基と反応可能な官能基を有する熱硬化性化合物(D)を含むことが好ましい。熱硬化性化合物(D)は、マレイミド化合物とは異なる。熱硬化性化合物(D)は、マレイミド基を有さない。熱硬化性化合物(D)は、マレイミド基と反応可能な官能基を有する。熱硬化性化合物(D)として、従来公知の熱硬化性化合物を使用可能である。熱硬化性化合物(D)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermosetting compound (D) having a functional group capable of reacting with a maleimide group]
The resin material preferably contains a thermosetting compound (D) having a functional group capable of reacting with a maleimide group. The thermosetting compound (D) is different from a maleimide compound. The thermosetting compound (D) does not have a maleimide group. The thermosetting compound (D) has a functional group capable of reacting with a maleimide group. As the thermosetting compound (D), a conventionally known thermosetting compound can be used. Only one type of the thermosetting compound (D) may be used, or two or more types may be used in combination.

 熱硬化性化合物(D)は、エポキシ基、ビニル基、スチリル基、ベンゾオキサジン基、シアネート基、アリル基、メタクリロイル基又はアクリロイル基を有する熱硬化性化合物を含むことが好ましい。熱硬化性化合物(D)は、エポキシ基、ビニル基、スチリル基、ベンゾオキサジン基、シアネート基、アリル基又はメタクリロイル基を有する熱硬化性化合物を含むことがより好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 Thermosetting compound (D) preferably contains a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, a methacryloyl group, or an acryloyl group. It is more preferable that the thermosetting compound (D) contains a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, or a methacryloyl group. In this case, the effects of the present invention can be exerted even more effectively.

 熱硬化性化合物(D)の分子量は、好ましくは100以上、より好ましくは200以上、更に好ましくは300以上、好ましくは20万以下、より好ましくは10万以下、更に好ましくは5万以下である。上記分子量が上記下限以上及び上記上限以下であると、絶縁層の形成時に流動性が高い樹脂材料が得られやすく、ラミネート性を良好にすることができる。また、ラミネート性を良好にすることができるので、硬化物のメッキピール強度をより一層高めることができる。 The molecular weight of the thermosetting compound (D) is preferably 100 or more, more preferably 200 or more, even more preferably 300 or more, and preferably 200,000 or less, more preferably 100,000 or less, even more preferably 50,000 or less. If the molecular weight is equal to or greater than the lower limit and equal to or less than the upper limit, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be achieved. Furthermore, because good lamination properties can be achieved, the plating peel strength of the cured product can be further increased.

 熱硬化性化合物(D)の分子量は、熱硬化性化合物(D)が重合体ではない場合、及び熱硬化性化合物(D)の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、熱硬化性化合物(D)が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 The molecular weight of the thermosetting compound (D) means the molecular weight that can be calculated from the structural formula when the thermosetting compound (D) is not a polymer and when the structural formula of the thermosetting compound (D) can be identified. When the thermosetting compound (D) is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

 上記樹脂材料中の溶剤を除く成分100重量%中、熱硬化性化合物(D)の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。熱硬化性化合物(D)の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the thermosetting compound (D) in 100% by weight of the components excluding the solvent in the resin material is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. When the content of the thermosetting compound (D) is equal to or more than the above lower limit and equal to or less than the above upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 上記樹脂材料中の中空無機粒子(B)、中実無機粒子(C)及び溶剤を除く成分100重量%中、熱硬化性化合物(D)の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、好ましくは100重量%以下、より好ましくは95重量%以下である。熱硬化性化合物(D)の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the thermosetting compound (D) in 100% by weight of the components in the resin material excluding the hollow inorganic particles (B), solid inorganic particles (C) and solvent is preferably 5% by weight or more, more preferably 10% by weight or more, and preferably 100% by weight or less, more preferably 95% by weight or less. When the content of the thermosetting compound (D) is equal to or more than the above lower limit and equal to or less than the above upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <エポキシ基を有する熱硬化性化合物(エポキシ化合物)>
 熱硬化性化合物(D)は、エポキシ基を有する熱硬化性化合物(エポキシ化合物)を含んでいてもよく、エポキシ基を有する熱硬化性化合物(エポキシ化合物)であってもよい。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having an epoxy group (epoxy compound)>
The thermosetting compound (D) may contain a thermosetting compound having an epoxy group (epoxy compound), or may be a thermosetting compound having an epoxy group (epoxy compound). The above epoxy compounds may be used alone or in combination of two or more kinds.

 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノールE型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 The above epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, bisphenol E type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, naphthalene type epoxy compounds, fluorene type epoxy compounds, phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, anthracene type epoxy compounds, epoxy compounds having an adamantane skeleton, epoxy compounds having a tricyclodecane skeleton, naphthylene ether type epoxy compounds, and epoxy compounds having a triazine nucleus in the skeleton.

 上記エポキシ化合物は、グリシジルエーテル化合物であってもよい。上記グリシジルエーテル化合物とは、グリシジルエーテル基を少なくとも1個有する化合物である。 The epoxy compound may be a glycidyl ether compound. The glycidyl ether compound is a compound having at least one glycidyl ether group.

 上記エポキシ化合物は、芳香環を有するエポキシ化合物を含むことが好ましく、ナフタレン骨格又はフェニル骨格を有するエポキシ化合物を含むことがより好ましく、芳香環を有するエポキシ化合物であることが更に好ましい。この場合には、硬化物の誘電率及び誘電正接をより一層低くすることができ、かつ硬化物の熱寸法安定性をより一層高めることができる。 The epoxy compound preferably contains an epoxy compound having an aromatic ring, more preferably contains an epoxy compound having a naphthalene skeleton or a phenyl skeleton, and even more preferably is an epoxy compound having an aromatic ring. In this case, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 硬化物の誘電率及び誘電正接をより一層低くし、かつ硬化物の線膨張係数(CTE)を良好にする観点からは、上記エポキシ化合物は、25℃で液状のエポキシ化合物を含むことが好ましく、25℃で液状のエポキシ化合物と25℃で固形のエポキシ化合物とを含むことがより好ましい。特に、上記エポキシ化合物が25℃で液状のエポキシ化合物を含む場合には、絶縁層の形成時に流動性が高い樹脂材料が得られやすく、ラミネート性を良好にすることができる。また、ラミネート性を良好にすることができるので、硬化物のメッキピール強度をより一層高めることができる。 From the viewpoint of further reducing the dielectric constant and dielectric tangent of the cured product and improving the coefficient of linear expansion (CTE) of the cured product, it is preferable that the epoxy compound contains an epoxy compound that is liquid at 25°C, and it is more preferable that the epoxy compound contains an epoxy compound that is liquid at 25°C and an epoxy compound that is solid at 25°C. In particular, when the epoxy compound contains an epoxy compound that is liquid at 25°C, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be achieved. In addition, because good lamination properties can be achieved, the plating peel strength of the cured product can be further increased.

 上記25℃で液状のエポキシ化合物の25℃での粘度は、10000mPa・s以下であることが好ましく、5000mPa・s以下であることがより好ましい。上記25℃で液状のエポキシ化合物の25℃での粘度は、1mPa・s以上であってもよく、10mPa・s以上であってもよく、100mPa・s以上であってもよい。 The viscosity of the epoxy compound that is liquid at 25°C is preferably 10,000 mPa·s or less, and more preferably 5,000 mPa·s or less. The viscosity of the epoxy compound that is liquid at 25°C may be 1 mPa·s or more, 10 mPa·s or more, or 100 mPa·s or more.

 上記エポキシ化合物の粘度は、例えば動的粘弾性測定装置(レオロジカ・インスツルメンツ社製「VAR-100」)等を用いて測定することができる。 The viscosity of the epoxy compound can be measured, for example, using a dynamic viscoelasticity measuring device ("VAR-100" manufactured by Rheologica Instruments).

 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、絶縁層の形成時に流動性が高い樹脂材料が得られやすく、ラミネート性を良好にすることができる。また、ラミネート性を良好にすることができるので、硬化物のメッキピール強度をより一層高めることができる。上記エポキシ化合物の分子量は100以上であってもよく、200以上であってもよい。 The molecular weight of the epoxy compound is preferably 1000 or less. In this case, a resin material with high fluidity is easily obtained when forming the insulating layer, and good lamination properties can be obtained. In addition, since good lamination properties can be obtained, the plating peel strength of the cured product can be further increased. The molecular weight of the epoxy compound may be 100 or more, or may be 200 or more.

 上記エポキシ化合物の分子量は、上記エポキシ化合物が重合体ではない場合、及び上記エポキシ化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 The molecular weight of the epoxy compound means the molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified. When the epoxy compound is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

 上記樹脂材料中の溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the epoxy compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the epoxy compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <ビニル基を有する熱硬化性化合物(ビニル化合物)>
 熱硬化性化合物(D)は、ビニル基を有する熱硬化性化合物(ビニル化合物)を含んでいてもよく、ビニル基を有する熱硬化性化合物(ビニル化合物)であってもよい。上記ビニル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having a vinyl group (vinyl compound)>
The thermosetting compound (D) may contain a thermosetting compound (vinyl compound) having a vinyl group, or may be a thermosetting compound (vinyl compound) having a vinyl group. The above vinyl compounds may be used alone or in combination of two or more kinds.

 上記ビニル化合物としては、ジビニルベンジルエーテル化合物が挙げられる。 The vinyl compound may be a divinylbenzyl ether compound.

 上記樹脂材料中の溶剤を除く成分100重量%中、上記ビニル化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記ビニル化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the vinyl compound is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less, out of 100% by weight of the components excluding the solvent in the resin material. When the content of the vinyl compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <スチリル基を有する熱硬化性化合物(スチリル化合物)>
 熱硬化性化合物(D)は、スチリル基を有する熱硬化性化合物(スチリル化合物)を含んでいてもよく、スチリル基を有する熱硬化性化合物(スチリル化合物)であってもよい。上記スチリル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having a styryl group (styryl compound)>
The thermosetting compound (D) may contain a thermosetting compound having a styryl group (a styryl compound), or may be a thermosetting compound having a styryl group (a styryl compound). The styryl compound may be used alone or in combination of two or more kinds.

 上記スチリル化合物の市販品としては、三菱ガス化学社製「OPE-2St」及び「OPE-1200」等が挙げられる。 Commercially available styryl compounds include "OPE-2St" and "OPE-1200" manufactured by Mitsubishi Gas Chemical Co., Ltd.

 上記樹脂材料中の溶剤を除く成分100重量%中、上記スチリル化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記スチリル化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the styryl compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. When the content of the styryl compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <ベンゾオキサジン基を有する熱硬化性化合物(ベンゾオキサジン化合物)>
 熱硬化性化合物(D)は、ベンゾオキサジン基を有する熱硬化性化合物(ベンゾオキサジン化合物)を含んでいてもよく、ベンゾオキサジン基を有する熱硬化性化合物(ベンゾオキサジン化合物)であってもよい。上記ベンゾオキサジン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having a benzoxazine group (benzoxazine compound)>
The thermosetting compound (D) may contain a thermosetting compound having a benzoxazine group (benzoxazine compound), or may be a thermosetting compound having a benzoxazine group (benzoxazine compound). The above-mentioned benzoxazine compound may be used alone or in combination of two or more kinds.

 上記ベンゾオキサジン化合物としては、P-d型ベンゾオキサジン、及びF-a型ベンゾオキサジン等が挙げられる。 The above benzoxazine compounds include P-d type benzoxazine and Fa type benzoxazine.

 上記ベンゾオキサジン化合物の市販品としては、四国化成工業社製「P-d型」等が挙げられる。 Commercially available products of the above benzoxazine compounds include "P-d type" manufactured by Shikoku Chemical Industry Co., Ltd.

 上記樹脂材料中の溶剤を除く成分100重量%中、上記ベンゾオキサジン化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記ベンゾオキサジン化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the benzoxazine compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the benzoxazine compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <シアネート基を有する熱硬化性化合物(シアネート化合物)>
 熱硬化性化合物(D)は、シアネート基を有する熱硬化性化合物(シアネート化合物)を含んでいてもよく、シアネート基を有する熱硬化性化合物(シアネート化合物)であってもよい。上記シアネート化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having a cyanate group (cyanate compound)>
The thermosetting compound (D) may contain a thermosetting compound having a cyanate group (cyanate compound), or may be a thermosetting compound having a cyanate group (cyanate compound). The above cyanate compounds may be used alone or in combination of two or more.

 上記シアネート化合物は、シアネートエステル化合物であることが好ましい。 The above cyanate compound is preferably a cyanate ester compound.

 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。 The above cyanate ester compounds include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized. The above novolac-type cyanate ester resins include phenol novolac-type cyanate ester resins and alkylphenol-type cyanate ester resins. The above bisphenol-type cyanate ester resins include bisphenol A-type cyanate ester resins, bisphenol E-type cyanate ester resins, and tetramethylbisphenol F-type cyanate ester resins.

 上記シアネートエステル化合物の市販品としては、ビスフェノールA型シアネートエステル樹脂(三菱ガス化学社製「P-201」)、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、並びにビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above cyanate ester compounds include bisphenol A cyanate ester resin ("P-201" manufactured by Mitsubishi Gas Chemical Co., Ltd.), phenol novolac cyanate ester resin ("PT-30" and "PT-60" manufactured by Lonza Japan), and prepolymers in which bisphenol cyanate ester resins have been trimerized ("BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S" manufactured by Lonza Japan).

 上記樹脂材料中の溶剤を除く成分100重量%中、上記シアネート化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記シアネート化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the cyanate compound in 100% by weight of the components excluding the solvent in the resin material is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. When the content of the cyanate compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 <メタクリロイル基を有する熱硬化性化合物(メタクリル化合物)>
 熱硬化性化合物(D)は、メタクリロイル基を有する熱硬化性化合物(メタクリル化合物)を含んでいてもよく、メタクリロイル基を有する熱硬化性化合物(メタクリル化合物)であってもよい。上記メタクリル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Thermosetting compound having a methacryloyl group (methacrylic compound)>
The thermosetting compound (D) may contain a thermosetting compound having a methacryloyl group (methacrylic compound), or may be a thermosetting compound having a methacryloyl group (methacrylic compound). The above-mentioned methacrylic compound may be used alone or in combination of two or more kinds.

 上記メタクリル化合物の市販品としては、SABIC社製「SA9000-111」等が挙げられる。 Commercially available products of the above methacrylic compound include "SA9000-111" manufactured by SABIC.

 上記樹脂材料中の溶剤を除く成分100重量%中、上記メタクリル化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは50重量%以下である。上記メタクリル化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電率及び誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the methacrylic compound in the resin material (100% by weight, excluding the solvent) is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 60% by weight or less, more preferably 50% by weight or less. If the content of the methacrylic compound is equal to or more than the lower limit and equal to or less than the upper limit, the dielectric constant and dielectric tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further improved.

 [硬化促進剤(E)]
 上記樹脂材料は、硬化促進剤(E)を含むことが好ましい。硬化促進剤(E)の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になるとともに、未反応の官能基数が減り、結果的に架橋密度が高くなる。また、硬化促進剤(E)の使用により、樹脂材料を比較的低い温度でも良好に硬化させることができる。硬化促進剤(E)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Cure Accelerator (E)]
The resin material preferably contains a curing accelerator (E). The use of the curing accelerator (E) further accelerates the curing speed. By quickly curing the resin material, the crosslinked structure in the cured product becomes uniform, and the number of unreacted functional groups is reduced, resulting in a high crosslink density. In addition, the use of the curing accelerator (E) allows the resin material to be cured well even at a relatively low temperature. Only one type of curing accelerator (E) may be used, or two or more types may be used in combination.

 硬化促進剤(E)としては、イミダゾール化合物等のアニオン性硬化促進剤;アミン化合物等のカチオン性硬化促進剤;有機リン化合物及び有機金属化合物等のアニオン性及びカチオン性硬化促進剤以外の硬化促進剤;過酸化物及びアゾ化合物等のラジカル性硬化促進剤等が挙げられる。 Examples of the curing accelerator (E) include anionic curing accelerators such as imidazole compounds; cationic curing accelerators such as amine compounds; curing accelerators other than anionic and cationic curing accelerators such as organophosphorus compounds and organometallic compounds; and radical curing accelerators such as peroxides and azo compounds.

 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 The above imidazole compounds include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, and 1-cyanoethyl-2-phenylimidazolium trimethylate. Limellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, and 2-phenyl-4-methyl-5-dihydroxymethylimidazole.

 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン、ジエチレントリアミン、エチレンジアミン、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、m-キシリレンジ(ジメチルアミン)、N,N’-ジメチルピペラジン、N-メチルピロリジン、N-メチルハイドロオキシピペリジン、m-キシリレンジアミン、イソホロンジアミン、N-アミノエチルピペラジン、ポリオキシプロピレンポリアミン、及び4,4-ジメチルアミノピリジン等が挙げられる。また、アミン化合物は、これらのアミン化合物の変性品であってもよい。 The above amine compounds include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, diethylenetriamine, ethylenediamine, tris(dimethylaminomethyl)phenol, benzyldimethylamine, m-xylylenedi(dimethylamine), N,N'-dimethylpiperazine, N-methylpyrrolidine, N-methylhydroxypiperidine, m-xylylenediamine, isophoronediamine, N-aminoethylpiperazine, polyoxypropylenepolyamine, and 4,4-dimethylaminopyridine. The amine compounds may also be modified versions of these amine compounds.

 上記有機リン化合物としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリベンジルホスフィン、ジフェニル(アルキルフェニル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、及びアルキルジアリールホスフィン等の有機ホスフィン化合物、並びに、テトラフェニルホスホニウム・テトラフェニルボレート等のホスホニウム塩化合物等が挙げられる。 The above-mentioned organic phosphorus compounds include organic phosphine compounds such as triphenylphosphine, tricyclohexylphosphine, tribenzylphosphine, diphenyl(alkylphenyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkylalkoxyphenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, and alkyldiarylphosphine, as well as phosphonium salt compounds such as tetraphenylphosphonium and tetraphenylborate.

 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 The above-mentioned organometallic compounds include zinc naphthenate, cobalt naphthenate, tin octoate, cobalt octoate, cobalt bisacetylacetonate (II), and cobalt trisacetylacetonate (III).

 上記過酸化物としては、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカボネート、モノパーオキシカーボネート、パーオキシケタール、ジアルキルパーオキサイド、ジベンジルパーオキサイド、ジクミルパーオキサイド、ハイドロパーオキサイド、及びケトンパーオキサイド等が挙げられる。 The above peroxides include diacyl peroxides, peroxy esters, peroxy dicarbonates, monoperoxy carbonates, peroxy ketals, dialkyl peroxides, dibenzyl peroxide, dicumyl peroxide, hydroperoxides, and ketone peroxides.

 硬化促進剤(E)は、アミン化合物、イミダゾール化合物、過酸化物、アゾ化合物又は有機リン化合物を含むことが好ましく、イミダゾール化合物又は過酸化物を含むことがより好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 The curing accelerator (E) preferably contains an amine compound, an imidazole compound, a peroxide, an azo compound, or an organic phosphorus compound, and more preferably contains an imidazole compound or a peroxide. In this case, the effect of the present invention can be exerted even more effectively.

 上記樹脂材料において、マレイミド化合物(A)と熱硬化性化合物(D)との合計100重量部に対する、硬化促進剤(E)の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。硬化促進剤(E)の含有量が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。 In the above resin material, the content of the curing accelerator (E) relative to 100 parts by weight of the total of the maleimide compound (A) and the thermosetting compound (D) is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less. When the content of the curing accelerator (E) is equal to or more than the above lower limit and equal to or less than the above upper limit, the effects of the present invention can be more effectively exhibited.

 [硬化剤(F)]
 上記樹脂材料は、硬化剤(F)を含むことが好ましい。硬化剤(F)は特に限定されない。硬化剤(F)として、従来公知の硬化剤を使用可能である。硬化剤(F)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing agent (F)]
The resin material preferably contains a curing agent (F). The curing agent (F) is not particularly limited. As the curing agent (F), a conventionally known curing agent can be used. The curing agent (F) may be used alone or in combination of two or more kinds.

 硬化剤(F)としては、活性エステル基を有する化合物(活性エステル化合物)、水酸基を有する化合物、チオール基を有する化合物及びアミノ基を有する化合物等が挙げられる。硬化剤(F)は、活性エステル化合物を含むことが好ましい。 Examples of the curing agent (F) include a compound having an active ester group (active ester compound), a compound having a hydroxyl group, a compound having a thiol group, and a compound having an amino group. It is preferable that the curing agent (F) contains an active ester compound.

 上記樹脂材料中の硬化剤(F)の含有量は、例えば、上記樹脂材料中のマレイミド化合物(A)の含有量及び熱硬化性化合物(D)の含有量等に応じて適宜選択される。 The content of the curing agent (F) in the resin material is appropriately selected depending on, for example, the content of the maleimide compound (A) and the content of the thermosetting compound (D) in the resin material.

 [溶剤]
 上記樹脂材料は、溶剤を含まないか又は含む。上記樹脂材料は、溶剤を含んでいてもよく、含んでいなくてもよい。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料の塗工性を高めることができる。また、上記溶剤は、中空無機粒子(B)を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin material does not contain or contains a solvent. The resin material may or may not contain a solvent. By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved. The solvent may be used to obtain a slurry containing hollow inorganic particles (B). Only one type of the solvent may be used, or two or more types may be used in combination.

 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 The above solvents include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone, and naphtha, which is a mixture.

 上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに除去されることが好ましい。従って、上記溶剤の沸点は、好ましくは200℃以下、より好ましくは180℃以下である。上記溶剤の沸点は、30℃以上であってもよく、50℃以上であってもよく、100℃以上であってもよい。上記樹脂組成物中の上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 Most of the solvent is preferably removed when the resin composition is formed into a film. Therefore, the boiling point of the solvent is preferably 200°C or less, more preferably 180°C or less. The boiling point of the solvent may be 30°C or more, 50°C or more, or 100°C or more. There are no particular limitations on the content of the solvent in the resin composition. The content of the solvent can be changed as appropriate, taking into account the coatability of the resin composition, etc.

 上記樹脂材料がBステージフィルムである場合には、上記Bステージフィルム100重量%中、上記溶剤の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは15重量%以下、より好ましくは10重量%以下である。 If the resin material is a B-stage film, the content of the solvent in 100% by weight of the B-stage film is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 15% by weight or less, more preferably 10% by weight or less.

 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料は、上述した成分(マレイミド化合物(A)、中空無機粒子(B)、中実無機粒子(C)、熱硬化性化合物(D)、硬化促進剤(E)、硬化剤(F)及び溶剤)以外の他の成分を含んでいてもよい。上記他の成分としては、熱可塑性樹脂;有機充填材;レベリング剤;難燃剤;カップリング剤;着色剤;酸化防止剤;紫外線劣化防止剤;消泡剤;増粘剤;揺変性付与剤等が挙げられる。上記他の成分は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility, workability, etc., the resin material may contain other components in addition to the above-mentioned components (maleimide compound (A), hollow inorganic particles (B), solid inorganic particles (C), thermosetting compound (D), curing accelerator (E), curing agent (F) and solvent). Examples of the other components include thermoplastic resins; organic fillers; leveling agents; flame retardants; coupling agents; colorants; antioxidants; ultraviolet degradation inhibitors; defoamers; thickeners; thixotropy-imparting agents, etc. The other components may be used alone or in combination of two or more.

 上記熱可塑性樹脂としては、ポリイミド樹脂、フェノキシ樹脂及びポリビニルアセタール樹脂等が挙げられる。 The above-mentioned thermoplastic resins include polyimide resins, phenoxy resins, and polyvinyl acetal resins.

 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 The above-mentioned coupling agents include silane coupling agents, titanium coupling agents, and aluminum coupling agents. The above-mentioned silane coupling agents include vinyl silane, amino silane, imidazole silane, and epoxy silane.

 上記樹脂材料は、ガラスクロスを含んでいてもよく、含んでいなくてもよい。上記樹脂材料は、ガラスクロスを含まないことが好ましい。上記樹脂材料は、プリプレグではないことが好ましい。 The resin material may or may not contain glass cloth. It is preferable that the resin material does not contain glass cloth. It is preferable that the resin material is not a prepreg.

 (樹脂フィルム)
 上述した樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージ化物/Bステージフィルム)が得られる。上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂フィルムは、Bステージフィルムであることが好ましい。
(Resin film)
The resin composition described above is molded into a film to obtain a resin film (B-stage product/B-stage film). The resin material is preferably a resin film. The resin film is preferably a B-stage film.

 樹脂組成物をフィルム状に成形して、樹脂フィルムを得る方法としては、以下の方法が挙げられる。押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。  Methods for forming a resin composition into a film to obtain a resin film include the following: Extrusion molding, in which the resin composition is melt-kneaded and extruded using an extruder, and then molded into a film using a T-die or circular die. Casting molding, in which a resin composition containing a solvent is cast into a film. Other conventionally known film molding methods. Extrusion molding and casting molding are preferred because they can be made thinner. Films include sheets.

 樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 The resin composition is molded into a film and dried by heating for 1 to 10 minutes at, for example, 50°C to 150°C, to the extent that the heat does not cause excessive curing, to obtain a resin film that is a B-stage film.

 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like resin composition that can be obtained by the drying process described above is called a B-stage film. The B-stage film is in a semi-cured state. A semi-cured product is not completely cured, and curing can continue.

 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロス等に沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。 The resin film does not have to be a prepreg. If the resin film is not a prepreg, migration will not occur along the glass cloth or the like. In addition, when the resin film is laminated or precured, irregularities caused by the glass cloth will not occur on the surface.

 上記樹脂フィルムは、金属箔又は基材フィルムと、該金属箔又は基材フィルムの表面に積層された樹脂フィルムとを備える積層フィルムの形態で用いることができる。上記金属箔は銅箔であることが好ましい。 The resin film can be used in the form of a laminated film comprising a metal foil or a base film and a resin film laminated on the surface of the metal foil or base film. The metal foil is preferably a copper foil.

 上記積層フィルムの上記基材フィルムとしては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、並びにポリイミド樹脂フィルム等が挙げられる。上記基材フィルムの表面は、必要に応じて、離型処理されていてもよい。 The base film of the laminated film may be a polyester resin film such as a polyethylene terephthalate film or a polybutylene terephthalate film, an olefin resin film such as a polyethylene film or a polypropylene film, or a polyimide resin film. The surface of the base film may be subjected to a release treatment, if necessary.

 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。上記樹脂フィルムを回路の絶縁層として用いる場合、上記樹脂フィルムにより形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。 From the viewpoint of controlling the degree of hardening of the resin film more uniformly, the thickness of the resin film is preferably 5 μm or more and preferably 200 μm or less. When the resin film is used as an insulating layer of a circuit, the thickness of the insulating layer formed by the resin film is preferably equal to or greater than the thickness of the conductor layer (metal layer) that forms the circuit. The thickness of the insulating layer is preferably 5 μm or more and preferably 200 μm or less.

 (樹脂材料の他の詳細)
 上記樹脂材料を180℃で30分間加熱した後、200℃で60分間加熱して樹脂材料の硬化物を得たときに、得られた硬化物の10GHzでの誘電率(Dk)は、好ましくは2.5以下、より好ましくは2.5未満、より一層好ましくは2.2以下、更に好ましくは2.0以下、特に好ましくは2.0未満である。得られた硬化物の10GHzでの誘電率(Dk)は、0以上であってもよく、0を超えていてもよい。
(Other details of resin material)
When the resin material is heated at 180° C. for 30 minutes and then heated at 200° C. for 60 minutes to obtain a cured product of the resin material, the dielectric constant (Dk) of the obtained cured product at 10 GHz is preferably 2.5 or less, more preferably less than 2.5, even more preferably 2.2 or less, even more preferably 2.0 or less, and particularly preferably less than 2.0. The dielectric constant (Dk) of the obtained cured product at 10 GHz may be 0 or more, or may exceed 0.

 上記硬化物の10GHzでの誘電率(Dk)は、以下のようにして測定することができる。樹脂材料を180℃で30分間加熱した後、200℃で60分間加熱して樹脂材料の硬化物を得る。得られた硬化物の誘電率(Dk)を、誘電率測定装置(例えば、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」)を用いて、空洞共振法で常温(23℃)及び周波数10GHzの条件で測定する。 The dielectric constant (Dk) of the cured product at 10 GHz can be measured as follows. The resin material is heated at 180°C for 30 minutes, and then heated at 200°C for 60 minutes to obtain a cured product of the resin material. The dielectric constant (Dk) of the resulting cured product is measured by the cavity resonance method using a dielectric constant measuring device (for example, the "Cavity Resonance Perturbation Method Dielectric Constant Measuring Device CP521" manufactured by Kanto Electronics Application Development Co., Ltd.) at room temperature (23°C) and a frequency of 10 GHz.

 なお、上記樹脂材料を用いて多層基板等の電子部品を製造する際には、180℃で30分間加熱した後、200℃で60分間加熱して硬化物を得てもよく、この加熱条件以外の加熱条件で樹脂材料を加熱して硬化物を得てもよい。 When using the above resin material to manufacture electronic components such as multilayer boards, the resin material may be heated at 180°C for 30 minutes and then at 200°C for 60 minutes to obtain a cured product, or the resin material may be heated under heating conditions other than these to obtain a cured product.

 上記樹脂材料は、様々な用途に用いることができる。上記樹脂材料は、例えば、半導体装置において半導体チップを埋め込むモールド樹脂を形成するために好適に用いられる。また、上記樹脂材料は、液晶ポリマー(LCP)の代替用途、ミリ波アンテナ用途、再配線層用途に好適に用いられる。上記樹脂材料は、上記用途に限られず、配線形成用途全般に好適に用いられる。 The above resin material can be used for various applications. For example, the above resin material is suitable for use in forming a molded resin for embedding a semiconductor chip in a semiconductor device. The above resin material is also suitable for use as an alternative to liquid crystal polymer (LCP), for millimeter wave antenna applications, and for rewiring layer applications. The above resin material is not limited to the above applications, and is suitable for use in general wiring formation applications.

 上記樹脂材料は、接着材料として好適に用いられる。上記樹脂材料は、例えば、パワーオーバーレイパッケージ用接着材料、プリント配線基板用接着材料、フレキシブルプリント回路基板のカバーレイ用接着材料、半導体接合用接着材料として好適に用いられる。上記樹脂材料は、接着材料であることが好ましい。 The above resin material is preferably used as an adhesive material. The above resin material is preferably used as, for example, an adhesive material for power overlay packages, an adhesive material for printed wiring boards, an adhesive material for coverlays of flexible printed circuit boards, and an adhesive material for semiconductor bonding. The above resin material is preferably an adhesive material.

 上記樹脂材料は、絶縁材料として好適に用いられる。上記樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられ、多層プリント配線板において絶縁層を形成するためにより好適に用いられる。上記樹脂材料は、絶縁材料であることが好ましく、層間絶縁材料であることがより好ましい。上記絶縁材料は、接着材料としての役割も備え得る。 The above resin material is preferably used as an insulating material. The above resin material is preferably used to form an insulating layer in a printed wiring board, and more preferably used to form an insulating layer in a multilayer printed wiring board. The above resin material is preferably an insulating material, and more preferably an interlayer insulating material. The above insulating material may also function as an adhesive material.

 本発明に係る硬化物は、上述した樹脂材料が硬化された樹脂材料の硬化物である。本発明に係る硬化物は、樹脂材料の硬化物であって、該樹脂材料が上述した樹脂材料である。本発明に係る硬化物は、上述した樹脂材料を硬化させることにより得ることができる。本発明に係る硬化物を得る際の、上記樹脂材料の加熱条件は、樹脂材料が硬化する限り、特に限定されない。 The cured product according to the present invention is a cured product of a resin material obtained by curing the resin material described above. The cured product according to the present invention is a cured product of a resin material, and the resin material is the resin material described above. The cured product according to the present invention can be obtained by curing the resin material described above. The heating conditions for the resin material when obtaining the cured product according to the present invention are not particularly limited, as long as the resin material is cured.

 (積層構造体及び銅張積層板)
 上記樹脂フィルムに対して、片面又は両面に金属層を表面に有する積層対象部材を積層することにより、積層構造体を得ることができる。上記積層構造体は、金属層を表面に有する積層対象部材と、上記金属層の表面上に積層された樹脂フィルムとを備え、上記樹脂フィルムが上述した樹脂材料である。上記樹脂フィルムと上記積層対象部材とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを、上記積層対象部材に積層可能である。
(Laminated structure and copper-clad laminate)
A laminated structure can be obtained by laminating a laminated target member having a metal layer on one or both sides of the resin film. The laminated structure includes a laminated target member having a metal layer on its surface and a resin film laminated on the surface of the metal layer, and the resin film is the above-mentioned resin material. The method of laminating the resin film and the laminated target member is not particularly limited, and a known method can be used. For example, the resin film can be laminated on the laminated target member while applying pressure with or without heating using a device such as a parallel plate press or a roll laminator.

 上記金属層の材料は銅であることが好ましい。 The material of the metal layer is preferably copper.

 上記金属層を表面に有する積層対象部材は、銅箔等の金属箔であってもよい。 The laminated member having the metal layer on its surface may be a metal foil such as copper foil.

 上記樹脂材料は、銅張積層板を得るために好適に用いられる。上記銅張積層板の一例として、銅箔と、該銅箔の一方の表面に積層された樹脂フィルムとを備え、上記樹脂フィルムが上述した樹脂材料である、銅張積層板が挙げられる。 The above resin material is preferably used to obtain a copper-clad laminate. One example of the above copper-clad laminate is a copper-clad laminate that includes copper foil and a resin film laminated on one surface of the copper foil, the resin film being made of the above resin material.

 上記銅張積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1μm以上100μm以下であることが好ましい。また、上記樹脂材料の硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法、公知のプラズマ処理による形成方法、及び公知のUV処理による形成方法等が挙げられる。 The thickness of the copper foil of the copper-clad laminate is not particularly limited. The thickness of the copper foil is preferably 1 μm or more and 100 μm or less. In addition, in order to increase the adhesive strength between the cured resin material and the copper foil, it is preferable that the copper foil has fine irregularities on its surface. The method of forming the irregularities is not particularly limited. Examples of the method of forming the irregularities include a method of forming the irregularities by treatment using a known chemical solution, a method of forming the irregularities by known plasma treatment, and a method of forming the irregularities by known UV treatment.

 (絶縁層付き回路基板)
 上記樹脂材料は、絶縁層付き回路基板を得るために好適に用いられる。上記絶縁層付き回路基板の一例として、回路基板と、該回路基板の表面上に配置された絶縁層とを備え、上記絶縁層が、上述した樹脂材料の硬化物である絶縁層付き回路基板が挙げられる。
(Circuit board with insulating layer)
The resin material is preferably used to obtain a circuit board with an insulating layer. One example of the circuit board with an insulating layer is a circuit board with an insulating layer that includes a circuit board and an insulating layer disposed on a surface of the circuit board, the insulating layer being a cured product of the resin material described above.

 上記絶縁層付き回路基板において、上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層付き回路基板において、上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。 In the circuit board with an insulating layer, it is preferable that the insulating layer is laminated on the surface of the circuit board on which the circuits are provided. In the circuit board with an insulating layer, it is preferable that a portion of the insulating layer is embedded between the circuits.

 上記絶縁層付き回路基板は、従来公知の方法により得ることができる。 The above-mentioned circuit board with insulating layer can be obtained by a conventional method.

 (多層基板及び多層プリント配線板)
 上記樹脂材料は、多層基板を得るために好適に用いられる。上記多層基板の一例として、回路基板と、該回路基板上に積層された絶縁層とを備える多層基板が挙げられる。上記多層基板の絶縁層が、上述した樹脂材料の硬化物である。上記絶縁層は、回路基板の回路(金属層)が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。
(Multilayer boards and multilayer printed wiring boards)
The resin material is preferably used to obtain a multilayer board. An example of the multilayer board is a multilayer board including a circuit board and an insulating layer laminated on the circuit board. The insulating layer of the multilayer board is a cured product of the resin material. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit (metal layer) is provided. A part of the insulating layer is preferably embedded between the circuits.

 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。 In the multilayer board, it is preferable that the surface of the insulating layer opposite the surface on which the circuit board is laminated is roughened.

 粗化処理方法は、従来公知の粗化処理方法を用いることができ、特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。粗化処理後に、上記絶縁層の表面の中空無機粒子(B)(及び中実無機粒子(C))を除去することを目的として、超音波処理をすることが好ましい。 The roughening method can be a conventionally known roughening method, and is not particularly limited. The surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment. After the roughening treatment, it is preferable to perform ultrasonic treatment in order to remove the hollow inorganic particles (B) (and the solid inorganic particles (C)) from the surface of the insulating layer.

 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。 It is also preferable that the multilayer substrate further comprises a copper plating layer laminated on the roughened surface of the insulating layer.

 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層が、銅箔と該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板を用いて、上記樹脂フィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。 Another example of the multilayer board is a multilayer board comprising a circuit board, an insulating layer laminated on the surface of the circuit board, and copper foil laminated on the surface of the insulating layer opposite to the surface on which the circuit board is laminated. It is preferable that the insulating layer is formed by using a copper-clad laminate comprising copper foil and a resin film laminated on one surface of the copper foil, and curing the resin film. Furthermore, it is preferable that the copper foil is etched to form a copper circuit.

 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数の絶縁層の内の少なくとも1層が、上記樹脂材料を用いて形成される。上記多層基板は、上記樹脂フィルムを用いて形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。 Another example of the multilayer board is a multilayer board comprising a circuit board and a plurality of insulating layers laminated on a surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed using the resin material. It is preferable that the multilayer board further comprises a circuit laminated on at least one surface of the insulating layer formed using the resin film.

 上記樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 The above resin materials are suitable for use in forming insulating layers in multilayer printed wiring boards.

 上記多層プリント配線板は、例えば、回路基板と、上記回路基板の表面上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記多層プリント配線板では、上記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である。 The multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the insulating layers. In the multilayer printed wiring board, at least one of the insulating layers is a cured product of the resin material described above.

 図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。 FIG. 1 is a cross-sectional view showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.

 図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13との間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。 In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13-16 are laminated on the upper surface 12a of the circuit board 12. The insulating layers 13-16 are hardened layers. A metal layer 17 is formed on a partial area of the upper surface 12a of the circuit board 12. Of the plurality of insulating layers 13-16, the insulating layers 13-15 other than the insulating layer 16 located on the outer surface opposite the circuit board 12 side have a metal layer 17 formed on a partial area of the upper surface. The metal layer 17 is a circuit. The metal layer 17 is disposed between the circuit board 12 and the insulating layer 13, and between each of the laminated insulating layers 13-16. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of a via hole connection and a through hole connection, not shown.

 多層プリント配線板11では、絶縁層13~16が、上記樹脂材料の硬化物により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。 In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed from a cured product of the above-mentioned resin material. In this embodiment, the surfaces of the insulating layers 13 to 16 are roughened, so that fine holes (not shown) are formed in the surfaces of the insulating layers 13 to 16. The metal layer 17 extends into the fine holes. In the multilayer printed wiring board 11, the width dimension (L) of the metal layer 17 and the width dimension (S) of the portion where the metal layer 17 is not formed can be reduced. In the multilayer printed wiring board 11, good insulation reliability is provided between the upper metal layer and the lower metal layer that are not connected by via hole connections and through hole connections (not shown).

 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 The present invention will be specifically explained below by giving examples and comparative examples. The present invention is not limited to the following examples.

 以下の材料を用意した。 The following materials were prepared:

 (マレイミド化合物(A))
 マレイミド化合物A1(Designer Molecules Inc.社製「BMI1500」、芳香族骨格と直鎖脂肪族骨格とを有するマレイミド化合物、マレイミド基の個数:2個、重量平均分子量:1500)
 マレイミド化合物A2(下記の合成例A2に従って合成、マレイミド基の個数:2個、重量平均分子量:4300)
 マレイミド化合物A3(下記の合成例A3に従って合成、マレイミド基の個数:2個、重量平均分子量:12000)
(Maleimide Compound (A))
Maleimide compound A1 ("BMI1500" manufactured by Designer Molecules Inc., a maleimide compound having an aromatic skeleton and a linear aliphatic skeleton, number of maleimide groups: 2, weight average molecular weight: 1500)
Maleimide compound A2 (synthesized according to Synthesis Example A2 below, number of maleimide groups: 2, weight average molecular weight: 4300)
Maleimide compound A3 (synthesized according to Synthesis Example A3 below, number of maleimide groups: 2, weight average molecular weight: 12,000)

 <合成例A2>
 500mLのナスフラスコに、105gのトルエンと、41gのN-メチル-2-ピロリドン(NMP)と、7gのメタンスルホン酸とを入れた。次いで、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)9.9g(24.2mmol)と、ノルボルナンジアミン(三井化学ファイン社製「Pro-NBDA」)8.6g(55.8mmol)とを添加した。次いで、ビフェニル酸二無水物15.9g(54mmol)と、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物1.5g(6mmol)とを混合した後、少しずつ添加した。ディーンスターク装置にナスフラスコを取り付け、3.5時間加熱還流した。このようにして、両末端にアミンを有しかつ複数のイミド骨格を有する化合物を得た。縮合時に排出される水分を除去し、室温に戻した後、無水マレイン酸4.42g(45mmol)を加えて撹拌し、同様に加熱し反応させた。このようにして、両末端にマレイミド骨格を有する化合物を得た。有機層を、水とエタノールとの混合溶媒で洗浄した後、混合溶媒を除去し、トルエン溶液を得た。次いで、トルエン溶液にイソプロパノールを添加して生成物の再沈殿を行った。その後真空オーブンで乾燥させ、マレイミド化合物A2を得た。
<Synthesis Example A2>
In a 500 mL eggplant flask, 105 g of toluene, 41 g of N-methyl-2-pyrrolidone (NMP), and 7 g of methanesulfonic acid were placed. Then, 9.9 g (24.2 mmol) of dimer diamine ("PRIAMINE 1075" manufactured by Croda Japan) and 8.6 g (55.8 mmol) of norbornane diamine ("Pro-NBDA" manufactured by Mitsui Fine Chemicals) were added. Then, 15.9 g (54 mmol) of biphenyl dianhydride and 1.5 g (6 mmol) of bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride were mixed and then added little by little. The eggplant flask was attached to a Dean-Stark apparatus and heated under reflux for 3.5 hours. In this way, a compound having amines at both ends and having multiple imide skeletons was obtained. The water discharged during the condensation was removed, and the mixture was returned to room temperature, after which 4.42 g (45 mmol) of maleic anhydride was added, stirred, and similarly heated to react. In this way, a compound having a maleimide skeleton at both ends was obtained. The organic layer was washed with a mixed solvent of water and ethanol, and the mixed solvent was removed to obtain a toluene solution. Next, isopropanol was added to the toluene solution to reprecipitate the product. The mixture was then dried in a vacuum oven to obtain maleimide compound A2.

 <合成例A3>
 500mLのナスフラスコに、105gのトルエンと、41gのN-メチル-2-ピロリドン(NMP)と、7gのメタンスルホン酸とを入れた。次いで、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)9.3g(23mmol)と、トリシクロデカンジアミン10.2g(53mmol)とを添加した。次いで、ピロメリット酸二無水物13.1g(60mmol)を少しずつ添加した。ディーンスターク装置にナスフラスコを取り付け、3.5時間加熱還流した。このようにして、両末端にアミンを有しかつ複数のイミド骨格を有する化合物を得た。縮合時に排出される水分を除去し、室温に戻した後、無水マレイン酸4.42g(45mmol)を加えて撹拌し、同様に加熱し反応させた。このようにして、両末端にマレイミド骨格を有する化合物を得た。有機層を、水とエタノールとの混合溶媒で洗浄した後、混合溶媒を除去し、トルエン溶液を得た。次いで、トルエン溶液にイソプロパノールを添加して生成物の再沈殿を行った。その後真空オーブンで乾燥させ、マレイミド化合物A3を得た。
<Synthesis Example A3>
In a 500 mL eggplant flask, 105 g of toluene, 41 g of N-methyl-2-pyrrolidone (NMP), and 7 g of methanesulfonic acid were placed. Then, 9.3 g (23 mmol) of dimer diamine ("PRIAMINE 1075" manufactured by Croda Japan) and 10.2 g (53 mmol) of tricyclodecane diamine were added. Then, 13.1 g (60 mmol) of pyromellitic dianhydride was added little by little. The eggplant flask was attached to a Dean-Stark apparatus and heated under reflux for 3.5 hours. In this way, a compound having amines at both ends and multiple imide skeletons was obtained. After removing the moisture discharged during condensation and returning to room temperature, 4.42 g (45 mmol) of maleic anhydride was added and stirred, and similarly heated and reacted. In this way, a compound having maleimide skeletons at both ends was obtained. The organic layer was washed with a mixed solvent of water and ethanol, and the mixed solvent was removed to obtain a toluene solution. Next, isopropanol was added to the toluene solution to reprecipitate the product, which was then dried in a vacuum oven to obtain maleimide compound A3.

 (熱硬化性化合物(D))
 ジビニルベンゼン(25℃での粘度:1mPa・s)
 ポリフェニレンエーテル・メタクリル酸化合物(SABIC社製「SA9000-111」、25℃で固形)
 オリゴフェニレンエーテル・スチレン化合物(三菱ガス化学社製「OPE-2St」)
 ビフェニル型エポキシ化合物(日本化薬社製「NC-3000」、25℃で固形)
(Thermosetting compound (D))
Divinylbenzene (viscosity at 25°C: 1 mPa·s)
Polyphenylene ether-methacrylic acid compound (SABIC SA9000-111, solid at 25°C)
Oligophenylene ether-styrene compound ("OPE-2St" manufactured by Mitsubishi Gas Chemical Co., Ltd.)
Biphenyl-type epoxy compound ("NC-3000" manufactured by Nippon Kayaku Co., Ltd., solid at 25°C)

 (中空無機粒子(B))
 中空シリカ粒子B1(AGC社製「HS-070」、BET比表面積(S):18.5m/g、平均粒子半径(r):0.3μm、真密度(d):0.58g/cm、空孔率:70体積%)
 中空シリカ粒子B2(AGC社製「HS-200」、BET比表面積(S):12.8m/g、平均粒子半径(r):1μm、真密度(d):0.45g/cm、空孔率:75体積%)
(Hollow inorganic particles (B))
Hollow silica particles B1 (AGC "HS-070", BET specific surface area (S): 18.5 m 2 /g, average particle radius (r): 0.3 μm, true density (d): 0.58 g/cm 3 , Porosity: 70% by volume
Hollow silica particles B2 (“HS-200” manufactured by AGC, BET specific surface area (S): 12.8 m 2 /g, average particle radius (r): 1 μm, true density (d): 0.45 g/cm 3 , Porosity: 75% by volume)

 (中空無機粒子(B)に相当しない中空無機粒子)
 中空シリカ粒子X(アドマテックス社製「L6SZ-AC1」、BET比表面積(S):12.4m/g、平均粒子半径(r):0.3μm、真密度(d):0.8g/cm、空孔率:40体積%)
 中空アルミノシリケート粒子(太平洋セメント社製「セルスフィアーズ-NF(小粒径)」)、BET比表面積(S):4.0m/g、平均粒子半径(r):0.5μm、真密度(d):0.55g/cm、空孔率:75体積%)
(Hollow inorganic particles not corresponding to hollow inorganic particles (B))
Hollow silica particles X ("L6SZ-AC1" manufactured by Admatechs Co., Ltd., BET specific surface area (S): 12.4 m 2 /g, average particle radius (r): 0.3 μm, true density (d): 0.8 g/cm 3 , porosity: 40% by volume)
Hollow aluminosilicate particles ("CellSpheres-NF (small particle size)" manufactured by Taiheiyo Cement Corporation), BET specific surface area (S): 4.0 m 2 /g, average particle radius (r): 0.5 μm, true density (d): 0.55 g/cm 3 , porosity: 75% by volume

 上記中空無機粒子のBET比表面積(S)、平均粒子半径(r)、真密度(d)及び空孔率は、上述した方法に従って測定した。なお、BET比表面積(S)を測定するための装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」を用い、真密度(d)を測定するための装置としては、QUANTACHROME社製「Ultrapyc1200e」を用いた。 The BET specific surface area (S), average particle radius (r), true density (d) and porosity of the hollow inorganic particles were measured according to the method described above. The device used to measure the BET specific surface area (S) was the "NOVA4200e" manufactured by Quantachrome Instruments, and the device used to measure the true density (d) was the "Ultrapyc1200e" manufactured by Quantachrome.

 下記の表1に、上記中空無機粒子の構成を示す。 The composition of the hollow inorganic particles is shown in Table 1 below.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 (中実無機粒子(C))
 中実シリカ粒子(アドマテックス社製「SC2050-HNG」、平均粒子半径:0.25μm)
(Solid Inorganic Particles (C))
Solid silica particles ("SC2050-HNG" manufactured by Admatechs Co., Ltd., average particle radius: 0.25 μm)

 (硬化促進剤(E))
 過酸化物(日油社製「パーブチルP」)
 イミダゾール化合物(2-フェニル-4-メチルイミダゾール、四国化成工業社製「2P4MZ」、アニオン性硬化促進剤)
(Cure Accelerator (E))
Peroxide (NOF Corp. "Perbutyl P")
Imidazole compound (2-phenyl-4-methylimidazole, "2P4MZ" manufactured by Shikoku Chemical Industry Co., Ltd., anionic curing accelerator)

 (硬化剤(F))
 活性エステル化合物含有液(DIC社製「HPC-8000L-65T」、固形分65重量%)
(Curing agent (F))
Active ester compound-containing liquid (DIC Corporation "HPC-8000L-65T", solid content 65% by weight)

 (実施例1~11及び比較例1~4)
 下記の表2~5に示す成分を下記の表2~5に示す配合量(単位は固形分重量部)で配合し、均一な溶液となるまで常温で撹拌し、樹脂材料を得た。
(Examples 1 to 11 and Comparative Examples 1 to 4)
The components shown in Tables 2 to 5 below were mixed in the amounts (unit: parts by weight of solid content) shown in Tables 2 to 5 below, and stirred at room temperature until a homogeneous solution was obtained, to obtain a resin material.

 樹脂フィルムの作製:
 アプリケーターを用いて、離型処理されたポリエチレンテレフタレートフィルム(PETフィルム、東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料を塗工した後、100℃のギヤオーブン内で2分30秒間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmである樹脂フィルム(Bステージフィルム)が積層されている積層フィルム(PETフィルムと樹脂フィルムとの積層フィルム)を得た。
Preparation of resin film:
The obtained resin material was applied to the release-treated surface of a release-treated polyethylene terephthalate film (PET film, Toray Industries, Inc., "XG284", thickness 25 μm) using an applicator, and then dried for 2 minutes and 30 seconds in a gear oven at 100° C. to volatilize the solvent. In this way, a laminated film (a laminated film of a PET film and a resin film) was obtained in which a resin film (B-stage film) having a thickness of 40 μm was laminated on the PET film.

 (評価)
 (1)硬化物の誘電率(Dk)及び誘電正接(Df)
 得られた厚さ40μmの樹脂フィルム(Bステージフィルム)を180℃で30分間加熱した後、200℃で60分間加熱して、硬化物を得た。得られた硬化物を、幅2mm、長さ80mmの大きさに裁断して10枚を重ね合わせ、測定サンプルとした。関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)及び周波数10GHzにて、硬化物の誘電率(Dk)及び誘電正接(Df)を測定した。
(evaluation)
(1) Dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product
The obtained resin film (B-stage film) having a thickness of 40 μm was heated at 180° C. for 30 minutes, and then heated at 200° C. for 60 minutes to obtain a cured product. The obtained cured product was cut into a size of 2 mm wide and 80 mm long, and 10 sheets were stacked together to obtain a measurement sample. The dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product were measured at room temperature (23° C.) and a frequency of 10 GHz by the cavity resonance method using a "Cavity Resonance Perturbation Method Dielectric Constant Measurement Device CP521" manufactured by Kanto Electronics Application Development Co., Ltd. and a "Network Analyzer N5224A PNA" manufactured by Keysight Technologies, Inc.

 [硬化物の誘電率(Dk)の判定基準]
 ○:誘電率が2.0未満
 △:誘電率が2.0以上2.5以下
 ×:誘電率が2.5を超える
[Criteria for dielectric constant (Dk) of cured product]
○: Dielectric constant is less than 2.0 △: Dielectric constant is 2.0 or more and 2.5 or less ×: Dielectric constant is more than 2.5

 [硬化物の誘電正接(Df)の判定基準]
 ○:誘電正接が0.003未満
 △:誘電正接が0.003以上0.005未満
 ×:誘電正接が0.005以上
[Criteria for dielectric tangent (Df) of cured product]
◯: Dielectric loss tangent is less than 0.003 △: Dielectric loss tangent is 0.003 or more and less than 0.005 ×: Dielectric loss tangent is 0.005 or more

 (2)硬化物のガラス転移温度(Tg)
 得られた厚さ40μmの樹脂フィルムを180℃で30分間加熱して仮硬化させた後、200℃で60分間加熱して、硬化物を得た。得られた硬化物を、5mm×50mmの大きさに裁断した。熱機械的分析装置(エスアイアイ・ナノテクノロジー社製「DMS6100」)を用いて、チャック間距離20mm、振幅10μm、張力振幅初期値400mN、5℃/分の昇温速度で50℃から330℃まで温度を上昇させる条件、及び周波数10Hzの条件で測定を行った。得られた測定結果において、損失正接のピーク温度をガラス転移温度Tg(℃)とした。
(2) Glass transition temperature (Tg) of the cured product
The obtained resin film having a thickness of 40 μm was heated at 180° C. for 30 minutes to be temporarily cured, and then heated at 200° C. for 60 minutes to obtain a cured product. The obtained cured product was cut into a size of 5 mm×50 mm. Using a thermomechanical analyzer (SII Nanotechnology Inc.'s "DMS6100"), measurements were performed under the following conditions: chuck distance 20 mm, amplitude 10 μm, initial tension amplitude value 400 mN, temperature increase rate of 5° C./min from 50° C. to 330° C., and frequency of 10 Hz. In the obtained measurement results, the peak temperature of the loss tangent was taken as the glass transition temperature Tg (° C.).

 [硬化物のガラス転移温度(Tg)の判定基準]
 ○:ガラス転移温度が120℃以上
 △:ガラス転移温度が100℃以上120℃未満
 ×:ガラス転移温度が100℃未満
[Criteria for determining glass transition temperature (Tg) of cured product]
◯: Glass transition temperature is 120° C. or higher △: Glass transition temperature is 100° C. or higher and less than 120° C. ×: Glass transition temperature is less than 100° C.

 (3)ラミネート性
 厚さ18μmの銅層に縦1mm×横2mmの矩形の範囲がエッチングされるようにマスクをつけて、銅をエッチングすることで、1mm×2mmの矩形状の窪みを有する100mm角の基板を用意した。この基板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、粗化処理された基板の両面に、積層フィルムの樹脂フィルム(Bステージフィルム)側を基板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.7MPaでラミネートし、更にプレス圧力0.8MPa及びプレス温度100℃で60秒間プレスする条件とした。PETフィルムを剥離して、100℃で30分間加熱した後、180℃で30分間さらに加熱し、樹脂フィルムを半硬化させた。銅パターンが存在する部分の樹脂フィルムの半硬化物の表面(基板とは反対側の表面)と、銅パターンが存在しない部分の樹脂フィルム半硬化物の表面(基板とは反対側の表面)とを観察し、光学式段差計を用いて、隣り合う凹部部分と凸部部分との高低差の最大値を求めた。
(3) Lamination A 100 mm square substrate having a rectangular recess of 1 mm x 2 mm was prepared by etching the copper with a mask attached so that a rectangular range of 1 mm x 2 mm was etched on a copper layer having a thickness of 18 μm. Both sides of the copper foil surface of this substrate were immersed in "Cz8101" manufactured by Mec Co., Ltd. to roughen the surface of the copper foil. Using "Batch-type vacuum laminator MVLP-500-IIA" manufactured by Meiki Seisakusho Co., Ltd., the resin film (B stage film) side of the laminated film was laminated on both sides of the roughened substrate to obtain a laminated structure. The lamination conditions were as follows: decompression for 30 seconds to make the air pressure 13 hPa or less, then lamination at 100 ° C. and pressure 0.7 MPa for 30 seconds, and further pressing for 60 seconds at a press pressure of 0.8 MPa and a press temperature of 100 ° C. The PET film was peeled off, and the resin film was semi-cured by heating at 100° C. for 30 minutes and then further heating at 180° C. for 30 minutes. The surface of the semi-cured resin film in the portion where the copper pattern was present (the surface opposite the substrate) and the surface of the semi-cured resin film in the portion where the copper pattern was not present (the surface opposite the substrate) were observed, and the maximum height difference between adjacent concave and convex portions was determined using an optical step gauge.

 [ラミネート性の判定基準]
 ○:高低差の最大値が1.5μm未満
 △:高低差の最大値が1.5μm以上2μm未満
 ×:高低差の最大値が2μm以上
[Lamination criteria]
○: The maximum height difference is less than 1.5 μm △: The maximum height difference is 1.5 μm or more and less than 2 μm ×: The maximum height difference is 2 μm or more

 (4)ラミネート後の粒子(中空無機粒子又は中実無機粒子)の割れ
 上記「(3)ラミネート性」の評価の後、樹脂フィルムの半硬化物を2cm×1cmの大きさに切断した。得られた切断物を樹脂中に埋めた後、樹脂と切断物とを研磨して、切断物の断面(樹脂フィルムの半硬化物の厚み方向に沿う断面)を露出させた。露出させた断面を、走査型電子顕微鏡(SEM、日本電子データム社製「JSM-561 0LV」)を用いて、倍率5000倍で観察した。任意に選択した30個の粒子に割れが生じているか否かを確認した。
(4) Cracks in particles (hollow inorganic particles or solid inorganic particles) after lamination After the evaluation of "(3) Lamination property" above, the semi-cured resin film was cut into pieces of 2 cm x 1 cm in size. The cut pieces were embedded in resin, and then the resin and the cut pieces were polished to expose the cross section of the cut piece (cross section along the thickness direction of the semi-cured resin film). The exposed cross section was observed at a magnification of 5000 times using a scanning electron microscope (SEM, "JSM-561 0LV" manufactured by JEOL Datum Co., Ltd.). It was confirmed whether or not cracks occurred in 30 randomly selected particles.

 [ラミネート後の粒子の割れの判定基準]
 ○:粒子30個中、割れの生じている粒子の個数が3個以内
 ×:粒子30個中、割れの生じている粒子の個数が4個以上
[Criteria for determining particle cracking after lamination]
◯: out of 30 particles, the number of particles with cracks is 3 or less. ×: out of 30 particles, the number of particles with cracks is 4 or more.

 (5)超音波処理後の粒子(中空無機粒子又は中実無機粒子)の割れ
 上記「(3)ラミネート性」の評価の後、下記「(5-1)粗化処理」及び下記「(5-2)走査型電子顕微鏡による観察」を行った。
(5) Cracks of Particles (Hollow Inorganic Particles or Solid Inorganic Particles) After Ultrasonic Treatment After the evaluation of "(3) Lamination property" above, the following "(5-1) Roughening Treatment" and "(5-2) Observation with a Scanning Electron Microscope" were performed.

 (5-1)粗化処理:
 (a)膨潤処理:
 上記「(3)ラミネート性」で得られた、基板と樹脂フィルムの半硬化物との積層体を、60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に入れて、10分間揺動させた。その後、純水で洗浄した。
(5-1) Roughening treatment:
(a) Swelling treatment:
The laminate of the substrate and the semi-cured resin film obtained in the above "(3) Lamination property" was placed in a swelling liquid ("Swelling Dip Securigant P" manufactured by Atotech Japan) at 60°C and swung for 10 minutes. Thereafter, it was washed with pure water.

 (b)過マンガン酸塩処理(粗化処理及びデスミア処理):
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体を入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水中で40kHzの周波数の超音波振動を200秒間印加して洗浄した。
(b) Permanganate treatment (roughening treatment and desmear treatment):
The laminate after the swelling treatment was placed in a roughening aqueous solution of potassium permanganate ("Concentrate Compact CP" manufactured by Atotech Japan) at 80° C. and swung for 30 minutes. Next, it was treated for 2 minutes using a cleaning solution ("Reduction Securigant P" manufactured by Atotech Japan) at 25° C., and then washed in pure water by applying ultrasonic vibrations at a frequency of 40 kHz for 200 seconds.

 (5-2)走査型電子顕微鏡による観察:
 超音波処理後の硬化物(粗化処理された硬化物)を2cm×1cmの大きさに切断した。得られた切断物を樹脂中に埋めた後、樹脂と切断物とを研磨して、切断物の断面(硬化物の厚み方向に沿う断面)を露出させた。露出させた断面を、走査型電子顕微鏡(SEM、日本電子データム社製「JSM-561 0LV」)を用いて、倍率5000倍で観察した。任意に選択した30個の粒子に割れが生じているか否かを確認した。
(5-2) Observation by scanning electron microscope:
The cured product after ultrasonic treatment (roughened cured product) was cut into pieces of 2 cm x 1 cm. The cut products were embedded in resin, and then the resin and the cut products were polished to expose the cross section of the cut product (cross section along the thickness direction of the cured product). The exposed cross section was observed at a magnification of 5000 times using a scanning electron microscope (SEM, JSM-561 0LV manufactured by JEOL Datum Co., Ltd.). Thirty randomly selected particles were checked for the presence or absence of cracks.

 [超音波処理後の粒子の割れの判定基準]
 ○:粒子30個中、割れの生じている粒子の個数が3個以内
 ×:粒子30個中、割れの生じている粒子の個数が4個以上
[Criteria for determining particle cracking after ultrasonic treatment]
◯: out of 30 particles, the number of particles with cracks is 3 or less. ×: out of 30 particles, the number of particles with cracks is 4 or more.

 (6)めっき潜り込み量
 上記「(5-1)粗化処理」の後、下記「(6-1)無電解めっき処理」を行い、銅めっき層が上面に積層された硬化物を得た。得られた銅めっき層が上面に積層された硬化物を用いて、下記「(6-2)めっき潜り込み量の測定」を行った。
(6) Amount of plating penetration After the above "(5-1) Roughening treatment", the below-mentioned "(6-1) Electroless plating treatment" was carried out to obtain a cured product having a copper plating layer laminated on its upper surface. The obtained cured product having a copper plating layer laminated on its upper surface was used to carry out the below-mentioned "(6-2) Measurement of the amount of plating penetration".

 (6-1)無電解めっき処理:
 粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。次に、上記硬化物を化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、及び「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニール処理した。なお、無電解めっきの工程までの全ての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。このようにして、銅めっき層が上面に積層された硬化物を得た。
(6-1) Electroless plating treatment:
The roughened surface of the cured product was treated with an alkaline cleaner at 60° C. (Atotech Japan's "Cleaner Securigant 902") for 5 minutes, and degreased and washed. After washing, the cured product was treated with a pre-dip liquid at 25° C. (Atotech Japan's "Pre-dip Neogant B") for 2 minutes. Thereafter, the cured product was treated with an activator liquid at 40° C. (Atotech Japan's "Activator Neogant 834") for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing liquid at 30° C. (Atotech Japan's "Reducer Neogant WA") for 5 minutes. Next, the cured product was placed in a chemical copper liquid (Atotech Japan's "Basic Printgant MSK-DK", "Copper Printgant MSK", "Stabilizer Printgant MSK", and "Reducer Cu"), and electroless plating was performed until the plating thickness reached about 0.5 μm. After the electroless plating, the plate was annealed for 30 minutes at 120° C. to remove residual hydrogen gas. All steps up to the electroless plating step were carried out using 2 L of treatment solution in a beaker scale while the cured product was being rocked. In this way, a cured product was obtained with a copper plating layer laminated on the upper surface.

 (6-2)めっき潜り込み量の測定:
 FE-SEMを用いて、銅めっき層が上面に積層された硬化物における銅めっき層と硬化物との界面を、倍率5000倍で観察した。なお、観察の際、銅めっき層を上側、硬化物側を下側、かつ、銅めっき層と硬化物との界面が水平になるように銅めっき層が上面に積層された硬化物を配置した。図2に示すように、得られた顕微鏡画像の横幅20μmの領域において、顕微鏡画像の最も上部に存在する硬化物と接しかつ銅めっき層と硬化物との界面に平行な線を線L1とした。また、図2に示すように、得られた顕微鏡画像の横幅20μmの領域において、顕微鏡画像の最も下部に存在する銅めっきと接しかつ銅めっき層と硬化物との界面に平行な線を線L2とした。また、図2に示すように、線L1と線L2との距離を、めっき潜り込み量Dとした。なお、めっき潜り込み量Dが小さいほど、配線間のショートを抑えることができる。
(6-2) Measurement of plating penetration:
The interface between the copper plating layer and the cured product in the cured product with the copper plating layer laminated on the upper surface was observed at a magnification of 5000 times using an FE-SEM. In addition, during the observation, the cured product with the copper plating layer laminated on the upper surface was arranged so that the copper plating layer was on the upper side and the cured product was on the lower side, and the interface between the copper plating layer and the cured product was horizontal. As shown in FIG. 2, in a region of 20 μm in width of the obtained microscope image, a line that contacts the cured product at the top of the microscope image and is parallel to the interface between the copper plating layer and the cured product was designated as line L1. Also, as shown in FIG. 2, in a region of 20 μm in width of the obtained microscope image, a line that contacts the copper plating at the bottom of the microscope image and is parallel to the interface between the copper plating layer and the cured product was designated as line L2. Also, as shown in FIG. 2, the distance between line L1 and line L2 was designated as the plating penetration amount D. In addition, the smaller the plating penetration amount D, the more the short circuit between the wirings can be suppressed.

 [めっき潜り込み量の判定基準]
 ○:めっき潜り込み量Dが3μm未満
 ×:めっき潜り込み量Dが3μm以上
[Criteria for determining the amount of plating penetration]
○: The plating penetration amount D is less than 3 μm. ×: The plating penetration amount D is 3 μm or more.

 組成及び結果を下記の表2~5に示す。 The compositions and results are shown in Tables 2 to 5 below.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

 11…多層プリント配線板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層
11: multilayer printed wiring board 12: circuit board 12a: upper surface 13-16: insulating layers 17: metal layer

Claims (14)

 マレイミド化合物(A)と、中空無機粒子(B)とを含み、
 前記中空無機粒子(B)のBET比表面積が、下記式(1)を満足する、樹脂材料。
 1.05×(3/rd)<S<2.00×(3/rd)   ・・・(1)
 S:中空無機粒子(B)のBET比表面積(m/g)
 r:中空無機粒子(B)の平均粒子半径(μm)
 d:中空無機粒子(B)の真密度(g/cm
A composition comprising a maleimide compound (A) and hollow inorganic particles (B),
The resin material, wherein the BET specific surface area of the hollow inorganic particles (B) satisfies the following formula (1):
1.05×(3/rd)<S<2.00×(3/rd)...(1)
S: BET specific surface area (m 2 /g) of hollow inorganic particles (B)
r: average particle radius of hollow inorganic particles (B) (μm)
d: true density of hollow inorganic particles (B) (g/cm 3 )
 樹脂材料中の溶剤を除く成分100重量%中、前記マレイミド化合物(A)の含有量が、20重量%以上70重量%以下である、請求項1に記載の樹脂材料。 The resin material according to claim 1, wherein the content of the maleimide compound (A) is 20% by weight or more and 70% by weight or less out of 100% by weight of the components excluding the solvent in the resin material.  前記マレイミド化合物(A)が、ダイマージアミンに由来する骨格を有する、請求項1又は2に記載の樹脂材料。 The resin material according to claim 1 or 2, wherein the maleimide compound (A) has a skeleton derived from dimer diamine.  前記マレイミド化合物(A)が、ダイマージアミンに由来する骨格と、ダイマージアミン以外の脂環式骨格を有するジアミン化合物に由来する骨格とを有する、請求項1~3のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 3, wherein the maleimide compound (A) has a skeleton derived from a dimer diamine and a skeleton derived from a diamine compound having an alicyclic skeleton other than a dimer diamine.  前記ダイマージアミン以外の脂環式骨格を有するジアミン化合物が、トリシクロデカンジアミン、ノルボルナンジアミン又はイソホロンジアミンである、請求項4に記載の樹脂材料。 The resin material according to claim 4, wherein the diamine compound having an alicyclic skeleton other than the dimer diamine is tricyclodecane diamine, norbornane diamine, or isophorone diamine.  樹脂材料中の溶剤を除く成分100重量%中、前記中空無機粒子(B)の含有量が、60重量%以下である、請求項1~5のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 5, wherein the content of the hollow inorganic particles (B) is 60% by weight or less out of 100% by weight of the components excluding the solvent in the resin material.  中実無機粒子(C)をさらに含む、請求項1~6のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 6, further comprising solid inorganic particles (C).  マレイミド基と反応可能な官能基を有する熱硬化性化合物(D)をさらに含む、請求項1~7のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 7, further comprising a thermosetting compound (D) having a functional group capable of reacting with a maleimide group.  前記熱硬化性化合物(D)が、エポキシ基、ビニル基、スチリル基、ベンゾオキサジン基、シアネート基、アリル基、メタクリロイル基又はアクリロイル基を有する熱硬化性化合物を含む、請求項8に記載の樹脂材料。 The resin material according to claim 8, wherein the thermosetting compound (D) includes a thermosetting compound having an epoxy group, a vinyl group, a styryl group, a benzoxazine group, a cyanate group, an allyl group, a methacryloyl group, or an acryloyl group.  樹脂材料を180℃で30分間加熱した後、200℃で60分間加熱して樹脂材料の硬化物を得たときに、得られた硬化物の10GHzでの誘電率が2.5以下である、請求項1~9のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 9, in which when the resin material is heated at 180°C for 30 minutes and then heated at 200°C for 60 minutes to obtain a cured product of the resin material, the resulting cured product has a dielectric constant of 2.5 or less at 10 GHz.  樹脂フィルムである、請求項1~10のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 10, which is a resin film.  多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~11のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 11, which is used to form an insulating layer in a multilayer printed wiring board.  樹脂材料の硬化物であって、
 前記樹脂材料が、請求項1~12のいずれか1項に記載の樹脂材料である、硬化物。
A cured product of a resin material,
A cured product, wherein the resin material is the resin material according to any one of claims 1 to 12.
 回路基板と、
 前記回路基板の表面上に配置された複数の絶縁層と、
 複数の前記絶縁層間に配置された金属層とを備え、
 複数の前記絶縁層の内の少なくとも1層が、請求項1~12のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。
A circuit board;
a plurality of insulating layers disposed on a surface of the circuit board;
a metal layer disposed between a plurality of the insulating layers;
A multilayer printed wiring board, wherein at least one of the insulating layers is a cured product of the resin material according to any one of claims 1 to 12.
PCT/JP2024/017367 2023-07-10 2024-05-10 Resin material, cured article, and multilayer printed wiring board WO2025013394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023113168 2023-07-10
JP2023-113168 2023-07-10

Publications (1)

Publication Number Publication Date
WO2025013394A1 true WO2025013394A1 (en) 2025-01-16

Family

ID=94215366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/017367 WO2025013394A1 (en) 2023-07-10 2024-05-10 Resin material, cured article, and multilayer printed wiring board

Country Status (2)

Country Link
TW (1) TW202509119A (en)
WO (1) WO2025013394A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2018090728A (en) * 2016-12-06 2018-06-14 三菱瓦斯化学株式会社 Resin composition for electronic material
JP2020083966A (en) * 2018-11-20 2020-06-04 味の素株式会社 Resin composition
JP2020083736A (en) * 2018-11-30 2020-06-04 花王株式会社 Hollow silica particles and method for producing the same
WO2021172294A1 (en) * 2020-02-27 2021-09-02 Agc株式会社 Hollow silica particles and method for producing same
JP2021155602A (en) * 2020-03-27 2021-10-07 積水化学工業株式会社 Resin material and multi-layer printed wiring board
JP2022172938A (en) * 2021-05-07 2022-11-17 協和化学工業株式会社 Hollow particles, method for producing said hollow particles, resin composition, and resin molding and laminate using said resin composition
WO2023100676A1 (en) * 2021-11-30 2023-06-08 Agc株式会社 Hollow silica particles and method for producing same
JP2023093025A (en) * 2021-12-22 2023-07-04 味の素株式会社 resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2018090728A (en) * 2016-12-06 2018-06-14 三菱瓦斯化学株式会社 Resin composition for electronic material
JP2020083966A (en) * 2018-11-20 2020-06-04 味の素株式会社 Resin composition
JP2020083736A (en) * 2018-11-30 2020-06-04 花王株式会社 Hollow silica particles and method for producing the same
WO2021172294A1 (en) * 2020-02-27 2021-09-02 Agc株式会社 Hollow silica particles and method for producing same
JP2021155602A (en) * 2020-03-27 2021-10-07 積水化学工業株式会社 Resin material and multi-layer printed wiring board
JP2022172938A (en) * 2021-05-07 2022-11-17 協和化学工業株式会社 Hollow particles, method for producing said hollow particles, resin composition, and resin molding and laminate using said resin composition
WO2023100676A1 (en) * 2021-11-30 2023-06-08 Agc株式会社 Hollow silica particles and method for producing same
JP2023093025A (en) * 2021-12-22 2023-07-04 味の素株式会社 resin composition

Also Published As

Publication number Publication date
TW202509119A (en) 2025-03-01

Similar Documents

Publication Publication Date Title
JP7607711B2 (en) Resin materials, laminated films and multilayer printed wiring boards
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
JP7547109B2 (en) Resin materials and multilayer printed wiring boards
JP7565982B2 (en) Resin materials and multilayer printed wiring boards
JP7563912B2 (en) Resin materials and multilayer printed wiring boards
KR102402868B1 (en) Hardened body and multilayer substrate
WO2021182207A1 (en) Resin material and multilayer printed wiring board
JP2020094213A (en) Resin material and multilayer printed wiring board
JP7680839B2 (en) Resin materials and multilayer printed wiring boards
JP7704944B2 (en) Resin materials and multilayer printed wiring boards
JP7563913B2 (en) Resin materials and multilayer printed wiring boards
JP7478008B2 (en) Resin materials and multilayer printed wiring boards
JP7437215B2 (en) Resin materials and multilayer printed wiring boards
WO2025013394A1 (en) Resin material, cured article, and multilayer printed wiring board
WO2025013395A1 (en) Resin material, cured product, and multilayer printed wiring board
WO2024142662A1 (en) Resin material, cured article, and multilayer printed wiring board
JP2020094212A (en) Resin material and multilayer printed wiring board
WO2024142661A1 (en) Resin material, cured product, manufacturing method of laminate, and multilayer printed wiring board
JP7506486B2 (en) Resin materials and multilayer printed wiring boards
JP2020055890A (en) Resin material and multilayer printed wiring board
JP2024092800A (en) Resin material, cured article, and multilayer printed wiring board
JP2024087433A (en) Resin material, cured material and multilayer printed wiring board
WO2020196829A1 (en) Resin material and multilayer printed wiring board
JP2022134490A (en) Resin materials and multilayer printed wiring boards

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24839292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025532392

Country of ref document: JP