[go: up one dir, main page]

WO2025013286A1 - Illumination unit, exposure device, and exposure method - Google Patents

Illumination unit, exposure device, and exposure method Download PDF

Info

Publication number
WO2025013286A1
WO2025013286A1 PCT/JP2023/025895 JP2023025895W WO2025013286A1 WO 2025013286 A1 WO2025013286 A1 WO 2025013286A1 JP 2023025895 W JP2023025895 W JP 2023025895W WO 2025013286 A1 WO2025013286 A1 WO 2025013286A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
optical system
lighting unit
state
Prior art date
Application number
PCT/JP2023/025895
Other languages
French (fr)
Japanese (ja)
Inventor
吉田亮平
鈴木智也
阿部文彦
松村信孝
矢島海都
岩永正也
安斎貴昭
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2023/025895 priority Critical patent/WO2025013286A1/en
Priority to TW113124649A priority patent/TW202503431A/en
Publication of WO2025013286A1 publication Critical patent/WO2025013286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • liquid crystal display panels have come into widespread use as display elements for personal computers, televisions, and the like.
  • Liquid crystal display panels are manufactured by forming a circuit pattern of thin-film transistors on a plate (glass substrate) using photolithography techniques.
  • An exposure device is used for this photolithography process, which projects and exposes an original pattern formed on a mask onto a photoresist layer on the plate via a projection optical system.
  • One such exposure device that has been proposed is one that uses an LED (Light Emitting Diode) as the light source (see, for example, Patent Document 1).
  • LED Light Emitting Diode
  • the illumination unit that illuminates the mask is small.
  • the lighting unit includes a light source, a first optical system that forms an intermediate image of the light source, and a control mechanism that can switch between a first state in which a dimming member is disposed at or near the position of the intermediate image, and a second state in which the dimming member is not disposed.
  • the lighting unit includes a plurality of light sources, a combining optical element that combines the light emitted from the plurality of light sources, a first optical system that forms an intermediate image of the plurality of light sources using the combined light emitted from the combining optical element, and a control mechanism that can switch between a state in which a light-reducing member is disposed at or near the position of the intermediate image and a state in which the light-reducing member is not disposed.
  • the exposure apparatus includes the illumination unit and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.
  • an exposure method is an exposure method using the above-mentioned exposure apparatus, and includes illuminating a mask with the illumination unit, and projecting a pattern image of the mask onto a photosensitive substrate using the projection optical system.
  • FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of a lighting unit according to the embodiment.
  • FIG. 3A is a plan view that shows a schematic configuration of a light source array
  • FIG. 3B is a diagram that shows a schematic internal configuration of a light source unit.
  • FIG. 4 is a diagram for explaining the configuration of the aerial image measuring device.
  • FIG. 5 is a diagram for explaining the aerial image measuring device.
  • FIG. 6 is a plan view showing the configuration of the module shutter.
  • 7A and 7B are plan views showing another example of the configuration of the module shutter.
  • FIG. 8 is a schematic diagram showing a configuration of an illumination unit according to the first modification.
  • FIG. 9 is a schematic diagram showing the configuration of an exposure apparatus according to the second modification.
  • the illumination light IL that has passed through the mask MSK forms a projected image (partial upright image) of the circuit pattern of the mask MSK in the illumination area via the projection optical system PL in the irradiation area (exposure area (conjugate to the illumination area)) on the plate P arranged on the image plane side of the projection optical system PL.
  • a resist sensitizer
  • the aerial image measuring device 40 has a reference member 43 and an AIS light receiving system (measuring device) 46.
  • the reference member 43 is disposed on the surface of the substrate stage PST on the projection optical unit 100 side. More specifically, the reference member 43 is disposed at a predetermined position at the end (-X side) of the substrate stage PST in the scanning direction, and extends along the Y-axis direction. Note that the position at which the reference member 43 is disposed is not limited to this.
  • the amount of light from the light source array 20 can be reduced to a predetermined amount of light.
  • the configuration of the lighting unit 90 shown in FIG. 2 does not have space for a neutral density filter.
  • space can be secured for a neutral density filter, but this increases the size of the lighting unit 90 and the manufacturing cost (component cost) of the lighting unit 90 also increases.
  • the module shutter 81b also functions as a neutral density filter.
  • the module shutter 81b is disposed near the position IIM (see FIG. 2) of the intermediate image of the light source array 20 formed by the first optical system 81a.
  • the module shutter 81b may also be disposed at the position IIM of the intermediate image of the light source array 20.
  • FIG. 6 is a plan view showing the configuration of a module shutter 81b according to this embodiment.
  • the module shutter 81b has a rotation axis AX2 that is approximately parallel to the reference optical axis AX1 (the optical axis of the first optical system 81a), and a light-transmitting base material 811 is formed with a light-attenuating section 812 that functions as a light-attenuating member that attenuates the light from the light source unit OPU, a light-shielding section 813 that functions as a light-shielding member that blocks the light from the light source unit OPU, and a transmitting section 814 that transmits the light beam of the intermediate image.
  • the light-transmitting base material 811 may be omitted.
  • a circular frame may hold the light-attenuating section 812 and the light-shielding section 813 as shown in FIG. 6.
  • the light reducing section 812 has a light blocking portion 812a that does not transmit light, and four hole portions 812b that are formed in the light blocking portion 812a and transmit light, and reduces the amount of light from the light source array 20 to, for example, 1.2 mW/cm2 or less.
  • the amount of light to be reduced may be adjusted within a range that can be detected by the image sensor 45.
  • the light transmittance of the light blocking portion 812a is 0%.
  • the light-shielding portion 813 does not transmit light. In other words, the light transmittance of the light-shielding portion 813 is 0%.
  • the light-shielding portion 813 functions as a shutter.
  • the transparent portion 814 does not attenuate the light from the light source array 20. In other words, the light transmittance of the transparent portion 814 is 100%.
  • Module shutter 81b has a circular outer shape, and light-attenuating section 812, light-shielding section 813, and transmitting section 814 each have a sector shape.
  • light-attenuating section 812 and light-shielding section 813 are each disposed between two transmitting sections 814 in the circumferential direction of a circle centered on rotation axis AX2.
  • the control device CNT rotates the module shutter 81b around the rotation axis AX2 to switch between a state in which the dimming section 812 is positioned near the position IIM of the intermediate image of the light source array 20, a state in which the transmitting section 814 is positioned near the position IIM of the intermediate image, and a state in which the light blocking section 813 is positioned near the position IIM of the intermediate image.
  • the control device CNT rotates the module shutter 81b around the rotation axis AX2 to realize a state in which the light attenuation unit 812 is disposed near the position IIM of the intermediate image of the light source array 20.
  • a color correction filter may be disposed in one or more locations within the lens system 44 or between the lens system 44 and the image sensor 45.
  • the light from the light source array 20 is attenuated by the light attenuation unit 812 to an amount of light of, for example, 1.2 mW/ cm2 or less, and then further attenuated by the color correction filter before entering the image sensor 45.
  • control device CNT realizes a state in which the transmissive portion 814 is positioned near the position IIM of the intermediate image of the light source array 20.
  • the control device CNT also realizes a state in which the light-shielding portion 813 is positioned near the position IIM of the intermediate image of the light source array 20 while the plate P is being replaced, etc.
  • the illumination unit 90 includes a light source unit OPU, a first optical system 81a that forms an intermediate image of the light source unit OPU, and a control device CNT that can switch between a state in which the dimming unit 812 is located near the position IIM of the intermediate image and a state in which the dimming unit 812 is not located. Because the dimming unit 812 is located near the position IIM of the intermediate image, the size of the dimming unit 812 can be made smaller than when the dimming unit 812 is located at the position of parallel light. This makes it possible to reduce the amount of light from the light source array 20 during aerial image measurement without increasing the size of the illumination unit 90.
  • the illumination unit 90 has a rotation axis AX2 that is approximately parallel to the reference optical axis AX1 (the optical axis of the first optical system 81a), and includes a module shutter 81b in which a light-transmitting base material 811 is provided with a light-attenuating section 812 that functions as a light-attenuating member, a light-shielding section 813 that functions as a light-shielding member, and a transmission section 814 that transmits the light beam of the intermediate image.
  • the control device CNT rotates the module shutter 81b around the rotation axis AX2 to switch between a state in which the light-attenuating section 812 is located near the position IIM of the intermediate image, a state in which the light-shielding section 813 is located, and a state in which the transmission section 814 is located. This allows the state of the light from the light source unit OPU to be an appropriate state according to the process executed by the exposure device 10.
  • two transmitting sections 814 are provided, and the light-reducing section 812 and the light-shielding section 813 are each disposed between the two transmitting sections 814 in the circumferential direction of a circle centered on the rotation axis AX2. This allows for quick switching from a state in which the transmitting section 814 is disposed to a state in which the light-reducing section 812 is disposed or a state in which the light-shielding section 813 is disposed.
  • the light-reducing section 812 and the light-shielding section 813 are each disposed between two transmitting sections 814 in the circumferential direction of a circle centered on the rotation axis AX2, but this is not limited to the above.
  • the light-reducing section 812 and the light-shielding section 813 may be disposed adjacent to each other in the circumferential direction of a circle centered on the rotation axis AX2, as in the module shutters 81b' and 81b'' shown in Figures 7(A) and 7(B).
  • the light-reducing section 812 has four holes 812b, but is not limited to this. As long as the amount of light from the light source array 20 can be reduced to 1.2 mW/ cm2 or less, the number, arrangement, shape, size, etc. of the holes 812b can be appropriately changed.
  • the module shutter 81b has a circular outer shape, but this is not limited to this.
  • the module shutter 81b may have, for example, a rectangular outer shape.
  • the module shutter may have a light-reducing section 812, a light-shielding section 813, and a light-transmitting section 814 arranged in a line.
  • Fig. 8 is a schematic diagram showing the configuration of a lighting unit 90A according to a first modified example.
  • the illumination unit 90A includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80A.
  • the first light source unit OPU1 includes a first light source array 20A and a first magnifying optical system 30A
  • the second light source unit OPU2 includes a second light source array 20B and a second magnifying optical system 30B.
  • the configurations of the first light source array 20A and the second light source array 20B are the same as those of the light source array 20 according to the above embodiment, and therefore detailed descriptions are omitted.
  • the configurations of the first magnifying optical system 30A and the second magnifying optical system 30B are the same as those of the magnifying optical system 30 according to the above embodiment, and therefore detailed descriptions are omitted.
  • the illumination optical system 80A includes a first focusing optical system 83A including a first dichroic mirror DM1, a second focusing optical system 83B, a second dichroic mirror DM2, an imaging optical system 81A, a fly-eye lens FEL, an aperture stop 85, a condenser optical system 86, and an illuminance correction filter 87.
  • a first focusing optical system 83A including a first dichroic mirror DM1, a second focusing optical system 83B, a second dichroic mirror DM2, an imaging optical system 81A, a fly-eye lens FEL, an aperture stop 85, a condenser optical system 86, and an illuminance correction filter 87.
  • the first focusing optical system 83A forms the pupil of the magnified image of the light emitting unit 231 formed by the first magnifying optical system 30A. That is, the rear focal position of the first focusing optical system 83A is the position of the pupil.
  • the first focusing optical system 83A has a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a part of the light with a peak wavelength of 385 nm. As a result, the light beam is incident on the second dichroic mirror DM2. Note that the first focusing optical system 83A may be configured without the first dichroic mirror DM1.
  • the arrangement of the first light source unit OPU1 and the arrangement of each lens of the first focusing optical system 83A may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2.
  • the first focusing optical system 83A may be configured with one lens, or may be configured with a lens group including multiple lenses.
  • the second focusing optical system 83B forms the pupil of the magnified image of the light emitting section 231 formed by the second magnifying optical system 30B.
  • the rear focal position of the second focusing optical system 83B is the pupil position.
  • the second focusing optical system 83B may be composed of a single lens, or may be composed of a lens group including multiple lenses.
  • the second dichroic mirror DM2 transmits at least a portion of the light with a peak wavelength of 385 nm and reflects at least a portion of the light with a peak wavelength of 365 nm. This forms a composite image by superimposing the pupil image formed by the first focusing optical system 83A and the pupil image formed by the second focusing optical system 83B.
  • the first optical system 81aA of the imaging optical system 81A forms an intermediate image of the first light source unit OPU1 (first light source array 20A) and the second light source unit OPU2 (second light source array 20B) using the combined light emitted from the second dichroic mirror DM2.
  • the module shutter 81b is disposed near the position IIM of the intermediate images of the first light source unit OPU1 and the second light source unit OPU2.
  • FIG. 9 is a schematic diagram showing the configuration of an exposure apparatus 10B according to the second modification.
  • illumination unit 90B includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80B.
  • the first light source unit OPU1 and the second light source unit OPU2 are the same as those in modification example 1, so detailed description will be omitted.
  • the first focusing optical system 83A1 is disposed on or near the above-mentioned predetermined plane PP, and forms the pupil of the magnified image of the light-emitting part 231 formed by the first magnifying optical system 30A.
  • the first focusing optical system 83A1 may be composed of a single lens, or may be composed of a lens group including multiple lenses.
  • the imaging optical system 81B is a double-telecentric optical system that projects the composite image created by the third dichroic mirror DM3 at the same magnification onto the incident end of the fly-eye lens FEL. Note that the imaging optical system 81B may also reduce and project the composite image created by the third dichroic mirror DM3 onto the incident end of the fly-eye lens FEL.
  • the first optical system 81aB of the imaging optical system 81B forms an intermediate image of the first light source array 20A and the second light source array 20B by the combined light emitted from the third dichroic mirror DM3.
  • the module shutter 81b is disposed near the position IIM of the intermediate images of the first light source unit OPU1 and the second light source unit OPU2.
  • the second optical system 81dB forms the intermediate images of the first light source unit OPU1 and the second light source unit OPU2 on the fly-eye lens FEL.
  • the light beam incident on the fly-eye lens FEL is wavefront-split by multiple lens elements, and one light source image is formed on or near the rear focal plane of each lens element.
  • the light beam from the secondary light source formed on or near the rear focal plane of the fly-eye lens FEL is incident on an aperture stop 85 located nearby.
  • the light from the secondary light source passing through the aperture stop 85 is focused by the condenser optical system 86B, and then its illuminance is corrected by the illuminance correction filter 87, illuminating the mask MSK on which a predetermined pattern is formed in a superimposed manner.
  • the illumination light IL that passes through the mask MSK forms a projected image (partial upright image) of the circuit pattern of the mask MSK in the illumination area in an irradiation area (exposure area (conjugate to the illumination area)) on the plate P placed on the image plane side of the projection optical system PL by way of the projection optical system PL. This exposes the plate P and transfers the pattern of the mask MSK onto the plate P.
  • the module shutter 81b may be applied to an exposure apparatus equipped with an Offner-type projection optical system PL.
  • the wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be configured by appropriately combining LED chips that emit light with a peak wavelength in the range of 360 to 440 nm.
  • the first light source unit OPU1 may be configured to emit light with a peak wavelength of 405 nm
  • the second light source unit OPU2 may be configured to emit light with a peak wavelength of 365 nm
  • the first light source unit OPU1 may be configured to emit light with a peak wavelength of 395 nm
  • the second light source unit OPU2 may be configured to emit light with a peak wavelength of 385 nm.
  • the combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples.
  • the combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is a combination other than that of this embodiment, it is preferable to change the material of the dichroic mirror appropriately depending on the wavelength to be used.
  • the exposure apparatus has been described as being used to manufacture liquid crystal display devices (flat panel displays), but the exposure apparatus may also be used to manufacture semiconductors by exposing silicon wafers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Control Of Exposure In Printing And Copying (AREA)
  • Projection-Type Copiers In General (AREA)

Abstract

An illumination unit comprising: a light source; a first optical system that forms an intermediate image of the light source; and a control mechanism that can switch between a first state in which a dimming member is disposed at or near the position of the intermediate image, and a second state in which the dimming member is not disposed there.

Description

照明ユニット、露光装置、及び露光方法Illumination unit, exposure apparatus, and exposure method

 照明ユニット、露光装置、及び露光方法に関する。 Related to lighting units, exposure devices, and exposure methods.

 近年、パソコンやテレビ等の表示素子として、液晶表示パネルが多用されている。液晶表示パネルは、プレート(ガラス基板)上にフォトリソグラフィの手法で薄膜トランジスタの回路パターンを形成することによって製造される。このフォトリソグラフィ工程のための装置として、マスク上に形成された原画パターンを、投影光学系を介してプレート上のフォトレジスト層に投影露光する露光装置が用いられている。このような露光装置として、LED(Light Emitting Diode)を光源として用いた露光装置が提案されている(例えば、特許文献1)。 In recent years, liquid crystal display panels have come into widespread use as display elements for personal computers, televisions, and the like. Liquid crystal display panels are manufactured by forming a circuit pattern of thin-film transistors on a plate (glass substrate) using photolithography techniques. An exposure device is used for this photolithography process, which projects and exposes an original pattern formed on a mask onto a photoresist layer on the plate via a projection optical system. One such exposure device that has been proposed is one that uses an LED (Light Emitting Diode) as the light source (see, for example, Patent Document 1).

 LEDを光源として用いる露光装置においても、マスクを照明する照明ユニットは小型であることが望ましい。 Even in exposure equipment that uses LEDs as the light source, it is desirable for the illumination unit that illuminates the mask to be small.

特開2016-184127号公報JP 2016-184127 A

 第1の開示の態様によれば、照明ユニットは、光源と、前記光源の中間像を形成する第1の光学系と、前記中間像の位置またはその近傍に減光部材が配置された第1の状態と、前記減光部材が配置されていない第2の状態と、を切り換え可能な制御機構と、を備える。 According to the first aspect of the disclosure, the lighting unit includes a light source, a first optical system that forms an intermediate image of the light source, and a control mechanism that can switch between a first state in which a dimming member is disposed at or near the position of the intermediate image, and a second state in which the dimming member is not disposed.

 第2の開示の態様によれば、照明ユニットは、複数の光源と、前記複数の光源から射出された光を合成する合成光学素子と、前記合成光学素子から射出された合成光によって前記複数の光源の中間像を形成する第1の光学系と、前記中間像の位置またはその近傍に減光部材が配置された状態と、前記減光部材が配置されていない状態と、を切り換え可能な制御機構と、を備える。 According to the second aspect of the disclosure, the lighting unit includes a plurality of light sources, a combining optical element that combines the light emitted from the plurality of light sources, a first optical system that forms an intermediate image of the plurality of light sources using the combined light emitted from the combining optical element, and a control mechanism that can switch between a state in which a light-reducing member is disposed at or near the position of the intermediate image and a state in which the light-reducing member is not disposed.

 第3の開示の態様によれば、露光装置は、上記照明ユニットと、前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、を備える。 According to a third disclosed aspect, the exposure apparatus includes the illumination unit and a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate.

 第4の開示の態様によれば、露光方法は、上記露光装置を用いた露光方法であって、前記照明ユニットによりマスクを照明することと、前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、を含む。 According to a fourth aspect of the disclosure, an exposure method is an exposure method using the above-mentioned exposure apparatus, and includes illuminating a mask with the illumination unit, and projecting a pattern image of the mask onto a photosensitive substrate using the projection optical system.

 なお、後述の実施形態の構成を適宜改良しても良く、また、少なくとも一部を他の構成物に代替させても良い。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The configuration of the embodiments described below may be modified as appropriate, and at least a portion may be replaced with other components. Furthermore, components that are not specifically limited in their placement may be placed in any position that achieves their function, not limited to the placement disclosed in the embodiments.

図1は、一実施形態に係る露光装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing the configuration of an exposure apparatus according to an embodiment. 図2は、実施形態に係る照明ユニットの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of a lighting unit according to the embodiment. 図3(A)は、光源アレイの構成を概略的に示す平面図であり、図3(B)は、光源ユニットの内部構成を概略的に示す図である。FIG. 3A is a plan view that shows a schematic configuration of a light source array, and FIG. 3B is a diagram that shows a schematic internal configuration of a light source unit. 図4は、空間像計測装置の構成について説明するための図である。FIG. 4 is a diagram for explaining the configuration of the aerial image measuring device. 図5は、空間像計測装置について説明するための図である。FIG. 5 is a diagram for explaining the aerial image measuring device. 図6は、モジュールシャッタの構成を示す平面図である。FIG. 6 is a plan view showing the configuration of the module shutter. 図7(A)及び図7(B)は、モジュールシャッタの構成の別例を示す平面図である。7A and 7B are plan views showing another example of the configuration of the module shutter. 図8は、変形例1に係る照明ユニットの構成を示す概略図である。FIG. 8 is a schematic diagram showing a configuration of an illumination unit according to the first modification. 図9は、変形例2に係る露光装置の構成を示す概略図である。FIG. 9 is a schematic diagram showing the configuration of an exposure apparatus according to the second modification.

 一実施形態に係る露光装置10について、図1~図6に基づいて説明する。 The exposure device 10 according to one embodiment will be described with reference to Figures 1 to 6.

(露光装置の構成)
 図1は、本実施形態に係る露光装置10の構成を概略的に示す図である。
(Configuration of Exposure Apparatus)
FIG. 1 is a diagram that shows roughly the configuration of an exposure apparatus 10 according to the present embodiment.

 露光装置10は、マスクMSKとガラス基板(以下、「プレート」と呼ぶ)Pとを投影光学系PLに対して同一方向に同一速度で駆動することで、マスクMSKに形成されたパターンをプレートP上に転写するスキャニング・ステッパ(スキャナ)である。プレートPは、例えば液晶表示装置(フラットパネルディスプレイ)に用いられる矩形のガラス基板であり、少なくとも一辺の長さ又は対角長が500mm以上である。 The exposure apparatus 10 is a scanning stepper (scanner) that transfers a pattern formed on the mask MSK onto a glass substrate (hereafter referred to as "plate") P by driving the mask MSK and the glass substrate P in the same direction and at the same speed relative to the projection optical system PL. The plate P is a rectangular glass substrate used, for example, in liquid crystal display devices (flat panel displays), with at least one side or diagonal length of 500 mm or more.

 以下においては、走査露光の際にマスクMSK及びプレートPが駆動される方向(走査方向)をX軸方向とし、これに直交する水平面内での方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向とする。 In the following, the direction in which the mask MSK and plate P are driven during scanning exposure (scanning direction) is defined as the X-axis direction, the direction perpendicular to this in the horizontal plane is defined as the Y-axis direction, the direction perpendicular to the X-axis and Y-axis is defined as the Z-axis direction, and the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are defined as the θx, θy, and θz directions, respectively.

 露光装置10は、照明光学系IOP、マスクMSKを保持するマスクステージMST、投影光学系PL、これらを支持するボディ70、プレートPを保持する基板ステージPST、及びこれらを制御する制御装置CNT等を備える。制御装置CNTは、露光装置10の構成各部を統括制御する。また、露光装置10は、高精度な露光を行うため、マスクMSKのパターンの位置と、プレートP上に投影されるパターンの位置との関係を求める空間像計測装置(AIS:Airial Image Sensor)40(図1では不図示)を備える。 The exposure apparatus 10 comprises an illumination optical system IOP, a mask stage MST that holds the mask MSK, a projection optical system PL, a body 70 that supports these, a substrate stage PST that holds the plate P, and a control device CNT that controls these. The control device CNT provides overall control over each component of the exposure apparatus 10. In addition, in order to perform high-precision exposure, the exposure apparatus 10 comprises an aerial image measurement device (AIS: Airial Image Sensor) 40 (not shown in FIG. 1) that determines the relationship between the position of the pattern on the mask MSK and the position of the pattern projected onto the plate P.

 ボディ70は、ベース(防振台)71、コラム72A,72B、光学定盤73、支持体74、及びスライドガイド75を備える。ベース(防振台)71は、床F上に配置され、床Fからの振動を除振してコラム72A,72B等を支持する。コラム72A,72Bはそれぞれ枠体形状を有し、コラム72Bの内側にコラム72Aが配置されている。光学定盤73は、平板形状を有し、コラム72Aの天井部に固定されている。支持体74は、コラム72Bの天井部にスライドガイド75を介して支持されている。スライドガイド75は、エアボールリフタと位置決め機構とを備え、支持体74(すなわち後述するマスクステージMST)を光学定盤73に対してX軸方向の適当な位置に位置決めする。 The body 70 comprises a base (vibration isolation table) 71, columns 72A and 72B, an optical base 73, a support 74, and a slide guide 75. The base (vibration isolation table) 71 is placed on a floor F and supports the columns 72A, 72B, etc. by isolating vibrations from the floor F. The columns 72A and 72B each have a frame shape, and the column 72A is placed inside the column 72B. The optical base 73 has a flat plate shape and is fixed to the ceiling of the column 72A. The support 74 is supported by the ceiling of the column 72B via a slide guide 75. The slide guide 75 comprises an air ball lifter and a positioning mechanism, and positions the support 74 (i.e., the mask stage MST described later) at an appropriate position in the X-axis direction relative to the optical base 73.

 照明光学系IOPは、ボディ70の上方に配置されている。照明光学系IOPは、照明光ILをマスクMSKに照射する。照明光学系IOPの詳細な構成については、後述する。 The illumination optical system IOP is disposed above the body 70. The illumination optical system IOP irradiates the mask MSK with illumination light IL. The detailed configuration of the illumination optical system IOP will be described later.

 マスクステージMSTは、支持体74に支持されている。マスクステージMSTには、回路パターンが形成されたパターン面(図1における下面)を有するマスクMSKが、例えば真空吸着(あるいは静電吸着)により固定されている。マスクステージMSTは、例えばリニアモーターを含む駆動系により走査方向(X軸方向)に所定のストロークで駆動されるとともに、非走査方向(Y軸方向及びθz方向)に微少駆動される。 The mask stage MST is supported by a support 74. A mask MSK having a pattern surface (the lower surface in FIG. 1) on which a circuit pattern is formed is fixed to the mask stage MST by, for example, vacuum adsorption (or electrostatic adsorption). The mask stage MST is driven by a drive system including, for example, a linear motor at a predetermined stroke in the scanning direction (X-axis direction) and is also slightly driven in the non-scanning directions (Y-axis direction and θz direction).

 マスクステージMSTのXY平面内の位置情報(θz方向の回転情報を含む)は、干渉計システムにより計測される。干渉計システムは、マスクステージMSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、マスクステージMSTの位置を計測する。その計測結果は制御装置CNTに供給され、制御装置CNTは、干渉計システムの計測結果に従って、駆動系を介してマスクステージMSTを駆動する。 The position information of the mask stage MST in the XY plane (including rotation information in the θz direction) is measured by an interferometer system. The interferometer system measures the position of the mask stage MST by irradiating a measurement beam onto a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the mask stage MST and receiving the reflected light from the movable mirror. The measurement results are supplied to the control device CNT, which drives the mask stage MST via the drive system in accordance with the measurement results of the interferometer system.

 投影光学系PLは、マスクステージMSTの下方(-Z側)において、光学定盤73に支持されている。投影光学系PLは、例えば米国特許第5,729,331号明細書に開示された投影光学系と同様に構成され、マスクMSKのパターン像の投影領域が例えば千鳥状に配置された複数(例えば7)の投影光学ユニット100(マルチレンズ投影光学ユニット)を含み、Y軸方向を長手方向とする矩形形状のイメージフィールドを形成する。ここでは、4つの投影光学ユニット100がY軸方向に所定間隔で配置され、残りの3つの投影光学ユニット100が、4つの投影光学ユニット100から+X側に離間して、Y軸方向に所定間隔で配置されている。複数の投影光学ユニット100のそれぞれとして、例えば両側テレセントリックな等倍系で正立正像を形成するものが用いられる。なお、千鳥状に配置された投影光学ユニット100の複数の投影領域をまとめて露光領域と呼ぶ。 The projection optical system PL is supported by the optical base 73 below (-Z side) the mask stage MST. The projection optical system PL is configured in the same manner as the projection optical system disclosed in, for example, US Pat. No. 5,729,331, and includes a plurality of (for example, seven) projection optical units 100 (multi-lens projection optical units) in which the projection areas of the pattern image of the mask MSK are arranged in a staggered pattern, forming a rectangular image field with the Y-axis direction as the longitudinal direction. Here, four projection optical units 100 are arranged at a predetermined interval in the Y-axis direction, and the remaining three projection optical units 100 are arranged at a predetermined interval in the Y-axis direction, spaced apart from the four projection optical units 100 on the +X side. For each of the multiple projection optical units 100, for example, a system that is bilaterally telecentric and forms an erect normal image is used. The multiple projection areas of the projection optical units 100 arranged in a staggered pattern are collectively referred to as the exposure area.

 照明光学系IOPからの照明光ILによってマスクMSK上の照明領域が照明されると、マスクMSKを透過した照明光ILにより、投影光学系PLを介して、その照明領域内のマスクMSKの回路パターンの投影像(部分正立像)が、投影光学系PLの像面側に配置されるプレートP上の照射領域(露光領域(照明領域に共役))に形成される。ここで、プレートPの表面にはレジスト(感応剤)が塗布されている。マスクステージMSTと基板ステージPSTとを同期駆動する、すなわちマスクMSKを照明領域(照明光IL)に対して走査方向(X軸方向)に駆動するとともに、プレートPを露光領域(照明光IL)に対して同じ走査方向に駆動することで、プレートPが露光されてプレートP上にマスクMSKのパターンが転写される。 When the illumination area on the mask MSK is illuminated by the illumination light IL from the illumination optical system IOP, the illumination light IL that has passed through the mask MSK forms a projected image (partial upright image) of the circuit pattern of the mask MSK in the illumination area via the projection optical system PL in the irradiation area (exposure area (conjugate to the illumination area)) on the plate P arranged on the image plane side of the projection optical system PL. Here, a resist (sensitizer) is applied to the surface of the plate P. By synchronously driving the mask stage MST and the substrate stage PST, i.e., by driving the mask MSK in the scanning direction (X-axis direction) relative to the illumination area (illumination light IL) and driving the plate P in the same scanning direction relative to the exposure area (illumination light IL), the plate P is exposed and the pattern of the mask MSK is transferred onto the plate P.

 基板ステージPSTは、投影光学系PLの下方(-Z側)のベース(防振台)71上に配置されている。基板ステージPST上に、プレートPが、基板ホルダ(不図示)を介して保持されている。 The substrate stage PST is placed on a base (vibration isolation table) 71 below (on the -Z side) the projection optical system PL. A plate P is held on the substrate stage PST via a substrate holder (not shown).

 基板ステージPSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)は、干渉計システムによって計測される。干渉計システムは、光学定盤73から基板ステージPSTの端部に設けられた移動鏡(又は鏡面加工された反射面(不図示))に測長ビームを照射し、移動鏡からの反射光を受光することにより、基板ステージPSTの位置を計測する。その計測結果は制御装置CNTに供給され、制御装置CNTは、干渉計システムの計測結果に従って基板ステージPSTを駆動する。 The position information of the substrate stage PST in the XY plane (including rotation information (yawing amount (amount of rotation in the θz direction θz), pitching amount (amount of rotation in the θx direction θx), and rolling amount (amount of rotation in the θy direction θy))) is measured by an interferometer system. The interferometer system measures the position of the substrate stage PST by irradiating a measurement beam from the optical base 73 to a movable mirror (or a mirror-finished reflective surface (not shown)) provided at the end of the substrate stage PST and receiving the reflected light from the movable mirror. The measurement result is supplied to the control device CNT, which drives the substrate stage PST in accordance with the measurement result of the interferometer system.

 露光装置10では、露光に先立ってアライメント計測(例えば、EGA等)を行い、その結果を用いて、以下の手順で、プレートPを露光する。まず、制御装置CNTの指示に従い、マスクステージMST及び基板ステージPSTをX軸方向に同期駆動する。これにより、プレートP上の1つめのショット領域への走査露光を行う。1つめのショット領域に対する走査露光が終了すると、制御装置CNTは、基板ステージPSTを2つめのショット領域に対応する位置へ移動(ステッピング)する。そして、2つめのショット領域に対する走査露光を行う。制御装置CNTは、同様に、プレートPのショット領域間のステッピングとショット領域に対する走査露光とを繰り返して、プレートP上の全てのショット領域にマスクMSKのパターンを転写する。 In the exposure apparatus 10, alignment measurement (e.g., EGA, etc.) is performed prior to exposure, and the plate P is exposed using the results in the following procedure. First, the mask stage MST and substrate stage PST are synchronously driven in the X-axis direction according to instructions from the control device CNT. This performs scanning exposure on the first shot area on the plate P. When scanning exposure on the first shot area is completed, the control device CNT moves (steps) the substrate stage PST to a position corresponding to the second shot area. Then, scanning exposure is performed on the second shot area. Similarly, the control device CNT repeats stepping between the shot areas of the plate P and scanning exposure on the shot areas to transfer the pattern of the mask MSK to all shot areas on the plate P.

(照明光学系IOPの構成)
 次に、本実施形態における照明光学系IOPの構成について説明する。照明光学系IOPは、投影光学系PLが備える複数の投影光学ユニット100それぞれに対応する複数の照明ユニット90を備える。
(Configuration of illumination optical system IOP)
Next, the configuration of the illumination optical system IOP in this embodiment will be described The illumination optical system IOP includes a plurality of illumination units 90 corresponding to the plurality of projection optical units 100 included in the projection optical system PL, respectively.

 図2は、照明ユニット90の構成を概略的に示す図である。図2に示すように、照明ユニット90は、光源ユニットOPUと、照明光学系80と、を備える。 FIG. 2 is a diagram showing a schematic configuration of the illumination unit 90. As shown in FIG. 2, the illumination unit 90 includes a light source unit OPU and an illumination optical system 80.

(光源ユニットの構成)
 光源ユニットOPUは、光源アレイ20と、拡大光学系30と、を備える。
(Configuration of the light source unit)
The light source unit OPU includes a light source array 20 and a magnifying optical system 30 .

 図3(A)は、光源アレイ20の構成を概略的に示す平面図である。光源アレイ20は、例えば基板21上にアレイ状に並べられた複数(図3(A)では、5×5)のLED(Light Emitting Diode)チップ23を備える。すなわち、光源ユニットOPUは、LED光源である。LEDチップ23の個数は必要に応じて適宜変更してもよい。 Figure 3 (A) is a plan view showing a schematic configuration of the light source array 20. The light source array 20 includes a plurality of LED (Light Emitting Diode) chips 23 (5 x 5 in Figure 3 (A)) arranged in an array on a substrate 21, for example. In other words, the light source unit OPU is an LED light source. The number of LED chips 23 may be changed as necessary.

 複数のLEDチップ23は各々、発光部231を有し、当該発光部231から出射する光のピーク波長は、例えば、360~370nmの範囲内、380~390nmの範囲内、または、400~410nmの範囲内にある。すなわち、発光部231は、紫外線LED(UV LED)である。発光部231の発光面は正方形であり、その一辺の長さはLである。LEDチップ23は、ピッチP1で配列されている。ピッチP1は、隣り合うLEDチップ23の中心間の距離である。なお、LEDチップ23は、基板上ではなく、例えばヒートシンク上に配列されていてもよい。 Each of the multiple LED chips 23 has a light-emitting portion 231, and the peak wavelength of the light emitted from the light-emitting portion 231 is, for example, in the range of 360 to 370 nm, the range of 380 to 390 nm, or the range of 400 to 410 nm. In other words, the light-emitting portion 231 is an ultraviolet LED (UV LED). The light-emitting surface of the light-emitting portion 231 is a square, and the length of one side is L. The LED chips 23 are arranged at a pitch P1. The pitch P1 is the distance between the centers of adjacent LED chips 23. The LED chips 23 may be arranged not on a substrate but on, for example, a heat sink.

 図3(B)は、光源ユニットOPUの内部構成を概略的に示す図である。ここでLEDチップ23が配列された2方向を、X1方向及びY1方向とする。X1方向とY1方向とは直交している。また、X1方向及びY1方向に直交する方向をZ1方向とする。Z1方向は、発光部231が出射する光の光軸OAと略平行である。 Figure 3 (B) is a diagram showing a schematic internal configuration of the light source unit OPU. The two directions in which the LED chips 23 are arranged are the X1 direction and the Y1 direction. The X1 direction and the Y1 direction are perpendicular to each other. The direction perpendicular to the X1 direction and the Y1 direction is the Z1 direction. The Z1 direction is approximately parallel to the optical axis OA of the light emitted by the light-emitting portion 231.

 図3(B)に示すように、拡大光学系30は、各LEDチップ23の発光部231の拡大像を所定面PPにそれぞれ形成するための拡大光学系である。拡大光学系30は、LEDチップ23の配列と対応するように配列された複数のレンズ部31を備える。レンズ部31は各々、発光部231を、(LEDチップ23の配列ピッチP1)/(発光部231の発光面の一辺の長さL)以上の倍率Mで拡大投影する両側テレセントリックな光学系である。 As shown in FIG. 3B, the magnifying optical system 30 is an optical system for forming a magnified image of the light-emitting portion 231 of each LED chip 23 on a predetermined plane PP. The magnifying optical system 30 has a plurality of lens portions 31 arranged to correspond to the arrangement of the LED chips 23. Each lens portion 31 is a double-telecentric optical system that enlarges and projects the light-emitting portion 231 at a magnification M of at least (arrangement pitch P1 of the LED chips 23)/(length L of one side of the light-emitting surface of the light-emitting portion 231).

 本実施形態では、レンズ部31は4枚の平凸レンズを備えているが、これに限定されるものではなく、レンズ部31は、例えば2枚の両凸レンズを備えていてもよいし、3枚の両凸レンズを備えていてもよい。また、レンズ部31は、例えば、平凸レンズと両凸レンズとを備えていてもよい。 In this embodiment, the lens unit 31 has four plano-convex lenses, but is not limited to this, and the lens unit 31 may have, for example, two biconvex lenses or three biconvex lenses. Furthermore, the lens unit 31 may have, for example, a plano-convex lens and a biconvex lens.

(照明光学系80の構成)
 再び図2を参照し、照明光学系80の構成について説明する。照明光学系80は、結像光学系81と、フライアイレンズFELと、開口絞り85と、コンデンサー光学系86と、照度補正フィルタ87と、を備える。
(Configuration of the illumination optical system 80)
2, the following describes the configuration of the illumination optical system 80. The illumination optical system 80 includes an imaging optical system 81, a fly-eye lens FEL, an aperture stop 85, a condenser optical system 86, and an illumination correction filter 87.

 結像光学系81は、光源ユニットOPU(光源アレイ20)の像をフライアイレンズFELの入射端に等倍投影する両側テレセントリックな光学系である。結像光学系81は、光源ユニットOPUの中間像を形成する第1の光学系81aと、モジュールシャッタ81bと、照明ウェッジ81cと、光源ユニットOPUの中間像をフライアイレンズFELに結像させる第2の光学系81dと、を含む。 The imaging optical system 81 is a double-telecentric optical system that projects the image of the light source unit OPU (light source array 20) at 1:1 magnification onto the incident end of the fly-eye lens FEL. The imaging optical system 81 includes a first optical system 81a that forms an intermediate image of the light source unit OPU, a module shutter 81b, an illumination wedge 81c, and a second optical system 81d that focuses the intermediate image of the light source unit OPU onto the fly-eye lens FEL.

 フライアイレンズFELは、たとえば正の屈折力を有する多数のレンズエレメントをその光軸が基準光軸AX1と平行になるように縦横に且つ稠密に配列することによって構成されている。フライアイレンズFELを構成する各レンズエレメントは、マスクMSK上において形成すべき照野の形状(ひいてはプレートP上において形成すべき露光領域の形状)と相似な矩形状の断面を有する。 The fly-eye lens FEL is constructed by arranging a large number of lens elements having positive refractive power, for example, densely and vertically so that their optical axes are parallel to the reference optical axis AX1. Each lens element constituting the fly-eye lens FEL has a rectangular cross section similar to the shape of the illumination field to be formed on the mask MSK (and thus the shape of the exposure area to be formed on the plate P).

 したがって、フライアイレンズFELに入射した光束は多数のレンズエレメントにより波面分割され、各レンズエレメントの後側焦点面(出射面)またはその近傍には1つの光源像がそれぞれ形成される。すなわち、フライアイレンズFELの後側焦点面(出射面)またはその近傍には、多数の光源像からなる実質的な面光源すなわち二次光源が形成される。フライアイレンズFELの後側焦点面(出射面)またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り85に入射する。なお、本実施形態においてフライアイレンズFELの後側焦点面(出射面)と、光源アレイ20とは、光学的に共役である。 Therefore, the light beam incident on the fly-eye lens FEL is wavefront split by multiple lens elements, and one light source image is formed on or near the rear focal plane (exit surface) of each lens element. In other words, a substantial surface light source, i.e., a secondary light source, consisting of multiple light source images is formed on or near the rear focal plane (exit surface) of the fly-eye lens FEL. The light beam from the secondary light source formed on or near the rear focal plane (exit surface) of the fly-eye lens FEL is incident on an aperture stop 85 arranged nearby. Note that in this embodiment, the rear focal plane (exit surface) of the fly-eye lens FEL and the light source array 20 are optically conjugate.

 開口絞り85は、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定するための可変開口部を有する。そして、開口絞り85は、可変開口部の開口径を変化させることにより、照明条件を決定するσ値(投影光学系の瞳面の開口径に対するその瞳面上での二次光源像の口径の比)を所望の値に設定する。開口絞り85を介した二次光源からの光は、コンデンサー光学系86の集光作用を受けた後、照度補正フィルタ87によりその照度が補正され、所定のパターンが形成されたマスクMSKを重畳的に照明する。 The aperture stop 85 is positioned at a position that is nearly optically conjugate with the entrance pupil plane of the projection optical system PL, and has a variable opening for defining the range that contributes to the illumination of the secondary light source. The aperture stop 85 changes the aperture diameter of the variable opening to set the σ value (the ratio of the aperture diameter of the secondary light source image on the pupil plane of the projection optical system to the aperture diameter of the pupil plane) that determines the illumination conditions to a desired value. The light from the secondary light source that passes through the aperture stop 85 is subjected to the focusing action of the condenser optical system 86, and then its illuminance is corrected by the illuminance correction filter 87, and the light is superimposed to illuminate a mask MSK on which a predetermined pattern is formed.

 なお、光源ユニットOPUが出射する光の波長は上述したものに限られず、360~440nmの範囲内にピーク波長を有する光を出射するLEDチップを適宜組み合わせて光源ユニットOPUを構成してもよい。 The wavelength of the light emitted by the light source unit OPU is not limited to the above, and the light source unit OPU may be configured by appropriately combining LED chips that emit light with a peak wavelength in the range of 360 to 440 nm.

(空間像計測装置40の構成)
 次に、空間像計測装置40の構成について図4を参照して説明する。
(Configuration of the aerial image measuring device 40)
Next, the configuration of the aerial image measuring device 40 will be described with reference to FIG.

 図4に示すように、空間像計測装置40は、基準部材43と、AIS受光系(計測装置)46とを有している。基準部材43は、基板ステージPSTの投影光学ユニット100側における表面に配置されている。より具体的には、基準部材43は、基板ステージPSTの走査方向の端部(-X側)の所定位置に配置され、Y軸方向に沿って延在している。なお、基準部材43が配置される位置はこれに限定されるものではない。 As shown in FIG. 4, the aerial image measuring device 40 has a reference member 43 and an AIS light receiving system (measuring device) 46. The reference member 43 is disposed on the surface of the substrate stage PST on the projection optical unit 100 side. More specifically, the reference member 43 is disposed at a predetermined position at the end (-X side) of the substrate stage PST in the scanning direction, and extends along the Y-axis direction. Note that the position at which the reference member 43 is disposed is not limited to this.

 基準部材43にはY軸方向に所定間隔で並ぶ基準マークM1が形成されている。なお、以下の説明において、基板ステージPSTの基準部材43に形成された基準マークM1を適宜「基板側AISマーク(基準マーク)」と称する。 The reference member 43 has reference marks M1 formed thereon, which are spaced at a predetermined interval in the Y-axis direction. In the following description, the reference marks M1 formed on the reference member 43 of the substrate stage PST will be referred to as the "substrate-side AIS marks (reference marks)" where appropriate.

 図4に示すように、基準部材43に形成された基板側AISマークM1のZ軸方向における形成位置(高さ)はプレートPの表面(露光面)と略一致するように設定されている。基準部材43の下方には、基板ステージPSTに埋設されるように、基準部材43を通過した光を受光可能なAIS受光系46が設けられている。AIS受光系46は、レンズ系44と、レンズ系44を介した光を受光するCMOS(Complementary Metal-Oxide-Semiconductor)またはCCD(Charge Coupled Device)等の撮像素子45と、を備えている。AIS受光系46(撮像素子45)の受光結果は制御装置CNTに対して出力される。 As shown in FIG. 4, the formation position (height) in the Z-axis direction of the substrate-side AIS mark M1 formed on the reference member 43 is set so as to approximately coincide with the surface (exposure surface) of the plate P. An AIS light-receiving system 46 capable of receiving light that has passed through the reference member 43 is provided below the reference member 43 so as to be embedded in the substrate stage PST. The AIS light-receiving system 46 includes a lens system 44 and an image sensor 45 such as a CMOS (Complementary Metal-Oxide-Semiconductor) or a CCD (Charge Coupled Device) that receives light via the lens system 44. The light reception result of the AIS light-receiving system 46 (image sensor 45) is output to the control device CNT.

 マスクMSKの走査方向両側(±X側)には複数のマーク(マーク群)を有するマーク形成領域が設けられている。-X側のマーク形成領域にはY軸方向に所定間隔で並ぶ複数の第1マスクマークM2が形成されている。一方、+X側のマーク形成領域にはY軸方向に所定間隔で並ぶ複数の第2マスクマークM3が形成されている。なお、以下の説明において、マスクMSKに形成された第1マスクマークM2、第2マスクマークM3を適宜「マスク側AISマーク」と称する。 On both sides (±X sides) of the mask MSK in the scanning direction, a mark formation area having a plurality of marks (mark groups) is provided. In the mark formation area on the -X side, a plurality of first mask marks M2 are formed, which are arranged at a predetermined interval in the Y-axis direction. On the other hand, in the mark formation area on the +X side, a plurality of second mask marks M3 are formed, which are arranged at a predetermined interval in the Y-axis direction. In the following explanation, the first mask marks M2 and second mask marks M3 formed on the mask MSK are appropriately referred to as "mask-side AIS marks".

 図5は、AIS受光系46がAISマーク検出を行っている状態を示す図である。図5に示すように、制御装置CNTは、いわゆるスルー・ザ・レンズ(TTL)方式により、AIS受光系46(撮像素子45)でマスク側AISマークM2(M3)と基板側AISマークM1とを検出し、この検出結果に基づいてマスクMSKと基板ステージPSTとの相対位置を求める。具体的には、制御装置CNTは、撮像素子45でマスク側AISマークM2(M3)の像と基板側AISマークM1の像とが一致するようにマスクステージMST及び基板ステージPSTを移動し、照明光学系IOPでマスク側AISマークM2(M3)を照明する。マスクMSKを通過した照明光(露光光)は投影光学ユニット100を通過するとともに基板側AISマークM1を通過し撮像素子45に導かれる。制御装置CNTは投影光学ユニット100を介してマスク側AISマークM2(M3)及び基板側AISマークM1の相対位置(位置ずれ量)を計測することにより、投影光学ユニット100の各結像特性(シフト、スケーリング、ローテーション)を計測する。制御装置CNTは求めた結像特性の計測結果に基づいて、投影光学ユニット100の結像特性が精度保証範囲内になるように補正量を求め、求めた補正量に基づいて結像特性を補正する。 FIG. 5 is a diagram showing the state in which the AIS light receiving system 46 is detecting the AIS mark. As shown in FIG. 5, the control device CNT detects the mask side AIS mark M2 (M3) and the substrate side AIS mark M1 with the AIS light receiving system 46 (image sensor 45) by the so-called through-the-lens (TTL) method, and determines the relative position of the mask MSK and the substrate stage PST based on this detection result. Specifically, the control device CNT moves the mask stage MST and the substrate stage PST so that the image of the mask side AIS mark M2 (M3) and the image of the substrate side AIS mark M1 coincide with each other on the image sensor 45, and illuminates the mask side AIS mark M2 (M3) with the illumination optical system IOP. The illumination light (exposure light) that passes through the mask MSK passes through the projection optical unit 100 and the substrate side AIS mark M1, and is guided to the image sensor 45. The control device CNT measures each imaging characteristic (shift, scaling, rotation) of the projection optical unit 100 by measuring the relative position (positional deviation amount) of the mask side AIS mark M2 (M3) and the substrate side AIS mark M1 via the projection optical unit 100. Based on the measurement results of the obtained imaging characteristics, the control device CNT obtains a correction amount so that the imaging characteristics of the projection optical unit 100 are within the guaranteed accuracy range, and corrects the imaging characteristics based on the obtained correction amount.

 このような空間像計測を行う場合、光源アレイ20からの光の光量を所定の光量まで減光する必要がある。例えば減光フィルタを用いることで、光源アレイ20からの光の光量を所定の光量まで減光することができる。しかしながら、図2に示す照明ユニット90の構成では、減光フィルタを設けるスペースがない。また、例えば、図2に示す照明ユニット90において、リレー光学系を増やせば、減光フィルタを設けるスペースを確保できるが、照明ユニット90が大型化し、また、照明ユニット90の製造コスト(部品コスト)も増加する。 When performing such spatial image measurement, it is necessary to reduce the amount of light from the light source array 20 to a predetermined amount of light. For example, by using a neutral density filter, the amount of light from the light source array 20 can be reduced to a predetermined amount of light. However, the configuration of the lighting unit 90 shown in FIG. 2 does not have space for a neutral density filter. Also, for example, if the relay optical system is increased in the lighting unit 90 shown in FIG. 2, space can be secured for a neutral density filter, but this increases the size of the lighting unit 90 and the manufacturing cost (component cost) of the lighting unit 90 also increases.

 そこで、本実施形態に係る照明ユニット90では、モジュールシャッタ81bに、減光フィルタとしての機能も持たせている。本実施形態において、モジュールシャッタ81bは、第1の光学系81aが形成した光源アレイ20の中間像の位置IIM(図2参照)の近傍に配置されている。なお、モジュールシャッタ81bを光源アレイ20の中間像の位置IIMに配置してもよい。 Therefore, in the lighting unit 90 according to this embodiment, the module shutter 81b also functions as a neutral density filter. In this embodiment, the module shutter 81b is disposed near the position IIM (see FIG. 2) of the intermediate image of the light source array 20 formed by the first optical system 81a. The module shutter 81b may also be disposed at the position IIM of the intermediate image of the light source array 20.

 図6は、本実施形態に係るモジュールシャッタ81bの構成を示す平面図である。モジュールシャッタ81bは、基準光軸AX1(第1の光学系81aの光軸)と略平行な回転軸AX2を有し、光透過性の基材811に、光源ユニットOPUからの光を減光する減光部材として機能する減光部812と、光源ユニットOPUからの光を遮光する遮光部材として機能する遮光部813と、中間像の光束を透過する透過部814と、が形成されている。なお、光透過性の基材811を省略してもよい。この場合、例えば、円形の枠体が減光部812と、遮光部813と、を図6に示すように保持するようにすればよい。この場合、透過部814に相当する部分には、何も存在しない(空隙である)。 FIG. 6 is a plan view showing the configuration of a module shutter 81b according to this embodiment. The module shutter 81b has a rotation axis AX2 that is approximately parallel to the reference optical axis AX1 (the optical axis of the first optical system 81a), and a light-transmitting base material 811 is formed with a light-attenuating section 812 that functions as a light-attenuating member that attenuates the light from the light source unit OPU, a light-shielding section 813 that functions as a light-shielding member that blocks the light from the light source unit OPU, and a transmitting section 814 that transmits the light beam of the intermediate image. The light-transmitting base material 811 may be omitted. In this case, for example, a circular frame may hold the light-attenuating section 812 and the light-shielding section 813 as shown in FIG. 6. In this case, nothing exists in the part corresponding to the transmitting section 814 (it is a gap).

 図6に示すように、減光部812は、光を透過しない遮光部分812aと、遮光部分812a内に形成され、光を透過する4つの孔部812bと、を有し、光源アレイ20からの光の光量を、例えば、1.2mW/cm以下に減光する。なお、減光される光量は、撮像素子45が検出可能な範囲内で調整されてよい。遮光部分812aの光の透過率は0%である。 6, the light reducing section 812 has a light blocking portion 812a that does not transmit light, and four hole portions 812b that are formed in the light blocking portion 812a and transmit light, and reduces the amount of light from the light source array 20 to, for example, 1.2 mW/cm2 or less. The amount of light to be reduced may be adjusted within a range that can be detected by the image sensor 45. The light transmittance of the light blocking portion 812a is 0%.

 遮光部813は、光を透過しない。すなわち、遮光部813の光の透過率は0%である。遮光部813は、シャッタとして機能する。一方、透過部814は、光源アレイ20からの光を減光しない。すなわち、透過部814の光の透過率は100%である。 The light-shielding portion 813 does not transmit light. In other words, the light transmittance of the light-shielding portion 813 is 0%. The light-shielding portion 813 functions as a shutter. On the other hand, the transparent portion 814 does not attenuate the light from the light source array 20. In other words, the light transmittance of the transparent portion 814 is 100%.

 また、モジュールシャッタ81bは、円形状の外形を有し、減光部812と、遮光部813と、透過部814とは各々扇形状を有する。本実施形態において、回転軸AX2を中心とする円の周方向において、減光部812と、遮光部813とはそれぞれ、2つの透過部814の間に配置されている。 Module shutter 81b has a circular outer shape, and light-attenuating section 812, light-shielding section 813, and transmitting section 814 each have a sector shape. In this embodiment, light-attenuating section 812 and light-shielding section 813 are each disposed between two transmitting sections 814 in the circumferential direction of a circle centered on rotation axis AX2.

 制御装置CNTは、モジュールシャッタ81bを回転軸AX2まわりに回転させて、光源アレイ20の中間像の位置IIMの近傍に減光部812が配置された状態と、中間像の位置IIMの近傍に透過部814が配置された状態と、中間像の位置IIMの近傍に遮光部813が配置された状態と、を切り替える。 The control device CNT rotates the module shutter 81b around the rotation axis AX2 to switch between a state in which the dimming section 812 is positioned near the position IIM of the intermediate image of the light source array 20, a state in which the transmitting section 814 is positioned near the position IIM of the intermediate image, and a state in which the light blocking section 813 is positioned near the position IIM of the intermediate image.

 すなわち、制御装置CNTは、空間像計測時には、モジュールシャッタ81bを回転軸AX2まわりに回転させて、光源アレイ20の中間像の位置IIMの近傍に減光部812が配置された状態を実現する。なお、撮像素子45の分光感度を補正するために、レンズ系44内、又は、レンズ系44と撮像素子45との間のいずれか1箇所以上に色補正フィルタを配置してもよい。この場合、光源アレイ20からの光は、減光部812によりその光量が、例えば1.2mW/cm以下に減光された後、さらに色補正フィルタにより減光されてから、撮像素子45に入射する。 That is, when measuring an aerial image, the control device CNT rotates the module shutter 81b around the rotation axis AX2 to realize a state in which the light attenuation unit 812 is disposed near the position IIM of the intermediate image of the light source array 20. In order to correct the spectral sensitivity of the image sensor 45, a color correction filter may be disposed in one or more locations within the lens system 44 or between the lens system 44 and the image sensor 45. In this case, the light from the light source array 20 is attenuated by the light attenuation unit 812 to an amount of light of, for example, 1.2 mW/ cm2 or less, and then further attenuated by the color correction filter before entering the image sensor 45.

 また、制御装置CNTは、マスクMSKのパターンをプレートPに露光するときには、光源アレイ20の中間像の位置IIMの近傍に透過部814が配置された状態を実現する。 In addition, when the pattern of the mask MSK is exposed onto the plate P, the control device CNT realizes a state in which the transmissive portion 814 is positioned near the position IIM of the intermediate image of the light source array 20.

 また、制御装置CNTは、プレートPの交換中等に、光源アレイ20の中間像の位置IIMの近傍に遮光部813が配置された状態を実現する。 The control device CNT also realizes a state in which the light-shielding portion 813 is positioned near the position IIM of the intermediate image of the light source array 20 while the plate P is being replaced, etc.

 このように、モジュールシャッタ81bに、減光部材としての機能を持たせることで、照明ユニット90を大型化することなく、空間像計測時に光源アレイ20からの光の光量を減光することができる。 In this way, by giving the module shutter 81b the function of a light-reducing member, it is possible to reduce the amount of light from the light source array 20 during aerial image measurement without increasing the size of the illumination unit 90.

 以上詳細に説明したように、本実施形態によれば、照明ユニット90は、光源ユニットOPUと、光源ユニットOPUの中間像を形成する第1の光学系81aと、中間像の位置IIMの近傍に減光部812が配置された状態と、減光部812が配置されていない状態と、を切り換え可能な制御装置CNTと、を備える。中間像の位置IIMの近傍に減光部812が配置されるため、平行光の位置に減光部812を配置する場合と比較して、減光部812のサイズを小さくできる。これにより、照明ユニット90を大型化することなく、空間像計測時に光源アレイ20からの光の光量を減光することができる。 As described above in detail, according to this embodiment, the illumination unit 90 includes a light source unit OPU, a first optical system 81a that forms an intermediate image of the light source unit OPU, and a control device CNT that can switch between a state in which the dimming unit 812 is located near the position IIM of the intermediate image and a state in which the dimming unit 812 is not located. Because the dimming unit 812 is located near the position IIM of the intermediate image, the size of the dimming unit 812 can be made smaller than when the dimming unit 812 is located at the position of parallel light. This makes it possible to reduce the amount of light from the light source array 20 during aerial image measurement without increasing the size of the illumination unit 90.

 また、本実施形態において、照明ユニット90は、基準光軸AX1(第1の光学系81aの光軸)と略平行な回転軸AX2を有し、光透過性の基材811に減光部材として機能する減光部812と、遮光部材として機能する遮光部813と、中間像の光束を透過する透過部814と、が形成されたモジュールシャッタ81bを備える。制御装置CNTは、モジュールシャッタ81bを回転軸AX2まわりに回転させることにより、中間像の位置IIMの近傍に減光部812が配置された状態と、遮光部813が配置された状態と、透過部814が配置された状態と、を切り替える。これにより、光源ユニットOPUからの光の状態を、露光装置10で実行される処理に応じた適切な状態にすることができる。 In this embodiment, the illumination unit 90 has a rotation axis AX2 that is approximately parallel to the reference optical axis AX1 (the optical axis of the first optical system 81a), and includes a module shutter 81b in which a light-transmitting base material 811 is provided with a light-attenuating section 812 that functions as a light-attenuating member, a light-shielding section 813 that functions as a light-shielding member, and a transmission section 814 that transmits the light beam of the intermediate image. The control device CNT rotates the module shutter 81b around the rotation axis AX2 to switch between a state in which the light-attenuating section 812 is located near the position IIM of the intermediate image, a state in which the light-shielding section 813 is located, and a state in which the transmission section 814 is located. This allows the state of the light from the light source unit OPU to be an appropriate state according to the process executed by the exposure device 10.

 また、本実施形態において、透過部814は2つ設けられ、回転軸AX2を中心とする円の周方向において、減光部812と、遮光部813とはそれぞれ、2つの透過部814の間に配置されている。これにより、透過部814が配置された状態から、減光部812が配置された状態または遮光部813が配置された状態に素早く切り換えることができる。 In addition, in this embodiment, two transmitting sections 814 are provided, and the light-reducing section 812 and the light-shielding section 813 are each disposed between the two transmitting sections 814 in the circumferential direction of a circle centered on the rotation axis AX2. This allows for quick switching from a state in which the transmitting section 814 is disposed to a state in which the light-reducing section 812 is disposed or a state in which the light-shielding section 813 is disposed.

 なお、上記実施形態では、回転軸AX2を中心とする円の周方向において、減光部812と、遮光部813とはそれぞれ、2つの透過部814の間に配置されていたが、これに限られるものではない。例えば、図7(A)及び図7(B)に示すモジュールシャッタ81b´,81b´´のように、減光部812と遮光部813とを、回転軸AX2を中心とする円の周方向において隣接して設けるようにしてもよい。 In the above embodiment, the light-reducing section 812 and the light-shielding section 813 are each disposed between two transmitting sections 814 in the circumferential direction of a circle centered on the rotation axis AX2, but this is not limited to the above. For example, the light-reducing section 812 and the light-shielding section 813 may be disposed adjacent to each other in the circumferential direction of a circle centered on the rotation axis AX2, as in the module shutters 81b' and 81b'' shown in Figures 7(A) and 7(B).

 また、上記実施形態では、減光部812は、4つの孔部812bを有していたが、これに限られるものではない。光源アレイ20からの光の光量を、1.2mW/cm以下に減光できれば、孔部812bの数、配置、各孔部812bの形状、大きさ等は適宜変更できる。 In the above embodiment, the light-reducing section 812 has four holes 812b, but is not limited to this. As long as the amount of light from the light source array 20 can be reduced to 1.2 mW/ cm2 or less, the number, arrangement, shape, size, etc. of the holes 812b can be appropriately changed.

 また、上記実施形態において、モジュールシャッタ81bは、円形の外形を有していたが、これに限られるものではない。モジュールシャッタ81bは、例えば矩形状の外形を有していてもよい。また、例えば、モジュールシャッタは、減光部812、遮光部813、及び透過部814が一列に並んで配置されたものでもよい。 In the above embodiment, the module shutter 81b has a circular outer shape, but this is not limited to this. The module shutter 81b may have, for example, a rectangular outer shape. Also, for example, the module shutter may have a light-reducing section 812, a light-shielding section 813, and a light-transmitting section 814 arranged in a line.

(変形例1)
 上記モジュールシャッタ81bが適用される照明ユニットは、上記実施形態に限られるものではない。図8は、変形例1に係る照明ユニット90Aの構成を示す概略図である。
(Variation 1)
The lighting unit to which the module shutter 81b is applied is not limited to the above embodiment. Fig. 8 is a schematic diagram showing the configuration of a lighting unit 90A according to a first modified example.

 照明ユニット90Aは、第1光源ユニットOPU1と、第2光源ユニットOPU2と、照明光学系80Aと、を備える。第1光源ユニットOPU1は、第1の光源アレイ20Aと、第1の拡大光学系30Aとを含み、第2光源ユニットOPU2、は、第2の光源アレイ20Bと、第2の拡大光学系30Bと、を含む。第1の光源アレイ20A及び第2の光源アレイ20Bの構成は、上記実施形態に係る光源アレイ20と同一であるため、詳細な説明を省略する。また、第1の拡大光学系30A及び第2の拡大光学系30Bの構成は、上記実施形態に係る拡大光学系30と同一であるため、詳細な説明を省略する。 The illumination unit 90A includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80A. The first light source unit OPU1 includes a first light source array 20A and a first magnifying optical system 30A, and the second light source unit OPU2 includes a second light source array 20B and a second magnifying optical system 30B. The configurations of the first light source array 20A and the second light source array 20B are the same as those of the light source array 20 according to the above embodiment, and therefore detailed descriptions are omitted. The configurations of the first magnifying optical system 30A and the second magnifying optical system 30B are the same as those of the magnifying optical system 30 according to the above embodiment, and therefore detailed descriptions are omitted.

 照明光学系80Aは、第1のダイクロイックミラーDM1を含んで構成される第1の集光光学系83Aと、第2の集光光学系83Bと、第2のダイクロイックミラーDM2と、結像光学系81Aと、フライアイレンズFELと、開口絞り85と、コンデンサー光学系86と、照度補正フィルタ87と、を備える。 The illumination optical system 80A includes a first focusing optical system 83A including a first dichroic mirror DM1, a second focusing optical system 83B, a second dichroic mirror DM2, an imaging optical system 81A, a fly-eye lens FEL, an aperture stop 85, a condenser optical system 86, and an illuminance correction filter 87.

 第1の集光光学系83Aは、第1の拡大光学系30Aによって形成される発光部231の拡大像の瞳を形成する。すなわち、第1の集光光学系83Aの後側焦点位置が瞳の位置となる。第1の集光光学系83Aは、光路の途中に第1のダイクロイックミラーDM1を有し、ピーク波長385nmの光の少なくとも一部を反射する。これにより、第2のダイクロイックミラーDM2に光束が入射する。なお、第1の集光光学系83Aは、第1のダイクロイックミラーDM1を備えない構成としてもよく、その場合は、第1光源ユニットOPU1の配置と第1の集光光学系83Aの各レンズの配置を適宜調整して第2のダイクロイックミラーDM2に光束が入射するように構成すればよい。また、第1の集光光学系83Aは、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The first focusing optical system 83A forms the pupil of the magnified image of the light emitting unit 231 formed by the first magnifying optical system 30A. That is, the rear focal position of the first focusing optical system 83A is the position of the pupil. The first focusing optical system 83A has a first dichroic mirror DM1 in the middle of the optical path, and reflects at least a part of the light with a peak wavelength of 385 nm. As a result, the light beam is incident on the second dichroic mirror DM2. Note that the first focusing optical system 83A may be configured without the first dichroic mirror DM1. In that case, the arrangement of the first light source unit OPU1 and the arrangement of each lens of the first focusing optical system 83A may be appropriately adjusted so that the light beam is incident on the second dichroic mirror DM2. The first focusing optical system 83A may be configured with one lens, or may be configured with a lens group including multiple lenses.

 第2の集光光学系83Bは、第2の拡大光学系30Bによって形成される発光部231の拡大像の瞳を形成する。すなわち、第2の集光光学系83Bの後側焦点位置が瞳の位置となる。第2の集光光学系83Bは、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The second focusing optical system 83B forms the pupil of the magnified image of the light emitting section 231 formed by the second magnifying optical system 30B. In other words, the rear focal position of the second focusing optical system 83B is the pupil position. The second focusing optical system 83B may be composed of a single lens, or may be composed of a lens group including multiple lenses.

 第2のダイクロイックミラーDM2は、ピーク波長385nmの光の少なくとも一部を透過し、ピーク波長365nmの光の少なくとも一部を反射する。これにより、第1の集光光学系83Aによって形成された瞳像と、第2の集光光学系83Bによって形成された瞳像とを重ね合わせた合成像が形成される。 The second dichroic mirror DM2 transmits at least a portion of the light with a peak wavelength of 385 nm and reflects at least a portion of the light with a peak wavelength of 365 nm. This forms a composite image by superimposing the pupil image formed by the first focusing optical system 83A and the pupil image formed by the second focusing optical system 83B.

 結像光学系81Aの第1の光学系81aAは、第2のダイクロイックミラーDM2から射出された合成光によって第1光源ユニットOPU1(第1の光源アレイ20A)及び第2光源ユニットOPU2(第2の光源アレイ20B)の中間像を形成する。モジュールシャッタ81bは、第1光源ユニットOPU1及び第2光源ユニットOPU2の中間像の位置IIMの近傍に配置されている。 The first optical system 81aA of the imaging optical system 81A forms an intermediate image of the first light source unit OPU1 (first light source array 20A) and the second light source unit OPU2 (second light source array 20B) using the combined light emitted from the second dichroic mirror DM2. The module shutter 81b is disposed near the position IIM of the intermediate images of the first light source unit OPU1 and the second light source unit OPU2.

 その他の構成は、上記実施形態と同一であるため、詳細な説明を省略する。このように、複数の光源ユニットを有する露光装置においても、モジュールシャッタ81bを使用することで、照明ユニット90Aを大型化することなく、空間像計測時に第2のダイクロイックミラーDM2から射出された合成光の光量を減光することができる。 The rest of the configuration is the same as in the above embodiment, so detailed description will be omitted. In this way, even in an exposure device having multiple light source units, by using the module shutter 81b, it is possible to reduce the amount of combined light emitted from the second dichroic mirror DM2 during aerial image measurement without increasing the size of the illumination unit 90A.

(変形例2)
 図9は、変形例2に係る露光装置10Bの構成を示す概略図である。
(Variation 2)
FIG. 9 is a schematic diagram showing the configuration of an exposure apparatus 10B according to the second modification.

 露光装置10Bにおいて、照明ユニット90Bは、第1光源ユニットOPU1と、第2光源ユニットOPU2と、照明光学系80Bと、を備える。第1光源ユニットOPU1と、第2光源ユニットOPU2と、は、変形例1と同一であるため、詳細な説明を省略する。 In exposure device 10B, illumination unit 90B includes a first light source unit OPU1, a second light source unit OPU2, and an illumination optical system 80B. The first light source unit OPU1 and the second light source unit OPU2 are the same as those in modification example 1, so detailed description will be omitted.

 照明光学系80Bは、第1の集光光学系83A1と、第2の集光光学系83B1と、第3のダイクロイックミラーDM3と、結像光学系81Bと、フライアイレンズFELと、開口絞り85と、コンデンサー光学系86Bと、照度補正フィルタ87と、を備える。 The illumination optical system 80B includes a first focusing optical system 83A1, a second focusing optical system 83B1, a third dichroic mirror DM3, an imaging optical system 81B, a fly-eye lens FEL, an aperture stop 85, a condenser optical system 86B, and an illuminance correction filter 87.

 第1の集光光学系83A1は、上述の所定面PPまたはその近傍に配置されて、第1の拡大光学系30Aによって形成される発光部231の拡大像の瞳を形成する。第1の集光光学系83A1は、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The first focusing optical system 83A1 is disposed on or near the above-mentioned predetermined plane PP, and forms the pupil of the magnified image of the light-emitting part 231 formed by the first magnifying optical system 30A. The first focusing optical system 83A1 may be composed of a single lens, or may be composed of a lens group including multiple lenses.

 第2の集光光学系83B1は、上述の所定面PPまたはその近傍に配置されて、第2の拡大光学系30Bによって形成される発光部231の拡大像の瞳を形成する。第2の集光光学系83B1は、1枚のレンズで構成されていてもよいし、複数枚のレンズを含むレンズ群で構成されていてもよい。 The second focusing optical system 83B1 is disposed on or near the above-mentioned predetermined plane PP, and forms the pupil of the magnified image of the light-emitting part 231 formed by the second magnifying optical system 30B. The second focusing optical system 83B1 may be composed of a single lens, or may be composed of a lens group including multiple lenses.

 第3のダイクロイックミラーDM3は、ピーク波長385nmの光の少なくとも一部を透過し、ピーク波長365nmの光の少なくとも一部を反射する。これにより、第1の集光光学系83A1によって形成された瞳像と、第2の集光光学系83B1によって形成された瞳像とを重ね合わせた合成像が形成される。 The third dichroic mirror DM3 transmits at least a portion of the light with a peak wavelength of 385 nm and reflects at least a portion of the light with a peak wavelength of 365 nm. This forms a composite image by superimposing the pupil image formed by the first focusing optical system 83A1 and the pupil image formed by the second focusing optical system 83B1.

 結像光学系81Bは、第3のダイクロイックミラーDM3が合成した合成像をフライアイレンズFELの入射端に等倍投影する両側テレセントリックな光学系である。なお、結像光学系81Bは、第3のダイクロイックミラーDM3が合成した合成像をフライアイレンズFELの入射端に縮小投影してもよい。 The imaging optical system 81B is a double-telecentric optical system that projects the composite image created by the third dichroic mirror DM3 at the same magnification onto the incident end of the fly-eye lens FEL. Note that the imaging optical system 81B may also reduce and project the composite image created by the third dichroic mirror DM3 onto the incident end of the fly-eye lens FEL.

 結像光学系81Bは、第1の光学系81aBと、モジュールシャッタ81bと、第2の光学系81dBと、を備える。 The imaging optical system 81B includes a first optical system 81aB, a module shutter 81b, and a second optical system 81dB.

 結像光学系81Bの第1の光学系81aBは、第3のダイクロイックミラーDM3から射出された合成光によって第1の光源アレイ20A及び第2の光源アレイ20Bの中間像を形成する。モジュールシャッタ81bは、第1光源ユニットOPU1及び第2光源ユニットOPU2の中間像の位置IIMの近傍に配置されている。第2の光学系81dBは、第1光源ユニットOPU1及び第2光源ユニットOPU2の中間像をフライアイレンズFELに結像させる。 The first optical system 81aB of the imaging optical system 81B forms an intermediate image of the first light source array 20A and the second light source array 20B by the combined light emitted from the third dichroic mirror DM3. The module shutter 81b is disposed near the position IIM of the intermediate images of the first light source unit OPU1 and the second light source unit OPU2. The second optical system 81dB forms the intermediate images of the first light source unit OPU1 and the second light source unit OPU2 on the fly-eye lens FEL.

 フライアイレンズFELに入射した光束は多数のレンズエレメントにより波面分割され、各レンズエレメントの後側焦点面またはその近傍には1つの光源像がそれぞれ形成される。フライアイレンズFELの後側焦点面またはその近傍に形成された二次光源からの光束は、その近傍に配置された開口絞り85に入射する。 The light beam incident on the fly-eye lens FEL is wavefront-split by multiple lens elements, and one light source image is formed on or near the rear focal plane of each lens element. The light beam from the secondary light source formed on or near the rear focal plane of the fly-eye lens FEL is incident on an aperture stop 85 located nearby.

 開口絞り85を介した二次光源からの光は、コンデンサー光学系86Bの集光作用を受けた後、照度補正フィルタ87によりその照度が補正され、所定のパターンが形成されたマスクMSKを重畳的に照明する。 The light from the secondary light source passing through the aperture stop 85 is focused by the condenser optical system 86B, and then its illuminance is corrected by the illuminance correction filter 87, illuminating the mask MSK on which a predetermined pattern is formed in a superimposed manner.

 また、露光装置10Bにおいて、投影光学系PLは、マスクステージMSTの下方(-Z側)において、光学定盤73に支持されたオフナー型の光学系である。投影光学系PLは、例えば、Y軸方向を長手方向とする円弧形状のイメージフィールドを形成する。 In addition, in exposure apparatus 10B, projection optical system PL is an Offner type optical system supported by an optical base 73 below (-Z side) mask stage MST. Projection optical system PL forms, for example, an arc-shaped image field with the Y-axis direction as the longitudinal direction.

 照明光学系IOPからの照明光ILによってマスクMSK上の照明領域が照明されると、マスクMSKを透過した照明光ILにより、投影光学系PLを介して、その照明領域内のマスクMSKの回路パターンの投影像(部分正立像)が、投影光学系PLの像面側に配置されるプレートP上の照射領域(露光領域(照明領域に共役))に形成される。これにより、プレートPが露光されてプレートP上にマスクMSKのパターンが転写される。 When the illumination area on the mask MSK is illuminated by the illumination light IL from the illumination optical system IOP, the illumination light IL that passes through the mask MSK forms a projected image (partial upright image) of the circuit pattern of the mask MSK in the illumination area in an irradiation area (exposure area (conjugate to the illumination area)) on the plate P placed on the image plane side of the projection optical system PL by way of the projection optical system PL. This exposes the plate P and transfers the pattern of the mask MSK onto the plate P.

 変形例2に示すように、オフナー型の投影光学系PLを備える露光装置にモジュールシャッタ81bを適用してもよい。 As shown in Modification 2, the module shutter 81b may be applied to an exposure apparatus equipped with an Offner-type projection optical system PL.

 なお、第1光源ユニットOPU1及び第2光源ユニットOPU2が出射する光の波長は上述したものに限られず、360~440nmの範囲内にピーク波長を有する光を出射するLEDチップを適宜組み合わせて第1光源ユニットOPU1と第2光源ユニットOPU2とを構成してもよい。 The wavelengths of the light emitted by the first light source unit OPU1 and the second light source unit OPU2 are not limited to those described above, and the first light source unit OPU1 and the second light source unit OPU2 may be configured by appropriately combining LED chips that emit light with a peak wavelength in the range of 360 to 440 nm.

 例えば、第1光源ユニットOPU1がピーク波長405nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長365nmの光を出射するように構成してもよい。また、第1光源ユニットOPU1がピーク波長395nmの光を出射し、かつ、第2光源ユニットOPU2がピーク波長385nmの光を出射するように構成してもよい。第1光源ユニットOPU1から出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせは、これらの例示には限られない。なお、第1光源ユニットOPU1が出射する光の波長と第2光源ユニットOPU2が出射する光の波長の組み合わせを、本実施形態以外の組み合わせとする場合は、使用する波長に応じて適宜ダイクロイックミラーの材料を変更することが好ましい。 For example, the first light source unit OPU1 may be configured to emit light with a peak wavelength of 405 nm, and the second light source unit OPU2 may be configured to emit light with a peak wavelength of 365 nm. The first light source unit OPU1 may be configured to emit light with a peak wavelength of 395 nm, and the second light source unit OPU2 may be configured to emit light with a peak wavelength of 385 nm. The combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is not limited to these examples. Note that when the combination of the wavelength of the light emitted from the first light source unit OPU1 and the wavelength of the light emitted from the second light source unit OPU2 is a combination other than that of this embodiment, it is preferable to change the material of the dichroic mirror appropriately depending on the wavelength to be used.

 上記実施形態及びその変形例では、露光装置が液晶表示装置(フラットパネルディスプレイ)の製造に使用されるものとして説明したが、露光装置はシリコンウエハを露光して半導体を製造するものであってもよい。 In the above embodiment and its modified examples, the exposure apparatus has been described as being used to manufacture liquid crystal display devices (flat panel displays), but the exposure apparatus may also be used to manufacture semiconductors by exposing silicon wafers.

 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The above-described embodiment is a preferred example of the present invention. However, the present invention is not limited to this embodiment, and various modifications are possible without departing from the spirit of the present invention.

10,10B 露光装置
20 光源アレイ
20A 第1の光源アレイ
20B 第2の光源アレイ
21 基板
23 LEDチップ
80,80A,80B 照明光学系
81a,81aA,81aB 第1の光学系
81b モジュールシャッタ
811 基材
812 減光部
813 遮光部
814 透過部
90,90A,90B 照明ユニット
100 投影光学ユニット
AX1 基準光軸
AX2 回転軸
CNT 制御装置
DM2 第2のダイクロイックミラー
DM3 第3のダイクロイックミラー
FEL フライアイレンズ
IIM 中間像の位置
MSK マスク
OPU 光源ユニット
OPU1 第1光源ユニット
OPU2 第2光源ユニット
PL 投影光学系
P ガラス基板
10, 10B Exposure apparatus 20 Light source array 20A First light source array 20B Second light source array 21 Substrate 23 LED chip 80, 80A, 80B Illumination optical system 81a, 81aA, 81aB First optical system 81b Module shutter 811 Substrate 812 Light-attenuating section 813 Light-shielding section 814 Transmitting section 90, 90A, 90B Illumination unit 100 Projection optical unit AX1 Reference optical axis AX2 Rotation axis CNT Control device DM2 Second dichroic mirror DM3 Third dichroic mirror FEL Fly's eye lens IIM Position of intermediate image MSK Mask OPU Light source unit OPU1 First light source unit OPU2 Second light source unit PL Projection optical system P Glass substrate

Claims (16)

 光源と、
 前記光源の中間像を形成する第1の光学系と、
 前記中間像の位置またはその近傍に減光部材が配置された第1の状態と、前記減光部材が配置されていない第2の状態と、を切り換え可能な制御機構と、
を備える照明ユニット。
A light source;
a first optical system that forms an intermediate image of the light source;
a control mechanism capable of switching between a first state in which a light-reducing member is disposed at or near the position of the intermediate image and a second state in which the light-reducing member is not disposed;
A lighting unit comprising:
 前記第2の状態では、前記中間像の光束は減光されない、請求項1に記載の照明ユニット。 The lighting unit of claim 1, wherein in the second state, the luminous flux of the intermediate image is not dimmed.  前記第2の状態は、前記中間像の位置またはその近傍に遮光部材が配置された第3の状態と、前記中間像の位置またはその近傍に前記減光部材及び前記遮光部材のいずれもが配置されていない第4の状態と、のいずれかである、
請求項1に記載の照明ユニット。
The second state is either a third state in which a light blocking member is arranged at or near the position of the intermediate image, or a fourth state in which neither the light reducing member nor the light blocking member is arranged at or near the position of the intermediate image.
2. The lighting unit according to claim 1.
 前記第1の光学系の光軸と略平行な回転軸を有し、光透過性の基材に前記減光部材として機能する減光部と、前記遮光部材として機能する遮光部と、前記中間像の光束を透過する透過部と、が形成されたシャッタを備え、
 前記制御機構は、前記シャッタを前記回転軸まわりに回転させることにより、前記第1の状態と、前記第3の状態と、前記第4の状態とを切り替える、請求項3に記載の照明ユニット。
a shutter having a rotation axis substantially parallel to an optical axis of the first optical system, the shutter including a light-transmitting base material on which a light-attenuating section functioning as the light-attenuating member, a light-shielding section functioning as the light-shielding member, and a light-transmitting section for transmitting a light beam of the intermediate image are formed;
The lighting unit according to claim 3 , wherein the control mechanism switches between the first state, the third state, and the fourth state by rotating the shutter about the rotation axis.
 前記シャッタは、円形状の外形を有し、
 前記減光部と、前記遮光部と、前記透過部とは各々扇形状を有する、
請求項4に記載の照明ユニット。
the shutter has a circular outer shape;
The light attenuating portion, the light blocking portion, and the light transmitting portion each have a sector shape.
5. The lighting unit according to claim 4.
 前記透過部は2つ設けられ、
 前記回転軸を中心とする円の周方向において、前記減光部と、前記遮光部とはそれぞれ、2つの前記透過部の間に配置されている、
請求項4または請求項5に記載の照明ユニット。
Two of the transmission sections are provided,
In a circumferential direction of a circle centered on the rotation axis, the light attenuating portion and the light blocking portion are each disposed between two of the light transmitting portions.
The lighting unit according to claim 4 or 5.
 前記減光部材は、前記光源からの光の光量を、1.2mW/cm以下に減光する、
請求項1から請求項6のいずれか一項記載の照明ユニット。
The light-reducing member reduces the amount of light from the light source to 1.2 mW/cm2 or less .
The lighting unit according to any one of claims 1 to 6.
 前記光源は、LED光源である、
請求項1から請求項7のいずれか一項記載の照明ユニット。
The light source is an LED light source.
The lighting unit according to any one of claims 1 to 7.
 前記LED光源は、アレイ状に並べられた複数のLED素子を有する、
請求項8に記載の照明ユニット。
The LED light source has a plurality of LED elements arranged in an array.
9. The lighting unit according to claim 8.
 前記光源から射出される光のピーク波長は、360~370nmの範囲内にある、
請求項1から請求項9のいずれか一項記載の照明ユニット。
The peak wavelength of the light emitted from the light source is in the range of 360 to 370 nm.
The lighting unit according to any one of claims 1 to 9.
 前記光源から射出される光のピーク波長は、380~390nmの範囲内にある、
請求項1から請求項9のいずれか一項記載の照明ユニット。
The peak wavelength of the light emitted from the light source is in the range of 380 to 390 nm.
The lighting unit according to any one of claims 1 to 9.
 前記光源から射出される光のピーク波長は、400~410nmの範囲内にある、
請求項1から請求項9のいずれか一項記載の照明ユニット。
The peak wavelength of the light emitted from the light source is in the range of 400 to 410 nm.
10. The lighting unit according to claim 1.
 複数の光源と、
 前記複数の光源から射出された光を合成する合成光学素子と、
 前記合成光学素子から射出された合成光によって前記複数の光源の中間像を形成する第1の光学系と、
 前記中間像の位置またはその近傍に減光部材が配置された状態と、前記減光部材が配置されていない状態と、を切り換え可能な制御機構と、
を備える照明ユニット。
A plurality of light sources;
a combining optical element that combines the light emitted from the plurality of light sources;
a first optical system that forms an intermediate image of the plurality of light sources by using a combined light emitted from the combining optical element;
a control mechanism capable of switching between a state in which a light-reducing member is disposed at or near the position of the intermediate image and a state in which the light-reducing member is not disposed;
A lighting unit comprising:
 請求項1から請求項13のいずれか一項に記載の照明ユニットと、
 前記照明ユニットにより照明されるマスクのパターン像を感光性基板上に投影する投影光学系と、
を備える露光装置。
A lighting unit according to any one of claims 1 to 13,
a projection optical system that projects a pattern image of a mask illuminated by the illumination unit onto a photosensitive substrate;
An exposure apparatus comprising:
 前記感光性基板は、少なくとも一辺の長さ又は対角長が500mm以上である、
請求項14に記載の露光装置。
The photosensitive substrate has at least one side length or diagonal length of 500 mm or more.
The exposure apparatus according to claim 14.
 請求項14または請求項15に記載の露光装置を用いた露光方法であって、
 前記照明ユニットによりマスクを照明することと、
 前記投影光学系を用いて前記マスクのパターン像を感光性基板へ投影することと、
を含む露光方法。
An exposure method using the exposure apparatus according to claim 14 or 15,
illuminating a mask with the illumination unit;
projecting a pattern image of the mask onto a photosensitive substrate using the projection optical system;
An exposure method comprising:
PCT/JP2023/025895 2023-07-13 2023-07-13 Illumination unit, exposure device, and exposure method WO2025013286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2023/025895 WO2025013286A1 (en) 2023-07-13 2023-07-13 Illumination unit, exposure device, and exposure method
TW113124649A TW202503431A (en) 2023-07-13 2024-07-02 Illumination unit, exposure device, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/025895 WO2025013286A1 (en) 2023-07-13 2023-07-13 Illumination unit, exposure device, and exposure method

Publications (1)

Publication Number Publication Date
WO2025013286A1 true WO2025013286A1 (en) 2025-01-16

Family

ID=94215051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025895 WO2025013286A1 (en) 2023-07-13 2023-07-13 Illumination unit, exposure device, and exposure method

Country Status (2)

Country Link
TW (1) TW202503431A (en)
WO (1) WO2025013286A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238673A (en) * 2011-05-10 2012-12-06 Canon Inc Exposure apparatus and method for manufacturing device using the same
JP2023086568A (en) * 2021-12-10 2023-06-22 キヤノン株式会社 Measurement apparatus, lithography apparatus, and article manufacturing method
JP2023096984A (en) * 2021-12-27 2023-07-07 キヤノン株式会社 Exposure apparatus and manufacturing method of article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238673A (en) * 2011-05-10 2012-12-06 Canon Inc Exposure apparatus and method for manufacturing device using the same
JP2023086568A (en) * 2021-12-10 2023-06-22 キヤノン株式会社 Measurement apparatus, lithography apparatus, and article manufacturing method
JP2023096984A (en) * 2021-12-27 2023-07-07 キヤノン株式会社 Exposure apparatus and manufacturing method of article

Also Published As

Publication number Publication date
TW202503431A (en) 2025-01-16

Similar Documents

Publication Publication Date Title
JP2001521278A (en) Lens array photolithography
JP2004335864A (en) Aligner and exposure method
JP2008263092A (en) Projection exposure device
US7626680B2 (en) Exposure apparatus and device fabrication method using the same
JP2003347184A (en) Exposure method, exposure device, and method of manufacturing device
US20010052966A1 (en) Scanning exposure method and system
KR100846337B1 (en) Exposure method and exposure apparatus
US20050024619A1 (en) Exposure apparatus
JP2002050564A (en) Illuminating device, projection aligner and method for manufacturing device using the same
US7292316B2 (en) Illumination optical system and exposure apparatus having the same
WO2025013286A1 (en) Illumination unit, exposure device, and exposure method
JP2001305745A (en) Scanning exposure system and scanning type exposure device
TWI876438B (en) Light source unit, illumination unit, exposure device, and exposure method
TWI885424B (en) Illumination unit, exposure device, and exposure method
WO2024038535A1 (en) Lighting unit, exposure device, and exposure method
JP6428839B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP5360529B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
WO2024089737A1 (en) Synthetic optical element, lighting unit, exposure device, and exposure method
JP7340167B2 (en) Illumination optical system, exposure equipment, and device manufacturing method
TW202522134A (en) Light source unit
WO2024038538A1 (en) Light source unit, illumination unit, exposure device, and exposure method
JP6729663B2 (en) Exposure method and exposure apparatus
WO2025079172A1 (en) Light source unit, illumination unit, exposure device, and exposure method
WO2025094252A1 (en) Exposure apparatus
JP4729899B2 (en) Scanning projection exposure apparatus, mask stage running correction method, and microdevice manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23945159

Country of ref document: EP

Kind code of ref document: A1