[go: up one dir, main page]

WO2025013244A1 - Outdoor unit for air conditioner and air conditioner comprising same - Google Patents

Outdoor unit for air conditioner and air conditioner comprising same Download PDF

Info

Publication number
WO2025013244A1
WO2025013244A1 PCT/JP2023/025731 JP2023025731W WO2025013244A1 WO 2025013244 A1 WO2025013244 A1 WO 2025013244A1 JP 2023025731 W JP2023025731 W JP 2023025731W WO 2025013244 A1 WO2025013244 A1 WO 2025013244A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
air conditioner
heat
heat transfer
Prior art date
Application number
PCT/JP2023/025731
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 ▲高▼橋
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/025731 priority Critical patent/WO2025013244A1/en
Publication of WO2025013244A1 publication Critical patent/WO2025013244A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • This disclosure relates to an outdoor unit for an air conditioner and an air conditioner equipped with the same, and in particular to the configuration of a heat exchanger in the outdoor unit for the air conditioner.
  • Patent Document 1 discloses an air conditioner that includes a main casing, an air intake port at one end of the main casing, an air outlet port at the other end of the main casing, an air passage located between the air intake port and the air outlet port in the main casing, an evaporative heat exchanger located on the air intake side of the air passage, a blower located between the evaporative heat exchanger and the air outlet port, and a compressor that flows refrigerant into a refrigeration circuit including the evaporative heat exchanger.
  • the evaporative heat exchanger is divided into at least two heat exchanger parts based on a refrigerant distribution path, and a bypass circuit that bypasses the gas discharged from the compressor and an electromagnetic opening/closing valve that controls the bypass state of the bypass circuit are provided corresponding to each of the heat exchanger parts, and defrost operation is performed alternately for each of the divided heat exchanger parts without reversing the refrigeration cycle of the refrigeration circuit.
  • Patent Document 1 when the evaporative heat exchanger is divided into an upper heat exchanger and a lower heat exchanger, and the lower heat exchanger is in frosting operation while the upper heat exchanger is defrosting, water melted from the upper heat exchanger flows into the lower heat exchanger and concentrates there, causing frost to form faster on the lower heat exchanger and requiring more defrosting capacity for the lower heat exchanger. As a result, it takes longer to defrost the lower heat exchanger, and the time required to complete defrosting becomes longer, resulting in a problem of reduced heating capacity.
  • This disclosure has been made to solve the problems described above, and aims to provide an outdoor unit for an air conditioner that maintains the heating function of the indoor unit of the air conditioner even during defrosting while suppressing a decrease in heating capacity, and an air conditioner equipped with the outdoor unit.
  • the outdoor unit of the air conditioner comprises a housing forming an outer shell, and a first heat exchanger and a second heat exchanger disposed within the housing and arranged in the left-right direction, the first heat exchanger and the second heat exchanger each being arranged at intervals in the left-right direction and each comprising a plurality of heat transfer tubes extending in the up-down direction, an upper header disposed above the plurality of heat transfer tubes and into which the upper ends of the plurality of heat transfer tubes are inserted, and a lower header disposed below the plurality of heat transfer tubes and into which the lower ends of the plurality of heat transfer tubes are inserted.
  • the air conditioner according to the present disclosure includes the above-mentioned outdoor unit of the air conditioner and an indoor unit of the air conditioner.
  • the first heat exchanger and the second heat exchanger arranged in the left-right direction within the housing each have a plurality of heat transfer tubes arranged at intervals in the left-right direction and extending in the up-down direction, so that the refrigerant flowing through each heat transfer tube is uniform, melt water does not concentrate in any place, and the defrosting capacity required for each heat transfer tube is uniform. Furthermore, because the first heat exchanger and the second heat exchanger are arranged in the left-right direction, melt water does not concentrate on either one side, and the defrosting capacity required for each heat exchanger is uniform. As a result, it is possible to prevent the time required to complete defrosting from becoming longer, and it is possible to prevent a decrease in heating capacity while maintaining the heating function of the indoor unit of the air conditioner even during defrosting.
  • FIG. 1 is a schematic diagram of an outdoor unit of an air conditioner according to a first embodiment, viewed from the side; 1 is a schematic diagram of an outdoor unit of an air conditioner according to a first embodiment, viewed from the rear side.
  • FIG. 1 is a diagram showing the configuration of an air conditioner including an outdoor unit of an air conditioner according to a first embodiment.
  • 2 is a schematic diagram of an outdoor heat exchanger of the outdoor unit of the air conditioner according to the first embodiment, viewed from the front side.
  • FIG. 11 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 2, viewed from the front side.
  • FIG. 13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 3, viewed from the front side.
  • FIG. 13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 4, viewed from the front side.
  • FIG. 13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 5, viewed from the front side.
  • FIG. 13 is a schematic diagram showing a plan view of a heat transfer tube of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 6.
  • FIG. 1 is a schematic diagram of an outdoor unit 10 of an air conditioner according to embodiment 1 as viewed from the side.
  • FIG. 2 is a schematic diagram of an outdoor unit 10 of an air conditioner according to embodiment 1 as viewed from the back side.
  • the outdoor unit 10 of the air conditioner according to embodiment 1 (hereinafter, also simply referred to as the outdoor unit 10) is provided with a substantially rectangular parallelepiped housing 19 that constitutes an outer shell. Inside the housing 19, a blower chamber 19a and a machine chamber 19b are formed.
  • the outdoor blower 15 and the outdoor heat exchanger 30 are arranged in the blower chamber 19a, and the compressor 11, the flow path switching device 12, the throttling device 14 (14a, 14b), the flow control device 16 (16a, 16b), and the bypass flow control device 17 (17a, 17b) described later are arranged in the machine chamber 19b.
  • the outdoor heat exchanger 30 is made up of a first heat exchanger 30a and a second heat exchanger 30b arranged in the left-right direction.
  • FIG 3 is a diagram showing the configuration of an air conditioner 100 equipped with an outdoor unit 10 of the air conditioner according to embodiment 1.
  • the air conditioner 100 is equipped with an outdoor unit 10 and an indoor unit 20 of the air conditioner (hereinafter also simply referred to as the indoor unit 20).
  • the outdoor unit 10 is equipped with a compressor 11, a flow switching device 12, an outdoor heat exchanger 30 (first heat exchanger 30a, second heat exchanger 30b), an accumulator 13, a throttling device 14 (14a, 14b), an outdoor blower 15, a flow rate adjustment device 16 (16a, 16b), and a bypass circuit 2 (2a, 2b).
  • the indoor unit 20 is equipped with an indoor heat exchanger 21 and an indoor blower 22.
  • an air conditioner 100 having one outdoor unit 10 and one indoor unit 20 is illustrated, but the air conditioner 100 may have two or more outdoor units 10 and indoor units 20.
  • the compressor 11, the flow switching device 12, the indoor heat exchanger 21, the throttling device 14 (14a, 14b), the outdoor heat exchanger 30 (first heat exchanger 30a, second heat exchanger 30b), the flow control device 16 (16a, 16b), and the accumulator 13 are connected by a main pipe 41 and branch pipes 42 (42a, 42b) to form a main circuit 1 through which the refrigerant circulates.
  • the flow control device 16a, the first heat exchanger 30a, and the throttling device 14a are connected in series by the branch pipe 42a
  • the flow control device 16b, the second heat exchanger 30b, and the throttling device 14b are connected in series by the branch pipe 42b, and they are connected in parallel with each other.
  • the refrigerant circuit of the air conditioner 100 is composed of this main circuit 1 and a bypass circuit 2 (2a, 2b) described later.
  • Compressor 11 draws in low-temperature, low-pressure refrigerant, compresses it, and discharges high-temperature, high-pressure refrigerant.
  • Compressor 11 is, for example, an inverter compressor whose capacity, which is the amount of refrigerant discharged per unit time, is controlled by changing the operating frequency.
  • the flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction of the refrigerant flow. Note that instead of a four-way valve, a combination of a two-way valve and a three-way valve may also be used as the flow path switching device 12.
  • the outdoor heat exchanger 30 is composed of a first heat exchanger 30a and a second heat exchanger 30b that operate independently of each other.
  • the first heat exchanger 30a and the second heat exchanger 30b exchange heat between, for example, the outdoor air, which is the air outside the room, and the refrigerant, and act as a condenser during cooling operation and as an evaporator during heating operation.
  • the outdoor blower 15 is provided near the outdoor heat exchanger 30 and sends outdoor air to the outdoor heat exchanger 30.
  • the throttling device 14 (14a, 14b) reduces the pressure of the refrigerant and expands it.
  • the throttling device 14 (14a, 14b) is, for example, an electronic expansion valve that can adjust the opening of the throttling, and by adjusting the opening, the pressure of the refrigerant flowing into the indoor heat exchanger 21 is controlled during cooling operation, and the pressure of the refrigerant flowing into the outdoor heat exchanger 30 is controlled during heating operation.
  • the accumulator 13 is provided on the suction side of the compressor 11 and is intended to store excess refrigerant that occurs due to differences in operating conditions between cooling and heating, or excess refrigerant due to transient changes in operation.
  • Flow rate control device 16a is provided in branch pipe 42a and adjusts the amount of refrigerant flowing through branch pipe 42a.
  • Flow rate control device 16b is provided in branch pipe 42b and adjusts the amount of refrigerant flowing through branch pipe 42b.
  • the flow rate control devices 16 (16a, 16b) can be any device that is at least capable of opening and closing the flow path, and are composed of, for example, a solenoid valve or a two-way valve.
  • the bypass circuit 2 (2a, 2b) includes a bypass pipe 43 (43a, 43b) and a bypass flow control device 17 (17a, 17b).
  • the bypass circuit 2a is a circuit that allows a portion of the refrigerant discharged from the compressor 11 to flow from the main pipe 41 between the compressor 11 and the flow switching device 12 to the branch pipe 42a between the first heat exchanger 30a and the flow control device 16a.
  • the bypass circuit 2b is a circuit that allows a portion of the refrigerant discharged from the compressor 11 to flow from the main pipe 41 between the compressor 11 and the flow switching device 12 to the branch pipe 42b between the second heat exchanger 30b and the flow control device 16b.
  • the bypass pipe 43a is a pipe that bypasses the main pipe 41 between the compressor 11 and the flow path switching device 12 to the branch pipe 42a between the first heat exchanger 30a and the flow control device 16a.
  • the bypass pipe 43b is a pipe that bypasses the main pipe 41 between the compressor 11 and the flow path switching device 12 to the branch pipe 42b between the second heat exchanger 30b and the flow control device 16b.
  • the bypass flow rate control device 17a is provided in the bypass pipe 43a and adjusts the amount of refrigerant flowing through the bypass pipe 43a.
  • the bypass flow rate control device 17b is provided in the bypass pipe 43b and adjusts the amount of refrigerant flowing through the bypass pipe 43b.
  • the bypass flow rate control devices 17 (17a, 17b) can be any device that is at least capable of opening and closing the flow path, and are, for example, composed of a solenoid valve or a two-way valve.
  • the indoor heat exchanger 21 exchanges heat between the indoor air that is the space to be air-conditioned and the refrigerant, and acts as an evaporator during cooling operation and as a condenser during heating operation.
  • the indoor blower 22 is provided near the indoor heat exchanger 21 and sends indoor air to the indoor heat exchanger 21.
  • a fluorocarbon refrigerant for example, a fluorocarbon refrigerant, an HFO refrigerant, etc.
  • a fluorocarbon refrigerant for example, there are HFC refrigerants such as R32 refrigerant, R125, and R134a.
  • HFC refrigerant mixed refrigerants such as R410A, R407c, and R404A.
  • HFO refrigerant for example, there are HFO-1234yf, HFO-1234ze(E), and HFO-1234ze(Z).
  • refrigerants used in vapor compression heat pump circuits such as CO2 refrigerant, HC refrigerant, ammonia refrigerant, and a mixed refrigerant of R32 and HFO-1234yf, etc.
  • CO2 refrigerant for example, propane, isobutane refrigerant, etc.
  • HC refrigerant for example, propane, isobutane refrigerant, etc.
  • the air conditioner 100 has three operating modes: a cooling operation mode, a normal heating operation mode, and a heating/defrost operation mode.
  • the cooling operation mode is a mode in which the indoor unit 20 performs cooling operation, with the outdoor heat exchanger 30 acting as a condenser and the indoor unit 20 cooling the room.
  • the normal heating operation mode is a mode in which the indoor unit 20 performs heating operation, with the outdoor heat exchanger 30 acting as an evaporator and the indoor unit 20 heating the room.
  • the heating/defrost operation mode is a mode in which the indoor unit 20 performs heating operation, with a portion of the outdoor heat exchanger 30 being the defrost target, that is, one of the first heat exchanger 30a and the second heat exchanger 30b being the defrost target and the other acting as an evaporator and the indoor unit 20 heating the room.
  • the heating/defrosting operation mode is an operation mode in which one of the first heat exchanger 30a and the second heat exchanger 30b acts as an evaporator while the other is defrosting, thereby maintaining heating operation while defrosting.
  • the first heat exchanger 30a and the second heat exchanger 30b are alternately defrosted.
  • one of the first heat exchanger 30a and the second heat exchanger 30b acts as an evaporator to perform heating operation while the other is defrosted.
  • the heating/defrosting operation mode when the defrosting of the other is completed, the other acts as an evaporator to perform heating operation and one is defrosted.
  • the heating/defrosting operation mode is performed when the first heat exchanger 30a and the second heat exchanger 30b are frosted during normal heating operation.
  • the heating/defrosting mode may be switched to when the drive frequency of the compressor 11 becomes lower than the frequency threshold value.
  • the control device 50 controls the cooling and heating operations of the indoor unit 20, changes to the set room temperature, the throttling device 14, the flow control device 16, and the bypass flow control device 17.
  • the control device 50 according to the first embodiment is composed of a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit).
  • the control device 50 also has a memory device (not shown) and has data in the form of programs that contain processing procedures related to control, etc. Then, the control arithmetic processing device executes processing based on the program data to realize control.
  • the compressor 11 compresses the refrigerant sucked in and discharges the refrigerant in a high-temperature, high-pressure gas state.
  • the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and branches, then passes through the flow control device 16a and the flow control device 16b, respectively, and flows into the first heat exchanger 30a and the second heat exchanger 30b, which act as condensers.
  • the refrigerant exchanges heat with the outdoor air sent by the outdoor blower 15, condenses and liquefies, and becomes a medium-temperature, high-pressure liquid refrigerant.
  • the condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14a and the throttling device 14b, respectively.
  • the medium-temperature, high-pressure liquid refrigerant that flows into the throttling device 14a and the throttling device 14b is expanded and decompressed in the throttling device 14a and the throttling device 14b, becoming a low-temperature, low-pressure two-phase gas-liquid refrigerant.
  • the indoor heat exchanger 21 acts as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 22, evaporating and gasifying. At this time, the indoor air is cooled, and cooling is performed inside the room.
  • the evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 12 and the accumulator 13 and is sucked into the compressor 11.
  • the compressor 11 compresses the refrigerant it draws in and discharges it in a high-temperature, high-pressure gas state.
  • the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser.
  • the indoor heat exchanger 21 the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, and becomes a medium-temperature, high-pressure liquid refrigerant.
  • the indoor air is warmed and heating is performed inside the room.
  • the condensed medium-temperature, high-pressure liquid refrigerant branches and then flows into the throttling device 14a and the throttling device 14b, respectively.
  • the medium-temperature, high-pressure refrigerant that flows into the throttling device 14a and the throttling device 14b is expanded and reduced in pressure to become a medium-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the first heat exchanger 30a and the second heat exchanger 30b, which act as evaporators, respectively.
  • the refrigerant exchanges heat with the outdoor air sent by the outdoor blower 15 in the first heat exchanger 30a and the second heat exchanger 30b, evaporating and gasifying.
  • the evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16a and the flow control device 16b, respectively, and merges, then passes through the flow switching device 12 and the accumulator 13 and is sucked into the compressor 11.
  • Heating/defrosting operation mode the flow path switching device 12 is switched as shown by the solid line in FIG. 3, the discharge side of the compressor 11 is connected to the indoor heat exchanger 21, and the suction side of the compressor 11 is connected to the first heat exchanger 30a and the second heat exchanger 30b.
  • the heating/defrosting operation mode one of the first heat exchanger 30a and the second heat exchanger 30b is selected as the defrosting target and defrosting is performed, and the other acts as an evaporator to continue the heating operation.
  • the open/closed states of the flow rate control devices 16a and 16b, and the bypass flow rate control devices 17a and 17a are alternately switched, and the defrosting target is alternately switched between the first heat exchanger 30a and the second heat exchanger 30b.
  • the flow of the refrigerant is switched by switching between the first heat exchanger 30a or the second heat exchanger 30b to be defrosted and the first heat exchanger 30a or the second heat exchanger 30b acting as an evaporator.
  • the flow control device 16b and the bypass flow control device 17a are open, and the flow control device 16a and the bypass flow control device 17b are closed.
  • the compressor 11 compresses the refrigerant it draws in and discharges the refrigerant in a high-temperature, high-pressure gas state.
  • a portion of the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser.
  • the indoor heat exchanger 21 the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, becoming a medium-temperature, high-pressure liquid refrigerant.
  • the condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14b.
  • the medium-temperature, high-pressure refrigerant that flows into the throttling device 14b is expanded and reduced in pressure, becoming a medium-pressure two-phase gas-liquid refrigerant.
  • the refrigerant in the gas-liquid two-phase state does not flow to the first heat exchanger 30a, which is the defrost target, but flows into the second heat exchanger 30b, which acts as an evaporator, where it exchanges heat with the outdoor air sent by the outdoor blower 15, evaporating and gasifying.
  • the evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16b, the flow switching device 12, and the accumulator 13 and is sucked into the compressor 11.
  • a part of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the bypass pipe 43a without passing through the flow switching device 12.
  • the refrigerant that flows into the bypass pipe 43a passes through the bypass flow control device 17a and flows into the first heat exchanger 30a to be defrosted.
  • the refrigerant that flows into the first heat exchanger 30a is cooled by heat exchange with the frost that has adhered to the first heat exchanger 30a. In this way, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the first heat exchanger 30a, melting the frost that has adhered to the first heat exchanger 30a.
  • the refrigerant that flows out of the first heat exchanger 30a after defrosting the first heat exchanger 30a passes through the throttling device 14a and merges with the medium-temperature, high-pressure liquid refrigerant that has been condensed in the indoor heat exchanger 21.
  • the second heat exchanger 30b is selected as the defrost target, and the second heat exchanger 30b is defrosted while the first heat exchanger 30a acts as an evaporator to continue heating.
  • the flow control device 16a and the bypass flow control device 17b are open, and the flow control device 16b and the bypass flow control device 17a are closed.
  • the compressor 11 compresses the refrigerant it draws in and discharges the refrigerant in a high-temperature, high-pressure gas state.
  • a portion of the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser.
  • the indoor heat exchanger 21 the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, becoming a medium-temperature, high-pressure liquid refrigerant.
  • the condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14a.
  • the medium-temperature, high-pressure refrigerant that flows into the throttling device 14a is expanded and reduced in pressure, becoming a medium-pressure two-phase gas-liquid refrigerant.
  • the refrigerant in the gas-liquid two-phase state does not flow to the second heat exchanger 30b, which is the defrosting target, but flows into the first heat exchanger 30a, which acts as an evaporator, where it exchanges heat with the outdoor air sent by the outdoor blower 15, evaporating and gasifying.
  • the evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16a, the flow path switching device 12, and the accumulator 13 and is sucked into the compressor 11.
  • a part of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the bypass pipe 43b without passing through the flow switching device 12.
  • the refrigerant that flows into the bypass pipe 43b passes through the bypass flow control device 17b and flows into the second heat exchanger 30b to be defrosted.
  • the refrigerant that flows into the second heat exchanger 30b is cooled by heat exchange with the frost that has adhered to the second heat exchanger 30b. In this way, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the second heat exchanger 30b, melting the frost that has adhered to the second heat exchanger 30b.
  • the refrigerant that flows out of the second heat exchanger 30b after defrosting the second heat exchanger 30b passes through the throttling device 14b and merges with the medium-temperature, high-pressure liquid refrigerant that has been condensed in the indoor heat exchanger 21.
  • FIG. 4 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to the first embodiment, seen from the front side. As shown in FIG. 4, the first heat exchanger 30a and the second heat exchanger 30b are arranged at intervals in the left-right direction (horizontal direction).
  • the first heat exchanger 30a and the second heat exchanger 30b are of a fin tube type, and each of them is arranged at intervals in the left-right direction (horizontal direction), and includes a plurality of heat transfer tubes 33 extending in the up-down direction (vertical direction), plate-shaped fins 34 provided between adjacent heat transfer tubes 33 and extending in the up-down direction (vertical direction), an upper header 31 provided above the plurality of heat transfer tubes 33 and into which the upper ends of the plurality of heat transfer tubes 33 are inserted, and a lower header 32 provided below the plurality of heat transfer tubes 33 and into which the lower ends of the plurality of heat transfer tubes 33 are inserted.
  • the heat transfer tubes 33 are arranged in parallel in the left-right direction (horizontal direction) at intervals so that the wind generated by the outdoor blower 15 can flow, and the refrigerant flows in the up-down direction (vertical direction) inside the tubes extending in the up-down direction (vertical direction).
  • the heat transfer tubes 33 are, for example, flat tubes that are heat transfer tubes with an elliptical cross section whose width is greater than its length in a cross section perpendicular to the flow direction of the refrigerant.
  • the fins 34 are connected between adjacent heat transfer tubes 33 and transfer heat to the heat transfer tubes 33.
  • the fins 34 improve the heat exchange efficiency between the air and the refrigerant, and are, for example, corrugated fins, but are not limited to this.
  • the upper header 31 and the lower header 32 extend in the left-right direction (horizontal direction) and are cylindrical bodies with both left and right ends closed, and a space is formed inside through which the refrigerant flows.
  • melt water flows from the upper heat transfer tube 33 and concentrates on the lower heat transfer tube 33, so the lower heat transfer tube 33 requires more defrosting capacity, and the amount of refrigerant flowing is small because the head is low and the refrigerant does not flow easily.
  • melt water does not concentrate on the upper heat transfer tube 33, so the upper heat transfer tube 33 requires less defrosting capacity than the lower heat transfer tube 33, and the head is high and the amount of refrigerant flowing is large. Therefore, the lower heat transfer tube 33 takes longer to defrost than the upper one, and the time required to complete defrosting is longer.
  • first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction, and melt water does not concentrate on either one, so the defrosting capacity required for each heat exchanger becomes uniform, and it is possible to suppress the time required for completing defrosting from becoming long.
  • melt water generated when melting frost attached to the surface of one of the first heat exchanger 30a and the second heat exchanger 30b does not flow into the other heat exchanger acting as an evaporator, so the evaporation operation is not hindered, and the deterioration of the heat exchanger performance can be suppressed, and the deterioration of the heating capacity can be suppressed.
  • the outdoor unit 10 of the air conditioner comprises a housing 19 forming an outer shell, and a first heat exchanger 30a and a second heat exchanger 30b arranged in the left-right direction within the housing 19.
  • the first heat exchanger 30a and the second heat exchanger 30b are each arranged at intervals in the left-right direction and comprise a plurality of heat transfer tubes 33 extending in the vertical direction, an upper header 31 provided above the plurality of heat transfer tubes 33 and into which the upper ends of the plurality of heat transfer tubes 33 are inserted, and a lower header 32 provided below the plurality of heat transfer tubes 33 and into which the lower ends of the plurality of heat transfer tubes 33 are inserted.
  • the first heat exchanger 30a and the second heat exchanger 30b arranged in the left-right direction within the housing 19 each have a plurality of heat transfer tubes 33 arranged at intervals in the left-right direction and extending in the up-down direction, so that the refrigerant flowing through each heat transfer tube 33 is uniform, melt water does not concentrate in any place, and the defrosting capacity required for each heat transfer tube 33 is uniform. Furthermore, since the first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction, melt water does not concentrate on either one, and the defrosting capacity required for each heat exchanger is uniform. As a result, it is possible to prevent the time required to complete defrosting from becoming longer, and it is possible to prevent a decrease in heating capacity while maintaining the heating function of the indoor unit 20 of the air conditioner even during defrosting.
  • the air conditioner 100 includes the air conditioner outdoor unit 10 and the air conditioner indoor unit 20.
  • the air conditioner 100 according to the first embodiment can achieve the same effects as the outdoor unit 10 of the air conditioner described above.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.
  • FIG. 5 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to the second embodiment, viewed from the front side.
  • the first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction (horizontal direction), but their headers are in thermal contact with each other.
  • the end of the upper header 31 of the first heat exchanger 30a on the second heat exchanger 30b side is in thermal contact with the end of the upper header 31 of the second heat exchanger 30b on the first heat exchanger 30a side
  • the end of the lower header 32 of the first heat exchanger 30a on the second heat exchanger 30b side is in thermal contact with the end of the lower header 32 of the second heat exchanger 30b on the first heat exchanger 30a side.
  • the upper header 31 of the first heat exchanger 30a and the upper header 31 of the second heat exchanger 30b are integrally formed, and a partition plate 35 made of a heat conductive material such as metal is provided between them.
  • the lower header 32 of the first heat exchanger 30a and the lower header 32 of the second heat exchanger 30b are integrally formed, and a partition plate 35 made of a heat conductive material such as metal is provided between them.
  • the upper header 31 of the first heat exchanger 30a is in thermal contact with the upper header 31 of the second heat exchanger 30b
  • the lower header 32 of the first heat exchanger 30a is in thermal contact with the lower header 32 of the second heat exchanger 30b.
  • the headers of the first heat exchanger 30a and the second heat exchanger 30b are brought into thermal contact with each other, so that the high-temperature refrigerant that flows when defrosting one of the first heat exchanger 30a and the second heat exchanger 30b is exchanged with the refrigerant that flows through the other heat exchanger acting as an evaporator.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and the same parts as or corresponding parts to the first and second embodiments will be given the same reference numerals.
  • FIG. 6 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 3, viewed from the front side.
  • the first heat exchanger 30a and the second heat exchanger 30b each have a first inlet/outlet pipe 36 and a second inlet/outlet pipe 37.
  • the first inlet/outlet pipe 36 is provided in the upper header 31, and the second inlet/outlet pipe 37 is provided in the lower header 32.
  • the first inlet/outlet pipe 36 of the first heat exchanger 30a will also be referred to as the first piping
  • the first inlet/outlet pipe 36 of the second heat exchanger 30b will also be referred to as the second piping.
  • the first inlet/outlet pipe 36 of the first heat exchanger 30a serves as a refrigerant inlet when the first heat exchanger 30a acts as a condenser, and serves as a refrigerant outlet when the first heat exchanger 30a acts as an evaporator.
  • the first inlet/outlet pipe 36 of the second heat exchanger 30b serves as a refrigerant inlet when the second heat exchanger 30b acts as a condenser, and serves as a refrigerant outlet when the second heat exchanger 30b acts as an evaporator.
  • the second inlet/outlet pipe 37 of the first heat exchanger 30a serves as a refrigerant outlet when the first heat exchanger 30a acts as a condenser, and serves as a refrigerant inlet when the first heat exchanger 30a acts as an evaporator.
  • the second inlet/outlet pipe 37 of the second heat exchanger 30b serves as a refrigerant outlet when the second heat exchanger 30b acts as a condenser, and serves as a refrigerant inlet when the second heat exchanger 30b acts as an evaporator.
  • the first inlet/outlet pipe 36 of the first heat exchanger 30a is positioned closer to the second heat exchanger 30b than the lateral center of the upper header 31 (dashed line X1 in FIG. 6), and the first inlet/outlet pipe 36 of the second heat exchanger 30b is positioned closer to the first heat exchanger 30a than the lateral center of the upper header 31 (dashed line X2 in FIG. 6).
  • the upper header 31 of the first heat exchanger 30a is provided with a first pipe that serves as an inlet for the refrigerant when the first heat exchanger 30a acts as a condenser
  • the upper header 31 of the second heat exchanger 30b is provided with a second pipe that serves as an outlet for the refrigerant when the second heat exchanger 30b acts as an evaporator, the first pipe being positioned closer to the second heat exchanger 30b than the left-right center of the upper header 31, and the second pipe being positioned closer to the first heat exchanger 30a than the left-right center of the upper header 31.
  • the first pipe is arranged closer to the second heat exchanger 30b than the left-right center of the upper header 31 of the first heat exchanger 30a
  • the second pipe is arranged closer to the first heat exchanger 30a than the left-right center of the upper header 31 of the second heat exchanger 30b.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.
  • Fig. 7 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 4, viewed from the front side.
  • fins 34 are provided between the heat transfer tube 33 of the first heat exchanger 30a that is arranged closest to the second heat exchanger 30b and the heat transfer tube 33 of the second heat exchanger 30b that is arranged closest to the first heat exchanger 30a (see the Y arrow portion in Fig. 7), and the heat transfer tube 33 of the first heat exchanger 30a and the heat transfer tube 33 of the second heat exchanger 30b are in thermal contact with each other.
  • the heat transfer tubes 33 of the first heat exchanger 30a and the heat transfer tubes 33 of the second heat exchanger 30b are in thermal contact via the fins 34, so that when the entire outdoor heat exchanger 30 (i.e., both the first heat exchanger 30a and the second heat exchanger 30b) is used as an evaporator or a condenser, the heat transfer area of the fins 34 increases, improving the heat exchanger performance.
  • the outdoor unit 10 of the air conditioner according to embodiment 4 has fins 34 provided between the heat transfer tube 33 arranged on the first heat exchanger 30a closest to the second heat exchanger 30b and the heat transfer tube 33 arranged on the second heat exchanger 30b closest to the first heat exchanger 30a.
  • the heat transfer tubes 33 of the first heat exchanger 30a and the heat transfer tubes 33 of the second heat exchanger 30b are in thermal contact via the fins 34, so that when all of the outdoor heat exchangers 30 (i.e., both the first heat exchanger 30a and the second heat exchanger 30b) are used as evaporators or condensers, the heat transfer area of the fins 34 increases, improving the heat exchanger performance.
  • Embodiment 5 Hereinafter, the fifth embodiment will be described, but explanations of parts that overlap with the first to fourth embodiments will be omitted, and the same parts as or corresponding parts to the first to fourth embodiments will be given the same reference numerals.
  • FIG 8 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 5, viewed from the front side.
  • no fins 34 are provided between the heat transfer tube 33 of the first heat exchanger 30a that is arranged closest to the second heat exchanger 30b and the heat transfer tube 33 of the second heat exchanger 30b that is arranged closest to the first heat exchanger 30a (see the Z arrow in Figure 8), and the heat transfer tube 33 of the first heat exchanger 30a and the heat transfer tube 33 of the second heat exchanger 30b are thermally insulated from each other.
  • Embodiment 6 Hereinafter, the sixth embodiment will be described, but explanations of parts that overlap with the first to fifth embodiments will be omitted, and the same parts as or corresponding parts to the first to fifth embodiments will be given the same reference numerals.
  • liquid refrigerant accumulates in the one of the first heat exchanger 30a and the second heat exchanger 30b that is to be defrosted, and the liquid refrigerant in the indoor heat exchanger 21 decreases by the amount of the increase in liquid refrigerant present in the outdoor heat exchanger 30. If the heat transfer tubes of the outdoor heat exchanger 30 and the heat transfer tubes of the indoor heat exchanger 21 are both made of circular tubes, the indoor heat exchanger 21 will experience a refrigerant shortage during heating, and the heating capacity will decrease.
  • the heat transfer tube 33 of the outdoor heat exchanger 30 a flat multi-hole tube with a smaller flow cross-sectional area than a circular tube, if the heat transfer tube of the indoor heat exchanger 21 is made of a circular tube, even if the liquid refrigerant present in the outdoor heat exchanger 30 increases, it is possible to suppress the decrease in heating capacity because it does not greatly affect the amount of refrigerant required by the indoor heat exchanger 21.
  • the first heat exchanger 30a and the second heat exchanger 30b are each a flat multi-hole tube in which the heat transfer tube 33 forms a plurality of refrigerant flow paths 33a arranged along the longitudinal direction.
  • the heat transfer tubes 33 of the outdoor heat exchanger 30 are made of flat multi-hole tubes.
  • the heat transfer tubes of the indoor heat exchanger 21 are made of circular tubes, an increase in the amount of liquid refrigerant present in the outdoor heat exchanger 30 does not significantly affect the amount of refrigerant required by the indoor heat exchanger 21, so a decrease in heating capacity can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An outdoor unit for an air conditioner according to the present invention comprises a housing that forms an outer enclosure and a first heat exchanger and a second heat exchanger that are provided in the housing in the right-left direction. The first heat exchanger and the second heat exchanger each comprise a plurality of heat transfer tubes that are arranged at intervals in the right-left direction and extend in the vertical direction, an upper header that is provided above the plurality of heat transfer tubes such that upper ends of the plurality of heat transfer tubes are inserted therein, and a lower header that is provided below the plurality of heat transfer tubes such that lower ends of the plurality of heat transfer tubes are inserted therein.

Description

空気調和機の室外機およびそれを備えた空気調和機Outdoor unit for air conditioner and air conditioner equipped with same

 本開示は、空気調和機の室外機およびそれを備えた空気調和機に関し、特に空気調和機の室外機の熱交換器の構成に関するものである。 This disclosure relates to an outdoor unit for an air conditioner and an air conditioner equipped with the same, and in particular to the configuration of a heat exchanger in the outdoor unit for the air conditioner.

 従来、デフロスト時にも、空気調和機の室内機の暖房機能を維持することが可能な空気調和機がある(例えば、特許文献1参照)。  Conventionally, there are air conditioners that are capable of maintaining the heating function of the indoor unit of the air conditioner even during defrosting (see, for example, Patent Document 1).

 特許文献1は、本体ケーシングと、該本体ケーシングの一端に設けられた空気吸込口と、上記本体ケーシングの他端に設けられた空気吹出口と、上記本体ケーシング内の上記空気吸込口と上記空気吹出口との間に位置して設けられた送風通路と、上記送風通路の上記空気吸込口側に位置して設けられた蒸発用熱交換器と、上記蒸発用熱交換器と上記空気吹出口との間に位置して設けられた送風機と、上記蒸発用熱交換器を含む冷凍回路に冷媒を流す圧縮機とを備えてなる冷凍装置において、上記蒸発用熱交換器を冷媒分流用のパスを基準として少なくとも2つの熱交換器部分に分割し、それらの各々に対応して圧縮機からの吐出ガスをバイパスさせるバイパス回路と該バイパス回路のバイパス状態を制御する電磁開閉弁を設け、上記冷凍回路の冷凍サイクルを逆転させることなく上記分割された各熱交換器部分毎に交互にデフロスト運転を行うようにしたことを特徴とした空気調和機である。 Patent Document 1 discloses an air conditioner that includes a main casing, an air intake port at one end of the main casing, an air outlet port at the other end of the main casing, an air passage located between the air intake port and the air outlet port in the main casing, an evaporative heat exchanger located on the air intake side of the air passage, a blower located between the evaporative heat exchanger and the air outlet port, and a compressor that flows refrigerant into a refrigeration circuit including the evaporative heat exchanger. The evaporative heat exchanger is divided into at least two heat exchanger parts based on a refrigerant distribution path, and a bypass circuit that bypasses the gas discharged from the compressor and an electromagnetic opening/closing valve that controls the bypass state of the bypass circuit are provided corresponding to each of the heat exchanger parts, and defrost operation is performed alternately for each of the divided heat exchanger parts without reversing the refrigeration cycle of the refrigeration circuit.

特開2009-085484号公報JP 2009-085484 A

 特許文献1は、蒸発用熱交換器を分割した上部熱交換器および下部熱交換器のうち、上部熱交換器をデフロストしている際に下部熱交換器が着霜運転となる場合において、上部熱交換器から融解した水が下部熱交換器に流れて下部熱交換器に集中するため、下部熱交換器の着霜が速くなってしまい、下部熱交換器に必要な除霜能力が多くなる。その結果、下部熱交換器のデフロストに時間がかかり、除霜完了に必要な時間が長くなるため、暖房能力が低下するという課題があった。 In Patent Document 1, when the evaporative heat exchanger is divided into an upper heat exchanger and a lower heat exchanger, and the lower heat exchanger is in frosting operation while the upper heat exchanger is defrosting, water melted from the upper heat exchanger flows into the lower heat exchanger and concentrates there, causing frost to form faster on the lower heat exchanger and requiring more defrosting capacity for the lower heat exchanger. As a result, it takes longer to defrost the lower heat exchanger, and the time required to complete defrosting becomes longer, resulting in a problem of reduced heating capacity.

 本開示は、以上のような課題を解決するためになされたもので、デフロスト時にも空気調和機の室内機の暖房機能を維持しつつ、暖房能力の低下を抑制した空気調和機の室外機およびそれを備えた空気調和機を提供することを目的としている。 This disclosure has been made to solve the problems described above, and aims to provide an outdoor unit for an air conditioner that maintains the heating function of the indoor unit of the air conditioner even during defrosting while suppressing a decrease in heating capacity, and an air conditioner equipped with the outdoor unit.

 本開示に係る空気調和機の室外機は、外郭を構成する筐体と、前記筐体内に設けられ、左右方向に配置された第1熱交換器および第2熱交換器と、を備え、前記第1熱交換器および前記第2熱交換器は、それぞれ、前記左右方向に間隔を空けて配列され、上下方向に延びた複数の伝熱管と、前記複数の伝熱管の上部に設けられ、前記複数の伝熱管の上端部が差し込まれる上部ヘッダと、前記複数の伝熱管の下部に設けられ、前記複数の伝熱管の下端部が差し込まれる下部ヘッダと、を備えたものである。 The outdoor unit of the air conditioner according to the present disclosure comprises a housing forming an outer shell, and a first heat exchanger and a second heat exchanger disposed within the housing and arranged in the left-right direction, the first heat exchanger and the second heat exchanger each being arranged at intervals in the left-right direction and each comprising a plurality of heat transfer tubes extending in the up-down direction, an upper header disposed above the plurality of heat transfer tubes and into which the upper ends of the plurality of heat transfer tubes are inserted, and a lower header disposed below the plurality of heat transfer tubes and into which the lower ends of the plurality of heat transfer tubes are inserted.

 また、本開示に係る空気調和機は、上記の空気調和機の室外機と、空気調和機の室内機と、を備えたものである。 The air conditioner according to the present disclosure includes the above-mentioned outdoor unit of the air conditioner and an indoor unit of the air conditioner.

 本開示に係る空気調和機の室外機およびそれを備えた空気調和機によれば、筐体内に左右方向に配置された第1熱交換器および第2熱交換器は、それぞれ、左右方向に間隔を空けて配列され、上下方向に延びた複数の伝熱管を備えているため、各伝熱管に流れる冷媒が均一になり、場所によって融解水が集中することがなく、各伝熱管に必要な除霜能力が均一になる。さらに、第1熱交換器および第2熱交換器は左右方向に配置されているため、どちらかに融解水が集中することがなく、各熱交換器に必要な除霜能力が均一になる。その結果、除霜完了に必要な時間が長くなるのを抑制することができ、デフロスト時にも空気調和機の室内機の暖房機能を維持しつつ、暖房能力の低下を抑制することができる。 According to the outdoor unit of an air conditioner and an air conditioner equipped therewith according to the present disclosure, the first heat exchanger and the second heat exchanger arranged in the left-right direction within the housing each have a plurality of heat transfer tubes arranged at intervals in the left-right direction and extending in the up-down direction, so that the refrigerant flowing through each heat transfer tube is uniform, melt water does not concentrate in any place, and the defrosting capacity required for each heat transfer tube is uniform. Furthermore, because the first heat exchanger and the second heat exchanger are arranged in the left-right direction, melt water does not concentrate on either one side, and the defrosting capacity required for each heat exchanger is uniform. As a result, it is possible to prevent the time required to complete defrosting from becoming longer, and it is possible to prevent a decrease in heating capacity while maintaining the heating function of the indoor unit of the air conditioner even during defrosting.

実施の形態1に係る空気調和機の室外機を側面側から見た模式図である。1 is a schematic diagram of an outdoor unit of an air conditioner according to a first embodiment, viewed from the side; 実施の形態1に係る空気調和機の室外機を背面側から見た模式図である。1 is a schematic diagram of an outdoor unit of an air conditioner according to a first embodiment, viewed from the rear side. FIG. 実施の形態1に係る空気調和機の室外機を備えた空気調和機の構成を示す図である。1 is a diagram showing the configuration of an air conditioner including an outdoor unit of an air conditioner according to a first embodiment. 実施の形態1に係る空気調和機の室外機の室外熱交換器を正面側から見た模式図である。2 is a schematic diagram of an outdoor heat exchanger of the outdoor unit of the air conditioner according to the first embodiment, viewed from the front side. FIG. 実施の形態2に係る空気調和機の室外機の室外熱交換器を正面側から見た模式図である。11 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 2, viewed from the front side. FIG. 実施の形態3に係る空気調和機の室外機の室外熱交換器を正面側から見た模式図である。13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 3, viewed from the front side. FIG. 実施の形態4に係る空気調和機の室外機の室外熱交換器を正面側から見た模式図である。13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 4, viewed from the front side. FIG. 実施の形態5に係る空気調和機の室外機の室外熱交換器を正面側から見た模式図である。13 is a schematic diagram of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 5, viewed from the front side. FIG. 実施の形態6に係る空気調和機の室外機の室外熱交換器の伝熱管を平面視した模式図である。13 is a schematic diagram showing a plan view of a heat transfer tube of an outdoor heat exchanger of an outdoor unit of an air conditioner according to embodiment 6. FIG.

 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置および向きを限定するものではない。明細書中において、各構成部材同士の位置関係、各構成部材の延伸方向、および各構成部材の配列方向は、原則として、熱交換器が使用可能な状態に設置されたときのものである。 Below, an embodiment of the present disclosure will be described based on the drawings. Note that the present disclosure is not limited to the embodiment described below. In addition, the size relationship of each component in the following drawings may differ from the actual one. In addition, the size relationship of each component in the following drawings may differ from the actual one. In addition, in the following drawings, the same reference numerals are attached to the same or equivalent components, and this is common throughout the entire specification. Furthermore, the forms of the components shown in the entire specification are merely examples and are not limited to these descriptions. In addition, to facilitate understanding, terms indicating directions (e.g., "upper", "lower", "right", "left", "front", "rear", etc.) are used as appropriate, but these notations are described in such a way only for the convenience of explanation and do not limit the arrangement and orientation of the device or parts. In the specification, the positional relationship between each component, the extension direction of each component, and the arrangement direction of each component are, in principle, when the heat exchanger is installed in a usable state.

 実施の形態1.
 図1は、実施の形態1に係る空気調和機の室外機10を側面側から見た模式図である。図2は、実施の形態1に係る空気調和機の室外機10を背面側から見た模式図である。実施の形態1に係る空気調和機の室外機10(以下、単に室外機10とも称する)は、図1および図2に示すように、外郭を構成する略直方体形状の筐体19を備えている。筐体19の内部には、送風機室19aと機械室19bとが形成されている。送風機室19aには、室外送風機15および室外熱交換器30が配置されており、機械室19bには、後述する圧縮機11、流路切替装置12、絞り装置14(14a、14b)、流量調整装置16(16a、16b)、および、バイパス流量調整装置17(17a、17b)が配置されている。室外機10を正面視あるいは背面視して、室外熱交換器30は、左右方向に配置された第1熱交換器30aと第2熱交換器30bとで構成されている。
Embodiment 1.
FIG. 1 is a schematic diagram of an outdoor unit 10 of an air conditioner according to embodiment 1 as viewed from the side. FIG. 2 is a schematic diagram of an outdoor unit 10 of an air conditioner according to embodiment 1 as viewed from the back side. As shown in FIG. 1 and FIG. 2, the outdoor unit 10 of the air conditioner according to embodiment 1 (hereinafter, also simply referred to as the outdoor unit 10) is provided with a substantially rectangular parallelepiped housing 19 that constitutes an outer shell. Inside the housing 19, a blower chamber 19a and a machine chamber 19b are formed. The outdoor blower 15 and the outdoor heat exchanger 30 are arranged in the blower chamber 19a, and the compressor 11, the flow path switching device 12, the throttling device 14 (14a, 14b), the flow control device 16 (16a, 16b), and the bypass flow control device 17 (17a, 17b) described later are arranged in the machine chamber 19b. When the outdoor unit 10 is viewed from the front or rear, the outdoor heat exchanger 30 is made up of a first heat exchanger 30a and a second heat exchanger 30b arranged in the left-right direction.

 図3は、実施の形態1に係る空気調和機の室外機10を備えた空気調和機100の構成を示す図である。図3に示すように、空気調和機100は、室外機10と、空気調和機の室内機20(以下、単に室内機20とも称する)とを備えている。室外機10は、圧縮機11、流路切替装置12、室外熱交換器30(第1熱交換器30a、第2熱交換器30b)、アキュムレータ13、絞り装置14(14a、14b)、室外送風機15、流量調整装置16(16a、16b)、および、バイパス回路2(2a、2b)を備えている。また、室内機20は、室内熱交換器21および室内送風機22を備えている。ここで、実施の形態1では、室外機10および室内機20が、それぞれ1台である空気調和機100について例示しているが、2台以上の室外機10および室内機20を有する空気調和機100でもよい。また、実施の形態1では、筐体19内に、室外熱交換器30が1つ配置、つまり、第1熱交換器30aおよび第2熱交換器30bがそれぞれ1つ配置されている室外機10について例示しているが、筐体19内に、室外熱交換器30が複数配置、つまり、第1熱交換器30aおよび第2熱交換器30bがそれぞれ複数配置されている室外機10でもよい。 Figure 3 is a diagram showing the configuration of an air conditioner 100 equipped with an outdoor unit 10 of the air conditioner according to embodiment 1. As shown in Figure 3, the air conditioner 100 is equipped with an outdoor unit 10 and an indoor unit 20 of the air conditioner (hereinafter also simply referred to as the indoor unit 20). The outdoor unit 10 is equipped with a compressor 11, a flow switching device 12, an outdoor heat exchanger 30 (first heat exchanger 30a, second heat exchanger 30b), an accumulator 13, a throttling device 14 (14a, 14b), an outdoor blower 15, a flow rate adjustment device 16 (16a, 16b), and a bypass circuit 2 (2a, 2b). The indoor unit 20 is equipped with an indoor heat exchanger 21 and an indoor blower 22. Here, in the first embodiment, an air conditioner 100 having one outdoor unit 10 and one indoor unit 20 is illustrated, but the air conditioner 100 may have two or more outdoor units 10 and indoor units 20. Also, in the first embodiment, an outdoor unit 10 having one outdoor heat exchanger 30 arranged in the housing 19, that is, one first heat exchanger 30a and one second heat exchanger 30b, is illustrated, but the outdoor unit 10 may have multiple outdoor heat exchangers 30 arranged in the housing 19, that is, multiple first heat exchangers 30a and multiple second heat exchangers 30b.

 圧縮機11、流路切替装置12、室内熱交換器21、絞り装置14(14a、14b)、室外熱交換器30(第1熱交換器30a、第2熱交換器30b)、流量調整装置16(16a、16b)、および、アキュムレータ13が主配管41および枝配管42(42a、42b)で接続され、冷媒が循環する主回路1が構成されている。主回路1において、流量調整装置16aと第1熱交換器30aと絞り装置14aとは枝配管42aで直列に接続されており、流量調整装置16bと第2熱交換器30bと絞り装置14bとは枝配管42bで直列に接続されており、それらは互いに並列となるように接続されている。空気調和機100の冷媒回路は、この主回路1と後述するバイパス回路2(2a、2b)とで構成されている。 The compressor 11, the flow switching device 12, the indoor heat exchanger 21, the throttling device 14 (14a, 14b), the outdoor heat exchanger 30 (first heat exchanger 30a, second heat exchanger 30b), the flow control device 16 (16a, 16b), and the accumulator 13 are connected by a main pipe 41 and branch pipes 42 (42a, 42b) to form a main circuit 1 through which the refrigerant circulates. In the main circuit 1, the flow control device 16a, the first heat exchanger 30a, and the throttling device 14a are connected in series by the branch pipe 42a, and the flow control device 16b, the second heat exchanger 30b, and the throttling device 14b are connected in series by the branch pipe 42b, and they are connected in parallel with each other. The refrigerant circuit of the air conditioner 100 is composed of this main circuit 1 and a bypass circuit 2 (2a, 2b) described later.

 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバーター圧縮機などである。 Compressor 11 draws in low-temperature, low-pressure refrigerant, compresses it, and discharges high-temperature, high-pressure refrigerant. Compressor 11 is, for example, an inverter compressor whose capacity, which is the amount of refrigerant discharged per unit time, is controlled by changing the operating frequency.

 流路切替装置12は、例えば四方弁であり、冷媒の流れの方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。なお、流路切替装置12として、四方弁に代えて二方弁および三方弁の組み合わせなどを用いてもよい。 The flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction of the refrigerant flow. Note that instead of a four-way valve, a combination of a two-way valve and a three-way valve may also be used as the flow path switching device 12.

 室外熱交換器30は、互いに独立して動作する第1熱交換器30aと第2熱交換器30bとで構成されている。第1熱交換器30aおよび第2熱交換器30bは、例えば、室外の空気である外気と冷媒とを熱交換させるものであり、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 The outdoor heat exchanger 30 is composed of a first heat exchanger 30a and a second heat exchanger 30b that operate independently of each other. The first heat exchanger 30a and the second heat exchanger 30b exchange heat between, for example, the outdoor air, which is the air outside the room, and the refrigerant, and act as a condenser during cooling operation and as an evaporator during heating operation.

 室外送風機15は、室外熱交換器30の近傍に設けられ、室外熱交換器30に対して室外空気を送るものである。 The outdoor blower 15 is provided near the outdoor heat exchanger 30 and sends outdoor air to the outdoor heat exchanger 30.

 絞り装置14(14a、14b)は、冷媒を減圧して膨張させるものである。絞り装置14(14a、14b)は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって、冷房運転時では室内熱交換器21に流入する冷媒圧力を制御し、暖房運転時では室外熱交換器30に流入する冷媒圧力を制御する。 The throttling device 14 (14a, 14b) reduces the pressure of the refrigerant and expands it. The throttling device 14 (14a, 14b) is, for example, an electronic expansion valve that can adjust the opening of the throttling, and by adjusting the opening, the pressure of the refrigerant flowing into the indoor heat exchanger 21 is controlled during cooling operation, and the pressure of the refrigerant flowing into the outdoor heat exchanger 30 is controlled during heating operation.

 アキュムレータ13は、圧縮機11の吸入側に設けられており、冷房運転と暖房運転との運転状態の違いによって生じる余剰冷媒、あるいは過渡的な運転の変化に対する余剰冷媒などを貯留するためのものである。 The accumulator 13 is provided on the suction side of the compressor 11 and is intended to store excess refrigerant that occurs due to differences in operating conditions between cooling and heating, or excess refrigerant due to transient changes in operation.

 流量調整装置16aは、枝配管42aに設けられ、枝配管42aを流れる冷媒量を調整するものである。流量調整装置16bは、枝配管42bに設けられ、枝配管42bを流れる冷媒量を調整するものである。流量調整装置16(16a、16b)は、少なくとも流路の開閉が可能な装置であればよく、例えば、電磁弁あるいは二方弁などにより構成される。 Flow rate control device 16a is provided in branch pipe 42a and adjusts the amount of refrigerant flowing through branch pipe 42a. Flow rate control device 16b is provided in branch pipe 42b and adjusts the amount of refrigerant flowing through branch pipe 42b. The flow rate control devices 16 (16a, 16b) can be any device that is at least capable of opening and closing the flow path, and are composed of, for example, a solenoid valve or a two-way valve.

 バイパス回路2(2a、2b)は、バイパス配管43(43a、43b)と、バイパス流量調整装置17(17a、17b)とを備えている。バイパス回路2aは、圧縮機11から吐出された冷媒の一部が、圧縮機11と流路切替装置12との間の主配管41から第1熱交換器30aと流量調整装置16aとの間の枝配管42aに流れるようにする回路である。バイパス回路2bは、圧縮機11から吐出された冷媒の一部が、圧縮機11と流路切替装置12との間の主配管41から第2熱交換器30bと流量調整装置16bとの間の枝配管42bに流れるようにする回路である。 The bypass circuit 2 (2a, 2b) includes a bypass pipe 43 (43a, 43b) and a bypass flow control device 17 (17a, 17b). The bypass circuit 2a is a circuit that allows a portion of the refrigerant discharged from the compressor 11 to flow from the main pipe 41 between the compressor 11 and the flow switching device 12 to the branch pipe 42a between the first heat exchanger 30a and the flow control device 16a. The bypass circuit 2b is a circuit that allows a portion of the refrigerant discharged from the compressor 11 to flow from the main pipe 41 between the compressor 11 and the flow switching device 12 to the branch pipe 42b between the second heat exchanger 30b and the flow control device 16b.

 バイパス配管43aは、圧縮機11と流路切替装置12との間の主配管41から、第1熱交換器30aと流量調整装置16aとの間の枝配管42aにバイパスする配管である。バイパス配管43bは、圧縮機11と流路切替装置12との間の主配管41から、第2熱交換器30bと流量調整装置16bとの間の枝配管42bにバイパスする配管である。 The bypass pipe 43a is a pipe that bypasses the main pipe 41 between the compressor 11 and the flow path switching device 12 to the branch pipe 42a between the first heat exchanger 30a and the flow control device 16a. The bypass pipe 43b is a pipe that bypasses the main pipe 41 between the compressor 11 and the flow path switching device 12 to the branch pipe 42b between the second heat exchanger 30b and the flow control device 16b.

 バイパス流量調整装置17aは、バイパス配管43aに設けられ、バイパス配管43aを流れる冷媒量を調整するものである。バイパス流量調整装置17bは、バイパス配管43bに設けられ、バイパス配管43bを流れる冷媒量を調整するものである。バイパス流量調整装置17(17a、17b)は、少なくとも流路の開閉が可能な装置であればよく、例えば、電磁弁あるいは二方弁などにより構成される。 The bypass flow rate control device 17a is provided in the bypass pipe 43a and adjusts the amount of refrigerant flowing through the bypass pipe 43a. The bypass flow rate control device 17b is provided in the bypass pipe 43b and adjusts the amount of refrigerant flowing through the bypass pipe 43b. The bypass flow rate control devices 17 (17a, 17b) can be any device that is at least capable of opening and closing the flow path, and are, for example, composed of a solenoid valve or a two-way valve.

 室内熱交換器21は、例えば、空調対象空間となる室内空気と冷媒とを熱交換させるものであり、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。 The indoor heat exchanger 21, for example, exchanges heat between the indoor air that is the space to be air-conditioned and the refrigerant, and acts as an evaporator during cooling operation and as a condenser during heating operation.

 室内送風機22は、室内熱交換器21の近傍に設けられ、室内熱交換器21に対して室内空気を送るものである。 The indoor blower 22 is provided near the indoor heat exchanger 21 and sends indoor air to the indoor heat exchanger 21.

 ここで、冷媒回路を循環させる冷媒としては、例えば、フロン冷媒、HFO冷媒などを用いることができる。フロン冷媒としては、例えば、HFC系冷媒のR32冷媒、R125、R134aなどがある。また、HFC系冷媒の混合冷媒であるR410A、R407c、R404Aなどがある。また、HFO冷媒としては、例えば、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)などがある。また、その他の冷媒としては、CO冷媒、HC冷媒、アンモニア冷媒、R32とHFO-1234yfとの混合冷媒などのように、上記の冷媒の混合冷媒など、蒸気圧縮式のヒートポンプ回路に用いられる冷媒を用いることができる。HC冷媒は、例えばプロパン、イソブタン冷媒などである。 Here, as the refrigerant circulating in the refrigerant circuit, for example, a fluorocarbon refrigerant, an HFO refrigerant, etc. can be used. As the fluorocarbon refrigerant, for example, there are HFC refrigerants such as R32 refrigerant, R125, and R134a. In addition, there are HFC refrigerant mixed refrigerants such as R410A, R407c, and R404A. In addition, as the HFO refrigerant, for example, there are HFO-1234yf, HFO-1234ze(E), and HFO-1234ze(Z). In addition, as other refrigerants, refrigerants used in vapor compression heat pump circuits, such as CO2 refrigerant, HC refrigerant, ammonia refrigerant, and a mixed refrigerant of R32 and HFO-1234yf, etc., can be used. As the HC refrigerant, for example, propane, isobutane refrigerant, etc.

 空気調和機100は、運転モードとして、冷房運転モード、通常暖房運転モード、および、暖房デフロスト運転モードを有する。冷房運転モードは、室内機20の冷房運転を行うモードであり、室外熱交換器30が凝縮器として作用し、室内機20が室内を冷房する。通常暖房運転モードは、室内機20の暖房運転を行うモードであり、室外熱交換器30が蒸発器として作用し、室内機20が室内を暖房する。暖房デフロスト運転モードは、室内機20の暖房運転を行うモードであり、室外熱交換器30の一部がデフロスト対象となり、つまり、第1熱交換器30aおよび第2熱交換器30bのうち、一方がデフロスト対象となり、他方が蒸発器として作用し、室内機20が室内を暖房する。このように、暖房デフロスト運転モードは、第1熱交換器30aおよび第2熱交換器30bのうち、一方がデフロストされている際に他方が蒸発器として作用することにより、デフロストしつつも暖房運転を維持する運転モードである。 The air conditioner 100 has three operating modes: a cooling operation mode, a normal heating operation mode, and a heating/defrost operation mode. The cooling operation mode is a mode in which the indoor unit 20 performs cooling operation, with the outdoor heat exchanger 30 acting as a condenser and the indoor unit 20 cooling the room. The normal heating operation mode is a mode in which the indoor unit 20 performs heating operation, with the outdoor heat exchanger 30 acting as an evaporator and the indoor unit 20 heating the room. The heating/defrost operation mode is a mode in which the indoor unit 20 performs heating operation, with a portion of the outdoor heat exchanger 30 being the defrost target, that is, one of the first heat exchanger 30a and the second heat exchanger 30b being the defrost target and the other acting as an evaporator and the indoor unit 20 heating the room. In this way, the heating/defrosting operation mode is an operation mode in which one of the first heat exchanger 30a and the second heat exchanger 30b acts as an evaporator while the other is defrosting, thereby maintaining heating operation while defrosting.

 暖房デフロスト運転モードでは、第1熱交換器30aおよび第2熱交換器30bが交互にデフロストされる。例えば、暖房デフロスト運転モードでは、第1熱交換器30aおよび第2熱交換器30bのうち一方が蒸発器として作用して暖房運転を行いつつ、他方のデフロストが行われる。そして、暖房デフロスト運転モードは、他方のデフロストが終了すると、その他方が蒸発器として作用して暖房運転を行い、一方のデフロストが行われる。暖房デフロスト運転モードは、通常暖房運転中に、第1熱交換器30aおよび第2熱交換器30bが着霜した場合に行われる。なお、圧縮機11の駆動周波数が周波数閾値よりも低くなったときに、暖房デフロストモードに切り替えてもよい。 In the heating/defrosting operation mode, the first heat exchanger 30a and the second heat exchanger 30b are alternately defrosted. For example, in the heating/defrosting operation mode, one of the first heat exchanger 30a and the second heat exchanger 30b acts as an evaporator to perform heating operation while the other is defrosted. In the heating/defrosting operation mode, when the defrosting of the other is completed, the other acts as an evaporator to perform heating operation and one is defrosted. The heating/defrosting operation mode is performed when the first heat exchanger 30a and the second heat exchanger 30b are frosted during normal heating operation. The heating/defrosting mode may be switched to when the drive frequency of the compressor 11 becomes lower than the frequency threshold value.

 制御装置50は、室内機20の冷房運転および暖房運転、設定室温の変更、絞り装置14、流量調整装置16、および、バイパス流量調整装置17などを制御する。実施の形態1に係る制御装置50は、例えばCPU(Central Processing Unit)などの制御演算処理装置を有するマイクロコンピュータなどで構成されている。また、制御装置50は、記憶装置(図示せず)を有しており、制御などに係る処理手順をプログラムとしたデータを有する。そして、制御演算処理装置がプログラムのデータに基づく処理を実行して制御を実現する。 The control device 50 controls the cooling and heating operations of the indoor unit 20, changes to the set room temperature, the throttling device 14, the flow control device 16, and the bypass flow control device 17. The control device 50 according to the first embodiment is composed of a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit). The control device 50 also has a memory device (not shown) and has data in the form of programs that contain processing procedures related to control, etc. Then, the control arithmetic processing device executes processing based on the program data to realize control.

<冷房運転モード>
 次に、冷房運転モード時の空気調和機100における冷媒の流れについて説明する。冷房運転モードでは、流路切替装置12が図3の破線で示すように切り替えられており、圧縮機11の吐出側と第1熱交換器30aおよび第2熱交換器30bとが接続されており、圧縮機11の吸入側と室内熱交換器21とが接続されている。また、流量調整装置16aおよび流量調整装置16bは開放されており、バイパス流量調整装置17aおよびバイパス流量調整装置17bは閉止されている。
<Cooling operation mode>
Next, the flow of refrigerant in the air conditioner 100 in the cooling operation mode will be described. In the cooling operation mode, the flow path switching device 12 is switched as shown by the dashed lines in Fig. 3, the discharge side of the compressor 11 is connected to the first heat exchanger 30a and the second heat exchanger 30b, and the suction side of the compressor 11 is connected to the indoor heat exchanger 21. In addition, the flow rate control devices 16a and 16b are open, and the bypass flow rate control devices 17a and 17b are closed.

 圧縮機11は、吸入した冷媒を圧縮し、高温かつ高圧のガス状態の冷媒を吐出する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒は、流路切替装置12を通過して分岐した後、それぞれ流量調整装置16aおよび流量調整装置16bを通過して、凝縮器として作用する第1熱交換器30aおよび第2熱交換器30bに流入する。冷媒は、第1熱交換器30aおよび第2熱交換器30bにおいて、室外送風機15が送る室外空気と熱交換されて凝縮して液化し、中温かつ高圧の液状態の冷媒となる。凝縮された中温かつ高圧の液状態の冷媒は、それぞれ絞り装置14aおよび絞り装置14bに流入する。絞り装置14aおよび絞り装置14bに流入した中温かつ高圧の液状態の冷媒は、絞り装置14aおよび絞り装置14bにおいて膨張および減圧されて低温かつ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、合流した後、蒸発器として作用する室内熱交換器21に流入し、室内熱交換器21において、室内送風機22が送る室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が行われる。蒸発した低温かつ低圧のガス状態の冷媒は、流路切替装置12およびアキュムレータ13を通過して圧縮機11に吸入される。 The compressor 11 compresses the refrigerant sucked in and discharges the refrigerant in a high-temperature, high-pressure gas state. The high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and branches, then passes through the flow control device 16a and the flow control device 16b, respectively, and flows into the first heat exchanger 30a and the second heat exchanger 30b, which act as condensers. In the first heat exchanger 30a and the second heat exchanger 30b, the refrigerant exchanges heat with the outdoor air sent by the outdoor blower 15, condenses and liquefies, and becomes a medium-temperature, high-pressure liquid refrigerant. The condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14a and the throttling device 14b, respectively. The medium-temperature, high-pressure liquid refrigerant that flows into the throttling device 14a and the throttling device 14b is expanded and decompressed in the throttling device 14a and the throttling device 14b, becoming a low-temperature, low-pressure two-phase gas-liquid refrigerant. After the gas-liquid two-phase refrigerant merges, it flows into the indoor heat exchanger 21, which acts as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 22, evaporating and gasifying. At this time, the indoor air is cooled, and cooling is performed inside the room. The evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 12 and the accumulator 13 and is sucked into the compressor 11.

<通常暖房運転モード>
 次に、暖房運転モード時の空気調和機100における冷媒の流れについて説明する。暖房運転モードでは、流路切替装置12が図3の実線で示すように切り替えられており、圧縮機11の吐出側と室内熱交換器21とが接続されており、圧縮機11の吸入側と第1熱交換器30aおよび第2熱交換器30bとが接続されている。また、流量調整装置16aおよび流量調整装置16bは開放されており、バイパス流量調整装置17aおよびバイパス流量調整装置17bは閉止されている。
<Normal heating operation mode>
Next, the flow of refrigerant in the air conditioner 100 in the heating operation mode will be described. In the heating operation mode, the flow path switching device 12 is switched as shown by the solid line in Fig. 3, the discharge side of the compressor 11 is connected to the indoor heat exchanger 21, and the suction side of the compressor 11 is connected to the first heat exchanger 30a and the second heat exchanger 30b. In addition, the flow rate control devices 16a and 16b are open, and the bypass flow rate control devices 17a and 17b are closed.

 圧縮機11は、吸入した冷媒を圧縮し、高温かつ高圧のガス状態で吐出する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器21に流入する。冷媒は、室内熱交換器21において、室内送風機22が送る室内空気と熱交換されて凝縮して液化し、中温かつ高圧の液状態の冷媒となる。このとき、室内空気が暖められ、室内において暖房が行われる。凝縮された中温かつ高圧の液状態の冷媒は、分岐した後、それぞれ絞り装置14aおよび絞り装置14bに流入する。絞り装置14aおよび絞り装置14bに流入した中温かつ高圧の冷媒は、膨張および減圧されて、中圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、それぞれ蒸発器として作用する第1熱交換器30aおよび第2熱交換器30bに流入する。冷媒は、第1熱交換器30aおよび第2熱交換器30bにおいて、室外送風機15が送る室外空気と熱交換されて蒸発してガス化する。蒸発した低温かつ低圧のガス状態の冷媒は、それぞれ流量調整装置16aおよび流量調整装置16bを通過して合流した後、流路切替装置12およびアキュムレータ13を通過して圧縮機11に吸入される。 The compressor 11 compresses the refrigerant it draws in and discharges it in a high-temperature, high-pressure gas state. The high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser. In the indoor heat exchanger 21, the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, and becomes a medium-temperature, high-pressure liquid refrigerant. At this time, the indoor air is warmed and heating is performed inside the room. The condensed medium-temperature, high-pressure liquid refrigerant branches and then flows into the throttling device 14a and the throttling device 14b, respectively. The medium-temperature, high-pressure refrigerant that flows into the throttling device 14a and the throttling device 14b is expanded and reduced in pressure to become a medium-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the first heat exchanger 30a and the second heat exchanger 30b, which act as evaporators, respectively. The refrigerant exchanges heat with the outdoor air sent by the outdoor blower 15 in the first heat exchanger 30a and the second heat exchanger 30b, evaporating and gasifying. The evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16a and the flow control device 16b, respectively, and merges, then passes through the flow switching device 12 and the accumulator 13 and is sucked into the compressor 11.

<暖房デフロスト運転モード>
 次に、暖房デフロスト運転モード時の空気調和機100における冷媒の流れについて説明する。暖房デフロスト運転時では、流路切替装置12が図3の実線で示すように切り替えられており、圧縮機11の吐出側と室内熱交換器21とが接続されており、圧縮機11の吸入側と第1熱交換器30aおよび第2熱交換器30bとが接続されている。ここで、暖房デフロスト運転モードでは、第1熱交換器30aおよび第2熱交換器30bのうち、一方がデフロスト対象として選択されてデフロストが行われ、他方が蒸発器として作用して暖房運転を継続する。流量調整装置16aおよび流量調整装置16b、並びに、バイパス流量調整装置17aおよびバイパス流量調整装置17aの開閉状態が交互に切り替わり、デフロスト対象が第1熱交換器30aと第2熱交換器30bとで交互に切り替わる。冷媒の流れは、デフロスト対象の第1熱交換器30aまたは第2熱交換器30bと、蒸発器として作用する第1熱交換器30aまたは第2熱交換器30bとが切り替わることで、切り替わる。
<Heating defrost operation mode>
Next, the flow of refrigerant in the air conditioner 100 in the heating/defrosting operation mode will be described. In the heating/defrosting operation mode, the flow path switching device 12 is switched as shown by the solid line in FIG. 3, the discharge side of the compressor 11 is connected to the indoor heat exchanger 21, and the suction side of the compressor 11 is connected to the first heat exchanger 30a and the second heat exchanger 30b. Here, in the heating/defrosting operation mode, one of the first heat exchanger 30a and the second heat exchanger 30b is selected as the defrosting target and defrosting is performed, and the other acts as an evaporator to continue the heating operation. The open/closed states of the flow rate control devices 16a and 16b, and the bypass flow rate control devices 17a and 17a are alternately switched, and the defrosting target is alternately switched between the first heat exchanger 30a and the second heat exchanger 30b. The flow of the refrigerant is switched by switching between the first heat exchanger 30a or the second heat exchanger 30b to be defrosted and the first heat exchanger 30a or the second heat exchanger 30b acting as an evaporator.

 まず始めに、第1熱交換器30aがデフロスト対象として選択された場合を例として、第1熱交換器30aのデフロストを行い、第2熱交換器30bが蒸発器として作用して暖房を継続する場合について説明する。この場合、流量調整装置16bおよびバイパス流量調整装置17aは開放されており、流量調整装置16aおよびバイパス流量調整装置17bは閉止されている。 First, let us take the example of the case where the first heat exchanger 30a is selected as the defrost target, and explain the case where the first heat exchanger 30a is defrosted and the second heat exchanger 30b acts as an evaporator to continue heating. In this case, the flow control device 16b and the bypass flow control device 17a are open, and the flow control device 16a and the bypass flow control device 17b are closed.

 まず、暖房に係る冷媒の流れについて説明する。圧縮機11は、吸入した冷媒を圧縮し、高温かつ高圧のガス状態の冷媒を吐出する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒の一部は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器21に流入する。冷媒は、室内熱交換器21において、室内送風機22が送る室内空気と熱交換されて凝縮して液化し、中温かつ高圧の液状態の冷媒となる。凝縮された中温かつ高圧の液状態の冷媒は、絞り装置14bに流入する。絞り装置14bに流入した中温かつ高圧の冷媒は、膨張および減圧されて、中圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、デフロスト対象である第1熱交換器30aに流れず、蒸発器として作用する第2熱交換器30bに流入し、第2熱交換器30bにおいて、室外送風機15が送る室外空気と熱交換され、蒸発してガス化する。蒸発した低温かつ低圧のガス状態の冷媒は、流量調整装置16b、流路切替装置12、および、アキュムレータ13を通過して圧縮機11に吸入される。 First, the flow of refrigerant related to heating will be explained. The compressor 11 compresses the refrigerant it draws in and discharges the refrigerant in a high-temperature, high-pressure gas state. A portion of the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser. In the indoor heat exchanger 21, the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, becoming a medium-temperature, high-pressure liquid refrigerant. The condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14b. The medium-temperature, high-pressure refrigerant that flows into the throttling device 14b is expanded and reduced in pressure, becoming a medium-pressure two-phase gas-liquid refrigerant. The refrigerant in the gas-liquid two-phase state does not flow to the first heat exchanger 30a, which is the defrost target, but flows into the second heat exchanger 30b, which acts as an evaporator, where it exchanges heat with the outdoor air sent by the outdoor blower 15, evaporating and gasifying. The evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16b, the flow switching device 12, and the accumulator 13 and is sucked into the compressor 11.

 次に、デフロストに係る冷媒の流れについて説明する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒の一部は、流路切替装置12を通過せずにバイパス配管43aに流れる。バイパス配管43aに流れた冷媒は、バイパス流量調整装置17aを通過してデフロスト対象の第1熱交換器30aに流れる。第1熱交換器30aに流入した冷媒は、第1熱交換器30aに付着した霜との熱交換によって冷却される。このように、圧縮機11から吐出された高温かつ高圧のガス状態の冷媒が第1熱交換器30aに流入することによって、第1熱交換器30aに付着した霜を融かす。第1熱交換器30aのデフロストを行い、第1熱交換器30aから流出した冷媒は、絞り装置14aを通過して、室内熱交換器21において凝縮された中温かつ高圧の液状態の冷媒と合流する。 Next, the flow of refrigerant related to defrosting will be described. A part of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the bypass pipe 43a without passing through the flow switching device 12. The refrigerant that flows into the bypass pipe 43a passes through the bypass flow control device 17a and flows into the first heat exchanger 30a to be defrosted. The refrigerant that flows into the first heat exchanger 30a is cooled by heat exchange with the frost that has adhered to the first heat exchanger 30a. In this way, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the first heat exchanger 30a, melting the frost that has adhered to the first heat exchanger 30a. The refrigerant that flows out of the first heat exchanger 30a after defrosting the first heat exchanger 30a passes through the throttling device 14a and merges with the medium-temperature, high-pressure liquid refrigerant that has been condensed in the indoor heat exchanger 21.

 次に、第2熱交換器30bがデフロスト対象として選択された場合を例として、第2熱交換器30bのデフロストを行い、第1熱交換器30aが蒸発器として作用して暖房を継続する場合について説明する。この場合、流量調整装置16aおよびバイパス流量調整装置17bは開放されており、流量調整装置16bおよびバイパス流量調整装置17aは閉止されている。 Next, we will explain the case where the second heat exchanger 30b is selected as the defrost target, and the second heat exchanger 30b is defrosted while the first heat exchanger 30a acts as an evaporator to continue heating. In this case, the flow control device 16a and the bypass flow control device 17b are open, and the flow control device 16b and the bypass flow control device 17a are closed.

 まず、暖房に係る冷媒の流れについて説明する。圧縮機11は、吸入した冷媒を圧縮し、高温かつ高圧のガス状態の冷媒を吐出する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒の一部は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器21に流入する。冷媒は、室内熱交換器21において、室内送風機22が送る室内空気と熱交換されて凝縮して液化し、中温かつ高圧の液状態の冷媒となる。凝縮された中温かつ高圧の液状態の冷媒は、絞り装置14aに流入する。絞り装置14aに流入した中温かつ高圧の冷媒は、膨張および減圧されて、中圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、デフロスト対象である第2熱交換器30bに流れず、蒸発器として作用する第1熱交換器30aに流入し、第1熱交換器30aにおいて、室外送風機15が送る室外空気と熱交換され、蒸発してガス化する。蒸発した低温かつ低圧のガス状態の冷媒は、流量調整装置16a、流路切替装置12、および、アキュムレータ13を通過して圧縮機11に吸入される。 First, the flow of refrigerant related to heating will be explained. The compressor 11 compresses the refrigerant it draws in and discharges the refrigerant in a high-temperature, high-pressure gas state. A portion of the high-temperature, high-pressure gas state refrigerant discharged from the compressor 11 passes through the flow switching device 12 and flows into the indoor heat exchanger 21, which acts as a condenser. In the indoor heat exchanger 21, the refrigerant exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies, becoming a medium-temperature, high-pressure liquid refrigerant. The condensed medium-temperature, high-pressure liquid refrigerant flows into the throttling device 14a. The medium-temperature, high-pressure refrigerant that flows into the throttling device 14a is expanded and reduced in pressure, becoming a medium-pressure two-phase gas-liquid refrigerant. The refrigerant in the gas-liquid two-phase state does not flow to the second heat exchanger 30b, which is the defrosting target, but flows into the first heat exchanger 30a, which acts as an evaporator, where it exchanges heat with the outdoor air sent by the outdoor blower 15, evaporating and gasifying. The evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow control device 16a, the flow path switching device 12, and the accumulator 13 and is sucked into the compressor 11.

 次に、デフロストに係る冷媒の流れについて説明する。圧縮機11から吐出された高温かつ高圧のガス状態の冷媒の一部は、流路切替装置12を通過せずにバイパス配管43bに流れる。バイパス配管43bに流れた冷媒は、バイパス流量調整装置17bを通過してデフロスト対象の第2熱交換器30bに流れる。第2熱交換器30bに流入した冷媒は、第2熱交換器30bに付着した霜との熱交換によって冷却される。このように、圧縮機11から吐出された高温かつ高圧のガス状態の冷媒が第2熱交換器30bに流入することによって、第2熱交換器30bに付着した霜を融かす。第2熱交換器30bのデフロストを行い、第2熱交換器30bから流出した冷媒は、絞り装置14bを通過して、室内熱交換器21において凝縮された中温かつ高圧の液状態の冷媒と合流する。 Next, the flow of refrigerant related to defrosting will be described. A part of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the bypass pipe 43b without passing through the flow switching device 12. The refrigerant that flows into the bypass pipe 43b passes through the bypass flow control device 17b and flows into the second heat exchanger 30b to be defrosted. The refrigerant that flows into the second heat exchanger 30b is cooled by heat exchange with the frost that has adhered to the second heat exchanger 30b. In this way, the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 11 flows into the second heat exchanger 30b, melting the frost that has adhered to the second heat exchanger 30b. The refrigerant that flows out of the second heat exchanger 30b after defrosting the second heat exchanger 30b passes through the throttling device 14b and merges with the medium-temperature, high-pressure liquid refrigerant that has been condensed in the indoor heat exchanger 21.

 図4は、実施の形態1に係る空気調和機の室外機10の室外熱交換器30を正面側から見た模式図である。図4に示すように、第1熱交換器30aおよび第2熱交換器30bは、左右方向(水平方向)に間隔を空けて配置されている。第1熱交換器30aおよび第2熱交換器30bは、フィンチューブ型であり、それぞれ、左右方向(水平方向)に間隔を空けて配列され、上下方向(鉛直方向)に延びた複数の伝熱管33と、隣接する伝熱管33の間に設けられ、上下方向(鉛直方向)に延びた板状のフィン34と、複数の伝熱管33の上部に設けられ、複数の伝熱管33の上端部が差し込まれる上部ヘッダ31と、複数の伝熱管33の下部に設けられ、複数の伝熱管33の下端部が差し込まれる下部ヘッダ32と、を備えている。 FIG. 4 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to the first embodiment, seen from the front side. As shown in FIG. 4, the first heat exchanger 30a and the second heat exchanger 30b are arranged at intervals in the left-right direction (horizontal direction). The first heat exchanger 30a and the second heat exchanger 30b are of a fin tube type, and each of them is arranged at intervals in the left-right direction (horizontal direction), and includes a plurality of heat transfer tubes 33 extending in the up-down direction (vertical direction), plate-shaped fins 34 provided between adjacent heat transfer tubes 33 and extending in the up-down direction (vertical direction), an upper header 31 provided above the plurality of heat transfer tubes 33 and into which the upper ends of the plurality of heat transfer tubes 33 are inserted, and a lower header 32 provided below the plurality of heat transfer tubes 33 and into which the lower ends of the plurality of heat transfer tubes 33 are inserted.

 複数の伝熱管33は、室外送風機15によって発生した風が流れるように、間隔を空けて左右方向(水平方向)に並列して配置され、上下方向(鉛直方向)に延びる管内に上下方向(鉛直方向)に冷媒が流れる。伝熱管33は、例えば、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きくなる断面長円形状等の伝熱管である扁平管で構成されている。フィン34は、隣り合う伝熱管33の間にわたって接続され、伝熱管33に伝熱する。なお、フィン34は、空気と冷媒との熱交換効率を向上させるものであり、例えばコルゲートフィンが用いられるが、これに限定されるものではない。伝熱管33の表面で空気と冷媒との熱交換が行われるため、フィン34が設けられていなくてもよい。上部ヘッダ31および下部ヘッダ32は、左右方向(水平方向)に延びており、左右の両端が閉じられた筒状体であり、内部には冷媒が流通する空間が形成されている。 The heat transfer tubes 33 are arranged in parallel in the left-right direction (horizontal direction) at intervals so that the wind generated by the outdoor blower 15 can flow, and the refrigerant flows in the up-down direction (vertical direction) inside the tubes extending in the up-down direction (vertical direction). The heat transfer tubes 33 are, for example, flat tubes that are heat transfer tubes with an elliptical cross section whose width is greater than its length in a cross section perpendicular to the flow direction of the refrigerant. The fins 34 are connected between adjacent heat transfer tubes 33 and transfer heat to the heat transfer tubes 33. The fins 34 improve the heat exchange efficiency between the air and the refrigerant, and are, for example, corrugated fins, but are not limited to this. Since the heat exchange between the air and the refrigerant occurs on the surface of the heat transfer tubes 33, the fins 34 do not have to be provided. The upper header 31 and the lower header 32 extend in the left-right direction (horizontal direction) and are cylindrical bodies with both left and right ends closed, and a space is formed inside through which the refrigerant flows.

 ここで、伝熱管33が左右方向(水平方向)に延びている場合、上側の伝熱管33から融解水が流れて下側の伝熱管33に集中するため、下側の伝熱管33に必要な除霜能力は多くなり、また、水頭(ヘッド)が低く冷媒が流れづらいため流れる冷媒量が少ない。それに対して、上側の伝熱管33には融解水が集中しないため、上側の伝熱管33に必要な除霜能力は下側の伝熱管33に比べて少なく、また水頭(ヘッド)が高く流れる冷媒量が多い。そのため、上側に比べて下側の伝熱管33の方がデフロストに時間がかかり、除霜完了に必要な時間が長くなる。あるいは、2つの熱交換器が上下に配置されている場合、上側の熱交換器から融解水が流れて下側の熱交換器に集中するため、下側の熱交換器に必要な除霜能力は多くなる。そのため、上側に比べて下側の熱交換器の方がデフロストに時間がかかり、除霜完了に必要な時間が長くなる。しかしながら、実施の形態1では、伝熱管33が上下方向(鉛直方向)に延びているため、各伝熱管33に流れる冷媒が均一になり、場所によって融解水が集中することがないため、各伝熱管33に必要な除霜能力が均一になる。さらに、第1熱交換器30aおよび第2熱交換器30bは左右方向に配置されており、どちらかに融解水が集中することがないため、各熱交換器に必要な除霜能力が均一になるため、除霜完了に必要な時間が長くなるのを抑制することができる。また、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器の表面に付着した霜を溶かした際に発生する融解水が、他方の蒸発器として作用する熱交換器に流れないため、蒸発運転が妨げられずに熱交換器性能の低下を抑制でき、暖房能力の低下を抑制することができる。 Here, when the heat transfer tubes 33 extend in the left-right direction (horizontal direction), melt water flows from the upper heat transfer tube 33 and concentrates on the lower heat transfer tube 33, so the lower heat transfer tube 33 requires more defrosting capacity, and the amount of refrigerant flowing is small because the head is low and the refrigerant does not flow easily. On the other hand, melt water does not concentrate on the upper heat transfer tube 33, so the upper heat transfer tube 33 requires less defrosting capacity than the lower heat transfer tube 33, and the head is high and the amount of refrigerant flowing is large. Therefore, the lower heat transfer tube 33 takes longer to defrost than the upper one, and the time required to complete defrosting is longer. Alternatively, when two heat exchangers are arranged vertically, melt water flows from the upper heat exchanger and concentrates on the lower heat exchanger, so the lower heat exchanger requires more defrosting capacity. Therefore, the lower heat exchanger takes longer to defrost than the upper one, and the time required to complete defrosting is longer. However, in the first embodiment, since the heat transfer tubes 33 extend in the up-down direction (vertical direction), the refrigerant flowing through each heat transfer tube 33 becomes uniform, and melt water does not concentrate in some places, so the defrosting capacity required for each heat transfer tube 33 becomes uniform. Furthermore, the first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction, and melt water does not concentrate on either one, so the defrosting capacity required for each heat exchanger becomes uniform, and it is possible to suppress the time required for completing defrosting from becoming long. In addition, melt water generated when melting frost attached to the surface of one of the first heat exchanger 30a and the second heat exchanger 30b does not flow into the other heat exchanger acting as an evaporator, so the evaporation operation is not hindered, and the deterioration of the heat exchanger performance can be suppressed, and the deterioration of the heating capacity can be suppressed.

 以上、実施の形態1に係る空気調和機の室外機10は、外郭を構成する筐体19と、筐体19内に設けられ、左右方向に配置された第1熱交換器30aおよび第2熱交換器30bと、を備え、第1熱交換器30aおよび第2熱交換器30bは、それぞれ、左右方向に間隔を空けて配列され、上下方向に延びた複数の伝熱管33と、複数の伝熱管33の上部に設けられ、複数の伝熱管33の上端部が差し込まれる上部ヘッダ31と、複数の伝熱管33の下部に設けられ、複数の伝熱管33の下端部が差し込まれる下部ヘッダ32と、を備えたものである。 As described above, the outdoor unit 10 of the air conditioner according to the first embodiment comprises a housing 19 forming an outer shell, and a first heat exchanger 30a and a second heat exchanger 30b arranged in the left-right direction within the housing 19. The first heat exchanger 30a and the second heat exchanger 30b are each arranged at intervals in the left-right direction and comprise a plurality of heat transfer tubes 33 extending in the vertical direction, an upper header 31 provided above the plurality of heat transfer tubes 33 and into which the upper ends of the plurality of heat transfer tubes 33 are inserted, and a lower header 32 provided below the plurality of heat transfer tubes 33 and into which the lower ends of the plurality of heat transfer tubes 33 are inserted.

 実施の形態1に係る空気調和機の室外機10によれば、筐体19内に左右方向に配置された第1熱交換器30aおよび第2熱交換器30bは、それぞれ、左右方向に間隔を空けて配列され、上下方向に延びた複数の伝熱管33を備えているため、各伝熱管33に流れる冷媒が均一になり、場所によって融解水が集中することがなく、各伝熱管33に必要な除霜能力が均一になる。さらに、第1熱交換器30aおよび第2熱交換器30bは左右方向に配置されているため、どちらかに融解水が集中することがなく、各熱交換器に必要な除霜能力が均一になる。その結果、除霜完了に必要な時間が長くなるのを抑制することができ、デフロスト時にも空気調和機の室内機20の暖房機能を維持しつつ、暖房能力の低下を抑制することができる。 According to the outdoor unit 10 of the air conditioner according to the first embodiment, the first heat exchanger 30a and the second heat exchanger 30b arranged in the left-right direction within the housing 19 each have a plurality of heat transfer tubes 33 arranged at intervals in the left-right direction and extending in the up-down direction, so that the refrigerant flowing through each heat transfer tube 33 is uniform, melt water does not concentrate in any place, and the defrosting capacity required for each heat transfer tube 33 is uniform. Furthermore, since the first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction, melt water does not concentrate on either one, and the defrosting capacity required for each heat exchanger is uniform. As a result, it is possible to prevent the time required to complete defrosting from becoming longer, and it is possible to prevent a decrease in heating capacity while maintaining the heating function of the indoor unit 20 of the air conditioner even during defrosting.

 また、実施の形態1に係る空気調和機100は、上記の空気調和機の室外機10と、空気調和機の室内機20と、を備えたものである。 The air conditioner 100 according to the first embodiment includes the air conditioner outdoor unit 10 and the air conditioner indoor unit 20.

 実施の形態1に係る空気調和機100によれば、上記の空気調和機の室外機10と同様の効果を得ることができる。 The air conditioner 100 according to the first embodiment can achieve the same effects as the outdoor unit 10 of the air conditioner described above.

 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.

 図5は、実施の形態2に係る空気調和機の室外機10の室外熱交換器30を正面側から見た模式図である。図5に示すように、第1熱交換器30aおよび第2熱交換器30bは、左右方向(水平方向)に配置されているが、それらのヘッダ同士が熱的に接触している。つまり、第1熱交換器30aの上部ヘッダ31の第2熱交換器30b側の端部と第2熱交換器30bの上部ヘッダ31の第1熱交換器30a側の端部とが熱的に接触しており、第1熱交換器30aの下部ヘッダ32の第2熱交換器30b側の端部と第2熱交換器30bの下部ヘッダ32の第1熱交換器30a側の端部とが熱的に接触している。 FIG. 5 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to the second embodiment, viewed from the front side. As shown in FIG. 5, the first heat exchanger 30a and the second heat exchanger 30b are arranged in the left-right direction (horizontal direction), but their headers are in thermal contact with each other. That is, the end of the upper header 31 of the first heat exchanger 30a on the second heat exchanger 30b side is in thermal contact with the end of the upper header 31 of the second heat exchanger 30b on the first heat exchanger 30a side, and the end of the lower header 32 of the first heat exchanger 30a on the second heat exchanger 30b side is in thermal contact with the end of the lower header 32 of the second heat exchanger 30b on the first heat exchanger 30a side.

 第1熱交換器30aの上部ヘッダ31と第2熱交換器30bの上部ヘッダ31とは一体形成されており、それらの間に金属などの熱伝導材料で構成された仕切板35が設けられている。同様に、第1熱交換器30aの下部ヘッダ32と第2熱交換器30bの下部ヘッダ32とは一体形成されており、それらの間に金属などの熱伝導材料で構成された仕切板35が設けられている。ただし、それに限定されず、第1熱交換器30aの上部ヘッダ31の第2熱交換器30b側の端部と第2熱交換器30bの上部ヘッダ31の第1熱交換器30a側の端部とが接合されており、第1熱交換器30aの下部ヘッダ32の第2熱交換器30b側の端部と第2熱交換器30bの下部ヘッダ32の第1熱交換器30a側の端部とが接合されていてもよい。 The upper header 31 of the first heat exchanger 30a and the upper header 31 of the second heat exchanger 30b are integrally formed, and a partition plate 35 made of a heat conductive material such as metal is provided between them. Similarly, the lower header 32 of the first heat exchanger 30a and the lower header 32 of the second heat exchanger 30b are integrally formed, and a partition plate 35 made of a heat conductive material such as metal is provided between them. However, this is not limited to this, and the end of the upper header 31 of the first heat exchanger 30a on the second heat exchanger 30b side and the end of the upper header 31 of the second heat exchanger 30b on the first heat exchanger 30a side may be joined, and the end of the lower header 32 of the first heat exchanger 30a on the second heat exchanger 30b side and the end of the lower header 32 of the second heat exchanger 30b on the first heat exchanger 30a side may be joined.

 このように、第1熱交換器30aおよび第2熱交換器30bのヘッダ同士を熱的に接触させることで、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されるので、蒸発器として作用する熱交換器を流れた後で圧縮機11に吸入される冷媒がガス化しやすくなるため、液バックによる圧縮機11の故障を防ぐことができる。 In this way, by bringing the headers of the first heat exchanger 30a and the second heat exchanger 30b into thermal contact with each other, heat exchange occurs between the high-temperature refrigerant that flows through one of the first heat exchanger 30a and the second heat exchanger 30b when defrosting and the refrigerant that flows through the other heat exchanger acting as an evaporator. This makes it easier for the refrigerant that flows through the heat exchanger acting as an evaporator and is then drawn into the compressor 11 to gasify, thereby preventing breakdown of the compressor 11 due to liquid backflow.

 以上、実施の形態2に係る空気調和機の室外機10は、第1熱交換器30aの上部ヘッダ31と第2熱交換器30bの上部ヘッダ31とは、熱的に接触しており、第1熱交換器30aの下部ヘッダ32と第2熱交換器30bの下部ヘッダ32とは、熱的に接触しているものである。 As described above, in the outdoor unit 10 of the air conditioner according to embodiment 2, the upper header 31 of the first heat exchanger 30a is in thermal contact with the upper header 31 of the second heat exchanger 30b, and the lower header 32 of the first heat exchanger 30a is in thermal contact with the lower header 32 of the second heat exchanger 30b.

 実施の形態2に係る空気調和機の室外機10によれば、第1熱交換器30aおよび第2熱交換器30bのヘッダ同士を熱的に接触させることで、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されるので、蒸発器として作用する熱交換器を流れた後で圧縮機11に吸入される冷媒がガス化しやすくなるため、液バックによる圧縮機11の故障を防ぐことができる。 In the outdoor unit 10 of the air conditioner according to the second embodiment, the headers of the first heat exchanger 30a and the second heat exchanger 30b are brought into thermal contact with each other, so that the high-temperature refrigerant that flows when defrosting one of the first heat exchanger 30a and the second heat exchanger 30b is exchanged with the refrigerant that flows through the other heat exchanger acting as an evaporator. This makes it easier for the refrigerant that flows through the heat exchanger acting as an evaporator and is then drawn into the compressor 11 to gasify, thereby preventing breakdown of the compressor 11 due to liquid backflow.

 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and the same parts as or corresponding parts to the first and second embodiments will be given the same reference numerals.

 図6は、実施の形態3に係る空気調和機の室外機10の室外熱交換器30を正面側から見た模式図である。図6に示すように、第1熱交換器30aおよび第2熱交換器30bは、それぞれ第1流入出管36および第2流入出管37を備えている。第1流入出管36は、上部ヘッダ31に設けられており、第2流入出管37は、下部ヘッダ32に設けられている。以下、第1熱交換器30aの第1流入出管36を第1配管とも称し、第2熱交換器30bの第1流入出管36を第2配管とも称する。 FIG. 6 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 3, viewed from the front side. As shown in FIG. 6, the first heat exchanger 30a and the second heat exchanger 30b each have a first inlet/outlet pipe 36 and a second inlet/outlet pipe 37. The first inlet/outlet pipe 36 is provided in the upper header 31, and the second inlet/outlet pipe 37 is provided in the lower header 32. Hereinafter, the first inlet/outlet pipe 36 of the first heat exchanger 30a will also be referred to as the first piping, and the first inlet/outlet pipe 36 of the second heat exchanger 30b will also be referred to as the second piping.

 第1熱交換器30aの第1流入出管36は、第1熱交換器30aが凝縮器として作用する際に、冷媒の入口となり、第1熱交換器30aが蒸発器として作用する際に、冷媒の出口となる。また、第2熱交換器30bの第1流入出管36は、第2熱交換器30bが凝縮器として作用する際に、冷媒の入口となり、第2熱交換器30bが蒸発器として作用する際に、冷媒の出口となる。第1熱交換器30aの第2流入出管37は、第1熱交換器30aが凝縮器として作用する際に、冷媒の出口となり、第1熱交換器30aが蒸発器として作用する際に、冷媒の入口となる。また、第2熱交換器30bの第2流入出管37は、第2熱交換器30bが凝縮器として作用する際に、冷媒の出口となり、第2熱交換器30bが蒸発器として作用する際に、冷媒の入口となる。 The first inlet/outlet pipe 36 of the first heat exchanger 30a serves as a refrigerant inlet when the first heat exchanger 30a acts as a condenser, and serves as a refrigerant outlet when the first heat exchanger 30a acts as an evaporator. The first inlet/outlet pipe 36 of the second heat exchanger 30b serves as a refrigerant inlet when the second heat exchanger 30b acts as a condenser, and serves as a refrigerant outlet when the second heat exchanger 30b acts as an evaporator. The second inlet/outlet pipe 37 of the first heat exchanger 30a serves as a refrigerant outlet when the first heat exchanger 30a acts as a condenser, and serves as a refrigerant inlet when the first heat exchanger 30a acts as an evaporator. The second inlet/outlet pipe 37 of the second heat exchanger 30b serves as a refrigerant outlet when the second heat exchanger 30b acts as a condenser, and serves as a refrigerant inlet when the second heat exchanger 30b acts as an evaporator.

 第1熱交換器30aの第1流入出管36は、上部ヘッダ31の左右中心(図6の破線X1)よりも第2熱交換器30b側に配置されており、第2熱交換器30bの第1流入出管36は、上部ヘッダ31の左右中心(図6の破線X2)よりも第1熱交換器30a側に配置されている。 The first inlet/outlet pipe 36 of the first heat exchanger 30a is positioned closer to the second heat exchanger 30b than the lateral center of the upper header 31 (dashed line X1 in FIG. 6), and the first inlet/outlet pipe 36 of the second heat exchanger 30b is positioned closer to the first heat exchanger 30a than the lateral center of the upper header 31 (dashed line X2 in FIG. 6).

 このように、第1熱交換器30aの第1流入出管36を上部ヘッダ31の左右中心よりも第2熱交換器30b側に配置し、第2熱交換器30bの第1流入出管36を上部ヘッダ31の左右中心よりも第1熱交換器30a側に配置することで、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されるので、蒸発器として作用する熱交換器を流れた後で圧縮機11に吸入される冷媒がガス化しやすくなるため、液バックによる圧縮機11の故障を防ぐことができる。 In this way, by arranging the first inlet/outlet pipe 36 of the first heat exchanger 30a closer to the second heat exchanger 30b than the left-right center of the upper header 31, and arranging the first inlet/outlet pipe 36 of the second heat exchanger 30b closer to the first heat exchanger 30a than the left-right center of the upper header 31, heat exchange occurs between the high-temperature refrigerant that flows when defrosting one of the first and second heat exchangers 30a and 30b, and the refrigerant that flows through the other heat exchanger acting as an evaporator. This makes it easier for the refrigerant that flows through the heat exchanger acting as an evaporator and is sucked into the compressor 11 to gasify, thereby preventing breakdown of the compressor 11 due to liquid backflow.

 以上、実施の形態3に係る空気調和機の室外機10は、第1熱交換器30aの上部ヘッダ31には、第1熱交換器30aが凝縮器として作用する際に、冷媒の入口となる第1配管が設けられ、第2熱交換器30bの上部ヘッダ31には、第2熱交換器30bが蒸発器として作用する際に、冷媒の出口となる第2配管が設けられ、第1配管は、上部ヘッダ31の左右中心よりも第2熱交換器30b側に配置されており、第2配管は、上部ヘッダ31の左右中心よりも第1熱交換器30a側に配置されているものである。 As described above, in the outdoor unit 10 of the air conditioner according to the third embodiment, the upper header 31 of the first heat exchanger 30a is provided with a first pipe that serves as an inlet for the refrigerant when the first heat exchanger 30a acts as a condenser, and the upper header 31 of the second heat exchanger 30b is provided with a second pipe that serves as an outlet for the refrigerant when the second heat exchanger 30b acts as an evaporator, the first pipe being positioned closer to the second heat exchanger 30b than the left-right center of the upper header 31, and the second pipe being positioned closer to the first heat exchanger 30a than the left-right center of the upper header 31.

 実施の形態3に係る空気調和機の室外機10によれば、第1熱交換器30aの上部ヘッダ31の左右中心よりも第2熱交換器30b側に第1配管を配置し、第2熱交換器30bの上部ヘッダ31の左右中心よりも第1熱交換器30a側に第2配管を配置することで、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されるので、蒸発器として作用する熱交換器を流れた後で圧縮機11に吸入される冷媒がガス化しやすくなるため、液バックによる圧縮機11の故障を防ぐことができる。 According to the outdoor unit 10 of the air conditioner according to the third embodiment, the first pipe is arranged closer to the second heat exchanger 30b than the left-right center of the upper header 31 of the first heat exchanger 30a, and the second pipe is arranged closer to the first heat exchanger 30a than the left-right center of the upper header 31 of the second heat exchanger 30b. This allows heat exchange between the high-temperature refrigerant that flows when defrosting one of the first and second heat exchangers 30a and 30b and the refrigerant that flows through the other heat exchanger acting as an evaporator. This makes it easier for the refrigerant that flows through the heat exchanger acting as an evaporator and is sucked into the compressor 11 to gasify, thereby preventing breakdown of the compressor 11 due to liquid backflow.

 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1~3と重複するものについては説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.

 図7は、実施の形態4に係る空気調和機の室外機10の室外熱交換器30を正面側から見た模式図である。図7に示すように、第1熱交換器30aの最も第2熱交換器30b側に配置されている伝熱管33と、第2熱交換器30bの最も第1熱交換器30a側に配置されている伝熱管33との間に、フィン34が設けられており(図7のY矢視部参照)、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とが熱的に接触している。 Fig. 7 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 4, viewed from the front side. As shown in Fig. 7, fins 34 are provided between the heat transfer tube 33 of the first heat exchanger 30a that is arranged closest to the second heat exchanger 30b and the heat transfer tube 33 of the second heat exchanger 30b that is arranged closest to the first heat exchanger 30a (see the Y arrow portion in Fig. 7), and the heat transfer tube 33 of the first heat exchanger 30a and the heat transfer tube 33 of the second heat exchanger 30b are in thermal contact with each other.

 このように、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とがフィン34を介して熱的に接触することで、室外熱交換器30の全て(つまり、第1熱交換器30aおよび第2熱交換器30bの両方)を蒸発器もしくは凝縮器として作用させる際に、フィン34の伝熱面積が増加し、熱交換器性能を向上させることができる。 In this way, the heat transfer tubes 33 of the first heat exchanger 30a and the heat transfer tubes 33 of the second heat exchanger 30b are in thermal contact via the fins 34, so that when the entire outdoor heat exchanger 30 (i.e., both the first heat exchanger 30a and the second heat exchanger 30b) is used as an evaporator or a condenser, the heat transfer area of the fins 34 increases, improving the heat exchanger performance.

 以上、実施の形態4に係る空気調和機の室外機10は、第1熱交換器30aの最も第2熱交換器30b側に配置されている伝熱管33と、第2熱交換器30bの最も第1熱交換器30a側に配置されている伝熱管33との間に、フィン34が設けられているものである。 As described above, the outdoor unit 10 of the air conditioner according to embodiment 4 has fins 34 provided between the heat transfer tube 33 arranged on the first heat exchanger 30a closest to the second heat exchanger 30b and the heat transfer tube 33 arranged on the second heat exchanger 30b closest to the first heat exchanger 30a.

 実施の形態4に係る空気調和機の室外機10によれば、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とがフィン34を介して熱的に接触しているため、室外熱交換器30の全て(つまり、第1熱交換器30aおよび第2熱交換器30bの両方)を蒸発器もしくは凝縮器として作用させる際に、フィン34の伝熱面積が増加し、熱交換器性能を向上させることができる。 In the outdoor unit 10 of the air conditioner according to embodiment 4, the heat transfer tubes 33 of the first heat exchanger 30a and the heat transfer tubes 33 of the second heat exchanger 30b are in thermal contact via the fins 34, so that when all of the outdoor heat exchangers 30 (i.e., both the first heat exchanger 30a and the second heat exchanger 30b) are used as evaporators or condensers, the heat transfer area of the fins 34 increases, improving the heat exchanger performance.

 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1~4と重複するものについては説明を省略し、実施の形態1~4と同じ部分または相当する部分には同じ符号を付す。
Embodiment 5.
Hereinafter, the fifth embodiment will be described, but explanations of parts that overlap with the first to fourth embodiments will be omitted, and the same parts as or corresponding parts to the first to fourth embodiments will be given the same reference numerals.

 図8は、実施の形態5に係る空気調和機の室外機10の室外熱交換器30を正面側から見た模式図である。図8に示すように、第1熱交換器30aの最も第2熱交換器30b側に配置されている伝熱管33と、第2熱交換器30bの最も第1熱交換器30a側に配置されている伝熱管33との間に、フィン34が設けられておらず(図8のZ矢視部参照)、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とが熱的に遮断されている。 Figure 8 is a schematic diagram of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 5, viewed from the front side. As shown in Figure 8, no fins 34 are provided between the heat transfer tube 33 of the first heat exchanger 30a that is arranged closest to the second heat exchanger 30b and the heat transfer tube 33 of the second heat exchanger 30b that is arranged closest to the first heat exchanger 30a (see the Z arrow in Figure 8), and the heat transfer tube 33 of the first heat exchanger 30a and the heat transfer tube 33 of the second heat exchanger 30b are thermally insulated from each other.

 このように、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とを熱的に遮断することで、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されなくなり、一方の熱交換器を流れる冷媒のデフロストに使われる熱がフィン34を介して他方の熱交換器を流れる冷媒に移動しないため、除霜性能の低下を抑制することができる。 In this way, by thermally isolating the heat transfer tubes 33 of the first heat exchanger 30a and the second heat exchanger 30b, heat exchange is no longer performed between the high-temperature refrigerant that flows when defrosting one of the first and second heat exchangers 30a and 30b and the refrigerant that flows through the other heat exchanger acting as an evaporator. This means that the heat used to defrost the refrigerant flowing through one heat exchanger is not transferred via the fins 34 to the refrigerant flowing through the other heat exchanger, thereby suppressing a decrease in defrosting performance.

 以上、実施の形態5に係る空気調和機の室外機10は、第1熱交換器30aの最も第2熱交換器30b側に配置されている伝熱管33と、第2熱交換器30bの最も第1熱交換器30a側に配置されている伝熱管33との間に、フィン34が設けられていないものである。 As described above, the outdoor unit 10 of the air conditioner according to embodiment 5 does not have fins 34 between the heat transfer tube 33 arranged on the first heat exchanger 30a closest to the second heat exchanger 30b and the heat transfer tube 33 arranged on the second heat exchanger 30b closest to the first heat exchanger 30a.

 実施の形態5に係る空気調和機の室外機10によれば、第1熱交換器30aの伝熱管33と第2熱交換器30bの伝熱管33とが熱的に遮断されているため、第1熱交換器30aおよび第2熱交換器30bのうち、一方の熱交換器をデフロストするときに流れる高温冷媒と、他方の蒸発器として作用する熱交換器を流れる冷媒とが熱交換されなくなり、一方の熱交換器を流れる冷媒のデフロストに使われる熱がフィン34を介して他方の熱交換器を流れる冷媒に移動しないため、除霜性能の低下を抑制することができる。 In the outdoor unit 10 of the air conditioner according to embodiment 5, the heat transfer tube 33 of the first heat exchanger 30a and the heat transfer tube 33 of the second heat exchanger 30b are thermally insulated from each other, so that there is no heat exchange between the high-temperature refrigerant that flows when defrosting one of the first heat exchanger 30a and the second heat exchanger 30b and the refrigerant that flows through the other heat exchanger acting as an evaporator. As a result, the heat used for defrosting the refrigerant flowing through one heat exchanger is not transferred via the fins 34 to the refrigerant flowing through the other heat exchanger, and therefore a decrease in defrosting performance can be suppressed.

 実施の形態6.
 以下、実施の形態6について説明するが、実施の形態1~5と重複するものについては説明を省略し、実施の形態1~5と同じ部分または相当する部分には同じ符号を付す。
Embodiment 6.
Hereinafter, the sixth embodiment will be described, but explanations of parts that overlap with the first to fifth embodiments will be omitted, and the same parts as or corresponding parts to the first to fifth embodiments will be given the same reference numerals.

 図9は、実施の形態6に係る空気調和機の室外機10の室外熱交換器30の伝熱管33を平面視した模式図である。図9に示すように、室外熱交換器30の伝熱管33は、それぞれ、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きくなる扁平形状を有し、内部には冷媒が流れる流路である冷媒流路33aが長手方向に沿って所定の間隔を空けて複数形成された扁平多穴管である。 Fig. 9 is a schematic diagram showing a plan view of the heat transfer tube 33 of the outdoor heat exchanger 30 of the outdoor unit 10 of the air conditioner according to embodiment 6. As shown in Fig. 9, the heat transfer tube 33 of the outdoor heat exchanger 30 is a flattened multi-hole tube in which the width is greater than the length in a cross section perpendicular to the flow direction of the refrigerant, and inside the tube, a plurality of refrigerant flow paths 33a, through which the refrigerant flows, are formed at predetermined intervals along the longitudinal direction.

 ここで、暖房デフロスト運転モードでは、第1熱交換器30aおよび第2熱交換器30bのうち、デフロスト対象となる方に液冷媒が溜まり込み、室外熱交換器30に存在する液冷媒が増えた分だけ、室内熱交換器21の液冷媒が減少する。そして、室外熱交換器30の伝熱管および室内熱交換器21の伝熱管がともに円管で構成されている場合、暖房中の室内熱交換器21で冷媒不足となり、暖房能力が低下する。そこで、室外熱交換器30の伝熱管33を円管よりも流路断面積が少ない扁平多穴管で構成することで、室内熱交換器21の伝熱管が円管で構成されている場合、室外熱交換器30に存在する液冷媒が増えても、室内熱交換器21の必要冷媒量に大きく影響しないため、暖房能力の低下を抑制することができる。 Here, in the heating/defrosting operation mode, liquid refrigerant accumulates in the one of the first heat exchanger 30a and the second heat exchanger 30b that is to be defrosted, and the liquid refrigerant in the indoor heat exchanger 21 decreases by the amount of the increase in liquid refrigerant present in the outdoor heat exchanger 30. If the heat transfer tubes of the outdoor heat exchanger 30 and the heat transfer tubes of the indoor heat exchanger 21 are both made of circular tubes, the indoor heat exchanger 21 will experience a refrigerant shortage during heating, and the heating capacity will decrease. Therefore, by making the heat transfer tube 33 of the outdoor heat exchanger 30 a flat multi-hole tube with a smaller flow cross-sectional area than a circular tube, if the heat transfer tube of the indoor heat exchanger 21 is made of a circular tube, even if the liquid refrigerant present in the outdoor heat exchanger 30 increases, it is possible to suppress the decrease in heating capacity because it does not greatly affect the amount of refrigerant required by the indoor heat exchanger 21.

 以上、実施の形態5に係る空気調和機の室外機10において、第1熱交換器30aおよび第2熱交換器30bは、それぞれ、伝熱管33が、長手方向に沿って配置されている複数の冷媒流路33aを形成する扁平多穴管である。 As described above, in the outdoor unit 10 of the air conditioner according to embodiment 5, the first heat exchanger 30a and the second heat exchanger 30b are each a flat multi-hole tube in which the heat transfer tube 33 forms a plurality of refrigerant flow paths 33a arranged along the longitudinal direction.

 実施の形態6に係る空気調和機の室外機10によれば、室外熱交換器30の伝熱管33を扁平多穴管で構成することで、室内熱交換器21の伝熱管が円管で構成されている場合、室外熱交換器30に存在する液冷媒が増えても、室内熱交換器21の必要冷媒量に大きく影響しないため、暖房能力の低下を抑制することができる。 In the outdoor unit 10 of the air conditioner according to embodiment 6, the heat transfer tubes 33 of the outdoor heat exchanger 30 are made of flat multi-hole tubes. In the case where the heat transfer tubes of the indoor heat exchanger 21 are made of circular tubes, an increase in the amount of liquid refrigerant present in the outdoor heat exchanger 30 does not significantly affect the amount of refrigerant required by the indoor heat exchanger 21, so a decrease in heating capacity can be suppressed.

 1 主回路、2 バイパス回路、2a バイパス回路、2b バイパス回路、10 室外機、11 圧縮機、12 流路切替装置、13 アキュムレータ、14 絞り装置、14a 絞り装置、14b 絞り装置、15 室外送風機、16 流量調整装置、16a 流量調整装置、16b 流量調整装置、17 バイパス流量調整装置、17a バイパス流量調整装置、17b バイパス流量調整装置、19 筐体、19a 送風機室、19b 機械室、20 室内機、21 室内熱交換器、22 室内送風機、30 室外熱交換器、30a 第1熱交換器、30b 第2熱交換器、31 上部ヘッダ、32 下部ヘッダ、33 伝熱管、33a 冷媒流路、34 フィン、35 仕切板、36 第1流入出管、37 第2流入出管、41 主配管、42 枝配管、42a 枝配管、42b 枝配管、43 バイパス配管、43a バイパス配管、43b バイパス配管、50 制御装置、100 空気調和機。 1 main circuit, 2 bypass circuit, 2a bypass circuit, 2b bypass circuit, 10 outdoor unit, 11 compressor, 12 flow path switching device, 13 accumulator, 14 throttling device, 14a throttling device, 14b throttling device, 15 outdoor blower, 16 flow rate control device, 16a flow rate control device, 16b flow rate control device, 17 bypass flow rate control device, 17a bypass flow rate control device, 17b bypass flow rate control device, 19 housing, 19a blower room, 19b machine room, 20 Indoor unit, 21 Indoor heat exchanger, 22 Indoor blower, 30 Outdoor heat exchanger, 30a First heat exchanger, 30b Second heat exchanger, 31 Upper header, 32 Lower header, 33 Heat transfer tube, 33a Refrigerant flow path, 34 Fin, 35 Partition plate, 36 First inlet/outlet pipe, 37 Second inlet/outlet pipe, 41 Main pipe, 42 Branch pipe, 42a Branch pipe, 42b Branch pipe, 43 Bypass pipe, 43a Bypass pipe, 43b Bypass pipe, 50 Control device, 100 Air conditioner.

Claims (8)

 外郭を構成する筐体と、
 前記筐体内に設けられ、左右方向に配置された第1熱交換器および第2熱交換器と、を備え、
 前記第1熱交換器および前記第2熱交換器は、それぞれ、
 前記左右方向に間隔を空けて配列され、上下方向に延びた複数の伝熱管と、
 前記複数の伝熱管の上部に設けられ、前記複数の伝熱管の上端部が差し込まれる上部ヘッダと、
 前記複数の伝熱管の下部に設けられ、前記複数の伝熱管の下端部が差し込まれる下部ヘッダと、を備えた
 空気調和機の室外機。
A housing constituting an outer shell;
a first heat exchanger and a second heat exchanger provided in the housing and arranged in a left-right direction;
The first heat exchanger and the second heat exchanger each have
A plurality of heat transfer tubes arranged at intervals in the left-right direction and extending in the up-down direction;
an upper header provided on an upper portion of the plurality of heat transfer tubes and into which upper ends of the plurality of heat transfer tubes are inserted;
a lower header provided at a lower portion of the plurality of heat transfer tubes and into which lower ends of the plurality of heat transfer tubes are inserted.
 前記第1熱交換器の前記上部ヘッダと前記第2熱交換器の前記上部ヘッダとは、熱的に接触しており、
 前記第1熱交換器の前記下部ヘッダと前記第2熱交換器の前記下部ヘッダとは、熱的に接触している
 請求項1に記載の空気調和機の室外機。
the upper header of the first heat exchanger and the upper header of the second heat exchanger are in thermal contact with each other;
The outdoor unit of an air conditioner according to claim 1 , wherein the lower header of the first heat exchanger and the lower header of the second heat exchanger are in thermal contact with each other.
 前記第1熱交換器の前記上部ヘッダには、前記第1熱交換器が凝縮器として作用する際に、冷媒の入口となる第1配管が設けられ、
 前記第2熱交換器の前記上部ヘッダには、前記第2熱交換器が蒸発器として作用する際に、冷媒の出口となる第2配管が設けられ、
 前記第1配管は、前記上部ヘッダの左右中心よりも前記第2熱交換器側に配置されており、
 前記第2配管は、前記上部ヘッダの左右中心よりも前記第1熱交換器側に配置されている
 請求項2に記載の空気調和機の室外機。
a first pipe that serves as an inlet for a refrigerant when the first heat exchanger functions as a condenser is provided in the upper header of the first heat exchanger;
The upper header of the second heat exchanger is provided with a second pipe that serves as an outlet for the refrigerant when the second heat exchanger functions as an evaporator.
The first pipe is disposed closer to the second heat exchanger than the left-right center of the upper header,
The outdoor unit of an air conditioner according to claim 2 , wherein the second pipe is disposed closer to the first heat exchanger than a left-right center of the upper header.
 前記第1熱交換器および前記第2熱交換器は、それぞれ、
 隣り合う前記伝熱管の間にフィンが設けられている
 請求項3に記載の空気調和機の室外機。
The first heat exchanger and the second heat exchanger each have
The outdoor unit of an air conditioner according to claim 3 , wherein fins are provided between adjacent heat transfer tubes.
 前記第1熱交換器の最も前記第2熱交換器側に配置されている前記伝熱管と、前記第2熱交換器の最も前記第1熱交換器側に配置されている前記伝熱管との間に、フィンが設けられている
 請求項4に記載の空気調和機の室外機。
5. The outdoor unit of an air conditioner according to claim 4, wherein a fin is provided between the heat transfer tube arranged on the side closest to the second heat exchanger of the first heat exchanger and the heat transfer tube arranged on the side closest to the first heat exchanger of the second heat exchanger.
 前記第1熱交換器の最も前記第2熱交換器側に配置されている前記伝熱管と、前記第2熱交換器の最も前記第1熱交換器側に配置されている前記伝熱管との間に、フィンが設けられていない
 請求項4に記載の空気調和機の室外機。
5. The outdoor unit of an air conditioner according to claim 4, wherein no fins are provided between the heat transfer tube arranged on the side closest to the second heat exchanger of the first heat exchanger and the heat transfer tube arranged on the side closest to the first heat exchanger of the second heat exchanger.
 前記第1熱交換器および前記第2熱交換器は、それぞれ、
 前記伝熱管が、長手方向に沿って配置されている複数の冷媒流路を形成する扁平多穴管である
 請求項1~6のいずれか一項に記載の空気調和機の室外機。
The first heat exchanger and the second heat exchanger each have
The outdoor unit for an air conditioner according to any one of claims 1 to 6, wherein the heat transfer tube is a flat multi-hole tube that forms a plurality of refrigerant flow paths arranged along a longitudinal direction.
 請求項1~7のいずれか一項に記載の空気調和機の室外機と、
 空気調和機の室内機と、を備えた
 空気調和機。
An outdoor unit of an air conditioner according to any one of claims 1 to 7;
An air conditioner comprising an indoor unit of the air conditioner.
PCT/JP2023/025731 2023-07-12 2023-07-12 Outdoor unit for air conditioner and air conditioner comprising same WO2025013244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/025731 WO2025013244A1 (en) 2023-07-12 2023-07-12 Outdoor unit for air conditioner and air conditioner comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/025731 WO2025013244A1 (en) 2023-07-12 2023-07-12 Outdoor unit for air conditioner and air conditioner comprising same

Publications (1)

Publication Number Publication Date
WO2025013244A1 true WO2025013244A1 (en) 2025-01-16

Family

ID=94214808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025731 WO2025013244A1 (en) 2023-07-12 2023-07-12 Outdoor unit for air conditioner and air conditioner comprising same

Country Status (1)

Country Link
WO (1) WO2025013244A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201844618U (en) * 2010-07-30 2011-05-25 艾默生网络能源有限公司 Micro-channel evaporator
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
WO2016174830A1 (en) * 2015-04-27 2016-11-03 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
WO2023062801A1 (en) * 2021-10-15 2023-04-20 三菱電機株式会社 Heat exchanger and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201844618U (en) * 2010-07-30 2011-05-25 艾默生网络能源有限公司 Micro-channel evaporator
WO2014083650A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air conditioning device
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
WO2016174830A1 (en) * 2015-04-27 2016-11-03 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
WO2023062801A1 (en) * 2021-10-15 2023-04-20 三菱電機株式会社 Heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6768073B2 (en) Air conditioner
WO2015059792A1 (en) Air conditioner
JP5625691B2 (en) Refrigeration equipment
KR100539570B1 (en) multi airconditioner
JP6846915B2 (en) Multi-chamber air conditioner
CN113339909B (en) Heat pump air conditioning system
JP4428341B2 (en) Refrigeration cycle equipment
KR20140145025A (en) Out door unit capable of defrosting and heat pump system including the out door unit
WO2021065914A1 (en) Freezing apparatus
WO2020235030A1 (en) Heat exchanger and refrigeration cycle device using same
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2021106084A1 (en) Refrigeration cycle device
WO2025013244A1 (en) Outdoor unit for air conditioner and air conditioner comprising same
JP7433470B2 (en) Refrigeration cycle equipment
JP7123238B2 (en) refrigeration cycle equipment
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP7595770B2 (en) Heat exchanger and refrigeration cycle device
WO2023275917A1 (en) Air-refrigerant heat exchanger
WO2023275916A1 (en) Refrigeration cycle device
JP2008170134A (en) Refrigeration equipment
WO2024261859A1 (en) Air conditioning device
JP2025007831A (en) Refrigeration equipment
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JP2025007799A (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23945119

Country of ref document: EP

Kind code of ref document: A1