WO2025013221A1 - Terminal, wireless communication method, and base station - Google Patents
Terminal, wireless communication method, and base station Download PDFInfo
- Publication number
- WO2025013221A1 WO2025013221A1 PCT/JP2023/025639 JP2023025639W WO2025013221A1 WO 2025013221 A1 WO2025013221 A1 WO 2025013221A1 JP 2023025639 W JP2023025639 W JP 2023025639W WO 2025013221 A1 WO2025013221 A1 WO 2025013221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- model
- performance
- monitoring
- functionality
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Definitions
- This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
- LTE 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- AI artificial intelligence
- ML machine learning
- Performance monitoring may be classified as NW transparent monitoring and NW non-transparent monitoring.
- one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can perform suitable performance monitoring regarding models/functionality/fallbacks.
- a terminal has a control unit that detects performance fluctuations related to at least one of the operation of a model, functionality, and fallback through a first performance monitoring, and a transmission unit that transmits information for requesting a second performance monitoring based on the performance fluctuations.
- suitable performance monitoring of models/functionality/fallbacks can be performed.
- FIG. 1 is a diagram illustrating an example of a framework for managing AI models.
- FIG. 2 is a diagram illustrating an example of two-step performance monitoring according to the 0th embodiment.
- FIG. 3 is a diagram illustrating an example of control of the NW transparent monitoring according to the second embodiment.
- FIG. 4 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 5 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
- FIG. 6 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- FIG. 7 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
- FIG. 8 is a diagram illustrating an example of a vehicle according to an embodiment.
- AI Artificial Intelligence
- ML machine learning
- CSI channel state information
- UE user equipment
- BS base stations
- CSI channel state information
- UE user equipment
- beam management e.g., improving accuracy, prediction in the time/space domain
- position measurement e.g., improving position estimation/prediction
- the AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information.
- the UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
- AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: - Estimation based on observed or collected information; - making choices based on observed or collected information; - Predictions based on observed or collected information.
- estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
- an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
- an AI model may be interpreted as an object having (implementing) at least one of the following characteristics: - Producing estimates by feeding information, - Predicting estimates by providing information - Discover features by providing information, - Select an action by providing information.
- an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
- AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable.
- AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
- autoencoder may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder.
- the encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
- encoder encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
- decoder decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- decompressing decompress/decompressed, reconstructing, reconstruct/reconstructed, etc.
- a layer (of an AI model) may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model.
- a layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
- methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
- Supervised learning may refer to the process of training a model from inputs and corresponding labels.
- Unsupervised learning may refer to the process of training a model without labeled data.
- Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
- terms such as generate, calculate, derive, etc. may be interchangeable.
- terms such as implement, operate, operate, execute, etc. may be interchangeable.
- terms such as train, learn, update, retrain, etc. may be interchangeable.
- terms such as infer, after-training, production use, actual use, etc. may be interchangeable.
- terms such as signal and signal/channel may be interchangeable.
- FIG. 1 shows an example of a framework for managing AI models.
- each stage related to an AI model is shown as a block.
- This example is also referred to as Life Cycle Management (LCM) of an AI model.
- LCM Life Cycle Management
- the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
- the data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
- data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
- process and procedure may be interpreted as interchangeable.
- collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
- offline field data may be data collected from the field (real world) and used for offline training of an AI model.
- online field data may be data collected from the field (real world) and used for online training of an AI model.
- model training is performed based on the data (training data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
- AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
- AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
- AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
- model inference is performed based on the data (inference data) transferred from the collection stage.
- This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), output (providing model output to the actor), etc.
- AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
- a UE side model may refer to an AI model whose inference is performed entirely in the UE.
- a network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
- a one-sided model may refer to a UE-side model or a network-side model.
- a two-sided model may refer to a pair of AI models where joint inference is performed.
- joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
- AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
- model registration may refer to making a model executable (registering) by assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase.
- Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
- Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
- action triggers e.g., deciding whether to trigger an action on another entity
- feedback e.g., feeding back information needed for training data/inference data/performance feedback
- training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB).
- OAM Operation, Administration and Maintenance
- NW network
- gNodeB gNodeB
- In the former case interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous.
- the latency of model updates and the absence of data exchange for model deployment are advantageous.
- Inference of the above model may be performed in, for example, a gNB.
- the entity performing the training/inference may be different.
- the function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
- the OAM/gNB may perform model training and the gNB may perform model inference.
- a Location Management Function may perform model training and the LMF may perform model inference.
- the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
- the OAM/gNB/UE may perform model training and the UE may perform model inference.
- model activation may mean activating an AI model for a particular function.
- Model deactivation may mean disabling an AI model for a particular function.
- Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
- Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model.
- Model download may refer to model transfer from the network to the UE.
- Model upload may refer to model transfer from the UE to the network.
- the multiple LCMs may be a functionality-based LCM and a model-ID-based LCM.
- the functionality-based LCM may be referred to as a functionality-based LCM
- the model-ID-based LCM may be referred to as a model-ID-based LCM.
- the network e.g., a base station/network node
- the network may instruct operations related to the functionality of the AI/ML (e.g., at least one of activation, deactivation, fallback operation, and switch).
- the UE may perform model-level LCM (e.g., model switching and/or model selection) within the indicated functionality.
- model-level LCM e.g., model switching and/or model selection
- the functionality may be transparent as to which models are activated/deactivated.
- UE Capability information reports may be used to indicate supported functionality.
- the network e.g., a base station/network node
- may instruct an operation related to an individual AI/ML model e.g., at least one of activation, deactivation, fallback operation, and switch
- an individual AI/ML model e.g., at least one of activation, deactivation, fallback operation, and switch
- the UE may perform model-level LCM (e.g., at least one of model switching and model selection) based on instructions from the network.
- model-level LCM e.g., at least one of model switching and model selection
- a model may be defined in the network by a model identifier (ID).
- ID model identifier
- the UE may report certain conditions in the UE capabilities (capability information), in which case the NW may configure the corresponding functionality based on the reported conditions.
- functionality may represent features/feature groups (Feature Groups (FGs)) available in the AI/ML that are enabled by a certain setting, for example, a set of RRC parameters/LPP parameters.
- the setting may be supported based on conditions indicated by the UE capabilities.
- functionality may represent units that the NW can control on the UE side in the operation of LCM (monitoring (checking performance)/activation/deactivation/switching/fallback/update).
- functionality may refer to the use of the model or the physical meaning of the model's inputs/outputs. Multiple models may have the same functionality.
- the operation of the LCM based on the functionality may be controlled based on the settings of features/feature groups available in the AI/ML described above.
- signaling (signaling for activation/deactivation/switching) to support the operation of the LCM based on the functionality is considered.
- the UE may also report applicable functionality updates. For example, a mechanism for updating the applicable models after identifying the models needs to be considered.
- model identification A model identified by a model ID may be associated with, for example, settings/conditions/additional conditions (specific scenarios, sites, data sets, etc.).
- a model may represent a unit that the NW can control on the UE side in the operation (activation/deactivation/switching) of the LCM.
- a model ID may refer to an identifier for a model (or a set of models). Multiple models may be assigned the same model ID in an actual deployment. In this case, these models may be treated as the same model, even though they are actually different models (e.g., they may have different number of layers, etc.).
- the model ID may be interchangeably read as a meta information (or a set of meta information) ID.
- the meta information (or meta information ID) may be associated with information regarding the applicability of the model/functionality, the environment, the UE/gNB settings, etc.
- the operation of the LCM based on the model ID may be controlled based on the identified model, where the model may be associated with specific settings/conditions regarding UE capabilities of features/feature groups available in the AI/ML and additional conditions determined/identified between the UE side and the NW side.
- the identification process and control unit will be different between the functionality-based LCM and the model ID-based LCM.
- it is being considered to share the same activation/deactivation/switching procedures (or to use the same/similar procedures) between the functionality-based LCM and the model ID-based LCM.
- Type A Model information and model ID are associated without signaling.
- the UE reports the supported model IDs to the NW. That is, the mapping between the model ID and the model information is identified to the NW and the UE without signaling.
- the NW and the UE identify the corresponding model information based on the received model ID.
- Type B1 Model information is reported from the UE to the NW via the air interface (signaling). Model identification is initiated by the UE and the NW assists (or takes responsibility for) the remaining steps of model identification. During model identification, a model ID may be assigned to the model.
- Type B2 Model information is reported from the NW to the UE via the air interface (signaling). Model identification is initiated by the NW and the UE responds for the remaining steps of model identification. During model identification, a model ID may be assigned to the model.
- Network-transparent monitoring may mean that the UE evaluates the model/functionality based on criteria determined/defined by the UE.
- the criteria determined/defined by the UE may or may not be transparent to the network (e.g., by notifying related information).
- the result of the evaluation/judgment based on the criteria may not be transparent to the network.
- NW non-transparent monitoring may mean at least one of the following: The UE evaluates the model/functionality based on criteria defined in the standard or determined/configured/instructed by the NW; - NW evaluates the model/functionality based on information reported from the UE (e.g., monitored metrics, inference results).
- Network-transparent monitoring may also be called UE autonomous monitoring, network-independent monitoring, etc.
- Network-non-transparent monitoring may also be called UE non-autonomous monitoring, network-dependent monitoring, etc.
- NW transparent monitoring are, for example: - Capabilities are not disclosed to other vendors. UE vendors do not report model/functionality capabilities to the NW, so they can hide performance details from NW vendors. No need to define metrics: There is no need to define metrics in the standard. Some performance metrics are difficult to define (e.g., input data distribution), so not having to define them is an advantage. Reduced reporting overhead: UE does not need to report performance metrics/events prior to evaluation.
- an event and the occurrence of an event may be interpreted as interchangeable.
- an event, an event before evaluation, an event during evaluation, an event after evaluation, etc. may be interpreted as interchangeable.
- NW non-transparent monitoring include, for example: The NW has some idea of how good the models/functionality are and can take appropriate decisions on (de)activation of the models/functionality.
- performance monitoring for which specific procedures are prescribed in the standard, is considered to be network non-transparent monitoring, and the specific procedures for network transparent monitoring are considered to depend on the UE implementation.
- the inventors therefore came up with a setting/control method suitable for network transparent monitoring, network non-transparent monitoring, etc.
- A/B and “at least one of A and B” may be interpreted as interchangeable.
- A/B/C may mean “at least one of A, B, and C.”
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
- IEs information elements
- CE Medium Access Control
- update commands activation/deactivation commands, etc.
- the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
- RRC Radio Resource Control
- MAC Medium Access Control
- LPP LTE Positioning Protocol
- the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
- the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
- DCI Downlink Control Information
- UCI Uplink Control Information
- monitoring, channel measurement/estimation, etc. may be performed using a reference signal (RS).
- RS may include at least one of, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/physical broadcast channel (SS/PBCH) block, a demodulation reference signal (DMRS), a sounding reference signal (SRS), etc.
- CSI-RS channel state information reference signal
- SS synchronization signal
- SS/PBCH synchronization signal/physical broadcast channel
- DMRS demodulation reference signal
- SRS sounding reference signal
- the measured/reported RS may refer to the RS measured/reported for a CSI report.
- the RS index may be a CSI-RS Resource Indicator (CSI-RS Resource Indicator (CRI)), a SS/PBCH Block Resource Indicator (SSBRI), etc.
- CSI-RS Resource Indicator CRI
- SSBRI SS/PBCH Block Resource Indicator
- functionality, function, functionality ID, model, and model ID may be interpreted interchangeably.
- model/functionality/fallback operation or operation of model/functionality/fallback may be read interchangeably as model/functionality/fallback.
- the operation of the model/functionality may include, for example, at least one of model/functionality activation, deactivation, switching, fallback operation, update, etc.
- the fallback operation may include at least one of an operation based on information (e.g., input) used when applying the corresponding AI function, an operation based on information (e.g., input) used when applying the corresponding AI function and a non-AI function, etc.
- monitoring and performance monitoring may be interchangeably read.
- NW transparent monitoring may be interchangeably read as first monitoring, first type monitoring, etc.
- NW non-transparent monitoring may be interchangeably read as second monitoring, second type monitoring, etc.
- the 0th embodiment relates to a two-step performance monitoring that combines NW transparent monitoring and NW non-transparent monitoring.
- the UE normally performs network-transparent monitoring, and when it detects a performance fluctuation, it controls itself to perform network-non-transparent monitoring.
- FIG. 2 is a diagram showing an example of two-step performance monitoring according to the 0th embodiment.
- the UE is configured to perform non-transparent network monitoring at a relatively long period.
- the UE also performs NW transparent monitoring at a period shorter than the period of NW non-transparent monitoring.
- the UE performs the NW transparent monitoring based on the reception of a reference signal.
- the UE requests NW non-transparent monitoring based on the performance monitored by the NW transparent monitoring (for example, when the performance fluctuation is large, or when the performance fluctuation exceeds a threshold). This request will be described later in the first embodiment. Also, the setting/measurement method for NW transparent monitoring will be described later in the second embodiment.
- the UE may determine the above threshold based on predefined rules, based on UE capabilities, or based on parameters instructed/set by the NW.
- the UE continues the NW transparent monitoring.
- the UE may perform NW non-transparent monitoring in the above-mentioned long period regardless of the result of the NW transparent monitoring.
- the UE may perform both NW non-transparent monitoring and NW transparent monitoring at the same time, or may perform (prioritize) one of them (for example, may prioritize NW non-transparent monitoring).
- the period of NW non-transparent monitoring and the period of NW transparent monitoring are not limited to the relationship shown in FIG. 2. They may be the same, or the former may be longer than the latter, or the latter may be longer than the former.
- NW non-transparent monitoring does not necessarily have to be configured to be performed periodically/semi-persistently (for example, it may be configured/instructed to be performed aperiodically).
- the UE may assume that there are constraints regarding the length relationship between the periods of NW non-transparent monitoring and NW transparent monitoring, their time domain behavior (for example, periodic, semi-persistent, aperiodic), etc. For example, the UE may determine the setting of NW transparent monitoring (e.g., period) from the setting of NW non-transparent monitoring (e.g., period) based on the constraint.
- the first embodiment relates to a request for performance monitoring (NW non-transparent monitoring) based on NW transparent monitoring.
- the UE may report information on the possibility/probability of the performance of the model/functionality/fallback operation fluctuating (e.g., may be called performance fluctuation possibility information, performance fluctuation possibility report, etc.) to the NW.
- This information may be expressed, for example, as a hard value (which may be called a hard decision value) or a soft value (which may be called a soft decision value).
- the hard value may be expressed as a binary value (0 or 1).
- the soft value may be expressed as several candidate values (0, 0.1, 0,2, ..., 0.9, 1.0) or may be expressed as a real value.
- the UE may decide which value (e.g., a hard value or a soft value) to report as the performance variability information based on predefined rules, on the UE capabilities, or on the parameters that are instructed/set.
- a hard value or a soft value e.g., a hard value or a soft value
- Performance variability information may include information to identify associated (or performance varying) model/functionality/fallback behavior.
- the NW may trigger (perform) NW non-transparent monitoring for the UE based on the performance variation possibility information reported from the UE. For example, if the possibility indicated by the performance variation possibility information reported from the UE exceeds a threshold, the NW may trigger NW non-transparent monitoring for the UE.
- the report of the above-mentioned performance variation possibility information may correspond to a request for NW non-transparent monitoring.
- the UE may request (or send information indicating the request (hereinafter also referred to as request information)) measurement/reporting of performance of the model/functionality/fallback operation.
- the request information may include information for identifying the model/functionality/fallback behavior to be measured/reported (in other words, the measurement/report is requested).
- the requested model/functionality/fallback behavior may be the same as or different from the model/functionality/fallback behavior that caused the request (e.g., the model/functionality/fallback behavior whose performance is monitored by network transparent monitoring, or the model/functionality/fallback behavior indicated by performance variability information). If they are the same, the request information does not need to include information for identifying the requested model/functionality/fallback behavior.
- the UE may transmit the above-mentioned performance variation possibility information and request information simultaneously or at different times.
- the UE may start a specific timer.
- the UE may allow the transmission of performance variation possibility information/request information only when the specific timer is not running. This makes it possible to prevent the performance variation possibility information/request information from being transmitted too frequently.
- the specific timer may be managed in the MAC layer (MAC entity).
- the UE may stop (or suspend) the corresponding or all network transparent monitoring when the particular timer is running.
- the UE may determine information about the particular timer (e.g., the length of the timer) based on predefined rules, based on UE capabilities, or based on instructed/set parameters.
- timer may be used for each model/functionality/fallback operation (or an individual timer may be used for a specific model/functionality/fallback operation), or the same timer may be used for multiple model/functionality/fallback operations.
- the second embodiment relates to NW transmission type monitoring.
- the UE may request the configuration/measurement of a specific reference signal (RS) (may transmit information indicating the request (hereinafter, also referred to as RS request information)). Requesting the configuration/measurement of the RS may be interpreted as requesting the RS.
- RS specific reference signal
- the specific RS will also be referred to as an RS for monitoring performance fluctuations, an RS for determining whether to send request information, etc.
- the RS for monitoring performance fluctuations may be used only for monitoring performance fluctuations, or may be used for other purposes.
- FIG. 3 is a diagram showing an example of the control of the network transparent monitoring according to the second embodiment.
- the control of the network transparent monitoring may be performed based on at least one of the steps shown in the figure. Note that some steps may be omitted.
- step S101 the UE may be notified of information regarding permission for the request of the performance variation monitoring RS from the NW.
- the information regarding the permission may be set in the UE using request setting information of the performance variation monitoring RS.
- the UE may determine the information based on a predefined procedure.
- the information regarding the authorization may include information regarding at least one of the following: When/what RS request information can be sent, What RS (e.g. CSI-RS/PRS/SSB) can be requested? - What time periods (windows, gaps, etc.) can be requested?
- What RS e.g. CSI-RS/PRS/SSB
- What time periods windshields, gaps, etc.
- the UE may be expected to measure the RS for monitoring performance variations within the above window/gap.
- the UE may transmit a request for a performance variation monitoring RS (RS request information) to the NW.
- the RS request information may include information on at least one of the following: Information about the (desired) RS (e.g., ID of the RS configuration, ID of the RS resource); Information about the (desired) time period (window, gap), - ID related to RS request information, Information regarding the number of measurements requested/maximum number of measurements, - Information regarding the required measurement period.
- step S103 the UE may receive a confirmation from the NW regarding the configuration/reconfiguration/instruction/activation/request of the RS for monitoring performance fluctuations.
- step S104 the UE may receive/measure the performance variation monitoring RS corresponding to the notification in step S103, and perform performance variation monitoring based on this.
- the UE may end reception/measurement of the performance variation monitoring RS.
- the end of reception/measurement of the performance variation monitoring RS may be based on a notification from the NW, or may be determined by the UE.
- the UE may be instructed/configured by the NW to use an approach for determining whether to transmit the performance variation possibility information/request information described in the first embodiment.
- the UE may detect the performance variation of the model/functionality/fallback operation based on the approach (detection method).
- the approach (detection method) may be at least one of the following: Detection based on measurements (or input information) used in applying the model/functionality (may be called input distribution based detection); Detection based on information derived (inferred) from models/functionality (may be called power distribution based detection); Detection based on a model for detection (or a detection-specific model).
- the detection-only model may be an additional model installed (configured/available) in the UE, whose sole purpose is to detect performance variations.
- the UE can appropriately perform control related to network transparent monitoring.
- the third embodiment relates to the number of monitored models/functionality/fallbacks. Note that “monitored” may be read as “(UE) monitors” interchangeably.
- the UE may report information regarding the maximum number of models/functionality/fallback operations it will monitor to the NW. This information may be included in the UE capability information. The UE may not be expected to monitor more than this maximum number of models/functionality/fallback operations.
- the maximum number may be interpreted interchangeably as the number supported, the number set, the number, etc.
- the UE may report information regarding the maximum number of models/functionality/fallback operations to monitor to determine whether to transmit the performance variability information/request information described in the first embodiment to the NW.
- the information may be included in the UE capability information.
- the UE may not be expected to monitor a number of models/functionality/fallback operations that exceeds the maximum number to determine whether to transmit the performance variability information/request information described in the first embodiment.
- the UE may report information to the NW regarding the maximum number of models/functionality/fallback operations that are configured/instructed (or supported) for the transmission of performance metrics/events.
- the information may be included in the UE capability information.
- the UE may not be expected to monitor more than the maximum number of models/functionality/fallback operations.
- reporting a performance metric/event may mean reporting that the performance of the corresponding model is greater than or less than a threshold.
- the threshold may be predefined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling.
- the event to be reported may be determined by comparing the performance of the model with the threshold for a particular period of time.
- the NW may control the UE to configure/instruct it to monitor the operation of models/functionality/fallbacks up to the maximum number.
- this may mean that the UE selects and monitors the model/functionality/fallback operations up to the maximum number, and does not monitor the model/functionality/fallback operations that are not selected.
- the selection may be performed based on information (e.g., ID, priority) associated with the model/functionality/fallback operation.
- the associated information may be predetermined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling.
- the UE can appropriately report the number of models/functionalities/fallbacks to be monitored, and the NW can appropriately determine control for the UE based on the number.
- a fourth embodiment relates to model/functionality/fallback activation restriction.
- network non-transparent monitoring is performed before model/functionality activation, switching, deactivation, etc.
- the inventors have therefore devised a fourth embodiment. According to the fourth embodiment, it is ensured that the UE performs non-transparent network monitoring before instructing the operation of the model/functionality.
- the UE may not be expected to receive or apply the model/functionality/fallback behavior indication unless certain conditions are met.
- the certain conditions may for example be at least one of the following: The UE has reported performance metrics for the corresponding model/functionality/fallback operation, The UE reports the occurrence of an event related to the corresponding model/functionality/fallback behavior.
- the period X(Y,Z) may mean a period expressed by X(Y,Z) unit times.
- the unit times may be, for example, any one of a symbol, a slot, a subframe, a millisecond (ms), etc., or a combination of these.
- the period X(Y,Z) may be managed based on a timer.
- X/Y/Z/N may be any real number/integers equal to or greater than 0 (or 1), may be predefined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling.
- the UE performs non-transparent network monitoring, for example, before model/functionality activation, switching, deactivation, etc.
- any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., DCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PDCCH, PDSCH, reference signal
- the MAC CE may be identified by including in the MAC subheader a new Logical Channel ID (LCID) that is not specified in existing standards.
- LCID Logical Channel ID
- the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
- notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
- physical layer signaling e.g., UCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PUCCH, PUSCH, reference signal
- the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
- the notification may be transmitted using PUCCH or PUSCH.
- notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
- At least one of the above-mentioned embodiments may be applied when a specific condition is met, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
- At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
- the specific UE capabilities may indicate at least one of the following: Supporting specific processes/actions/controls/information for at least one of the above embodiments (e.g. performance variability reporting, requests for performance measurements/reports, maximum number of models/functionality/fallback actions to monitor for the third embodiment, limitations for the fourth embodiment); Support two-step performance monitoring.
- the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
- FR1 Frequency Range 1
- FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
- SCS subcarrier Spacing
- FS Feature Set
- FSPC Feature Set Per Component-carrier
- the above-mentioned specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
- the specific information may be information indicating the activation of LCM based on a model/functionality ID, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
- the UE may apply, for example, the behavior of Rel. 15/16/17.
- [Appendix 1] a control unit that detects, via a first performance monitoring, a performance variation related to the operation of at least one of the model, the functionality, and the fallback; A terminal having a transmitting unit that transmits information for requesting second performance monitoring based on the fluctuation in performance.
- [Appendix 2] 2. The terminal according to claim 1, wherein the transmission unit transmits information regarding a possibility that performance related to the at least one operation will fluctuate as information for requesting the second performance monitoring.
- [Appendix 3] 3. The terminal according to claim 1 or 2, wherein the transmitting unit transmits information for requesting a reference signal for detecting a fluctuation in performance related to the at least one operation.
- [Appendix 4] 4 4. The terminal according to claim 1, wherein the control unit detects a fluctuation in performance related to the at least one operation based on a set detection method.
- [Appendix 1] a transmitter for transmitting information regarding a maximum number of at least one of a model, a functionality, and a fallback to be monitored; and a control unit that performs control not to monitor the at least one operation in a number exceeding the maximum number.
- Appendix 2] 2. The terminal of claim 1, wherein the transmission unit transmits the information regarding a maximum number of the at least one operation to monitor to detect a fluctuation in performance related to the at least one operation.
- [Appendix 3] 3. The terminal according to claim 1 or 2, wherein the control unit does not receive or apply an instruction for the at least one operation if a certain condition is not met.
- [Appendix 4] 4 4. The terminal of claim 3, wherein the particular condition is reporting a corresponding performance metric of the at least one operation or an occurrence of a related event.
- Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these methods.
- FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- 5G NR 5th generation mobile communication system New Radio
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- E-UTRA Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E-UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- gNBs NR base stations
- N-DC Dual Connectivity
- the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
- a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
- the user terminal 20 may be connected to at least one of the multiple base stations 10.
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- Macro cell C1 may be included in FR1
- small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
- wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication e.g., NR communication
- base station 11 which corresponds to the upper station
- IAB Integrated Access Backhaul
- base station 12 which corresponds to a relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include, for example, at least one of an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
- NF Network Functions
- UPF User Plane Function
- AMF Access and Mobility management Function
- SMF Session Management Function
- UDM Unified Data Management
- AF Application Function
- DN Data Network
- LMF Location Management Function
- OAM Operation, Administration and Maintenance
- the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the radio access method may also be called a waveform.
- other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
- a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SIB System Information Block
- PDSCH User data, upper layer control information, System Information Block (SIB), etc.
- SIB System Information Block
- PUSCH User data, upper layer control information, etc.
- MIB Master Information Block
- PBCH Physical Broadcast Channel
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
- DCI Downlink Control Information
- the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
- the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
- the PDSCH may be interpreted as DL data
- the PUSCH may be interpreted as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
- the CORESET corresponds to the resources to search for DCI.
- the search space corresponds to the search region and search method of PDCCH candidates.
- One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
- a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
- the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
- UCI uplink control information
- CSI channel state information
- HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
- ACK/NACK ACK/NACK
- SR scheduling request
- the PRACH may transmit a random access preamble for establishing a connection with a cell.
- downlink, uplink, etc. may be expressed without adding "link.”
- various channels may be expressed without adding "Physical” to the beginning.
- a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
- a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
- the SS, SSB, etc. may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS uplink reference signal
- DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
- the base station 5 is a diagram showing an example of a configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
- the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
- the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
- the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
- the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
- the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver 120 may be configured as an integrated transceiver, or may be composed of a transmitter and a receiver.
- the transmitter may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiver may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
- the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 120 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- channel coding which may include error correction coding
- DFT Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
- the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
- the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- FFT Fast Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the transceiver 120 may perform measurements on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
- the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- the measurement results may be output to the control unit 110.
- the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- devices included in the core network 30 e.g., network nodes providing NF
- other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- the transmitting section and receiving section of the base station 10 in this disclosure may be configured with at least one of the transmitting/receiving section 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
- the transmitting/receiving unit 120 may transmit a reference signal to cause the user terminal 20 to detect a performance fluctuation related to at least one of the operations of the model, the functionality, and the fallback.
- the transmitting/receiving unit 120 may receive information for requesting performance monitoring, which is transmitted from the user terminal 20 based on the performance fluctuation.
- the transceiver 120 may also receive information regarding the maximum number of at least one of the models, functionality, and fallback behaviors to be monitored from the user terminal 20.
- the control unit 110 may control the user terminal 20 to set the at least one behavior to be monitored up to the maximum number.
- the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 210 may control signal generation, mapping, etc.
- the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
- the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
- the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver unit 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
- RLC layer processing e.g., RLC retransmission control
- MAC layer processing e.g., HARQ retransmission control
- the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- Whether or not to apply DFT processing may be based on the settings of transform precoding.
- the transceiver unit 220 transmission processing unit 2211
- the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
- the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
- the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
- the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
- the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
- the measurement results may be output to the control unit 210.
- the measurement unit 223 may derive channel measurements for CSI calculation based on channel measurement resources.
- the channel measurement resources may be, for example, non-zero power (NZP) CSI-RS resources.
- the measurement unit 223 may derive interference measurements for CSI calculation based on interference measurement resources.
- the interference measurement resources may be at least one of NZP CSI-RS resources for interference measurement, CSI-Interference Measurement (IM) resources, etc.
- CSI-IM may be called CSI-Interference Management (IM) or may be interchangeably read as Zero Power (ZP) CSI-RS.
- CSI-RS, NZP CSI-RS, ZP CSI-RS, CSI-IM, CSI-SSB, etc. may be read as interchangeable.
- the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
- the control unit 210 may detect a performance fluctuation related to at least one of the operation of the model, the functionality, and the fallback through the first performance monitoring (e.g., NW transparent monitoring).
- the transceiver unit 220 may transmit information for requesting a second performance monitoring (e.g., NW non-transparent monitoring) based on the performance fluctuation.
- the transceiver unit 220 may transmit information regarding the possibility of fluctuation in performance related to the at least one operation (e.g., performance fluctuation possibility information) as information for requesting the second performance monitoring.
- information regarding the possibility of fluctuation in performance related to the at least one operation e.g., performance fluctuation possibility information
- the transceiver unit 220 may transmit information (e.g., RS request information) to request a reference signal for detecting performance fluctuations related to the at least one operation.
- information e.g., RS request information
- the control unit 210 may detect performance fluctuations related to at least one of the operations based on a configured detection method (e.g., an approach instructed/configured by the base station 10).
- the transceiver 220 may also transmit information (e.g., UE capability information) regarding the maximum number of at least one of the model, functionality, and fallback operations to be monitored.
- the control unit 210 may perform control not to monitor the at least one operation in a number that exceeds the maximum number.
- the transceiver 220 may transmit the information regarding a maximum number of the at least one operation to monitor to detect performance variations related to the at least one operation.
- the control unit 210 may not receive or apply an instruction for the at least one operation if a specific condition is not met.
- the specific condition may be that the user terminal 20 reports a performance metric of the at least one corresponding operation or the occurrence of a related event.
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
- a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 7 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
- the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
- the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 operates an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- etc. may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
- the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
- Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically EPROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
- the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- a channel, a symbol, and a signal may be read as mutually interchangeable.
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
- a subframe may be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
- the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
- a specific windowing process performed by the transceiver in the time domain etc.
- a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a time unit based on numerology.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
- a radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal.
- a different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
- one subframe may be called a TTI
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on numerology.
- an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
- PRB physical resource block
- SCG sub-carrier group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (REs).
- REs resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within the BWP.
- the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
- a radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not limiting in any respect.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input/output via multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
- a specific location e.g., memory
- Input/output information, signals, etc. may be overwritten, updated, or added to.
- Output information, signals, etc. may be deleted.
- Input information, signals, etc. may be transmitted to another device.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
- the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the MAC signaling may be notified, for example, using a MAC Control Element (CE).
- CE MAC Control Element
- notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
- the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- Network may refer to the devices included in the network (e.g., base stations).
- the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port).
- the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.).
- the resource may include time/frequency/code/space/power resources.
- the spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
- the above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
- CDM Code Division Multiplexing
- RS Reference Signal
- CORESET Control Resource Set
- beam SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
- SRI SRS Resource Indicator
- CORESET CORESET pool
- PDSCH PUSCH
- codeword CW
- TB transport block
- RS etc.
- TCI state downlink TCI state
- DL TCI state downlink TCI state
- UL TCI state uplink TCI state
- unified TCI state common TCI state
- joint TCI state etc.
- QCL QCL
- QCL assumptions QCL relationship
- QCL type information QCL property/properties
- specific QCL type e.g., Type A, Type D
- specific QCL type e.g., Type A, Type D
- index identifier
- indicator indication, resource ID, etc.
- sequence list, set, group, cluster, subset, etc.
- TCI state ID the spatial relationship information identifier
- TCI state ID the spatial relationship information
- TCI state the spatial relationship information
- TCI state the spatial relationship information
- TCI state the spatial relationship information
- Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
- a base station can accommodate one or more (e.g., three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
- RRH Remote Radio Head
- the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
- a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
- at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
- the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
- the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
- the moving body in question may also be a moving body that moves autonomously based on an operating command.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- a vehicle e.g., a car, an airplane, etc.
- an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
- a robot manned or unmanned
- at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 8 is a diagram showing an example of a vehicle according to an embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
- various sensors including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
- an information service unit 59 including a communication module 60.
- the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
- the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
- the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
- the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
- the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
- various information/services e.g., multimedia information/multimedia services
- the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
- input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
- output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
- the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
- the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
- the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 60 may be located either inside or outside the electronic control unit 49.
- the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
- the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
- the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
- the PUSCH transmitted by the communication module 60 may include information based on the above input.
- the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
- the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
- the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
- the base station in the present disclosure may be read as a user terminal.
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the user terminal 20 may be configured to have the functions of the base station 10 described above.
- terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
- the uplink channel, downlink channel, etc. may be read as the sidelink channel.
- the user terminal in this disclosure may be interpreted as a base station.
- the base station 10 may be configured to have the functions of the user terminal 20 described above.
- operations that are described as being performed by a base station may in some cases be performed by its upper node.
- a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
- the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
- the methods described in this disclosure present elements of various steps in an exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4th generation mobile communication system 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or decimal
- Future Radio Access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
- Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
- judgment (decision) may be considered to mean “judging (deciding)” resolving, selecting, choosing, establishing, comparing, etc.
- judgment (decision) may be considered to mean “judging (deciding)” some kind of action.
- judgment (decision) may be read as interchangeably with the actions described above.
- “expect” may be read as “be expected”.
- “expect(s)" (where “! may be expressed, for example, as a that clause, a to-infinitive, etc.) may be read as “be expected", “does... (if “! above is a to-infinitive, a verb with “to” in it)", etc.
- "does not expect" may be read as “be not expected", “does not... (if “! above is a to-infinitive, a verb with “to” in it)", etc.
- “An apparatus A is not expected" may be read as "An apparatus B other than apparatus A does not expect" (for example, if apparatus A is a UE, apparatus B may be a base station).
- the UE may not be expected to monitor the operation of a number of models/functionality/fallbacks that exceeds the maximum number” may be read as "the UE will not monitor the operation of a number of models/functionality/fallbacks that exceeds the maximum number.”
- the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
- connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connected” may be read as "access.”
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
- timing, time, duration, time instance, any time unit e.g., slot, subslot, symbol, subframe
- period occasion, resource, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。 In terms of future wireless communication technologies, the use of artificial intelligence (AI) technologies such as machine learning (ML) for network/device control and management is being considered.
AIモデルのライフサイクル管理(Life Cycle Management(LCM))には、性能モニタリングが含まれる。性能モニタリングは、NW透過型モニタリング(NW transparent monitoring)及びNW非透過型モニタリング(NW non-transparent monitoring)に分類されてもよい。 Life Cycle Management (LCM) of AI models includes performance monitoring. Performance monitoring may be classified as NW transparent monitoring and NW non-transparent monitoring.
しかしながら、NW透過型モニタリング及びNW非透過型モニタリングに関して、どのように使い分けるか、どのように関連する設定/制御を行うか、などについては、まだ検討が進んでいない。これらについて明確に規定しなければ、好適なモニタリングを行うことができず、モデル/機能性/フォールバックに基づく処理に関して通信スループット/通信品質の向上が抑制されるおそれがある。 However, there has been no progress in considering how to differentiate between network-transparent and network-non-transparent monitoring, and how to perform related settings/controls. Unless these are clearly defined, appropriate monitoring will not be possible, and there is a risk that improvements in communication throughput/quality will be hindered in relation to processing based on models/functionality/fallbacks.
そこで、本開示は、モデル/機能性/フォールバックに関する好適な性能モニタリングを実施できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that can perform suitable performance monitoring regarding models/functionality/fallbacks.
本開示の一態様に係る端末は、第1の性能モニタリングを介して、モデル、機能性及びフォールバックの少なくとも1つの動作に関する性能の変動を検出する制御部と、前記性能の変動に基づいて、第2の性能モニタリングを要求するための情報を送信する送信部と、を有する。 A terminal according to one aspect of the present disclosure has a control unit that detects performance fluctuations related to at least one of the operation of a model, functionality, and fallback through a first performance monitoring, and a transmission unit that transmits information for requesting a second performance monitoring based on the performance fluctuations.
本開示の一態様によれば、モデル/機能性/フォールバックに関する好適な性能モニタリングを実施できる。 According to one aspect of the present disclosure, suitable performance monitoring of models/functionality/fallbacks can be performed.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of Artificial Intelligence (AI)) Technology to Wireless Communications)
Regarding future wireless communication technologies, the use of AI technologies such as machine learning (ML) for network/device control and management is being considered.
例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。 For example, it is being considered that terminals (user equipment (UE))/base stations (BS)) will utilize AI technology to improve channel state information (CSI) feedback (e.g., reducing overhead, improving accuracy, prediction), improve beam management (e.g., improving accuracy, prediction in the time/space domain), and improve position measurement (e.g., improving position estimation/prediction).
AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 The AI model may output at least one piece of information such as an estimate, a prediction, a selected action, a classification, etc. based on the input information. The UE/BS may input channel state information, reference signal measurements, etc. to the AI model, and output highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc.
なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
In this disclosure, AI may be interpreted as an object (also called a target, object, data, function, program, etc.) having (implementing) at least one of the following characteristics:
- Estimation based on observed or collected information;
- making choices based on observed or collected information;
- Predictions based on observed or collected information.
本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In this disclosure, estimation, prediction, and inference may be interpreted as interchangeable. Also, in this disclosure, estimate, predict, and infer may be interpreted as interchangeable.
本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。 In the present disclosure, an object may be, for example, an apparatus such as a UE or a BS, or a device. Also, in the present disclosure, an object may correspond to a program/model/entity that operates in the apparatus.
また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
In addition, in the present disclosure, an AI model may be interpreted as an object having (implementing) at least one of the following characteristics:
- Producing estimates by feeding information,
- Predicting estimates by providing information
- Discover features by providing information,
- Select an action by providing information.
また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。 In addition, in this disclosure, an AI model may refer to a data-driven algorithm that applies AI techniques to generate a set of outputs based on a set of inputs.
また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。 Furthermore, in this disclosure, AI model, model, ML model, predictive analytics, predictive analysis model, tool, autoencoder, encoder, decoder, neural network model, AI algorithm, scheme, etc. may be interchangeable. Furthermore, the AI model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In this disclosure, the term "autoencoder" may be interchangeably referred to as any autoencoder, such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of this disclosure may employ models such as Residual Network (ResNet), DenseNet, and RefineNet.
また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, encoder, encoding, encoding/encoded, modification/alteration/control by an encoder, compressing, compress/compressed, generating, generate/generated, etc. may be read as interchangeable terms.
また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms decoder, decoding, decode/decoded, modification/alteration/control by a decoder, decompressing, decompress/decompressed, reconstructing, reconstruct/reconstructed, etc. may be interpreted as interchangeable.
本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In the present disclosure, a layer (of an AI model) may be interpreted as a layer (input layer, intermediate layer, etc.) used in an AI model. A layer in the present disclosure may correspond to at least one of an input layer, intermediate layer, output layer, batch normalization layer, convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer, dropout layer, fully connected layer, etc.
本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。 In this disclosure, methods for training an AI model may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like. Supervised learning may refer to the process of training a model from inputs and corresponding labels. Unsupervised learning may refer to the process of training a model without labeled data. Reinforcement learning may refer to the process of training a model from inputs (i.e., states) and feedback signals (i.e., rewards) resulting from the model's outputs (i.e., actions) in the environment with which the model interacts.
本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。 In this disclosure, terms such as generate, calculate, derive, etc. may be interchangeable. In this disclosure, terms such as implement, operate, operate, execute, etc. may be interchangeable. In this disclosure, terms such as train, learn, update, retrain, etc. may be interchangeable. In this disclosure, terms such as infer, after-training, production use, actual use, etc. may be interchangeable. In this disclosure, terms such as signal and signal/channel may be interchangeable.
図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理(Life Cycle Management(LCM))とも表現される。 Figure 1 shows an example of a framework for managing AI models. In this example, each stage related to an AI model is shown as a block. This example is also referred to as Life Cycle Management (LCM) of an AI model.
データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。 The data collection stage corresponds to the stage of collecting data for generating/updating an AI model. The data collection stage may include data organization (e.g., determining which data to transfer for model training/model inference), data transfer (e.g., transferring data to an entity (e.g., UE, gNB) that performs model training/model inference), etc.
なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。また、本開示において、収集は、測定(チャネル測定、ビーム測定、無線リンク品質測定、位置推定など)に基づいてAIモデルの訓練/推論のための(例えば、入力/出力として利用できる)データセットを取得することを意味してもよい。 In addition, data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference. In this disclosure, process and procedure may be interpreted as interchangeable. In this disclosure, collection may also refer to obtaining a data set (e.g., usable as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, position estimation, etc.).
本開示において、オフラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオフライン訓練のために用いられるデータであってもよい。また、本開示において、オンラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオンライン訓練のために用いられるデータであってもよい。 In the present disclosure, offline field data may be data collected from the field (real world) and used for offline training of an AI model. Also, in the present disclosure, online field data may be data collected from the field (real world) and used for online training of an AI model.
モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。 In the model training stage, model training is performed based on the data (training data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, conversion, etc.), model training/validation, model testing (e.g., checking whether the trained model meets performance thresholds), model exchange (e.g., transferring the model for distributed learning), model deployment/update (deploying/updating the model to the entities that will perform model inference), etc.
なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。 In addition, AI model training may refer to a process for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。 Also, AI model validation may refer to a sub-process of training to evaluate the quality of an AI model using a dataset different from the dataset used to train the model. This sub-process helps select model parameters that generalize beyond the dataset used to train the model.
また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。 Also, AI model testing may refer to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. Note that testing, unlike validation, does not necessarily require subsequent model tuning.
モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。 In the model inference stage, model inference is performed based on the data (inference data) transferred from the collection stage. This stage may include data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), model performance feedback (feeding back model performance to the entity performing the model training), output (providing model output to the actor), etc.
なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。 In addition, AI model inference may refer to the process of using a trained AI model to produce a set of outputs from a set of inputs.
また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。 Also, a UE side model may refer to an AI model whose inference is performed entirely in the UE. A network side model may refer to an AI model whose inference is performed entirely in the network (e.g., gNB).
また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。 Also, a one-sided model may refer to a UE-side model or a network-side model. A two-sided model may refer to a pair of AI models where joint inference is performed. Here, joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., a first part of the inference may be performed first by the UE and the remaining part by the gNB (or vice versa).
また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。 Also, AI model monitoring may refer to the process of monitoring the inference performance of an AI model, and may be interchangeably read as model performance monitoring, performance monitoring, etc.
なお、モデル登録(モデルレジストレーション(model registration))は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にする(登録(レジスター)する)ことを意味してもよい。また、モデル配置(モデルデプロイメント(model deployment))は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。 Note that model registration may refer to making a model executable (registering) by assigning a version identifier to the model and compiling it into the specific hardware used in the inference phase. Model deployment may refer to distributing (or activating at) a fully developed and tested run-time image (or image of the execution environment) of the model to the target (e.g., UE/gNB) where inference will be performed.
アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。 Actor stages may include action triggers (e.g., deciding whether to trigger an action on another entity), feedback (e.g., feeding back information needed for training data/inference data/performance feedback), etc.
なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。 Note that, for example, training of a model for mobility optimization may be performed in, for example, Operation, Administration and Maintenance (Management) (OAM) in a network (NW)/gNodeB (gNB). In the former case, interoperability, large capacity storage, operator manageability, and model flexibility (feature engineering, etc.) are advantageous. In the latter case, the latency of model updates and the absence of data exchange for model deployment are advantageous. Inference of the above model may be performed in, for example, a gNB.
ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。 Depending on the use case (i.e., the function of the AI model), the entity performing the training/inference may be different. The function of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, positioning, etc.
例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。 For example, for AI-assisted beam management based on measurement reports, the OAM/gNB may perform model training and the gNB may perform model inference.
AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。 For AI-assisted UE-assisted positioning, a Location Management Function (LMF) may perform model training and the LMF may perform model inference.
オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。 For CSI feedback/channel estimation using autoencoders, the OAM/gNB/UE may perform model training and the gNB/UE may perform model inference (jointly).
ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。 For AI-assisted beam management or AI-assisted UE-based positioning based on beam measurements, the OAM/gNB/UE may perform model training and the UE may perform model inference.
なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。 Note that model activation may mean activating an AI model for a particular function. Model deactivation may mean disabling an AI model for a particular function. Model switching may mean deactivating a currently active AI model for a particular function and activating a different AI model.
また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。 Model transfer may also refer to distributing an AI model over the air interface. This may include distributing either or both of the parameters of the model structure already known at the receiving end, or a new model with the parameters. This may also include a complete model or a partial model. Model download may refer to model transfer from the network to the UE. Model upload may refer to model transfer from the UE to the network.
(ライフサイクル管理(LCM))
将来の無線通信システム(例えば、Rel.18以降)では、複数のLCMの導入が検討されている。
(Life Cycle Management (LCM))
In future wireless communication systems (e.g., Rel. 18 and later), the introduction of multiple LCMs is being considered.
当該複数のLCMは、機能性(functionality)に基づくLCM、及び、モデルIDに基づくLCMであってもよい。機能性に基づくLCMは、functionality-based LCMと呼ばれてもよく、モデルIDに基づくLCMは、model-ID-based LCMと呼ばれてもよい。 The multiple LCMs may be a functionality-based LCM and a model-ID-based LCM. The functionality-based LCM may be referred to as a functionality-based LCM, and the model-ID-based LCM may be referred to as a model-ID-based LCM.
functionality-based LCMでは、NW(例えば、基地局/NWノード)が、AI/MLの機能性に係る動作(例えば、アクティベーション、ディアクティベーション、フォールバック動作、スイッチ、の少なくとも1つ)を指示してもよい。 In functionality-based LCM, the network (e.g., a base station/network node) may instruct operations related to the functionality of the AI/ML (e.g., at least one of activation, deactivation, fallback operation, and switch).
UEは、指示された機能性のうちにおいて、モデルレベルのLCM(例えば、モデルスイッチング及びモデル選択の少なくとも1つ)を行ってもよい。 The UE may perform model-level LCM (e.g., model switching and/or model selection) within the indicated functionality.
機能性のうちにおいて、どのモデルがアクティベート/ディアクティベートされるかが透過(transparent)であってもよい。 The functionality may be transparent as to which models are activated/deactivated.
サポートされる機能性の通知には、UE能力情報(UE Capability information)の報告が用いられてもよい。 UE Capability information reports may be used to indicate supported functionality.
model-ID-based LCMでは、NW(例えば、基地局/NWノード)が、モデルIDによって、個別(individual)のAI/MLモデルに係る動作(例えば、アクティベーション、ディアクティベーション、フォールバック動作、スイッチ、の少なくとも1つ)を指示してもよい。 In model-ID-based LCM, the network (e.g., a base station/network node) may instruct an operation related to an individual AI/ML model (e.g., at least one of activation, deactivation, fallback operation, and switch) by the model ID.
UEは、NWの指示に基づいて、モデルレベルのLCM(例えば、モデルスイッチング及びモデル選択の少なくとも1つ)を行ってもよい。 The UE may perform model-level LCM (e.g., at least one of model switching and model selection) based on instructions from the network.
モデルは、モデル識別子(ID)によってNWにおいて定義されてもよい。 A model may be defined in the network by a model identifier (ID).
(機能性識別(functionality identification))
機能性の識別手順として、例えば、UEは、UE能力(能力情報)において特定の条件を報告することが考えられる。この場合、NWは、報告された条件に基づいて、対応する機能性を設定してもよい。
(functionality identification)
As a procedure for identifying the functionality, for example, the UE may report certain conditions in the UE capabilities (capability information), in which case the NW may configure the corresponding functionality based on the reported conditions.
ここで、機能性とは、ある設定によって有効化されるAI/MLで利用可能な特徴/特徴グループ(Feature Group(FG))を表してよく、例えばRRCパラメータ/LPPパラメータのセットであってよい。当該設定は、UE能力によって指示される条件に基づいてサポートされてよい。また、機能性は、NWがLCMの動作(モニタリング(性能の確認)/アクティベーション/ディアクティベーション/スイッチング/フォールバック/更新)において、UE側で制御できる単位を表してよい。 Here, functionality may represent features/feature groups (Feature Groups (FGs)) available in the AI/ML that are enabled by a certain setting, for example, a set of RRC parameters/LPP parameters. The setting may be supported based on conditions indicated by the UE capabilities. Furthermore, functionality may represent units that the NW can control on the UE side in the operation of LCM (monitoring (checking performance)/activation/deactivation/switching/fallback/update).
本開示において、機能性は、モデルの用途を意味してもよいし、モデルの入力/出力の物理的な意味を意味してもよい。複数のモデルが同じ機能を有してもよい。 In this disclosure, functionality may refer to the use of the model or the physical meaning of the model's inputs/outputs. Multiple models may have the same functionality.
機能性に基づくLCMの動作は、上述したAI/MLで利用可能な特徴/特徴グループの設定に基づいて制御されてよい。ここで、当該機能性に基づくLCMの動作をサポートするためのシグナリング(アクティベーション/ディアクティベーション/スイッチングのためのシグナリング)が検討されている。 The operation of the LCM based on the functionality may be controlled based on the settings of features/feature groups available in the AI/ML described above. Here, signaling (signaling for activation/deactivation/switching) to support the operation of the LCM based on the functionality is considered.
また、UEは、適用可能な機能性の更新を報告してもよい。例えば、モデルを識別した後に適用可能なモデルを更新するメカニズムを検討する必要がある。 The UE may also report applicable functionality updates. For example, a mechanism for updating the applicable models after identifying the models needs to be considered.
(モデル識別(model identification))
モデルIDによって識別されるモデルは、例えば、設定/条件/追加条件(特定のシナリオ、サイト、データセット等)と関連付けられてよい。モデルは、NWがLCMの動作(アクティベーション/ディアクティベーション/スイッチング)において、UE側で制御できる単位を表してよい。
(model identification)
A model identified by a model ID may be associated with, for example, settings/conditions/additional conditions (specific scenarios, sites, data sets, etc.). A model may represent a unit that the NW can control on the UE side in the operation (activation/deactivation/switching) of the LCM.
モデルIDは、モデル(又はモデルのセット)の識別子を意味してもよい。複数のモデルが実際のデプロイメントにおいて同じモデルIDを割り当てられてもよい。この場合、これらのモデルは実際には異なるモデルである(例えば、レイヤ数などが異なる)が、同じモデルとして扱われてもよい。 A model ID may refer to an identifier for a model (or a set of models). Multiple models may be assigned the same model ID in an actual deployment. In this case, these models may be treated as the same model, even though they are actually different models (e.g., they may have different number of layers, etc.).
なお、本開示において、モデルIDは、メタ情報(又はメタ情報のセットを示す)IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、モデル/機能性の適用可能性、環境、UE/gNBの設定等に関する情報等と関連付けられてもよい。 In addition, in this disclosure, the model ID may be interchangeably read as a meta information (or a set of meta information) ID. The meta information (or meta information ID) may be associated with information regarding the applicability of the model/functionality, the environment, the UE/gNB settings, etc.
モデルIDに基づくLCMの動作は、識別されたモデルに基づいて制御されてよい。ここで、当該モデルは、AI/MLで利用可能な特徴/特徴グループのUE能力に関する特定の設定/条件、及びUE側及びNW側の間で決定/識別された追加条件、に関連付けられてよい。 The operation of the LCM based on the model ID may be controlled based on the identified model, where the model may be associated with specific settings/conditions regarding UE capabilities of features/feature groups available in the AI/ML and additional conditions determined/identified between the UE side and the NW side.
また、機能性に基づくLCMとモデルIDに基づくLCMとでは、識別プロセス、制御単位が異なることが想定される。ここで、機能性に基づくLCMとモデルIDに基づくLCMとで、アクティベーション/ディアクティベーション/スイッチングの手順を共用する(又は、同じ/類似の手順を用いる)ことが検討されている。 Furthermore, it is expected that the identification process and control unit will be different between the functionality-based LCM and the model ID-based LCM. Here, it is being considered to share the same activation/deactivation/switching procedures (or to use the same/similar procedures) between the functionality-based LCM and the model ID-based LCM.
また、モデル識別の手順として、以下のタイプが検討されている。
・タイプA:モデル情報とモデルIDは、シグナリングなしで関連付けられる。UEは、サポートされるモデルIDをNWに報告する。すなわち、モデルIDとモデル情報とのマッピングは、シグナリングなしでNW及びUEに識別される。NW及びUEは、受信したモデルIDに基づいて、該当するモデル情報を識別する。
・タイプB1:モデル情報は、エアインターフェース(シグナリング)を介してUEからNWへ報告される。モデル識別はUEによって開始され、NWはモデル識別の残りのステップをアシストする(又は担う)。モデル識別の最中に、モデルに対してモデルIDが割り当てられてよい。
・タイプB2:モデル情報は、エアインターフェース(シグナリング)を介してNWからUEへ報告される。モデル識別はNWによって開始され、UEはモデル識別の残りのステップに対して応答する。モデル識別の最中に、モデルに対してモデルIDが割り当てられてよい。
In addition, the following types of model identification procedures are being considered:
Type A: Model information and model ID are associated without signaling. The UE reports the supported model IDs to the NW. That is, the mapping between the model ID and the model information is identified to the NW and the UE without signaling. The NW and the UE identify the corresponding model information based on the received model ID.
Type B1: Model information is reported from the UE to the NW via the air interface (signaling). Model identification is initiated by the UE and the NW assists (or takes responsibility for) the remaining steps of model identification. During model identification, a model ID may be assigned to the model.
Type B2: Model information is reported from the NW to the UE via the air interface (signaling). Model identification is initiated by the NW and the UE responds for the remaining steps of model identification. During model identification, a model ID may be assigned to the model.
(NWに対する性能モニタリングの透過性(transparency))
本発明者らは、柔軟な/効率の良い制御を可能とするために、性能モニタリングを、NW透過型モニタリング(NW transparent monitoring)及びNW非透過型モニタリング(NW non-transparent monitoring)に分類することを検討している。
(Transparency of performance monitoring to the network)
In order to enable flexible/efficient control, the present inventors consider classifying performance monitoring into NW transparent monitoring and NW non-transparent monitoring.
NW透過型モニタリングは、UEが決定/定義した判断基準(クライテリア)に基づいて、当該UEがモデル/機能性を評価することを意味してもよい。なお、NW透過型モニタリングにおいてUEが決定/定義したクライテリアは、NWに(例えば関連する情報を通知することによって)透過されてもよいし、透過されなくてもよい。NW透過型モニタリングにおいて、クライテリアに基づく評価/判断の結果は、NWに透過されなくてもよい。 Network-transparent monitoring may mean that the UE evaluates the model/functionality based on criteria determined/defined by the UE. In network-transparent monitoring, the criteria determined/defined by the UE may or may not be transparent to the network (e.g., by notifying related information). In network-transparent monitoring, the result of the evaluation/judgment based on the criteria may not be transparent to the network.
NW非透過型モニタリングは、以下の少なくとも一方を意味してもよい:
・規格において定義された又はNWが決定/設定/指示した判断基準に基づいて、UEがモデル/機能性を評価すること、
・UEから報告された情報(例えば、モニタされる尺度(メトリック)、推論結果)に基づいて、NWがモデル/機能性を評価すること。
NW non-transparent monitoring may mean at least one of the following:
The UE evaluates the model/functionality based on criteria defined in the standard or determined/configured/instructed by the NW;
- NW evaluates the model/functionality based on information reported from the UE (e.g., monitored metrics, inference results).
NW透過型モニタリングは、UE自律的(UE autonomous)モニタリング、NW非依存型モニタリングなどと呼ばれてもよい。NW非透過型モニタリングは、UE非自律的モニタリング、NW依存型モニタリングと呼ばれてもよい。 Network-transparent monitoring may also be called UE autonomous monitoring, network-independent monitoring, etc. Network-non-transparent monitoring may also be called UE non-autonomous monitoring, network-dependent monitoring, etc.
NW透過型モニタリングの利点は、例えば以下である:
・他のベンダに性能が開示されない。UEベンダはモデル/機能性の性能をNWに報告しないため、NWベンダに性能の詳細を隠すことができる。
・メトリックの定義の不必要性。規格においてメトリックを定義する必要がない。性能メトリックのなかには定義が難しいものがある(例えば、入力データ分布)ため、定義しなくてよいことは利点がある。
・報告のオーバーヘッドの低減。UEは、性能メトリック/評価前のイベントを報告する必要がない。
The advantages of NW transparent monitoring are, for example:
- Capabilities are not disclosed to other vendors. UE vendors do not report model/functionality capabilities to the NW, so they can hide performance details from NW vendors.
No need to define metrics: There is no need to define metrics in the standard. Some performance metrics are difficult to define (e.g., input data distribution), so not having to define them is an advantage.
Reduced reporting overhead: UE does not need to report performance metrics/events prior to evaluation.
なお、本開示において、イベント及びイベントの発生は、互いに読み替えられてもよい。また、本開示において、イベント、評価前のイベント、評価時のイベント、評価後のイベントなどは、互いに読み替えられてもよい。 In addition, in this disclosure, an event and the occurrence of an event may be interpreted as interchangeable. Also, in this disclosure, an event, an event before evaluation, an event during evaluation, an event after evaluation, etc. may be interpreted as interchangeable.
一方で、NW透過型モニタリングを利用する場合、NWは、モデル/機能性がどれくらい優れているかを知ることができず、モデル/機能性のアクティベーション(ディアクティベーション)の決定を行うことが難しい。 On the other hand, when using network-transparent monitoring, the network cannot know how good the model/functionality is, making it difficult to make decisions on activating (deactivating) the model/functionality.
NW非透過型モニタリングの利点は、例えば以下である:
・NWは、モデル/機能性がどれくらい優れているかをある程度知ることができ、モデル/機能性のアクティベーション(ディアクティベーション)の適切な決定を行うことができる。
Advantages of NW non-transparent monitoring include, for example:
The NW has some idea of how good the models/functionality are and can take appropriate decisions on (de)activation of the models/functionality.
一方で、NW非透過型モニタリングを利用する場合、他のベンダに性能が開示されたり、規格においてメトリックを定義する必要があったり、報告のオーバーヘッドの必要があったりする。 On the other hand, when using non-transparent network monitoring, performance is disclosed to other vendors, metrics must be defined in standards, and reporting overhead is required.
なお、規格において具体的な手順が規定される性能モニタリング、NW非透過型モニタリングであると考えられ、NW透過型モニタリングにおける具体的な手順はUEの実装依存であると考えられる。 Note that performance monitoring, for which specific procedures are prescribed in the standard, is considered to be network non-transparent monitoring, and the specific procedures for network transparent monitoring are considered to depend on the UE implementation.
以上説明したNW透過型モニタリング及びNW非透過型モニタリングに関して、どのように使い分けるか、どのように関連する設定/制御を行うか、などについては、まだ検討が進んでいない。これらについて明確に規定しなければ、好適なモニタリングを行うことができず、モデル/機能性/フォールバックに基づく処理に関して通信スループット/通信品質の向上が抑制されるおそれがある。 Regarding the above-described network-transparent monitoring and network-non-transparent monitoring, how to use them differently and how to perform related settings/controls have not yet been considered. Unless these are clearly defined, appropriate monitoring cannot be performed, and there is a risk that improvements in communication throughput/communication quality will be hindered in relation to processing based on models/functionality/fallbacks.
そこで、本発明者らは、NW透過型モニタリング、NW非透過型モニタリングなどに好適な設定/制御方法を着想した。 The inventors therefore came up with a setting/control method suitable for network transparent monitoring, network non-transparent monitoring, etc.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Embodiments of the present disclosure will now be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
(各種読み替え等)
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
(Various changes in interpretation, etc.)
In the present disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate, select, configure, update, and determine may be read as interchangeable terms. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable terms.
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、その他のメッセージ(例えば、測位用プロトコル(例えば、NR Positioning Protocol A(NRPPa)/LTE Positioning Protocol(LPP))メッセージなどの、コアネットワークからのメッセージ)などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
本開示において、モニタリング、チャネル測定/推定などは、参照信号(Reference Signal(RS))を用いて行われてもよい。RSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを含んでもよい。 In the present disclosure, monitoring, channel measurement/estimation, etc. may be performed using a reference signal (RS). The RS may include at least one of, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/physical broadcast channel (SS/PBCH) block, a demodulation reference signal (DMRS), a sounding reference signal (SRS), etc.
本開示において、測定/報告されるRSは、CSIレポートのために測定/報告されるRSを意味してもよい。本開示において、RSインデックスは、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Indicator(SSBRI))などであってもよい。 In this disclosure, the measured/reported RS may refer to the RS measured/reported for a CSI report. In this disclosure, the RS index may be a CSI-RS Resource Indicator (CSI-RS Resource Indicator (CRI)), a SS/PBCH Block Resource Indicator (SSBRI), etc.
本開示において、機能性、機能、機能性ID、モデル、及びモデルIDは、互いに読み替えられてよい。 In this disclosure, functionality, function, functionality ID, model, and model ID may be interpreted interchangeably.
本開示において、モデル/機能性/フォールバックの動作(model/functionality/fallback operation or operation of model/functionality/fallback)は、モデル/機能性/フォールバック(model/functionality/fallback)と互いに読み替えられてもよい。 In this disclosure, model/functionality/fallback operation or operation of model/functionality/fallback may be read interchangeably as model/functionality/fallback.
本開示において、モデル/機能性の動作は、例えば、モデル/機能性のアクティベーション、ディアクティベーション、スイッチング、フォールバックの動作、更新、などの少なくとも1つを含んでもよい。本開示において、フォールバックの動作は、対応するAI機能を適用する際に用いる情報(例えば、入力)に基づく動作、対応するAI機能を適用する際に用いる情報(例えば、入力)及び非AI(non-AI)機能に基づく動作、などの少なくとも1つを含んでもよい。 In the present disclosure, the operation of the model/functionality may include, for example, at least one of model/functionality activation, deactivation, switching, fallback operation, update, etc. In the present disclosure, the fallback operation may include at least one of an operation based on information (e.g., input) used when applying the corresponding AI function, an operation based on information (e.g., input) used when applying the corresponding AI function and a non-AI function, etc.
本開示において、モニタリング、性能モニタリングは互いに読み替えられてもよい。NW透過型モニタリングは、第1のモニタリング、第1のタイプのモニタリングなどと互いに読み替えられてもよい。NW非透過型モニタリングは、第2のモニタリング、第2のタイプのモニタリングと互いに読み替えられてもよい。 In the present disclosure, monitoring and performance monitoring may be interchangeably read. NW transparent monitoring may be interchangeably read as first monitoring, first type monitoring, etc. NW non-transparent monitoring may be interchangeably read as second monitoring, second type monitoring, etc.
本開示において、変動、変化、遷移などは、互いに読み替えられてもよい。 In this disclosure, fluctuation, change, transition, etc. may be interpreted interchangeably.
(無線通信方法)
<第0の実施形態>
第0の実施形態は、NW透過型モニタリング及びNW非透過型モニタリングを組み合わせた2ステップ性能モニタリングに関する。
(Wireless communication method)
<Tenth embodiment>
The 0th embodiment relates to a two-step performance monitoring that combines NW transparent monitoring and NW non-transparent monitoring.
2ステップ性能モニタリングによれば、UEは、普段はNW透過型モニタリングを実施し、性能変動を検出した場合にNW非透過型モニタリングを実施するように制御する。 According to two-step performance monitoring, the UE normally performs network-transparent monitoring, and when it detects a performance fluctuation, it controls itself to perform network-non-transparent monitoring.
図2は、第0の実施形態にかかる2ステップ性能モニタリングの一例を示す図である。本例では、UEは、比較的長い周期においてNW非透過型モニタリングを行うことを設定されている。 FIG. 2 is a diagram showing an example of two-step performance monitoring according to the 0th embodiment. In this example, the UE is configured to perform non-transparent network monitoring at a relatively long period.
また、UEは、NW非透過型モニタリングの周期より短い周期においてNW透過型モニタリングを実施する。UEは、当該NW透過型モニタリングを、参照信号の受信に基づいて実施する。UEは、NW透過型モニタリングによってモニタされる性能に基づいて(例えば、性能の変動が大きい場合、性能の変動が閾値を超える場合)、NW非透過型モニタリングを要求する。この要求(リクエスト)については、第1の実施形態において後述する。また、NW透過型モニタリングについての設定/測定方法については、第2の実施形態において後述する。 The UE also performs NW transparent monitoring at a period shorter than the period of NW non-transparent monitoring. The UE performs the NW transparent monitoring based on the reception of a reference signal. The UE requests NW non-transparent monitoring based on the performance monitored by the NW transparent monitoring (for example, when the performance fluctuation is large, or when the performance fluctuation exceeds a threshold). This request will be described later in the first embodiment. Also, the setting/measurement method for NW transparent monitoring will be described later in the second embodiment.
UEは、上記閾値を、予め定められたルールに基づいて判断してもよいし、UE能力に基づいて判断してもよいし、NWから指示/設定されるパラメータに基づいて判断してもよい。 The UE may determine the above threshold based on predefined rules, based on UE capabilities, or based on parameters instructed/set by the NW.
UEは、NW非透過型モニタリングに基づいて、性能が変動していなければ、NW透過型モニタリングを継続する。なお、UEは、NW透過型モニタリングの結果に関わらず、上記長い周期におけるNW非透過型モニタリングを実施してもよい。UEは、同じ時間において、NW非透過型モニタリングとNW透過型モニタリングの両方を実施してもよいし、いずれか一方を(優先して)実施してもよい(例えば、NW非透過型モニタリングを優先して実施してもよい)。 If there is no change in performance based on the NW non-transparent monitoring, the UE continues the NW transparent monitoring. The UE may perform NW non-transparent monitoring in the above-mentioned long period regardless of the result of the NW transparent monitoring. The UE may perform both NW non-transparent monitoring and NW transparent monitoring at the same time, or may perform (prioritize) one of them (for example, may prioritize NW non-transparent monitoring).
図2では、時刻tにおいて、UEはNW透過型モニタリングを介して、性能が変動したことを検出すると、NWに対してNW非透過型モニタリングを要求し、その後NW非透過型モニタリングを実施している。このNW非透過型モニタリングは、元々設定されている上記長い周期とは異なるタイミングで実施され得る。 In Figure 2, when the UE detects a change in performance via network-transparent monitoring at time t, it requests network-non-transparent monitoring from the network and then performs network-non-transparent monitoring. This network-non-transparent monitoring can be performed at a timing different from the above-mentioned long period that is originally set.
なお、NW非透過型モニタリングの周期とNW透過型モニタリングの周期は、図2に示した関係に限られない。両者は同じであってもよいし、前者が後者より長くてもよいし、後者が前者より長くてもよい。また、NW非透過型モニタリングは、必ずしも周期的/セミパーシステントに実施されるように設定されなくてもよい(例えば、非周期的に実施されるように設定/指示されてもよい)。UEは、NW非透過型モニタリング及びNW透過型モニタリングに関して、これらの周期の大小関係、これらの時間ドメインのふるまい(例えば、周期的、セミパーシステント、非周期的)などの制約があると想定してもよい。例えば、UEは、当該制約に基づいて、NW非透過型モニタリングの設定(例えば、周期)から、NW透過型モニタリングの設定(例えば、周期)を決定してもよい。 The period of NW non-transparent monitoring and the period of NW transparent monitoring are not limited to the relationship shown in FIG. 2. They may be the same, or the former may be longer than the latter, or the latter may be longer than the former. In addition, NW non-transparent monitoring does not necessarily have to be configured to be performed periodically/semi-persistently (for example, it may be configured/instructed to be performed aperiodically). The UE may assume that there are constraints regarding the length relationship between the periods of NW non-transparent monitoring and NW transparent monitoring, their time domain behavior (for example, periodic, semi-persistent, aperiodic), etc. For example, the UE may determine the setting of NW transparent monitoring (e.g., period) from the setting of NW non-transparent monitoring (e.g., period) based on the constraint.
以上説明した第0の実施形態によれば、例えば、頻繁にNW非透過型モニタリングを行う場合に比べてNW非透過型モニタリングの報告のオーバーヘッドを低減しつつ、性能の異常に迅速に対応することができる。 According to the 0th embodiment described above, for example, it is possible to reduce the overhead of reporting non-transparent network monitoring compared to when non-transparent network monitoring is performed frequently, while quickly responding to performance abnormalities.
<第1の実施形態>
第1の実施形態は、NW透過型モニタリングに基づく性能モニタリング(NW非透過型モニタリング)のリクエストに関する。
First Embodiment
The first embodiment relates to a request for performance monitoring (NW non-transparent monitoring) based on NW transparent monitoring.
[性能変動可能性報告]
UEは、モデル/機能性/フォールバックの動作の性能が変動する可能性/確率に関する情報(例えば、性能変動可能性情報、性能変動可能性報告などと呼ばれてもよい)を、NWに報告してもよい。この情報は、例えば、硬値(硬判定値と呼ばれてもよい)で表現されてもよいし、軟値(軟判定値と呼ばれてもよい)で表現されてもよい。硬値は、二値(0又は1)で表現されてもよい。軟値は、いくつかの候補値(0、0.1、0,2、…、0.9、1.0)で表されてもよいし、実数値で表されてもよい。
[Performance fluctuation possibility report]
The UE may report information on the possibility/probability of the performance of the model/functionality/fallback operation fluctuating (e.g., may be called performance fluctuation possibility information, performance fluctuation possibility report, etc.) to the NW. This information may be expressed, for example, as a hard value (which may be called a hard decision value) or a soft value (which may be called a soft decision value). The hard value may be expressed as a binary value (0 or 1). The soft value may be expressed as several candidate values (0, 0.1, 0,2, ..., 0.9, 1.0) or may be expressed as a real value.
上記情報が示す値が第1の値(例えば、0)に近いほど、性能変動の可能性が低いことを意味してもよい。上記情報が示す値が第2の値(例えば、1)に近いほど、性能変動の可能性が高いことを意味してもよい。 The closer the value indicated by the information is to a first value (e.g., 0), the lower the possibility of performance fluctuation. The closer the value indicated by the information is to a second value (e.g., 1), the higher the possibility of performance fluctuation.
UEは、性能変動可能性情報としてどの値(例えば、硬値か軟値かのどちらの値)を報告するかを、予め定められたルールに基づいて判断してもよいし、UE能力に基づいて判断してもよいし、指示/設定されるパラメータに基づいて判断してもよい。 The UE may decide which value (e.g., a hard value or a soft value) to report as the performance variability information based on predefined rules, on the UE capabilities, or on the parameters that are instructed/set.
性能変動可能性情報は、関連付けられる(又は性能が変動する)モデル/機能性/フォールバックの動作を特定するための情報を含んでもよい。 Performance variability information may include information to identify associated (or performance varying) model/functionality/fallback behavior.
NWは、UEから報告された性能変動可能性情報に基づいて、当該UEに対してNW非透過型モニタリングをトリガしてもよい(実施させてもよい)。例えば、NWは、UEから報告された性能変動可能性情報が示す可能性が閾値を超える場合、当該UEに対してNW非透過型モニタリングをトリガしてもよい。つまり、上述の性能変動可能性情報の報告は、NW非透過型モニタリングのリクエストに該当してもよい。 The NW may trigger (perform) NW non-transparent monitoring for the UE based on the performance variation possibility information reported from the UE. For example, if the possibility indicated by the performance variation possibility information reported from the UE exceeds a threshold, the NW may trigger NW non-transparent monitoring for the UE. In other words, the report of the above-mentioned performance variation possibility information may correspond to a request for NW non-transparent monitoring.
[性能測定/報告のリクエスト]
UEは、モデル/機能性/フォールバックの動作の性能の測定/報告をリクエストしてもよい(リクエストすることを示す情報(以下、リクエスト情報とも呼ぶ)を送信してもよい)。
[Performance measurement/report request]
The UE may request (or send information indicating the request (hereinafter also referred to as request information)) measurement/reporting of performance of the model/functionality/fallback operation.
リクエスト情報は、測定/報告される(言い換えると、測定/報告がリクエストされる)モデル/機能性/フォールバックの動作を特定するための情報を含んでもよい。なお、リクエストされるモデル/機能性/フォールバックの動作は、リクエストの起因となったモデル/機能性/フォールバックの動作(例えば、NW透過型モニタリングによって性能がモニタされたモデル/機能性/フォールバックの動作、性能変動可能性情報によって示されるモデル/機能性/フォールバックの動作)と同じであってもよいし、異なってもよい。同じである場合、リクエスト情報は、リクエストされるモデル/機能性/フォールバックの動作を特定するための情報を含まなくてもよい。 The request information may include information for identifying the model/functionality/fallback behavior to be measured/reported (in other words, the measurement/report is requested). The requested model/functionality/fallback behavior may be the same as or different from the model/functionality/fallback behavior that caused the request (e.g., the model/functionality/fallback behavior whose performance is monitored by network transparent monitoring, or the model/functionality/fallback behavior indicated by performance variability information). If they are the same, the request information does not need to include information for identifying the requested model/functionality/fallback behavior.
なお、UEは、上述の性能変動可能性情報及びリクエスト情報を同時に送信してもよいし、異なるタイミングにおいて送信してもよい。 The UE may transmit the above-mentioned performance variation possibility information and request information simultaneously or at different times.
[関連するタイマ]
UEは、性能変動可能性情報/リクエスト情報を送信する場合、特定のタイマを開始してもよい。
[Related Timers]
When the UE transmits the performance variation possibility information/request information, the UE may start a specific timer.
UEは、当該特定のタイマが起動していないときに限って性能変動可能性情報/リクエスト情報を送信することを許容してもよい。これにより、性能変動可能性情報/リクエスト情報を頻繁に送信し過ぎることを抑制できる。当該特定のタイマは、MACレイヤ(のMACエンティティ)において管理されてもよい。 The UE may allow the transmission of performance variation possibility information/request information only when the specific timer is not running. This makes it possible to prevent the performance variation possibility information/request information from being transmitted too frequently. The specific timer may be managed in the MAC layer (MAC entity).
UEは、当該特定のタイマが起動しているときにおいて、対応する又は全てのNW透過型モニタリングを停止(又はサスペンド)してもよい。 The UE may stop (or suspend) the corresponding or all network transparent monitoring when the particular timer is running.
UEは、上記特定のタイマに関する情報(例えば、タイマの長さ)を、予め定められたルールに基づいて判断してもよいし、UE能力に基づいて判断してもよいし、指示/設定されるパラメータに基づいて判断してもよい。 The UE may determine information about the particular timer (e.g., the length of the timer) based on predefined rules, based on UE capabilities, or based on instructed/set parameters.
なお、モデル/機能性/フォールバックの動作ごとに異なるタイマが用いられてもよい(又は特定のモデル/機能性/フォールバックの動作について個別のタイマが用いられてもよい)し、複数のモデル/機能性/フォールバックの動作共通で同じタイマが用いられてもよい。 Note that a different timer may be used for each model/functionality/fallback operation (or an individual timer may be used for a specific model/functionality/fallback operation), or the same timer may be used for multiple model/functionality/fallback operations.
以上説明した第1の実施形態によれば、NW透過型モニタリングに基づいて、NW非透過型モニタリングの適切なリクエストを送信することができる。 According to the first embodiment described above, it is possible to transmit an appropriate request for NW non-transparent monitoring based on NW transparent monitoring.
<第2の実施形態>
第2の実施形態は、NW透過型モニタリングに関する。
Second Embodiment
The second embodiment relates to NW transmission type monitoring.
[参照信号のリクエスト]
UEは、第1の実施形態で述べた性能変動可能性情報/リクエスト情報の送信を判断するために、特定の参照信号(RS)の設定/測定をリクエストしてもよい(リクエストすることを示す情報(以下、RSリクエスト情報とも呼ぶ)を送信してもよい)。RSの設定/測定をリクエストすることは、RSをリクエストすることと互いに読み替えられてもよい。
[Reference signal request]
In order to determine whether to transmit the performance variation possibility information/request information described in the first embodiment, the UE may request the configuration/measurement of a specific reference signal (RS) (may transmit information indicating the request (hereinafter, also referred to as RS request information)). Requesting the configuration/measurement of the RS may be interpreted as requesting the RS.
なお、本開示において、「モデル/機能性/フォールバックの動作の性能の変動を検出する」、「(第1の実施形態で述べた)性能変動可能性情報/リクエスト情報の送信を判断する」、「性能変動モニタリングを実施する」、「NW透過型モニタリングを実施する」などは、互いに読み替えられてもよい。 In addition, in this disclosure, "detecting performance fluctuations in model/functionality/fallback operation," "determining whether to send performance fluctuation possibility information/request information (described in the first embodiment)," "performing performance fluctuation monitoring," "performing network transparent monitoring," etc. may be read as interchangeable.
以下、当該特定のRSを、性能変動モニタ用RS、リクエスト情報送信判断用RSなどとも呼ぶ。性能変動モニタ用RSは、性能変動のモニタのためだけに用いられてもよいし、その他の用途に用いられてもよい。 Hereinafter, the specific RS will also be referred to as an RS for monitoring performance fluctuations, an RS for determining whether to send request information, etc. The RS for monitoring performance fluctuations may be used only for monitoring performance fluctuations, or may be used for other purposes.
図3は、第2の実施形態にかかるNW透過型モニタリングの制御の一例を示す図である。NW透過型モニタリングの制御は、図示されるステップの少なくとも1つに基づいて行われてもよい。なお、一部のステップは省略されてもよい。 FIG. 3 is a diagram showing an example of the control of the network transparent monitoring according to the second embodiment. The control of the network transparent monitoring may be performed based on at least one of the steps shown in the figure. Note that some steps may be omitted.
ステップS101において、UEは、性能変動モニタ用RSの要求の許可(permission)に関する情報を、NWから通知されてもよい。上記許可に関する情報は、性能変動モニタ用RSの要求設定情報を用いて、UEに設定されてもよい。 In step S101, the UE may be notified of information regarding permission for the request of the performance variation monitoring RS from the NW. The information regarding the permission may be set in the UE using request setting information of the performance variation monitoring RS.
なお、当該情報は、NWから通知される代わりに/されるとともに、UEが予め規定される手順に基づいて判断してもよい。 In addition, instead of/in addition to being notified by the NW, the UE may determine the information based on a predefined procedure.
上記許可に関する情報は、以下の少なくとも1つに関する情報を含んでもよい:
・いつ/何のRSリクエスト情報を送信できるか、
・何のRS(例えば、CSI-RS/PRS/SSB)を要求できるか、
・何の期間(ウィンドウ、ギャップなど)を要求できるか。
The information regarding the authorization may include information regarding at least one of the following:
When/what RS request information can be sent,
What RS (e.g. CSI-RS/PRS/SSB) can be requested?
- What time periods (windows, gaps, etc.) can be requested?
UEは、上記ウィンドウ/ギャップ内の性能変動モニタ用RSを測定することを期待されてもよい。 The UE may be expected to measure the RS for monitoring performance variations within the above window/gap.
ステップS102において、UEは、性能変動モニタ用RSの要求(RSリクエスト情報)を、NWに送信してもよい。RSリクエスト情報は、以下の少なくとも1つに関する情報を含んでもよい:
・(所望の)RSに関する情報(例えば、RS設定のID、RSリソースのID)、
・(所望の)期間(ウィンドウ、ギャップ)に関する情報、
・RSリクエスト情報に関するID、
・要求される測定数/測定の最大数に関する情報、
・要求される測定周期に関する情報。
In step S102, the UE may transmit a request for a performance variation monitoring RS (RS request information) to the NW. The RS request information may include information on at least one of the following:
Information about the (desired) RS (e.g., ID of the RS configuration, ID of the RS resource);
Information about the (desired) time period (window, gap),
- ID related to RS request information,
Information regarding the number of measurements requested/maximum number of measurements,
- Information regarding the required measurement period.
ステップS103において、UEは、性能変動モニタ用RSの設定/再設定/指示/アクティベーション/要求に対する確認(confirmation)を、NWから通知されてもよい。 In step S103, the UE may receive a confirmation from the NW regarding the configuration/reconfiguration/instruction/activation/request of the RS for monitoring performance fluctuations.
ステップS104において、UEは、ステップS103の通知に対応する性能変動モニタ用RSを受信/測定し、これに基づいて性能変動モニタリングを実施してもよい。 In step S104, the UE may receive/measure the performance variation monitoring RS corresponding to the notification in step S103, and perform performance variation monitoring based on this.
ステップS105において、UEは、性能変動モニタ用RSの受信/測定を終了してもよい。性能変動モニタ用RSの受信/測定の終了は、NWからの通知に基づいて行われてもよいし、UEが判断してもよい。 In step S105, the UE may end reception/measurement of the performance variation monitoring RS. The end of reception/measurement of the performance variation monitoring RS may be based on a notification from the NW, or may be determined by the UE.
[NW透過型モニタリングに関連付けられる検出手法]
UEは、第1の実施形態で述べた性能変動可能性情報/リクエスト情報の送信を判断するためのアプローチを、NWから指示/設定されてもよい。UEは、当該アプローチ(検出手法)に基づいて、モデル/機能性/フォールバックの動作の性能の変動を検出してもよい。当該アプローチ(検出手法)は、以下の少なくとも1つであってもよい:
・モデル/機能性を適用する際に用いる測定(又は入力情報)に基づく検出(入力分布ベースド検出と呼ばれてもよい)、
・モデル/機能性から導出(推論)される情報に基づく検出(出力分布ベースド検出と呼ばれてもよい)、
・検出のためのモデル(又は検出専用モデル)に基づく検出。
[Detection techniques associated with network-transmitting monitoring]
The UE may be instructed/configured by the NW to use an approach for determining whether to transmit the performance variation possibility information/request information described in the first embodiment. The UE may detect the performance variation of the model/functionality/fallback operation based on the approach (detection method). The approach (detection method) may be at least one of the following:
Detection based on measurements (or input information) used in applying the model/functionality (may be called input distribution based detection);
Detection based on information derived (inferred) from models/functionality (may be called power distribution based detection);
Detection based on a model for detection (or a detection-specific model).
なお、上記検出専用モデルは、性能の変動の検出のみを目的とする、UEに搭載される(設定される/利用可能な)追加的なモデルであってもよい。 The detection-only model may be an additional model installed (configured/available) in the UE, whose sole purpose is to detect performance variations.
以上説明した第2の実施形態によれば、UEは、NW透過型モニタリングに関する制御を適切に実施できる。 According to the second embodiment described above, the UE can appropriately perform control related to network transparent monitoring.
<第3の実施形態>
第3の実施形態は、モニタされるモデル/機能性/フォールバックの数に関する。なお、「モニタされる」は、「(UEが)モニタする」と互いに読み替えられてもよい。
Third Embodiment
The third embodiment relates to the number of monitored models/functionality/fallbacks. Note that "monitored" may be read as "(UE) monitors" interchangeably.
UEは、モニタするモデル/機能性/フォールバックの動作の最大数に関する情報を、NWに報告してもよい。当該情報は、UE能力情報に含まれてもよい。UEは、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタすることを期待されなくてもよい。 The UE may report information regarding the maximum number of models/functionality/fallback operations it will monitor to the NW. This information may be included in the UE capability information. The UE may not be expected to monitor more than this maximum number of models/functionality/fallback operations.
なお、本開示において、最大数は、サポートする数、設定数、数などと互いに読み替えられてもよい。 In addition, in this disclosure, the maximum number may be interpreted interchangeably as the number supported, the number set, the number, etc.
UEは、第1の実施形態で述べた性能変動可能性情報/リクエスト情報の送信を判断するためにモニタするモデル/機能性/フォールバックの動作の最大数に関する情報を、NWに報告してもよい。当該情報は、UE能力情報に含まれてもよい。第1の実施形態で述べた性能変動可能性情報/リクエスト情報の送信を判断するために、UEは、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタすることを期待されなくてもよい。 The UE may report information regarding the maximum number of models/functionality/fallback operations to monitor to determine whether to transmit the performance variability information/request information described in the first embodiment to the NW. The information may be included in the UE capability information. The UE may not be expected to monitor a number of models/functionality/fallback operations that exceeds the maximum number to determine whether to transmit the performance variability information/request information described in the first embodiment.
UEは、性能メトリック/イベントの送信のために設定/指示される(又はサポートする)モデル/機能性/フォールバックの動作の最大数に関する情報を、NWに報告してもよい。当該情報は、UE能力情報に含まれてもよい。性能メトリック/イベントの送信のために、UEは、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタすることを期待されなくてもよい。 The UE may report information to the NW regarding the maximum number of models/functionality/fallback operations that are configured/instructed (or supported) for the transmission of performance metrics/events. The information may be included in the UE capability information. For the transmission of performance metrics/events, the UE may not be expected to monitor more than the maximum number of models/functionality/fallback operations.
なお、本開示において、「モデル/機能性/フォールバックの動作の性能を測定/報告する」、「性能メトリック/イベントの送信を判断する」、「性能メトリック/イベントを測定する」、「性能メトリック/イベントを報告する」、「NW非透過型モニタリングを実施する」などは、互いに読み替えられてもよい。 In addition, in this disclosure, "measure/report performance of model/functionality/fallback operation," "determine sending performance metrics/events," "measure performance metrics/events," "report performance metrics/events," "perform non-transparent network monitoring," etc. may be read as interchangeable.
また、本開示において、性能メトリック/イベントを報告することは、対応するモデルの性能が閾値より大きい又は小さいことを報告することを意味してもよい。当該閾値は、規格において予め定められてもよいし、UE能力に基づいて判断されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングによってUEに対して設定/指示されてもよい。また、特定の期間における閾値とモデルの性能とを比較して、報告するイベントを決定してもよい。 Furthermore, in the present disclosure, reporting a performance metric/event may mean reporting that the performance of the corresponding model is greater than or less than a threshold. The threshold may be predefined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling. Also, the event to be reported may be determined by comparing the performance of the model with the threshold for a particular period of time.
なお、第3の実施形態において、UEが、上述したいずれかの最大数に関する情報を報告する場合、NWは、当該UEに対して、当該最大数までのモデル/機能性/フォールバックの動作をモニタすることを設定/指示するように制御してもよい。 In the third embodiment, when a UE reports information regarding any of the maximum numbers described above, the NW may control the UE to configure/instruct it to monitor the operation of models/functionality/fallbacks up to the maximum number.
また、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタすることを設定/指示される場合には、UEは、当該最大数までのモデル/機能性/フォールバックの動作を選択してモニタし、選択されなかったモデル/機能性/フォールバックの動作をモニタしないことを意味してもよい。当該選択は、モデル/機能性/フォールバックの動作に関連付けられる情報(例えば、ID、優先度)に基づいて実施されてもよい。当該関連付けられる情報は、規格において予め定められてもよいし、UE能力に基づいて判断されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングによってUEに対して設定/指示されてもよい。 Also, when configured/instructed to monitor a number of models/functionality/fallback operations exceeding the maximum number, this may mean that the UE selects and monitors the model/functionality/fallback operations up to the maximum number, and does not monitor the model/functionality/fallback operations that are not selected. The selection may be performed based on information (e.g., ID, priority) associated with the model/functionality/fallback operation. The associated information may be predetermined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling.
以上説明した第3の実施形態によれば、UEは、モニタされるモデル/機能性/フォールバックの数を適切に報告でき、NWは当該数に基づいて当該UEに対する制御を好適に判断できる。 According to the third embodiment described above, the UE can appropriately report the number of models/functionalities/fallbacks to be monitored, and the NW can appropriately determine control for the UE based on the number.
<第4の実施形態>
第4の実施形態は、モデル/機能性/フォールバックのアクティベーションの制限(restriction)に関する。
Fourth Embodiment
A fourth embodiment relates to model/functionality/fallback activation restriction.
上述したとおり、NW透過型モニタリングを利用する場合、NWは、モデル/機能性がどれくらい優れているかを知ることが難しい。このため、NWは、NW非透過型モニタリングなしでモデル/機能性のアクティベーション、スイッチング、ディアクティベーションなどの適切な決定を行うことが難しい。 As mentioned above, when using network-transparent monitoring, it is difficult for the network to know how good the model/functionality is. Therefore, it is difficult for the network to make appropriate decisions such as activating, switching, and deactivating models/functionality without network-non-transparent monitoring.
言い換えると、モデル/機能性のアクティベーション、スイッチング、ディアクティベーションなどの前に、NW非透過型モニタリングが実施されることが好ましい。 In other words, it is preferable that network non-transparent monitoring is performed before model/functionality activation, switching, deactivation, etc.
そこで、本発明者らは第4の実施形態を想到した。第4の実施形態によれば、モデル/機能性の動作の指示の前に、UEがNW非透過型モニタリングを実施することが保証される。 The inventors have therefore devised a fourth embodiment. According to the fourth embodiment, it is ensured that the UE performs non-transparent network monitoring before instructing the operation of the model/functionality.
第4の実施形態において、UEは、特定の条件が満たされない場合、モデル/機能性/フォールバックの動作の指示を受信又は適用することを期待されなくてもよい。当該特定の条件は、例えば以下の少なくとも1つに該当してもよい:
・UEが、対応するモデル/機能性/フォールバックの動作の性能メトリックを報告した、
・UEが、対応するモデル/機能性/フォールバックの動作に関連するイベントの発生を報告した。
In a fourth embodiment, the UE may not be expected to receive or apply the model/functionality/fallback behavior indication unless certain conditions are met. The certain conditions may for example be at least one of the following:
The UE has reported performance metrics for the corresponding model/functionality/fallback operation,
The UE reports the occurrence of an event related to the corresponding model/functionality/fallback behavior.
なお、上記関連するイベントは、モデル/機能性/フォールバックの動作の性能メトリックによってその発生が決定されるイベントに制限されてもよい。 Note that the above related events may be limited to events whose occurrence is determined by performance metrics of the model/functionality/fallback behavior.
上記「特定の条件が満たされない場合」は、「最近の期間X内に特定の条件が満たされない場合」、「特定の条件が満たされない時点から期間Yが経過するまで」、「最近の期間X内に特定の条件が満たされない時点から期間Yが経過するまで」などと互いに読み替えられてもよい。 The above phrase "if a particular condition is not met" may be interpreted interchangeably as "if a particular condition is not met within the most recent period X," "until a period Y has elapsed since a particular condition was not met within the most recent period X," "until a period Y has elapsed since a particular condition was not met within the most recent period X," etc.
上記「性能メトリック/イベントの発生を報告した」は、「(最近の)期間Z内に/N回、性能メトリック/イベントの発生を報告した」と互いに読み替えられてもよい。 The above phrase "reported the occurrence of a performance metric/event" may be read as "reported the occurrence of a performance metric/event N times within a (recent) period Z."
ここで、期間X(Y、Z)は、X(Y、Z)個の単位時間で表現される期間を意味してもよい。当該単位時間は、例えば、シンボル、スロット、サブフレーム、ミリ秒(ms)などのいずれか又はこれらの組み合わせであってもよい。 Here, the period X(Y,Z) may mean a period expressed by X(Y,Z) unit times. The unit times may be, for example, any one of a symbol, a slot, a subframe, a millisecond (ms), etc., or a combination of these.
期間X(Y、Z)は、タイマに基づいて管理されてもよい。 The period X(Y,Z) may be managed based on a timer.
X/Y/Z/Nは、0(又は1)以上の任意の実数/整数であってもよく、規格において予め定められてもよいし、UE能力に基づいて判断されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングによってUEに対して設定/指示されてもよい。 X/Y/Z/N may be any real number/integers equal to or greater than 0 (or 1), may be predefined in a standard, may be determined based on UE capabilities, or may be set/instructed to the UE by higher layer signaling/physical layer signaling.
以上説明した第4の実施形態によれば、例えば、モデル/機能性のアクティベーション、スイッチング、ディアクティベーションなどの前に、UEがNW非透過型モニタリングを実施することを保証できる。 According to the fourth embodiment described above, it is possible to ensure that the UE performs non-transparent network monitoring, for example, before model/functionality activation, switching, deactivation, etc.
<補足>
[UEへの情報の通知]
上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
<Additional Information>
[Notification of information to UE]
In the above-described embodiment, any information may be notified to the UE (from the NW) (in other words, any information received from the BS in the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including in the MAC subheader a new Logical Channel ID (LCID) that is not specified in existing standards.
上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is met, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報(例えば、性能変動可能性報告、性能測定/報告のリクエスト、第3の実施形態のモニタするモデル/機能性/フォールバックの動作の最大数、第4の実施形態の制限)をサポートすること、
・2ステップ性能モニタリングをサポートすること。
The specific UE capabilities may indicate at least one of the following:
Supporting specific processes/actions/controls/information for at least one of the above embodiments (e.g. performance variability reporting, requests for performance measurements/reports, maximum number of models/functionality/fallback actions to monitor for the third embodiment, limitations for the fourth embodiment);
Support two-step performance monitoring.
また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The above-mentioned specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、モデル/機能性IDに基づくLCMを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating the activation of LCM based on a model/functionality ID, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may apply, for example, the behavior of Rel. 15/16/17.
(付記)
本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
第1の性能モニタリングを介して、モデル、機能性及びフォールバックの少なくとも1つの動作に関する性能の変動を検出する制御部と、
前記性能の変動に基づいて、第2の性能モニタリングを要求するための情報を送信する送信部と、を有する端末。
[付記2]
前記送信部は、前記第2の性能モニタリングを要求するための情報として、前記少なくとも1つの動作に関する性能が変動する可能性に関する情報を送信する付記1に記載の端末。
[付記3]
前記送信部は、前記少なくとも1つの動作に関する性能の変動を検出するための参照信号をリクエストするための情報を送信する付記1又は付記2に記載の端末。
[付記4]
前記制御部は、設定される検出手法に基づいて、前記少なくとも1つの動作に関する性能の変動を検出する付記1から付記3のいずれかに記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
a control unit that detects, via a first performance monitoring, a performance variation related to the operation of at least one of the model, the functionality, and the fallback;
A terminal having a transmitting unit that transmits information for requesting second performance monitoring based on the fluctuation in performance.
[Appendix 2]
2. The terminal according to
[Appendix 3]
3. The terminal according to
[Appendix 4]
4. The terminal according to
(付記)
本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
モニタするモデル、機能性及びフォールバックの少なくとも1つの動作の最大数に関する情報を送信する送信部と、
前記最大数を超える数の前記少なくとも1つの動作をモニタしない制御を行う制御部と、を有する端末。
[付記2]
前記送信部は、前記少なくとも1つの動作に関する性能の変動を検出するためにモニタする前記少なくとも1つの動作の最大数に関する前記情報を送信する付記1に記載の端末。
[付記3]
前記制御部は、特定の条件が満たされない場合、前記少なくとも1つの動作の指示を受信又は適用しない付記1又は付記2に記載の端末。
[付記4]
前記特定の条件は、対応する前記少なくとも1つの動作の性能メトリック又は関連するイベントの発生を報告したことである付記3に記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
a transmitter for transmitting information regarding a maximum number of at least one of a model, a functionality, and a fallback to be monitored;
and a control unit that performs control not to monitor the at least one operation in a number exceeding the maximum number.
[Appendix 2]
2. The terminal of
[Appendix 3]
3. The terminal according to
[Appendix 4]
4. The terminal of claim 3, wherein the particular condition is reporting a corresponding performance metric of the at least one operation or an occurrence of a related event.
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these methods.
図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 4 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
The
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
In addition, the
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The
コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
The
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The radio access method may also be called a waveform. Note that in the
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
In addition, in the
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
In addition, in the
(基地局)
図5は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(Base station)
5 is a diagram showing an example of a configuration of a base station according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the
伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF),
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
Note that the transmitting section and receiving section of the
なお、送受信部120は、モデル、機能性及びフォールバックの少なくとも1つの動作に関する性能の変動をユーザ端末20に検出させるための参照信号を送信してもよい。送受信部120は、前記性能の変動に基づいて前記ユーザ端末20から送信される、性能モニタリングを要求するための情報を受信してもよい。
The transmitting/receiving
また、送受信部120は、モニタするモデル、機能性及びフォールバックの少なくとも1つの動作の最大数に関する情報をユーザ端末20から受信してもよい。制御部110は、前記最大数までの前記少なくとも1つの動作をモニタすることを前記ユーザ端末20に対して設定する制御を行ってもよい。
The
(ユーザ端末)
図6は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
6 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the
なお、測定部223は、チャネル測定用リソースに基づいて、CSI算出のためのチャネル測定を導出してもよい。チャネル測定用リソースは、例えば、ノンゼロパワー(Non Zero Power(NZP))CSI-RSリソースであってもよい。また、測定部223は、干渉測定用リソースに基づいて、CSI算出のための干渉測定を導出してもよい。干渉測定用リソースは、干渉測定用のNZP CSI-RSリソース、CSI-干渉測定(Interference Measurement(IM))リソースなどの少なくとも1つであってもよい。なお、CSI-IMは、CSI-干渉管理(Interference Management(IM))と呼ばれてもよいし、ゼロパワー(Zero Power(ZP))CSI-RSと互いに読み替えられてもよい。なお、本開示において、CSI-RS、NZP CSI-RS、ZP CSI-RS、CSI-IM、CSI-SSBなどは、互いに読み替えられてもよい。
The
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
In addition, the transmitting unit and receiving unit of the
なお、制御部210は、第1の性能モニタリング(例えば、NW透過型モニタリング)を介して、モデル、機能性及びフォールバックの少なくとも1つの動作に関する性能の変動を検出してもよい。送受信部220は、前記性能の変動に基づいて、第2の性能モニタリング(例えば、NW非透過型モニタリング)を要求するための情報を送信してもよい。
The
送受信部220は、前記第2の性能モニタリングを要求するための情報として、前記少なくとも1つの動作に関する性能が変動する可能性に関する情報(例えば、性能変動可能性情報)を送信してもよい。
The
送受信部220は、前記少なくとも1つの動作に関する性能の変動を検出するための参照信号をリクエストするための情報(例えば、RSリクエスト情報)を送信してもよい。
The
制御部210は、設定される検出手法(例えば、基地局10から指示/設定されるアプローチ)に基づいて、前記少なくとも1つの動作に関する性能の変動を検出してもよい。
The
また、送受信部220は、モニタするモデル、機能性及びフォールバックの少なくとも1つの動作の最大数に関する情報(例えば、UE能力情報)を送信してもよい。制御部210は、前記最大数を超える数の前記少なくとも1つの動作をモニタしない制御を行ってもよい。
The
送受信部220は、前記少なくとも1つの動作に関する性能の変動を検出するためにモニタする前記少なくとも1つの動作の最大数に関する前記情報を送信してもよい。
The
制御部210は、特定の条件が満たされない場合、前記少なくとも1つの動作の指示を受信又は適用しなくてもよい。ここで、前記特定の条件は、ユーザ端末20が、対応する前記少なくとも1つの動作の性能メトリック又は関連するイベントの発生を報告したことであってもよい。
The
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 7 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In addition, in this disclosure, terms such as apparatus, circuit, device, section, and unit may be interpreted as interchangeable. The hardware configurations of the
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
The
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. A different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not limiting in any respect.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
The physical layer signaling may be called
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「UEパネル」、「送信エンティティ」、「受信エンティティ」、などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial relation", "spatial domain filter", "transmit power", "phase rotation", "antenna port", "layer", "number of layers", "rank", "resource", "resource set", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", "UE panel", "transmitting entity", "receiving entity", etc. may be used interchangeably.
なお、本開示において、アンテナポートは、任意の信号/チャネルのためのアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)と互いに読み替えられてもよい。本開示において、リソースは、任意の信号/チャネルのためのリソース(例えば、参照信号リソース、SRSリソースなど)と互いに読み替えられてもよい。なお、リソースは、時間/周波数/符号/空間/電力リソースを含んでもよい。また、空間ドメイン送信フィルタは、空間ドメイン送信フィルタ(spatial domain transmission filter)及び空間ドメイン受信フィルタ(spatial domain reception filter)の少なくとも一方を含んでもよい。 In the present disclosure, the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port). In the present disclosure, the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.). The resource may include time/frequency/code/space/power resources. The spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
上記グループは、例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号(Reference Signal(RS))グループ、制御リソースセット(COntrol REsource SET(CORESET))グループ、PUCCHグループ、アンテナポートグループ(例えば、DMRSポートグループ)、レイヤグループ、リソースグループ、ビームグループ、アンテナグループ、パネルグループなどの少なくとも1つを含んでもよい。 The above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
また、本開示において、ビーム、SRSリソースインディケーター(SRS Resource Indicator(SRI))、CORESET、CORESETプール、PDSCH、PUSCH、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、RSなどは、互いに読み替えられてもよい。 Furthermore, in this disclosure, beam, SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be read as interchangeable.
また、本開示において、TCI状態、下りリンクTCI状態(DL TCI状態)、上りリンクTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、ジョイントTCI状態などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms TCI state, downlink TCI state (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, joint TCI state, etc. may be interpreted as interchangeable.
また、本開示において、「QCL」、「QCL想定」、「QCL関係」、「QCLタイプ情報」、「QCL特性(QCL property/properties)」、「特定のQCLタイプ(例えば、タイプA、タイプD)特性」、「特定のQCLタイプ(例えば、タイプA、タイプD)」などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, "QCL", "QCL assumptions", "QCL relationship", "QCL type information", "QCL property/properties", "specific QCL type (e.g., Type A, Type D) characteristics", "specific QCL type (e.g., Type A, Type D)", etc. may be read as interchangeable.
本開示において、インデックス、識別子(Identifier(ID))、インディケーター(indicator)、インディケーション(indication)、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, indication, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報(TCI状態)」は、「空間関係情報(TCI状態)のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。空間関係情報及び空間関係は、互いに読み替えられてもよい。 Furthermore, the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be interchangeable. "Spatial relationship information (TCI state)" may be interchangeable as "set of spatial relationship information (TCI state)", "one or more pieces of spatial relationship information", etc. TCI state and TCI may be interchangeable. Spatial relationship information and spatial relationship may be interchangeable.
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, the terms "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal", etc. may be used interchangeably.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
図8は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
FIG. 8 is a diagram showing an example of a vehicle according to an embodiment. The
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
The
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
The
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
Signals from the various sensors 50-58 include a current signal from a
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
The
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
The
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
The driving
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
The
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
The
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
The
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
The
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
The
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps in an exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-Wide Band (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。本開示において、「判断(決定)」は、上述した動作と互いに読み替えられてもよい。 Furthermore, "judgment (decision)" may be considered to mean "judging (deciding)" resolving, selecting, choosing, establishing, comparing, etc. In other words, "judgment (decision)" may be considered to mean "judging (deciding)" some kind of action. In this disclosure, "judgment (decision)" may be read as interchangeably with the actions described above.
また、本開示において、「判断(決定)(determine/determining)」は、「想定する(assume/assuming)」、「期待する(expect/expecting)」、「みなす(consider/considering)」などと互いに読み替えられてもよい。なお、本開示において、「...することを想定しない」は、「...しないことを想定する」と互いに読み替えられてもよい。 Furthermore, in this disclosure, "determine/determining" may be interpreted interchangeably as "assume/assuming," "expect/expecting," "consider/considering," etc. Furthermore, in this disclosure, "does not expect to do..." may be interpreted interchangeably as "assumes not to do...."
本開示において、「期待する(expect)」は、「期待される(be expected)」と互いに読み替えられてもよい。例えば、「...を期待する(expect(s) ...)」(”...”は、例えばthat節、to不定詞などで表現されてもよい)は、「...を期待される(be expected ...)」、「...する(上記”...”がto不定詞の場合はtoを取った動詞)」などと互いに読み替えられてもよい。「...を期待しない(does not expect ...)」は、「...を期待されない(be not expected ...)」、「...しない(上記”...”がto不定詞の場合はtoを取った動詞)」などと互いに読み替えられてもよい。また、「装置Aは...を期待されない(An apparatus A is not expected ...)」は、「装置A以外の装置Bが、当該装置Aについて...を期待しない」と互いに読み替えられてもよい(例えば、装置AがUEである場合、装置Bは基地局であってもよい)。 In the present disclosure, "expect" may be read as "be expected". For example, "expect(s)..." (where "..." may be expressed, for example, as a that clause, a to-infinitive, etc.) may be read as "be expected...", "does... (if "..." above is a to-infinitive, a verb with "to" in it)", etc. "does not expect..." may be read as "be not expected...", "does not... (if "..." above is a to-infinitive, a verb with "to" in it)", etc. Also, "An apparatus A is not expected..." may be read as "An apparatus B other than apparatus A does not expect..." (for example, if apparatus A is a UE, apparatus B may be a base station).
第3の実施形態において、「UEは、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタすることを期待されなくてもよい」は、「UEは、当該最大数を超える数のモデル/機能性/フォールバックの動作をモニタしない」と互いに読み替えられてもよい。 In the third embodiment, "the UE may not be expected to monitor the operation of a number of models/functionality/fallbacks that exceeds the maximum number" may be read as "the UE will not monitor the operation of a number of models/functionality/fallbacks that exceeds the maximum number."
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access."
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
本開示において、「Aのとき(場合)、B(when A, B)」、「(もし)Aならば、B(if A, (then) B)」、「Aの際にB(B upon A)」、「Aに応じてB(B in response to A)」、「Aに基づいてB(B based on A)」、「Aの間B(B during/while A)」、「Aの前にB(B before A)」、「Aにおいて(Aと同時に)B(B at( the same time as)/on A)」、「Aの後にB(B after A)」、「A以来B(B since A)」、「AまでB(B until A)」などは、互いに読み替えられてもよい。なお、ここでのA、Bなどは、文脈に応じて、名詞、動名詞、通常の文章など適宜適当な表現に置き換えられてもよい。なお、AとBの時間差は、ほぼ0(直後又は直前)であってもよい。また、Aが生じる時間には、時間オフセットが適用されてもよい。例えば、「A」は「Aが生じる時間オフセット前/後」と互いに読み替えられてもよい。当該時間オフセット(例えば、1つ以上のシンボル/スロット)は、予め規定されてもよいし、通知される情報に基づいてUEによって特定されてもよい。 In the present disclosure, "when A, B", "if A, (then) B", "B upon A", "B in response to A", "B based on A", "B during/while A", "B before A", "B at (the same time as)/on A", "B after A", "B since A", "B until A" and the like may be read as interchangeable. Note that A, B, etc. here may be replaced with appropriate expressions such as nouns, gerunds, and normal sentences depending on the context. Note that the time difference between A and B may be almost 0 (immediately after or immediately before). Also, a time offset may be applied to the time when A occurs. For example, "A" may be read interchangeably as "before/after the time offset at which A occurs." The time offset (e.g., one or more symbols/slots) may be predefined or may be identified by the UE based on signaled information.
本開示において、タイミング、時刻、時間、時間インスタンス、任意の時間単位(例えば、スロット、サブスロット、シンボル、サブフレーム)、期間(period)、機会(occasion)、リソースなどは、互いに読み替えられてもよい。 In this disclosure, timing, time, duration, time instance, any time unit (e.g., slot, subslot, symbol, subframe), period, occasion, resource, etc. may be interpreted as interchangeable.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The description of the present disclosure is intended for illustrative purposes only and does not imply any limitations on the invention disclosed herein.
Claims (6)
前記性能の変動に基づいて、第2の性能モニタリングを要求するための情報を送信する送信部と、を有する端末。 a control unit that detects, via a first performance monitoring, a performance variation related to the operation of at least one of the model, the functionality, and the fallback;
A terminal having a transmitting unit that transmits information for requesting second performance monitoring based on the fluctuation in performance.
前記性能の変動に基づいて、第2の性能モニタリングを要求するための情報を送信するステップと、を有する端末の無線通信方法。 Detecting via a first performance monitoring a performance variation related to the operation of at least one of the model, the functionality, and the fallback;
and transmitting information for requesting second performance monitoring based on the fluctuation in performance.
前記性能の変動に基づいて前記端末から送信される、性能モニタリングを要求するための情報を受信する受信部と、を有する基地局。 A transmitter for transmitting a reference signal for causing a terminal to detect a performance fluctuation related to at least one of the operation of a model, a functionality, and a fallback;
A base station comprising: a receiving unit that receives information for requesting performance monitoring, the information being transmitted from the terminal based on fluctuations in the performance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/025639 WO2025013221A1 (en) | 2023-07-11 | 2023-07-11 | Terminal, wireless communication method, and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/025639 WO2025013221A1 (en) | 2023-07-11 | 2023-07-11 | Terminal, wireless communication method, and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025013221A1 true WO2025013221A1 (en) | 2025-01-16 |
Family
ID=94214778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/025639 WO2025013221A1 (en) | 2023-07-11 | 2023-07-11 | Terminal, wireless communication method, and base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025013221A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026256A1 (en) * | 2006-08-29 | 2008-03-06 | Fujitsu Limited | Communication apparatus, terminal, and radio channel quality control method |
-
2023
- 2023-07-11 WO PCT/JP2023/025639 patent/WO2025013221A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008026256A1 (en) * | 2006-08-29 | 2008-03-06 | Fujitsu Limited | Communication apparatus, terminal, and radio channel quality control method |
Non-Patent Citations (4)
Title |
---|
FELIPE ARRAÑO SCHARAGER, ERICSSON: "Architecture and management for AIML", 3GPP DRAFT; R2-2306438; TYPE DISCUSSION; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 12 May 2023 (2023-05-12), XP052315649 * |
SHINYA KUMAGAI, NTT DOCOMO, INC.: "Discussion on general aspects of AI/ML framework", 3GPP DRAFT; R1-2307465; TYPE DISCUSSION; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 10 August 2023 (2023-08-10), XP052436686 * |
WEI ZENG, APPLE: "Discussion on general aspect of AI/ML framework", 3GPP DRAFT; R1-2303474; TYPE DISCUSSION; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 7 April 2023 (2023-04-07), XP052294037 * |
WINEE LUTCHOOMUN, INTERDIGITAL: "Decision and Signaling for AI/ML Model Switching", 3GPP DRAFT; R2-2305163; TYPE DISCUSSION; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 12 May 2023 (2023-05-12), XP052314389 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023152991A1 (en) | Terminal, wireless communication method, and base station | |
WO2023135820A1 (en) | Terminal, wireless communication method, and base station | |
WO2024150414A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013221A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013220A1 (en) | Terminal, wireless communication method, and base station | |
WO2024100725A1 (en) | Terminal, wireless communication method, and base station | |
WO2024075262A1 (en) | Terminal, wireless communication method, and base station | |
WO2024075261A1 (en) | Terminal, wireless communication method, and base station | |
WO2024075263A1 (en) | Terminal, wireless communication method, and base station | |
WO2024171258A1 (en) | Terminal, wireless communication method, and base station | |
WO2024171465A1 (en) | Terminal, wireless communication method, and base station | |
WO2024150432A1 (en) | User equipment, wireless communication method, and base station | |
WO2024150433A1 (en) | Terminal, wireless communication method, and base station | |
WO2024075255A1 (en) | Terminal, wireless communication method, and base station | |
WO2024106379A1 (en) | Terminal, wireless communication method, and base station | |
WO2024075254A1 (en) | Terminal, wireless communication method, and base station | |
WO2024106380A1 (en) | Terminal, wireless communication method, and base station | |
WO2024150438A1 (en) | Terminal, wireless communication method, and base station | |
WO2024150439A1 (en) | Terminal, wireless communication method, and base station | |
WO2025027854A1 (en) | Terminal, wireless communication method, and base station | |
WO2025027855A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013217A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013215A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013216A1 (en) | Terminal, wireless communication method, and base station | |
WO2025013218A1 (en) | Terminal, wireless communication method, and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23945098 Country of ref document: EP Kind code of ref document: A1 |