WO2025013163A1 - Semiconductor optical device and method for producing same - Google Patents
Semiconductor optical device and method for producing same Download PDFInfo
- Publication number
- WO2025013163A1 WO2025013163A1 PCT/JP2023/025425 JP2023025425W WO2025013163A1 WO 2025013163 A1 WO2025013163 A1 WO 2025013163A1 JP 2023025425 W JP2023025425 W JP 2023025425W WO 2025013163 A1 WO2025013163 A1 WO 2025013163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- optical device
- semiconductor optical
- thin
- semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 170
- 230000003287 optical effect Effects 0.000 title claims abstract description 133
- 238000004519 manufacturing process Methods 0.000 title description 42
- 239000000758 substrate Substances 0.000 claims abstract description 111
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 80
- 239000010980 sapphire Substances 0.000 claims abstract description 80
- 238000005253 cladding Methods 0.000 claims abstract description 30
- 239000010409 thin film Substances 0.000 claims description 91
- 238000000034 method Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 229910052710 silicon Inorganic materials 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 229910052681 coesite Inorganic materials 0.000 description 8
- 229910052906 cristobalite Inorganic materials 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 8
- 229910052682 stishovite Inorganic materials 0.000 description 8
- 229910052905 tridymite Inorganic materials 0.000 description 8
- 229910004205 SiNX Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005498 polishing Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010023 transfer printing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
Definitions
- the present invention relates to a semiconductor optical device that can reduce thermal resistance and a method for manufacturing the same.
- an InP-based thin-film laser (membrane laser) 50 on a Si substrate 511 has a structure in which a core (active layer in a laser/optical modulator or absorption layer in a photodetector) 522 is embedded in a thin InP layer 520, and the InP layer is sandwiched between SiO 2 512 and 56.
- InP i (intrinsic) layers 521 and 523 are disposed above and below the core 522.
- a SiN x thin film 55 is disposed on the surface of the InP layer.
- This structure achieves both a high optical confinement factor due to the refractive index contrast and low capacitance and high carrier confinement due to the lateral p-i-n structure of the thin film including p-type InP 524 and n-type InP 525.
- Contact layers 531, 532 and electrodes 541, 542 are arranged on the surfaces of p-type InP 524 and n-type InP 525, respectively.
- an InP-based thin-film laser (membrane laser) on a Si substrate has a structure surrounded by SiO2 , when the Joule heat generated by self-heating during laser operation is dissipated to the Si substrate or heat bath, the dissipation of heat is hindered by SiO2 , which has a low thermal conductivity.
- semiconductor lasers tend to experience a decrease in operating speed and optical output as the temperature rises due to heat generation, so ensuring the heat dissipation properties of the board is important.
- the aforementioned thin-film laser is fabricated on a highly heat-dissipating SiC substrate 61, which suppresses degradation of characteristics due to self-heating and achieves ultra-high speed and low power consumption operation ( Figure 16, Non-Patent Document 1).
- the semiconductor optical device comprises a flat sapphire, a semiconductor layer including an active layer, and a cladding, which are arranged in this order in a direction perpendicular to the surface of the sapphire, and a current is injected into the active layer in a direction parallel to the surface and perpendicular to the waveguide direction.
- the method for manufacturing a semiconductor optical device includes the steps of forming a sacrificial layer and a thin-film laser on a semiconductor substrate, covering the sacrificial layer and the surface of the thin-film laser with resist, removing the sacrificial layer, transferring the thin-film laser to a sapphire substrate using a stamp, removing the resist and removing the stamp, and, after forming a cladding on the thin-film laser, removing a portion of the cladding to form a hole that passes through the surface of the cladding and the electrode of the thin-film laser.
- the present invention provides a high-performance semiconductor optical device and a method for manufacturing the same that can reduce thermal resistance.
- FIG. 1 is a schematic cross-sectional view showing the structure of a semiconductor optical device according to a first embodiment of the present invention.
- FIG. 2A is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 2B is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 2C is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 3A is a diagram for explaining the effects of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 3B is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 4A is a diagram for explaining the effects of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 4B is a diagram for explaining the effect of the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 5 is a flow chart for explaining a method for manufacturing a semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6A is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6B is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6C is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6A is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6B is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6C is a schematic diagram
- FIG. 6D is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6E is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 6F is a schematic diagram for explaining the method for manufacturing the semiconductor optical device according to the first embodiment of the present invention.
- FIG. 7 is a schematic cross-sectional view showing the structure of a semiconductor optical device according to a second embodiment of the present invention.
- FIG. 8A is a diagram for explaining the effects of the semiconductor optical device according to the second embodiment of the present invention.
- FIG. 8B is a diagram for explaining the effect of the semiconductor optical device according to the second embodiment of the present invention.
- FIG. 8C is a diagram for explaining the effect of the semiconductor optical device according to the second embodiment of the present invention.
- FIG. 9A is a schematic top view showing the configuration of a semiconductor optical device according to a third embodiment of the present invention.
- FIG. 9B is a cross-sectional view taken along line IXB-IXB' showing the configuration of a semiconductor optical device according to a third embodiment of the present invention.
- FIG. 9C is a cross-sectional view taken along line IXC-IXC' showing the configuration of a semiconductor optical device according to a third embodiment of the present invention.
- FIG. 10 is a flow chart for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 10 is a flow chart for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 11A is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 11B is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 11C is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 11D is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the third embodiment of the present invention.
- FIG. 12A is a schematic top view showing the configuration of a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 12A is a schematic top view showing the configuration of a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 12B is a cross-sectional view taken along line XIIB-XIIB' showing the configuration of a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 12C is a cross-sectional view taken along line XIIC-XIIC' showing the configuration of a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 13 is a flow chart for explaining a method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 14A is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 14B is a schematic diagram for explaining the method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 14A is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to a fourth embodiment of the present invention.
- FIG. 14B is a schematic diagram for explaining the method for manufacturing a semiconductor optical device according to the fourth embodiment of the present
- FIG. 14C is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 14D is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 14E is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 14F is a schematic diagram for explaining a method for manufacturing a semiconductor optical device according to the fourth embodiment of the present invention.
- FIG. 15 is a schematic cross-sectional view showing the configuration of a conventional semiconductor optical device.
- FIG. 16 is a schematic cross-sectional view showing the configuration of a conventional semiconductor optical device.
- FIGS. 1 to 6F A semiconductor optical device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6F.
- a semiconductor optical device 10 includes a substrate 11, a thin-film laser 12, and a SiO 2 overclad 16, in that order.
- a sapphire substrate is used for the substrate 11.
- the thermal conductivity of sapphire is higher than that of SiO2 , the thermal resistance can be reduced without decreasing the optical confinement rate of the thin-film laser 12.
- the sapphire substrate has high hardness, so the thickness of the sapphire substrate can be reduced.
- the sapphire substrate 11 and the InP-based semiconductor layer 120 are bonded or adhered together.
- the thin-film laser 12 includes an InP-based semiconductor layer 120, contact layers 131 and 132, electrodes 141 and 142, and a thin-film SiN x layer 15.
- the thin-film SiN x layer 15 is not necessarily required.
- the active layer 122 is embedded in a thin InP layer 120 having a thickness of about 200 to 350 nm, and a lateral p-i-n junction is formed using known ion implantation and impurity diffusion methods.
- the InP-based semiconductor layer 120 has a layer structure consisting of i (intrinsic) type InP 121, an active layer 122, and i-type InP 123, with p-type InP 124 on one side of the layer structure and n-type InP 125 on the other side.
- the thin-film laser 12 has a p-type InGaAs contact layer 131 and a p-type electrode 141 on the surface of the p-type InP 124 in the InP-based semiconductor layer 120, and an n-type InGaAs contact layer 132 and an n-type electrode 142 on the surface of the n-type InP 125.
- a current is injected between the p-type electrode 141 and the n-type electrode 142, and light is emitted in the direction perpendicular to the plane of the paper in FIG. 1 (the waveguide direction).
- the active layer 122 is an InGaAsP-based multiple quantum well structure in the 1.55 ⁇ m wavelength band, with six quantum well layers.
- the thickness of the active layer 122 is 150 nm.
- the i-type InP 121, 123 are each undoped InP with a thickness of 50 nm.
- InGaAsP, InGaAlAs, InGaAs, InAlAs, etc. may be used for the active layer 122.
- the p-type InP 124 is, for example, Zn-doped (1 ⁇ 1018 cm-3) p-type InP.
- the n-type InP 125 is, for example, Si-doped (2 ⁇ 1018 cm-3) n-type InP.
- the overcladding 16 is an overcladding of a low refractive index material, for example, SiNx , SiO2 may be used.
- the semiconductor optical device 10 functions as a laser by injecting a forward current into the lateral p-i-n junction.
- insulating materials with low thermal conductivity are placed above and below the active layer 122, and a large injected current flows through a thin semiconductor layer, i.e., a semiconductor layer with high electrical resistance, so the generated Joule heat tends to accumulate inside the device.
- 2A to 2C show an example of the calculation results of the thermal resistance of a thin-film laser on a sapphire substrate 11.
- the calculation results of a thin-film laser on a conventional SiO 2 /Si 1 (silicon-on-insulator: SOI) substrate are also shown.
- the calculation was performed by numerically calculating the heat diffusion equation.
- 2A and 2B show the structure of a thin-film laser on a sapphire substrate 11 and the structure of a thin-film laser on an SOI substrate used in the calculation.
- the thickness of the InP-based semiconductor layer 120 constituting the thin-film laser was set to 300 nm.
- the thickness of the Si substrate 1 in the SOI substrate was set to 330 ⁇ m, and the thickness of the SiO 2 film 2 was set to 2 ⁇ m.
- 2C is the relative value of the thermal resistance normalized with the thermal resistance of the thin-film laser on a SiO 2 /Si substrate set to 1.
- the sapphire substrate thickness was changed from 150 ⁇ m to 330 ⁇ m.
- the bottom surfaces of the substrates 1 and 11 were used as a heat bath and were set to 25° C.
- the thermal resistance value is reduced to 70% compared to when an SOI substrate is used.
- the thermal resistance value is reduced to about 50%.
- thermal conductivity of sapphire is about 42 W/m ⁇ K at room temperature, which is higher than the 1.4 W/m ⁇ K of SiO2 .
- Si When using a Si substrate, Si has a high thermal conductivity (150 W/m ⁇ K), but on the other hand, it has a high refractive index and is a semiconductor, so an insulating layer (such as SiO 2) of several ⁇ m is required between the thin-film laser and the Si substrate. As a result, the thermal conductivity of the insulating layer (such as SiO 2 ) is low, and the thermal resistance is high.
- the hardness of the sapphire substrate 11 is generally higher than that of semiconductor or glass substrates, but lower than that of diamond substrates. Therefore, it is possible to use a thinner substrate than when a semiconductor substrate is used.
- the thickness of the substrate can be made thin, and as described above, by thinning the substrate, the thermal resistance can be reduced to about half that of when an SOI substrate is used.
- the structure of the thin-film laser used in the calculation is shown in Fig. 3A.
- Figure 3B shows the change in the optical confinement coefficient for the buried core (active layer 122) versus the refractive index of the material used for the substrate 110.
- the optical confinement in the active layer 122 when using a sapphire substrate 11 is about 10% higher than when using a SiC substrate (black squares in the figure), but is only about 1% lower than when using a SiO2 substrate (black circles in the figure).
- Single crystal sapphire substrates can also be used as optical windows and are transparent over a wide range of wavelengths, including those used in communications.
- the sapphire substrate 11 Since the sapphire substrate 11 has a lower refractive index than SiN x (n 1.92), it functions as a cladding for the SiN core, and a SiN x waveguide with low loss in the communication wavelength band can be formed on the sapphire substrate 11 .
- Figure 4B shows the calculation results of the effective refractive index felt by the guided mode versus the width of the SiN x waveguide (core).
- the thickness of the SiN x waveguide 17 was set to 1 ⁇ m.
- the effective refractive indexes of the first mode (solid line in the figure) and the second mode (dashed line in the figure) of the waveguide modes of the SiN x waveguide 17 increase, and when the width is 1.0 ⁇ m, the effective refractive index increases to about 1.76, and when the width is 2.2 ⁇ m, the effective refractive index increases to 1.8 or more.
- the effective refractive indexes of the third mode (dotted line in the figure) and the fourth mode (dashed line in the figure) are almost constant (about 1.74) up to a width of 2.2 ⁇ m of the SiN x waveguide 17, and increase when the width exceeds 2.2 ⁇ m.
- the first and third modes indicate TE mode
- the second and fourth modes indicate TM mode. Since the semiconductor laser oscillates in TE mode, the first mode shows a higher effective refractive index than the third mode for the semiconductor laser oscillation light with a width of 1.0 ⁇ m or more and 2.2 ⁇ m or less.
- the SiN x waveguide 17 functions as a single mode waveguide with a width of 1.0 ⁇ m or more and 2.2 ⁇ m or less, and as a result, loss due to light leakage to the sapphire substrate 11 can be reduced.
- the semiconductor optical device of this embodiment by forming a thin-film laser on a thin sapphire substrate, the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed.
- it can be integrated with a low-loss SiN x waveguide. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
- FIG. 5 shows a flow chart for explaining the method for manufacturing the semiconductor optical device 10.
- Figures 6A to 6F show schematic diagrams for explaining the method for manufacturing the semiconductor optical device 10.
- the thin-film laser 12 fabricated on an InP substrate is transferred onto the sapphire substrate 11 using a transfer printing method (microtransfer printing method).
- a thin-film laser 12 is fabricated on an InP substrate 101 (step S11, FIG. 6A).
- the thin-film laser 12 can be fabricated by a semiconductor process using known photolithography, etching, and film formation techniques (for example, Non-Patent Documents 1 and 2).
- a sacrificial layer 102 is formed between the InP substrate 101 and the InP-based semiconductor layer 120.
- the sacrificial layer 102 is formed for transfer printing of the thin-film laser 12, and is generally made of a material that has a large selection ratio with respect to InP in wet etching, such as InGaAs, InAlAs, InGaAsP, or InAlAsP.
- step S12 Figure 6B.
- step S13 the sacrificial layer 102 is removed by a known wet etching method (step S13, FIG. 6C).
- the thin-film laser 12 is transferred onto the sapphire substrate 11 using a stamp 104 made of transparent resin by a transfer printing method (e.g., Non-Patent Document 3) (step S14, FIG. 6D).
- a transfer printing method e.g., Non-Patent Document 3
- step S15 This creates a thin-film laser 12 structure on the sapphire substrate 11 ( Figure 6E).
- the overclad 16 is formed by a known film formation technique using low-temperature plasma or the like, and then the overclad above the electrodes 141, 142 is etched by known photolithography and dry etching techniques to open the portions of the electrodes 141, 142. In this way, a portion of the overclad 16 is removed to form a hole that passes through the surface of the overclad 16 and the electrodes 141, 142 of the thin-film laser 12 (step S16, FIG. 6F).
- the overcladding material may be, for example, an insulating oxide film such as SiO 2 , SiO x , SiN x , or a polymer, a nitride film, or an organic film material, etc.
- the overcladding material may be a material that can be formed at a low temperature of about 200 to 350° C. and has a low refractive index of about 2.0 or less.
- the semiconductor optical device 10 according to this embodiment can be manufactured.
- the semiconductor optical device 20 has a Si substrate 21 as a support substrate on the back surface (the surface opposite the InP-based semiconductor layer 120) of the sapphire substrate 11 in the semiconductor optical device according to the first embodiment.
- a sapphire-on-silicon substrate (a substrate in which a sapphire substrate and a silicon substrate are directly bonded) may also be used as the substrate.
- a layer 11 made of sapphire is provided between the Si substrate 21 and the InP-based semiconductor layer 120.
- the sapphire layer 11 is formed by polishing the sapphire on the Si substrate.
- the polishing may be performed by mechanical polishing, chemical polishing, or chemical mechanical polishing (CMP).
- the semiconductor optical device 20 of this embodiment can be manufactured in the same manner as the first embodiment.
- Figures 8A-C show an example of the calculation results for the thermal resistance of a thin-film laser on a sapphire 11-on-silicon 21 substrate. For comparison, the calculation results for a thin-film laser on an SOI substrate are also shown.
- the thickness of the Si substrates 1 and 21 was set to 330 ⁇ m.
- the thickness of the InP-based semiconductor layer 120 constituting the thin-film laser was set to 300 nm.
- the thickness of the SiO 2 2 in the SOI substrate was set to 2 ⁇ m.
- the vertical axis in Figure 8C is the relative value of the thermal resistance normalized to the thermal resistance of the thin-film laser on the SOI substrate being 1.
- the thickness of the sapphire layer (substrate) 11 was varied from 5 ⁇ m to 100 ⁇ m.
- the bottom surfaces of the substrates 1 and 21 were treated as the heat bath.
- the thermal resistance value is reduced to about 55% compared to when an SOI substrate is used.
- the thermal resistance value is reduced to 38%.
- the thermal resistance can be reduced compared to when a sapphire substrate is used (first embodiment). This is because single crystal silicon has a higher thermal conductivity than single crystal sapphire.
- the thermal resistance can be further reduced, and the performance degradation due to self-heating can be suppressed.
- it can be integrated with a low-loss SiN x waveguide. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
- the semiconductor optical device 30 is intended for integration in an optical integrated circuit that includes an optical waveguide.
- Figures 9A to 9C respectively show a top view of the semiconductor optical device 30, and a cross-sectional view taken along lines IXB-IXB' and IXC-IXC'. In the following figures, the illustrations of contact layers, electrodes, etc. will be omitted.
- a semiconductor optical device 30 includes, in order, a thin-film laser 12 and a SiO 2 overclad 16 on a sapphire 11-on-silicon 21 substrate, and a SiN x waveguide 32 in the SiO 2 overclad 16. Also, an InP tapered waveguide 31 is provided on the emission end face of the thin-film laser 12.
- the SiN x waveguide 32 has a portion 321 with a wide waveguide width and a narrow portion 322, and the portion 321 with the wide waveguide width is disposed above the thin-film laser 12.
- the semiconductor optical device 30 includes a thin-film laser 12 in a first region on one end side as shown in FIG. 9B, and a wide portion 321 of a SiN x waveguide in the overclad 16 disposed on the thin-film laser 12.
- a second region on the other end side of the first region includes an InP tapered waveguide 31 that is optically coupled (connected) to the active layer 122 of the thin-film laser 12, and includes a narrow portion of a SiN x waveguide (hereinafter referred to as an "SiN x core waveguide") 322 in the overclad 16 disposed on the InP tapered waveguide 31.
- the width of the InP tapered waveguide 31 becomes narrower from one end to the other end.
- a third region on the other end side of the second region includes a SiN x- core waveguide 322 in the cladding 16 disposed on the sapphire 11-on-silicon 21 substrate.
- Light emitted from the thin-film laser 12 is mode-coupled adiabatically to the SiN x core waveguide 322 via the InP tapered waveguide 31, and is output from the SiN x core waveguide 322.
- the effective refractive index of the light mode decreases as the waveguide width decreases.
- the light mode spreads, and the light is confined in the SiN x core waveguide 322, which has a high refractive index.
- the sapphire layer (substrate) 11 has a lower refractive index than the SiN x waveguide 32 , the optical mode expanding at the tip of the InP tapered waveguide 31 couples with the SiN x core waveguide 322 without coupling to the radiation mode to the sapphire substrate 11 .
- the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed.
- it can be integrated with a low-loss SiN x waveguide.
- the output light of the thin-film laser can be optically coupled with the integrated low-loss SiN x waveguide with high efficiency. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
- a sapphire-on-silicon substrate is used, but of course a sapphire substrate can also be used.
- SiNx is used as the material of the waveguide, but the material is not limited to this. Any material that has a refractive index sufficiently higher than that of the sapphire substrate and can form a single-mode waveguide may be used.
- a polymer material or amorphous Si may be used.
- FIG. 10 shows a flow chart for explaining the method for manufacturing the semiconductor optical device 30.
- Figures 11A to 11D show schematic diagrams for explaining the method for manufacturing the semiconductor optical device 30.
- an InP layer including a thin-film laser 12 structure is fabricated on a sapphire 11-on-silicon 21 substrate (or a sapphire substrate 11) (e.g., FIG. 6E).
- the InP layer butt-jointed to the active layer 122 is processed into a tapered shape to form an InP tapered waveguide 31.
- a cladding 161 is formed on the InP layer (step S21, FIG. 11A).
- the cladding 161 is planarized by known chemical mechanical polishing (CMP) (step S22, FIG. 11B).
- CMP chemical mechanical polishing
- a SiNx film is formed by a known chemical vapor deposition (CVD) method using low-temperature plasma, and processed into a waveguide 32 by known dry etching (step S23, FIG. 11C).
- CVD chemical vapor deposition
- the overclad 16 is formed (Fig. 11D). If necessary, the overclad above the electrodes is etched to open the electrode portions. In this way, a portion of the overclad 16 is removed to form a hole that passes through the surface of the overclad 16 and the electrodes 141, 142 of the thin-film laser 12 (step S24, not shown).
- the semiconductor optical device 30 according to this embodiment can be manufactured.
- FIGS. 12A to 14F A semiconductor optical device according to a fourth embodiment of the present invention will be described with reference to FIGS. 12A to 14F.
- the semiconductor optical device 40 is intended for integration in an optical integrated circuit that includes an optical waveguide.
- Figures 12A to 12C respectively show a top view of the semiconductor optical device 40, and cross-sectional views taken along lines XIIB-XIIB' and XIIC-XIIC'. Below, descriptions of contact layers, electrodes, etc. will be omitted from the figures.
- a semiconductor optical device 40 includes, in order, a SiN x waveguide 42 and a SiO 2 overclad 16 on a sapphire 11-on-silicon 21 substrate, and a thin-film laser 12 within the SiO 2 overclad 16.
- an InP tapered waveguide 31 is provided on the emission end face of the thin-film laser 12.
- the configurations of the thin-film laser 12 and the InP tapered waveguide 31 are substantially the same as those in the third embodiment.
- the configuration of the SiN x waveguide 42 is substantially the same as that of the SiN x waveguide 32 in the third embodiment.
- Light emitted from the thin-film laser 12 is mode-coupled adiabatically to the SiN x core waveguide 422 via the InP tapered waveguide 31, and is output from the SiN x core waveguide 422.
- the effective refractive index of the light mode decreases as the waveguide width decreases.
- the light mode spreads, and the light is confined in the SiN x core waveguide 422, which has a high refractive index.
- the sapphire layer (substrate) 11 has a lower refractive index than the SiN x waveguide 42 , the optical mode expanding at the tip of the InP tapered waveguide 31 couples with the SiN x core waveguide 422 without coupling to the radiation mode to the sapphire substrate 11 .
- the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed.
- it can be integrated with a low-loss SiN x waveguide.
- the output light of the thin-film laser can be optically coupled with the integrated low-loss SiN x waveguide with high efficiency. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
- a sapphire-on-silicon substrate is used, but of course a sapphire substrate can also be used.
- SiNx is used as the material of the waveguide, but the material is not limited to this. Any material that has a refractive index sufficiently higher than that of the sapphire substrate and can form a single-mode waveguide may be used.
- a polymer material or amorphous Si may be used.
- FIG. 13 shows a flow chart for explaining the method for manufacturing the semiconductor optical device 40.
- Figures 14A to 14F show schematic diagrams for explaining the method for manufacturing the semiconductor optical device 40.
- a SiNx thin film is formed on the sapphire 11-on-silicon 21 substrate (or the sapphire substrate 11) by a known CVD method, and processed into a waveguide 42 by known dry etching (step S31, FIG. 14A).
- the cladding 161 is formed on the SiNx waveguide 42 (step S32, FIG. 14B).
- the cladding 161 is planarized by known chemical mechanical polishing (CMP) (step S33, FIG. 14C).
- an InP layer including a thin-film laser 12 protected by a resist 103 is fabricated.
- the InP layer butt-jointed to the active layer 122 is processed into a tapered shape to form an InP tapered waveguide 31.
- the InP layer including the thin-film laser 12 and the InP tapered waveguide 31 is transferred to the surface of the overclad 161 by transfer printing using a stamp 104 (step S34, FIG. 14D).
- the overclad 16 is deposited ( Figure 14F). If necessary, the overclad above the electrodes is etched to open the electrode portions. In this way, a portion of the overclad 16 is removed to form a hole that passes through the surface of the overclad 16 and the electrodes 141, 142 of the thin-film laser 12 (step S36, not shown).
- the semiconductor optical device 40 according to this embodiment can be manufactured.
- the semiconductor optical device and manufacturing method thereof according to the embodiment of the present invention can reduce thermal resistance and improve the performance of the device.
- a normal vertical semiconductor laser a semiconductor laser in which current is injected perpendicular to the substrate
- the temperature rise due to heat generation is small.
- the temperature rise due to heat generation is large in a thin-film laser, so the effect of being able to reduce thermal resistance by using sapphire is more pronounced than in a normal vertical semiconductor laser.
- the SiN x waveguide is disposed above or below the thin film laser and the InP tapered waveguide, but this is not limiting. At least a part of the SiN x waveguide core may be disposed above or below the InP tapered waveguide.
- an example has been shown in which an InP-based semiconductor crystal is used for the thin-film laser, but other semiconductors such as GaAs and GaN may also be used.
- an example has been shown in which an InP substrate is used in the manufacturing method for the semiconductor optical device, but other substrates may also be used depending on the semiconductor crystal used for the thin-film laser.
- the tapered waveguide may be made of InGaAsP, InGaAlAs, InGaAs, or InAlAs. Other materials may also be used depending on the wavelength band that the thin film laser supports.
- a thin-film laser In the embodiment of the present invention, an example using a thin-film laser is shown, but other semiconductor devices such as a modulator or a light receiving device may also be used.
- the present invention is not limited to the above-described embodiment, and it is clear that many modifications and combinations can be implemented by a person having ordinary knowledge in this field within the technical concept of the present invention.
- the second embodiment may be combined with the third or fourth embodiment.
- a semiconductor optical device comprising a flat sapphire plate, a semiconductor layer including an active layer, and a cladding, arranged in that order in a direction perpendicular to the surface of the sapphire, and in which a current is injected into the active layer in a direction parallel to the surface and perpendicular to the waveguide direction.
- Appendix 2 The semiconductor optical device described in Appendix 1, in which the sapphire has a Si substrate on the surface opposite to the surface on which the semiconductor layer is formed.
- Appendix 3 A semiconductor optical device as described in appendix 2, in which the thickness of the sapphire is 5 ⁇ m or more and 100 ⁇ m or less.
- Appendix 4 A semiconductor optical device according to appendix 1 or 2, comprising a first waveguide disposed on one of the surfaces of the active layer perpendicular to the waveguide direction, and a second waveguide disposed within the cladding, the first waveguide being a semiconductor tapered waveguide, the refractive index of the second waveguide being higher than the refractive index of sapphire, and at least a portion of the second waveguide being positioned in a direction perpendicular to the surface of the first waveguide.
- a semiconductor optical device comprising a first waveguide disposed on one of the surfaces of the active layer perpendicular to the waveguide direction, another cladding disposed between the sapphire and the first waveguide, and a second waveguide disposed within the other cladding, the first waveguide being a semiconductor tapered waveguide, the refractive index of the second waveguide being higher than the refractive index of sapphire, and at least a portion of the second waveguide being positioned in a direction perpendicular to the surface of the first waveguide.
- Appendix 6 A semiconductor optical device according to appendix 4 or 5, in which the width of the second waveguide is 1.0 ⁇ m or more and 2.2 ⁇ m or less.
- Appendix 7 A semiconductor optical device according to any one of appendices 1 to 6, in which the semiconductor layer comprises the active layer, an i-type semiconductor layer disposed on each of the planes parallel to the surface of the active layer, a p-type semiconductor layer disposed on one of the planes perpendicular to the surface of the active layer and the i-type semiconductor layer and parallel to the waveguide direction, and an n-type semiconductor layer disposed on the other plane.
- a method for manufacturing a semiconductor optical device comprising the steps of: forming a sacrificial layer and a thin-film laser on a semiconductor substrate, covering the surfaces of the sacrificial layer and the thin-film laser with resist, removing the sacrificial layer, transferring the thin-film laser to a sapphire substrate using a stamp, removing the resist and removing the stamp, and, after forming a cladding on the thin-film laser, removing a portion of the cladding to form a hole that passes through the surface of the cladding and an electrode of the thin-film laser.
- a method for manufacturing a semiconductor optical device comprising the steps of forming a semiconductor layer including a thin-film laser and a semiconductor tapered waveguide on sapphire, depositing a cladding on the semiconductor layer, planarizing the cladding, depositing a SiN x film on the planarized cladding and processing the SiN x film into a SiN x waveguide, and, after depositing an overcladding on the SiN x waveguide, removing a part of the overcladding to form a hole through which a surface of the overcladding and an electrode of the thin-film laser penetrate.
- a method for manufacturing a semiconductor optical device comprising the steps of: forming a sacrificial layer and a thin-film laser on a semiconductor substrate, and further forming a semiconductor tapered waveguide connected to an emission end face of the thin-film laser; covering the sacrificial layer and surfaces of the thin-film laser with resist; removing the sacrificial layer; forming a SiN x film on sapphire and processing the SiN x film into a SiN x waveguide; forming a clad on the SiN x waveguide; planarizing the clad; transferring the thin-film laser and the semiconductor tapered waveguide onto the planarized clad using a stamp; removing the resist and removing the stamp; and forming an overclad on the thin-film laser and the semiconductor tapered waveguide, and then removing a part of the overclad to form a hole through which a surface of the overclad and an electrode of the thin-film laser penetrate.
- Appendix 11 A semiconductor optical device as described in Appendix 1, in which the thickness of the sapphire is 150 ⁇ m or more and 330 ⁇ m or less.
- the present invention relates to a semiconductor optical device and can be applied to optical communication equipment and optical communication systems.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
本発明は、熱抵抗を低減できる半導体光デバイスおよびその製造方法に関する。 The present invention relates to a semiconductor optical device that can reduce thermal resistance and a method for manufacturing the same.
光通信用光送受信機の高速・大容量化、小型化と、それらのデータセンタ(DC)のサーバ間・ボード内光配線の実現にむけて超低消費電力な半導体レーザおよび光集積回路が注目を集めている。 Attention is being focused on ultra-low power consumption semiconductor lasers and optical integrated circuits to realize the high speed, large capacity, and compact size of optical transceivers for optical communications, as well as the optical wiring between servers and within boards in data centers (DCs).
Si基板511上のInP系薄膜レーザ(メンブレンレーザ)50は、図15に示すように、コア(レーザ・光変調器における活性層又は受光器における吸収層)522が薄膜のInP層520に埋め込まれている構造を有しており、そのInP層の上下がSiO2512、56に挟まれている。コア522の上下にはInPのi(intrinsic)層521、523が配置される。InP層の表面にSiNx薄膜55が配置される。
15, an InP-based thin-film laser (membrane laser) 50 on a
この構造により、屈折率のコントラストに起因する高い光閉じ込め係数と、p型InP524とn型InP525を含む薄膜の横型p-i-n構造に起因する低容量・高キャリア閉じ込めを両立できる。p型InP524とn型InP525の表面それぞれに、コンタクト層531、532と電極541、542が配置される。
This structure achieves both a high optical confinement factor due to the refractive index contrast and low capacitance and high carrier confinement due to the lateral p-i-n structure of the thin film including p-
したがって、超低消費電力かつ高速に動作可能であり、前述のDCサーバ間・ボード内光配線のキーデバイスとして期待されている。 Therefore, it is capable of ultra-low power consumption and high speed operation, and is expected to be a key device for the optical wiring between DC servers and within the boards mentioned above.
一方で、Si基板上のInP系薄膜レーザ(メンブレンレーザ)は、SiO2に囲まれた構造であるため、レーザ駆動時に自己発熱によって生じたジュール熱がSi基板や熱浴に放熱される際に、放熱が低い熱伝導率のSiO2によって妨げされる。 On the other hand, since an InP-based thin-film laser (membrane laser) on a Si substrate has a structure surrounded by SiO2 , when the Joule heat generated by self-heating during laser operation is dissipated to the Si substrate or heat bath, the dissipation of heat is hindered by SiO2 , which has a low thermal conductivity.
一般に、半導体レーザは発熱による温度上昇にともない動作速度および光出力が低下する傾向にあるため、基板放熱性の確保は重要である。 In general, semiconductor lasers tend to experience a decrease in operating speed and optical output as the temperature rises due to heat generation, so ensuring the heat dissipation properties of the board is important.
また、従来の半導体光デバイス60では、高放熱なSiC基板61に前述の薄膜レーザを作製することで、自己発熱による特性劣化を抑制し、超高速・低消費電力な動作などが実現されてきた(図16、非特許文献1)。
In addition, in conventional semiconductor
しかしながら、SiCの材料屈折率は、通信波長帯においてn=2.635程度である。この値は、従来構造で基板に用いられてきたSiO2(n=1.44)に比べて高いため、薄膜レーザのコアの光閉じ込め率が低下する。 However, the refractive index of SiC in the communication wavelength band is about n=2.635, which is higher than that of SiO2 (n=1.44) that has been used for the substrate in conventional structures, and therefore the optical confinement rate of the core of the thin-film laser is reduced.
また、薄膜レーザとSiOx導波路(n=1.50)およびSiNx導波路(n=1.92)を集積する構造(非特許文献2)を考慮すると、SiOx導波路やSiNx導波路に比べてSiC基板の屈折率は高いため、SiC基板上に低損失のSiOx導波路やSiNx導波路を形成することは困難である。 In addition, when considering a structure (Non-Patent Document 2) in which a thin -film laser is integrated with a SiO x waveguide (n=1.50) and a SiN x waveguide (n=1.92), it is difficult to form a low-loss SiO x waveguide or SiN x waveguide on a SiC substrate because the refractive index of the SiC substrate is higher than that of the SiO x waveguide or SiN x waveguide.
以上のように、薄膜レーザの自己発熱による性能劣化を軽減することと、薄膜レーザをSiOxやSiNx等から構成される低屈折率、低損失の光導波路・集積回路と集積することを両立することは困難であった。 As described above, it has been difficult to simultaneously reduce performance degradation due to self-heating of a thin-film laser and integrate the thin-film laser with an optical waveguide/integrated circuit having a low refractive index and low loss and made of SiOx , SiNx, or the like.
また、SiC基板の材料コストもSi基板より高く、低コスト化が問題であった。 In addition, the material costs of SiC substrates are higher than those of Si substrates, making cost reduction an issue.
上述したような課題を解決するために、本発明に係る半導体光デバイスは、平板状のサファイアと、活性層を含む半導体層と、クラッドとを、前記サファイアの表面に垂直な方向に順に備え、前記活性層に、前記表面に平行であって、導波路方向に垂直な方向に電流が注入される。 In order to solve the problems described above, the semiconductor optical device according to the present invention comprises a flat sapphire, a semiconductor layer including an active layer, and a cladding, which are arranged in this order in a direction perpendicular to the surface of the sapphire, and a current is injected into the active layer in a direction parallel to the surface and perpendicular to the waveguide direction.
また、本発明に係る半導体光デバイスの製造方法は、半導体基板上に、順に、犠牲層と、薄膜レーザとを形成する工程と、前記犠牲層と前記薄膜レーザの表面をレジストで覆う工程と、前記犠牲層を除去する工程と、前記薄膜レーザを、スタンプを用いてサファイア基板に転写する工程と、前記レジストを除去し、前記スタンプを取り外す工程と、前記薄膜レーザ上に、クラッドの成膜後に、前記クラッドの一部を除去して、前記クラッドの表面と前記薄膜レーザの電極とが貫通する孔を形成する工程とを備える。 The method for manufacturing a semiconductor optical device according to the present invention includes the steps of forming a sacrificial layer and a thin-film laser on a semiconductor substrate, covering the sacrificial layer and the surface of the thin-film laser with resist, removing the sacrificial layer, transferring the thin-film laser to a sapphire substrate using a stamp, removing the resist and removing the stamp, and, after forming a cladding on the thin-film laser, removing a portion of the cladding to form a hole that passes through the surface of the cladding and the electrode of the thin-film laser.
本発明によれば、熱抵抗を低減できる、高性能の半導体光デバイスおよびその製造方法を提供できる。 The present invention provides a high-performance semiconductor optical device and a method for manufacturing the same that can reduce thermal resistance.
<第1の実施の形態>
本発明の第1の実施の形態に係る半導体光デバイスについて、図1~図6Fを参照して説明する。
First Embodiment
A semiconductor optical device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6F.
<半導体光デバイスの構成>
本実施の形態に係る半導体光デバイス10は、図1に示すように、順に、基板11と、薄膜レーザ12と、SiO2オーバークラッド16とを備える。
<Configuration of Semiconductor Optical Device>
As shown in FIG. 1, a semiconductor
基板11には、サファイア基板を用いる。これにより、サファイアの熱伝導率がSiO2の熱伝導率より高いので、薄膜レーザ12の光閉じ込め率を低下させることなく、熱抵抗を低減できる。また、硬度が高いのでサファイア基板を薄膜化できる。
A sapphire substrate is used for the
サファイア基板11とInP系半導体層120とは、接合又は接着されている。ここで、サファイア基板11とInP系半導体層120との間に、厚さ数nm~数十nm程度の界面絶縁膜があってもよい。
The
薄膜レーザ12は、InP系半導体層120と、コンタクト層131、132と、電極141、142と、薄膜SiNx層15とを備える。薄膜SiNx層15は備えなくてもよい。
The thin-
InP系半導体層120では、厚さ200~350nm程度の薄膜InP層120に活性層122が埋め込まれており、横型p-i-n接合が、公知のイオン注入法および不純物拡散法などを用いて形成されている。
In the InP-based
詳細には、InP系半導体層120は、i(intrinsic)型InP121と活性層122とi型InP123とからなる層構造と、層構造の一方の側面にp型InP124を備え、他方の側面にn型InP125とを備える。
In detail, the InP-based
薄膜レーザ12は、InP系半導体層120におけるp型InP124の表面に、p型InGaAsコンタクト層131とp型電極141とを備え、n型InP125の表面にn型InGaAsコンタクト層132とn型電極142を備える。
The thin-
薄膜レーザ12では、p型電極141とn型電極142との間で電流を注入し、図1における紙面垂直方向(導波路方向)に光を出射する。
In the thin-
層構造の一例として、活性層122は、1.55μm波長帯のInGaAsP系多重量子井戸構造であり6層の量子井戸層を有する。活性層122の厚さは150nmである。i型InP121、123はそれぞれ50nm厚のアンドープInPである。活性層122には、例えばInGaAsP、InGaAlAs、InGaAs、InAlAsなどを用いてもよい。
As an example of the layer structure, the
p型InP124は、例えば、Znドープ(1×1018cm-3)p型InPである。n型InP125は、例えば、Siドープ(2×1018cm-3)n型InPである。
The p-
オーバークラッド16は、低屈折率材料のオーバークラッドである。例えば、SiNx、SiO2を用いてもよい。
The
半導体光デバイス10は、横型p-i-n接合に対して順方向の電流を注入することでレーザとして機能する。この構成では、活性層122の上下部に熱伝導率の低い絶縁性材料が配置され、かつ薄い半導体層すなわち電気抵抗が高い半導体層に大きな注入電流が流れるため、発生したジュール熱はデバイス内部にこもりやすい。
The semiconductor
図2A~Cに、サファイア基板11上の薄膜レーザの熱抵抗の計算結果の一例を示す。比較のために、従来のSiO22/Si1(シリコン・オン・インシュレータ:SOI)基板上の薄膜レーザについての計算結果を示す。計算は、熱拡散方程式を数値計算して行った。
2A to 2C show an example of the calculation results of the thermal resistance of a thin-film laser on a
図2A、Bそれぞれに、計算に用いたサファイア基板11上の薄膜レーザの構造とSOI基板上の薄膜レーザの構造を示す。薄膜レーザ構成するInP系半導体層120の厚さを300nmとした。SOI基板におけるSi基板1の厚さを330μm、SiO2膜2の厚さを2μmとした。
2A and 2B show the structure of a thin-film laser on a
図2C中の縦軸は、SiO2/Si基板上薄膜レーザの熱抵抗値を1として規格化した熱抵抗値の相対値である。計算において、サファイア基板厚を150μm~330μmで変化させた。また、計算においては、基板1、11の底面を熱浴とし、25℃に設定した。
2C is the relative value of the thermal resistance normalized with the thermal resistance of the thin-film laser on a SiO 2 /Si substrate set to 1. In the calculation, the sapphire substrate thickness was changed from 150 μm to 330 μm. In the calculation, the bottom surfaces of the
サファイア基板11の厚さが330μmのとき、熱抵抗値は、SOI基板を用いた場合に比べて70%に減少する。サファイア基板11の厚さが150μmのとき、50%程度に減少する。
When the thickness of the
これは、サファイアの熱伝導率は室温で42W/m・K程度であり、SiO2の1.4W/m・Kよりも高いためである。 This is because the thermal conductivity of sapphire is about 42 W/m·K at room temperature, which is higher than the 1.4 W/m·K of SiO2 .
Si基板を用いる場合、Siの熱伝導率が高い(150W/m・K)反面、屈折率が高く半導体であるため、薄膜レーザとSi基板との間に数μmの絶縁層(SiO2など)が必要となる。その結果、絶縁層(SiO2など)の熱伝導率が低くなるので、熱抵抗が高くなる。 When using a Si substrate, Si has a high thermal conductivity (150 W/m·K), but on the other hand, it has a high refractive index and is a semiconductor, so an insulating layer (such as SiO 2) of several μm is required between the thin-film laser and the Si substrate. As a result, the thermal conductivity of the insulating layer (such as SiO 2 ) is low, and the thermal resistance is high.
サファイア基板11の硬度は、一般に半導体やガラス基板より高く、ダイヤモンド基板より低い。そのため、半導体基板を用いる場合よりも、薄い基板を用いることが可能である。
The hardness of the
したがって、サファイア基板11を用いる場合、その基板厚を薄くできるため、上述のように、基板の薄層化により、熱抵抗を、SOI基板を用いた場合の半分程度まで低減可能である。
Therefore, when a
次に、サファイア基板11上の薄膜レーザにおけるコアの光閉じ込め率の計算結果について説明する。
Next, we will explain the calculation results of the optical confinement rate of the core in a thin-film laser on a
図3Aに計算に用いた薄膜レーザの構造を示す。薄膜レーザ構成するInP系半導体層120の厚さを250nmとし、活性層122(n=3.5)の幅を600nm、厚さを100nmとした。InP系半導体層120とSiO2クラッド16(n=1.46)との間に配置されるSiN15(n=1.92)の厚さを1.0μmとした。
The structure of the thin-film laser used in the calculation is shown in Fig. 3A. The thickness of the InP-based
図3Bに、基板110に用いる材料の屈折率に対する埋め込みコア(活性層122)への光閉じ込め係数の変化を示す。
Figure 3B shows the change in the optical confinement coefficient for the buried core (active layer 122) versus the refractive index of the material used for the
通信波長帯における単結晶サファイアの屈折率は1.75程度であり、SiO2(n= 1.446)に近く、SiC(n=2.635)よりも低い。その結果、サファイア基板11を用いる場合の活性層122への光閉じ込め(図中、白丸)は、SiC基板を用いる場合(図中、黒四角)に比べて10%程度高く、SiO2基板を用いる場合(図中、黒丸)に比べて1%程度の低下にとどまる。
The refractive index of single crystal sapphire in the communication wavelength band is about 1.75, which is close to that of SiO2 (n = 1.446) and lower than that of SiC (n = 2.635). As a result, the optical confinement in the
また、単結晶サファイア基板は光学窓として用いることができ、通信波長帯等の幅広い波長範囲で透明である。 Single crystal sapphire substrates can also be used as optical windows and are transparent over a wide range of wavelengths, including those used in communications.
サファイア基板11はSiNx(n~1.92)よりも屈折率が低いため、SiNコアに対してクラッドとして機能し、通信波長帯において低損失のSiNx導波路をサファイア基板11上に形成できる。
Since the
サファイア基板11上のSiNx導波路に関する計算結果を説明する。
The calculation results for a SiN x waveguide on a
図4Aに計算に用いたサファイア基板11上のSiNx導波路17(n=1.92)の構造を示す。図4Bに、SiNx導波路(コア)幅に対する導波モードが感じる実効屈折率の計算結果を示す。SiNx導波路17の厚さを1μmとした。
Figure 4A shows the structure of the SiN x waveguide 17 (n = 1.92) on the
SiNx導波路17の幅の増加にともない、SiNx導波路17の導波モードのうち、第1モード(図中、実線)と第2モード(図中、破線)の実効屈折率が増加し、幅が1.0μmで実効屈折率が1.76程度に増加し、幅が2.2μmで実効屈折率が1.8以上に増加する。 As the width of the SiN x waveguide 17 increases, the effective refractive indexes of the first mode (solid line in the figure) and the second mode (dashed line in the figure) of the waveguide modes of the SiN x waveguide 17 increase, and when the width is 1.0 μm, the effective refractive index increases to about 1.76, and when the width is 2.2 μm, the effective refractive index increases to 1.8 or more.
第3モード(図中、点線)と第4モード(図中、一点鎖線)の実効屈折率は、SiNx導波路17の幅が2.2μmまでほぼ一定(1.74程度)であり、幅が2.2μmを超えると増加する。 The effective refractive indexes of the third mode (dotted line in the figure) and the fourth mode (dashed line in the figure) are almost constant (about 1.74) up to a width of 2.2 μm of the SiN x waveguide 17, and increase when the width exceeds 2.2 μm.
ここで、第1モードと第3モードはTEモードを示し、第2モードと第4モードはTMモードを示す。半導体レーザはTEモードで発振するので、半導体レーザの発振光に対して、幅1.0μm以上2.2μm以下で、第1モードが第3モードより高い実効屈折率を示す。 Here, the first and third modes indicate TE mode, and the second and fourth modes indicate TM mode. Since the semiconductor laser oscillates in TE mode, the first mode shows a higher effective refractive index than the third mode for the semiconductor laser oscillation light with a width of 1.0 μm or more and 2.2 μm or less.
これより、半導体レーザにおいて、SiNx導波路17は、幅1.0μm以上2.2μm以下でシングルモード導波路として機能する。その結果、サファイア基板11への光漏れによる損失を低減できる。
Thus, in the semiconductor laser, the SiN x waveguide 17 functions as a single mode waveguide with a width of 1.0 μm or more and 2.2 μm or less, and as a result, loss due to light leakage to the
本実施の形態に係る半導体光デバイスによれば、薄いサファイア基板上に薄膜レーザを形成することにより、熱抵抗を低減でき、自己発熱による性能劣化を抑制できる。また、低損失のSiNx導波路と集積できる。これにより、高速・超低消費電力な薄膜レーザを用いた光集積回路の実現が可能となる。 According to the semiconductor optical device of this embodiment, by forming a thin-film laser on a thin sapphire substrate, the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed. In addition, it can be integrated with a low-loss SiN x waveguide. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
<半導体光デバイスの製造方法>
本実施の形態に係る半導体光デバイス10の製造方法の一例について、図5~図6Fを参照して説明する。図5に、半導体光デバイス10の製造方法を説明するためのフローチャート図を示す。図6A~Fに、半導体光デバイス10の製造方法を説明するための模式図を示す。
<Method of Manufacturing Semiconductor Optical Device>
An example of a method for manufacturing the semiconductor
本実施の形態に係る半導体光デバイス10の製造方法では、InP基板上で作製した薄膜レーザ12を、転写プリント法(マイクロトランスファープリンティング法)を用いることでサファイア基板11上に転写する。
In the method for manufacturing the semiconductor
初めに、InP基板101上に、薄膜レーザ12を作製する(工程S11、図6A)。薄膜レーザ12は、公知のフォトリソグラフィ、エッチング、成膜技術を用いた半導体プロセスによって作製できる(例えば、非特許文献1、2)。
First, a thin-
InP基板101とInP系半導体層120と間に、犠牲層102が形成される。犠牲層102は、薄膜レーザ12の転写プリントのために形成され、一般にウェットエッチングにおける選択比がInPとの間で大きい材料、例えばInGaAs,InAlAs,InGaAsP,InAlAsPなどで構成される。
A
次に、表面をレジスト103で保護する(工程S12、図6B)。 Then, the surface is protected with resist 103 (step S12, Figure 6B).
次に、犠牲層102を公知のウェットエッチング法によって除去する(工程S13、図6C)。
Then, the
次に、転写プリント法(例えば、非特許文献3)により、透明樹脂で作製されたスタンプ104によって、薄膜レーザ12をサファイア基板11上に転写する(工程S14、図6D)。
Next, the thin-
次に、レジスト103を除去し、スタンプ104を取り外す(工程S15)。これにより、サファイア基板11上に薄膜レーザ12構造が作製される(図6E)。
Then, the resist 103 is removed and the
最後に、公知の低温プラズマなどを用いた成膜技術によってオーバークラッド16を成膜した後に、公知のフォトリソグラフィ技術およびドライエッチング技術によって電極141、142の上部のオーバークラッドをエッチングして、電極141、142の部分を開口する。このように、オーバークラッド16の一部を除去して、オーバークラッド16の表面と薄膜レーザ12の電極141、142とが貫通する孔を形成する(工程S16、図6F)。
Finally, the
ここで、オーバークラッドの材料として、例えばSiO2、SiOx、SiNx、ポリマー等の絶縁性の酸化膜、窒化膜・有機膜材料等を用いてもよい。オーバークラッドの材料は、200~350℃程度の低温で成膜でき、2.0以下程度の低屈折率を有する材料であればよい。 Here, the overcladding material may be, for example, an insulating oxide film such as SiO 2 , SiO x , SiN x , or a polymer, a nitride film, or an organic film material, etc. The overcladding material may be a material that can be formed at a low temperature of about 200 to 350° C. and has a low refractive index of about 2.0 or less.
また、転写プリント法を用いる例を示したが、直接接合を用いて作製してもよい。 Although an example using transfer printing has been shown, it may also be produced using direct bonding.
このように、本実施の形態に係る半導体光デバイス10を製造できる。
In this manner, the semiconductor
<第2の実施の形態>
本発明の第2の実施の形態に係る半導体光デバイスについて、図7~図8Cを参照して説明する。
Second Embodiment
A semiconductor optical device according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 8C.
本実施の形態に係る半導体光デバイス20は、図7に示すように、第1の実施の形態に係る半導体光デバイスにおけるサファイア基板11の裏面(InP系半導体層120と反対側の面)に、支持基板としてSi基板21を備える。基板としてサファイア・オン・シリコン基板(サファイア基板とシリコン基板を直接接合した基板)を用いてもよい。換言すれば、Si基板21とInP系半導体層120の間にサファイアからなる層11を備える。
As shown in FIG. 7, the semiconductor
サファイアからなる層11は、Si基板上のサファイアを研磨することにより形成される。研磨には、機械研磨を用いてもよく、化学研磨、化学機械研磨(Chemical Mechanical Polishing、CMP)を用いてもよい。
The
本実施の形態に係る半導体光デバイス20は、第1の実施の形態と同様に製造できる。
The semiconductor
図8A~Cに、サファイア11・オン・シリコン21基板上の薄膜レーザの熱抵抗の計算結果の一例を示す。比較のために、SOI基板上の薄膜レーザについての計算結果を示す。
Figures 8A-C show an example of the calculation results for the thermal resistance of a thin-film laser on a sapphire 11-on-
図8A、Bそれぞれに、計算に用いたサファイア11・オン・シリコン21基板上の薄膜レーザの構造とSOI(SiO22/Si1)基板上の薄膜レーザの構造を示す。Si基板1、21の厚さは330μmとした。薄膜レーザ構成するInP系半導体層120の厚さを300nmとした。SOI基板におけるSiO22の厚さを2μmとした。
8A and 8B respectively show the structure of a thin-film laser on a sapphire 11-on-
図8C中の縦軸は、SOI基板上の薄膜レーザの熱抵抗値を1として規格化した熱抵抗値の相対値である。計算において、サファイア層(基板)11の厚さを5μm~100μmで変化させた。また、計算においては、基板1、21の底面を熱浴とした。
The vertical axis in Figure 8C is the relative value of the thermal resistance normalized to the thermal resistance of the thin-film laser on the SOI substrate being 1. In the calculations, the thickness of the sapphire layer (substrate) 11 was varied from 5 μm to 100 μm. In the calculations, the bottom surfaces of the
サファイア層(基板)11の厚さが100μmのとき、熱抵抗値は、SOI基板を用いた場合に比べて55%程度に減少する。サファイア層(基板)11の厚さが5μmのとき、38%に減少する。 When the thickness of the sapphire layer (substrate) 11 is 100 μm, the thermal resistance value is reduced to about 55% compared to when an SOI substrate is used. When the thickness of the sapphire layer (substrate) 11 is 5 μm, the thermal resistance value is reduced to 38%.
このように、半導体光デバイス20では、基板にサファイア・オン・シリコン基板を用いることにより、サファイア基板を用いる場合(第1の実施の形態)に比べて、熱抵抗を低減できる。これは、単結晶シリコンが単結晶サファイアよりも高い熱伝導率を有するためである。
In this way, in the semiconductor
本実施の形態に係る半導体光デバイスによれば、さらに熱抵抗を低減でき、自己発熱による性能劣化を抑制できる。また、低損失のSiNx導波路と集積できる。これにより、高速・超低消費電力な薄膜レーザを用いた光集積回路の実現が可能となる。 According to the semiconductor optical device of the present embodiment, the thermal resistance can be further reduced, and the performance degradation due to self-heating can be suppressed. In addition, it can be integrated with a low-loss SiN x waveguide. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
<第3の実施の形態>
本発明の第3の実施の形態に係る半導体光デバイスについて、図9A~図11Dを参照して説明する。
Third Embodiment
A semiconductor optical device according to a third embodiment of the present invention will be described with reference to FIGS. 9A to 11D.
本実施の形態に係る半導体光デバイス30は、光導波路を含む光集積回路での集積を目的とする。図9A~Cそれぞれに、半導体光デバイス30の上面概要図とIXB-IXB’断面図とIXC-IXC’断面図を示す。以下、図中、コンタクト層、電極などの記載を省略する。
The semiconductor
本実施の形態に係る半導体光デバイス30は、図9A~Cに示すように、サファイア11・オン・シリコン21基板上に、順に、薄膜レーザ12と、SiO2オーバークラッド16とを備え、SiO2オーバークラッド16内にSiNx導波路32とを備える。また、薄膜レーザ12の出射端面にInPテーパー導波路31を備える。SiNx導波路32は、導波路幅が広い部分321と狭い部分322を有し、導波路幅が広い部分321が薄膜レーザ12の上方に配置される。
9A to 9C, a semiconductor
半導体光デバイス30は、一方の端部側の第1の領域で、図9Bに示すように、薄膜レーザ12を備え、薄膜レーザ12上に配置されるオーバークラッド16内にSiNx導波路の幅が広い部分321を備える。
The semiconductor
第1の領域の他方の端部側の第2の領域で、図9Cに示すように、薄膜レーザ12の活性層122に光結合(接続)するInPテーパー導波路31を備え、InPテーパー導波路31上に配置されるオーバークラッド16内にSiNx導波路の幅の狭い部分(以下、「SiNxコア導波路」という。)322を備える。InPテーパー導波路31の幅は、一方の端部から他方の端部に向かって細くなる。
9C, a second region on the other end side of the first region includes an InP tapered
第2の領域の他方の端部側の第3の領域で、サファイア11・オン・シリコン21基板上に配置されるクラッド内16にSiNxコア導波路322を備える。
A third region on the other end side of the second region includes a SiN x- core waveguide 322 in the
薄膜レーザ12から出射した光は、InPテーパー導波路31を介して断熱的にSiNxコア導波路322にモード結合し、SiNxコア導波路322から出力される。InPテーパー導波路31において、その導波路幅の減少にともない光のモードの実効屈折率が低下する。その結果、光のモードが広がり、屈折率の高いSiNxコア導波路322に光が閉じ込められる。
Light emitted from the thin-
サファイア層(基板)11はSiNx導波路32よりも屈折率が低いため、InPテーパー導波路31の先端で広がる光のモードが、サファイア基板11への放射モードに結合することなく、SiNxコア導波路322と結合する。
Since the sapphire layer (substrate) 11 has a lower refractive index than the SiN x waveguide 32 , the optical mode expanding at the tip of the InP tapered
本実施の形態によれば、第1および第2の実施の形態と同様に、熱抵抗を低減でき、自己発熱による性能劣化を抑制できる。また、低損失のSiNx導波路と集積できる。さらに、集積される低損失のSiNx導波路に、薄膜レーザの出力光を高効率で光結合できる。これにより、高速・超低消費電力な薄膜レーザを用いた光集積回路の実現が可能となる。 According to this embodiment, similarly to the first and second embodiments, the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed. In addition, it can be integrated with a low-loss SiN x waveguide. Furthermore, the output light of the thin-film laser can be optically coupled with the integrated low-loss SiN x waveguide with high efficiency. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
本実施の形態では、サファイア・オン・シリコン基板を用いたが、当然サファイア基板を用いてもよい。 In this embodiment, a sapphire-on-silicon substrate is used, but of course a sapphire substrate can also be used.
本実施の形態では、導波路の材料にSiNxを用いる例を示したが、これに限らない。サファイア基板よりも屈折率が十分に高く、シングルモード導波路が形成できる材料でもよい。例えば、ポリマー材料、アモルファスSi(ポリシリコン)でもよい。 In this embodiment, an example is shown in which SiNx is used as the material of the waveguide, but the material is not limited to this. Any material that has a refractive index sufficiently higher than that of the sapphire substrate and can form a single-mode waveguide may be used. For example, a polymer material or amorphous Si (polysilicon) may be used.
<半導体光デバイスの製造方法>
本実施の形態に係る半導体光デバイス30の製造方法の一例について、図10~図11Dを参照して説明する。図10に、半導体光デバイス30の製造方法を説明するためのフローチャート図を示す。図11A~Dに、半導体光デバイス30の製造方法を説明するための模式図を示す。
<Method of Manufacturing Semiconductor Optical Device>
An example of a method for manufacturing the semiconductor
初めに、第1の実施の形態と略同様に、サファイア11・オン・シリコン21基板(又はサファイア基板11)上に、薄膜レーザ12構造を含むInP層を作製する(例えば、図6E)。ここで、活性層122にバットジョイント接続されたInP層をテーパー形状に加工して、InPテーパー導波路31を形成する。引き続き、InP層上にクラッド161を成膜する(工程S21、図11A)。
First, in a manner similar to the first embodiment, an InP layer including a thin-
次に、クラッド161を公知の化学機械研磨(CMP)によって平坦化する(工程S22、図11B)。
Then, the
次に、公知の低温プラズマを用いた化学気相成長(CVD)法によってSiNx膜を成膜し、公知のドライエッチングによって導波路32に加工する(工程S23、図11C)。
Next, a SiNx film is formed by a known chemical vapor deposition (CVD) method using low-temperature plasma, and processed into a
最後に、オーバークラッド16を成膜する(図11D)。必要に応じて電極上部のオーバークラッドをエッチングして、電極部分を開口する。このように、オーバークラッド16の一部を除去して、オーバークラッド16の表面と薄膜レーザ12の電極141、142とが貫通する孔を形成する(工程S24、図示せず)。
Finally, the
このように、本実施の形態に係る半導体光デバイス30を製造できる。
In this manner, the semiconductor
<第4の実施の形態>
本発明の第4の実施の形態に係る半導体光デバイスについて、図12A~図14Fを参照して説明する。
<Fourth embodiment>
A semiconductor optical device according to a fourth embodiment of the present invention will be described with reference to FIGS. 12A to 14F.
本実施の形態に係る半導体光デバイス40は、光導波路を含む光集積回路での集積を目的とする。図12A~Cそれぞれに、半導体光デバイス40の上面概要図とXIIB-XIIB’断面図とXIIC-XIIC’断面図を示す。以下、図中、コンタクト層、電極などの記載を省略する。
The semiconductor
本実施の形態に係る半導体光デバイス40は、図12A~Cに示すように、サファイア11・オン・シリコン21基板上に、順に、SiNx導波路42と、SiO2オーバークラッド16とを備え、SiO2オーバークラッド16内に薄膜レーザ12とを備える。また、薄膜レーザ12の出射端面にInPテーパー導波路31を備える。
12A to 12C, a semiconductor
薄膜レーザ12とInPテーパー導波路31それぞれの構成は、第3の実施の形態と略同等である。SiNx導波路42の構成は、第3の実施の形態におけるSiNx導波路32と略同等である。
The configurations of the thin-
薄膜レーザ12から出射した光は、InPテーパー導波路31を介して断熱的にSiNxコア導波路422にモード結合し、SiNxコア導波路422から出力される。InPテーパー導波路31において、その導波路幅の減少にともない光のモードの実効屈折率が低下する。その結果、光のモードが広がり、屈折率の高いSiNxコア導波路422に光が閉じ込められる。
Light emitted from the thin-
サファイア層(基板)11はSiNx導波路42よりも屈折率が低いため、InPテーパー導波路31の先端で広がる光のモードが、サファイア基板11への放射モードに結合することなく、SiNxコア導波路422と結合する。
Since the sapphire layer (substrate) 11 has a lower refractive index than the SiN x waveguide 42 , the optical mode expanding at the tip of the InP tapered
本実施の形態によれば、第1および第2の実施の形態と同様に、熱抵抗を低減でき、自己発熱による性能劣化を抑制できる。また、低損失のSiNx導波路と集積できる。さらに、集積される低損失のSiNx導波路に、薄膜レーザの出力光を高効率で光結合できる。これにより、高速・超低消費電力な薄膜レーザを用いた光集積回路の実現が可能となる。 According to this embodiment, similarly to the first and second embodiments, the thermal resistance can be reduced and performance degradation due to self-heating can be suppressed. In addition, it can be integrated with a low-loss SiN x waveguide. Furthermore, the output light of the thin-film laser can be optically coupled with the integrated low-loss SiN x waveguide with high efficiency. This makes it possible to realize an optical integrated circuit using a high-speed, ultra-low power consumption thin-film laser.
本実施の形態では、サファイア・オン・シリコン基板を用いたが、当然サファイア基板を用いてもよい。 In this embodiment, a sapphire-on-silicon substrate is used, but of course a sapphire substrate can also be used.
本実施の形態では、導波路の材料にSiNxを用いる例を示したが、これに限らない。サファイア基板よりも屈折率が十分に高く、シングルモード導波路が形成できる材料でもよい。例えば、ポリマー材料、アモルファスSi(ポリシリコン)でもよい。 In this embodiment, an example is shown in which SiNx is used as the material of the waveguide, but the material is not limited to this. Any material that has a refractive index sufficiently higher than that of the sapphire substrate and can form a single-mode waveguide may be used. For example, a polymer material or amorphous Si (polysilicon) may be used.
<半導体光デバイスの製造方法>
本実施の形態に係る半導体光デバイス40の製造方法の一例について、図13~図14Fを参照して説明する。図13に、半導体光デバイス40の製造方法を説明するためのフローチャート図を示す。図14A~Fに、半導体光デバイス40の製造方法を説明するための模式図を示す。
<Method of Manufacturing Semiconductor Optical Device>
An example of a method for manufacturing the semiconductor
初めに、サファイア11・オン・シリコン21基板(又はサファイア基板11)上に、公知のCVD法によってSiNx薄膜を形成し、公知のドライエッチングによって導波路42に加工する(工程S31、図14A)。
First, a SiNx thin film is formed on the sapphire 11-on-
次に、SiNx導波路42上にクラッド161を成膜する(工程S32、図14B)。
Next, the
次に、クラッド161を公知の化学機械研磨(CMP)によって平坦化する(工程S33、図14C)。
Then, the
次に、第1の実施の形態と同様に(工程S11~S13)、レジスト103で保護された薄膜レーザ12を含むInP層を作製する。ここで、活性層122にバットジョイント接続されたInP層をテーパー形状に加工して、InPテーパー導波路31を形成する。この薄膜レーザ12とInPテーパー導波路31を有するInP層を、オーバークラッド161の表面に、スタンプ104を用いて転写プリント法によって転写する(工程S34、図14D)。
Next, in the same manner as in the first embodiment (steps S11 to S13), an InP layer including a thin-
次に、レジスト103を除去し、スタンプ104を取り外す(工程S35、図14E)。
Next, the resist 103 is removed, and the
最後に、オーバークラッド16を成膜する(図14F)。必要に応じて電極上部のオーバークラッドをエッチングして、電極部分を開口する。このように、オーバークラッド16の一部を除去して、オーバークラッド16の表面と薄膜レーザ12の電極141、142とが貫通する孔を形成する(工程S36、図示せず)。
Finally, the
このように、本実施の形態に係る半導体光デバイス40を製造できる。
In this manner, the semiconductor
本発明の実施の形態に係る半導体光デバイスおよびその製造方法によれば、熱抵抗を低減でき、デバイスを高性能化できる。例えば、通常の縦型の半導体レーザ(基板の垂直方向に電流が注入される半導体レーザ)の場合、発熱による温度上昇が小さい。本発明の実施の形態では、薄膜レーザにおける発熱による温度上昇が大きいので、サファイアを用いて熱抵抗を低減できる効果が、通常の縦型の半導体レーザに比べて顕著である。 The semiconductor optical device and manufacturing method thereof according to the embodiment of the present invention can reduce thermal resistance and improve the performance of the device. For example, in the case of a normal vertical semiconductor laser (a semiconductor laser in which current is injected perpendicular to the substrate), the temperature rise due to heat generation is small. In the embodiment of the present invention, the temperature rise due to heat generation is large in a thin-film laser, so the effect of being able to reduce thermal resistance by using sapphire is more pronounced than in a normal vertical semiconductor laser.
本発明の実施の形態では、SiNx導波路が薄膜レーザとInPテーパー導波路の上方又は下方にも配置される例を示したが、これに限らない。SiNx導波路コアの少なくとも一部が、InPテーパー導波路の上方又は下方に配置されてもよい。 In the embodiment of the present invention, the SiN x waveguide is disposed above or below the thin film laser and the InP tapered waveguide, but this is not limiting. At least a part of the SiN x waveguide core may be disposed above or below the InP tapered waveguide.
本発明の実施の形態では、薄膜レーザにInP系の半導体結晶を用いる例を示したが、GaAsやGaN等の他の半導体を用いてもよい。また、半導体光デバイスの製造方法においてInP基板を用いる例を示したが、薄膜レーザに用いる半導体結晶に応じて他の基板を用いてもよい。 In the embodiment of the present invention, an example has been shown in which an InP-based semiconductor crystal is used for the thin-film laser, but other semiconductors such as GaAs and GaN may also be used. Also, an example has been shown in which an InP substrate is used in the manufacturing method for the semiconductor optical device, but other substrates may also be used depending on the semiconductor crystal used for the thin-film laser.
本発明の実施の形態では、InPテーパー導波路を用いる例を示したが、テーパー導波路はInGaAsP、InGaAlAs、InGaAs、InAlAsから構成されてもよい。薄膜レーザが対応する波長帯に応じて他の材料を用いてもよい。 In the embodiment of the present invention, an example using an InP tapered waveguide has been shown, but the tapered waveguide may be made of InGaAsP, InGaAlAs, InGaAs, or InAlAs. Other materials may also be used depending on the wavelength band that the thin film laser supports.
本発明の実施の形態では、薄膜レーザを用いる例を示したが、変調器、受光デバイスなど他の半導体デバイスを用いてもよい。 In the embodiment of the present invention, an example using a thin-film laser is shown, but other semiconductor devices such as a modulator or a light receiving device may also be used.
本発明の実施の形態では、半導体光デバイスの構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。半導体光デバイスの機能を発揮し効果を奏するものであればよい。 In the embodiments of the present invention, examples of the structure, dimensions, materials, etc. of each component in the configuration and manufacturing method of the semiconductor optical device are shown, but the present invention is not limited to these. Anything that can exert the function and effect of the semiconductor optical device will do.
なお、本発明は、上述の実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、第2の実施の形態を、第3又は第4の実施の形態に組み合わせてもよい。 The present invention is not limited to the above-described embodiment, and it is clear that many modifications and combinations can be implemented by a person having ordinary knowledge in this field within the technical concept of the present invention. For example, the second embodiment may be combined with the third or fourth embodiment.
上述の実施の形態又はその一例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 The above-described embodiment or an example thereof, in whole or in part, may be described as, but is not limited to, the following notes.
(付記1)平板状のサファイアと、活性層を含む半導体層と、クラッドとを、前記サファイアの表面に垂直な方向に順に備え、前記活性層に、前記表面に平行であって、導波路方向に垂直な方向に電流が注入される、半導体光デバイス。 (Note 1) A semiconductor optical device comprising a flat sapphire plate, a semiconductor layer including an active layer, and a cladding, arranged in that order in a direction perpendicular to the surface of the sapphire, and in which a current is injected into the active layer in a direction parallel to the surface and perpendicular to the waveguide direction.
(付記2)前記サファイアにおいて前記半導体層側の面と反対側の面に、Si基板を備える、付記1に記載の半導体光デバイス。
(Appendix 2) The semiconductor optical device described in
(付記3)前記サファイアの厚さが、5μm以上100μm以下である、付記2に記載の半導体光デバイス。 (Appendix 3) A semiconductor optical device as described in appendix 2, in which the thickness of the sapphire is 5 μm or more and 100 μm or less.
(付記4)前記活性層の前記導波路方向に垂直な面のうち一方の面に配置される第1の導波路と、前記クラッド内に配置される第2の導波路とを備え、前記第1の導波路が、半導体テーパー導波路であり、前記第2の導波路の屈折率が、サファイアの屈折率より高く、前記第2の導波路の少なくとも一部が、前記第1の導波路の前記表面に垂直な方向に位置する、付記1又は付記2に記載の半導体光デバイス。
(Appendix 4) A semiconductor optical device according to
(付記5)前記活性層の前記導波路方向に垂直な面のうち一方の面に配置される第1の導波路と、前記サファイアと前記第1の導波路との間に配置される他のクラッドと、前記他のクラッド内に配置される第2の導波路とを備え、前記第1の導波路が、半導体テーパー導波路であり、前記第2の導波路の屈折率が、サファイアの屈折率より高く、前記第2の導波路の少なくとも一部が、前記第1の導波路の前記表面に垂直な方向に位置する、付記1又は付記2に記載の半導体光デバイス。
(Appendix 5) A semiconductor optical device according to
(付記6)前記第2の導波路の幅が、1.0μm以上2.2μm以下である、付記4又は付記5に記載の半導体光デバイス。 (Appendix 6) A semiconductor optical device according to appendix 4 or 5, in which the width of the second waveguide is 1.0 μm or more and 2.2 μm or less.
(付記7)前記半導体層が、前記活性層と、前記活性層における前記表面に平行な面それぞれに配置されるi型半導体層と、前記活性層と前記i型半導体層における前記表面に垂直であって導波路方向に平行な面のうち一方の面に配置されるp型半導体層と、他方の面に配置されるn型半導体層とを備える付記1~6のいずれかに記載の半導体光デバイス。
(Appendix 7) A semiconductor optical device according to any one of
(付記8)半導体基板上に、順に、犠牲層と、薄膜レーザとを形成する工程と、前記犠牲層と前記薄膜レーザの表面をレジストで覆う工程と、前記犠牲層を除去する工程と、前記薄膜レーザを、スタンプを用いてサファイア基板に転写する工程と、前記レジストを除去し、前記スタンプを取り外す工程と、前記薄膜レーザ上に、クラッドの成膜後に、前記クラッドの一部を除去して、前記クラッドの表面と前記薄膜レーザの電極とが貫通する孔を形成する工程とを備える半導体光デバイスの製造方法。 (Appendix 8) A method for manufacturing a semiconductor optical device comprising the steps of: forming a sacrificial layer and a thin-film laser on a semiconductor substrate, covering the surfaces of the sacrificial layer and the thin-film laser with resist, removing the sacrificial layer, transferring the thin-film laser to a sapphire substrate using a stamp, removing the resist and removing the stamp, and, after forming a cladding on the thin-film laser, removing a portion of the cladding to form a hole that passes through the surface of the cladding and an electrode of the thin-film laser.
(付記9)サファイア上に、薄膜レーザと半導体テーパー導波路を含む半導体層を形成し、前記半導体層上にクラッドを成膜する工程と、前記クラッドを平坦化する工程と、前記平坦化されたクラッド上に、SiNx膜を成膜し、前記SiNx膜をSiNx導波路に加工する工程と、前記SiNx導波路上に、オーバークラッドの成膜後に、前記オーバークラッドの一部を除去して、前記オーバークラッドの表面と前記薄膜レーザの電極とが貫通する孔を形成する工程とを備える半導体光デバイスの製造方法。 (Additional Note 9) A method for manufacturing a semiconductor optical device, comprising the steps of forming a semiconductor layer including a thin-film laser and a semiconductor tapered waveguide on sapphire, depositing a cladding on the semiconductor layer, planarizing the cladding, depositing a SiN x film on the planarized cladding and processing the SiN x film into a SiN x waveguide, and, after depositing an overcladding on the SiN x waveguide, removing a part of the overcladding to form a hole through which a surface of the overcladding and an electrode of the thin-film laser penetrate.
(付記10)半導体基板上に、順に、犠牲層と、薄膜レーザとを形成し、前記薄膜レーザの出射端面に接続する半導体テーパー導波路をさらに形成する工程と、前記犠牲層と前記薄膜レーザの表面をレジストで覆う工程と、前記犠牲層を除去する工程と、サファイア上に、SiNx膜を成膜し、前記SiNx膜をSiNx導波路に加工する工程と、前記SiNx導波路上にクラッドを成膜する工程と、前記クラッドを平坦化する工程と、前記平坦化されたクラッド上に、前記薄膜レーザと前記半導体テーパー導波路とをスタンプを用いて転写する工程と、前記レジストを除去し、前記スタンプを取り外す工程と、前記薄膜レーザと前記半導体テーパー導波路との上にオーバークラッドを成膜した後に、前記オーバークラッドの一部を除去して、前記オーバークラッドの表面と前記薄膜レーザの電極とが貫通する孔を形成する工程とを備える半導体光デバイスの製造方法。 (Additional Note 10) A method for manufacturing a semiconductor optical device, comprising the steps of: forming a sacrificial layer and a thin-film laser on a semiconductor substrate, and further forming a semiconductor tapered waveguide connected to an emission end face of the thin-film laser; covering the sacrificial layer and surfaces of the thin-film laser with resist; removing the sacrificial layer; forming a SiN x film on sapphire and processing the SiN x film into a SiN x waveguide; forming a clad on the SiN x waveguide; planarizing the clad; transferring the thin-film laser and the semiconductor tapered waveguide onto the planarized clad using a stamp; removing the resist and removing the stamp; and forming an overclad on the thin-film laser and the semiconductor tapered waveguide, and then removing a part of the overclad to form a hole through which a surface of the overclad and an electrode of the thin-film laser penetrate.
(付記11)前記サファイアの厚さが、150μm以上330μm以下である、付記1に記載の半導体光デバイス。
(Appendix 11) A semiconductor optical device as described in
本発明は、半導体光デバイスに関するものであり、光通信装置や光通信システムに適用することができる。 The present invention relates to a semiconductor optical device and can be applied to optical communication equipment and optical communication systems.
10 半導体光デバイス
11 サファイア
120 半導体層
122 活性層
16 クラッド
10 Semiconductor
Claims (8)
活性層を含む半導体層と、
クラッドと
を、前記サファイアの表面に垂直な方向に順に備え、
前記活性層に、前記表面に平行であって、導波路方向に垂直な方向に電流が注入される、半導体光デバイス。 A flat sapphire;
A semiconductor layer including an active layer;
a cladding, and
A semiconductor optical device, wherein a current is injected into the active layer in a direction parallel to the surface and perpendicular to a waveguide direction.
前記クラッド内に配置される第2の導波路と
を備え、
前記第1の導波路が、半導体テーパー導波路であり、
前記第2の導波路の屈折率が、サファイアの屈折率より高く、
前記第2の導波路の少なくとも一部が、前記第1の導波路の前記表面に垂直な方向に位置する、請求項2に記載の半導体光デバイス。 a first waveguide disposed on one of the surfaces of the active layer perpendicular to the waveguide direction;
a second waveguide disposed within the cladding;
the first waveguide is a semiconductor tapered waveguide;
The refractive index of the second waveguide is higher than the refractive index of sapphire;
The semiconductor optical device of claim 2 , wherein at least a portion of the second waveguide lies in a direction perpendicular to the surface of the first waveguide.
前記サファイアと前記第1の導波路との間に配置される他のクラッドと、
前記他のクラッド内に配置される第2の導波路と
を備え、
前記第1の導波路が、半導体テーパー導波路であり、
前記第2の導波路の屈折率が、サファイアの屈折率より高く、
前記第2の導波路の少なくとも一部が、前記第1の導波路の前記表面に垂直な方向に位置する、請求項2に記載の半導体光デバイス。 a first waveguide disposed on one of the surfaces of the active layer perpendicular to the waveguide direction;
another cladding disposed between the sapphire and the first waveguide;
a second waveguide disposed within the other cladding;
the first waveguide is a semiconductor tapered waveguide;
The refractive index of the second waveguide is higher than the refractive index of sapphire;
The semiconductor optical device of claim 2 , wherein at least a portion of the second waveguide lies in a direction perpendicular to the surface of the first waveguide.
前記活性層と、
前記活性層における前記表面に平行な面それぞれに配置されるi型半導体層と、
前記活性層と前記i型半導体層における前記表面に垂直であって導波路方向に平行な面のうち一方の面に配置されるp型半導体層と、
他方の面に配置されるn型半導体層と
を備える請求項1又は請求項2に記載の半導体光デバイス。 The semiconductor layer is
The active layer;
i-type semiconductor layers disposed on respective surfaces of the active layer parallel to the surface;
a p-type semiconductor layer disposed on one of the surfaces of the active layer and the i-type semiconductor layer that are perpendicular to the surface and parallel to the waveguide direction;
The semiconductor optical device according to claim 1 or 2, further comprising: an n-type semiconductor layer disposed on the other surface.
前記犠牲層と前記薄膜レーザの表面をレジストで覆う工程と、
前記犠牲層を除去する工程と、
前記薄膜レーザを、スタンプを用いてサファイア基板に転写する工程と、
前記レジストを除去し、前記スタンプを取り外す工程と、
前記薄膜レーザ上に、クラッドの成膜後に、前記クラッドの一部を除去して、前記クラッドの表面と前記薄膜レーザの電極とが貫通する孔を形成する工程と
を備える半導体光デバイスの製造方法。 forming a sacrificial layer and a thin-film laser, in that order, on a semiconductor substrate;
covering the sacrificial layer and the surface of the thin film laser with resist;
removing the sacrificial layer;
transferring the thin film laser onto a sapphire substrate using a stamp;
removing the resist and removing the stamp;
and after forming a cladding on the thin-film laser, removing a portion of the cladding to form a hole that passes through a surface of the cladding and an electrode of the thin-film laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/025425 WO2025013163A1 (en) | 2023-07-10 | 2023-07-10 | Semiconductor optical device and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/025425 WO2025013163A1 (en) | 2023-07-10 | 2023-07-10 | Semiconductor optical device and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025013163A1 true WO2025013163A1 (en) | 2025-01-16 |
Family
ID=94215302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/025425 WO2025013163A1 (en) | 2023-07-10 | 2023-07-10 | Semiconductor optical device and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025013163A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070153868A1 (en) * | 2005-11-14 | 2007-07-05 | Applied Materials, Inc. Legal Department | Semiconductor laser |
JP2019039984A (en) * | 2017-08-23 | 2019-03-14 | 富士通株式会社 | Optical device and manufacturing method thereof |
JP2021501462A (en) * | 2017-11-01 | 2021-01-14 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | How to make transverse current injection electro-optic devices, silicon photonic chips and electro-optic devices |
US20210066537A1 (en) * | 2019-08-26 | 2021-03-04 | Rockley Photonics Limited | Method of manufacturing a iii-v based optoelectronic device |
-
2023
- 2023-07-10 WO PCT/JP2023/025425 patent/WO2025013163A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070153868A1 (en) * | 2005-11-14 | 2007-07-05 | Applied Materials, Inc. Legal Department | Semiconductor laser |
JP2019039984A (en) * | 2017-08-23 | 2019-03-14 | 富士通株式会社 | Optical device and manufacturing method thereof |
JP2021501462A (en) * | 2017-11-01 | 2021-01-14 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | How to make transverse current injection electro-optic devices, silicon photonic chips and electro-optic devices |
US20210066537A1 (en) * | 2019-08-26 | 2021-03-04 | Rockley Photonics Limited | Method of manufacturing a iii-v based optoelectronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103998960B (en) | Electronics/photonic integrated circuits framework and its manufacture method | |
JP5897414B2 (en) | Optical device manufacturing method | |
US7639719B2 (en) | Thermal shunt for active devices on silicon-on-insulator wafers | |
US20170317471A1 (en) | An optical device and a method for fabricating thereof | |
US8989229B2 (en) | Superluminescent diode, method of manufacturing the same, and wavelength-tunable external cavity laser including the same | |
Takeda et al. | Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects | |
CN110865470A (en) | Electro-optical waveguide element and optical module | |
JP6295762B2 (en) | Optical integrated circuit and manufacturing method thereof | |
KR20150128718A (en) | Coupled ring resonator system | |
WO2021124440A1 (en) | Optical device | |
Takeda et al. | Optical links on silicon photonic chips using ultralow-power consumption photonic-crystal lasers | |
Aihara et al. | Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide | |
Morthier et al. | InP microdisk lasers integrated on Si for optical interconnects | |
Aihara et al. | Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide | |
JP6939411B2 (en) | Semiconductor optical device | |
CN110147023B (en) | Raman amplifier based on graphene and silicon-based nanowires and preparation method thereof | |
JP2013165201A (en) | Semiconductor optical element, semiconductor optical module and manufacturing method of the same | |
CN113703197A (en) | Micro-ring modulator and preparation method | |
WO2019198529A1 (en) | Semiconductor optical element | |
WO2025013163A1 (en) | Semiconductor optical device and method for producing same | |
Carrara et al. | Hybrid III-V/silicon photonic integrated circuits for high bitrates telecommunication applications | |
Li et al. | 4–λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects | |
Hiraki et al. | Heterogeneous integration of III-V semiconductors on Si photonics platform | |
Matsuo et al. | Membrane InP-based photonics devices on Si | |
JP2017207588A (en) | Semiconductor optical modulation element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23945043 Country of ref document: EP Kind code of ref document: A1 |