[go: up one dir, main page]

WO2025013129A1 - Noise reduction apparatus, noise reduction method, and program - Google Patents

Noise reduction apparatus, noise reduction method, and program Download PDF

Info

Publication number
WO2025013129A1
WO2025013129A1 PCT/JP2023/025285 JP2023025285W WO2025013129A1 WO 2025013129 A1 WO2025013129 A1 WO 2025013129A1 JP 2023025285 W JP2023025285 W JP 2023025285W WO 2025013129 A1 WO2025013129 A1 WO 2025013129A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
switch
signal
pulse signal
pattern
Prior art date
Application number
PCT/JP2023/025285
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 高橋
直樹 北
裕史 白戸
秀紀 俊長
泰義 山本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/025285 priority Critical patent/WO2025013129A1/en
Publication of WO2025013129A1 publication Critical patent/WO2025013129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier

Definitions

  • the present invention relates to a noise reduction device, a noise reduction method, and a program.
  • Non-Patent Document 1 discloses a Direct Optical Switching (DOS) Code Division Multiple Access (CDMA) RoF system as an example of a wireless communication system to which analog RoF is applied.
  • DOS Direct Optical Switching
  • CDMA Code Division Multiple Access
  • the optical transmitter performs high-speed switching processing for modulation on an analog communication signal based on a CDMA signal. This generates a pulse signal (pulsed analog communication signal).
  • the optical transmitter transmits the generated pulse signal to an optical transmission path.
  • the optical receiver receives the pulse signal transmitted from the optical transmitter via the optical transmission path.
  • the optical receiver performs high-speed switching processing for demodulation on the received pulse signal. This reduces interference signals between user terminals in the wireless communication system.
  • upstream communication signals can suffer from ingress noise.
  • ingress noise occurs in the analog communication signals.
  • Non-Patent Document 1 can reduce interference signals in the optical domain, it cannot reduce noise such as ingress noise. Thus, there is a problem in that it is not possible to reduce noise that occurs in analog communication signals.
  • the present invention aims to provide a noise reduction device, a noise reduction method, and a program that are capable of reducing noise that occurs in an analog communication signal.
  • One aspect of the present invention is a noise reduction device that includes a first switch that generates a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed, a splitter that splits the pulse signal in which noise has been generated by a noise source, a second switch that performs a first demodulation process on one of the split pulse signals and the noise based on the first pattern, a third switch that extracts the noise from the other of the split pulse signals and the noise by performing a second demodulation process on the other of the split pulse signals and the noise based on a second pattern in which the on-off patterns of the first pattern are inverted, a subtractor that restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and the noise, and a filter that restores the analog communication signal based on the restored pulse signal.
  • One aspect of the present invention is a noise reduction method executed by the noise reduction device described above, which includes the steps of: generating a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed; branching the pulse signal in which noise has been generated by a noise source; performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern; extracting the noise from the other branched pulse signal and the noise by performing a second demodulation process on the other branched pulse signal and the noise based on a second pattern in which the on-off of the first pattern is inverted; restoring the pulse signal by subtracting the extracted noise from the one branched pulse signal and the noise; and restoring the analog communication signal based on the restored pulse signal.
  • One aspect of the present invention is a program for causing a computer to execute the steps of: generating a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed; branching the pulse signal in which noise has been generated by a noise source; performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern; extracting the noise from the other branched pulse signal and the noise by performing a second demodulation process on the other branched pulse signal and the noise based on a second pattern in which the on-off of the first pattern is inverted; restoring the pulse signal by subtracting the extracted noise from one of the branched pulse signals and the noise; and restoring the analog communication signal based on the restored pulse signal.
  • the present invention makes it possible to reduce noise that occurs in analog communication signals.
  • FIG. 1 is a diagram illustrating an example of the configuration of a communication system in a first embodiment.
  • 5A to 5C are diagrams illustrating an example of noise reduction processing in the first embodiment.
  • 4 is a flowchart showing an example of the operation of the noise reduction device in the first embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a communication system in a second embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a third embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a fourth embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a fifth embodiment.
  • FIG. 23 is a diagram illustrating an example of the configuration of a communication system in a sixth embodiment.
  • FIG. 23 is a diagram illustrating an example of the configuration of a communication system in a seventh embodiment.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a control device of a noise reduction device in each embodiment.
  • First Embodiment 1 is a diagram showing an example of the configuration of a communication system 1a according to a first embodiment.
  • the communication system 1a is a wireless communication system to which analog RoF is applied.
  • the communication system 1a includes a noise reduction device 10.
  • the noise reduction device 10 is a device that reduces noise that occurs in an upstream analog communication signal.
  • the noise reduction device 10 includes a first switch 11a, a noise source 12, a splitter 13, a second switch 14a, a third switch 15a, a subtractor 16, and a filter 17.
  • An upstream analog communication signal is input to the first switch 11a.
  • the analog communication signal is, for example, an upstream RF (Radio Frequency) signal based on a radio signal transmitted from a user terminal (not shown).
  • the first switch 11a modulates the input analog communication signal with a first pattern in which high-speed on-off switching is repeated. That is, the first switch 11a multiplies the analog communication signal by 1 or 0 at a switching interval "t".
  • the switching interval "t" is a sufficiently short time interval.
  • the switching speed (the inverse of the switching interval) is at least twice the maximum frequency band of the analog communication signal in the communication system 1a.
  • the first switch 11a generates a pulse signal (a pulsed analog communication signal).
  • the first switch 11a outputs the generated pulse signal to the noise source 12.
  • noise such as thermal noise is generated in the pulse signal input from the first switch 11a.
  • the noise source 12 adds noise to the input pulse signal.
  • the noise source 12 transmits the pulse signal with the noise generated to the splitter 13.
  • the splitter 13 receives a noisy pulse signal (pulse signal and noise) from the noise source 12.
  • the splitter 13 splits the noisy pulse signal (the input pulse signal and noise).
  • the splitter 13 outputs one of the split pulse signals and noise to the second switch 14a.
  • the splitter 13 outputs the other of the split pulse signals and noise to the third switch 15a.
  • the second switch 14a receives one of the branched pulse signals and noise from the brancher 13.
  • the second switch 14a demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14a multiplies the one of the branched pulse signals and noise by 1 or 0 at switching intervals "t". In this way, the second switch 14a extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise. Here, the extracted noise is also pulsed.
  • the second switch 14a outputs the extracted pulse signal and noise to the subtractor 16.
  • the subtractor 16 is, for example, a differential detector (balanced detector).
  • the subtractor 16 executes a process to reduce the noise in the pulse signal and noise output from the second switch 14a based on the difference between the pulse signal and noise output from the second switch 14a and the noise output from the third switch 15a. That is, the subtractor 16 subtracts the noise output from the third switch 15a from the pulse signal and noise output from the second switch 14a.
  • the subtractor 16 may include a delay (not shown) that delays the timing of a signal such as noise by the switching interval "t". For example, the subtractor 16 delays the noise output from the third switch 15a. Based on this delayed noise and the pulse signal output from the second switch 14a, the subtractor 16 may execute a process to reduce the noise in the pulse signal output from the second switch 14a and the noise. In other words, the subtractor 16 may subtract the delayed noise from the pulse signal and noise output from the second switch 14a.
  • Filter 17 is, for example, an anti-aliasing filter. Filter 17 performs anti-aliasing processing on the pulse signal input from subtractor 16, thereby converting the pulse signal back into an analog communication signal. Filter 17 may output the analog communication signal to a predetermined functional unit (not shown).
  • FIG. 2 is a diagram showing an example of noise reduction processing (noise estimation) in the first embodiment.
  • the second switch output 100 is a pulse signal output from the second switch 14a at the on timing of the high-speed switching. At the on timing in the first pattern, one of the branched pulse signals and noise are multiplied by 1, so the second switch output 100 contains a pulse signal and noise.
  • the timing when the high-speed switching of the second switch 14a turns on (“1") is the timing when the high-speed switching of the third switch 15a turns off (“0").
  • the third switch output 101 is a pulse signal output from the third switch 15a at the off timing of the high-speed switching. At the off timing in the second pattern (at the on timing in the first pattern), the other branched pulse signal and noise are multiplied by 0, so the third switch output 101 does not contain a pulse signal, but only noise.
  • the splitter 13 may be provided with a filter that performs band narrowing.
  • the splitter 13 may perform band narrowing of the pulse signal input from the noise source 12 by filter processing so that the correlation between the noise contained in the second switch output 100 and the noise contained in the third switch output 101 becomes high.
  • the filter that performs band narrowing may be provided between the noise source 12 and the splitter 13.
  • the first switch 11a generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern in which switching between on and off is repeated at a predetermined speed.
  • the predetermined speed (frequency) is, for example, more than twice the maximum frequency band of the analog communication signal in the communication system 1a based on the sampling theorem.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by the noise source 12 to the second switch 14a and the third switch 15a.
  • the second switch 14a performs a first demodulation process on one of the split pulse signals and noise based on the first pattern.
  • the second pattern is a pattern in which the on and off of the first pattern are inverted.
  • the third switch 15a extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • Filter 17 restores the analog communication signal based on the restored pulse signal.
  • the second embodiment is different from the first embodiment mainly in that noise generated in the pulse signal at the base station is reduced.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 4 is a diagram showing an example of the configuration of a communication system 1b in the second embodiment.
  • the communication system 1b includes a base station 2b and a central station (not shown).
  • the base station 2b includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11b, a reception signal amplifier 12b, a splitter 13, a second switch 14b, a third switch 15b, a subtractor 16, a filter 17, and an E/O converter 25.
  • the communication system 1b includes a first switch 11b, a received signal amplifier 12b, a splitter 13, a second switch 14b, a third switch 15b, a subtractor 16, and a filter 17 as noise reduction devices.
  • the received signal amplifier 12b corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • the combination of the first switch 11b and the second switch 14b and the third switch 15b is arranged to sandwich the received signal amplifier 12b (noise source).
  • the antenna 23 receives a downstream analog communication signal (transmission signal) from the communication unit 24.
  • the antenna 23 transmits a downstream wireless signal based on the downstream analog communication signal to a specified user terminal (not shown).
  • the communication unit 24 is a functional unit (T/R switch) that switches between transmitting and receiving analog communication signals.
  • the communication unit 24 obtains a downstream analog communication signal (transmission signal) from the transmission signal amplifier 22.
  • the communication unit 24 outputs the downstream analog communication signal to the antenna 23.
  • the communication unit 24 receives an upstream analog communication signal (received signal) from the antenna 23.
  • the communication unit 24 outputs the upstream analog communication signal to the first switch 11b.
  • the first switch 11b is an electrical switch (switching device) that performs high-speed switching for modulation.
  • the first switch 11b is, for example, a Micro Electro Mechanical Systems (MEMS) switch, a Positive Intrinsic Negative (PIN) diode, a Gallium Nitride (GaN) transistor, or a Complementary Metal Oxide Semiconductor (CMOS) switch.
  • MEMS Micro Electro Mechanical Systems
  • PIN Positive Intrinsic Negative
  • GaN Gallium Nitride
  • CMOS Complementary Metal Oxide Semiconductor
  • An upstream analog communication signal is input to the first switch 11b.
  • the first switch 11b modulates the input analog communication signal with a first pattern in which rapid on-off switching is repeated. That is, the first switch 11b multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11b generates an upstream pulse signal (pulsed analog communication signal). The first switch 11b outputs the generated upstream pulse signal to the received signal amplifier 12b.
  • the received signal amplifier 12b amplifies the strength of the upstream pulse signal.
  • noise is generated in the pulse signal input from the first switch 11b.
  • the received signal amplifier 12b outputs the upstream pulse signal with noise generated as a received signal to the splitter 13.
  • the upstream pulse signal containing noise is input to the splitter 13 from the received signal amplifier 12b. That is, the pulse signal and noise are input to the splitter 13 from the received signal amplifier 12b.
  • the splitter 13 splits the input pulse signal and noise.
  • the splitter 13 outputs one of the split pulse signals and noise to the second switch 14b.
  • the splitter 13 outputs the other of the split pulse signals and noise to the third switch 15b.
  • the second switch 14b is an electrical switch for demodulation.
  • the second switch 14b is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.
  • the second switch 14b receives one of the branched pulse signals and noise from the brancher 13.
  • the second switch 14b demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated.
  • the second switch 14b multiplies the one of the branched pulse signals and noise by 1 or 0 at switching intervals "t".
  • the second switch 14b extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise.
  • the second switch 14b outputs the extracted pulse signal and noise to the subtractor 16.
  • the third switch 15b is an electrical switch for demodulation.
  • the third switch 15b is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.
  • the other branched pulse signal and noise are input to the third switch 15b from the splitter 13.
  • the third switch 15b demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15b multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t".
  • the timing when the high-speed switching of the third switch 15b turns off is the timing when the high-speed switching of the second switch 14b turns on. That is, the values are inverted between the second pattern and the first pattern.
  • the third switch 15b extracts noise from the other branched pulse signal and noise.
  • the second switch 14b outputs the extracted noise to the subtractor 16.
  • the subtractor 16 subtracts the noise output from the third switch 15b from the pulse signal and noise output from the second switch 14b.
  • the filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16 to return the pulse signal to an analog communication signal.
  • the filter 17 outputs the analog communication signal to the E/O converter 25.
  • the E/O converter 25 receives an upstream analog communication signal (electrical signal) from the filter 17.
  • the E/O converter 25 converts the upstream analog communication signal into an upstream optical signal.
  • the E/O converter 25 transmits the upstream analog communication signal to a central station (not shown) via an optical transmission path (optical fiber).
  • the first switch 11b generates a pulse signal by performing modulation processing on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by the received signal amplifier 12b to the second switch 14b and the third switch 15b.
  • the second switch 14b performs a first demodulation processing on one of the split pulse signals and noise based on the first pattern.
  • the third switch 15b extracts noise from the other of the split pulse signals and noise by performing a second demodulation processing on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • the third embodiment is mainly different from the second embodiment in that noise generated in a pulse signal in an optical transmission path (analog RoF section) between a base station and a central station is reduced.
  • the third embodiment will be described focusing on the differences from the second embodiment.
  • FIG. 5 is a diagram showing an example of the configuration of a communication system 1c in the third embodiment.
  • the communication system 1c includes a base station 2c and a central station 3c.
  • the base station 2c includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a reception signal amplifier 12c, an E/O converter 25, a first switch 11c, and an optical transmission path 26.
  • the central station 3c includes an E/O converter 31, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, and a filter 17.
  • the communication system 1c includes a first switch 11c, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, a filter 17, and an optical transmission path 26 as a noise reduction device.
  • the optical transmission path 26 corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • the first switch 11c and the combination of the second switch 14c and the third switch 15c are arranged on either side of the optical transmission path 26 (noise source).
  • the communication unit 24 acquires a downstream analog communication signal (transmission signal) from the transmission signal amplifier 22.
  • the communication unit 24 outputs the downstream analog communication signal to the antenna 23.
  • the communication unit 24 acquires an upstream analog communication signal (reception signal) from the antenna 23.
  • the communication unit 24 outputs the upstream analog communication signal to the reception signal amplifier 12c.
  • the received signal amplifier 12c amplifies the strength of the upstream analog communication signal. In the received signal amplifier 12c, noise is generated in the analog communication signal input from the communication unit 24. The received signal amplifier 12c outputs the upstream analog communication signal to the E/O converter 25 as a received signal.
  • the E/O converter 25 receives an upstream analog communication signal (electrical signal) from the received signal amplifier 12c.
  • the E/O converter 25 converts the upstream analog communication signal into an upstream optical signal.
  • the E/O converter 25 outputs the upstream analog communication signal to the first switch 11c.
  • the first switch 11c is an optical switch (switching device) that performs high-speed switching for modulation.
  • An upstream analog communication signal is input to the first switch 11c.
  • the first switch 11c modulates the input analog communication signal with a first pattern in which high-speed on-off switching is repeated. That is, the first switch 11c multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11c generates an upstream pulse signal (pulsed analog communication signal).
  • the first switch 11c transmits the generated upstream pulse signal to the optical transmission path 26.
  • the optical transmission path 26 transmits the upstream pulse signal to the splitter 13.
  • the splitter 13 receives a pulse signal containing noise from the first switch 11c via the optical transmission path 26. That is, the pulse signal and noise are input to the splitter 13 from the first switch 11c. The splitter 13 splits the input pulse signal and noise. The splitter 13 outputs the other split pulse signal and noise to the second switch 14c. The splitter 13 outputs the other split pulse signal and noise to the third switch 15c.
  • the second switch 14c is an optical switch for demodulation.
  • the second switch 14c may be, for example, an OEO (Optical-Electro-Optical) type optical switch, or an OOO (Optical-Optical-Optical) type optical switch.
  • OOO type may be, for example, any of a mechanical type, a MEMS type, a waveguide type thermo-optical type, and a waveguide type lead lanthanum zirconate titanate (PLZT: PbLaZrTiO3) type.
  • the second switch 14c receives one of the branched pulse signals and noise from the branching device 13.
  • the second switch 14c demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14c multiplies the one of the branched pulse signals and noise by 1 or 0 at a switching interval "t". In this way, the second switch 14b extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise.
  • the second switch 14c outputs the extracted pulse signal and noise to the subtractor 16.
  • the third switch 15c is an optical switch for demodulation.
  • the third switch 15c may be, for example, an OEO type optical switch or an OOO type optical switch.
  • the other branched pulse signal and noise are input to the third switch 15c from the splitter 13.
  • the third switch 15c demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15c multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t".
  • the timing when the high-speed switching of the third switch 15c turns off is the timing when the high-speed switching of the second switch 14c turns on. That is, the values are inverted between the second pattern and the first pattern.
  • the third switch 15c extracts noise from the other branched pulse signal and noise.
  • the second switch 14c outputs the extracted noise to the subtractor 16.
  • the subtractor 16 is, for example, a differential amplifier having a PIN photodiode.
  • the subtractor 16 executes a process to reduce the noise in the pulse signal and noise output from the second switch 14a based on the difference between the pulse signal and noise output from the second switch 14a and the noise output from the third switch 15a. In other words, the subtractor 16 subtracts the noise output from the third switch 15a from the pulse signal and noise output from the second switch 14a.
  • the subtractor 16 also converts the pulse signal (optical signal) into a pulse signal (electrical signal).
  • the filter 17 performs anti-aliasing processing on the pulse signal (electrical signal) input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal.
  • the first switch 11c generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12c to the second switch 14c and the third switch 15c.
  • the second switch 14c performs a first demodulation process on one of the split pulse signals and noise based on the first pattern.
  • the third switch 15c extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • the fourth embodiment is different from the second embodiment in that noise generated in a transmission path including an analog RoF section is reduced.
  • the fourth embodiment will be described focusing on the differences from the second embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of a communication system 1d in the fourth embodiment.
  • the communication system 1d includes a base station 2d and a central station 3d.
  • the base station 2d includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11d, a reception signal amplifier 12d, an E/O converter 25, and an optical transmission path 26.
  • the aggregation station 3d includes an E/O converter 31, an O/E converter 32, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, and a filter 17.
  • the received signal amplifier 12d, the E/O converter 25, the optical transmission path 26, and the O/E converter 32 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • a combination of a first switch 11d, a second switch 14d, and a third switch 15d is arranged to sandwich the noise sources of the received signal amplifier 12d, the E/O converter 25, the optical transmission path 26, and the O/E converter 32.
  • An upstream analog communication signal is input to the first switch 11d.
  • the first switch 11d modulates the input analog communication signal with a first pattern in which rapid on-off switching is repeated. That is, the first switch 11d multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11d generates an upstream pulse signal (pulsed analog communication signal). The first switch 11d outputs the generated upstream pulse signal to the received signal amplifier 12d.
  • the received signal amplifier 12d amplifies the strength of the upstream pulse signal.
  • noise is generated in the pulse signal input from the first switch 11d.
  • the received signal amplifier 12d outputs the upstream pulse signal with noise generated as a received signal to the E/O converter 25.
  • the E/O converter 25 receives an upstream pulse signal containing noise from the received signal amplifier 12d. That is, the E/O converter 25 receives a pulse signal and noise from the received signal amplifier 12d. The E/O converter 25 converts the upstream pulse signal containing noise into an upstream optical signal containing noise. The E/O converter 25 transmits the upstream optical signal containing noise to the O/E converter 32 via the optical transmission path 26. The optical transmission path 26 transmits the upstream optical signal containing noise to the O/E converter 32.
  • the O/E converter 32 receives an upstream optical signal from the E/O converter 25 via the optical transmission path 26.
  • the O/E converter 32 converts the upstream optical signal into an upstream pulse signal (electrical signal).
  • the O/E converter 32 outputs the upstream pulse signal to the splitter 13.
  • the upstream pulse signal containing noise is input to the splitter 13 from the O/E converter 32. That is, the pulse signal and noise are input to the splitter 13 from the O/E converter 32.
  • the splitter 13 splits the input pulse signal and noise.
  • the splitter 13 outputs one of the split pulse signals and noise to the second switch 14d.
  • the splitter 13 outputs the other of the split pulse signals and noise to the third switch 15d.
  • the filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal.
  • the first switch 11d generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12d to the second switch 14d and the third switch 15d.
  • the second switch 14d performs a first demodulation process on one of the split pulse signals and noise based on the first pattern.
  • the third switch 15d extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • the fifth embodiment is mainly different from the second embodiment in that the communication system includes a plurality of base stations.
  • the fifth embodiment will be described focusing on the differences from the second embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of a communication system 1e in the fifth embodiment.
  • the communication system 1e includes multiple base stations 2e and a central station (not shown).
  • the communication system 1e includes two base stations 2e as an example of multiple base stations 2e.
  • the multiple base stations 2e and the central station (not shown) may form a single-frequency network (SFN: Single-Frequency-Network).
  • the communication system 1e includes an O/E converter 32 for each base station 2e.
  • the communication system 1e includes a multiplexer 33 and a BBU 34 (BBU: Baseband Unit).
  • BBU Baseband Unit
  • the base station 2e includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11e, a reception signal amplifier 12e, a splitter 13, a second switch 14e, a third switch 15e, a subtractor 16, a filter 17, and an E/O converter 25.
  • the base station 2e includes a first switch 11e, a received signal amplifier 12e, a splitter 13, a second switch 14e, a third switch 15e, a subtractor 16, and a filter 17 as noise reduction devices.
  • the received signal amplifier 12e corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • switching since the noise reduction process is completed in the base station 2e, switching does not need to be synchronized between the base stations 2e.
  • the E/O converter 25 receives an upstream analog communication signal (electrical signal) from the filter 17.
  • the E/O converter 25 converts the upstream analog communication signal into an upstream optical signal.
  • the E/O converter 25 transmits the upstream analog communication signal to the O/E converter 32 via an optical transmission path (optical fiber).
  • the O/E converter 32 receives an upstream optical signal from the E/O converter 25 via the optical transmission path.
  • the O/E converter 32 converts the upstream optical signal into an upstream analog communication signal (electrical signal).
  • the O/E converter 32 outputs the upstream analog communication signal to the multiplexer 33.
  • the multiplexer 33 multiplexes the upstream analog communication signals transmitted from the multiple O/E converters 32.
  • the multiplexer 33 outputs the multiplexed upstream analog communication signal to the BBU 34.
  • the BBU 34 is a baseband device.
  • the BBU 34 performs a predetermined baseband processing on the combined upstream analog communication signal.
  • the BBU 34 may also perform a predetermined baseband processing on the downstream analog communication signal.
  • the first switch 11e generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12e to the second switch 14e and the third switch 15e.
  • the second switch 14e performs a first demodulation process on one of the split pulse signals and noise based on the first pattern.
  • the third switch 15e extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • the sixth embodiment is mainly different from the fourth embodiment in that the communication system includes a plurality of base stations. Also, the sixth embodiment is mainly different from the fifth embodiment in that a first switch in the base station is synchronized with a second switch and a third switch corresponding to the first switch in the central station. The sixth embodiment will be described focusing on the differences from the fourth and fifth embodiments.
  • FIG. 8 is a diagram showing an example of the configuration of a communication system 1f in the sixth embodiment.
  • the communication system 1f includes a plurality of base stations 2f, a central station 3f, and a BBU 34.
  • the communication system 1f includes two base stations 2f as an example of a plurality of base stations 2f.
  • the base station 2f includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11f, a reception signal amplifier 12f, an E/O converter 25, and an optical transmission path 26.
  • the aggregation station 3f includes an E/O converter 31, an O/E converter 32, a splitter 13, a second switch 14f, a third switch 15f, a subtractor 16, and a filter 17 for each of the base stations 2f.
  • the aggregation station 3f includes a multiplexer 33.
  • the received signal amplifier 12f, the E/O converter 25, the optical transmission path 26, and the O/E converter 32 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • the filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal.
  • the filter 17 outputs the upstream analog communication signal to the multiplexer 33.
  • the multiplexer 33 multiplexes the upstream analog communication signals transmitted from multiple filters 17.
  • the multiplexer 33 outputs the combined upstream analog communication signal to the BBU 34.
  • the first switch 11f generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12f to the second switch 14f and the third switch 15f.
  • the second switch 14f performs a first demodulation process on one of the split pulse signals and noise based on the first pattern.
  • the third switch 15f extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • one of the main differences from the sixth embodiment is that a single combination of the second switch and the third switch is provided in the central station for a plurality of base stations.
  • one of the main differences from the sixth embodiment is that each of the first switches in the plurality of base stations is synchronized with the second switch and the third switch in the central station.
  • the differences from the sixth embodiment will be mainly described.
  • FIG. 9 is a diagram showing an example of the configuration of a communication system 1g in the seventh embodiment.
  • the communication system 1g includes a plurality of base stations 2g and a central station 3g.
  • the communication system 1g includes two base stations 2g as an example of a plurality of base stations 2g.
  • the base station 2g includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11g, a reception signal amplifier 12g, an E/O converter 25, and an optical transmission path 26.
  • the aggregation station 3g includes an E/O converter 31 and an O/E converter 32 for each base station 2g.
  • the aggregation station 3g includes a multiplexer 33, a splitter 13, a second switch 14g, a third switch 15g, a subtractor 16, a filter 17, and a BBU 34.
  • the received signal amplifier 12g, the E/O converter 25, the optical transmission path 26, the O/E converter 32, and the multiplexer 33 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment.
  • the upstream optical signal is input to the O/E converter 32 from the E/O converter 25 via the optical transmission path 26.
  • the O/E converter 32 converts the upstream optical signal into an upstream pulse signal (electrical signal).
  • the O/E converter 32 outputs the upstream pulse signal to the multiplexer 33.
  • the multiplexer 33 multiplexes the upstream analog communication signals transmitted from the multiple O/E converters 32.
  • the multiplexer 33 outputs the multiplexed upstream analog communication signal to the splitter 13.
  • the upstream pulse signal containing noise is input to the splitter 13 from the multiplexer 33. That is, the pulse signal and noise are input to the splitter 13 from the multiplexer 33.
  • the splitter 13 splits the input pulse signal and noise.
  • the splitter 13 outputs one of the split pulse signals and noise to the second switch 14g.
  • the splitter 13 outputs the other of the split pulse signals and noise to the third switch 15g.
  • the second switch 14g is an electrical switch for demodulation.
  • the second switch 14g is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.
  • the second switch 14g receives one of the branched pulse signals and noise from the brancher 13.
  • the second switch 14g demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14g multiplies the one of the branched pulse signals and noise by 1 or 0 at a switching interval "t". In this way, the second switch 14g extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise.
  • the second switch 14g outputs the extracted pulse signal and noise to the subtractor 16.
  • the third switch 15g is an electrical switch for demodulation.
  • the third switch 15g is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.
  • the other branched pulse signal and noise are input to the third switch 15g from the splitter 13.
  • the third switch 15g demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15g multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t".
  • the timing at which the high-speed switching of the third switch 15g turns off is the timing at which the high-speed switching of the second switch 14g turns on. That is, the values are inverted between the second pattern and the first pattern.
  • the third switch 15g extracts noise from the other branched pulse signal and noise.
  • the second switch 14g outputs the extracted noise to the subtractor 16.
  • the subtractor 16 subtracts the noise output from the third switch 15g from the pulse signal and noise output from the second switch 14g.
  • the filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16 to return the pulse signal to an analog communication signal.
  • the filter 17 outputs the analog communication signal to the BBU 34.
  • the first switch 11g generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern.
  • the noise source 12 adds noise to the pulse signal.
  • the splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12g to the second switch 14g and the third switch 15g.
  • the second switch 14g performs a first demodulation process on one of the split pulse signals and the noise based on the first pattern.
  • the third switch 15g extracts noise from the other of the split pulse signals and the noise by performing a second demodulation process on the other of the split pulse signals and the noise based on the second pattern.
  • the subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and the noise.
  • the filter 17 restores the analog communication signal based on the restored pulse signal.
  • FIG. 10 is a diagram showing an example of a hardware configuration of a control device 200 of a noise reduction device in each embodiment.
  • the control device 200 is realized as software by a processor 201 such as a CPU (Central Processing Unit) executing a program stored in a storage device 203 having a non-volatile recording medium (non-transient recording medium) and a memory 202.
  • the program may be recorded in a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD-ROM (Compact Disc Read Only Memory), or a non-transient recording medium such as a storage device such as a hard disk or a solid state drive (SSD) built into a computer system.
  • the communication unit 204 executes a predetermined communication process.
  • the control device 200 may be realized using hardware (accelerator) including an electronic circuit (electronic circuit or circuitry) using, for example, an LSI (Large Scale Integrated circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • hardware including an electronic circuit (electronic circuit or circuitry) using, for example, an LSI (Large Scale Integrated circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • the present invention is applicable to wireless communication systems that use analog RoF.
  • E/O converter 26...optical transmission line, 31...E/O converter, 32...O/E converter, 33...multiplexer, 34...BBU, 100...second switch output, 101...third switch Output, 200...control device, 201...processor, 202...memory, 203...storage device, 204...communication unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

This noise reduction apparatus comprises: a first switch that generates pulse signals by performing modulation processing on analog communication signals on the basis of a first pattern in which switching between on and off is repeated at a prescribed rate; a branching device that branches the pulse signals in which noise is generated by a noise source; a second switch that performs, on the basis of the first pattern, first demodulation processing on one of the branched pulse signals and noise; a third switch that extracts noise from the other branched pulse signals and noise by performing, on the basis of a second pattern in which the on and off of the first pattern are inverted, second demodulation processing on the other branched pulse signals and noise; a subtractor for restoring the pulse signals by subtracting the extracted noise from one of the branched pulse signals and noise; and a filter for restoring the analog communication signals on the basis of the restored pulse signals.

Description

雑音低減装置、雑音低減方法及びプログラムNoise reduction device, noise reduction method and program

 本発明は、雑音低減装置、雑音低減方法及びプログラムに関する。 The present invention relates to a noise reduction device, a noise reduction method, and a program.

 アナログの光ファイバ無線(RoF: Radio-over-Fiber)が無線通信システムに適用されることによって、ユーザ端末との無線通信を実行する無線基地局の機能が集約局と張出局に分割されることがある。非特許文献1には、直接光スイッチング(DOS: Direct Optical Switching)の符号分割多元接続(CDMA: Code Division Multiple Access)のRoFシステムが、アナログRoFが適用された無線通信システムの一例として開示されている。 By applying analog Radio-over-Fiber (RoF) to a wireless communication system, the functions of a wireless base station that performs wireless communication with user terminals may be divided into an aggregation station and a base station. Non-Patent Document 1 discloses a Direct Optical Switching (DOS) Code Division Multiple Access (CDMA) RoF system as an example of a wireless communication system to which analog RoF is applied.

 非特許文献1に開示されたRoFシステムでは、光送信器が、CDMA信号に基づいて、アナログ通信信号に対して、変調用の高速スイッチング処理を実行する。これによって、パルス信号(パルス化されたアナログ通信信号)が生成される。光送信器は、生成されたパルス信号を、光伝送路に送信する。光受信器は、光送信器から送信されたパルス信号を、光伝送路を介して受信する。光受信器は、受信されたパルス信号に対して、復調用の高速スイッチング処理を実行する。これによって、無線通信システムのユーザ端末同士の干渉信号が低減される。 In the RoF system disclosed in Non-Patent Document 1, the optical transmitter performs high-speed switching processing for modulation on an analog communication signal based on a CDMA signal. This generates a pulse signal (pulsed analog communication signal). The optical transmitter transmits the generated pulse signal to an optical transmission path. The optical receiver receives the pulse signal transmitted from the optical transmitter via the optical transmission path. The optical receiver performs high-speed switching processing for demodulation on the received pulse signal. This reduces interference signals between user terminals in the wireless communication system.

Higashino, Tsukamoto and Komaki, "Experimental study of received signal performance in direct optical switching CDMA ROF system," 2002 International Topical Meeting on Microwave Photonics, Awaji, Japan, 2002, pp. 233-236, doi: 10.1109/MWP.2002.1158906.Higashino, Tsukamoto and Komaki, "Experimental study of received signal performance in direct optical switching CDMA ROF system m," 2002 International Topical Meeting on Microwave Photonics, Awaji, Japan, 2002, pp. 233-236, doi: 10.1109/MWP.2002.1158906.

 無線通信システムでは、上りの通信信号に流合雑音が生じることがある。例えば、アナログRoFが適用された無線通信システムでは、単一の集約局に向けて複数の張出局からアナログ通信信号が上り伝送された際に、アナログ通信信号に流合雑音が生じる。 In wireless communication systems, upstream communication signals can suffer from ingress noise. For example, in wireless communication systems that use analog RoF, when analog communication signals are transmitted upstream from multiple base stations to a single central station, ingress noise occurs in the analog communication signals.

 しかしながら非特許文献1では、光領域の干渉信号を低減することはできても、流合雑音等の雑音を低減することはできない。このように、アナログ通信信号に生じた雑音を低減することができないという問題がある。 However, although Non-Patent Document 1 can reduce interference signals in the optical domain, it cannot reduce noise such as ingress noise. Thus, there is a problem in that it is not possible to reduce noise that occurs in analog communication signals.

 上記事情に鑑み、本発明は、アナログ通信信号に生じた雑音を低減することが可能である雑音低減装置、雑音低減方法及びプログラムを提供することを目的としている。 In view of the above, the present invention aims to provide a noise reduction device, a noise reduction method, and a program that are capable of reducing noise that occurs in an analog communication signal.

 本発明の一態様は、所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する第1スイッチと、雑音源によって雑音が生じた前記パルス信号を分岐する分岐器と、前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行する第2スイッチと、前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出する第3スイッチと、分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元する減算器と、復元された前記パルス信号に基づいて、前記アナログ通信信号を復元するフィルタとを備える雑音低減装置である。 One aspect of the present invention is a noise reduction device that includes a first switch that generates a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed, a splitter that splits the pulse signal in which noise has been generated by a noise source, a second switch that performs a first demodulation process on one of the split pulse signals and the noise based on the first pattern, a third switch that extracts the noise from the other of the split pulse signals and the noise by performing a second demodulation process on the other of the split pulse signals and the noise based on a second pattern in which the on-off patterns of the first pattern are inverted, a subtractor that restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and the noise, and a filter that restores the analog communication signal based on the restored pulse signal.

 本発明の一態様は、上記の雑音低減装置が実行する雑音低減方法であって、所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成するステップと、雑音源によって雑音が生じた前記パルス信号を分岐するステップと、前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行するステップと、前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出するステップと、分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元するステップと、復元された前記パルス信号に基づいて、前記アナログ通信信号を復元するステップとを含む雑音低減方法である。 One aspect of the present invention is a noise reduction method executed by the noise reduction device described above, which includes the steps of: generating a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed; branching the pulse signal in which noise has been generated by a noise source; performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern; extracting the noise from the other branched pulse signal and the noise by performing a second demodulation process on the other branched pulse signal and the noise based on a second pattern in which the on-off of the first pattern is inverted; restoring the pulse signal by subtracting the extracted noise from the one branched pulse signal and the noise; and restoring the analog communication signal based on the restored pulse signal.

 本発明の一態様は、コンピュータに、所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する手順と、雑音源によって雑音が生じた前記パルス信号を分岐する手順と、前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行する手順と、前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出する手順と、分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元する手順と、復元された前記パルス信号に基づいて、前記アナログ通信信号を復元する手順とを実行させるためのプログラムである。 One aspect of the present invention is a program for causing a computer to execute the steps of: generating a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which on-off switching is repeated at a predetermined speed; branching the pulse signal in which noise has been generated by a noise source; performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern; extracting the noise from the other branched pulse signal and the noise by performing a second demodulation process on the other branched pulse signal and the noise based on a second pattern in which the on-off of the first pattern is inverted; restoring the pulse signal by subtracting the extracted noise from one of the branched pulse signals and the noise; and restoring the analog communication signal based on the restored pulse signal.

 本発明により、アナログ通信信号に生じた雑音を低減することが可能である。 The present invention makes it possible to reduce noise that occurs in analog communication signals.

第1実施形態における、通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a communication system in a first embodiment. 第1実施形態における、雑音の低減処理の例を示す図である。5A to 5C are diagrams illustrating an example of noise reduction processing in the first embodiment. 第1実施形態における、雑音低減装置の動作例を示すフローチャートである。4 is a flowchart showing an example of the operation of the noise reduction device in the first embodiment. 第2実施形態における、通信システムの構成例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a communication system in a second embodiment. 第3実施形態における、通信システムの構成例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a third embodiment. 第4実施形態における、通信システムの構成例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a fourth embodiment. 第5実施形態における、通信システムの構成例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a communication system in a fifth embodiment. 第6実施形態における、通信システムの構成例を示す図である。FIG. 23 is a diagram illustrating an example of the configuration of a communication system in a sixth embodiment. 第7実施形態における、通信システムの構成例を示す図である。FIG. 23 is a diagram illustrating an example of the configuration of a communication system in a seventh embodiment. 各実施形態における、雑音低減装置の制御装置のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating an example of the hardware configuration of a control device of a noise reduction device in each embodiment.

 本発明の実施形態について、図面を参照して詳細に説明する。
 (第1実施形態)
 図1は、第1実施形態における、通信システム1aの構成例を示す図である。通信システム1aは、アナログRoFが適用された無線通信システムである。通信システム1aは、雑音低減装置10を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings.
First Embodiment
1 is a diagram showing an example of the configuration of a communication system 1a according to a first embodiment. The communication system 1a is a wireless communication system to which analog RoF is applied. The communication system 1a includes a noise reduction device 10.

 雑音低減装置10は、上りのアナログ通信信号に生じた雑音を低減する装置である。雑音低減装置10は、第1スイッチ11aと、雑音源12と、分岐器13と、第2スイッチ14aと、第3スイッチ15aと、減算器16と、フィルタ17とを備える。 The noise reduction device 10 is a device that reduces noise that occurs in an upstream analog communication signal. The noise reduction device 10 includes a first switch 11a, a noise source 12, a splitter 13, a second switch 14a, a third switch 15a, a subtractor 16, and a filter 17.

 第1スイッチ11aには、上りのアナログ通信信号が入力される。アナログ通信信号は、例えば、ユーザ端末(不図示)から送信された無線信号に基づく上りのRF信号(Radio Frequency signal)である。第1スイッチ11aは、入力されたアナログ通信信号を、オンとオフの高速スイッチングが繰り返される第1パターンで変調する。すなわち、第1スイッチ11aは、スイッチング間隔「t」で、アナログ通信信号に1又は0を乗算する。スイッチング間隔「t」は、十分に短い時間間隔である。例えば、スイッチング速度(スイッチング間隔の逆数)は、通信システム1aにおけるアナログ通信信号の最大周波数帯域の2倍以上である。これによって、第1スイッチ11aは、パルス信号(パルス化されたアナログ通信信号)を生成する。第1スイッチ11aは、生成されたパルス信号を、雑音源12に出力する。 An upstream analog communication signal is input to the first switch 11a. The analog communication signal is, for example, an upstream RF (Radio Frequency) signal based on a radio signal transmitted from a user terminal (not shown). The first switch 11a modulates the input analog communication signal with a first pattern in which high-speed on-off switching is repeated. That is, the first switch 11a multiplies the analog communication signal by 1 or 0 at a switching interval "t". The switching interval "t" is a sufficiently short time interval. For example, the switching speed (the inverse of the switching interval) is at least twice the maximum frequency band of the analog communication signal in the communication system 1a. As a result, the first switch 11a generates a pulse signal (a pulsed analog communication signal). The first switch 11a outputs the generated pulse signal to the noise source 12.

 雑音源12では、第1スイッチ11aから入力されたパルス信号に、熱雑音等の雑音が生じる。すなわち、雑音源12は、入力されたパルス信号に雑音を加える。雑音源12は、雑音が生じたパルス信号を、分岐器13に伝送する。 In the noise source 12, noise such as thermal noise is generated in the pulse signal input from the first switch 11a. In other words, the noise source 12 adds noise to the input pulse signal. The noise source 12 transmits the pulse signal with the noise generated to the splitter 13.

 分岐器13には、雑音が生じたパルス信号(パルス信号及び雑音)が、雑音源12から入力される。分岐器13は、雑音が生じたパルス信号(入力されたパルス信号及び雑音)を分岐する。分岐器13は、分岐された一方のパルス信号及び雑音を、第2スイッチ14aに出力する。分岐器13は、分岐された他方のパルス信号及び雑音を、第3スイッチ15aに出力する。 The splitter 13 receives a noisy pulse signal (pulse signal and noise) from the noise source 12. The splitter 13 splits the noisy pulse signal (the input pulse signal and noise). The splitter 13 outputs one of the split pulse signals and noise to the second switch 14a. The splitter 13 outputs the other of the split pulse signals and noise to the third switch 15a.

 第2スイッチ14aには、分岐された一方のパルス信号及び雑音が、分岐器13から入力される。第2スイッチ14aは、分岐された一方のパルス信号及び雑音を、オンとオフの高速スイッチングが繰り返される第1パターンで復調する。すなわち、第2スイッチ14aは、分岐された一方のパルス信号及び雑音に、スイッチング間隔「t」で、1又は0を乗算する。これによって、第2スイッチ14aは、復調されたパルス信号及び雑音を、分岐された一方のパルス信号及び雑音から抽出する。ここで、抽出された雑音もパルス化されている。第2スイッチ14aは、抽出されたパルス信号及び雑音を、減算器16に出力する。 The second switch 14a receives one of the branched pulse signals and noise from the brancher 13. The second switch 14a demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14a multiplies the one of the branched pulse signals and noise by 1 or 0 at switching intervals "t". In this way, the second switch 14a extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise. Here, the extracted noise is also pulsed. The second switch 14a outputs the extracted pulse signal and noise to the subtractor 16.

 第3スイッチ15aには、分岐された他方のパルス信号及び雑音が、分岐器13から入力される。第3スイッチ15aは、分岐された他方のパルス信号及び雑音を、オフとオンの高速スイッチングが繰り返される第2パターンで復調する。すなわち、第3スイッチ15aは、分岐された他方のパルス信号及び雑音に、スイッチング間隔「t」で、0又は1を乗算する。ここで、第3スイッチ15aの高速スイッチングがオフとなるタイミングは、第2スイッチ14aの高速スイッチングがオンとなるタイミングである。すなわち、第2パターンと第1パターンとでは、値(オンとオフ)が反転している。これによって、第3スイッチ15aは、分岐された他方のパルス信号及び雑音から、雑音を抽出する。ここで、抽出された雑音もパルス化されている。第2スイッチ14aは、抽出された雑音を、減算器16に出力する。 The other branched pulse signal and noise are input to the third switch 15a from the branching device 13. The third switch 15a demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching of off and on is repeated. That is, the third switch 15a multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t". Here, the timing when the high-speed switching of the third switch 15a turns off is the timing when the high-speed switching of the second switch 14a turns on. That is, the values (on and off) are inverted between the second pattern and the first pattern. As a result, the third switch 15a extracts noise from the other branched pulse signal and noise. Here, the extracted noise is also pulsed. The second switch 14a outputs the extracted noise to the subtractor 16.

 減算器16は、例えば、差動検出器(バランス検出器)である。減算器16は、第2スイッチ14aから出力されたパルス信号及び雑音と、第3スイッチ15aから出力された雑音との間の差に基づいて、第2スイッチ14aから出力されたパルス信号及び雑音のうちの雑音を低減させる処理を実行する。すなわち、減算器16は、第3スイッチ15aから出力された雑音を、第2スイッチ14aから出力されたパルス信号及び雑音から減算する。 The subtractor 16 is, for example, a differential detector (balanced detector). The subtractor 16 executes a process to reduce the noise in the pulse signal and noise output from the second switch 14a based on the difference between the pulse signal and noise output from the second switch 14a and the noise output from the third switch 15a. That is, the subtractor 16 subtracts the noise output from the third switch 15a from the pulse signal and noise output from the second switch 14a.

 減算器16は、雑音等の信号のタイミングをスイッチング間隔「t」だけ遅延させる遅延器(不図示)を備えてもよい。例えば、減算器16は、第3スイッチ15aから出力された雑音を遅延させる。減算器16は、この遅延された雑音と、第2スイッチ14aから出力されたパルス信号とに基づいて、第2スイッチ14aから出力されたパルス信号及び雑音のうちの雑音を低減させる処理を実行してもよい。すなわち、減算器16は、第2スイッチ14aから出力されたパルス信号及び雑音から、遅延された雑音を減算してもよい。 The subtractor 16 may include a delay (not shown) that delays the timing of a signal such as noise by the switching interval "t". For example, the subtractor 16 delays the noise output from the third switch 15a. Based on this delayed noise and the pulse signal output from the second switch 14a, the subtractor 16 may execute a process to reduce the noise in the pulse signal output from the second switch 14a and the noise. In other words, the subtractor 16 may subtract the delayed noise from the pulse signal and noise output from the second switch 14a.

 フィルタ17は、例えば、アンチエイリアシング・フィルタである。フィルタ17は、減算器16から入力されたパルス信号に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。フィルタ17は、所定の機能部(不図示)に、アナログ通信信号を出力してもよい。 Filter 17 is, for example, an anti-aliasing filter. Filter 17 performs anti-aliasing processing on the pulse signal input from subtractor 16, thereby converting the pulse signal back into an analog communication signal. Filter 17 may output the analog communication signal to a predetermined functional unit (not shown).

 図2は、第1実施形態における、雑音の低減処理(雑音推定)の例を示す図である。第2スイッチ出力100は、高速スイッチングのオンのタイミングで第2スイッチ14aから出力されたパルス信号である。第1パターンにおけるオンのタイミングでは、分岐された一方のパルス信号及び雑音に1が乗算されたので、第2スイッチ出力100には、パルス信号及び雑音が含まれている。 FIG. 2 is a diagram showing an example of noise reduction processing (noise estimation) in the first embodiment. The second switch output 100 is a pulse signal output from the second switch 14a at the on timing of the high-speed switching. At the on timing in the first pattern, one of the branched pulse signals and noise are multiplied by 1, so the second switch output 100 contains a pulse signal and noise.

 なお、上述のように、第2スイッチ14aの高速スイッチングがオン「1」となるタイミングは、第3スイッチ15aの高速スイッチングがオフ「0」となるタイミングである。 As mentioned above, the timing when the high-speed switching of the second switch 14a turns on ("1") is the timing when the high-speed switching of the third switch 15a turns off ("0").

 第3スイッチ出力101は、高速スイッチングのオフのタイミングで第3スイッチ15aから出力されたパルス信号である。第2パターンにおけるオフのタイミングでは(第1パターンにおけるオンのタイミングでは)、分岐された他方のパルス信号及び雑音に0が乗算されたので、第3スイッチ出力101には、パルス信号が含まれておらず、雑音のみが含まれている。 The third switch output 101 is a pulse signal output from the third switch 15a at the off timing of the high-speed switching. At the off timing in the second pattern (at the on timing in the first pattern), the other branched pulse signal and noise are multiplied by 0, so the third switch output 101 does not contain a pulse signal, but only noise.

 なお図2では、減算器16に備えられた遅延器(不図示)によって、第3スイッチ出力101は、第2スイッチ出力100に対してスイッチング間隔「t」だけ遅延している。 In FIG. 2, the third switch output 101 is delayed by the switching interval "t" from the second switch output 100 by a delay device (not shown) provided in the subtractor 16.

 スイッチング間隔「t」が十分に短い場合(スイッチングが高速である場合)、第2スイッチ出力100に含まれている雑音と、第3スイッチ出力101に含まれている雑音とには、相関がある。そこで、減算器16は、第2スイッチ出力100に含まれている雑音を、第2スイッチ出力100に含まれているパルス信号及び雑音から減算する。これによって、減算器16は、減算結果であるパルス信号のみを、フィルタ17に出力する。なお、分岐器13は、狭帯域化を実行するフィルタを備えてもよい。分岐器13は、第2スイッチ出力100に含まれている雑音と第3スイッチ出力101に含まれている雑音との相関が高くなるように、雑音源12から入力されたパルス信号の狭帯域化をフィルタ処理によって実行してもよい。狭帯域化を実行するフィルタは、雑音源12と分岐器13との間に備えられてもよい。 When the switching interval "t" is sufficiently short (when switching is fast), there is a correlation between the noise contained in the second switch output 100 and the noise contained in the third switch output 101. Therefore, the subtractor 16 subtracts the noise contained in the second switch output 100 from the pulse signal and noise contained in the second switch output 100. As a result, the subtractor 16 outputs only the pulse signal, which is the subtraction result, to the filter 17. The splitter 13 may be provided with a filter that performs band narrowing. The splitter 13 may perform band narrowing of the pulse signal input from the noise source 12 by filter processing so that the correlation between the noise contained in the second switch output 100 and the noise contained in the third switch output 101 becomes high. The filter that performs band narrowing may be provided between the noise source 12 and the splitter 13.

 次に、雑音低減装置10の動作例を説明する。
 図3は、第1実施形態における、雑音低減装置10の動作例を示すフローチャートである。第1スイッチ11aは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行する(ステップS101)。分岐器13は、雑音源12によって雑音が生じたパルス信号を分岐する(ステップS102)。第2スイッチ14aは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して、第1復調処理を実行する(ステップS103)。
Next, an example of the operation of the noise reduction device 10 will be described.
3 is a flowchart showing an example of the operation of the noise reduction device 10 in the first embodiment. The first switch 11a performs a modulation process on the analog communication signal based on the first pattern (step S101). The splitter 13 splits the pulse signal in which noise has been generated by the noise source 12 (step S102). The second switch 14a performs a first demodulation process on one of the split pulse signals and noise based on the first pattern (step S103).

 第3スイッチ15aは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して、第2復調処理を実行する(ステップS104)。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算する(ステップS105)。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する(ステップS106)。 The third switch 15a performs a second demodulation process on the other branched pulse signal and noise based on the second pattern (step S104). The subtractor 16 subtracts the extracted noise from one branched pulse signal and noise (step S105). The filter 17 restores the analog communication signal based on the restored pulse signal (step S106).

 以上のように、第1スイッチ11aは、所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。所定の速度(周波数)は、例えば、サンプリング定理に基づいて、通信システム1aにおけるアナログ通信信号の最大周波数帯域の2倍以上である。雑音源12は、パルス信号に雑音を加える。分岐器13は、雑音源12によって雑音が生じたパルス信号を、第2スイッチ14a及び第3スイッチ15aに分岐する。第2スイッチ14aは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第2パターンは、第1パターンのオンとオフが反転されたパターンである。第3スイッチ15aは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11a generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern in which switching between on and off is repeated at a predetermined speed. The predetermined speed (frequency) is, for example, more than twice the maximum frequency band of the analog communication signal in the communication system 1a based on the sampling theorem. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by the noise source 12 to the second switch 14a and the third switch 15a. The second switch 14a performs a first demodulation process on one of the split pulse signals and noise based on the first pattern. The second pattern is a pattern in which the on and off of the first pattern are inverted. The third switch 15a extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. Filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。特に、複数のユーザ端末(不図示)から送信された上りのアナログ通信信号が集約される集約局における流合雑音を低減することが可能である。光領域(光信号)だけでなく、電気領域(電気信号)でも雑音を低減することが可能である。送信信号の電力レベルを複雑に制御する必要がなく、且つ、その電力レベルの制御の即応性を確保する必要もないので、シンプルな構成で雑音を低減することが可能である。また、通信品質を向上させることが可能である。 This makes it possible to reduce noise that occurs in analog communication signals. In particular, it makes it possible to reduce inflow noise at an aggregation station where upstream analog communication signals transmitted from multiple user terminals (not shown) are aggregated. It is possible to reduce noise not only in the optical domain (optical signal) but also in the electrical domain (electrical signal). Since there is no need to control the power level of the transmitted signal in a complex manner, and there is no need to ensure responsiveness in controlling the power level, it is possible to reduce noise with a simple configuration. It is also possible to improve communication quality.

 (第2実施形態)
 第2実施形態では、張出局においてパルス信号に生じた雑音が低減される点が、第1実施形態との主な差分である。第2実施形態では、第1実施形態との差分を中心に説明する。
Second Embodiment
The second embodiment is different from the first embodiment mainly in that noise generated in the pulse signal at the base station is reduced. The second embodiment will be described focusing on the differences from the first embodiment.

 図4は、第2実施形態における、通信システム1bの構成例を示す図である。通信システム1bは、張出局2bと、集約局(不図示)とを備える。張出局2bは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、第1スイッチ11bと、受信信号増幅器12bと、分岐器13と、第2スイッチ14bと、第3スイッチ15bと、減算器16と、フィルタ17と、E/O変換器25とを備える。 FIG. 4 is a diagram showing an example of the configuration of a communication system 1b in the second embodiment. The communication system 1b includes a base station 2b and a central station (not shown). The base station 2b includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11b, a reception signal amplifier 12b, a splitter 13, a second switch 14b, a third switch 15b, a subtractor 16, a filter 17, and an E/O converter 25.

 通信システム1bは、第1スイッチ11bと、受信信号増幅器12bと、分岐器13と、第2スイッチ14bと、第3スイッチ15bと、減算器16と、フィルタ17とを、雑音低減装置として備える。受信信号増幅器12bは、第1実施形態に例示された通信システム1aの雑音源12に相当する。図4では、受信信号増幅器12b(雑音源)を挟むように、第1スイッチ11bと、第2スイッチ14b及び第3スイッチ15bの組み合わせとが配置されている。 The communication system 1b includes a first switch 11b, a received signal amplifier 12b, a splitter 13, a second switch 14b, a third switch 15b, a subtractor 16, and a filter 17 as noise reduction devices. The received signal amplifier 12b corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment. In FIG. 4, the combination of the first switch 11b and the second switch 14b and the third switch 15b is arranged to sandwich the received signal amplifier 12b (noise source).

 O/E変換器21には、光伝送路(光ファイバ)を介して、下りの光信号が集約局(不図示)から入力される。O/E変換器21は、下りの光信号を、下りのアナログ通信信号(電気信号)に変換する。O/E変換器21は、下りのアナログ通信信号を、送信信号増幅器22に出力する。 The O/E converter 21 receives a downstream optical signal from a central station (not shown) via an optical transmission path (optical fiber). The O/E converter 21 converts the downstream optical signal into a downstream analog communication signal (electrical signal). The O/E converter 21 outputs the downstream analog communication signal to the transmission signal amplifier 22.

 送信信号増幅器22は、下りのアナログ通信信号の強度を増幅する。送信信号増幅器22は、下りのアナログ通信信号を、送信信号として通信部24に出力する。 The transmission signal amplifier 22 amplifies the strength of the downstream analog communication signal. The transmission signal amplifier 22 outputs the downstream analog communication signal to the communication unit 24 as a transmission signal.

 アンテナ23は、1台以上のユーザ端末(不図示)から、上りの無線信号を受信する。アンテナ23は、受信された上りの無線信号に基づいて、上りのアナログ通信信号を生成する。アンテナ23は、上りのアナログ通信信号を、通信部24に出力する。 The antenna 23 receives upstream radio signals from one or more user terminals (not shown). The antenna 23 generates an upstream analog communication signal based on the received upstream radio signals. The antenna 23 outputs the upstream analog communication signal to the communication unit 24.

 アンテナ23は、下りのアナログ通信信号(送信信号)を、通信部24から取得する。アンテナ23は、下りのアナログ通信信号に基づく下りの無線信号を、所定のユーザ端末(不図示)に送信する。 The antenna 23 receives a downstream analog communication signal (transmission signal) from the communication unit 24. The antenna 23 transmits a downstream wireless signal based on the downstream analog communication signal to a specified user terminal (not shown).

 通信部24は、アナログ通信信号の送信及び受信を切り替える機能部(T/Rスイッチ)である。通信部24は、下りのアナログ通信信号(送信信号)を、送信信号増幅器22から取得する。通信部24は、下りのアナログ通信信号を、アンテナ23に出力する。 The communication unit 24 is a functional unit (T/R switch) that switches between transmitting and receiving analog communication signals. The communication unit 24 obtains a downstream analog communication signal (transmission signal) from the transmission signal amplifier 22. The communication unit 24 outputs the downstream analog communication signal to the antenna 23.

 通信部24は、上りのアナログ通信信号(受信信号)を、アンテナ23から取得する。通信部24は、上りのアナログ通信信号を、第1スイッチ11bに出力する。 The communication unit 24 receives an upstream analog communication signal (received signal) from the antenna 23. The communication unit 24 outputs the upstream analog communication signal to the first switch 11b.

 第1スイッチ11bは、変調用の高速スイッチングを実行する電気スイッチ(スイッチングデバイス)である。第1スイッチ11bは、例えば、MEMS(Micro Electro Mechanical Systems)スイッチ、PIN(Positive Intrinsic Negative)ダイオード、窒化ガリウム(GaN)トランジスタ、又は、相補性金属酸化膜半導体(CMOS: Complementary Metal Oxide Semiconductor)スイッチである。 The first switch 11b is an electrical switch (switching device) that performs high-speed switching for modulation. The first switch 11b is, for example, a Micro Electro Mechanical Systems (MEMS) switch, a Positive Intrinsic Negative (PIN) diode, a Gallium Nitride (GaN) transistor, or a Complementary Metal Oxide Semiconductor (CMOS) switch.

 第1スイッチ11bには、上りのアナログ通信信号が入力される。第1スイッチ11bは、入力されたアナログ通信信号を、オンとオフの高速スイッチングが繰り返される第1パターンで変調する。すなわち、第1スイッチ11bは、スイッチング間隔「t」で、アナログ通信信号に1又は0を乗算する。これによって、第1スイッチ11bは、上りのパルス信号(パルス化されたアナログ通信信号)を生成する。第1スイッチ11bは、生成された上りのパルス信号を、受信信号増幅器12bに出力する。 An upstream analog communication signal is input to the first switch 11b. The first switch 11b modulates the input analog communication signal with a first pattern in which rapid on-off switching is repeated. That is, the first switch 11b multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11b generates an upstream pulse signal (pulsed analog communication signal). The first switch 11b outputs the generated upstream pulse signal to the received signal amplifier 12b.

 受信信号増幅器12bは、上りのパルス信号の強度を増幅する。受信信号増幅器12bでは、第1スイッチ11bから入力されたパルス信号に、雑音が生じる。受信信号増幅器12bは、雑音が生じた上りのパルス信号を、受信信号として分岐器13に出力する。 The received signal amplifier 12b amplifies the strength of the upstream pulse signal. In the received signal amplifier 12b, noise is generated in the pulse signal input from the first switch 11b. The received signal amplifier 12b outputs the upstream pulse signal with noise generated as a received signal to the splitter 13.

 分岐器13には、雑音が生じた上りのパルス信号が、受信信号増幅器12bから入力される。すなわち、分岐器13には、パルス信号及び雑音が、受信信号増幅器12bから入力される。分岐器13は、入力されたパルス信号及び雑音を分岐する。分岐器13は、分岐された一方のパルス信号及び雑音を、第2スイッチ14bに出力する。分岐器13は、分岐された他方のパルス信号及び雑音を、第3スイッチ15bに出力する。 The upstream pulse signal containing noise is input to the splitter 13 from the received signal amplifier 12b. That is, the pulse signal and noise are input to the splitter 13 from the received signal amplifier 12b. The splitter 13 splits the input pulse signal and noise. The splitter 13 outputs one of the split pulse signals and noise to the second switch 14b. The splitter 13 outputs the other of the split pulse signals and noise to the third switch 15b.

 第2スイッチ14bは、復調用の電気スイッチである。第2スイッチ14bは、例えば、MEMSスイッチ、PINダイオード、窒化ガリウムトランジスタ、又は、相補性金属酸化膜半導体スイッチである。 The second switch 14b is an electrical switch for demodulation. The second switch 14b is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.

 第2スイッチ14bには、分岐された一方のパルス信号及び雑音が、分岐器13から入力される。第2スイッチ14bは、分岐された一方のパルス信号及び雑音を、オンとオフの高速スイッチングが繰り返される第1パターンで復調する。すなわち、第2スイッチ14bは、分岐された一方のパルス信号及び雑音に、スイッチング間隔「t」で、1又は0を乗算する。これによって、第2スイッチ14bは、復調されたパルス信号及び雑音を、分岐された一方のパルス信号及び雑音から抽出する。第2スイッチ14bは、抽出されたパルス信号及び雑音を、減算器16に出力する。 The second switch 14b receives one of the branched pulse signals and noise from the brancher 13. The second switch 14b demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. In other words, the second switch 14b multiplies the one of the branched pulse signals and noise by 1 or 0 at switching intervals "t". In this way, the second switch 14b extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise. The second switch 14b outputs the extracted pulse signal and noise to the subtractor 16.

 第3スイッチ15bは、復調用の電気スイッチである。第3スイッチ15bは、例えば、MEMSスイッチ、PINダイオード、窒化ガリウムトランジスタ、又は、相補性金属酸化膜半導体スイッチである。 The third switch 15b is an electrical switch for demodulation. The third switch 15b is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.

 第3スイッチ15bには、分岐された他方のパルス信号及び雑音が、分岐器13から入力される。第3スイッチ15bは、分岐された他方のパルス信号及び雑音を、オフとオンの高速スイッチングが繰り返される第2パターンで復調する。すなわち、第3スイッチ15bは、分岐された他方のパルス信号及び雑音に、スイッチング間隔「t」で、0又は1を乗算する。ここで、第3スイッチ15bの高速スイッチングがオフとなるタイミングは、第2スイッチ14bの高速スイッチングがオンとなるタイミングである。すなわち、第2パターンと第1パターンとでは、値が反転している。これによって、第3スイッチ15bは、分岐された他方のパルス信号及び雑音から、雑音を抽出する。第2スイッチ14bは、抽出された雑音を、減算器16に出力する。 The other branched pulse signal and noise are input to the third switch 15b from the splitter 13. The third switch 15b demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15b multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t". Here, the timing when the high-speed switching of the third switch 15b turns off is the timing when the high-speed switching of the second switch 14b turns on. That is, the values are inverted between the second pattern and the first pattern. As a result, the third switch 15b extracts noise from the other branched pulse signal and noise. The second switch 14b outputs the extracted noise to the subtractor 16.

 減算器16は、第3スイッチ15bから出力された雑音を、第2スイッチ14bから出力されたパルス信号及び雑音から減算する。フィルタ17は、減算器16から入力されたパルス信号に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。フィルタ17は、アナログ通信信号をE/O変換器25に出力する。 The subtractor 16 subtracts the noise output from the third switch 15b from the pulse signal and noise output from the second switch 14b. The filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16 to return the pulse signal to an analog communication signal. The filter 17 outputs the analog communication signal to the E/O converter 25.

 E/O変換器25には、上りのアナログ通信信号(電気信号)が、フィルタ17から入力される。E/O変換器25は、上りのアナログ通信信号を、上りの光信号に変換する。E/O変換器25は、上りのアナログ通信信号を、光伝送路(光ファイバ)を介して、集約局(不図示)に送信する。 The E/O converter 25 receives an upstream analog communication signal (electrical signal) from the filter 17. The E/O converter 25 converts the upstream analog communication signal into an upstream optical signal. The E/O converter 25 transmits the upstream analog communication signal to a central station (not shown) via an optical transmission path (optical fiber).

 以上のように、第1スイッチ11bは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12bによって雑音が生じたパルス信号を、第2スイッチ14b及び第3スイッチ15bに分岐する。第2スイッチ14bは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15bは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11b generates a pulse signal by performing modulation processing on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by the received signal amplifier 12b to the second switch 14b and the third switch 15b. The second switch 14b performs a first demodulation processing on one of the split pulse signals and noise based on the first pattern. The third switch 15b extracts noise from the other of the split pulse signals and noise by performing a second demodulation processing on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。また、張出局2bにおいて雑音の低減処理が完結しているので、第2スイッチ14bと第3スイッチ15bとの同期が容易である。 This makes it possible to reduce noise that occurs in the analog communication signal. In addition, since the noise reduction process is completed at the base station 2b, it is easy to synchronize the second switch 14b and the third switch 15b.

 (第3実施形態)
 第3実施形態では、張出局及び集約局の間の光伝送路(アナログRoFの区間)においてパルス信号に生じた雑音が低減される点が、第2実施形態との主な差分である。第3実施形態では、第2実施形態との差分を中心に説明する。
Third Embodiment
The third embodiment is mainly different from the second embodiment in that noise generated in a pulse signal in an optical transmission path (analog RoF section) between a base station and a central station is reduced. The third embodiment will be described focusing on the differences from the second embodiment.

 図5は、第3実施形態における、通信システム1cの構成例を示す図である。通信システム1cは、張出局2cと、集約局3cとを備える。張出局2cは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、受信信号増幅器12cと、E/O変換器25と、第1スイッチ11cと、光伝送路26とを備える。集約局3cは、E/O変換器31と、分岐器13と、第2スイッチ14cと、第3スイッチ15cと、減算器16と、フィルタ17とを備える。 FIG. 5 is a diagram showing an example of the configuration of a communication system 1c in the third embodiment. The communication system 1c includes a base station 2c and a central station 3c. The base station 2c includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a reception signal amplifier 12c, an E/O converter 25, a first switch 11c, and an optical transmission path 26. The central station 3c includes an E/O converter 31, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, and a filter 17.

 通信システム1cは、第1スイッチ11cと、分岐器13と、第2スイッチ14cと、第3スイッチ15cと、減算器16と、フィルタ17と、光伝送路26とを、雑音低減装置として備える。光伝送路26は、第1実施形態に例示された通信システム1aの雑音源12に相当する。図5では、光伝送路26(雑音源)を挟むように、第1スイッチ11cと、第2スイッチ14c及び第3スイッチ15cの組み合わせとが配置されている。 The communication system 1c includes a first switch 11c, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, a filter 17, and an optical transmission path 26 as a noise reduction device. The optical transmission path 26 corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment. In FIG. 5, the first switch 11c and the combination of the second switch 14c and the third switch 15c are arranged on either side of the optical transmission path 26 (noise source).

 通信部24は、下りのアナログ通信信号(送信信号)を、送信信号増幅器22から取得する。通信部24は、下りのアナログ通信信号を、アンテナ23に出力する。通信部24は、上りのアナログ通信信号(受信信号)を、アンテナ23から取得する。通信部24は、上りのアナログ通信信号を、受信信号増幅器12cに出力する。 The communication unit 24 acquires a downstream analog communication signal (transmission signal) from the transmission signal amplifier 22. The communication unit 24 outputs the downstream analog communication signal to the antenna 23. The communication unit 24 acquires an upstream analog communication signal (reception signal) from the antenna 23. The communication unit 24 outputs the upstream analog communication signal to the reception signal amplifier 12c.

 受信信号増幅器12cは、上りのアナログ通信信号の強度を増幅する。受信信号増幅器12cでは、通信部24から入力されたアナログ通信信号に、雑音が生じる。受信信号増幅器12cは、上りのアナログ通信信号を、受信信号としてE/O変換器25に出力する。 The received signal amplifier 12c amplifies the strength of the upstream analog communication signal. In the received signal amplifier 12c, noise is generated in the analog communication signal input from the communication unit 24. The received signal amplifier 12c outputs the upstream analog communication signal to the E/O converter 25 as a received signal.

 E/O変換器25には、上りのアナログ通信信号(電気信号)が、受信信号増幅器12cから入力される。E/O変換器25は、上りのアナログ通信信号を、上りの光信号に変換する。E/O変換器25は、上りのアナログ通信信号を、第1スイッチ11cに出力する。 The E/O converter 25 receives an upstream analog communication signal (electrical signal) from the received signal amplifier 12c. The E/O converter 25 converts the upstream analog communication signal into an upstream optical signal. The E/O converter 25 outputs the upstream analog communication signal to the first switch 11c.

 第1スイッチ11cは、変調用の高速スイッチングを実行する光スイッチ(スイッチングデバイス)である。第1スイッチ11cには、上りのアナログ通信信号が入力される。第1スイッチ11cは、入力されたアナログ通信信号を、オンとオフの高速スイッチングが繰り返される第1パターンで変調する。すなわち、第1スイッチ11cは、スイッチング間隔「t」で、アナログ通信信号に1又は0を乗算する。これによって、第1スイッチ11cは、上りのパルス信号(パルス化されたアナログ通信信号)を生成する。第1スイッチ11cは、生成された上りのパルス信号を、光伝送路26に送信する。光伝送路26は、上りのパルス信号を、分岐器13に伝送する。 The first switch 11c is an optical switch (switching device) that performs high-speed switching for modulation. An upstream analog communication signal is input to the first switch 11c. The first switch 11c modulates the input analog communication signal with a first pattern in which high-speed on-off switching is repeated. That is, the first switch 11c multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11c generates an upstream pulse signal (pulsed analog communication signal). The first switch 11c transmits the generated upstream pulse signal to the optical transmission path 26. The optical transmission path 26 transmits the upstream pulse signal to the splitter 13.

 分岐器13には、雑音が生じたパルス信号が、光伝送路26を介して、第1スイッチ11cから入力される。すなわち、分岐器13には、パルス信号及び雑音が、第1スイッチ11cから入力される。分岐器13は、入力されたパルス信号及び雑音を分岐する。分岐器13は、分岐された他方のパルス信号及び雑音を、第2スイッチ14cに出力する。分岐器13は、分岐された他方のパルス信号及び雑音を、第3スイッチ15cに出力する。 The splitter 13 receives a pulse signal containing noise from the first switch 11c via the optical transmission path 26. That is, the pulse signal and noise are input to the splitter 13 from the first switch 11c. The splitter 13 splits the input pulse signal and noise. The splitter 13 outputs the other split pulse signal and noise to the second switch 14c. The splitter 13 outputs the other split pulse signal and noise to the third switch 15c.

 第2スイッチ14cは、復調用の光スイッチである。第2スイッチ14cは、例えば、OEO(Optical-Electro-Optical)方式の光スイッチでもよいし、OOO(Optical-Optical-Optical)方式の光スイッチでもよい。OOO方式は、例えば、メカニカル方式、MEMS方式、導波路型の熱光学方式、又は、導波路型のチタン酸ジルコン酸ランタン鉛(PLZT: PbLaZrTiO3)方式のいずれでもよい。 The second switch 14c is an optical switch for demodulation. The second switch 14c may be, for example, an OEO (Optical-Electro-Optical) type optical switch, or an OOO (Optical-Optical-Optical) type optical switch. The OOO type may be, for example, any of a mechanical type, a MEMS type, a waveguide type thermo-optical type, and a waveguide type lead lanthanum zirconate titanate (PLZT: PbLaZrTiO3) type.

 第2スイッチ14cには、分岐された一方のパルス信号及び雑音が、分岐器13から入力される。第2スイッチ14cは、分岐された一方のパルス信号及び雑音を、オンとオフの高速スイッチングが繰り返される第1パターンで復調する。すなわち、第2スイッチ14cは、分岐された一方のパルス信号及び雑音に、スイッチング間隔「t」で、1又は0を乗算する。これによって、第2スイッチ14bは、復調されたパルス信号及び雑音を、分岐された一方のパルス信号及び雑音から抽出する。第2スイッチ14cは、抽出されたパルス信号及び雑音を、減算器16に出力する。 The second switch 14c receives one of the branched pulse signals and noise from the branching device 13. The second switch 14c demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14c multiplies the one of the branched pulse signals and noise by 1 or 0 at a switching interval "t". In this way, the second switch 14b extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise. The second switch 14c outputs the extracted pulse signal and noise to the subtractor 16.

 第3スイッチ15cは、復調用の光スイッチである。第3スイッチ15cは、例えば、OEO方式の光スイッチでもよいし、OOO方式の光スイッチでもよい。 The third switch 15c is an optical switch for demodulation. The third switch 15c may be, for example, an OEO type optical switch or an OOO type optical switch.

 第3スイッチ15cには、分岐された他方のパルス信号及び雑音が、分岐器13から入力される。第3スイッチ15cは、分岐された他方のパルス信号及び雑音を、オフとオンの高速スイッチングが繰り返される第2パターンで復調する。すなわち、第3スイッチ15cは、分岐された他方のパルス信号及び雑音に、スイッチング間隔「t」で、0又は1を乗算する。ここで、第3スイッチ15cの高速スイッチングがオフとなるタイミングは、第2スイッチ14cの高速スイッチングがオンとなるタイミングである。すなわち、第2パターンと第1パターンとでは、値が反転している。これによって、第3スイッチ15cは、分岐された他方のパルス信号及び雑音から、雑音を抽出する。第2スイッチ14cは、抽出された雑音を、減算器16に出力する。 The other branched pulse signal and noise are input to the third switch 15c from the splitter 13. The third switch 15c demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15c multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t". Here, the timing when the high-speed switching of the third switch 15c turns off is the timing when the high-speed switching of the second switch 14c turns on. That is, the values are inverted between the second pattern and the first pattern. As a result, the third switch 15c extracts noise from the other branched pulse signal and noise. The second switch 14c outputs the extracted noise to the subtractor 16.

 減算器16は、例えば、PINフォトダイオードを有する差動増幅器(Differential amplifier)である。減算器16は、第2スイッチ14aから出力されたパルス信号及び雑音と、第3スイッチ15aから出力された雑音との間の差に基づいて、第2スイッチ14aから出力されたパルス信号及び雑音のうちの雑音を低減させる処理を実行する。すなわち、減算器16は、第3スイッチ15aから出力された雑音を、第2スイッチ14aから出力されたパルス信号及び雑音から減算する。また、減算器16は、パルス信号(光信号)を、パルス信号(電気信号)に変換する。 The subtractor 16 is, for example, a differential amplifier having a PIN photodiode. The subtractor 16 executes a process to reduce the noise in the pulse signal and noise output from the second switch 14a based on the difference between the pulse signal and noise output from the second switch 14a and the noise output from the third switch 15a. In other words, the subtractor 16 subtracts the noise output from the third switch 15a from the pulse signal and noise output from the second switch 14a. The subtractor 16 also converts the pulse signal (optical signal) into a pulse signal (electrical signal).

 フィルタ17は、減算器16から入力されたパルス信号(電気信号)に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。 The filter 17 performs anti-aliasing processing on the pulse signal (electrical signal) input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal.

 以上のように、第1スイッチ11cは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12c等の雑音源によって雑音が生じたパルス信号を、第2スイッチ14c及び第3スイッチ15cに分岐する。第2スイッチ14cは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15cは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11c generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12c to the second switch 14c and the third switch 15c. The second switch 14c performs a first demodulation process on one of the split pulse signals and noise based on the first pattern. The third switch 15c extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。 This makes it possible to reduce noise in analog communication signals.

 (第4実施形態)
 第4実施形態では、アナログRoFの区間を含む伝送路で生じた雑音が低減される点が、第2実施形態との主な差分である。第4実施形態では、第2実施形態との差分を中心に説明する。
Fourth Embodiment
The fourth embodiment is different from the second embodiment in that noise generated in a transmission path including an analog RoF section is reduced. The fourth embodiment will be described focusing on the differences from the second embodiment.

 図6は、第4実施形態における、通信システム1dの構成例を示す図である。通信システム1dは、張出局2dと、集約局3dとを備える。張出局2dは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、第1スイッチ11dと、受信信号増幅器12dと、E/O変換器25と、光伝送路26とを備える。 FIG. 6 is a diagram showing an example of the configuration of a communication system 1d in the fourth embodiment. The communication system 1d includes a base station 2d and a central station 3d. The base station 2d includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11d, a reception signal amplifier 12d, an E/O converter 25, and an optical transmission path 26.

 集約局3dは、E/O変換器31と、O/E変換器32と、分岐器13と、第2スイッチ14cと、第3スイッチ15cと、減算器16と、フィルタ17とを備える。 The aggregation station 3d includes an E/O converter 31, an O/E converter 32, a splitter 13, a second switch 14c, a third switch 15c, a subtractor 16, and a filter 17.

 受信信号増幅器12dと、E/O変換器25と、光伝送路26と、O/E変換器32とは、第1実施形態に例示された通信システム1aの雑音源12に相当する。図6では、受信信号増幅器12dと、E/O変換器25と、光伝送路26と、O/E変換器32との雑音源を挟むように、第1スイッチ11dと、第2スイッチ14d及び第3スイッチ15dの組み合わせとが配置されている。 The received signal amplifier 12d, the E/O converter 25, the optical transmission path 26, and the O/E converter 32 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment. In FIG. 6, a combination of a first switch 11d, a second switch 14d, and a third switch 15d is arranged to sandwich the noise sources of the received signal amplifier 12d, the E/O converter 25, the optical transmission path 26, and the O/E converter 32.

 第1スイッチ11dには、上りのアナログ通信信号が入力される。第1スイッチ11dは、入力されたアナログ通信信号を、オンとオフの高速スイッチングが繰り返される第1パターンで変調する。すなわち、第1スイッチ11dは、スイッチング間隔「t」で、アナログ通信信号に1又は0を乗算する。これによって、第1スイッチ11dは、上りのパルス信号(パルス化されたアナログ通信信号)を生成する。第1スイッチ11dは、生成された上りのパルス信号を、受信信号増幅器12dに出力する。 An upstream analog communication signal is input to the first switch 11d. The first switch 11d modulates the input analog communication signal with a first pattern in which rapid on-off switching is repeated. That is, the first switch 11d multiplies the analog communication signal by 1 or 0 at switching intervals "t". In this way, the first switch 11d generates an upstream pulse signal (pulsed analog communication signal). The first switch 11d outputs the generated upstream pulse signal to the received signal amplifier 12d.

 受信信号増幅器12dは、上りのパルス信号の強度を増幅する。受信信号増幅器12dでは、第1スイッチ11dから入力されたパルス信号に、雑音が生じる。受信信号増幅器12dは、雑音が生じた上りのパルス信号を、受信信号としてE/O変換器25に出力する。 The received signal amplifier 12d amplifies the strength of the upstream pulse signal. In the received signal amplifier 12d, noise is generated in the pulse signal input from the first switch 11d. The received signal amplifier 12d outputs the upstream pulse signal with noise generated as a received signal to the E/O converter 25.

 E/O変換器25には、雑音が生じた上りのパルス信号が、受信信号増幅器12dから入力される。すなわち、E/O変換器25には、パルス信号及び雑音が、受信信号増幅器12dから入力される。E/O変換器25は、雑音が生じた上りのパルス信号を、雑音が生じた上りの光信号に変換する。E/O変換器25は、雑音が生じた上りの光信号を、光伝送路26を介して、O/E変換器32に送信する。光伝送路26は、雑音が生じた上りの光信号を、O/E変換器32に伝送する。 The E/O converter 25 receives an upstream pulse signal containing noise from the received signal amplifier 12d. That is, the E/O converter 25 receives a pulse signal and noise from the received signal amplifier 12d. The E/O converter 25 converts the upstream pulse signal containing noise into an upstream optical signal containing noise. The E/O converter 25 transmits the upstream optical signal containing noise to the O/E converter 32 via the optical transmission path 26. The optical transmission path 26 transmits the upstream optical signal containing noise to the O/E converter 32.

 O/E変換器32には、光伝送路26を介して、上りの光信号がE/O変換器25から入力される。O/E変換器32は、上りの光信号を、上りのパルス信号(電気信号)に変換する。O/E変換器32は、上りのパルス信号を、分岐器13に出力する。 The O/E converter 32 receives an upstream optical signal from the E/O converter 25 via the optical transmission path 26. The O/E converter 32 converts the upstream optical signal into an upstream pulse signal (electrical signal). The O/E converter 32 outputs the upstream pulse signal to the splitter 13.

 分岐器13には、雑音が生じた上りのパルス信号が、O/E変換器32から入力される。すなわち、分岐器13には、パルス信号及び雑音が、O/E変換器32から入力される。分岐器13は、入力されたパルス信号及び雑音を分岐する。分岐器13は、分岐された一方のパルス信号及び雑音を、第2スイッチ14dに出力する。分岐器13は、分岐された他方のパルス信号及び雑音を、第3スイッチ15dに出力する。 The upstream pulse signal containing noise is input to the splitter 13 from the O/E converter 32. That is, the pulse signal and noise are input to the splitter 13 from the O/E converter 32. The splitter 13 splits the input pulse signal and noise. The splitter 13 outputs one of the split pulse signals and noise to the second switch 14d. The splitter 13 outputs the other of the split pulse signals and noise to the third switch 15d.

 フィルタ17は、減算器16から入力されたパルス信号に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。 The filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal.

 以上のように、第1スイッチ11dは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12d等の雑音源によって雑音が生じたパルス信号を、第2スイッチ14d及び第3スイッチ15dに分岐する。第2スイッチ14dは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15dは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11d generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12d to the second switch 14d and the third switch 15d. The second switch 14d performs a first demodulation process on one of the split pulse signals and noise based on the first pattern. The third switch 15d extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。また、張出局2dの受信信号増幅器12dから集約局3dのO/E変換器32までの上り伝送区間に生じる雑音を低減することが可能である。 This makes it possible to reduce noise that occurs in the analog communication signal. It also makes it possible to reduce noise that occurs in the upstream transmission section from the receiving signal amplifier 12d of the base station 2d to the O/E converter 32 of the aggregation station 3d.

 (第5実施形態)
 第5実施形態では、複数の張出局を通信システムが備える点が、第2実施形態との主な差分である。第5実施形態では、第2実施形態との差分を中心に説明する。
Fifth Embodiment
The fifth embodiment is mainly different from the second embodiment in that the communication system includes a plurality of base stations. The fifth embodiment will be described focusing on the differences from the second embodiment.

 図7は、第5実施形態における、通信システム1eの構成例を示す図である。通信システム1eは、複数の張出局2eと、集約局(不図示)とを備える。図7では、通信システム1eは、複数の張出局2eの一例として、2台の張出局2eを備える。複数の張出局2eと、集約局(不図示)とは、単一周波数ネットワーク(SFN: Single-Frequency-Network)を構成してもよい。通信システム1eは、O/E変換器32を張出局2eごとに備える。通信システム1eは、合波器33と、BBU34(BBU: Baseband Unit)とを備える。O/E変換器32と、合波器33と、BBU34とは、例えば、集約局(不図示)に備えられる。 FIG. 7 is a diagram showing an example of the configuration of a communication system 1e in the fifth embodiment. The communication system 1e includes multiple base stations 2e and a central station (not shown). In FIG. 7, the communication system 1e includes two base stations 2e as an example of multiple base stations 2e. The multiple base stations 2e and the central station (not shown) may form a single-frequency network (SFN: Single-Frequency-Network). The communication system 1e includes an O/E converter 32 for each base station 2e. The communication system 1e includes a multiplexer 33 and a BBU 34 (BBU: Baseband Unit). The O/E converter 32, the multiplexer 33, and the BBU 34 are provided, for example, in the central station (not shown).

 張出局2eは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、第1スイッチ11eと、受信信号増幅器12eと、分岐器13と、第2スイッチ14eと、第3スイッチ15eと、減算器16と、フィルタ17と、E/O変換器25とを備える。 The base station 2e includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11e, a reception signal amplifier 12e, a splitter 13, a second switch 14e, a third switch 15e, a subtractor 16, a filter 17, and an E/O converter 25.

 張出局2eは、第1スイッチ11eと、受信信号増幅器12eと、分岐器13と、第2スイッチ14eと、第3スイッチ15eと、減算器16と、フィルタ17とを、雑音低減装置として備える。受信信号増幅器12eは、第1実施形態に例示された通信システム1aの雑音源12に相当する。第5実施形態では、張出局2eにおいて雑音の低減処理が完結しているので、張出局2e同士でスイッチングが同期されていなくてもよい。 The base station 2e includes a first switch 11e, a received signal amplifier 12e, a splitter 13, a second switch 14e, a third switch 15e, a subtractor 16, and a filter 17 as noise reduction devices. The received signal amplifier 12e corresponds to the noise source 12 of the communication system 1a illustrated in the first embodiment. In the fifth embodiment, since the noise reduction process is completed in the base station 2e, switching does not need to be synchronized between the base stations 2e.

 E/O変換器25には、上りのアナログ通信信号(電気信号)が、フィルタ17から入力される。E/O変換器25は、上りのアナログ通信信号を、上りの光信号に変換する。E/O変換器25は、上りのアナログ通信信号を、光伝送路(光ファイバ)を介して、O/E変換器32に送信する。 The E/O converter 25 receives an upstream analog communication signal (electrical signal) from the filter 17. The E/O converter 25 converts the upstream analog communication signal into an upstream optical signal. The E/O converter 25 transmits the upstream analog communication signal to the O/E converter 32 via an optical transmission path (optical fiber).

 O/E変換器32には、光伝送路を介して、上りの光信号がE/O変換器25から入力される。O/E変換器32は、上りの光信号を、上りのアナログ通信信号(電気信号)に変換する。O/E変換器32は、上りのアナログ通信信号を、合波器33に出力する。 The O/E converter 32 receives an upstream optical signal from the E/O converter 25 via the optical transmission path. The O/E converter 32 converts the upstream optical signal into an upstream analog communication signal (electrical signal). The O/E converter 32 outputs the upstream analog communication signal to the multiplexer 33.

 合波器33は、複数のO/E変換器32から送信された上りのアナログ通信信号を合波する。合波器33は、合波された上りのアナログ通信信号を、BBU34に出力する。 The multiplexer 33 multiplexes the upstream analog communication signals transmitted from the multiple O/E converters 32. The multiplexer 33 outputs the multiplexed upstream analog communication signal to the BBU 34.

 BBU34は、ベースバンド装置である。BBU34は、合波された上りのアナログ通信信号に対して、所定のベースバンド処理を実行する。BBU34は、下りのアナログ通信信号に対して、所定のベースバンド処理を実行してもよい。 The BBU 34 is a baseband device. The BBU 34 performs a predetermined baseband processing on the combined upstream analog communication signal. The BBU 34 may also perform a predetermined baseband processing on the downstream analog communication signal.

 以上のように、第1スイッチ11eは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12e等の雑音源によって雑音が生じたパルス信号を、第2スイッチ14e及び第3スイッチ15eに分岐する。第2スイッチ14eは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15eは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11e generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12e to the second switch 14e and the third switch 15e. The second switch 14e performs a first demodulation process on one of the split pulse signals and noise based on the first pattern. The third switch 15e extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。 This makes it possible to reduce noise in analog communication signals.

 (第6実施形態)
 第6実施形態では、複数の張出局を通信システムが備える点が、第4実施形態との主な差分である。また、第6実施形態では、張出局内の第1スイッチと、この第1スイッチに集約局内において対応する第2スイッチ及び第3スイッチとが同期する点が、第5実施形態との主な差分である。第6実施形態では、第4実施形態及び第5実施形態との差分を中心に説明する。
Sixth Embodiment
The sixth embodiment is mainly different from the fourth embodiment in that the communication system includes a plurality of base stations. Also, the sixth embodiment is mainly different from the fifth embodiment in that a first switch in the base station is synchronized with a second switch and a third switch corresponding to the first switch in the central station. The sixth embodiment will be described focusing on the differences from the fourth and fifth embodiments.

 図8は、第6実施形態における、通信システム1fの構成例を示す図である。通信システム1fは、複数の張出局2fと、集約局3fと、BBU34とを備える。図8では、通信システム1fは、複数の張出局2fの一例として、2台の張出局2fを備える。張出局2fは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、第1スイッチ11fと、受信信号増幅器12fと、E/O変換器25と、光伝送路26とを備える。 FIG. 8 is a diagram showing an example of the configuration of a communication system 1f in the sixth embodiment. The communication system 1f includes a plurality of base stations 2f, a central station 3f, and a BBU 34. In FIG. 8, the communication system 1f includes two base stations 2f as an example of a plurality of base stations 2f. The base station 2f includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11f, a reception signal amplifier 12f, an E/O converter 25, and an optical transmission path 26.

 集約局3fは、E/O変換器31と、O/E変換器32と、分岐器13と、第2スイッチ14fと、第3スイッチ15fと、減算器16と、フィルタ17とを、張出局2fごとに備える。集約局3fは、合波器33を備える。 The aggregation station 3f includes an E/O converter 31, an O/E converter 32, a splitter 13, a second switch 14f, a third switch 15f, a subtractor 16, and a filter 17 for each of the base stations 2f. The aggregation station 3f includes a multiplexer 33.

 受信信号増幅器12fと、E/O変換器25と、光伝送路26と、O/E変換器32とは、第1実施形態に例示された通信システム1aの雑音源12に相当する。 The received signal amplifier 12f, the E/O converter 25, the optical transmission path 26, and the O/E converter 32 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment.

 フィルタ17は、減算器16から入力されたパルス信号に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。フィルタ17は、上りのアナログ通信信号を、合波器33に出力する。合波器33は、複数のフィルタ17から送信された上りのアナログ通信信号を合波する。合波器33は、合波された上りのアナログ通信信号を、BBU34に出力する。 The filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16, thereby converting the pulse signal back into an analog communication signal. The filter 17 outputs the upstream analog communication signal to the multiplexer 33. The multiplexer 33 multiplexes the upstream analog communication signals transmitted from multiple filters 17. The multiplexer 33 outputs the combined upstream analog communication signal to the BBU 34.

 以上のように、第1スイッチ11fは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12f等の雑音源によって雑音が生じたパルス信号を、第2スイッチ14f及び第3スイッチ15fに分岐する。第2スイッチ14fは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15fは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11f generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12f to the second switch 14f and the third switch 15f. The second switch 14f performs a first demodulation process on one of the split pulse signals and noise based on the first pattern. The third switch 15f extracts noise from the other of the split pulse signals and noise by performing a second demodulation process on the other of the split pulse signals and noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。 This makes it possible to reduce noise in analog communication signals.

 (第7実施形態)
 第7実施形態では、複数の張出局に対して、第2スイッチ及び第3スイッチの単一の組み合わせが集約局に備えられる点が、第6実施形態との主な差分の一つである。また、第6実施形態では、複数の張出局の各第1スイッチと、集約局の第2スイッチ及び第3スイッチとが同期する点が、第6実施形態との主な差分の一つである。第7実施形態では、第6実施形態との差分を中心に説明する。
Seventh Embodiment
In the seventh embodiment, one of the main differences from the sixth embodiment is that a single combination of the second switch and the third switch is provided in the central station for a plurality of base stations. In addition, in the sixth embodiment, one of the main differences from the sixth embodiment is that each of the first switches in the plurality of base stations is synchronized with the second switch and the third switch in the central station. In the seventh embodiment, the differences from the sixth embodiment will be mainly described.

 図9は、第7実施形態における、通信システム1gの構成例を示す図である。通信システム1gは、複数の張出局2gと、集約局3gとを備える。図9では、通信システム1gは、複数の張出局2gの一例として、2台の張出局2gを備える。張出局2gは、O/E変換器21と、送信信号増幅器22と、アンテナ23と、通信部24と、第1スイッチ11gと、受信信号増幅器12gと、E/O変換器25と、光伝送路26とを備える。 FIG. 9 is a diagram showing an example of the configuration of a communication system 1g in the seventh embodiment. The communication system 1g includes a plurality of base stations 2g and a central station 3g. In FIG. 9, the communication system 1g includes two base stations 2g as an example of a plurality of base stations 2g. The base station 2g includes an O/E converter 21, a transmission signal amplifier 22, an antenna 23, a communication unit 24, a first switch 11g, a reception signal amplifier 12g, an E/O converter 25, and an optical transmission path 26.

 集約局3gは、E/O変換器31と、O/E変換器32とを、張出局2gごとに備える。集約局3gは、合波器33と、分岐器13と、第2スイッチ14gと、第3スイッチ15gと、減算器16と、フィルタ17と、BBU34とを備える。 The aggregation station 3g includes an E/O converter 31 and an O/E converter 32 for each base station 2g. The aggregation station 3g includes a multiplexer 33, a splitter 13, a second switch 14g, a third switch 15g, a subtractor 16, a filter 17, and a BBU 34.

 受信信号増幅器12gと、E/O変換器25と、光伝送路26と、O/E変換器32と、合波器33とは、第1実施形態に例示された通信システム1aの雑音源12に相当する。 The received signal amplifier 12g, the E/O converter 25, the optical transmission path 26, the O/E converter 32, and the multiplexer 33 correspond to the noise source 12 of the communication system 1a illustrated in the first embodiment.

 O/E変換器32には、光伝送路26を介して、上りの光信号がE/O変換器25から入力される。O/E変換器32は、上りの光信号を、上りのパルス信号(電気信号)に変換する。O/E変換器32は、上りのパルス信号を、合波器33に出力する。 The upstream optical signal is input to the O/E converter 32 from the E/O converter 25 via the optical transmission path 26. The O/E converter 32 converts the upstream optical signal into an upstream pulse signal (electrical signal). The O/E converter 32 outputs the upstream pulse signal to the multiplexer 33.

 合波器33は、複数のO/E変換器32から送信された上りのアナログ通信信号を合波する。合波器33は、合波された上りのアナログ通信信号を、分岐器13に出力する。 The multiplexer 33 multiplexes the upstream analog communication signals transmitted from the multiple O/E converters 32. The multiplexer 33 outputs the multiplexed upstream analog communication signal to the splitter 13.

 分岐器13には、雑音が生じた上りのパルス信号が、合波器33から入力される。すなわち、分岐器13には、パルス信号及び雑音が、合波器33から入力される。分岐器13は、入力されたパルス信号及び雑音を分岐する。分岐器13は、分岐された一方のパルス信号及び雑音を、第2スイッチ14gに出力する。分岐器13は、分岐された他方のパルス信号及び雑音を、第3スイッチ15gに出力する。 The upstream pulse signal containing noise is input to the splitter 13 from the multiplexer 33. That is, the pulse signal and noise are input to the splitter 13 from the multiplexer 33. The splitter 13 splits the input pulse signal and noise. The splitter 13 outputs one of the split pulse signals and noise to the second switch 14g. The splitter 13 outputs the other of the split pulse signals and noise to the third switch 15g.

 第2スイッチ14gは、復調用の電気スイッチである。第2スイッチ14gは、例えば、MEMSスイッチ、PINダイオード、窒化ガリウムトランジスタ、又は、相補性金属酸化膜半導体スイッチである。 The second switch 14g is an electrical switch for demodulation. The second switch 14g is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.

 第2スイッチ14gには、分岐された一方のパルス信号及び雑音が、分岐器13から入力される。第2スイッチ14gは、分岐された一方のパルス信号及び雑音を、オンとオフの高速スイッチングが繰り返される第1パターンで復調する。すなわち、第2スイッチ14gは、分岐された一方のパルス信号及び雑音に、スイッチング間隔「t」で、1又は0を乗算する。これによって、第2スイッチ14gは、復調されたパルス信号及び雑音を、分岐された一方のパルス信号及び雑音から抽出する。第2スイッチ14gは、抽出されたパルス信号及び雑音を、減算器16に出力する。 The second switch 14g receives one of the branched pulse signals and noise from the brancher 13. The second switch 14g demodulates the one of the branched pulse signals and noise in a first pattern in which high-speed on-off switching is repeated. That is, the second switch 14g multiplies the one of the branched pulse signals and noise by 1 or 0 at a switching interval "t". In this way, the second switch 14g extracts the demodulated pulse signal and noise from the one of the branched pulse signals and noise. The second switch 14g outputs the extracted pulse signal and noise to the subtractor 16.

 第3スイッチ15gは、復調用の電気スイッチである。第3スイッチ15gは、例えば、MEMSスイッチ、PINダイオード、窒化ガリウムトランジスタ、又は、相補性金属酸化膜半導体スイッチである。 The third switch 15g is an electrical switch for demodulation. The third switch 15g is, for example, a MEMS switch, a PIN diode, a gallium nitride transistor, or a complementary metal oxide semiconductor switch.

 第3スイッチ15gには、分岐された他方のパルス信号及び雑音が、分岐器13から入力される。第3スイッチ15gは、分岐された他方のパルス信号及び雑音を、オフとオンの高速スイッチングが繰り返される第2パターンで復調する。すなわち、第3スイッチ15gは、分岐された他方のパルス信号及び雑音に、スイッチング間隔「t」で、0又は1を乗算する。ここで、第3スイッチ15gの高速スイッチングがオフとなるタイミングは、第2スイッチ14gの高速スイッチングがオンとなるタイミングである。すなわち、第2パターンと第1パターンとでは、値が反転している。これによって、第3スイッチ15gは、分岐された他方のパルス信号及び雑音から、雑音を抽出する。第2スイッチ14gは、抽出された雑音を、減算器16に出力する。 The other branched pulse signal and noise are input to the third switch 15g from the splitter 13. The third switch 15g demodulates the other branched pulse signal and noise in a second pattern in which high-speed switching between off and on is repeated. That is, the third switch 15g multiplies the other branched pulse signal and noise by 0 or 1 at a switching interval "t". Here, the timing at which the high-speed switching of the third switch 15g turns off is the timing at which the high-speed switching of the second switch 14g turns on. That is, the values are inverted between the second pattern and the first pattern. As a result, the third switch 15g extracts noise from the other branched pulse signal and noise. The second switch 14g outputs the extracted noise to the subtractor 16.

 減算器16は、第3スイッチ15gから出力された雑音を、第2スイッチ14gから出力されたパルス信号及び雑音から減算する。フィルタ17は、減算器16から入力されたパルス信号に対してアンチエイリアシング処理を実行することによって、そのパルス信号をアナログ通信信号に戻す。フィルタ17は、アナログ通信信号をBBU34に出力する。 The subtractor 16 subtracts the noise output from the third switch 15g from the pulse signal and noise output from the second switch 14g. The filter 17 performs anti-aliasing processing on the pulse signal input from the subtractor 16 to return the pulse signal to an analog communication signal. The filter 17 outputs the analog communication signal to the BBU 34.

 以上のように、第1スイッチ11gは、第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する。雑音源12は、パルス信号に雑音を加える。分岐器13は、受信信号増幅器12g等の雑音源によって雑音が生じたパルス信号を、第2スイッチ14g及び第3スイッチ15gに分岐する。第2スイッチ14gは、第1パターンに基づいて、分岐された一方のパルス信号及び雑音に対して第1復調処理を実行する。第3スイッチ15gは、第2パターンに基づいて、分岐された他方のパルス信号及び雑音に対して第2復調処理を実行することによって、分岐された他方のパルス信号及び雑音から、雑音を抽出する。減算器16は、分岐された一方のパルス信号及び雑音から、抽出された雑音を減算することによって、パルス信号を復元する。フィルタ17は、復元されたパルス信号に基づいて、アナログ通信信号を復元する。 As described above, the first switch 11g generates a pulse signal by performing a modulation process on the analog communication signal based on the first pattern. The noise source 12 adds noise to the pulse signal. The splitter 13 splits the pulse signal in which noise has been generated by a noise source such as the received signal amplifier 12g to the second switch 14g and the third switch 15g. The second switch 14g performs a first demodulation process on one of the split pulse signals and the noise based on the first pattern. The third switch 15g extracts noise from the other of the split pulse signals and the noise by performing a second demodulation process on the other of the split pulse signals and the noise based on the second pattern. The subtractor 16 restores the pulse signal by subtracting the extracted noise from one of the split pulse signals and the noise. The filter 17 restores the analog communication signal based on the restored pulse signal.

 これによって、アナログ通信信号に生じた雑音を低減することが可能である。 This makes it possible to reduce noise in analog communication signals.

 (ハードウェア構成)
 図10は、各実施形態における、雑音低減装置の制御装置200のハードウェア構成例を示す図である。制御装置200は、CPU(Central Processing Unit)等のプロセッサ201が、不揮発性の記録媒体(非一時的な記録媒体)を有する記憶装置203とメモリ202とに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク又はソリッド・ステート・ドライブ(SSD: Solid State Drive)等の記憶装置などの非一時的な記録媒体である。通信部204は、所定の通信処理を実行する。
(Hardware configuration)
FIG. 10 is a diagram showing an example of a hardware configuration of a control device 200 of a noise reduction device in each embodiment. The control device 200 is realized as software by a processor 201 such as a CPU (Central Processing Unit) executing a program stored in a storage device 203 having a non-volatile recording medium (non-transient recording medium) and a memory 202. The program may be recorded in a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD-ROM (Compact Disc Read Only Memory), or a non-transient recording medium such as a storage device such as a hard disk or a solid state drive (SSD) built into a computer system. The communication unit 204 executes a predetermined communication process.

 制御装置200は、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェア(アクセラレータ)を用いて実現されてもよい。 The control device 200 may be realized using hardware (accelerator) including an electronic circuit (electronic circuit or circuitry) using, for example, an LSI (Large Scale Integrated circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).

 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。  Although an embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes designs that do not deviate from the gist of the present invention.

 本発明は、アナログRoFが適用された無線通信システムに適用可能である。 The present invention is applicable to wireless communication systems that use analog RoF.

1a,1b,1c,1d,1e,1f,1g…通信システム、2b,2c,2d,2e,2f,2g…張出局、3c,3d,3e,3f,3g…集約局、10…雑音低減装置、11a,11b,11c,11d,11e,11f,11g…第1スイッチ、12…雑音源、12b,12c,12d,12e,12f,12g…受信信号増幅器、13…分岐器、14a,14b,14c,14d,14e,14f,14g…第2スイッチ、15a,15b,15c,15d,15e,15f,15g…第3スイッチ、16…減算器、17…フィルタ、21…O/E変換器、22…送信信号増幅器、23…アンテナ、24…通信部、25…E/O変換器、26…光伝送路、31…E/O変換器、32…O/E変換器、33…合波器、34…BBU、100…第2スイッチ出力、101…第3スイッチ出力、200…制御装置、201…プロセッサ、202…メモリ、203…記憶装置、204…通信部 1a, 1b, 1c, 1d, 1e, 1f, 1g...Communication system, 2b, 2c, 2d, 2e, 2f, 2g...Outgoing station, 3c, 3d, 3e, 3f, 3g...Aggregation station, 10...Noise reduction device , 11a, 11b, 11c, 11d, 11e, 1 1f, 11g...first switch, 12...noise source, 12b, 12c, 12d, 12e, 12f, 12g...received signal amplifier, 13...brancher, 14a, 14b, 14c, 14d, 14e, 14f, 14g...second switch, 15a, 15 b, 15c, 15d, 15e, 15f, 15g...third switch, 16...subtractor, 17...filter, 21...O/E converter, 22...transmission signal amplifier, 23...antenna, 24...communication unit, 25... E/O converter, 26...optical transmission line, 31...E/O converter, 32...O/E converter, 33...multiplexer, 34...BBU, 100...second switch output, 101...third switch Output, 200...control device, 201...processor, 202...memory, 203...storage device, 204...communication unit

Claims (4)

 所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する第1スイッチと、
 雑音源によって雑音が生じた前記パルス信号を分岐する分岐器と、
 前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行する第2スイッチと、
 前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出する第3スイッチと、
 分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元する減算器と、
 復元された前記パルス信号に基づいて、前記アナログ通信信号を復元するフィルタと
 を備える雑音低減装置。
a first switch that generates a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which the first switch is repeatedly switched on and off at a predetermined speed;
a branching device for branching the pulse signal in which noise has been generated by a noise source;
a second switch that performs a first demodulation process on one of the branched pulse signals and the noise based on the first pattern;
a third switch that extracts the noise from the other of the branched pulse signals and the noise by executing a second demodulation process on the other of the branched pulse signals and the noise based on a second pattern that is an inverted on/off pattern of the first pattern;
a subtractor that restores the pulse signal by subtracting the extracted noise from one of the branched pulse signals and the noise;
a filter that restores the analog communication signal based on the restored pulse signal.
 前記所定の速度は、前記アナログ通信信号の最大周波数帯域の2倍以上である、請求項1に記載の雑音低減装置。 The noise reduction device of claim 1, wherein the predetermined speed is at least twice the maximum frequency band of the analog communication signal.  雑音低減装置が実行する雑音低減方法であって、
 所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成するステップと、
 雑音源によって雑音が生じた前記パルス信号を分岐するステップと、
 前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行するステップと、
 前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出するステップと、
 分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元するステップと、
 復元された前記パルス信号に基づいて、前記アナログ通信信号を復元するステップと
 を含む雑音低減方法。
A noise reduction method performed by a noise reduction device, comprising:
performing a modulation process on an analog communication signal based on a first pattern of repeated on and off switching at a predetermined rate to generate a pulse signal;
branching said pulse signal noisy due to a noise source;
performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern;
extracting the noise from the other of the branched pulse signals and the noise by performing a second demodulation process on the other of the branched pulse signals and the noise based on a second pattern that is an inverted pattern of the first pattern;
restoring the pulse signal by subtracting the extracted noise from one of the branched pulse signals and the noise;
and restoring the analog communication signal based on the restored pulse signal.
 コンピュータに、
 所定の速度でオンとオフのスイッチングが繰り返される第1パターンに基づいて、アナログ通信信号に対して変調処理を実行することによって、パルス信号を生成する手順と、
 雑音源によって雑音が生じた前記パルス信号を分岐する手順と、
 前記第1パターンに基づいて、分岐された一方の前記パルス信号及び前記雑音に対して第1復調処理を実行する手順と、
 前記第1パターンのオンとオフが反転されたパターンである第2パターンに基づいて、分岐された他方の前記パルス信号及び前記雑音に対して第2復調処理を実行することによって、分岐された他方の前記パルス信号及び前記雑音から、前記雑音を抽出する手順と、
 分岐された一方の前記パルス信号及び前記雑音から、抽出された前記雑音を減算することによって、前記パルス信号を復元する手順と、
 復元された前記パルス信号に基づいて、前記アナログ通信信号を復元する手順と
 を実行させるためのプログラム。
On the computer,
generating a pulse signal by performing a modulation process on an analog communication signal based on a first pattern in which the analog communication signal is repeatedly switched on and off at a predetermined rate;
branching said pulse signal noisy due to a noise source;
performing a first demodulation process on one of the branched pulse signals and the noise based on the first pattern;
extracting the noise from the other of the branched pulse signals and the noise by executing a second demodulation process on the other of the branched pulse signals and the noise based on a second pattern that is an inverted pattern of the first pattern;
A step of restoring the pulse signal by subtracting the extracted noise from one of the branched pulse signals and the noise;
and a procedure for restoring the analog communication signal based on the restored pulse signal.
PCT/JP2023/025285 2023-07-07 2023-07-07 Noise reduction apparatus, noise reduction method, and program WO2025013129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/025285 WO2025013129A1 (en) 2023-07-07 2023-07-07 Noise reduction apparatus, noise reduction method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/025285 WO2025013129A1 (en) 2023-07-07 2023-07-07 Noise reduction apparatus, noise reduction method, and program

Publications (1)

Publication Number Publication Date
WO2025013129A1 true WO2025013129A1 (en) 2025-01-16

Family

ID=94214856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025285 WO2025013129A1 (en) 2023-07-07 2023-07-07 Noise reduction apparatus, noise reduction method, and program

Country Status (1)

Country Link
WO (1) WO2025013129A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059901A1 (en) * 2013-10-22 2015-04-30 日本電気株式会社 Transmission/reception apparatus, transmission apparatus and transmission/reception method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059901A1 (en) * 2013-10-22 2015-04-30 日本電気株式会社 Transmission/reception apparatus, transmission apparatus and transmission/reception method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIGASHINO T., KOMAKI S., NAKANISHI T., TSUKAMOTO K.: "Direct optical switching code-division multiple-access system for fiber-optic radio highway networks", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 21, no. 12, 1 December 2003 (2003-12-01), USA, pages 3209 - 3220, XP011106391, ISSN: 0733-8724, DOI: 10.1109/JLT.2003.819789 *

Similar Documents

Publication Publication Date Title
JP6562566B2 (en) Apparatus and method for interference cancellation
AU775866B2 (en) System and method for producing amplified signal(s) or version(s) thereof
JPH10247869A (en) Diversity circuit
KR960020139A (en) Data Transmitter and Receiver in Spread Spectrum Communication System Using Pilot Channel
JP6686161B2 (en) Analog multiple beam feed system and method
US11515908B2 (en) Impulse radio ultra-wide band transceiver using radio pulses with multi frequency carriers
US8928509B2 (en) Incoming signal sampling device
WO2025013129A1 (en) Noise reduction apparatus, noise reduction method, and program
RU2229198C1 (en) Method and device for jamming communication channels
JPH0888588A (en) Spread spectrum communication equipment
EP1083673A1 (en) Radio device and transmitting/receiving method
Shao et al. An interference-tolerant synchronization scheme for wireless communication systems based on direct sequence spread spectrum
US20120002755A1 (en) Multi-level pulse modulated polar transmitter and method of generating multi-level modulated envelope signals carrying modulated rf signal
CA3089696C (en) Transmission device, wireless communication system, and transmission method
JP4718924B2 (en) Communication system and transceiver
KR20090054803A (en) Receiving device and method using filter bank
KR101102666B1 (en) WiBro terminal transmitter
US8744001B2 (en) Multimode transmitter apparatus
KR102444470B1 (en) Method and apparatus for tuning finite impulse response filter in in-band full duplex transceiver
JP2024064009A (en) Wireless access system, centralized control station, signal processing method, and computer program
JP2013165433A (en) Frequency conversion circuit and transmitter/receiver
KR100703888B1 (en) Wireless terminal function control device and method
JP2002535868A (en) High performance shortwave broadcasting transmitter optimized for digital broadcasting
KR20210019955A (en) Interference cancellation repeater and operating method thereof
JPH09318731A (en) High frequency signal variable delay circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23945012

Country of ref document: EP

Kind code of ref document: A1