[go: up one dir, main page]

WO2025011511A1 - 由用户设备执行的方法以及用户设备 - Google Patents

由用户设备执行的方法以及用户设备 Download PDF

Info

Publication number
WO2025011511A1
WO2025011511A1 PCT/CN2024/104189 CN2024104189W WO2025011511A1 WO 2025011511 A1 WO2025011511 A1 WO 2025011511A1 CN 2024104189 W CN2024104189 W CN 2024104189W WO 2025011511 A1 WO2025011511 A1 WO 2025011511A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
user equipment
sci
sidelink
channel
Prior art date
Application number
PCT/CN2024/104189
Other languages
English (en)
French (fr)
Inventor
赵毅男
罗超
刘仁茂
Original Assignee
夏普株式会社
赵毅男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 赵毅男 filed Critical 夏普株式会社
Publication of WO2025011511A1 publication Critical patent/WO2025011511A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to a method executed by a user equipment and corresponding user equipment.
  • D2D communication (Device-to-Device communication) refers to the direct communication between two user devices without forwarding through a base station or core network.
  • 3GPP 3rd Generation Partnership Project
  • the high layer supports unicast and multicast communication functions.
  • LTE Release 13 eD2D The main functions introduced by LTE Release 13 eD2D include:
  • V2X Vehicle to Everything
  • the application scenarios of V2X mainly include four aspects:
  • V2V Vehicle to Vehicle, i.e. vehicle-to-vehicle communication
  • V2P Vehicle to Pedestrian, that is, the vehicle sends warnings to pedestrians or non-motor vehicles
  • V2N Vehicle to Network, that is, vehicles connected to mobile networks
  • V2I Vehicle to Infrastructure
  • Vehicle to Infrastructure refers to the communication between vehicles and road infrastructure.
  • V2X stage 1 introduced a new D2D communication interface called the PC5 interface.
  • the PC5 interface is mainly used to solve the communication problems of cellular vehicle networks in high-speed (up to 250 km/h) and high-node density environments. Vehicles can interact with information such as location, speed and direction through the PC5 interface, that is, vehicles can communicate directly through the PC5 interface.
  • the functions introduced by LTE Release 14 V2X mainly include:
  • the second phase of the V2X research project falls within the scope of LTE Release 15 research (see non-patent document 4).
  • the main features introduced include high-order 64QAM modulation, V2X carrier aggregation, short TTI transmission, and the feasibility study of transmit diversity.
  • a resource allocation mode 2 based on user equipment sensing is supported, or transmission mode 2.
  • the physical layer of the user equipment senses the transmission resources in the resource pool, indicating that the user equipment determines whether to exclude resources in the candidate resource set that overlap with the resources indicated by the above indication information based on the indication information in the SCI received from other user equipments.
  • the resources in the candidate resource set that are not excluded are reported to the upper layer, and the upper layer randomly selects resources for PSSCH/PSCCH transmission from the reported resource set.
  • NR SL evo NR sidelink evolution
  • SL-U includes both resource allocation method 1 and resource allocation method 2 for NR sideline communication.
  • the research project specifically includes:
  • SL-U the channel access technology and operation of NR air interface in unlicensed spectrum communication (NR unlicensed, referred to as NR-U) are reused.
  • the channel access technology of NR-U refers to the Listen Before Talk (LBT) technology, which means "listen before talking", which means that the user equipment needs to listen to the channel resources used for transmission before transmission. If the channel is idle, transmission is carried out; otherwise, transmission is abandoned.
  • LBT Listen Before Talk
  • One PSCCH/PSSCH transmission corresponds to N associated candidate PSFCH resources; wherein N is determined by configuration or pre-configuration information, and the value range of N includes ⁇ 1, 2, 3, 4 ⁇ ;
  • the above N associated candidate PSFCH resources are in the same resource block set (RB set) in different time slots.
  • the solution of this patent includes a method in which the physical layer of the sideline communication user equipment reports the sideline communication HARQ feedback information to the upper layer in SL-U, and a method in which the upper layer determines the multicast (groupcast) sideline communication HARQ feedback mechanism.
  • Non-patent literature 1 RP-140518, Work item proposal on LTE Device to Device Proximity Services
  • Non-patent literature 2 RP-142311, Work Item Proposal for Enhanced LTE Device to Device Proximity Services
  • Non-patent literature 3 RP-152293, New WI proposal: Support for V2V services based on LTE sidelink
  • Non-patent document 4 RP-170798, New WID on 3GPP V2X Phase 2
  • Non-patent literature 5 RP-181480, New SID Proposal: Study on NR V2X
  • Non-patent literature 6 RP-220300, WID revision: NR sidelink evolution
  • Non-patent literature 7 RAN1#113 Chairman’s notes, section 9.4.1.2
  • the present invention provides a method performed by a user equipment and the user equipment.
  • a method performed by a user equipment comprising: the user equipment sending sideline communication control information SCI on an unlicensed spectrum; and the user equipment attempting to receive a physical sideline communication feedback channel PSFCH associated with the SCI.
  • the SCI sent by the user equipment may be a multicast communication.
  • the communication type indication field in the SCI is set to a value representing the multicast communication of the hybrid automatic repeat request HARQ feedback mechanism one, or a value representing the multicast communication of the HARQ feedback mechanism two.
  • the communication type indication field in the SCI is set to a value indicating multicast communication of HARQ feedback mechanism one.
  • the candidate PSFCH resources may represent all candidate PSFCH resources on N time slots corresponding to a physical sideline communication control channel PSCCH and/or a physical sideline communication shared channel PSSCH transmission, wherein N is a positive integer.
  • the N may be obtained through configuration or pre-configuration information.
  • the communication type indication field in the SCI may be set to a value indicating multicast communication of HARQ feedback mechanism one.
  • the user equipment may report ACK to a higher layer when determining that PSFCH reception is missing on all the candidate PSFCH resources associated with the SCI.
  • the user equipment may report NACK to a higher layer when determining that PSFCH reception is not missed on all the candidate PSFCH resources.
  • a user equipment comprising: a processor; and a memory storing instructions, wherein the instructions, when executed by the processor, execute any one of the methods described in the first aspect.
  • the solution of the present invention can effectively improve the communication reliability of sidelink communication on unlicensed spectrum.
  • the solution of the present invention ensures that the physical layer reports ACK to the MAC layer when and only when there is no PSFCH reception on the N associated PSFCH resources corresponding to a PSCCH/PSSCH transmission.
  • This solution effectively improves the communication reliability of sidelink communication on unlicensed spectrum; at the same time, the solution of the present invention can be used for the MAC layer to determine the HARQ feedback mechanism of multicast sidelink communication, which can also improve the communication reliability of sidelink communication on unlicensed spectrum.
  • FIG1 is a schematic diagram showing a basic process of a method executed by a user equipment in the first embodiment of the invention.
  • FIG. 2 is a block diagram showing a user equipment according to an embodiment of the present invention.
  • the following uses the 5G mobile communication system and its subsequent evolution versions as example application environments to specifically describe multiple embodiments of the present invention.
  • the present invention is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as communication systems after 5G and 4G mobile communication systems before 5G.
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • DCI Downlink Control Information, downlink control information
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • eNB evolved NodeB, evolved base station
  • gNB NR base station
  • TTI Transmission Time Interval, transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing with cyclic prefix
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • CSI Channel State Information, channel state information
  • CSI-RS Channel State Information Reference Signal, channel state information reference signal
  • CRS Cell Reference Signal, cell-specific reference signal
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • SCI Sidelink Control Information, sidelink communication control information
  • PSCCH Physical Sidelink Control Channel, physical sidelink communication control channel
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • CRB Common Resource Block, common resource block
  • PRB Physical Resource Block, physical resource block
  • PSSCH Physical Sidelink Shared Channel, physical sidelink communication shared channel
  • RSRP Reference Signal Receiving Power, reference signal receiving power
  • SRS Sounding Reference Signal, detection reference signal
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • PSDCH Physical Sidelink Discovery Channel, physical sidelink communication discovery channel
  • PSBCH Physical Sidelink Broadcast Channel, physical sidelink communication broadcast channel
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • SIB System Information Block, system information block
  • SIB1 System Information Block Type 1, system information block type 1
  • SLSS Sidelink synchronization Signal, sidelink communication synchronization signal
  • PSSS Primary Sidelink Synchronization Signal, primary synchronization signal for sidelink communication
  • PCI Physical Cell ID, physical cell identifier
  • PSS Primary Synchronization Signal, primary synchronization signal
  • BWP BandWidth Part, bandwidth fragment/part
  • GNSS Global Navigation Satellite System, Global Navigation Satellite System
  • SFN System Frame Number, system (wireless) frame number
  • DFN Direct Frame Number, direct frame number
  • SSB Synchronization Signal Block, synchronization system information block
  • EN-DC EUTRA-NR Dual Connection, LTE-NR dual connection
  • PCell Primary Cell
  • PSFCH Physical Sidelink Feedback Channel, physical sidelink communication feedback channel
  • QPSK Quadrature Phase Shift Keying, orthogonal phase shift keying
  • 16/64/256 QAM 16/64/256 Quadrature Amplitude Modulation, quadrature amplitude modulation
  • AGC Auto Gain Control, automatic gain control
  • TDRA Time Domain Resource Assignment
  • time domain resource allocation indication field
  • ARFCN Absolute Radio Frequency Channel Number, absolute radio frequency channel number
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • MAC Medium Access Control, media access control layer
  • PDU Protocol Data Unit, protocol data unit
  • SL-U Sidelink unlicensed, sidelink communication on unlicensed spectrum
  • NR-U NR unlicensed, NR communication on unlicensed spectrum
  • TBS Transport Block Size, transport block size
  • CQI Channel Quality Information, channel quality information
  • V2X and sidelink mentioned in the specification of the present invention have the same meaning.
  • V2X in the text can also represent sidelink; similarly, sidelink in the text can also represent V2X, and no specific distinction or limitation will be made in the following text.
  • the resource allocation method of V2X (sidelink) communication in the specification of the present invention can be equivalently replaced with the transmission mode of V2X (sidelink) communication.
  • the resource allocation method involved in the specification can represent the transmission mode, and the transmission mode involved can represent the resource allocation method.
  • transmission mode 1 represents a transmission mode (resource allocation method) based on base station scheduling
  • transmission mode 2 represents a transmission mode (resource allocation method) based on user equipment sensing and resource selection.
  • the PSCCH in the specification of the present invention is used to carry the SCI.
  • the PSCCH involved in the specification of the present invention corresponds to, or is related to, or is related to, or is scheduled to be a PSSCH.
  • the meanings are the same, that is, associated PSSCH or corresponding PSSCH.
  • the SCI (including first-level SCI and second-level SCI) corresponding to the PSSCH mentioned in the specification has the same meaning, that is, associated SCI or corresponding SCI.
  • the first-level SCI is called 1st stage SCI or SCI format 1-A, which is transmitted in PSCCH;
  • the second-level SCI is called 2nd stage SCI or SCI format 2-A (or, SCI format 2-B), which is transmitted in the corresponding PSSCH resources.
  • the NR sideline communication (SL-U for short) on the unlicensed spectrum in the specification of the present invention may also be referred to as shared spectrum channel access, that is, on the unlicensed spectrum, there may be user devices that access the channel through Wifi technology (wireless LAN technology based on IEEE 802.11 standard), and there may also be NR sideline communication user devices that access the channel through the PC5 interface.
  • Wifi technology wireless LAN technology based on IEEE 802.11 standard
  • NR sideline communication user devices that access the channel through the PC5 interface.
  • the parameter set numerology includes two meanings: subcarrier spacing and cyclic prefix CP length.
  • Table 4.2-1 shows the supported transmission parameter sets, as shown below.
  • each slot contains 14 OFDM symbols; for the Extended CP, each slot contains 12 OFDM symbols.
  • NR and LTE have the same definition of subframe, which means 1ms.
  • subframe means 1ms.
  • the slot number within 1 subframe (1ms) can be expressed as The range is 0 to
  • the slot number within a system frame (frame, duration 10ms) can be expressed as The range is 0 to in, and
  • the definitions of different subcarrier spacings ⁇ are shown in the following table.
  • Table 4.3.2-1 Number of symbols in each slot, number of slots in each system frame, number of slots in each subframe under normal CP
  • Table 4.3.2-2 Number of symbols in each slot, number of slots in each system frame, number of slots in each subframe when using extended CP (60kHz)
  • the system frame (or, simply referred to as frame) number SFN ranges from 0 to 1023.
  • the concept of direct system frame number DFN is introduced in sidelink communication, and the number range is also 0 to 1023.
  • the above description of the relationship between system frames and numerology can also be applied to direct system frames.
  • the duration of a direct system frame is also equal to 10ms.
  • a direct system frame includes 10 time slots, and so on. DFN is applied to timing on the sidelink carrier.
  • Resource blocks RB are defined in the frequency domain as For example, for a subcarrier spacing of 15 kHz, the RB is 180 kHz in the frequency domain. For a subcarrier spacing of 15 kHz ⁇ 2 ⁇ , the resource unit RE represents 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • Out-of-Coverage sidelink communication The two The UE has no network coverage (for example, the UE cannot detect any cell that meets the "cell selection criteria" on the frequency required for sidelink communication, indicating that the UE has no network coverage).
  • Both UEs performing sidelink communication have network coverage (for example, the UE detects at least one cell that meets the "cell selection criteria" on the frequency required for sidelink communication, indicating that the UE has network coverage).
  • Partial-Coverage sidelink communication One of the UEs performing sidelink communication has no network coverage, while the other UE has network coverage.
  • the UE From the UE side, the UE has only two scenarios: no network coverage and network coverage. Partial network coverage is described from the perspective of sidelink communication.
  • the resources sent and received by the UE belong to the resource pool.
  • the base station schedules transmission resources for the sidelink UE in the resource pool, or, for a transmission mode based on UE perception in sidelink communication, the UE determines the transmission resources in the resource pool.
  • the frequency domain supports resource allocation based on sub-channels as the minimum granularity, that is, for PSSCH transmission, the resources occupied in the frequency domain are an integer number of sub-channels.
  • a sub-channel can represent several consecutive resource blocks RBs in the frequency domain.
  • the sidelink communication user equipment selects candidate resources within a time window (optionally, resource selection window [n+T1, n+T2]), and determines the candidate resources that overlap with the reserved resources based on the reserved resources indicated by the PSCCH sent by other user equipment in the monitoring time slot, and excludes these overlapping candidate resources.
  • the physical layer reports the set of candidate resources that are not excluded to the MAC layer, and the MAC layer selects transmission resources for the PSSCH/PSCCH.
  • the set of transmission resources selected by the MAC layer is called a selected sidelink grant.
  • the sideline communication resources included in the grant can be used for the initial transmission and all retransmissions of one MAC PDU (corresponding to one transport block TB), or can be used for the initial transmission and all retransmissions of multiple MAC PDUs (corresponding to multiple transport blocks TB).
  • the present invention does not impose any limitation on this.
  • LBT operation For wireless communications on unlicensed spectrum, some countries or regions (for example, Europe) stipulate that user equipment must perform LBT operation before transmitting wireless communications, which is a "listen before talk" mechanism, also known as channel access operation, which refers to a mechanism for determining channel availability by sensing the channel. Specifically, during a period of time before communication transmission, the user equipment will only transmit when it detects that the channel is idle; otherwise, the user equipment will not transmit.
  • LBT operation also known as channel access operation
  • the energy detected by the base station or user equipment on the channel is lower than the energy threshold value X Thresh for a duration equal to or greater than 4 ⁇ s, the base station or user equipment considers that the channel is idle within this time unit (or, referred to as LBT success).
  • the channel (channel) that the base station or user equipment detects energy and uses to determine whether it is idle represents a carrier containing a set of continuous resource blocks RB, or a part of the carrier.
  • the channel can also be referred to as LBT bandwidth (LBT bandwidth), or LBT sub-band (LBT sub-band), or RB set (RB set).
  • LBT bandwidth LBT bandwidth
  • LBT sub-band LBT sub-band
  • RB set RB set
  • An LBT bandwidth or RB set can be equal to 20MHz in the frequency domain, that is, there can be an RB set on a 20MHz carrier.
  • the number of resource blocks RBs corresponding to multiple RB sets and a guard band (GB for short) between two consecutive RB sets included in a carrier (a carrier with a frequency exceeding 20 MHz, such as 40 MHz, 60 MHz, and 80 MHz) may be as shown in the following table:
  • Table 1 Number of RBs in all RB sets and GBs on a carrier at 15kHz and 30kHz subcarrier spacing
  • 105-6-105 indicates that the carrier contains two consecutive RB sets, each containing 105 RBs. Between the two RB sets, there is a guard band GB containing 6 consecutive RBs, which contains a total of 216 consecutive RBs, and so on for other items in Table 1.
  • the LBT operations performed by the (sideline communication) user equipment on different RB sets may be independent of each other (i.e., the two are unrelated). For example, the user equipment detects that the channel is idle on RB set 1, and the channel is occupied (or busy) on RB set 2. If the resources selected by the sideline communication user equipment for transmitting PSSCH/PSCCH include (all or part of) RBs corresponding to RB set 1 and RB set 2, the user equipment may send the corresponding PSSCH/PSCCH if and only if the user equipment detects that the channel is idle on both RB set 1 and RB set 2.
  • one PSCCH/PSSCH transmission can correspond to N associated candidate PSFCH resources, that is, when the LBT of one candidate PSFCH resource is unsuccessful, the LBT of one or more other candidate PSFCH resources may be successful, and PSFCH transmission can be performed.
  • N is determined by configuration or pre-configuration information, and the value range is ⁇ 1, 2, 3, 4 ⁇ .
  • the N associated candidate PSFCH resources corresponding to one PSCCH/PSSCH transmission are in the same RB set in different time slots.
  • HARQ feedback mechanism 1 For multicast sideline communications, two different HARQ feedback mechanisms are supported, namely HARQ feedback mechanism 1 and HARQ feedback mechanism 2.
  • HARQ feedback mechanism 2 means that when the user equipment receiving PSCCH/PSSCH fails to decode successfully, it sends NACK on the associated PSFCH resource. When it decodes successfully, it sends ACK on the associated PSFCH resource.
  • HARQ feedback mechanism 1 all group member user equipments in the multicast communication can share the same associated PSFCH resource.
  • HARQ feedback mechanism 2 the associated PSFCH resources corresponding to all group member user equipments in the multicast communication can be different.
  • the communication type indication field may include two bits, namely, the values are ‘00’, ‘01’, ‘10’, and ‘11’.
  • the indication information corresponding to each value is shown in Table 2.
  • FIG1 is a schematic diagram showing a basic process of a method executed by a user equipment according to a first embodiment of the present invention.
  • the steps performed by the user equipment include:
  • step S101 a sideline communication user equipment sends sideline communication control information SCI on an unlicensed spectrum (or on a shared spectrum).
  • the sent SCI is a multicast communication, that is, the number of user equipments receiving the SCI is greater than 1, or equal to 1.
  • the communication type indicator field (cast type indicator field) in the SCI is set to ‘01’, or, ‘11’, indicating multicast communication of HARQ feedback mechanism two, or, multicast communication of HARQ feedback mechanism one.
  • the communication type indicator field in the SCI is set to ‘11’, indicating multicast communication of the HARQ feedback mechanism one.
  • the candidate PSFCH resources represent (all) candidate PSFCH resources in N time slots corresponding to one PSCCH/PSSCH transmission, where N is a positive integer obtained through configuration or pre-configuration information.
  • the value of the communication type indication field in the SCI is ‘11’, which indicates multicast communication of HARQ feedback mechanism one.
  • step S102 the user equipment attempts to receive (attempt to) the PSFCH associated with (or corresponding to) the SCI.
  • the user equipment determines that PSFCH reception is absent (absence of PSFCH reception) on (all) the N candidate PSFCH resources (occasion) associated with (or corresponding to) the SCI, then the user equipment reports an ACK to the upper layer (MAC layer); optionally, otherwise, a NACK is reported to the upper layer.
  • MAC layer the upper layer
  • the communication reliability of sideline communication on unlicensed spectrum can be effectively improved.
  • the scheme of the present invention ensures that the physical layer reports ACK to the MAC layer when and only when there is no PSFCH reception on the N associated PSFCH resources corresponding to a PSCCH/PSSCH transmission. This scheme effectively improves the communication reliability of sideline communication on unlicensed spectrum.
  • the solution of the present invention can be used for the MAC layer to determine the HARQ feedback mechanism of the multicast sideline communication, and can also improve the communication reliability of the sideline communication on the unlicensed spectrum.
  • FIG2 is a block diagram of a user equipment UE involved in the present invention.
  • the user equipment UE80 includes a processor 801 and a memory 802.
  • the processor 801 may include, for example, a microprocessor, a microcontroller, an embedded processor, etc.
  • the memory 802 may include, for example, a volatile memory.
  • the memory 802 may be a memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory.
  • the memory 802 stores program instructions. When the instructions are executed by the processor 801, the above method performed by the user equipment described in detail in the present invention can be executed.
  • the method of the present invention and the related equipment have been described above in conjunction with the preferred embodiments. Those skilled in the art will appreciate that the method shown above is only exemplary, and the embodiments described above can be combined with each other without contradiction.
  • the method of the present invention is not limited to the steps and sequence shown above.
  • the network node and user equipment shown above may include more modules, for example, modules that can be developed or developed in the future and can be used for base stations, MMEs, or UEs, etc.
  • the various identifiers shown above are only exemplary and not restrictive, and the present invention is not limited to the specific information elements that serve as examples of these identifiers. Those skilled in the art may make many changes and modifications based on the teachings of the illustrated embodiments.
  • the above embodiments of the present invention can be implemented by software, hardware, or a combination of software and hardware.
  • the various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), programmable logic devices (CPLDs), and the like.
  • DSP digital signal processing
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • CPLDs programmable logic devices
  • base station may refer to a mobile communication data and control exchange center with a large transmission power and a wide coverage area, including functions such as resource allocation scheduling, data reception and transmission, etc.
  • User equipment may refer to a user mobile terminal, such as a mobile phone, a notebook, etc., which can communicate wirelessly with a base station or a micro base station.
  • the embodiments of the present invention disclosed herein can be implemented on a computer program product.
  • the computer program product is a product as follows: it has a computer-readable medium, on which a computer program logic is encoded, and when executed on a computing device, the computer program logic provides relevant operations to implement the above-mentioned technical solution of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • This configuration of the present invention is typically provided as a soft disk set or encoded on a computer-readable medium such as an optical medium (such as a CD-ROM), a floppy disk, or a hard disk.
  • the software or firmware or such configuration may be installed on a computing device so that one or more processors in the computing device execute the technical solutions described in the embodiments of the present invention.
  • each functional module or each feature of the base station equipment and terminal equipment used in each of the above embodiments can be implemented or executed by a circuit, and the circuit is generally one or more integrated circuits.
  • the circuit designed to perform the various functions described in this specification may include a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC) or a general-purpose integrated circuit, a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, or a discrete hardware component, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or the processor may be an existing processor, a controller, a microcontroller or a state machine.
  • the above-mentioned general-purpose processor or each circuit may be configured by a digital circuit, or may be configured by a logic circuit.
  • the present invention may also use the integrated circuit obtained by using the advanced technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种由用户设备执行的方法以及用户设备,所述方法包括:在非授权频谱上,所述用户设备发送侧行通信控制信息SCI;和所述用户设备尝试接收所述SCI关联的物理侧行通信反馈信道PSFCH。由此,能够有效提高在非授权频谱上侧行通信的通信可靠性。

Description

由用户设备执行的方法以及用户设备 技术领域
本发明涉及无线通信技术领域,具体涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在传统的蜂窝网络中,所有的通信都必须经过基站。不同的是,D2D通信(Device-to-Device communication,设备到设备间直接通信)是指两个用户设备之间不经过基站或者核心网的转发而直接进行的通信方式。在2014年3月第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的RAN#63次全会上,关于利用LTE设备实现临近D2D通信业务的研究课题获得批准(参见非专利文献1)。LTE Release 12 D2D引入的功能包括:
1)LTE网络覆盖场景下临近设备之间的发现功能(Discovery);
2)临近设备间的直接广播通信(Broadcast)功能;
3)高层支持单播(Unicast)和组播(Groupcast)通信功能。
在2014年12月的3GPP RAN#66全会上,增强的LTE eD2D(enhanced D2D)的研究项目获得批准(参见非专利文献2)。LTE Release 13 eD2D引入的主要功能包括:
1)无网络覆盖场景和部分网络覆盖场景的D2D发现;
2)D2D通信的优先级处理机制。
基于D2D通信机制的设计,在2015年6月3GPP的RAN#68次全会上,批准了基于D2D通信的V2X可行性研究课题。V2X表示Vehicle to everything,希望实现车辆与一切可能影响车辆的实体信息交互,目的是减少事故发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。V2X的应用场景主要包含4个方面:
1)V2V,Vehicle to Vehicle,即车-车通信;
2)V2P,Vehicle to Pedestrian,即车给行人或非机动车发送警告;
3)V2N,Vehicle to Network,即车辆连接移动网络;
4)V2I,Vehicle to Infrastructure,即车辆与道路基础设施等通信。
3GPP将V2X的研究与标准化工作分为3个阶段。第一阶段于2016年9月完成,主要聚焦于V2V,基于LTE Release 12和Release 13 D2D(也可称为sidelink侧行通信),即邻近通信技术制定(参见非专利文献3)。V2X stage 1引入了一种新的D2D通信接口,称为PC5接口。PC5接口主要用于解决高速(最高250公里/小时)及高节点密度环境下的蜂窝车联网通信问题。车辆可以通过PC5接口进行诸如位置、速度和方向等信息的交互,即车辆间可通过PC5接口进行直接通信。相较于D2D设备间的临近通信,LTE Release 14 V2X引入的功能主要包含:
1)更高密度的DMRS以支持高速场景;
2)引入子信道(sub-channel),增强资源分配方式;
3)引入具有半静态调度(semi-persistent)的用户设备感知(sensing)机制。
V2X研究课题的第二阶段归属于LTE Release 15研究范畴(参见非专利文献4),引入的主要特性包含高阶64QAM调制、V2X载波聚合、短TTI传输,同时包含发射分集的可行性研究。
在2018年6月3GPP RAN#80全会上,相应的第三阶段基于5G NR网络技术的V2X可行性研究课题(参见非专利文献5)获得批准。
在5G NR V2X课题中,支持一种基于用户设备感知(sensing)的资源分配方式2(resource allocation mode 2),或者称为传输模式2。对于用户设备感知的资源分配方式2,用户设备的物理层对资源池内的传输资源进行感知,表示该用户设备根据接收到的其他用户设备发送的SCI中的指示信息,用以确定是否排除(exclude)候选资源集合中与上述指示信息所指示的资源相重叠的资源,候选资源集合中未被排除的资源上报给高层,高层在上报的资源集合中随机选择用于PSSCH/PSCCH传输的资源。
在2022年3月3GPP RAN#95e全会上,基于已经标准化的NR侧行通信的演进(NR sidelink evolution,简称为NR SL evo)的标准化研究课题(参见非专利文献6)获得批准。NR SL evo的研究目标包含如下方面:
1)研究并且标准化在未授权频谱(unlicensed spectrum)上进行NR侧行通信,简称为SL-U。SL-U同时包含NR侧行通信的资源分配方式1和资源分配方式2。该研究项目具体包括:
a.在SL-U中,重用NR空口在未授权频谱通信(NR unlicensed,简称为NR-U)的信道接入(channel access)技术和操作。其中NR-U的信道接入技术指代Listen Before Talk(简称为LBT)技术,即“先听后说”,表示用户设备在进行传输前,需要对传输所使用的信道资源进行监听,如果信道空闲(idle),则进行传输;反之,则放弃传输。
b.研究侧行通信中物理信道的设计框架:即对现有NR侧行通信中物理信道的结构做出必要的修改,以使能SL-U。
在2023年5月3GPP RAN1#113会议上,对于SL-U,达成了如下的会议结论(参见非专利文献7):
1)对于SL-U中的PSFCH:
a)一个PSCCH/PSSCH传输对应N个关联的候选PSFCH资源;其中,N通过配置或者预配置信息确定,N的取值范围包括{1,2,3,4};
b)上述N个关联的候选PSFCH资源在不同时隙的相同资源块集合(RB set)中。
本专利的方案包括在SL-U中侧行通信用户设备物理层向高层上报侧行通信HARQ反馈信息的一种方法,以及,高层确定组播的(groupcast)侧行通信HARQ反馈机制的一种方法。
现有技术文献
非专利文献
非专利文献1:RP-140518,Work item proposal on LTE Device to  Device Proximity Services
非专利文献2:RP-142311,Work Item Proposal for Enhanced LTE Device to Device Proximity Services
非专利文献3:RP-152293,New WI proposal:Support for V2V services based on LTE sidelink
非专利文献4:RP-170798,New WID on 3GPP V2X Phase 2
非专利文献5:RP-181480,New SID Proposal:Study on NR V2X
非专利文献6:RP-220300,WID revision:NR sidelink evolution
非专利文献7:RAN1#113 Chairman’s notes,section 9.4.1.2
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种由用户设备执行的方法以及用户设备。
根据本发明的第一方面,提供一种由用户设备执行的方法,包括:在非授权频谱上,所述用户设备发送侧行通信控制信息SCI;和所述用户设备尝试接收所述SCI关联的物理侧行通信反馈信道PSFCH。
在上述方法中,可以是,所述用户设备发送的所述SCI是组播通信。
在上述方法中,可以是,在高层提供了所述组播通信中的组的大小和/或组内成员的标识、且所述组的大小不大于在单个时隙上候选PSFCH资源的数目的情况下,所述SCI中的通信类型指示域设置为表示混合自动重传请求HARQ反馈机制一的组播通信的值、或表示HARQ反馈机制二的组播通信的值。
在上述方法中,可以是,在所述组的大小大于在单个时隙上候选PSFCH资源的数目的情况下,所述SCI中的通信类型指示域设置为表示HARQ反馈机制一的组播通信的值。
在上述方法中,可以是,所述候选PSFCH资源表示一个物理侧行通信控制信道PSCCH和/或物理侧行通信共享信道PSSCH传输对应的在N个时隙上的所有候选PSFCH资源,其中,所述N是正整数。
在上述方法中,可以是,所述N通过配置或者预配置信息获得。
在上述方法中,可以是,所述SCI中的通信类型指示域设置为表示HARQ反馈机制一的组播通信的值。
在上述方法中,可以是,所述用户设备在确定所述SCI关联的所述所有候选PSFCH资源上PSFCH接收均缺失的情况下,向高层报告ACK。
在上述方法中,可以是,所述用户设备在确定并非所述所有候选PSFCH资源上PSFCH接收均缺失的情况下,向高层报告NACK。
根据本发明的第二方面,提供一种用户设备,包括:处理器;以及存储器,存储有指令,其中,所述指令在由所述处理器运行时执行上述第一方面中的任一项所述的方法。
本发明的有益效果
本发明的方案能够有效提高在非授权频谱上侧行通信的通信可靠性。例如,在SL-U中,本发明的方案保证了当且仅当一个PSCCH/PSSCH传输对应的N个关联的PSFCH资源上均没有PSFCH接收时,物理层向MAC层上报ACK,该方案有效提高了在非授权频谱上侧行通信的通信可靠性;同时,本发明的方案可用于MAC层确定组播侧行通信的HARQ反馈机制,同样可以提升侧行通信在非授权频谱上的通信可靠性。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是示出了发明的实施例一中由用户设备执行的方法的基本过程的示意图。
图2是示出了根据本发明的实施例的用户设备的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解 造成混淆。
下文以5G移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如5G之后的通信系统以及5G之前的4G移动通信系统等。
下面描述本发明涉及的部分术语,如未特别说明,本发明涉及的术语采用此处定义。本发明给出的术语在LTE、LTE-Advanced、LTE-Advanced Pro、NR以及之后的通信系统中可能采用不同的命名方式,但本发明中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
3GPP:3rd Generation Partnership Project,第三代合作伙伴计划
LTE:Long Term Evolution,长期演进技术
NR:New Radio,新无线、新空口
PDCCH:Physical Downlink Control Channel,物理下行控制信道
DCI:Downlink Control Information,下行控制信息
PDSCH:Physical Downlink Shared Channel,物理下行共享信道
UE:User Equipment,用户设备
eNB:evolved NodeB,演进型基站
gNB:NR基站
TTI:Transmission Time Interval,传输时间间隔
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用
CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing,带有循环前缀的正交频分复用
C-RNTI:Cell Radio Network Temporary Identifier,小区无线网络临时标识
CSI:Channel State Information,信道状态信息
HARQ:Hybrid Automatic Repeat Request,混合自动重传请求
CSI-RS:Channel State Information Reference Signal,信道状态信息参考信号
CRS:Cell Reference Signal,小区特定参考信号
PUCCH:Physical Uplink Control Channel,物理上行控制信道
PUSCH:Physical Uplink Shared Channel,物理上行共享信道
UL-SCH:Uplink Shared Channel,上行共享信道
CG:Configured Grant,配置调度许可
Sidelink:侧行通信
SCI:Sidelink Control Information,侧行通信控制信息
PSCCH:Physical Sidelink Control Channel,物理侧行通信控制信道
MCS:Modulation and Coding Scheme,调制编码方案
RB:Resource Block,资源块
RE:Resource Element,资源单元
CRB:Common Resource Block,公共资源块
CP:Cyclic Prefix,循环前缀
PRB:Physical Resource Block,物理资源块
PSSCH:Physical Sidelink Shared Channel,物理侧行通信共享信道
FDM:Frequency Division Multiplexing,频分复用
RRC:Radio Resource Control,无线资源控制
RSRP:Reference Signal Receiving Power,参考信号接收功率
SRS:Sounding Reference Signal,探测参考信号
DMRS:Demodulation Reference Signal,解调参考信号
CRC:Cyclic Redundancy Check,循环冗余校验
PSDCH:Physical Sidelink Discovery Channel,物理侧行通信发现信道
PSBCH:Physical Sidelink Broadcast Channel,物理侧行通信广播信道
SFI:Slot Format Indication,时隙格式指示
TDD:Time Division Duplexing,时分双工
FDD:Frequency Division Duplexing,频分双工
SIB:System Information Block,系统信息块
SIB1:System Information Block Type 1,系统信息块类型1
SLSS:Sidelink synchronization Signal,侧行通信同步信号
PSSS:Primary Sidelink Synchronization Signal,侧行通信主同步信号
SSSS:Secondary Sidelink Synchronization Signal,侧行通信辅同步信号
PCI:Physical Cell ID,物理小区标识
PSS:Primary Synchronization Signal,主同步信号
SSS:Secondary Synchronization Signal,辅同步信号
BWP:BandWidth Part,带宽片段/部分
GNSS:Global Navigation Satellite System,全球导航卫星定位系统
SFN:System Frame Number,系统(无线)帧号
DFN:Direct Frame Number,直接帧号
IE:Information Element,信息元素
SSB:Synchronization Signal Block,同步系统信息块
EN-DC:EUTRA-NR Dual Connection,LTE-NR双连接
MCG:Master Cell Group,主小区组
SCG:Secondary Cell Group,辅小区组
PCell:Primary Cell,主小区
SCell:Secondary Cell,辅小区
PSFCH:Physical Sidelink Feedback Channel,物理侧行通信反馈信道
SPS:Semi-Persistant Scheduling,半静态调度
TA:Timing Advance,上行定时提前量
PT-RS:Phase-Tracking Reference Signals,相位跟踪参考信号
TB:Transport Block,传输块
CB:Code Block,编码块/码块
QPSK:Quadrature Phase Shift Keying,正交相移键控
16/64/256 QAM:16/64/256 Quadrature Amplitude Modulation,正交幅度调制
AGC:Auto Gain Control,自动增益控制
TDRA(field):Time Domain Resource Assignment,时域资源分配指示(域)
FDRA(field):Frequency Domain Resource Assignment,频域资源分配指示(域)
ARFCN:Absolute Radio Frequency Channel Number,绝对无线频率信道编号
SC-FDMA:Single Carrier-Frequency Division Multiple Access,单载波-频分复用多址
MAC:Medium Access Control,媒体接入控制层
PDU:Protocol Data Unit,协议数据单元
DRX:Discontinuous Reception,不连续接收
SL-U:Sidelink unlicensed,非授权频谱上的侧行通信
NR-U:NR unlicensed,非授权频谱上的NR通信
LBT:Listen Before Talk,先听后说
TBS:Transport Block Size,传输块大小
CQI:Channel Quality Information,信道质量信息
CPE:Cyclic Prefix extension,循环前缀扩展
下文是与本发明方案相关联现有技术的描述。如无特别说明,具体实施例中与现有技术中相同术语的含义相同。
值得指出的是,本发明说明书中涉及的V2X与sidelink含义相同。文中的V2X也可以表示sidelink;相似地,文中的sidelink也可以表示V2X,后文中不做具体区分和限定。
本发明的说明书中的V2X(sidelink)通信的资源分配方式与V2X(sidelink)通信的传输模式可以等同替换。说明书中涉及的资源分配方式可以表示传输模式,以及,涉及的传输模式可以表示资源分配方式。在NR侧行通信中,传输模式1表示基于基站调度的传输模式(资源分配方式);传输模式2表示基于用户设备感知(sensing)和资源选择的传输模式(资源分配方式)。
本发明的说明书中的PSCCH用于携带SCI。本发明的说明书中涉及到的PSCCH对应的,或者,相应的,或者,相关的,或者,调度的PSSCH 表示的含义均相同,都表示associated PSSCH或者corresponding PSSCH。类似地,说明书中涉及到的PSSCH对应的,或者,相应的,或者,相关的SCI(包括第一级SCI和第二级SCI)表示的含义均相同,都表示associated SCI或者corresponding SCI。值得指出的是,第一级SCI称为1st stage SCI或者SCI format 1-A,在PSCCH中传输;第二级SCI称为2nd stage SCI或者SCI format 2-A(或者,SCI format 2-B),在对应的PSSCH的资源中传输。
本发明的说明书中的在未授权频谱(unlicensed spectrum)上进行NR侧行通信(简称为SL-U),也可以称作共享频谱的信道接入(sharedspectrum channel access),即在未授权频谱上,可能存在通过Wifi技术(基于IEEE 802.11标准的无线局域网技术)接入信道的用户设备,也存在通过PC5接口接入的NR侧行通信用户设备。
NR中(包含NR sidelink)的参数集合(numerology)和NR中(包含NR sidelink)的时隙slot
参数集合numerology包含子载波间隔和循环前缀CP长度两方面含义。其中,NR支持5种子载波间隔,分别为15k,30k,60k,120k,240kHz(对应μ=0,1,2,3,4),表格4.2-1示出了支持的传输参数集合,具体如下所示。
表4.2-1 NR支持的子载波间隔
仅当μ=2时,即60kHz子载波间隔的情况下支持扩展(Extended)CP,其他子载波间隔的情况仅支持正常CP。对于正常(Normal)CP,每个时隙(slot)含有14个OFDM符号;对于扩展CP,每个时隙含有12个OFDM符号。对于μ=0,即15kHz子载波间隔,1个时隙=1ms;μ=1,即30kHz子载波间隔,1个时隙=0.5ms;μ=2,即60kHz子载波间隔,1 个时隙=0.25ms,以此类推。
NR和LTE对于子帧(subframe)的定义相同,表示1ms。对于子载波间隔配置μ,1个子帧内(1ms)的slot编号可以表示为范围为0到1个系统帧(frame,时长10ms)内的slot编号可以表示为范围为0到其中,在不同子载波间隔μ的情况的定义如下表格所示。
表格4.3.2-1:正常CP时每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
表格4.3.2-2:扩展CP时(60kHz)每个slot包含的符号数,每个系统帧包含的slot数,每个子帧包含的slot数
在NR载波上,系统帧(或者,简称为帧)的编号SFN范围为0至1023。在侧行通信中引入了直接系统帧号DFN的概念,编号范围同样为0至1023,上述对于系统帧和numerology之间关系的叙述同样可以应用于直接系统帧,例如,一个直接系统帧的时长同样等于10ms,对于15kHz的子载波间隔,一个直接系统帧包括10个时隙slot,等等。DFN应用于sidelink载波上的定时timing。
资源块RB和资源单元RE
资源块RB在频域上定义为个连续的子载波,例如对于15kHz的子载波间隔,RB在频域上为180kHz。对于子载波间隔15kHz×2μ,资源单元RE在频域上表示1个子载波,在时域上表示1个OFDM符号。
Sidelink通信的场景
1)无网络覆盖(Out-of-Coverage)侧行通信:进行sidelink通信的两 个UE都没有网络覆盖(例如,UE在需要进行sidelink通信的频率上检测不到任何满足“小区选择准则”的小区,表示该UE无网络覆盖)。
2)有网络覆盖(In-Coverage)侧行通信:进行sidelink通信的两个UE都有网络覆盖(例如,UE在需要进行sidelink通信的频率上至少检测到一个满足“小区选择准则”的小区,表示该UE有网络覆盖)。
3)部分网络覆盖(Partial-Coverage)侧行通信:进行sidelink通信的其中一个UE无网络覆盖,另一个UE有网络覆盖。
从UE侧来讲,该UE仅有无网络覆盖和有网络覆盖两种场景。部分网络覆盖是从sidelink通信的角度来描述的。
侧行通信资源池(sidelink resource pool)
在侧行通信中,UE的发送和接收的资源均属于资源池resource pool。例如,对于侧行通信中基于基站调度的传输模式,基站在资源池中为sidelink UE调度传输资源,或者,对于侧行通信中基于UE感知的传输模式,UE在资源池中确定传输资源。
对于NR侧行通信,在频域上支持基于子信道(sub-channel)为最小粒度的资源分配,即对于PSSCH传输,频域上占据的资源是整数个子信道。一个子信道可以表示频域上连续的若干个资源块RB。
基于感知的资源分配方式
对于基于感知的资源分配方式(资源分配方式2),侧行通信用户设备在一个时间窗口内(可选地,资源选择窗口[n+T1,n+T2])选择候选资源,并根据监听时隙中其他用户设备发送的PSCCH所指示的预留资源,确定和该预留资源有重叠的候选资源,并将这些有重叠的候选资源排除(exclude)。物理层将未被排除的候选资源集合上报至MAC层,MAC层为PSSCH/PSCCH选择传输资源。MAC层选择的传输资源的集合称为选择的侧行通信调度许可(selected sidelink grant)。一个selected sidelink  grant包含的侧行通信资源可用于一个MAC PDU(对应一个传输块TB)的初传和所有重传,或者,可用于多个MAC PDU(对应多个传输块TB)的初传和所有重传。本发明对此不做任何限制。
LBT(Listen Before Talk)机制
对于在非授权频谱(unlicensed spectrum)上的无线通信,一些国家或地区(例如,欧洲地区)规定用户设备在进行无线通信的传输前,需要进行LBT操作,即“先听后说”机制,也可以称作信道接入(channel access)操作,表示通过感知(sensing)信道来判断信道可用性的一种机制。具体来说,在通信传输前的一段时间内,用户设备只有在监听到信道处于空闲时(idle)才会进行传输;否则,用户设备不会进行传输。
具体来说,对于非授权频谱上的NR通信(NR-U)(或者,对于SL-U),感知信道的基本时间单位可以是Tsl=9μs。在该时间单位内,如果基站或者用户设备在信道上检测到的能量低于能量门限值XThresh的时长等于或者超过4μs时,则基站或用户设备认为信道在该时间单位内是空闲的(或者,称为LBT成功)。值得指出的是,基站或者用户设备检测能量并用于确定是否空闲的信道(channel)表示包含一个连续资源块RB集合的一个载波,或者该载波的一部分。该信道也可以称作LBT带宽(LBT bandwidth),或者,LBT子带(LBT sub-band),或者RB集合(RB set)。一个LBT bandwidth或者RB set在频域上可以等于20MHz,即在20MHz的载波上可以存在一个RB set。在一个载波上(超过20MHz的载波,例如40MHz,60MHz,80MHz)包含的多个RB set以及两个连续RB set之间的保护带(Guard Band,简称为GB)所对应的资源块RB的数目可以是如下表格中所示的:
表1:15kHz和30kHz子载波间隔下,一个载波上的所有RB set和GB包含的RB数目
上图中,以15kHz的子载波间隔和40MHz的载波带宽为例,105-6-105表示该载波包含两个连续的RB set,分别包含105个RB。在这两个RB set之间,存在一个包含6个连续RB的保护带GB,共计包含216个连续的RB,以此类推表1中的其他项。
值得指出的是,(侧行通信)用户设备在不同的RB set上进行的LBT操作,可以是互相独立的(即二者互不相干)。例如,用户设备在RB set 1上检测信道是空闲的,在RB set 2上检测信道可以是占用的(或者,忙碌的)。如果侧行通信用户设备选择用于传输PSSCH/PSCCH的资源同时包含RB set 1和RB set 2所对应的(全部或者部分)RB时,当且仅当该用户设备在RB set 1和RB set 2上同时检测到信道是空闲的情况下,该用户设备可以发送相应的PSSCH/PSCCH。
一个PSCCH/PSSCH传输对应的N个关联的候选PSFCH资源(或者,传 输机会occasion)
对于非授权频谱上的侧行通信,当发生LBT失败时,可能造成PSFCH无法正常传输。因此,对于SL-U,一个PSCCH/PSSCH传输可以对应N个关联的候选PSFCH资源,即当一个候选PSFCH资源的LBT未成功时,可能其他的某一个或者多个候选PSFCH资源的LBT成功,可以进行PSFCH的传输。其中,N通过配置或者预配置信息确定,取值范围为{1,2,3,4}。具体来说,一个PSCCH/PSSCH传输对应的N个关联的候选PSFCH资源在不同时隙的相同RB set内。
侧行通信组播(aroupcast)通信中的HARQ反馈机制
对于组播侧行通信,支持两种不同的HARQ反馈机制,分别称作HARQ反馈机制一和HARQ反馈机制二。其中,HARQ反馈机制一表示 当接收PSCCH/PSSCH的用户设备未能成功译码时,在关联的PSFCH资源上发送NACK,成功译码时,不发送任何信息;HARQ反馈机制二表示当接收PSCCH/PSSCH的用户设备未能成功译码时,在关联的PSFCH资源上发送NACK,成功译码时,在关联的PSFCH资源上发送ACK。对于HARQ反馈机制一,组播通信内的所有的组成员用户设备可以共享同一个关联的PSFCH资源;对于HARQ反馈机制二,组播通信内的所有的组成员用户设备对应的关联PSFCH资源可以不同。
SCI format 2-A(2-B)中的通信类型指示域(cast type indicator field)
对于2级SCI中的SCI格式2-A(2-B),通信类型指示域可以包含两个比特,即取值为‘00’,‘01’,‘10’,‘11’。各个取值分别对应的指示信息如表格2所示。
表2.通信类型指示域(Cast type indicator)
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
[实施例一]
图1是示出了本发明的实施例一的由用户设备执行的方法的基本过程的示意图。
下面,结合图1所示的基本过程图来详细说明本发明的实施例一的由用户设备执行的方法。
如图1所示,在本发明的实施例一中,用户设备执行的步骤包括:
在步骤S101,在非授权频谱上(或者,在共享频谱上),侧行通信用户设备发送侧行通信控制信息SCI。
可选的,所述发送的SCI是组播(groupcast)通信,即接收所述SCI的用户设备的数目是大于1的,或者,等于1。
可选的,如果高层提供了(所述组播通信中的)组的大小(group size)和/或组内成员的标识(member ID),以及,所述组的大小不大于在单(或者,一)个时隙上候选PSFCH资源的数目,那么,所述SCI中的通信类型指示域(cast type indicator field)设置为‘01’,或者,‘11’,表示HARQ反馈机制二的组播通信,或者,HARQ反馈机制一的组播通信。可选的,否则,所述SCI中的通信类型指示域设置为‘11’,表示所述HARQ反馈机制一的组播通信。其中,可选的,所述候选PSFCH资源表示一个PSCCH/PSSCH传输对应的在N个时隙上的(所有)候选PSFCH资源,所述N是正整数,通过配置或者预配置信息获得。
可选的,所述SCI中的通信类型指示域的数值为‘11’,即表示HARQ反馈机制一的组播通信。
在步骤S102,所述用户设备尝试接收(attempt to)所述SCI关联(或者,对应)的PSFCH。
可选的,如果所述用户设备确定所述SCI关联(或者,对应)的(所有)所述N个候选PSFCH资源(occasion)上PSFCH接收是缺失的(absence of PSFCH reception),那么,所述用户设备向高层(MAC层)报告一个ACK;可选的,否则,向所述高层报告一个NACK。
根据本实施例,能够有效提高在非授权频谱上侧行通信的通信可靠性。例如,在SL-U中,本发明的方案保证了当且仅当一个PSCCH/PSSCH传输对应的N个关联的PSFCH资源上均没有PSFCH接收时,物理层向MAC层上报ACK,该方案有效提高了在非授权频谱上侧行通信的通信可靠性。
同时,本发明的方案可用于MAC层确定组播侧行通信的HARQ反馈机制,同样可以提升侧行通信在非授权频谱上的通信可靠性。
图2是表示本发明所涉及的用户设备UE的框图。如图2所示,该用户设备UE80包括处理器801和存储器802。处理器801例如可以包括微处理器、微控制器、嵌入式处理器等。存储器802例如可以包括易失性存 储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器802上存储有程序指令。该指令在由处理器801运行时,可以执行本发明详细描述的由用户设备执行的上述方法。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软 件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置,或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本发明也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情况下,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (5)

  1. 一种由用户设备执行的方法,包括:
    在非授权频谱上,所述用户设备设置侧行通信控制信息SCI中的通信类型指示域;和
    所述用户设备发送所述SCI。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用户设备发送的所述SCI是组播通信。
  3. 根据权利要求2所述的方法,其特征在于,
    在高层提供了所述组播通信中的组的大小和组内成员的标识、且所述组的大小不大于在单个时隙上候选PSFCH资源的数目的情况下,所述SCI中的通信类型指示域设置为表示混合自动重传请求HARQ反馈机制一的组播通信的值、或表示HARQ反馈机制二的组播通信的值。
  4. 根据权利要求3所述的方法,其特征在于,
    所述候选PSFCH资源表示一个物理侧行通信共享信道PSSCH传输对应的在N个时隙上的所有候选PSFCH资源,其中,所述N是正整数,通过配置或者预配置信息获得。
  5. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,所述指令在由所述处理器运行时执行权利要求1至4中的任一项所述的方法。
PCT/CN2024/104189 2023-07-13 2024-07-08 由用户设备执行的方法以及用户设备 WO2025011511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310860674.8 2023-07-13
CN202310860674.8A CN119316956A (zh) 2023-07-13 2023-07-13 由用户设备执行的方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2025011511A1 true WO2025011511A1 (zh) 2025-01-16

Family

ID=94183660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/104189 WO2025011511A1 (zh) 2023-07-13 2024-07-08 由用户设备执行的方法以及用户设备

Country Status (2)

Country Link
CN (1) CN119316956A (zh)
WO (1) WO2025011511A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944403A (zh) * 2018-09-21 2020-03-31 株式会社Kt 用于传送侧链路harq反馈信息的方法和设备
CN113518313A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种侧行链路组播通信的方法及通信装置
CN114946146A (zh) * 2019-10-30 2022-08-26 Oppo广东移动通信有限公司 用于混合自动重传请求上报的用户设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944403A (zh) * 2018-09-21 2020-03-31 株式会社Kt 用于传送侧链路harq反馈信息的方法和设备
CN114946146A (zh) * 2019-10-30 2022-08-26 Oppo广东移动通信有限公司 用于混合自动重传请求上报的用户设备和方法
CN113518313A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种侧行链路组播通信的方法及通信装置

Also Published As

Publication number Publication date
CN119316956A (zh) 2025-01-14

Similar Documents

Publication Publication Date Title
WO2022028413A1 (zh) 由用户设备执行的方法以及用户设备
WO2022152163A1 (zh) 由用户设备执行的方法以及用户设备
US20240389123A1 (en) Method performed by user equipment, and user equipment
WO2022017037A1 (zh) 由用户设备执行的方法以及用户设备
WO2023131074A1 (zh) 由用户设备执行的方法以及用户设备
CN114697922A (zh) 由用户设备执行的方法以及用户设备
WO2024032504A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001957A1 (zh) 由用户设备执行的方法以及用户设备
WO2021136373A1 (zh) 由用户设备执行的方法以及用户设备
WO2024001958A1 (zh) 由用户设备执行的方法以及用户设备
WO2023001070A1 (zh) 由用户设备执行的方法以及用户设备
WO2024149091A1 (zh) 由用户设备执行的方法以及用户设备
WO2024067625A1 (zh) 由用户设备执行的方法以及用户设备
WO2024012390A1 (zh) 由用户设备执行的方法以及用户设备
CN113497689A (zh) 由用户设备执行的方法以及用户设备
WO2023078345A1 (zh) 由用户设备执行的方法以及用户设备
WO2022267943A1 (zh) 由用户设备执行的方法以及用户设备
WO2022063070A1 (zh) 由用户设备执行的方法以及用户设备
CN116981059A (zh) 由用户设备执行的方法以及用户设备
WO2024140669A1 (zh) 由用户设备执行的方法以及用户设备
WO2024094061A1 (zh) 由用户设备执行的方法以及用户设备
CN113498184A (zh) 由用户设备执行的方法以及用户设备
WO2025011511A1 (zh) 由用户设备执行的方法以及用户设备
WO2025011510A1 (zh) 由用户设备执行的方法以及用户设备
WO2024199288A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24838764

Country of ref document: EP

Kind code of ref document: A1