[go: up one dir, main page]

WO2025009514A1 - Curable resin composition, cured film, multilayer object, imaging device, semiconductor device, and method for producing multilayer object - Google Patents

Curable resin composition, cured film, multilayer object, imaging device, semiconductor device, and method for producing multilayer object Download PDF

Info

Publication number
WO2025009514A1
WO2025009514A1 PCT/JP2024/023874 JP2024023874W WO2025009514A1 WO 2025009514 A1 WO2025009514 A1 WO 2025009514A1 JP 2024023874 W JP2024023874 W JP 2024023874W WO 2025009514 A1 WO2025009514 A1 WO 2025009514A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resin composition
curable resin
laminate
organic layer
Prior art date
Application number
PCT/JP2024/023874
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 塩島
主 國澤
颯 野元
憲一朗 佐藤
元彦 浅野
徳重 七里
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2025009514A1 publication Critical patent/WO2025009514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body

Definitions

  • the present invention relates to a curable resin composition, a cured film, a laminate, an imaging device, a semiconductor device, and a method for manufacturing a laminate.
  • a damascene process is used to form a bonding surface on the electrode surface of an element or circuit board (hereinafter simply referred to as a substrate) on which two electrodes are formed, in which a bonding electrode made of copper is surrounded by an insulating film.
  • the two substrates are then stacked so that the bonding electrodes on the bonding surfaces face each other, and a heat treatment is performed to manufacture the semiconductor device (Patent Document 1).
  • the insulating layer used to form the bonding surface is required to have high heat resistance.
  • insulating inorganic materials such as SiN and SiO2 are used as the insulating layer.
  • insulating layers made of inorganic materials are prone to warping of the substrate, and if the substrate is warped, the connection position of the electrodes may shift or the electrodes may crack when stacked, which may reduce the connection reliability of the semiconductor device.
  • the performance of semiconductor devices has improved, and substrates have become larger and thinner, making substrate warping more likely to occur, and the substrate may crack, especially when the substrate is thin.
  • the present invention aims to provide a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.
  • the present invention includes the following Disclosures 1 to 17. The present invention will be described in detail below.
  • [Disclosure 1] A curable resin composition comprising silsesquioxane, a solvent, and a silica filler as an inorganic filler, the solvent being dried at 125°C for 10 minutes, and the composition being thermally cured by heat treatment at 300°C for 1 hour, the cured product having an elastic modulus at 300°C of 0.2 MPa or more.
  • a laminate comprising an organic layer formed of the cured film according to Disclosure 8 on a first substrate, and an inorganic layer laminated on the organic layer,
  • the first substrate has a first surface having a plurality of chips and a second surface opposite thereto, and the organic layer and the inorganic layer are disposed on the first surface side of the first substrate.
  • Disclosure 10 Disclosure 10. The laminate according to Disclosure 9, wherein a supporting substrate is laminated on the inorganic layer.
  • the laminate according to Disclosure 9 or 10 further comprising a second substrate on the second surface of the first substrate, the first substrate and the second substrate being electrically connected to each other.
  • [Disclosure 12] A laminate having an organic layer and an inorganic layer, each of which is made of the cured film according to Disclosure 8, between a third substrate having an electrode and a fourth substrate having an electrode, a laminate in which the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer.
  • An imaging device having the laminate according to any one of Disclosures 9 to 13.
  • [Disclosure 15] A semiconductor device comprising the laminate according to any one of Disclosures 9 to 13.
  • [Disclosure 16] A step of applying a curable resin composition according to any one of Disclosures 1 to 6 onto a first surface of a first substrate having a first surface having a plurality of chips and a second surface opposite the first surface, and then drying the composition with a solvent and thermally curing the composition to form an organic layer; A method for producing a laminate, comprising the step of forming an inorganic layer on the organic layer.
  • [Disclosure 17] A step of applying the curable resin composition according to any one of Disclosures 1 to 6 onto a surface of a third substrate having an electrode and a fourth substrate having an electrode, and then drying the composition and thermally curing the composition to form an organic layer; forming an inorganic layer on the organic layer; forming through holes in each of the organic layer and the inorganic layer; filling each of the through holes with a conductive material; a step of polishing the surfaces of the third substrate having the electrode and the fourth substrate having the electrode, the surfaces being filled with the conductive material, to form bonding electrodes; A method for manufacturing a laminate, comprising a step of bonding a third substrate having the electrode and a fourth substrate having the electrode together so that the bonding electrodes of the third substrate and the fourth substrate are bonded to each other.
  • the curable resin composition of the present invention contains a silsesquioxane.
  • Silsesquioxane has high heat resistance while having the same degree of flexibility as organic compounds, so that by using a cured film mainly composed of silsesquioxane as the insulating layer of a laminate, it is possible to suppress warping and cracking of the substrate and improve the reliability of electrical connection.
  • the above-mentioned silsesquioxane is not particularly limited as long as it is thermosetting, but it is preferable that one molecule has a structure represented by the following structural formulas (A) and (B) in order to further suppress warping and cracking of the substrate.
  • R A and R B each independently represent an aliphatic group, an aromatic group, or hydrogen, and j and k each represent a repeating unit and an integer of 1 or more.
  • the silsesquioxane preferably has a reactive site.
  • silsesquioxane having a reactive site as the curable resin of the curable resin composition, warping and cracking of the element can be further suppressed.
  • silsesquioxane has excellent heat resistance, decomposition of the organic layer due to high-temperature treatment performed during the manufacture of a semiconductor device having multiple laminates can be further suppressed.
  • the reactive site include a hydroxyl group and an alkoxy group.
  • the content of the silsesquioxane having the reactive site is preferably 60 parts by weight or more, more preferably 70 parts by weight or more, and even more preferably 75 parts by weight or more, per 100 parts by weight of the resin solid content in the curable resin composition.
  • the content of the silsesquioxane having the reactive site is preferably less than 100 parts by weight, more preferably 90 parts by weight or less, per 100 parts by weight of the resin solid content in the curable resin composition.
  • the silsesquioxane preferably has a structure represented by the following structural formula (1).
  • the silsesquioxane has the structure of structural formula (1), warping of the element can be further suppressed.
  • the silsesquioxane further has an aromatic ring structure, since this further improves heat resistance and further suppresses warping and cracking of the element.
  • R 0 , R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group or hydrogen.
  • the aliphatic group and the aromatic group may or may not have a substituent.
  • m and n each represent an integer of 1 or more.
  • R 0 each independently represents a linear, branched or cyclic aliphatic group, an aromatic group, or hydrogen.
  • the aliphatic group and the aromatic group may or may not have a substituent.
  • R 0 is preferably a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, and more preferably a phenyl group.
  • R 0 is a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, higher heat resistance can be exhibited.
  • R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group, or hydrogen.
  • the aliphatic group and the aromatic group may or may not have a substituent.
  • R 1 and R 2 are preferably a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, and more preferably a phenyl group or a methyl group.
  • R 1 and R 2 being a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, higher heat resistance can be exhibited.
  • m and n are each an integer of 1 or more and represent the number of repeating units.
  • the above m is preferably 30 or more, more preferably 50 or more, and preferably 100 or less.
  • the above n is preferably 1 or more, more preferably 3 or more, and preferably 8 or less.
  • the weight average molecular weight of the silsesquioxane is not particularly limited, but is preferably 5000 to 150000. When the weight average molecular weight of the silsesquioxane is in the above range, the film-forming property during application is improved, the flattening performance is further improved, and warping and cracking of the element can be further suppressed.
  • the weight average molecular weight of the silsesquioxane is more preferably 10000 or more, even more preferably 30000 or more, more preferably 100000 or less, and even more preferably 70000 or less.
  • the weight average molecular weight of the silsesquioxane is measured as a polystyrene-equivalent molecular weight by gel permeation chromatography (GPC) using THF as an elution solvent and a Time-MB-M6.0 ⁇ 150 mm (manufactured by Waters Corporation) or an equivalent column, and can be calculated with a polystyrene standard.
  • GPC gel permeation chromatography
  • the content of the silsesquioxane is preferably 65% by weight or more and 99% by weight or less based on 100% by weight of the solid components of the curable resin composition.
  • the content of silsesquioxane in 100% by weight of the solid component of the curable resin composition is more preferably 70% by weight or more, even more preferably 75% by weight or more, more preferably 98% by weight or less, and even more preferably 97% by weight or less.
  • the curable resin composition of the present invention contains a solvent.
  • a solvent By adding a solvent to the curable resin composition, the viscosity of the silsesquioxane can be increased to a level that allows it to be applied to a substrate, and the unevenness of the substrate surface can be filled and made flat. As a result, the bonding reliability of the substrate can be increased, and the electrical connection reliability of the laminate can also be improved.
  • the solvent may be composed of a single component or a mixture of multiple components.
  • the solvent in the curable resin composition preferably has a boiling point of 130° C. or higher and 250° C. or lower.
  • the boiling point of the solvent is more preferably 150°C or higher, even more preferably 180°C or higher, more preferably 230°C or lower, and even more preferably 220°C or lower.
  • solvents having a boiling point in the above range include aromatic organic solvents, ketone organic solvents, lactam organic solvents, and lactone organic solvents.
  • R represents a hydrocarbon.
  • the compound examples include cyclopentanone (boiling point: 131° C.), propylene glycol monomethyl ether acetate (boiling point: 146° C.), anisole (boiling point: 154° C.), ethyl benzoate (boiling point: 211 to 213° C.), N-methyl-2-pyrrolidone (boiling point: 202° C.), 2-piperidone (boiling point: 256° C.), 2-pyrrolidone (boiling point: 245° C.), ⁇ -butyrolactone (boiling point: 204° C.), and ⁇ -valerolactone (boiling point: 207° C.).
  • the content of the solvent in the curable resin composition is preferably 50% by weight or less.
  • the content of the solvent in the curable resin composition is more preferably 45% by weight or less, even more preferably 40% by weight or less, and even more preferably 35% by weight or less.
  • the lower limit of the content of the solvent is not particularly limited, but is preferably 30% by weight or more from the viewpoint of further improving the flattening performance.
  • the content of the solvent is preferably 50 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the silsesquioxane.
  • the content of the solvent relative to the silsesquioxane in the above range can further improve the planarization performance of the substrate surface.
  • the content of the solvent relative to the silsesquioxane is more preferably 55 parts by weight or more, even more preferably 60 parts by weight or more, more preferably 80 parts by weight or less, and even more preferably 70 parts by weight or less.
  • the curable resin composition of the present invention contains a silica filler as an inorganic filler.
  • a silica filler in the curable resin composition and satisfying the elastic modulus described below wrinkles are less likely to occur in the inorganic layer even when an inorganic layer is formed on the cured film of the silsesquioxane, and process abnormalities due to wrinkles in the inorganic layer can be suppressed.
  • the silica filler is preferably not spherical in shape.
  • the elastic modulus is increased by the silica filler having a shape other than a perfect sphere, and the elastic modulus described later can be more easily satisfied.
  • a silica filler having a shape other than a perfect sphere it is possible to control the elastic modulus without using a crosslinking agent, and it is possible to avoid the increase in storage stability and viscosity caused by the use of a crosslinking agent in combination.
  • the reason why the elastic modulus is increased by the silica filler having a shape other than a perfect sphere is not clear, but it is thought that this is because the contact area with other fillers is small when the silica filler is a perfect sphere, making it difficult to interact with other fillers.
  • Examples of the shape of the silica filler other than a perfect sphere include needles, pulverized, and fibrous. Note that even when a perfect spherical silica filler is used, it is possible to adjust the elastic modulus to the range described later by combining it with a crosslinking agent.
  • the silica filler preferably has a bulk density of 0.01 g/cm 3 or more and 0.2 g/cm 3 or less. When the bulk density of the silica filler is in the above range, it is easier to satisfy the elastic modulus described below.
  • the bulk density of the silica filler is more preferably 0.05 g/ cm3 or more and more preferably 0.1 g/cm3 or less .
  • the content of the silica filler is preferably 15 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the silsesquioxane. By setting the content of the silica filler within the above range, it is possible to suppress warping and cracking of the substrate and to more easily satisfy the elastic modulus described below.
  • the content of the silica filler is more preferably 20 parts by weight or more, more preferably 25 parts by weight or more, more preferably 35 parts by weight or less, and even more preferably 30 parts by weight or less, relative to 100 parts by weight of the silsesquioxane.
  • the curable resin composition of the present invention preferably contains a catalyst.
  • the catalyst has a role of promoting the curing reaction.
  • the curable resin composition can be cured more completely, decomposition of the organic layer (cured film) due to high-temperature treatment can be further suppressed, and the elastic modulus can be easily controlled.
  • the catalyst include organotin compounds such as dibutyltin dilaurate and stannous acetate, metal carboxylates such as zinc naphthenate, acetylacetonate complexes with zirconium as the central metal, and titanium compounds.
  • acetylacetonate complexes with zirconium as the central metal are preferred because they can promote the curing of the curable resin composition.
  • the catalyst remains even after the curable resin composition is cured.
  • the curable resin composition of the present invention contains a catalyst
  • the cured film obtained by curing the curable resin composition also contains the catalyst.
  • the content of the catalyst is not particularly limited, but is preferably 0.01 parts by weight or more and 10 parts by weight or less per 100 parts by weight of the silsesquioxane. By setting the content of the catalyst within the above range, curing can be further promoted and decomposition of the cured film due to high-temperature treatment can be further suppressed.
  • the content of the catalyst is more preferably 0.1 parts by weight or more, even more preferably 0.2 parts by weight or more, more preferably 7 parts by weight or less, and even more preferably 5 parts by weight or less per 100 parts by weight of the silsesquioxane.
  • the curable resin composition may contain a crosslinking agent.
  • the crosslinking agent crosslinks between the curable resins, increasing the crosslink density of the cured product, and further suppressing decomposition at high temperatures. As a result, the warping and cracking of the substrate can be suppressed, and the connection reliability can be further improved.
  • the elastic modulus described below can be controlled by adjusting the blending amount and structure of the crosslinking agent. Furthermore, by containing a crosslinking agent, the elastic modulus described below can be controlled even if the shape of the silica filler is spherical.
  • crosslinking agent examples include alkoxysilane compounds such as dimethoxysilane compounds, trimethoxysilane compounds, diethoxysilane compounds, and triethoxysilane compounds, or silicate oligomers obtained by condensation of tetramethoxysilane compounds and tetraethoxysilane compounds.
  • alkoxysilane compounds such as dimethoxysilane compounds, trimethoxysilane compounds, diethoxysilane compounds, and triethoxysilane compounds
  • silicate oligomers obtained by condensation of tetramethoxysilane compounds and tetraethoxysilane compounds.
  • polyalkoxysilane is preferable from the viewpoint of improving the crosslink density and improving the heat resistance.
  • the content of the crosslinking agent is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less per 100 parts by weight of the silsesquioxane.
  • the content of the crosslinking agent is more preferably 3 parts by weight or more, even more preferably 3.2 parts by weight or more, more preferably 30 parts by weight or less, and even more preferably 20 parts by weight or less per 100 parts by weight of the silsesquioxane.
  • the curable resin composition preferably contains a heat-resistant resin.
  • a heat-resistant resin in the curable resin composition it is possible to obtain a cured film that is less likely to crack when subjected to high-temperature treatment, even in the case where the cured film has a large thickness.
  • the heat-resistant resins include polyimide, epoxy resin, silicone resin, benzoxazine resin, cyanate resin, phenolic resin, etc., and polyimide is particularly preferred from the viewpoint of heat resistance.
  • the molecular weight of the heat-resistant resin is not particularly limited, but is preferably 5,000 or more and 150,000 or less. By having the weight-average molecular weight of the heat-resistant resin in the above range, it is possible to obtain a cured film that is less likely to crack during high-temperature treatment, even if the cured film is thick.
  • the molecular weight of the heat-resistant resin is more preferably 10,000 or more, even more preferably 30,000 or more, more preferably 100,000 or less, and even more preferably 70,000 or less.
  • the content of the heat-resistant resin is preferably 0.5 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the silsesquioxane. By making the content of heat-resistant resin within the above range, even if it is made into a thick cured film, it can be made into a cured film that is less likely to crack when treated at high temperature.
  • the content of the heat-resistant resin is more preferably 0.7 parts by weight or more, more preferably 0.75 parts by weight or more, particularly preferably 1 part by weight or more, more preferably 20 parts by weight or less, more preferably 10 parts by weight or less, particularly preferably 5 parts by weight or less, based on 100 parts by weight of the silsesquioxane.
  • the polyimide preferably has a siloxane bond.
  • the compatibility with the silsesquioxane is increased, so that unevenness (surface roughness) caused by precipitation of the polyimide during application can be further suppressed.
  • the polyimide When the polyimide has a siloxane bond, the polyimide preferably has a ratio of carbon atoms to silicon atoms in the main chain structure, C/Si, of 17 or less.
  • C/Si a ratio of carbon atoms to silicon atoms in the main chain structure of the polyimide
  • the C/Si is more preferably 16.5 or less, and even more preferably 16 or less.
  • the lower limit of the C/Si is not particularly limited, but is preferably 4 or more from the viewpoint of practical use and further increasing the heat resistance at 400°C.
  • the ratio C/Si of carbon atoms to silicon atoms in the main chain structure of the polyimide is the ratio of C and Si in the repeating unit, and does not include C and Si at both ends.
  • the C/Si can be obtained by obtaining the structure of the polyimide by 1 H-NMR, 13 C-NMR, and 29 Si-NMR, and measuring the number of C atoms and Si atoms from the repeating unit of the main chain.
  • the polyimide preferably has an oxazine ring or imide ring structure at least at one of its terminals, and more preferably has an oxazine ring or imide ring structure at both terminals.
  • an oxazine ring or imide ring structure at the terminal of the polyimide surface roughness can be further suppressed when the polyimide is made into a thick film.
  • the oxazine ring and imide ring structures may have a substituent.
  • the polyimide has any one of the structures represented by the following structural formulas (2) to (7) at at least one terminal, and it is particularly preferable that both terminals have any one of the structures represented by the following structural formulas (2) to (7).
  • "*" in the structural formulas below represents a bonding site with a portion other than the terminal of the polyimide.
  • the polyimide preferably has a weight average molecular weight of 1,000 or more and 50,000 or less.
  • the weight average molecular weight of the polyimide is within the above range, the compatibility with the silsesquioxane is improved, and the handleability can be further improved.
  • the weight average molecular weight is more preferably 2000 or more, even more preferably 3000 or more, more preferably 35000 or less, and even more preferably 30000 or less.
  • the weight average molecular weight of the polyimide is measured as a polystyrene-equivalent molecular weight by gel permeation chromatography (GPC) using THF as an elution solvent and a Time-MB-M 6.0 ⁇ 150 mm (manufactured by Waters Corporation) or an equivalent column, and can be calculated with a polystyrene standard.
  • GPC gel permeation chromatography
  • the content of the polyimide is preferably 0.5 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the silsesquioxane.
  • the content of the polyimide is preferably 0.7 parts by weight or more, more preferably 0.75 parts by weight or more, and even more preferably 1 part by weight or more, and is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 5 parts by weight or less, based on 100 parts by weight of the silsesquioxane.
  • the curable resin composition of the present invention may contain other additives such as viscosity modifiers, fillers other than silica fillers, and adhesion promoters as necessary, within the scope of the invention.
  • the curable resin composition of the present invention has an elastic modulus at 300° C. of 0.2 MPa or more for a cured product after drying the solvent at 125° C. for 10 minutes and heat-curing by heat treatment at 300° C. for 1 hour.
  • the elastic modulus of the cured product at 300°C is preferably 0.2 MPa or more, more preferably 0.5 MPa or more, and even more preferably 1 MPa or more.
  • the upper limit of the elastic modulus of the cured product at 300°C is not particularly limited, but is preferably 100 MPa or less, more preferably 50 MPa or less, from the viewpoint of further suppressing warping and cracking of the substrate.
  • the elastic modulus can be adjusted by the type of the silsesquioxane, the type, shape and amount of the silica filler, the crosslinking structure, etc.
  • the elastic modulus can be specifically measured by the following method.
  • the curable resin composition is applied in a sheet form using an applicator or the like, dried at 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition with a thickness of 500 ⁇ m.
  • the obtained film sample is punched out to a size of 5 mm x 35 mm to prepare a measurement sample.
  • the tensile modulus of the obtained measurement sample at 300°C is measured using a dynamic viscoelasticity measuring device (IT Measurement and Control Co., Ltd., DVA-200 or equivalent) under conditions of a constant temperature rise tensile mode, a temperature rise rate of 5°C/min, and a frequency of 1 Hz.
  • the curable resin composition of the present invention is preferably such that the coefficient of linear expansion (CTE) in the range of -40°C to 100°C is 500 ppm/°C or less for a cured product after drying the solvent under conditions of 125°C for 10 minutes and heat-curing by heat treatment at 300°C for 1 hour.
  • CTE coefficient of linear expansion
  • the linear expansion coefficient is more preferably 400 ppm/°C or less, and even more preferably 300 ppm/°C or less.
  • the lower limit of the linear expansion coefficient is not particularly limited, but is preferably 10 ppm/°C or more from the viewpoint of suppressing warping due to stress relaxation of the inorganic film.
  • the linear expansion coefficient can be adjusted by the type of the silsesquioxane, the type, shape and amount of the silica filler, crosslinking structure, etc.
  • the linear expansion coefficient can be measured by the following method.
  • the curable resin composition is applied in a sheet form using an applicator or the like, dried at 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition with a thickness of 300 ⁇ m.
  • the obtained film sample is punched out to a size of 4 mm x 22 mm to prepare a measurement sample.
  • the obtained measurement sample is cooled to -70°C and then heated to 400°C at a heating rate of 5°C/min using a thermomechanical analyzer (Hitachi High-Tech Science Corporation, TMA7100 or equivalent), and the linear thermal expansion is measured, and the linear expansion coefficient in the range of -40°C to 100°C is calculated.
  • the method for producing the curable resin composition of the present invention is not particularly limited, and it can be produced, for example, by mixing the silsesquioxane, the solvent, the silica filler, and, if necessary, additives such as the catalyst and the heat-resistant resin with the solvent.
  • the curable resin composition of the present invention is preferably used as an insulating layer in a laminate consisting of multiple substrates in which the heat-cured cured product is used in semiconductor devices, image sensors, etc., and more preferably used by laminating an inorganic layer on the heat-cured cured product.
  • an insulating layer By forming such an insulating layer, it is possible to exhibit high moisture resistance while suppressing warping and cracking of the substrate, and further, wrinkles are less likely to occur in the inorganic layer, thereby suppressing process abnormalities caused by wrinkles in the inorganic layer.
  • Such a cured film obtained by thermally curing the curable resin composition of the present invention also constitutes the present invention.
  • a laminate using the cured film of the present invention that is, a laminate in which an organic layer made of the cured film of the present invention is laminated on a first substrate, and an inorganic layer is laminated on the organic layer, the first substrate has a first surface having a plurality of chips and a second surface which is the opposite surface, and the organic layer and the inorganic layer are on the first surface side (hereinafter also referred to as laminate A). is also one aspect of the present invention.
  • the laminate A of the present invention is a laminate in which an organic layer is laminated on a first element, and an inorganic layer is laminated on the organic layer.
  • the organic layer and inorganic layer serve as an insulating layer between each element and substrate in a semiconductor device in which a plurality of elements and substrates are laminated.
  • Conventional insulating layers use hard inorganic materials to withstand high-temperature treatment during manufacturing, so that when the substrate is deformed, the stress cannot be relieved and the substrate is prone to warping and cracking.
  • the substrate is less likely to warp or crack, and as a result, the electrode misalignment and cracking caused by the substrate warping and cracking can be suppressed, thereby improving the connection reliability between the substrates.
  • an inorganic layer as an auxiliary insulating layer on the organic layer, moisture in the atmosphere is less likely to permeate than the organic layer alone, so that high connection reliability can be achieved even under high temperature and high humidity.
  • the organic layer is made of a cured film of the curable resin composition of the present invention, wrinkles are less likely to occur in the inorganic layer even when the inorganic layer is laminated. As a result, process abnormalities such as alignment defects caused by wrinkles in the inorganic layer can be suppressed.
  • the inorganic layer of the laminate of the present invention is thin, the organic layer does not hinder the elimination of the warping of the substrate.
  • the first substrate is not particularly limited, and may be a circuit substrate on which elements and wiring are formed.
  • a sensor circuit substrate on which a pixel portion (pixel region) is provided a circuit substrate on which peripheral circuit portions such as logic circuits that perform various signal processing related to the operation of the solid-state imaging device are mounted, or a circuit substrate on which peripheral circuits such as memory circuits are mounted may be used.
  • the first substrate has a first surface having a plurality of chips and a second surface opposite thereto, and has the organic layer and the inorganic layer on the first surface side.
  • the chips form unevenness, so that the connection surface is not flat and the connection reliability is likely to decrease.
  • the organic layer fills the unevenness to make the connection surface flat, so that warping and cracking of the first substrate and the chips can be suppressed.
  • the inorganic layer covers the entire exposed surface of the organic layer.
  • Examples of the chips include memory circuit elements, logic circuit elements, etc.
  • the number of chips is not particularly limited as long as it is two or more.
  • the organic layer preferably has a thickness of 10 ⁇ m or more.
  • the thickness of the organic layer is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the material of the inorganic layer is not particularly limited, and examples thereof include SiN, SiO 2 , and Al 2 O 3. Among these, SiN and SiO 2 are preferred because of their excellent insulating properties and heat resistance.
  • the thickness of the inorganic layer is preferably 1 nm or more, more preferably 5 nm or more, and even more preferably 10 nm or more, from the viewpoint of further increasing the connection reliability of the laminate. Furthermore, from the viewpoint of not preventing the elimination of warpage in the substrate, the thickness is preferably 1 ⁇ m or less, more preferably 500 nm or less, and even more preferably 100 nm or less.
  • the laminate A of the present invention may further include a supporting substrate laminated on the inorganic layer.
  • a supporting substrate laminated on the inorganic layer.
  • the laminate A of the present invention may further have a second substrate on the second surface of the first substrate, and the first substrate and the second substrate may be electrically connected to each other.
  • the organic layer suppresses warping and cracking of the first substrate, warping and cracking of the second substrate further laminated on the first substrate are also suppressed, thereby improving connection reliability.
  • the second substrate may be the same as the first substrate.
  • the laminate A of the present invention has a structure in which an organic layer 3 and an inorganic layer 4 are laminated on the surface (first surface) of a first substrate 1 having a plurality of chips 2 on which the chips are laminated, and the organic layer 3 and the inorganic layer 4 act as insulating layers.
  • Conventional insulating layers consisting of an organic layer and an inorganic layer exhibit excellent connection reliability by suppressing warping and cracking of the substrate with the organic layer 3 and suppressing moisture permeation with the inorganic layer 4, but wrinkles in the inorganic layer, which cause process abnormalities, tend to occur.
  • the laminate of the present invention wrinkles are unlikely to occur in the inorganic layer by using the curable resin composition of the present invention as the material for the organic layer, so that process abnormalities such as alignment defects can be suppressed.
  • the laminate A of the present invention may have a support substrate 5 laminated on the inorganic layer 4, and a second substrate 6 may be laminated on the surface (second surface) opposite to the surface on which the organic layer 3 of the first substrate 1 is laminated, and the first substrate 1 and the second substrate 6 may be electrically connected.
  • the organic layer 3 and the inorganic layer 4 are single layers, but they may be made up of multiple layers.
  • a method for producing a laminate A of the present invention which includes a step of applying a curable resin composition of the present invention to a first surface of a first substrate having a first surface with a plurality of chips and a second surface opposite the first surface, and forming an organic layer by solvent drying and thermal curing, and a step of forming an inorganic layer on the organic layer, is also one aspect of the present invention.
  • the method for manufacturing the laminate A of the present invention first involves applying the curable resin composition of the present invention onto the first surface of a first substrate having a first surface having a plurality of chips and a second surface opposite the first surface, followed by solvent drying and thermal curing to form an organic layer.
  • Conventional laminates using inorganic materials for the insulating layer have been manufactured by time-consuming methods such as chemical vapor deposition (CVD) and sputtering. Since the main component of the insulating layer of the laminate of the present invention is an organic compound, it can be manufactured by applying a solution and drying it, which not only improves connection reliability but also increases production efficiency.
  • the first substrate and the curable resin composition are the same as the first substrate and the curable resin composition of the present invention in the laminate A of the present invention.
  • the method for forming the film is not particularly limited, and a conventionally known method such as spin coating can be used.
  • the solvent drying conditions are not particularly limited, but from the viewpoint of reducing the remaining solvent and improving the heat resistance of the organic layer, it is preferable to heat the organic layer at a temperature of preferably 70° C. or higher, more preferably 100° C. or higher, preferably 250° C. or lower, more preferably 200° C. or lower, for example, for 30 minutes, more preferably for about 1 hour.
  • the curing conditions are not particularly limited, but from the viewpoint of sufficiently progressing the curing reaction and further improving the heat resistance, it is preferable to heat for, for example, about 1 hour or more, more preferably 2 hours or more at a temperature of preferably 200° C.
  • the upper limit of the heating time is not particularly limited, but from the viewpoint of suppressing thermal decomposition of the organic layer, it is preferably 3 hours or less.
  • a step of forming an inorganic layer on the organic layer is then carried out.
  • Methods for forming the inorganic layer include chemical vapor deposition (CVD), sputtering, deposition, and the like.
  • the method for producing the laminate A of the present invention further includes a step of bonding the supporting substrate onto the inorganic layer.
  • the manufacturing method of the laminate A of the present invention includes a step of laminating a second substrate on the second surface of the first substrate and electrically connecting the first substrate and the second substrate.
  • the first and second substrates may be electrically connected by a method of melting and connecting the electrodes of the first and second substrates by heat treatment, etc.
  • the heat treatment is usually performed at 400° C. for about 4 hours.
  • An example of a laminate using the cured film of the present invention is a laminate having a structure in which two substrates having electrodes are electrically connected and an insulating layer made of the cured film of the present invention and an inorganic layer is disposed between the two substrates.
  • Such a laminate having an organic layer and an inorganic layer made of the cured film of the present invention between a third substrate having an electrode and a fourth substrate having an electrode, in which the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer (hereinafter, also referred to as laminate B), also constitutes one aspect of the present invention.
  • the laminate B of the present invention is a laminate having an organic layer and an inorganic layer composed of the cured film of the present invention between a third substrate having an electrode and a fourth substrate having an electrode, and the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer.
  • the cured film and inorganic layer provided between the electrode of the third substrate (hereinafter also referred to as the first electrode) and the electrode of the fourth substrate (hereinafter also referred to as the second electrode) act as an insulating layer, thereby suppressing short circuit of current.
  • the cured film made of a curable resin composition having higher flexibility than inorganic materials is used as the main insulating layer, so that the warping of the substrate can be eliminated, thereby exhibiting high connection reliability.
  • the moisture resistance can be increased by using a thin inorganic layer as an auxiliary insulating layer so as not to prevent the elimination of the warping of the substrate.
  • the cured film of the present invention is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is laminated on the cured film, so that process defects such as alignment defects can be suppressed.
  • being electrically connected refers to a state in which the first electrode and the second electrode are connected by a conductive material or the like filled in the through hole.
  • the third and fourth substrates may be the same as the first substrate.
  • the organic and inorganic layers may be the same as the organic and inorganic layers of the laminate A of the present invention.
  • the inorganic layer may be formed on both the organic layers of the third and fourth substrates, or may be formed on only one of the organic layers.
  • the inorganic layer is preferably formed on the organic layers of both the third and fourth substrates, and more preferably covers the entire side surface of the organic layer, since this improves the connection reliability under high temperature and high humidity.
  • the materials of the electrodes of the third and fourth substrates and the conductive material are not particularly limited, and conventional electrode materials such as gold, copper, and aluminum can be used.
  • the laminate B of the present invention preferably has a barrier metal layer on the surface of the through hole.
  • the barrier metal layer has a role of preventing the diffusion of the conductive material (e.g., Cu atoms in the case of a Cu electrode) filled in the through hole into the organic layer.
  • the conductive material e.g., Cu atoms in the case of a Cu electrode
  • the material of the barrier metal layer can be a known material such as tantalum, tantalum nitride, titanium nitride, silicon oxide, silicon nitride, etc.
  • the thickness of the barrier metal layer is not particularly limited, but from the viewpoint of further improving the connection reliability of the laminate, it is preferably 1 nm or more, more preferably 10 nm or more, more preferably 100 nm or less, and even more preferably 50 nm or less.
  • the laminate B of the present invention has a structure in which a third substrate 7 having an electrode 8 and a fourth substrate 9 are bonded via an organic layer 3 and an inorganic layer 4, and the electrodes 8 on the third substrate 7 and the fourth substrate 9 are electrically connected through a conductive material filled in a through hole 10 provided in the organic layer 3.
  • the organic layer 3 corresponding to the insulating layer was a hard inorganic material, so that when warping occurred in the substrate or laminate, this could not be eliminated by stress relaxation, and the electrodes were prone to misalignment and cracking.
  • the laminate B of the present invention can eliminate warping of the substrate or laminate by using an organic layer made of the cured film of the present invention having flexibility in the insulating layer, so that the electrodes can be prevented from misaligning and cracking.
  • the moisture resistance can be improved by using a thin inorganic layer 4 as an auxiliary insulating layer so as not to prevent the elimination of the warp of the substrate. If the inorganic layer 4 covers the entire side surface of the organic layer 3, the moisture resistance can be further improved.
  • the cured film of the present invention is unlikely to cause wrinkles in the inorganic layer even when an inorganic layer is laminated on the cured film, so that process defects such as alignment defects can be suppressed.
  • the laminate B of the present invention may be provided with a barrier metal layer 11 on the surface of the through hole 10.
  • the barrier metal layer 11 By providing the barrier metal layer 11, the conductive material filled in the through hole 10 is unlikely to diffuse into the organic layer 3, so that short circuits and conduction defects can be further suppressed.
  • the inorganic layer 4 is provided on the organic layer 3 on the third substrate 7 side and the fourth substrate 9 side, but it may be provided on only one of them.
  • the present invention also provides a method for producing a laminate B, which includes the steps of applying the curable resin composition of the present invention onto the surfaces of a third substrate having an electrode and a fourth substrate having an electrode, drying the solvent, and thermally curing the composition to form an organic layer, forming an inorganic layer on the organic layer, forming through-holes in each of the organic layers and the inorganic layer, filling each of the through-holes with a conductive material, polishing the surfaces of the third substrate having an electrode and the fourth substrate having an electrode on the side filled with the conductive material to form a bonding electrode, and bonding the third substrate having an electrode and the fourth substrate having an electrode so that the bonding electrodes of the third substrate having an electrode and the fourth substrate having an electrode are bonded to each other.
  • a step of forming through holes in each of the organic layers and the inorganic layers is then carried out.
  • the through-hole may be patterned.
  • the method for forming the through-hole is not particularly limited, and the through-hole may be formed by laser irradiation such as CO2 laser or etching.
  • the through-hole is formed so as to penetrate the other layers and expose the electrode surface of the substrate.
  • a step of forming a barrier metal layer is then carried out as necessary.
  • the barrier metal layer may be the same as that of the laminate B of the present invention.
  • the barrier metal layer may be formed by sputtering, vapor deposition or the like.
  • the method for producing the laminate B of the present invention then includes a step of filling each of the through holes with a conductive material.
  • a method for filling the through holes with the conductive material plating or the like can be used.
  • the conductive material may be the same as the conductive material of the laminate B of the present invention.
  • the method for producing the laminate B of the present invention then includes a step of polishing the surfaces of the third substrate having the electrode and the fourth substrate having the electrode, the surfaces being filled with the conductive material, to form bonding electrodes.
  • the conductive material formed in the unnecessary portion is removed by grinding to form a bonding electrode connecting the electrodes formed on the two elements.
  • the polishing is preferably performed by planarizing and removing the layer formed of the conductive material until the inorganic layer is exposed.
  • the polishing method is not particularly limited, and for example, a chemical mechanical polishing method can be used.
  • the method for producing laminate B of the present invention then carries out a step of bonding the third substrate having the electrode and the fourth substrate having the electrode together so that the bonding electrodes of the third substrate having the electrode are bonded to each other.
  • the third substrate and the fourth substrate may be bonded to each other by a method of melting and connecting the electrodes and the connecting electrodes by heat treatment, etc.
  • the heat treatment is usually performed at 400° C. for about 4 hours.
  • the uses of the laminates A and B of the present invention are not particularly limited, but they are suitable for imaging devices and semiconductor devices because even when an inorganic layer is formed on an organic layer, wrinkles are unlikely to occur in the inorganic layer and process abnormalities can be suppressed.
  • imaging devices having the laminates of the present invention and semiconductor devices having the laminates of the present invention are also part of the present invention.
  • the present invention provides a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.
  • FIG. 1 is a schematic diagram showing an example of a laminate A of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a laminate B of the present invention.
  • the reaction mixture thus obtained was separated, and the organic layer was washed once with 1N hydrochloric acid, once with a saturated aqueous solution of sodium bicarbonate, and then washed three times with ion-exchanged water.
  • the washed organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure using a rotary evaporator to obtain 7.1 g of a white powdery solid (DD(Me)-OH).
  • a 100 mL flask was fitted with a cooling tube, mechanical stirrer, Dean-Stark tube, oil bath and thermometer protection tube, and the inside of the flask was replaced with nitrogen.
  • 5.0 g of DD(Me)-OH, 11.6 g of octamethylcyclotetrasiloxane (D4), 3.9 g of sulfuric acid, 52 g of toluene and 13 g of 4-methyltetrahydropyran were placed in the flask. After stirring at 100°C for 5 hours, water was poured into the reaction mixture and the aqueous layer was extracted with toluene.
  • the combined organic layer was washed with water, an aqueous sodium bicarbonate solution, and saturated saline, and then dried with anhydrous sodium sulfate.
  • the flask was heated at 100°C for 1 hour, and then refluxed in an oil bath at 170°C for 1 hour.
  • the solution was cooled to room temperature, 1.3 g of citraconic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 120°C for 10 minutes, and then refluxed in an oil bath at 170°C for 1 hour to obtain a heat-resistant resin (resin D, weight average molecular weight: 9900) having the structure of the following structural formula (9).
  • l in the following structural formula (9) represents the number of repeating units.
  • Example 1 Production of a curable resin composition
  • a curable resin composition was obtained by adding and mixing 100 parts by weight of the obtained silsesquioxane, 1 part by weight of the obtained heat-resistant resin, 0.1 parts by weight of the catalyst, and 30 parts by weight of the silica filler to a solvent content of 65% by weight.
  • the details of each raw material used are as follows.
  • Silica filler MT-10, manufactured by Tokuyama Corporation, bulk density: 0.05 g/cm 3 , shape: pulverized
  • Solvent N-methyl-2-pyrrolidone (referred to as NMP in the table)
  • the curable resin composition applied in a sheet form using an applicator was dried under conditions of 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition having a thickness of 500 ⁇ m.
  • the obtained film sample was punched out to a size of 5 mm x 35 mm to prepare a measurement sample.
  • the obtained measurement sample was measured for elastic modulus at 300°C using a dynamic viscoelasticity measuring device (manufactured by IT Measurement and Control Co., Ltd., DVA-200) under conditions of a constant temperature rise tensile mode, a temperature rise rate of 5°C/min, and a frequency of 1 Hz.
  • Examples 2 to 16, Comparative Examples 1 to 5 A laminate was obtained and each measurement was carried out under the same conditions as in Example 1, except that the compositions and thicknesses of the organic and inorganic layers were as shown in Tables 1 and 2. The details of the raw materials in the tables are as follows.
  • the surface of the inorganic layer of the obtained laminate was observed with a laser microscope to measure the surface roughness of the laminate (inorganic layer). Specifically, a laser microscope (OLS4100, manufactured by Olympus Corporation) was used to observe the surface at 20 times magnification in an observation range of 643 ⁇ m square, and the surface roughness Sa value was calculated.
  • OLS4100 manufactured by Olympus Corporation
  • the present invention provides a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide: a curable resin composition capable of giving cured objects which, when an inorganic layer is formed thereon, prevent the inorganic layer from wrinkling, thereby suppressing process abnormality; a cured film formed from the curable resin composition; a multilayer object formed using the cured film; an imaging device and a semiconductor device which include the multilayer object; and a method for producing the multilayer object. This curable resin composition comprises a silsesquioxane, a solvent, and a silica filler as an inorganic filler. When the curable resin composition is dried under the conditions of 125°C and 10 minutes to remove the solvent and heat-cured by a heat treatment at 300°C for 1 hour, the resultant cured object has a modulus at 300°C of 0.2 MPa or greater.

Description

硬化性樹脂組成物、硬化膜、積層体、撮像装置、半導体装置及び積層体の製造方法CURABLE RESIN COMPOSITION, CURED FILM, LAMINATE, IMAGING DEVICE, SEMICONDUCTOR DEVICE, AND METHOD FOR PRODUCING LAMINATE

本発明は、硬化性樹脂組成物、硬化膜、積層体、撮像装置、半導体装置及び積層体の製造方法に関する。 The present invention relates to a curable resin composition, a cured film, a laminate, an imaging device, a semiconductor device, and a method for manufacturing a laminate.

半導体装置の高性能化に伴い、複数の半導体チップを積層させる三次元化が進行している。このような複数の半導体チップが積層した半導体装置の製造では、まず、2枚の電極が形成された素子や回路基板(以下、単に基板という)の電極面にダマシン法により、銅からなる接合電極が絶縁膜で囲まれた接合面を形成する。その後、接合面の接合電極同士が対向するように2枚の基板を重ね、熱処理を施すことにより半導体装置が製造される(特許文献1)。 As semiconductor devices become more sophisticated, they are becoming three-dimensional, with multiple semiconductor chips stacked on top of each other. In manufacturing such semiconductor devices with multiple semiconductor chips stacked on top of each other, first, a damascene process is used to form a bonding surface on the electrode surface of an element or circuit board (hereinafter simply referred to as a substrate) on which two electrodes are formed, in which a bonding electrode made of copper is surrounded by an insulating film. The two substrates are then stacked so that the bonding electrodes on the bonding surfaces face each other, and a heat treatment is performed to manufacture the semiconductor device (Patent Document 1).

特開2006-191081号公報JP 2006-191081 A

上記半導体装置の製造では、電極の接合の際に400℃、4時間という高温処理が行われるため、上記接合面の形成に用いられる絶縁層には高い耐熱性が要求される。そのため、従来の半導体装置では、絶縁層としてSiNやSiOといった絶縁性の無機材料が用いられている。しかしながら、無機材料からなる絶縁層は基板に反りが発生しやすく、基板に反りが発生すると積層したときに電極の接続位置がズレたり、電極が割れたりしてしまうことから、半導体装置の接続信頼性が低くなることがある。また、近年は半導体装置の高性能化が進み、基板が大型化、薄化してきていることから、基板の反りがより発生しやすくなってきており、特に基板が薄い場合は基板が割れてしまうこともある。 In the manufacture of the semiconductor device, a high-temperature treatment of 400°C for 4 hours is performed when bonding the electrodes, so the insulating layer used to form the bonding surface is required to have high heat resistance. For this reason, in conventional semiconductor devices, insulating inorganic materials such as SiN and SiO2 are used as the insulating layer. However, insulating layers made of inorganic materials are prone to warping of the substrate, and if the substrate is warped, the connection position of the electrodes may shift or the electrodes may crack when stacked, which may reduce the connection reliability of the semiconductor device. In addition, in recent years, the performance of semiconductor devices has improved, and substrates have become larger and thinner, making substrate warping more likely to occur, and the substrate may crack, especially when the substrate is thin.

高温処理による基板の反りや割れを抑えるためには、無機材料よりも柔軟性を有する有機化合物を有機層として絶縁層に用いることが考えられるが、有機化合物からなる絶縁層は熱に弱く、熱分解によって発生するアウトガスによって絶縁層の割れが生じやすくなることがあった。これに対して耐熱性の樹脂を絶縁層に用いることも検討されているが、樹脂は水分を透過しやすいことから高湿度環境に弱く、高湿度環境下で電極に水分が浸入すると、半導体装置の信頼性が低下してしまうこともある。 In order to prevent warping and cracking of the substrate due to high-temperature processing, it has been considered to use an organic compound, which has more flexibility than inorganic materials, as an organic layer in the insulating layer. However, insulating layers made of organic compounds are vulnerable to heat, and outgassing generated by thermal decomposition can easily cause the insulating layer to crack. In response, the use of heat-resistant resins in the insulating layer has been considered, but resins are easily permeable to moisture and are therefore vulnerable to high humidity environments. If moisture penetrates the electrodes in a high humidity environment, the reliability of the semiconductor device can be reduced.

このような耐湿性の問題を解消する方法として、有機層上に薄い無機材料からなる無機層を積層することが提案されている。無機材料は耐湿性が高いため、無機層によって有機層を覆うことで、耐湿性を高めることができる。また、無機層を薄くすることで、有機層が高温処理による基板の反りや割れを抑える効果を妨げることがない。 As a method for solving such moisture resistance problems, it has been proposed to laminate a thin inorganic layer made of an inorganic material on the organic layer. Since inorganic materials have high moisture resistance, covering the organic layer with an inorganic layer can increase moisture resistance. Furthermore, by making the inorganic layer thin, the effect of the organic layer in suppressing warping and cracking of the substrate due to high-temperature processing is not hindered.

しかしながら、有機層上に無機層を形成すると無機層にシワが生じることがあった。無機層にシワが生じると、絶縁性能の観点からは大きな問題とならないものの、外観不良となってしまう。また、半導体装置の製造においてはアライメント機構によって各部材の位置合わせを行っているため、無機層にシワが生じるとアライメント不良が発生し、工程異常の原因となることがあった。 However, forming an inorganic layer on an organic layer can cause wrinkles in the inorganic layer. Although wrinkles in the inorganic layer are not a major problem from the standpoint of insulation performance, they can result in poor appearance. In addition, because the alignment mechanisms are used to align the various components in the manufacture of semiconductor devices, wrinkles in the inorganic layer can cause alignment problems and lead to process abnormalities.

本発明は、硬化物上に無機層を形成した場合であっても無機層にシワが生じ難く、工程異常を抑えることができる硬化性樹脂組成物、該硬化性樹脂組成物の硬化膜、該硬化膜を用いた積層体、該積層体を有する撮像装置及び半導体装置、該積層体の製造方法を提供することを目的とする。 The present invention aims to provide a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.

本発明は以下の開示1~17を含む。以下、本発明について詳述する。
[開示1]
シルセスキオキサンと、溶剤と、無機充填剤としてシリカフィラーとを含有し、125℃10分の条件で前記溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、300℃における弾性率が0.2MPa以上である硬化性樹脂組成物。
[開示2]
125℃10分の条件で溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、-40℃から100℃の範囲における線膨張係数(CTE)が500ppm/℃以下である、開示1記載の硬化性樹脂組成物。
[開示3]
シルセスキオキサンは一分子内に下記構造式(A)及び(B)で表される構造を有する、開示1又は2記載の硬化性樹脂組成物。

Figure JPOXMLDOC01-appb-C000003
構造式(A)、(B)中、R、Rはそれぞれ独立して脂肪族基、芳香族基又は水素を表す。j、kはそれぞれ1以上の整数を表す。
[開示4]
シルセスキオキサンは下記構造式(1)で表される構造を有する、開示1~3のいずれかに記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
構造式(1)中、R、R及びRはそれぞれ独立して直鎖状、分岐鎖状若しくは環状の脂肪族基、芳香族基又は水素を表す。前記脂肪族基及び前記芳香族基は置換基を有していても有していなくてもよい。m、nはそれぞれ1以上の整数を表す。
[開示5]
シリカフィラーの含有量が、シルセスキオキサン100重量部に対して15重量部以上40重量部以下である、開示1~4のいずれかに記載の硬化性樹脂組成物。
[開示6]
溶剤は沸点が130℃以上250℃以下である、開示1~5のいずれかに記載の硬化性樹脂組成物。
[開示7]
熱硬化させた硬化物の上に無機層を積層させて用いられる、開示1~6のいずれかに記載の硬化性樹脂組成物。
[開示8]
開示1~6のいずれかに記載の硬化性樹脂組成物を熱硬化させた硬化膜。
[開示9]
第1の基板上に開示8記載の硬化膜からなる有機層、前記有機層上に無機層が積層された積層体であって、
前記第1の基板は複数のチップを有する第1面とその反対面となる第2面を有し、前記第1面側に前記有機層及び前記無機層を有する積層体。
[開示10]
無機層上に支持基板が積層されている、開示9記載の積層体。
[開示11]
第1の基板の第2面上に更に第2の基板を有し、前記第1の基板と前記第2の基板が電気的に接続されている、開示9又は10記載の積層体。
[開示12]
電極を有する第3の基板と、電極を有する第4の基板との間に開示8記載の硬化膜からなる有機層と無機層とを有する積層体であって、
前記第3の基板の電極と前記第4の基板の電極とが、前記有機層及び前記無機層を貫通する貫通孔を介して電気的に接続されている、積層体。
[開示13]
貫通孔の表面にバリアメタル層を有する、開示12記載の積層体。
[開示14]
開示9~13のいずれかに記載の積層体を有する、撮像装置。
[開示15]
開示9~13のいずれかに記載の積層体を有する、半導体装置。
[開示16]
複数のチップを有する第1面とその反対面となる第2面を有する第1の基板の前記第1面上に開示1~6のいずれかに記載の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、
前記有機層上に無機層を形成する工程を有する積層体の製造方法。
[開示17]
電極を有する第3の基板及び電極を有する第4の基板の前記電極を有する面上に開示1~6のいずれかに記載の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、
前記有機層上に無機層を形成する工程と、
各前記有機層及び前記無機層に貫通孔を形成する工程と、
各前記貫通孔を導電性材料で充填する工程と、
前記電極を有する第3の基板及び前記電極を有する第4の基板の前記導電性材料を充填した側の表面を研磨して接合電極を形成する工程と、
前記電極を有する第3の基板及び前記電極を有する第4の基板の前記接合電極同士が接合するように貼り合せる工程を有する積層体の製造方法。 The present invention includes the following Disclosures 1 to 17. The present invention will be described in detail below.
[Disclosure 1]
A curable resin composition comprising silsesquioxane, a solvent, and a silica filler as an inorganic filler, the solvent being dried at 125°C for 10 minutes, and the composition being thermally cured by heat treatment at 300°C for 1 hour, the cured product having an elastic modulus at 300°C of 0.2 MPa or more.
[Disclosure 2]
The curable resin composition according to Disclosure 1, wherein the solvent is dried under conditions of 125°C for 10 minutes, and the cured product is heat-cured by heat treatment at 300°C for 1 hour, and the cured product has a coefficient of linear expansion (CTE) of 500 ppm/°C or less in the range of -40°C to 100°C.
[Disclosure 3]
The curable resin composition according to Disclosure 1 or 2, wherein the silsesquioxane has structures represented by the following structural formulas (A) and (B) in one molecule.
Figure JPOXMLDOC01-appb-C000003
In structural formulae (A) and (B), R A and R B each independently represent an aliphatic group, an aromatic group, or hydrogen, and j and k each represent an integer of 1 or more.
[Disclosure 4]
The curable resin composition according to any one of Disclosures 1 to 3, wherein the silsesquioxane has a structure represented by the following structural formula (1):
Figure JPOXMLDOC01-appb-C000004
In the structural formula (1), R 0 , R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group or hydrogen. The aliphatic group and the aromatic group may or may not have a substituent. m and n each represent an integer of 1 or more.
[Disclosure 5]
The curable resin composition according to any one of Disclosures 1 to 4, wherein the content of the silica filler is 15 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the silsesquioxane.
[Disclosure 6]
The curable resin composition according to any one of Disclosures 1 to 5, wherein the solvent has a boiling point of 130° C. or higher and 250° C. or lower.
[Disclosure 7]
The curable resin composition according to any one of Disclosures 1 to 6, which is used by laminating an inorganic layer on a heat-cured product.
[Disclosure 8]
A cured film obtained by thermally curing the curable resin composition according to any one of Disclosures 1 to 6.
[Disclosure 9]
A laminate comprising an organic layer formed of the cured film according to Disclosure 8 on a first substrate, and an inorganic layer laminated on the organic layer,
The first substrate has a first surface having a plurality of chips and a second surface opposite thereto, and the organic layer and the inorganic layer are disposed on the first surface side of the first substrate.
[Disclosure 10]
Disclosure 10. The laminate according to Disclosure 9, wherein a supporting substrate is laminated on the inorganic layer.
[Disclosure 11]
The laminate according to Disclosure 9 or 10, further comprising a second substrate on the second surface of the first substrate, the first substrate and the second substrate being electrically connected to each other.
[Disclosure 12]
A laminate having an organic layer and an inorganic layer, each of which is made of the cured film according to Disclosure 8, between a third substrate having an electrode and a fourth substrate having an electrode,
a laminate in which the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer.
[Disclosure 13]
13. The laminate according to Disclosure 12, having a barrier metal layer on the surface of the through hole.
[Disclosure 14]
An imaging device having the laminate according to any one of Disclosures 9 to 13.
[Disclosure 15]
A semiconductor device comprising the laminate according to any one of Disclosures 9 to 13.
[Disclosure 16]
A step of applying a curable resin composition according to any one of Disclosures 1 to 6 onto a first surface of a first substrate having a first surface having a plurality of chips and a second surface opposite the first surface, and then drying the composition with a solvent and thermally curing the composition to form an organic layer;
A method for producing a laminate, comprising the step of forming an inorganic layer on the organic layer.
[Disclosure 17]
A step of applying the curable resin composition according to any one of Disclosures 1 to 6 onto a surface of a third substrate having an electrode and a fourth substrate having an electrode, and then drying the composition and thermally curing the composition to form an organic layer;
forming an inorganic layer on the organic layer;
forming through holes in each of the organic layer and the inorganic layer;
filling each of the through holes with a conductive material;
a step of polishing the surfaces of the third substrate having the electrode and the fourth substrate having the electrode, the surfaces being filled with the conductive material, to form bonding electrodes;
A method for manufacturing a laminate, comprising a step of bonding a third substrate having the electrode and a fourth substrate having the electrode together so that the bonding electrodes of the third substrate and the fourth substrate are bonded to each other.

本発明の硬化性樹脂組成物は、シルセスキオキサンを含有する。
シルセスキオキサンは有機化合物と同程度の柔軟性を有しながらも高い耐熱性を有するため、シルセスキオキサンを主成分とした硬化膜を積層体の絶縁層とすることで、基板の反りや割れを抑えて電気的接続信頼性を高めることができる。上記シルセスキオキサンは、熱硬化性であれば特に限定されないが、より基板の反りや割れが抑えられることから、一分子内に下記構造式(A)及び(B)で表される構造を有することが好ましい。
The curable resin composition of the present invention contains a silsesquioxane.
Silsesquioxane has high heat resistance while having the same degree of flexibility as organic compounds, so that by using a cured film mainly composed of silsesquioxane as the insulating layer of a laminate, it is possible to suppress warping and cracking of the substrate and improve the reliability of electrical connection. The above-mentioned silsesquioxane is not particularly limited as long as it is thermosetting, but it is preferable that one molecule has a structure represented by the following structural formulas (A) and (B) in order to further suppress warping and cracking of the substrate.

Figure JPOXMLDOC01-appb-C000005
構造式(A)、(B)中、R、Rはそれぞれ独立して脂肪族基、芳香族基又は水素を表す。j、kは繰り返し単位であり、それぞれ1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000005
In structural formulae (A) and (B), R A and R B each independently represent an aliphatic group, an aromatic group, or hydrogen, and j and k each represent a repeating unit and an integer of 1 or more.

上記シルセスキオキサンは、反応性部位を有することが好ましい。
硬化性樹脂組成物の硬化性樹脂として反応性部位を有するシルセスキオキサンを用いることで、素子の反りや割れをより抑えることができる。また、シルセスキオキサンは耐熱性に優れるため、複数の積層体を積層させた半導体装置の製造時に行われる高温処理による有機層の分解をより抑えることができる。上記反応性部位としては例えば、水酸基、アルコキシ基等が挙げられる。
The silsesquioxane preferably has a reactive site.
By using silsesquioxane having a reactive site as the curable resin of the curable resin composition, warping and cracking of the element can be further suppressed. In addition, since silsesquioxane has excellent heat resistance, decomposition of the organic layer due to high-temperature treatment performed during the manufacture of a semiconductor device having multiple laminates can be further suppressed. Examples of the reactive site include a hydroxyl group and an alkoxy group.

上記反応性部位を有するシルセスキオキサンの含有量は、上記硬化性樹脂組成物中の樹脂固形分100重量部中に、好ましくは60重量部以上、より好ましくは70重量部以上、更に好ましくは75重量部以上である。上記反応性部位を有するシルセスキオキサンの含有量は、上記硬化性樹脂組成物中の樹脂固形分量100重量部中に、好ましくは100重量部未満、より好ましくは90重量部以下である。 The content of the silsesquioxane having the reactive site is preferably 60 parts by weight or more, more preferably 70 parts by weight or more, and even more preferably 75 parts by weight or more, per 100 parts by weight of the resin solid content in the curable resin composition. The content of the silsesquioxane having the reactive site is preferably less than 100 parts by weight, more preferably 90 parts by weight or less, per 100 parts by weight of the resin solid content in the curable resin composition.

上記シルセスキオキサンは、下記構造式(1)で表される構造を有することが好ましい。
シルセスキオキサンが構造式(1)の構造を有することで、素子の反りをより抑えることができる。なかでも、耐熱性がより向上し、かつ、素子の反りや割れを更に抑えられることから、上記シルセスキオキサンは更に芳香環構造を有することがより好ましい。
The silsesquioxane preferably has a structure represented by the following structural formula (1).
When the silsesquioxane has the structure of structural formula (1), warping of the element can be further suppressed. In particular, it is more preferable that the silsesquioxane further has an aromatic ring structure, since this further improves heat resistance and further suppresses warping and cracking of the element.

Figure JPOXMLDOC01-appb-C000006
構造式(1)中、R、R及びRはそれぞれ独立して直鎖状、分岐鎖状若しくは環状の脂肪族基、芳香族基又は水素を表す。上記脂肪族基及び上記芳香族基は置換基を有していても有していなくてもよい。m、nはそれぞれ1以上の整数を表す。
Figure JPOXMLDOC01-appb-C000006
In the structural formula (1), R 0 , R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group or hydrogen. The aliphatic group and the aromatic group may or may not have a substituent. m and n each represent an integer of 1 or more.

上記構造式(1)中Rはそれぞれ独立して直鎖状、分岐鎖状若しくは環状の脂肪族基、芳香族基又は水素を表す。上記脂肪族基及び上記芳香族基は置換基を有していても有していなくてもよい。上記Rはフェニル基、炭素数が1~20のアルキル基又はアリールアルキル基であることが好ましく、フェニル基であることがより好ましい。Rがフェ二ル基、炭素数が1~20のアルキル基又はアリールアルキル基であることにより、より高い耐熱性を発揮することができる。 In the structural formula (1), R 0 each independently represents a linear, branched or cyclic aliphatic group, an aromatic group, or hydrogen. The aliphatic group and the aromatic group may or may not have a substituent. R 0 is preferably a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, and more preferably a phenyl group. When R 0 is a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, higher heat resistance can be exhibited.

上記構造式(1)中R及びRはそれぞれ独立して直鎖状、分岐鎖状若しくは環状の脂肪族基、芳香族基又は水素を表す。上記脂肪族基及び上記芳香族基は置換基を有していても有していなくてもよい。上記R及びRはフェニル基、炭素数が1~20のアルキル基又はアリールアルキル基であることが好ましく、フェニル基又はメチル基であることがより好ましい。R及びRがフェ二ル基、炭素数が1~20のアルキル基又はアリールアルキル基であることにより、より高い耐熱性を発揮することができる。 In the structural formula (1), R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group, or hydrogen. The aliphatic group and the aromatic group may or may not have a substituent. R 1 and R 2 are preferably a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, and more preferably a phenyl group or a methyl group. By R 1 and R 2 being a phenyl group, an alkyl group having 1 to 20 carbon atoms, or an arylalkyl group, higher heat resistance can be exhibited.

上記構造式(1)中、m、nはそれぞれ1以上の整数であり、繰り返し単位数を表す。上記mは好ましくは30以上、より好ましくは50以上であり、好ましくは100以下である。上記nは好ましくは1以上、より好ましくは3以上であり、好ましくは8以下である。 In the structural formula (1), m and n are each an integer of 1 or more and represent the number of repeating units. The above m is preferably 30 or more, more preferably 50 or more, and preferably 100 or less. The above n is preferably 1 or more, more preferably 3 or more, and preferably 8 or less.

上記シルセスキオキサンの重量平均分子量は特に限定されないが、5000以上150000以下であることが好ましい。シルセスキオキサンの重量平均分子量が上記範囲であることで、塗布時の成膜性が上がって平坦化性能がより高まるとともに素子の反りや割れをより抑えることができる。上記シルセスキオキサンの重量平均分子量は10000以上であることがより好ましく、30000以上であることが更に好ましく、100000以下であることがより好ましく、70000以下であることが更に好ましい。
なお、上記シルセスキオキサンの重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法によりポリスチレン換算分子量として測定される。溶出溶剤をTHFとして、カラムとしては、時間-MB-M6.0×150mm(ウォーターズ社製)又はその同等品を用い、ポリスチレン標準によって算出することができる。
The weight average molecular weight of the silsesquioxane is not particularly limited, but is preferably 5000 to 150000. When the weight average molecular weight of the silsesquioxane is in the above range, the film-forming property during application is improved, the flattening performance is further improved, and warping and cracking of the element can be further suppressed. The weight average molecular weight of the silsesquioxane is more preferably 10000 or more, even more preferably 30000 or more, more preferably 100000 or less, and even more preferably 70000 or less.
The weight average molecular weight of the silsesquioxane is measured as a polystyrene-equivalent molecular weight by gel permeation chromatography (GPC) using THF as an elution solvent and a Time-MB-M6.0×150 mm (manufactured by Waters Corporation) or an equivalent column, and can be calculated with a polystyrene standard.

上記シルセスキオキサンの含有量は、上記硬化性樹脂組成物の固形成分100重量%中に65重量%以上99重量%以下であることが好ましい。
硬化性樹脂組成物中におけるシルセスキオキサンの含有量が上記範囲であることで、素子の反りや割れを抑えて電気的接続信頼性をより高めることができる。上記硬化性樹脂組成物の固形成分100重量%中におけるシルセスキオキサンの含有量は、70重量%以上であることがより好ましく、75重量%以上であることが更に好ましく、98重量%以下であることがより好ましく、97重量%以下であることが更に好ましい。
The content of the silsesquioxane is preferably 65% by weight or more and 99% by weight or less based on 100% by weight of the solid components of the curable resin composition.
By setting the content of silsesquioxane in the curable resin composition within the above range, it is possible to suppress warping or cracking of the element and further improve the reliability of electrical connection. The content of silsesquioxane in 100% by weight of the solid component of the curable resin composition is more preferably 70% by weight or more, even more preferably 75% by weight or more, more preferably 98% by weight or less, and even more preferably 97% by weight or less.

本発明の硬化性樹脂組成物は、溶剤を含有する。
硬化性樹脂組成物に溶剤を含有させることで、上記シルセスキオキサンを基板上に塗布することができる程度の粘度とすることができるとともに、基板表面の凹凸を埋めて平坦にすることができる。その結果、基板の接合信頼性が高まり、積層体の電気的接続信頼性も向上させることができる。上記溶剤は、単一の成分からなっていてもよく、複数の成分の混合物であってもよい。
The curable resin composition of the present invention contains a solvent.
By adding a solvent to the curable resin composition, the viscosity of the silsesquioxane can be increased to a level that allows it to be applied to a substrate, and the unevenness of the substrate surface can be filled and made flat. As a result, the bonding reliability of the substrate can be increased, and the electrical connection reliability of the laminate can also be improved. The solvent may be composed of a single component or a mixture of multiple components.

上記硬化性樹脂組成物における上記溶剤は、沸点が130℃以上250℃以下であることが好ましい。
上記溶剤の沸点が上記範囲であることで、溶剤の揮発によるシリカフィラーの凝集を抑制し樹脂組成物中に均一にシリカフィラーを分散させることができる。上記溶剤の沸点は、150℃以上であることがより好ましく、180℃以上であることが更に好ましく、230℃以下であることがより好ましく、220℃以下であることが更に好ましい。上記範囲の沸点を有する溶剤としては、芳香族系有機溶剤、ケトン系有機溶剤、ラクタム系有機溶剤、ラクトン系有機溶剤が挙げられる。ラクタム系有機溶剤とは環内に-C(=O)NR-をもつ複素環式化合物の有機溶剤であり、ラクトン系有機溶剤とは環内に-C(=O)-をもつ複素環式化合物の有機溶剤である。なお、Rは炭化水素を表す。具体的な化合物としては、例えばシクロペンタノン(沸点:131℃)、プロピレングリコールモノメチルエーテルアセテート(沸点:146℃)、アニソール(沸点:154℃)、安息香酸エチル(沸点:211~213℃)、N-メチル-2-ピロリドン(沸点:202℃)、2-ピペリドン(沸点:256℃)、2-ピロリドン(沸点:245℃)、γ-ブチロラクトン(沸点:204℃)、γ―バレロラクトン(沸点:207℃)等が挙げられる。
The solvent in the curable resin composition preferably has a boiling point of 130° C. or higher and 250° C. or lower.
By having the boiling point of the solvent in the above range, the aggregation of the silica filler due to the evaporation of the solvent can be suppressed, and the silica filler can be uniformly dispersed in the resin composition. The boiling point of the solvent is more preferably 150°C or higher, even more preferably 180°C or higher, more preferably 230°C or lower, and even more preferably 220°C or lower. Examples of solvents having a boiling point in the above range include aromatic organic solvents, ketone organic solvents, lactam organic solvents, and lactone organic solvents. A lactam organic solvent is an organic solvent of a heterocyclic compound having -C(=O)NR- in the ring, and a lactone organic solvent is an organic solvent of a heterocyclic compound having -C(=O)- in the ring. Here, R represents a hydrocarbon. Specific examples of the compound include cyclopentanone (boiling point: 131° C.), propylene glycol monomethyl ether acetate (boiling point: 146° C.), anisole (boiling point: 154° C.), ethyl benzoate (boiling point: 211 to 213° C.), N-methyl-2-pyrrolidone (boiling point: 202° C.), 2-piperidone (boiling point: 256° C.), 2-pyrrolidone (boiling point: 245° C.), γ-butyrolactone (boiling point: 204° C.), and γ-valerolactone (boiling point: 207° C.).

上記溶剤は、上記硬化性樹脂組成物における含有量が50重量%以下であることが好ましい。
硬化性樹脂組成物中における上記溶剤の含有量が上記範囲であることで、硬化時に溶剤の揮発に起因する収縮が小さくなるため、得られる硬化膜に凹凸が生じにくくなり、接続面を平坦にできる。その結果、基板の接合信頼性が高まり、電気的接続信頼性も高めることができる。上記溶剤の含有量は45重量%以下であることがより好ましく、40重量%以下であることが更に好ましく、35重量%以下であることが更により好ましい。上記溶剤の含有量の下限は特に限定されないが、平坦化性能をより高める観点から30重量%以上であることが好ましい。
The content of the solvent in the curable resin composition is preferably 50% by weight or less.
By the content of the solvent in the curable resin composition being within the above range, shrinkage due to the volatilization of the solvent during curing is reduced, so that the resulting cured film is less likely to have unevenness, and the connection surface can be made flat. As a result, the bonding reliability of the substrate is improved, and the electrical connection reliability can also be improved. The content of the solvent is more preferably 45% by weight or less, even more preferably 40% by weight or less, and even more preferably 35% by weight or less. The lower limit of the content of the solvent is not particularly limited, but is preferably 30% by weight or more from the viewpoint of further improving the flattening performance.

上記溶剤の含有量は、上記シルセスキオキサン100重量部に対して50重量部以上100重量部以下であることが好ましい。
上記溶剤の上記シルセスキオキサンに対する含有量が上記範囲であることで、基板表面の平坦化性能をより高めることができる。上記溶剤の上記シルセスキオキサンに対する含有量は、55重量部以上であることがより好ましく60重量部以上であることが更に好ましく、80重量部以下であることがより好ましく、70重量部以下であることが更に好ましい。
The content of the solvent is preferably 50 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the silsesquioxane.
The content of the solvent relative to the silsesquioxane in the above range can further improve the planarization performance of the substrate surface. The content of the solvent relative to the silsesquioxane is more preferably 55 parts by weight or more, even more preferably 60 parts by weight or more, more preferably 80 parts by weight or less, and even more preferably 70 parts by weight or less.

本発明の硬化性樹脂組成物は、無機充填剤としてシリカフィラーを含有する。
硬化性樹脂組成物にシリカフィラーを用い、かつ、後述する弾性率を満たすことで、上記シルセスキオキサンの硬化膜上に無機層を形成した場合であっても無機層にシワが生じ難くなり、無機層のシワに起因する工程異常を抑えることができる。
The curable resin composition of the present invention contains a silica filler as an inorganic filler.
By using a silica filler in the curable resin composition and satisfying the elastic modulus described below, wrinkles are less likely to occur in the inorganic layer even when an inorganic layer is formed on the cured film of the silsesquioxane, and process abnormalities due to wrinkles in the inorganic layer can be suppressed.

上記シリカフィラーは、形状が真球状でないことが好ましい。
シリカフィラーの形状が真球状以外であることで弾性率が高まり、後述する弾性率をより容易に満たしやすくすることができる。また、真球状以外の形状のシリカフィラーを用いることで、架橋剤を用いずに弾性率を制御することが可能となり、架橋剤との併用による貯蔵安定性や粘度上昇を回避することができる。上記シリカフィラーの形状が真球状以外であることで弾性率が高まる理由は明らかではないが、真球状であると他のフィラーとの接触面積が小さくなって相互作用しにくくなるからではないかと考えられる。真球状以外の上記シリカフィラーの形状としては、例えば、針状、粉砕状、繊維状等が挙げられる。なお、真球状のシリカフィラーを用いる場合であっても架橋剤と組み合わせることで後述する弾性率の範囲に調整することが可能である。
The silica filler is preferably not spherical in shape.
The elastic modulus is increased by the silica filler having a shape other than a perfect sphere, and the elastic modulus described later can be more easily satisfied. In addition, by using a silica filler having a shape other than a perfect sphere, it is possible to control the elastic modulus without using a crosslinking agent, and it is possible to avoid the increase in storage stability and viscosity caused by the use of a crosslinking agent in combination. The reason why the elastic modulus is increased by the silica filler having a shape other than a perfect sphere is not clear, but it is thought that this is because the contact area with other fillers is small when the silica filler is a perfect sphere, making it difficult to interact with other fillers. Examples of the shape of the silica filler other than a perfect sphere include needles, pulverized, and fibrous. Note that even when a perfect spherical silica filler is used, it is possible to adjust the elastic modulus to the range described later by combining it with a crosslinking agent.

上記シリカフィラーは、かさ密度が0.01g/cm以上、0.2g/cm以下であることが好ましい。
シリカフィラーのかさ密度が上記範囲であることで、後述する弾性率をより満たしやすくすることができる。上記シリカフィラーのかさ密度は、0.05g/cm以上であることがより好ましく、0.1g/cm以下であることがより好ましい。
The silica filler preferably has a bulk density of 0.01 g/cm 3 or more and 0.2 g/cm 3 or less.
When the bulk density of the silica filler is in the above range, it is easier to satisfy the elastic modulus described below. The bulk density of the silica filler is more preferably 0.05 g/ cm3 or more and more preferably 0.1 g/cm3 or less .

上記シリカフィラーの含有量は、上記シルセスキオキサン100重量部に対して15重量部以上40重量部以下であることが好ましい。
シリカフィラーの含有量を上記範囲とすることで、基板の反りや割れをより抑えられるとともに後述する弾性率をより満たしやすくすることができる。上記シリカフィラーの含有量は、上記シルセスキオキサン100重量部に対して20重量部以上であることがより好ましく、25重量部以上であることが更に好ましく、35重量部以下であることがより好ましく、30重量部以下であることが更に好ましい。
The content of the silica filler is preferably 15 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the silsesquioxane.
By setting the content of the silica filler within the above range, it is possible to suppress warping and cracking of the substrate and to more easily satisfy the elastic modulus described below. The content of the silica filler is more preferably 20 parts by weight or more, more preferably 25 parts by weight or more, more preferably 35 parts by weight or less, and even more preferably 30 parts by weight or less, relative to 100 parts by weight of the silsesquioxane.

本発明の硬化性樹脂組成物は触媒を含有することが好ましい。
上記触媒は、硬化反応を促進する役割を有する。本発明の硬化性樹脂組成物が触媒を有することで、硬化性樹脂組成物をより完全に硬化させることができ、高温処理による有機層(硬化膜)の分解をより抑えることができるほか、弾性率の制御も容易となる。
上記触媒としては、例えば、ジブチルスズジラウレート、酢酸第一スズ等の有機スズ化合物、ナフテン酸亜鉛等の金属カルボキシレート、中心金属がジルコニウムであるアセチルアセトネート錯体、チタン化合物等が挙げられる。なかでもより硬化性樹脂組成物の硬化を促進できることから中心金属がジルコニウムであるアセチルアセトネート錯体が好ましい。なお、上記触媒は、硬化性樹脂組成物が硬化した後も存在する。つまり、本発明の硬化性樹脂組成物が触媒を含有する場合、硬化性樹脂組成物を硬化させた硬化膜にも触媒が含まれる。
The curable resin composition of the present invention preferably contains a catalyst.
The catalyst has a role of promoting the curing reaction. By including the catalyst in the curable resin composition of the present invention, the curable resin composition can be cured more completely, decomposition of the organic layer (cured film) due to high-temperature treatment can be further suppressed, and the elastic modulus can be easily controlled.
Examples of the catalyst include organotin compounds such as dibutyltin dilaurate and stannous acetate, metal carboxylates such as zinc naphthenate, acetylacetonate complexes with zirconium as the central metal, and titanium compounds. Among them, acetylacetonate complexes with zirconium as the central metal are preferred because they can promote the curing of the curable resin composition. The catalyst remains even after the curable resin composition is cured. In other words, when the curable resin composition of the present invention contains a catalyst, the cured film obtained by curing the curable resin composition also contains the catalyst.

上記触媒の含有量は特に限定されないが、上記シルセスキオキサン100重量部に対して0.01重量部以上10重量部以下であることが好ましい。触媒の含有量を上記範囲とすることで、硬化をより促進することができ、高温処理による硬化膜の分解をより抑えることができる。上記触媒の含有量は、上記シルセスキオキサン100重量部に対して0.1重量部以上であることがより好ましく、0.2重量部以上であることが更に好ましく、7重量部以下であることがより好ましく、5重量部以下であることが更に好ましい。 The content of the catalyst is not particularly limited, but is preferably 0.01 parts by weight or more and 10 parts by weight or less per 100 parts by weight of the silsesquioxane. By setting the content of the catalyst within the above range, curing can be further promoted and decomposition of the cured film due to high-temperature treatment can be further suppressed. The content of the catalyst is more preferably 0.1 parts by weight or more, even more preferably 0.2 parts by weight or more, more preferably 7 parts by weight or less, and even more preferably 5 parts by weight or less per 100 parts by weight of the silsesquioxane.

上記硬化性樹脂組成物は、架橋剤を含有していてもよい。
硬化性樹脂組成物に架橋剤を含有すると、硬化性樹脂間を架橋剤が架橋して硬化物の架橋密度が上昇し、高温中の分解がより抑制される。その結果、基板の反りや割れを抑えて接続信頼性をより高めることができる。また、架橋剤の配合量、構造を調整することによって後述する弾性率を制御することができる。更に、架橋剤を含有することで、上記シリカフィラーの形状が真球状であっても後述する弾性率を制御することができる。上記架橋剤としては、例えば、ジメトキシシラン化合物、トリメトキシシラン化合物、ジエトキシシラン化合物、トリエトキシシラン化合物等のアルコキシシラン化合物等又はテトラメトキシシラン化合物及びテトラエトキシシラン化合物の縮合より得られるシリケートオリゴマー等が挙げられる。なかでも架橋密度の向上と耐熱性向上の観点から、ポリアルコキシシランが好ましい。
The curable resin composition may contain a crosslinking agent.
When the curable resin composition contains a crosslinking agent, the crosslinking agent crosslinks between the curable resins, increasing the crosslink density of the cured product, and further suppressing decomposition at high temperatures. As a result, the warping and cracking of the substrate can be suppressed, and the connection reliability can be further improved. In addition, the elastic modulus described below can be controlled by adjusting the blending amount and structure of the crosslinking agent. Furthermore, by containing a crosslinking agent, the elastic modulus described below can be controlled even if the shape of the silica filler is spherical. Examples of the crosslinking agent include alkoxysilane compounds such as dimethoxysilane compounds, trimethoxysilane compounds, diethoxysilane compounds, and triethoxysilane compounds, or silicate oligomers obtained by condensation of tetramethoxysilane compounds and tetraethoxysilane compounds. Among them, polyalkoxysilane is preferable from the viewpoint of improving the crosslink density and improving the heat resistance.

上記架橋剤の含有量は特に限定されないが、上記シルセスキオキサン100重量部に対して1重量部以上50重量部以下であることが好ましい。架橋剤の含有量を上記範囲とすることで、硬化物の架橋密度を制御でき、上述のシリカフィラーとも組み合わせることで、弾性率を後述する範囲に調節しやすくすることができる。上記架橋剤の含有量は、上記シルセスキオキサン100重量部に対して3重量部以上であることがより好ましく、3.2重量部以上であることが更に好ましく、30重量部以下であることがより好ましく、20重量部以下であることが更に好ましい。 The content of the crosslinking agent is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less per 100 parts by weight of the silsesquioxane. By setting the content of the crosslinking agent within the above range, the crosslink density of the cured product can be controlled, and by combining it with the silica filler described above, it is possible to easily adjust the elastic modulus to the range described below. The content of the crosslinking agent is more preferably 3 parts by weight or more, even more preferably 3.2 parts by weight or more, more preferably 30 parts by weight or less, and even more preferably 20 parts by weight or less per 100 parts by weight of the silsesquioxane.

上記硬化性樹脂組成物は、耐熱性樹脂を含有することが好ましい。
硬化性樹脂組成物に耐熱性樹脂を用いることで、厚みのある硬化膜とした場合であっても高温処理で膜割れが発生し難い硬化膜とすることができる。
The curable resin composition preferably contains a heat-resistant resin.
By using a heat-resistant resin in the curable resin composition, it is possible to obtain a cured film that is less likely to crack when subjected to high-temperature treatment, even in the case where the cured film has a large thickness.

上記耐熱性樹脂はポリイミド、エポキシ樹脂、シリコーン樹脂、ベンゾオキサジン樹脂、シアネート樹脂、フェノール系樹脂等が挙げられ、特に耐熱性の観点からポリイミドが好ましい。 The heat-resistant resins include polyimide, epoxy resin, silicone resin, benzoxazine resin, cyanate resin, phenolic resin, etc., and polyimide is particularly preferred from the viewpoint of heat resistance.

上記耐熱性樹脂の分子量は、重量平均分子量は特に限定されないが、5000以上150000以下であることが好ましい。耐熱性樹脂の重量平均分子量が上記範囲であることで、厚みのある硬化膜とした場合であっても高温処理でより膜割れが発生し難い硬化膜とすることができる。上記耐熱性樹脂の分子量は10000以上であることがより好ましく、30000以上であることが更に好ましく、100000以下であることがより好ましく、70000以下であることが更に好ましい。 The molecular weight of the heat-resistant resin is not particularly limited, but is preferably 5,000 or more and 150,000 or less. By having the weight-average molecular weight of the heat-resistant resin in the above range, it is possible to obtain a cured film that is less likely to crack during high-temperature treatment, even if the cured film is thick. The molecular weight of the heat-resistant resin is more preferably 10,000 or more, even more preferably 30,000 or more, more preferably 100,000 or less, and even more preferably 70,000 or less.

上記耐熱性樹脂の含有量は、上記シルセスキオキサン100重量部に対して0.5重量部以上50重量部以下であることが好ましい。
耐熱性樹脂の含有量を上記範囲とすることで、厚みのある硬化膜とした場合であっても高温処理でより膜割れが発生し難い硬化膜とすることができる。上記耐熱性樹脂の含有量は、上記シルセスキオキサン100重量部に対して0.7重量部以上であることがより好ましく、0.75重量部以上であることが更に好ましく、1重量部以上であることが特に好ましく、20重量部以下であることがより好ましく、10重量部以下であることが更に好ましく、5重量部以下であることが特に好ましい。
The content of the heat-resistant resin is preferably 0.5 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the silsesquioxane.
By making the content of heat-resistant resin within the above range, even if it is made into a thick cured film, it can be made into a cured film that is less likely to crack when treated at high temperature.The content of the heat-resistant resin is more preferably 0.7 parts by weight or more, more preferably 0.75 parts by weight or more, particularly preferably 1 part by weight or more, more preferably 20 parts by weight or less, more preferably 10 parts by weight or less, particularly preferably 5 parts by weight or less, based on 100 parts by weight of the silsesquioxane.

上記耐熱性樹脂がポリイミドである場合、上記ポリイミドはシロキサン結合を有することが好ましい。
上記ポリイミドがシロキサン結合を有することで、上記シルセスキオキサンとの相溶性が高まるため、塗布の際にポリイミドが析出することによる凹凸(面荒れ)をより抑えることができる。
When the heat-resistant resin is a polyimide, the polyimide preferably has a siloxane bond.
When the polyimide has a siloxane bond, the compatibility with the silsesquioxane is increased, so that unevenness (surface roughness) caused by precipitation of the polyimide during application can be further suppressed.

上記ポリイミドがシロキサン結合を有する場合、上記ポリイミドは、主鎖構造中の炭素原子とケイ素原子の比C/Siが17以下であることが好ましい。
ポリイミドの主鎖構造中の炭素原子とケイ素原子の比が上記範囲となることで、上記シルセスキオキサンとの相溶性がより高まるため、塗布の際に面荒れをより抑えることができる。上記C/Siは、16.5以下であることがより好ましく、16以下であることが更に好ましい。上記C/Siの下限は特に限定されないが、実用上及び400℃耐熱性をより高める観点から4以上であることが好ましい。なお、上記ポリイミドの主鎖構造中の炭素原子とケイ素原子の比C/Siは繰り返し単位内のC、Siの比であり、両末端のC、Siは含まない。また上記C/Siは、H-NMR、13C-NMR及び29Si-NMRによって上記ポリイミドの構造を得て、主鎖の繰り返し単位からC原子とSi原子の数を計測することで求めることができる。
When the polyimide has a siloxane bond, the polyimide preferably has a ratio of carbon atoms to silicon atoms in the main chain structure, C/Si, of 17 or less.
When the ratio of carbon atoms to silicon atoms in the main chain structure of the polyimide falls within the above range, the compatibility with the silsesquioxane is further increased, so that surface roughness can be further suppressed during application. The C/Si is more preferably 16.5 or less, and even more preferably 16 or less. The lower limit of the C/Si is not particularly limited, but is preferably 4 or more from the viewpoint of practical use and further increasing the heat resistance at 400°C. The ratio C/Si of carbon atoms to silicon atoms in the main chain structure of the polyimide is the ratio of C and Si in the repeating unit, and does not include C and Si at both ends. The C/Si can be obtained by obtaining the structure of the polyimide by 1 H-NMR, 13 C-NMR, and 29 Si-NMR, and measuring the number of C atoms and Si atoms from the repeating unit of the main chain.

上記ポリイミドは末端の少なくとも一方にオキサジン環又はイミド環構造を有することが好ましく、両末端にオキサジン環又はイミド環構造を有することがより好ましい。
上記ポリイミドが末端にオキサジン環又はイミド環構造を有することで、厚膜とした際の面荒れをより抑えることができる。なお上記オキサジン環及びイミド環構造は置換基を有していてもよい。
なかでも、上記ポリイミドは少なくとも一方の末端に下記構造式(2)~(7)のうちいずれかの構造を有することが更に好ましく、両末端が下記構造式(2)~(7)のうちいずれかの構造を有することが特に好ましい。なお、下記構造式中の「*」は上記ポリイミドの末端以外の部分との結合箇所を表す。
The polyimide preferably has an oxazine ring or imide ring structure at least at one of its terminals, and more preferably has an oxazine ring or imide ring structure at both terminals.
By having an oxazine ring or imide ring structure at the terminal of the polyimide, surface roughness can be further suppressed when the polyimide is made into a thick film. The oxazine ring and imide ring structures may have a substituent.
Among them, it is more preferable that the polyimide has any one of the structures represented by the following structural formulas (2) to (7) at at least one terminal, and it is particularly preferable that both terminals have any one of the structures represented by the following structural formulas (2) to (7). Note that "*" in the structural formulas below represents a bonding site with a portion other than the terminal of the polyimide.

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

上記ポリイミドは重量平均分子量が1000以上50000以下であることが好ましい。
上記ポリイミドの重量平均分子量が上記範囲であることで、上記シルセスキオキサンとの相溶性が向上し、取り扱い性をより高めることができる。上記重量平均分子量は2000以上であることがより好ましく、3000以上であることが更に好ましく、35000以下であることがより好ましく、30000以下であることが更に好ましい。
なお、上記ポリイミドの重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)法によりポリスチレン換算分子量として測定される。溶出溶剤をTHFとして、カラムとしては、時間-MB-M6.0×150mm(ウォーターズ社製)又はその同等品を用い、ポリスチレン標準によって算出することができる。
The polyimide preferably has a weight average molecular weight of 1,000 or more and 50,000 or less.
When the weight average molecular weight of the polyimide is within the above range, the compatibility with the silsesquioxane is improved, and the handleability can be further improved. The weight average molecular weight is more preferably 2000 or more, even more preferably 3000 or more, more preferably 35000 or less, and even more preferably 30000 or less.
The weight average molecular weight of the polyimide is measured as a polystyrene-equivalent molecular weight by gel permeation chromatography (GPC) using THF as an elution solvent and a Time-MB-M 6.0×150 mm (manufactured by Waters Corporation) or an equivalent column, and can be calculated with a polystyrene standard.

上記ポリイミドの含有量は、上記シルセスキオキサン100重量部に対して0.5重量部以上50重量部以下であることが好ましい。
ポリイミドの含有量を上記範囲とすることで、厚みのある硬化膜とした場合であっても高温処理でより膜割れが発生し難い硬化膜とすることができる。上記ポリイミドの含有量は、上記シルセスキオキサン100重量部に対して0.7重量部以上であることが好ましく、0.75重量部以上であることがより好ましく、1重量部以上であることが更に好ましく、20重量部以下であることが好ましく、10重量部以下であることがより好ましく、5重量部以下であることが更に好ましい。
The content of the polyimide is preferably 0.5 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the silsesquioxane.
By making the polyimide content within the above range, even if it is made into a thick cured film, it can be made into a cured film that is less likely to crack when treated at high temperature.The content of the polyimide is preferably 0.7 parts by weight or more, more preferably 0.75 parts by weight or more, and even more preferably 1 part by weight or more, and is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 5 parts by weight or less, based on 100 parts by weight of the silsesquioxane.

本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で必要に応じて粘度調整剤、シリカフィラー以外の充填剤、密着付与剤等の他の添加剤を含有していてもよい。 The curable resin composition of the present invention may contain other additives such as viscosity modifiers, fillers other than silica fillers, and adhesion promoters as necessary, within the scope of the invention.

本発明の硬化性樹脂組成物は、125℃10分の条件で上記溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、300℃における弾性率が0.2MPa以上である。
硬化物の300℃における弾性率が上記範囲の弾性率であることで、無機層のシワの発生を抑えることができ、無機層のシワに起因する工程異常を抑えることができる。上記硬化物の300℃における弾性率は、0.2MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、1MPa以上であることが更に好ましい。上記硬化物の300℃における弾性率の上限は特に限定されないが、基板の反りや割れをより抑える観点から100MPa以下であることが好ましく、50MPa以下であることがより好ましい。上記弾性率は、上記シルセスキオキサンの種類や上記シリカフィラーの種類、形状及び量、架橋構造等によって調節することができる。
なお、上記弾性率は具体的には以下の方法で測定することができる。
The curable resin composition of the present invention has an elastic modulus at 300° C. of 0.2 MPa or more for a cured product after drying the solvent at 125° C. for 10 minutes and heat-curing by heat treatment at 300° C. for 1 hour.
By setting the elastic modulus of the cured product at 300°C within the above range, it is possible to suppress the occurrence of wrinkles in the inorganic layer, and to suppress process abnormalities caused by wrinkles in the inorganic layer. The elastic modulus of the cured product at 300°C is preferably 0.2 MPa or more, more preferably 0.5 MPa or more, and even more preferably 1 MPa or more. The upper limit of the elastic modulus of the cured product at 300°C is not particularly limited, but is preferably 100 MPa or less, more preferably 50 MPa or less, from the viewpoint of further suppressing warping and cracking of the substrate. The elastic modulus can be adjusted by the type of the silsesquioxane, the type, shape and amount of the silica filler, the crosslinking structure, etc.
The elastic modulus can be specifically measured by the following method.

アプリケーター等を用いてシート状に塗布した硬化性樹脂組成物を、125℃10分の条件で乾燥させ、更にその後300℃で1時間加熱し、厚み500μmの硬化性樹脂組成物の硬化物のフィルムを得る。得られたフィルムサンプルを5mm×35mmのサイズに打ち抜き、測定サンプルを作製する。得られた測定サンプルについて、動的粘弾性測定装置(アイティー計測制御社製、DVA-200又は同等品)によって、定速昇温引張モード、昇温速度5℃/分、周波数1Hzの条件で300℃における引張弾性率を測定する。 The curable resin composition is applied in a sheet form using an applicator or the like, dried at 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition with a thickness of 500 μm. The obtained film sample is punched out to a size of 5 mm x 35 mm to prepare a measurement sample. The tensile modulus of the obtained measurement sample at 300°C is measured using a dynamic viscoelasticity measuring device (IT Measurement and Control Co., Ltd., DVA-200 or equivalent) under conditions of a constant temperature rise tensile mode, a temperature rise rate of 5°C/min, and a frequency of 1 Hz.

本発明の硬化性樹脂組成物は、125℃10分の条件で溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、-40℃から100℃の範囲における線膨張係数(CTE)が500ppm/℃以下であることが好ましい。
硬化性樹脂組成物が上記線膨張係数を満たすことで、硬化膜上に無機層を形成した場合であっても無機層にシワが生じ難くなり、無機層のシワに起因する工程異常を抑えることができる。上記線膨張係数は400ppm/℃以下であることがより好ましく、300ppm/℃以下であることが更に好ましい。上記線膨張係数の下限は特に限定されないが、無機膜の応力緩和によるそり抑制の観点から10ppm/℃以上であることが好ましい。上記線膨張係数は、上記シルセスキオキサンの種類や上記シリカフィラーの種類、形状及び量、架橋構造等によって調節することができる。
なお、上記線膨張係数は、以下の方法で測定することができる。
The curable resin composition of the present invention is preferably such that the coefficient of linear expansion (CTE) in the range of -40°C to 100°C is 500 ppm/°C or less for a cured product after drying the solvent under conditions of 125°C for 10 minutes and heat-curing by heat treatment at 300°C for 1 hour.
By the curable resin composition satisfying the above linear expansion coefficient, even when an inorganic layer is formed on the cured film, wrinkles are unlikely to occur in the inorganic layer, and process abnormalities caused by wrinkles in the inorganic layer can be suppressed. The linear expansion coefficient is more preferably 400 ppm/°C or less, and even more preferably 300 ppm/°C or less. The lower limit of the linear expansion coefficient is not particularly limited, but is preferably 10 ppm/°C or more from the viewpoint of suppressing warping due to stress relaxation of the inorganic film. The linear expansion coefficient can be adjusted by the type of the silsesquioxane, the type, shape and amount of the silica filler, crosslinking structure, etc.
The linear expansion coefficient can be measured by the following method.

アプリケーター等を用いてシート状に塗布した硬化性樹脂組成物を、125℃10分の条件で乾燥させ、更にその後300℃で1時間加熱し、厚み300μmの硬化性樹脂組成物の硬化物のフィルムを得る。得られたフィルムサンプルを4mm×22mmのサイズに打ち抜き、測定サンプルを作製する。得られた測定サンプルについて、熱機械分析装置(日立ハイテクサイエンス社製、TMA7100又は同等品)によって、-70℃まで冷却したのち400℃まで、昇温速度5℃/分で昇温した際の熱線膨張を測定し、-40℃から100℃の範囲における線膨張係数を算出する。 The curable resin composition is applied in a sheet form using an applicator or the like, dried at 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition with a thickness of 300 μm. The obtained film sample is punched out to a size of 4 mm x 22 mm to prepare a measurement sample. The obtained measurement sample is cooled to -70°C and then heated to 400°C at a heating rate of 5°C/min using a thermomechanical analyzer (Hitachi High-Tech Science Corporation, TMA7100 or equivalent), and the linear thermal expansion is measured, and the linear expansion coefficient in the range of -40°C to 100°C is calculated.

本発明の硬化性樹脂組成物の製造方法は特に限定されず、例えば、上記シルセスキオキサン、上記溶剤、上記シリカフィラー及び必要に応じて上記触媒や上記耐熱性樹脂等の添加剤を上記溶剤と混合することで製造することができる。 The method for producing the curable resin composition of the present invention is not particularly limited, and it can be produced, for example, by mixing the silsesquioxane, the solvent, the silica filler, and, if necessary, additives such as the catalyst and the heat-resistant resin with the solvent.

本発明の硬化性樹脂組成物は、熱硬化させた硬化物が半導体装置や撮像素子等に用いられる複数の基板からなる積層体において絶縁層として用いられることが好ましく、熱硬化させた硬化物の上に無機層を積層させて用いられることがより好ましい。このような絶縁層とすることにより、基板の反りや割れを抑えながらも高い耐湿性を発揮することができ、更に無機層にシワが生じ難く無機層のシワに起因する工程異常を抑えることができる。 The curable resin composition of the present invention is preferably used as an insulating layer in a laminate consisting of multiple substrates in which the heat-cured cured product is used in semiconductor devices, image sensors, etc., and more preferably used by laminating an inorganic layer on the heat-cured cured product. By forming such an insulating layer, it is possible to exhibit high moisture resistance while suppressing warping and cracking of the substrate, and further, wrinkles are less likely to occur in the inorganic layer, thereby suppressing process abnormalities caused by wrinkles in the inorganic layer.

このような、本発明の硬化性樹脂組成物を熱硬化させた硬化膜もまた、本発明の1つである。
また、本発明の硬化膜を用いた積層体、つまり、第1の基板上に本発明の硬化膜からなる有機層、前記有機層上に無機層が積層された積層体であって、前記第1の基板は複数のチップを有する第1面とその反対面となる第2面を有し、前記第1面側に前記有機層及び前記無機層を有する積層体(以下、積層体Aともいう)もまた、本発明の1つである。
Such a cured film obtained by thermally curing the curable resin composition of the present invention also constitutes the present invention.
Furthermore, a laminate using the cured film of the present invention, that is, a laminate in which an organic layer made of the cured film of the present invention is laminated on a first substrate, and an inorganic layer is laminated on the organic layer, the first substrate has a first surface having a plurality of chips and a second surface which is the opposite surface, and the organic layer and the inorganic layer are on the first surface side (hereinafter also referred to as laminate A). is also one aspect of the present invention.

本発明の積層体Aは、第1の素子上に有機層、上記有機層上に無機層が積層された積層体である。
上記有機層及び無機層は、複数の素子や基板が積層された半導体装置において、各素子や基板間の絶縁層としての役割を果たす。従来の絶縁層は製造時の高温処理に耐えるために硬い無機材料が用いられていたため、基板が変形した際に応力を緩和できず基板に反りや割れが生じやすかった。本発明の積層体では、絶縁層として応力の緩和が可能な柔軟性を有する有機化合物を用いることで、基板に反りや割れが生じ難く、その結果、基板の反りや割れに起因する電極のズレや割れを抑えて基板間の接続信頼性を高めることができる。また、有機層上に補助的な絶縁層として無機層を設けることで、大気中の水分が有機層単独のものよりも透過しにくくなるため、高温高湿下であっても高い接続信頼性を発揮することができる。更に、有機層は本発明の硬化性樹脂組成物の硬化膜からなるため、無機層が積層されても無機層にシワが生じにくい。その結果、無機層のシワに起因するアライメント不良等の工程異常を抑えることができる。なお、本発明の積層体は、無機層の厚みが薄いため、有機層が基板の反りを解消する際に妨げとならない。
The laminate A of the present invention is a laminate in which an organic layer is laminated on a first element, and an inorganic layer is laminated on the organic layer.
The organic layer and inorganic layer serve as an insulating layer between each element and substrate in a semiconductor device in which a plurality of elements and substrates are laminated. Conventional insulating layers use hard inorganic materials to withstand high-temperature treatment during manufacturing, so that when the substrate is deformed, the stress cannot be relieved and the substrate is prone to warping and cracking. In the laminate of the present invention, by using an organic compound having flexibility capable of relieving stress as the insulating layer, the substrate is less likely to warp or crack, and as a result, the electrode misalignment and cracking caused by the substrate warping and cracking can be suppressed, thereby improving the connection reliability between the substrates. In addition, by providing an inorganic layer as an auxiliary insulating layer on the organic layer, moisture in the atmosphere is less likely to permeate than the organic layer alone, so that high connection reliability can be achieved even under high temperature and high humidity. Furthermore, since the organic layer is made of a cured film of the curable resin composition of the present invention, wrinkles are less likely to occur in the inorganic layer even when the inorganic layer is laminated. As a result, process abnormalities such as alignment defects caused by wrinkles in the inorganic layer can be suppressed. In addition, since the inorganic layer of the laminate of the present invention is thin, the organic layer does not hinder the elimination of the warping of the substrate.

上記第1の基板は、特に限定されず、素子、配線が形成された回路基板を用いることができる。例えば、画素部(画素領域)が設けられたセンサ回路基板、固体撮像装置の動作に係る各種信号処理を実行するロジック回路等の周辺回路部が搭載された回路基板、記憶回路等の周辺回路が搭載された回路基板などを用いることができる。 The first substrate is not particularly limited, and may be a circuit substrate on which elements and wiring are formed. For example, a sensor circuit substrate on which a pixel portion (pixel region) is provided, a circuit substrate on which peripheral circuit portions such as logic circuits that perform various signal processing related to the operation of the solid-state imaging device are mounted, or a circuit substrate on which peripheral circuits such as memory circuits are mounted may be used.

上記第1の基板は複数のチップを有する第1面とその反対面となる第2面を有し、上記第1面側に上記有機層及び上記無機層を有する。
上記第1の基板上に複数のチップが配置され、第1の基板のチップが配置された面上に絶縁層を形成する場合、チップによって凹凸が形成されることから、接続面が平坦とならずに接続信頼性が低下しやすい。本発明の積層体では、このような凹凸を有する基板であっても有機層が凹凸を埋めて接続面が平坦となるため、上記第1の基板及びチップの反りや割れを抑えることができる。また、有機層上に薄い無機層を形成することで、基板の反りを解消しつつも高温高湿下での接続信頼性を高めることができる。また、より高温高湿下での接続信頼性が高まることから、上記無機層は上記有機層の露出面全体を覆っていることが好ましい。
The first substrate has a first surface having a plurality of chips and a second surface opposite thereto, and has the organic layer and the inorganic layer on the first surface side.
When a plurality of chips are arranged on the first substrate and an insulating layer is formed on the surface of the first substrate on which the chips are arranged, the chips form unevenness, so that the connection surface is not flat and the connection reliability is likely to decrease. In the laminate of the present invention, even in the case of a substrate having such unevenness, the organic layer fills the unevenness to make the connection surface flat, so that warping and cracking of the first substrate and the chips can be suppressed. In addition, by forming a thin inorganic layer on the organic layer, it is possible to improve the connection reliability under high temperature and high humidity while eliminating the warping of the substrate. In addition, since the connection reliability under high temperature and high humidity is improved, it is preferable that the inorganic layer covers the entire exposed surface of the organic layer.

上記チップとしては例えば、記憶回路素子、ロジック回路素子等が挙げられる。また、上記チップの数は2個以上であれば特に限定されない。 Examples of the chips include memory circuit elements, logic circuit elements, etc. The number of chips is not particularly limited as long as it is two or more.

上記有機層は厚みが10μm以上であることが好ましい。
有機層の厚みを上記範囲とすることで、絶縁層としての役割を発揮できるとともに、基板の反りや割れを抑えて接続信頼性を高めることができる。また、従来の有機層上に無機層を形成した積層体は、有機層を厚膜とした際に特に無機層のクラックが生じやすかったが、本発明の積層体は、有機層を厚膜とした場合であっても無機層のクラックが生じにくく、高い耐湿性を発揮することができる。上記有機層の厚みは20μm以上であることが好ましく、30μm以上であることがより好ましく、200μm以下であることが好ましく、100μm以下であることがより好ましい。
The organic layer preferably has a thickness of 10 μm or more.
By setting the thickness of the organic layer within the above range, it can play a role as an insulating layer, and can suppress warping and cracking of the substrate to improve connection reliability. In addition, in a conventional laminate in which an inorganic layer is formed on an organic layer, cracks are particularly likely to occur in the inorganic layer when the organic layer is made into a thick film, but in the laminate of the present invention, even when the organic layer is made into a thick film, cracks are unlikely to occur in the inorganic layer, and it can exhibit high moisture resistance. The thickness of the organic layer is preferably 20 μm or more, more preferably 30 μm or more, and preferably 200 μm or less, and more preferably 100 μm or less.

上記無機層の材料は特に限定されず、例えば、SiN、SiO、Al等が挙げられる。なかでも、絶縁性と耐熱性に優れることからSiN、SiOが好ましい。 The material of the inorganic layer is not particularly limited, and examples thereof include SiN, SiO 2 , and Al 2 O 3. Among these, SiN and SiO 2 are preferred because of their excellent insulating properties and heat resistance.

上記無機層の厚みは、より積層体の接続信頼性を高める観点から1nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることが更に好ましい。また基板の反りの解消を妨げない観点から、1μm以下であることが好ましく、500nm以下であることがより好ましく、100nm以下であることが更に好ましい。 The thickness of the inorganic layer is preferably 1 nm or more, more preferably 5 nm or more, and even more preferably 10 nm or more, from the viewpoint of further increasing the connection reliability of the laminate. Furthermore, from the viewpoint of not preventing the elimination of warpage in the substrate, the thickness is preferably 1 μm or less, more preferably 500 nm or less, and even more preferably 100 nm or less.

本発明の積層体Aは、上記無機層上にさらに支持基板が積層されていてもよい。
無機層上に支持基板を積層することで本発明の積層体を含む電子部品、例えば撮像装置、半導体装置等の筐体への固定が容易となる。
上記支持基板としては、ガラス、単結晶シリコン等が挙げられる。
The laminate A of the present invention may further include a supporting substrate laminated on the inorganic layer.
By laminating a support substrate on the inorganic layer, it becomes easy to fix an electronic component including the laminate of the present invention, such as an imaging device or semiconductor device, to a housing.
The supporting substrate may be made of glass, single crystal silicon, or the like.

本発明の積層体Aは、第1の基板の第2面上に更に第2の基板を有し、上記第1の基板と上記第2の基板が電気的に接続されていてもよい。
本発明の積層体Aは、上記有機層により第1の基板の反りや割れが抑えられているため、第1の基板上にさらに積層される第2の基板の反りや割れも抑えられ、接続信頼性を高めることができる。上記第2の基板は、上記第1の基板と同様のものを用いることができる。
The laminate A of the present invention may further have a second substrate on the second surface of the first substrate, and the first substrate and the second substrate may be electrically connected to each other.
In the laminate A of the present invention, since the organic layer suppresses warping and cracking of the first substrate, warping and cracking of the second substrate further laminated on the first substrate are also suppressed, thereby improving connection reliability. The second substrate may be the same as the first substrate.

ここで、本発明の積層体Aの一例を表した模式図を図1に示す。図1に示すように、本発明の積層体Aは、複数のチップ2を有する第1の基板1のチップが積層された面(第1面)上に有機層3と無機層4が積層された構造となっており、有機層3と無機層4が絶縁層として働く。従来の有機層と無機層からなる絶縁層は、有機層3によって基板の反りや割れを抑え、無機層4によって水分の透過を抑えることで優れた接続信頼性を発揮するものの、工程異常の原因となる無機層のシワが生じやすかった。本発明の積層体では、有機層の材料として本発明の硬化性樹脂組成物を用いることで無機層にシワが生じ難いため、アライメント不良等の工程異常を抑えることができる。また、本発明の積層体Aは、無機層4上に支持基板5が積層されていてもよく、第1の基板1の有機層3が積層された面とは反対側の面(第2面)上に第2の基板6が積層され、第1の基板1と第2の基板6とが電気的に接続されていてもよい。なお、図1では有機層3及び無機層4は単層となっているが、複数の層から成っていてもよい。 Here, a schematic diagram showing an example of the laminate A of the present invention is shown in FIG. 1. As shown in FIG. 1, the laminate A of the present invention has a structure in which an organic layer 3 and an inorganic layer 4 are laminated on the surface (first surface) of a first substrate 1 having a plurality of chips 2 on which the chips are laminated, and the organic layer 3 and the inorganic layer 4 act as insulating layers. Conventional insulating layers consisting of an organic layer and an inorganic layer exhibit excellent connection reliability by suppressing warping and cracking of the substrate with the organic layer 3 and suppressing moisture permeation with the inorganic layer 4, but wrinkles in the inorganic layer, which cause process abnormalities, tend to occur. In the laminate of the present invention, wrinkles are unlikely to occur in the inorganic layer by using the curable resin composition of the present invention as the material for the organic layer, so that process abnormalities such as alignment defects can be suppressed. In addition, the laminate A of the present invention may have a support substrate 5 laminated on the inorganic layer 4, and a second substrate 6 may be laminated on the surface (second surface) opposite to the surface on which the organic layer 3 of the first substrate 1 is laminated, and the first substrate 1 and the second substrate 6 may be electrically connected. In FIG. 1, the organic layer 3 and the inorganic layer 4 are single layers, but they may be made up of multiple layers.

本発明の積層体Aの製造方法であって、複数のチップを有する第1面とその反対面となる第2面を有する第1の基板の前記第1面上に本発明の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、上記有機層上に無機層を形成する工程を有する積層体の製造方法もまた、本発明の1つである。 A method for producing a laminate A of the present invention, which includes a step of applying a curable resin composition of the present invention to a first surface of a first substrate having a first surface with a plurality of chips and a second surface opposite the first surface, and forming an organic layer by solvent drying and thermal curing, and a step of forming an inorganic layer on the organic layer, is also one aspect of the present invention.

本発明の積層体Aの製造方法は、まず、複数のチップを有する第1面とその反対面となる第2面を有する第1の基板の上記第1面上に本発明の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程を行う。
従来の無機材料を絶縁層に用いた積層体は化学的気相成長法(CVD)やスパッタリング等の時間を要する方法で製造されていた。本発明の積層体は絶縁層の主成分が有機化合物であるため、溶液を塗布、乾燥することで製造できるため、接続信頼性の向上だけでなく生産効率を高めることもできる。上記第1の基板及び硬化性樹脂組成物は、本発明の積層体Aにおける第1の基板及び本発明の硬化性樹脂組成物と同様である。
The method for manufacturing the laminate A of the present invention first involves applying the curable resin composition of the present invention onto the first surface of a first substrate having a first surface having a plurality of chips and a second surface opposite the first surface, followed by solvent drying and thermal curing to form an organic layer.
Conventional laminates using inorganic materials for the insulating layer have been manufactured by time-consuming methods such as chemical vapor deposition (CVD) and sputtering. Since the main component of the insulating layer of the laminate of the present invention is an organic compound, it can be manufactured by applying a solution and drying it, which not only improves connection reliability but also increases production efficiency. The first substrate and the curable resin composition are the same as the first substrate and the curable resin composition of the present invention in the laminate A of the present invention.

上記成膜の方法は特に限定されず、スピンコート法等従来公知の方法を用いることができる。
溶剤乾燥条件は特に限定されないが、残存溶剤を減らし有機層の耐熱性を向上させる観点から、好ましくは70℃以上、より好ましくは100℃以上、好ましくは250℃以下、より好ましくは200℃以下の温度で、例えば30分、より好ましくは1時間程度加熱することが好ましい。
硬化条件は特に限定されないが、硬化反応を十分に進行させ、耐熱性をより向上させる観点から、好ましくは200℃以上、より好ましくは220℃以上、好ましくは400℃以下、より好ましくは300℃以下の温度で、例えば1時間以上、より好ましくは2時間以上程度加熱することが好ましい。加熱時間の上限は特に限定されないが、有機層の熱分解を抑制する観点から3時間以下であることが好ましい。
The method for forming the film is not particularly limited, and a conventionally known method such as spin coating can be used.
The solvent drying conditions are not particularly limited, but from the viewpoint of reducing the remaining solvent and improving the heat resistance of the organic layer, it is preferable to heat the organic layer at a temperature of preferably 70° C. or higher, more preferably 100° C. or higher, preferably 250° C. or lower, more preferably 200° C. or lower, for example, for 30 minutes, more preferably for about 1 hour.
The curing conditions are not particularly limited, but from the viewpoint of sufficiently progressing the curing reaction and further improving the heat resistance, it is preferable to heat for, for example, about 1 hour or more, more preferably 2 hours or more at a temperature of preferably 200° C. or more, more preferably 220° C. or more, preferably 400° C. or less, more preferably 300° C. or less. The upper limit of the heating time is not particularly limited, but from the viewpoint of suppressing thermal decomposition of the organic layer, it is preferably 3 hours or less.

本発明の積層体Aの製造方法は、次いで、上記有機層上に無機層を形成する工程を行う。
上記無機層を形成する方法としては、化学的気相成長(CVD)法、スパッタリング、蒸着等が挙げられる。
In the method for producing the laminate A of the present invention, a step of forming an inorganic layer on the organic layer is then carried out.
Methods for forming the inorganic layer include chemical vapor deposition (CVD), sputtering, deposition, and the like.

本発明の積層体Aが支持基板を有する場合、本発明の積層体Aの製造方法は、上記無機層上にさらに支持基板を貼り合せる工程を行う。 When the laminate A of the present invention has a supporting substrate, the method for producing the laminate A of the present invention further includes a step of bonding the supporting substrate onto the inorganic layer.

本発明の積層体Aが第2の基板を有する場合、本発明の積層体Aの製造方法は、上記第1の基板の第2面上に第2の基板を積層し、上記第1の基板と上記第2の基板を電気的に接続する工程を行う。
上記第1及び第2の基板を電気的に接続する方法としては、熱処理によって第1及び第2の基板の電極を溶融させて接続する方法等が挙げられる。上記熱処理は通常400℃4時間程度である。
When the laminate A of the present invention has a second substrate, the manufacturing method of the laminate A of the present invention includes a step of laminating a second substrate on the second surface of the first substrate and electrically connecting the first substrate and the second substrate.
The first and second substrates may be electrically connected by a method of melting and connecting the electrodes of the first and second substrates by heat treatment, etc. The heat treatment is usually performed at 400° C. for about 4 hours.

本発明の硬化膜を用いた積層体としては、電極を有する2つの基板が電気的に接続され、2つの基板間に本発明の硬化膜及び無機層からなる絶縁層が配置された構造の積層体も挙げられる。
このような、電極を有する第3の基板と、電極を有する第4の基板との間に本発明の硬化膜からなる有機層と無機層とを有する積層体であって、前記第3の基板の電極と前記第4の基板の電極とが、前記有機層及び前記無機層を貫通する貫通孔を介して電気的に接続されている積層体(以下、積層体Bともいう)もまた、本発明の1つである。
An example of a laminate using the cured film of the present invention is a laminate having a structure in which two substrates having electrodes are electrically connected and an insulating layer made of the cured film of the present invention and an inorganic layer is disposed between the two substrates.
Such a laminate having an organic layer and an inorganic layer made of the cured film of the present invention between a third substrate having an electrode and a fourth substrate having an electrode, in which the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer (hereinafter, also referred to as laminate B), also constitutes one aspect of the present invention.

本発明の積層体Bは、電極を有する第3の基板と、電極を有する第4の基板との間に本発明の硬化膜からなる有機層と無機層とを有する積層体であって、前記第3の基板の電極と前記第4の基板の電極とが、前記有機層及び前記無機層を貫通する貫通孔を介して電気的に接続されている。
第3の基板の電極(以下、第1の電極ともいう)と第4の基板の電極(以下、第2の電極ともいう)との間に設けられた硬化膜及び無機層が絶縁層として働くことによって、電流の短絡を抑えることができる。従来の絶縁層はSiNやSiOといった固い無機材料のみを用いていたため、絶縁層の形成時や積層体の形成時に反りが発生した場合、これを応力緩和で解消することができず、その結果、基板の反り及びこれに起因する電極のズレや割れが起こりやすくなっていた。本発明では、無機材料よりも柔軟性の高い硬化性樹脂組成物からなる硬化膜を主な絶縁層として用いることで、基板の反りを解消できるため、高い接続信頼性を発揮することができる。また、補助的な絶縁層として基板の反りの解消を妨げない程度に薄い無機層を用いることで、耐湿性を高めることができる。更に、本発明の硬化膜は、硬化膜上に無機層を積層した場合であっても無機層にシワが生じ難いため、アライメント不良等の工程不良を抑えることができる。
なおここで、電気的に接続されているとは、上記貫通孔に充填された導電性材料等によって第1の電極及び第2の電極が接続されている状態のことを指す。
The laminate B of the present invention is a laminate having an organic layer and an inorganic layer composed of the cured film of the present invention between a third substrate having an electrode and a fourth substrate having an electrode, and the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer.
The cured film and inorganic layer provided between the electrode of the third substrate (hereinafter also referred to as the first electrode) and the electrode of the fourth substrate (hereinafter also referred to as the second electrode) act as an insulating layer, thereby suppressing short circuit of current. Conventional insulating layers use only hard inorganic materials such as SiN and SiO 2 , so that when warping occurs during the formation of the insulating layer or the formation of the laminate, it is not possible to eliminate this by stress relaxation, and as a result, warping of the substrate and the resulting displacement and cracking of the electrodes are likely to occur. In the present invention, the cured film made of a curable resin composition having higher flexibility than inorganic materials is used as the main insulating layer, so that the warping of the substrate can be eliminated, thereby exhibiting high connection reliability. In addition, the moisture resistance can be increased by using a thin inorganic layer as an auxiliary insulating layer so as not to prevent the elimination of the warping of the substrate. Furthermore, the cured film of the present invention is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is laminated on the cured film, so that process defects such as alignment defects can be suppressed.
Here, being electrically connected refers to a state in which the first electrode and the second electrode are connected by a conductive material or the like filled in the through hole.

上記第3の基板及び第4の基板は、上記第1の基板と同様のものを用いることができる。また、上記有機層及び無機層は、本発明の積層体Aの有機層及び無機層と同様のものを用いることができる。なお、上記無機層は、上記第3の基板及び第4の基板の有機層両方に形成されていてもよいし、片方の有機層上のみに形成されていてもよい。なかでも、より高温高湿下での接続信頼性が高まることから、上記無機層は上記第3の基板及び上記第4の基板両方の有機層上に形成されていることが好ましく、上記有機層の側面全体を覆っていることがより好ましい。 The third and fourth substrates may be the same as the first substrate. The organic and inorganic layers may be the same as the organic and inorganic layers of the laminate A of the present invention. The inorganic layer may be formed on both the organic layers of the third and fourth substrates, or may be formed on only one of the organic layers. In particular, the inorganic layer is preferably formed on the organic layers of both the third and fourth substrates, and more preferably covers the entire side surface of the organic layer, since this improves the connection reliability under high temperature and high humidity.

上記第3の基板及び第4の基板が有する電極の材料及び上記導電性材料は特に限定されず、金、銅、アルミニウム等の従来公知の電極材料を用いることができる。 The materials of the electrodes of the third and fourth substrates and the conductive material are not particularly limited, and conventional electrode materials such as gold, copper, and aluminum can be used.

本発明の積層体Bは、上記貫通孔の表面にバリアメタル層を有することが好ましい。
バリアメタル層は貫通孔に充填された導電性材料(例えばCu電極の場合Cu原子)の有機層中への拡散を防ぐ役割を有する。貫通孔の表面にバリアメタル層を設けることで、貫通孔を埋める導電性材料は電極と接する面以外がバリアメタル層で覆われることになるため、導電性材料の有機層への拡散による短絡、導通不良をより抑制することができる。上記バリアメタル層の材料は、タンタル、窒化タンタル、窒化チタン、酸化ケイ素、窒化ケイ素などの公知の材料を用いることができる。
The laminate B of the present invention preferably has a barrier metal layer on the surface of the through hole.
The barrier metal layer has a role of preventing the diffusion of the conductive material (e.g., Cu atoms in the case of a Cu electrode) filled in the through hole into the organic layer. By providing a barrier metal layer on the surface of the through hole, the conductive material filling the through hole is covered with the barrier metal layer except for the surface in contact with the electrode, so that short circuits and poor conduction caused by the diffusion of the conductive material into the organic layer can be further suppressed. The material of the barrier metal layer can be a known material such as tantalum, tantalum nitride, titanium nitride, silicon oxide, silicon nitride, etc.

上記バリアメタル層の厚みは特に限定されないが、より積層体の接続信頼性を高める観点から1nm以上であることがより好ましく、10nm以上であることが更に好ましく、100nm以下であることがより好ましく、50nm以下であることが更に好ましい。 The thickness of the barrier metal layer is not particularly limited, but from the viewpoint of further improving the connection reliability of the laminate, it is preferably 1 nm or more, more preferably 10 nm or more, more preferably 100 nm or less, and even more preferably 50 nm or less.

ここで、本発明の積層体Bの一例を表した模式図を図2に示す。図2に示すように、本発明の積層体Bは、電極8を有する第3の基板7と第4の基板9が有機層3及び無機層4を介して接合されており、第3の基板7及び第4の基板9上の電極8は、有機層3に設けられた貫通孔10に充填された導電性材料を通して電気的に接続された構造となっている。従来の積層体は、絶縁層に当たる有機層3の部分が固い無機材料であったため、基板や積層体に反りが発生した場合にこれを応力緩和によって解消できず、電極のズレや割れが起きやすくなっていた。本発明の積層体Bは、絶縁層に柔軟性を有する本発明の硬化膜からなる有機層を用いることで、基板や積層体の反りを解消できるため、電極のズレや割れを抑えることができる。また、補助的な絶縁層として基板の反りの解消を妨げない程度に薄い無機層4を用いることで、耐湿性を高めることができる。上記無機層4は、上記有機層3の側面全体を覆っていると耐湿性をより高めることができる。更に、本発明の硬化膜は、硬化膜上に無機層を積層した場合であっても無機層にシワが生じ難いため、アライメント不良等の工程不良を抑えることができる。更に、本発明の積層体Bは、貫通孔10の表面にバリアメタル層11が設けられていてもよい。バリアメタル層11を設けると貫通孔10内に充填される導電性材料が有機層3に拡散し難くなるため、短絡や導通不良をより抑えることができる。なお、図2では無機層4が、第3の基板7側及び第4の基板9側の有機層3上にそれぞれ設けられているが、どちらか一方のみに設けられていてもよい。 Here, a schematic diagram showing an example of the laminate B of the present invention is shown in FIG. 2. As shown in FIG. 2, the laminate B of the present invention has a structure in which a third substrate 7 having an electrode 8 and a fourth substrate 9 are bonded via an organic layer 3 and an inorganic layer 4, and the electrodes 8 on the third substrate 7 and the fourth substrate 9 are electrically connected through a conductive material filled in a through hole 10 provided in the organic layer 3. In the conventional laminate, the organic layer 3 corresponding to the insulating layer was a hard inorganic material, so that when warping occurred in the substrate or laminate, this could not be eliminated by stress relaxation, and the electrodes were prone to misalignment and cracking. The laminate B of the present invention can eliminate warping of the substrate or laminate by using an organic layer made of the cured film of the present invention having flexibility in the insulating layer, so that the electrodes can be prevented from misaligning and cracking. In addition, the moisture resistance can be improved by using a thin inorganic layer 4 as an auxiliary insulating layer so as not to prevent the elimination of the warp of the substrate. If the inorganic layer 4 covers the entire side surface of the organic layer 3, the moisture resistance can be further improved. Furthermore, the cured film of the present invention is unlikely to cause wrinkles in the inorganic layer even when an inorganic layer is laminated on the cured film, so that process defects such as alignment defects can be suppressed. Furthermore, the laminate B of the present invention may be provided with a barrier metal layer 11 on the surface of the through hole 10. By providing the barrier metal layer 11, the conductive material filled in the through hole 10 is unlikely to diffuse into the organic layer 3, so that short circuits and conduction defects can be further suppressed. In FIG. 2, the inorganic layer 4 is provided on the organic layer 3 on the third substrate 7 side and the fourth substrate 9 side, but it may be provided on only one of them.

本発明の積層体Bの製造方法であって、電極を有する第3の基板及び電極を有する第4の基板の前記電極を有する面上に本発明の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、前記有機層上に無機層を形成する工程と、各前記有機層及び前記無機層に貫通孔を形成する工程と、各前記貫通孔を導電性材料で充填する工程と、前記電極を有する第3の基板及び前記電極を有する第4の基板の前記導電性材料を充填した側の表面を研磨して接合電極を形成する工程と、前記電極を有する第3の基板及び前記電極を有する第4の基板の前記接合電極同士が接合するように貼り合せる工程を有する積層体の製造方法もまた、本発明の1つである。 The present invention also provides a method for producing a laminate B, which includes the steps of applying the curable resin composition of the present invention onto the surfaces of a third substrate having an electrode and a fourth substrate having an electrode, drying the solvent, and thermally curing the composition to form an organic layer, forming an inorganic layer on the organic layer, forming through-holes in each of the organic layers and the inorganic layer, filling each of the through-holes with a conductive material, polishing the surfaces of the third substrate having an electrode and the fourth substrate having an electrode on the side filled with the conductive material to form a bonding electrode, and bonding the third substrate having an electrode and the fourth substrate having an electrode so that the bonding electrodes of the third substrate having an electrode and the fourth substrate having an electrode are bonded to each other.

本発明の積層体Bの製造方法は、まず、電極を有する第3の基板及び電極を有する第4の基板上に本発明の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、前記有機層上に無機層を形成する工程を行う。
上記有機層を形成する工程及び上記無機層を形成する工程は、上記積層体Aの製造方法と同様の方法を用いることができる。なお、上記無機層は、第3の基板側及び第4の基板側の有機層上にそれぞれ形成してもよく、どちらか一方のみに形成してもよい。
The method for producing the laminate B of the present invention first includes a step of applying the curable resin composition of the present invention onto a third substrate having an electrode and a fourth substrate having an electrode, followed by solvent drying and thermal curing to form an organic layer, and a step of forming an inorganic layer on the organic layer.
The step of forming the organic layer and the step of forming the inorganic layer can be performed using the same method as in the manufacturing method of the laminate A. The inorganic layer may be formed on each of the organic layers on the third substrate side and the fourth substrate side, or may be formed on only one of them.

本発明の積層体Bの製造方法は、次いで、各前記有機層及び前記無機層に貫通孔を形成する工程を行う。
上記貫通孔はパターニングされていてもよい。上記貫通孔を形成する方法は特に限定されず、COレーザー等のレーザー照射やエッチング等によって形成することができる。なお上記貫通孔は基板の電極面上に他の層が形成されている場合、上記他の層も貫通して基板の電極面が露出するように形成される。
In the method for producing the laminate B of the present invention, a step of forming through holes in each of the organic layers and the inorganic layers is then carried out.
The through-hole may be patterned. The method for forming the through-hole is not particularly limited, and the through-hole may be formed by laser irradiation such as CO2 laser or etching. When other layers are formed on the electrode surface of the substrate, the through-hole is formed so as to penetrate the other layers and expose the electrode surface of the substrate.

本発明の積層体Bの製造方法は、次いで、必要に応じてバリアメタル層を形成する工程を行う。
上記バリアメタル層は本発明の積層体Bと同様のものを用いることができる。上記バリアメタル層はスパッタリングや蒸着等によって形成することができる。
In the method for producing the laminate B of the present invention, a step of forming a barrier metal layer is then carried out as necessary.
The barrier metal layer may be the same as that of the laminate B of the present invention. The barrier metal layer may be formed by sputtering, vapor deposition or the like.

本発明の積層体Bの製造方法は、次いで、各上記貫通孔を導電性材料で充填する工程を行う。上記導電性材料を充填する方法としてはメッキなどを用いることができる。
上記導電性材料は、本発明の積層体Bの導電性材料と同様のものを用いることができる。
The method for producing the laminate B of the present invention then includes a step of filling each of the through holes with a conductive material. As a method for filling the through holes with the conductive material, plating or the like can be used.
The conductive material may be the same as the conductive material of the laminate B of the present invention.

本発明の積層体Bの製造方法は、次いで、上記電極を有する第3の基板及び上記電極を有する第4の基板の上記導電性材料を充填した側の表面を研磨して接合電極を形成する工程を行う。
研削によって不要な部分に形成された上記導電性材料を除去することで2枚の素子に形成された電極間をつなぐ接合電極が形成される。上記研磨は、上記無機層が露出するまで導電性材料で形成された層を平坦化除去することが好ましい。
上記研磨方法は特に限定されず、例えば化学的機械研磨法などを用いることができる。
The method for producing the laminate B of the present invention then includes a step of polishing the surfaces of the third substrate having the electrode and the fourth substrate having the electrode, the surfaces being filled with the conductive material, to form bonding electrodes.
The conductive material formed in the unnecessary portion is removed by grinding to form a bonding electrode connecting the electrodes formed on the two elements. The polishing is preferably performed by planarizing and removing the layer formed of the conductive material until the inorganic layer is exposed.
The polishing method is not particularly limited, and for example, a chemical mechanical polishing method can be used.

本発明の積層体Bの製造方法は、次いで、上記電極を有する第3の基板及び上記電極を有する第4の基板の上記接合電極同士が接合するように貼り合せる工程を行う。
上記第3の基板及び上記第4の基板を貼り合わせる方法としては、熱処理によって電極及び接続電極を溶融させて接続する方法等が挙げられる。上記熱処理は通常400℃4時間程度である。
The method for producing laminate B of the present invention then carries out a step of bonding the third substrate having the electrode and the fourth substrate having the electrode together so that the bonding electrodes of the third substrate having the electrode are bonded to each other.
The third substrate and the fourth substrate may be bonded to each other by a method of melting and connecting the electrodes and the connecting electrodes by heat treatment, etc. The heat treatment is usually performed at 400° C. for about 4 hours.

本発明の積層体A及びBの用途は特に限定されないが、有機層上に無機層を形成した場合であっても無機層にシワが生じ難く、工程異常を抑えられることから、撮像装置や半導体装置に好適である。このような、本発明の積層体を有する撮像装置及び本発明の積層体を有する半導体装置もまた、本発明の1つである。 The uses of the laminates A and B of the present invention are not particularly limited, but they are suitable for imaging devices and semiconductor devices because even when an inorganic layer is formed on an organic layer, wrinkles are unlikely to occur in the inorganic layer and process abnormalities can be suppressed. Such imaging devices having the laminates of the present invention and semiconductor devices having the laminates of the present invention are also part of the present invention.

本発明によれば、硬化物上に無機層を形成した場合であっても無機層にシワが生じ難く、工程異常を抑えることができる硬化性樹脂組成物、該硬化性樹脂組成物の硬化膜、該硬化膜を用いた積層体、該積層体を有する撮像装置及び半導体装置、該積層体の製造方法を提供することができる。 The present invention provides a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.

本発明の積層体Aの一例を表した模式図である。FIG. 1 is a schematic diagram showing an example of a laminate A of the present invention. 本発明の積層体Bの一例を表した模式図である。FIG. 2 is a schematic diagram showing an example of a laminate B of the present invention.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 The following examples further illustrate aspects of the present invention, but the present invention is not limited to these examples.

(1)シルセスキオキサン(樹脂A)の製造
還流冷却器、温度計、及び滴下漏斗を取り付けた反応容器に、フェニルトリメトキシシラン(東京化成工業社製 分子量198.29)65.4g、水酸化ナトリウム8.8g、水6.6g、及び2-プロパノール263mLを加えた。窒素気流下、撹拌しながら加熱を開始した。還流開始から6時間撹拌を継続したのち室温で1晩静置した。そして反応混合物を濾過器に移し、窒素ガスで加圧して濾過した。得られた固体を2-プロピルアルコールで1回洗浄、濾過したのち80℃で減圧乾燥を行うことにより、無色固体(DD-ONa)33.0gを得た。
(1) Production of silsesquioxane (resin A) 65.4 g of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 198.29), 8.8 g of sodium hydroxide, 6.6 g of water, and 263 mL of 2-propanol were added to a reaction vessel equipped with a reflux condenser, a thermometer, and a dropping funnel. Heating was started with stirring under a nitrogen stream. Stirring was continued for 6 hours from the start of reflux, and then the mixture was allowed to stand overnight at room temperature. The reaction mixture was then transferred to a filter, pressurized with nitrogen gas, and filtered. The obtained solid was washed once with 2-propyl alcohol, filtered, and then dried under reduced pressure at 80°C to obtain 33.0 g of a colorless solid (DD-ONa).

滴下漏斗、還流冷却器、温度計を取り付けた内容積300mlの3つ口フラスコに、化合物(DD-ONs)11.6g、テトラヒドロフラン100g、およびトリエチルアミン3.0gを仕込み、乾燥窒素にてシールした。マグネチックスターラーで撹拌しながら、室温でメチルトリクロロシラン4.5g:30mmolを滴下した。その後、室温で3時間撹拌した。反応液に水50gを投入して、生成した塩化ナトリウムを溶解するとともに、未反応のメチルトリクロロシランを加水分解した。このようにして得られた反応混合物を分液し、有機層を1Nの塩酸で1回、飽和炭酸水素ナトリウム水溶液で1回洗浄し、更にイオン交換水で3回水洗を繰り返した。洗浄後の有機層を無水硫酸マグネシウムで乾燥し、ロータリーエバポレターで減圧濃縮して、7.1gの白色粉末状固体(DD(Me)-OH)を得た。 In a 300 ml three-neck flask equipped with a dropping funnel, reflux condenser, and thermometer, 11.6 g of compound (DD-ONs), 100 g of tetrahydrofuran, and 3.0 g of triethylamine were charged and sealed with dry nitrogen. While stirring with a magnetic stirrer, 4.5 g (30 mmol) of methyltrichlorosilane was added dropwise at room temperature. Stirring was then continued at room temperature for 3 hours. 50 g of water was added to the reaction solution to dissolve the sodium chloride produced and hydrolyze the unreacted methyltrichlorosilane. The reaction mixture thus obtained was separated, and the organic layer was washed once with 1N hydrochloric acid, once with a saturated aqueous solution of sodium bicarbonate, and then washed three times with ion-exchanged water. The washed organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure using a rotary evaporator to obtain 7.1 g of a white powdery solid (DD(Me)-OH).

100mLフラスコに冷却管、メカニカルスターラー、ディーンスターク管、オイルバス、温度計保護管を取り付け、フラスコ内部を窒素置換した。DD(Me)-OH5.0g、オクタメチルシクロテトラシロキサン(D4)11.6g、硫酸3.9g、トルエン52g、4-メチルテトラヒドロピラン13gをフラスコに入れた。100℃で5時間攪拌したのち、反応混合物へ水を注ぎ、水層をトルエンで抽出した。合わせた有機層を水、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄したのち、無水硫酸ナトリウムで乾燥した。この溶液を減圧下で濃縮し、残留物を2-プロパノール:酢酸エチル=50:7(重量比)の比率で混合した溶液に再沈殿させて精製し、乾燥させることで下記構造式(8)の構造を有し、mが27、nが平均4であるシルセスキオキサン(樹脂A、重量平均分子量:36000)を得た。 A 100 mL flask was fitted with a cooling tube, mechanical stirrer, Dean-Stark tube, oil bath and thermometer protection tube, and the inside of the flask was replaced with nitrogen. 5.0 g of DD(Me)-OH, 11.6 g of octamethylcyclotetrasiloxane (D4), 3.9 g of sulfuric acid, 52 g of toluene and 13 g of 4-methyltetrahydropyran were placed in the flask. After stirring at 100°C for 5 hours, water was poured into the reaction mixture and the aqueous layer was extracted with toluene. The combined organic layer was washed with water, an aqueous sodium bicarbonate solution and saturated saline, and then dried over anhydrous sodium sulfate. This solution was concentrated under reduced pressure, and the residue was reprecipitated in a solution of 2-propanol:ethyl acetate = 50:7 (weight ratio) for purification and drying to obtain a silsesquioxane (resin A, weight average molecular weight: 36,000) having the structure of the following structural formula (8), m is 27 and n is 4 on average.

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008

(2)樹脂Bの製造
100mLフラスコに冷却管、メカニカルスターラー、ディーンスターク管、オイルバス、温度計保護管を取り付け、フラスコ内部を窒素置換した。DD(Me)-OH5.0g、オクタメチルシクロテトラシロキサン(D4)11.2g、硫酸3.9g、トルエン52.0g、4-メチルテトラヒドロピラン13.0gをフラスコに入れた。100℃で5時間攪拌したのち、反応混合物へ水を注ぎ、水層をトルエンで抽出した。合わせた有機層を水、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄したのち、無水硫酸ナトリウムで乾燥した。この溶液を減圧下で濃縮し、残留物を2-プロパノール:酢酸エチル=50:7(重量比)の比率で混合した溶液に再沈殿させて精製し、乾燥させることで上記式(8)の構造を有し、mが36、n(DMS鎖数)が平均3である有機ケイ素化合物(樹脂B、重量平均分子量46000)を得た。
(2) Production of Resin B A 100 mL flask was equipped with a cooling tube, a mechanical stirrer, a Dean-Stark tube, an oil bath, and a thermometer protection tube, and the inside of the flask was replaced with nitrogen. 5.0 g of DD(Me)-OH, 11.2 g of octamethylcyclotetrasiloxane (D4), 3.9 g of sulfuric acid, 52.0 g of toluene, and 13.0 g of 4-methyltetrahydropyran were placed in the flask. After stirring at 100°C for 5 hours, water was poured into the reaction mixture, and the aqueous layer was extracted with toluene. The combined organic layer was washed with water, an aqueous sodium bicarbonate solution, and saturated saline, and then dried with anhydrous sodium sulfate. This solution was concentrated under reduced pressure, and the residue was reprecipitated in a solution mixed at a ratio of 2-propanol:ethyl acetate = 50:7 (weight ratio), purified, and dried to obtain an organosilicon compound (resin B, weight average molecular weight 46,000) having the structure of the above formula (8), m being 36, and n (number of DMS chains) being 3 on average.

(3)樹脂Cの準備
Gelest社製、SST-3PM2を樹脂Cとして用いた。
(3) Preparation of Resin C: SST-3PM2 manufactured by Gelest was used as Resin C.

(4)耐熱性樹脂(樹脂D)の製造
100mLフラスコに冷却管、メカニカルスターラー、ディーンスターク管、オイルバス、温度計保護管を取り付けた。4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)(ダイキン社製)11.1g、ビスアミノプロピルテトラメチルジシロキサン(PAM-E、信越シリコーン社製)7.8g、アニソール92.1gをフラスコに投入し、攪拌した。100℃で1時間フラスコを加熱した後、170℃のオイルバスで1時間還流した。溶液を室温まで冷まし、シトラコン酸無水物(東京化成工業社製)1.3gを加え、120℃で10分攪拌した後、170℃のオイルバスで1時間還流して下記構造式(9)の構造を有する耐熱性樹脂(樹脂D、重量平均分子量:9900)を得た。なお、下記構造式(9)中のlは繰り返し単位数を表す。
(4) Production of heat-resistant resin (resin D) A 100 mL flask was equipped with a cooling tube, a mechanical stirrer, a Dean-Stark tube, an oil bath, and a thermometer protection tube. 11.1 g of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) (manufactured by Daikin Corporation), 7.8 g of bisaminopropyltetramethyldisiloxane (PAM-E, manufactured by Shin-Etsu Silicone Co., Ltd.), and 92.1 g of anisole were added to the flask and stirred. The flask was heated at 100°C for 1 hour, and then refluxed in an oil bath at 170°C for 1 hour. The solution was cooled to room temperature, 1.3 g of citraconic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 120°C for 10 minutes, and then refluxed in an oil bath at 170°C for 1 hour to obtain a heat-resistant resin (resin D, weight average molecular weight: 9900) having the structure of the following structural formula (9). In addition, l in the following structural formula (9) represents the number of repeating units.

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009

(5)樹脂Eの製造
100mLフラスコに冷却管、メカニカルスターラー、ディーンスターク管、オイルバス、温度計保護管を取り付け、フラスコ内部を窒素置換した。DD(Me)-OH5.0g、オクタメチルシクロテトラシロキサン(D4)11.6g、硫酸3.9g、トルエン52g、4-メチルテトラヒドロピラン13gをフラスコに入れた。100℃で5時間攪拌したのち、反応混合物へ水を注ぎ、水層をトルエンで抽出した。合わせた有機層を水、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄したのち、無水硫酸ナトリウムで乾燥した。この溶液を減圧下で濃縮し、残留物を2-プロパノール:酢酸エチル=50:7(重量比)の比率で混合した溶液に再沈殿させて精製し、乾燥させることで上記構造式(8)の構造を有し、mが70、n(DMS鎖数)が平均4である有機ケイ素化合物(樹脂E、重量平均分子量100,000)を得た。
(5) Production of Resin E A 100 mL flask was equipped with a cooling tube, a mechanical stirrer, a Dean-Stark tube, an oil bath, and a thermometer protection tube, and the inside of the flask was replaced with nitrogen. 5.0 g of DD(Me)-OH, 11.6 g of octamethylcyclotetrasiloxane (D4), 3.9 g of sulfuric acid, 52 g of toluene, and 13 g of 4-methyltetrahydropyran were placed in the flask. After stirring at 100°C for 5 hours, water was poured into the reaction mixture, and the aqueous layer was extracted with toluene. The combined organic layer was washed with water, an aqueous sodium bicarbonate solution, and saturated saline, and then dried with anhydrous sodium sulfate. This solution was concentrated under reduced pressure, and the residue was reprecipitated in a solution mixed with 2-propanol:ethyl acetate = 50:7 (weight ratio) for purification, and dried to obtain an organosilicon compound (resin E, weight average molecular weight 100,000) having the structure of the above structural formula (8), m is 70, and n (number of DMS chains) is 4 on average.

(実施例1)
(1)硬化性樹脂組成物の製造
得られたシルセスキオキサン100重量部、得られた耐熱性樹脂1重量部、触媒0.1重量部、シリカフィラー30重量部に溶剤を含有量が65重量%となるように加えて混合することで硬化性樹脂組成物を得た。なお、用いた各原料の詳細は以下のとおりである。
触媒:ZC-162、中心金属がジルコニウムであるアセチルアセトネート錯体、マツモトファインケミカル社製
シリカフィラー:MT-10、トクヤマ社製、かさ密度:0.05g/cm、形状:粉砕状
溶剤:N-メチル-2-ピロリドン(表中ではNMPと記載)
Example 1
(1) Production of a curable resin composition A curable resin composition was obtained by adding and mixing 100 parts by weight of the obtained silsesquioxane, 1 part by weight of the obtained heat-resistant resin, 0.1 parts by weight of the catalyst, and 30 parts by weight of the silica filler to a solvent content of 65% by weight. The details of each raw material used are as follows.
Catalyst: ZC-162, an acetylacetonate complex in which the central metal is zirconium, manufactured by Matsumoto Fine Chemical Co., Ltd. Silica filler: MT-10, manufactured by Tokuyama Corporation, bulk density: 0.05 g/cm 3 , shape: pulverized Solvent: N-methyl-2-pyrrolidone (referred to as NMP in the table)

(2)線膨張係数(CTE)の測定
アプリケーターを用いてシート状に塗布した硬化性樹脂組成物を、125℃10分の条件で乾燥させ、更にその後300℃で1時間加熱し、厚み300μmの硬化性樹脂組成物の硬化物のフィルムを得た。得られたフィルムサンプルを4mm×22mmのサイズに打ち抜き、測定サンプルを作製した。得られた測定サンプルについて、熱機械分析装置(日立ハイテクサイエンス社製、TMA7100)によって、-70℃まで冷却したのち400℃まで、昇温速度5℃/分で昇温した際の熱線膨張を測定し、-40℃から100℃の範囲における線膨張係数を算出した。
(2) Measurement of coefficient of linear expansion (CTE) The curable resin composition applied in a sheet form using an applicator was dried under conditions of 125 ° C. for 10 minutes, and then heated at 300 ° C. for 1 hour to obtain a film of the curable resin composition having a thickness of 300 μm. The obtained film sample was punched out to a size of 4 mm × 22 mm to prepare a measurement sample. The obtained measurement sample was measured for linear thermal expansion when cooled to -70 ° C. and then heated to 400 ° C. at a heating rate of 5 ° C. / min using a thermomechanical analyzer (Hitachi High-Tech Science Corporation, TMA7100), and the linear expansion coefficient in the range of -40 ° C. to 100 ° C. was calculated.

(3)弾性率の測定
アプリケーターを用いてシート状に塗布した硬化性樹脂組成物を、125℃10分の条件で乾燥させ、更にその後300℃で1時間加熱し、厚み500μmの硬化性樹脂組成物の硬化物のフィルムを得た。得られたフィルムサンプルを5mm×35mmのサイズに打ち抜き、測定サンプルを作製した。得られた測定サンプルについて、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)によって、定速昇温引張モード、昇温速度5℃/分、周波数1Hzの条件とすることで、300℃における弾性率を測定した。
(3) Measurement of Elastic Modulus The curable resin composition applied in a sheet form using an applicator was dried under conditions of 125°C for 10 minutes, and then heated at 300°C for 1 hour to obtain a film of the cured product of the curable resin composition having a thickness of 500 μm. The obtained film sample was punched out to a size of 5 mm x 35 mm to prepare a measurement sample. The obtained measurement sample was measured for elastic modulus at 300°C using a dynamic viscoelasticity measuring device (manufactured by IT Measurement and Control Co., Ltd., DVA-200) under conditions of a constant temperature rise tensile mode, a temperature rise rate of 5°C/min, and a frequency of 1 Hz.

(4)積層体の製造
8インチのシリコンウエハ(表面粗さ<0.1μm)中央に得られた硬化性樹脂組成物10gを吐出した。次いで、スピンコーター(ACT-400II;ACTIVE社製)を用いて回転数1500rpmで10秒間スピンコートを行った。続いて、スピンコート後のシリコンウエハを125℃のオーブンで10分間溶剤乾燥させた後に、300℃で1時間加熱処理することで有機層を得た。得られた有機層付きのシリコンウエハを真空プロセス高速加熱炉(VPO-650、ユニテンプ社製)によって窒素雰囲気下400℃で1時間熱処理した。次いで、PE-CVD(品番MPD-220NL、Samco社製)を用い、CVDによる無機成膜を行い、有機層上にSiOからなる厚み400nmの無機層を形成することで積層体を得た。
(4) Manufacturing of Laminate 10 g of the obtained curable resin composition was discharged onto the center of an 8-inch silicon wafer (surface roughness <0.1 μm). Next, spin coating was performed for 10 seconds at a rotation speed of 1500 rpm using a spin coater (ACT-400II; manufactured by ACTIVE). Next, the silicon wafer after spin coating was dried for 10 minutes in an oven at 125 ° C., and then heated at 300 ° C. for 1 hour to obtain an organic layer. The obtained silicon wafer with the organic layer was heat-treated at 400 ° C. for 1 hour in a nitrogen atmosphere using a vacuum process high-speed heating furnace (VPO-650, manufactured by Unitemp). Next, inorganic film formation was performed by CVD using PE-CVD (part number MPD-220NL, manufactured by Samco), and an inorganic layer of 400 nm in thickness made of SiO 2 was formed on the organic layer to obtain a laminate.

(実施例2~16、比較例1~5)
有機層、無機層の組成及び厚みを表1、2の通りとした以外は、実施例1と同様の条件にて積層体を得て、各測定を行った。なお、表中の原料の詳細は以下のとおりである。
QSG-100:シリカフィラー、信越シリコーン社製、形状:真球状
NSS-3N:シリカフィラー、トクヤマ社製、形状:真球状
Sciqas 0.1μm:シリカフィラー、堺化学工業社製、形状:真球状
MS-51:シリケートオリゴマー、三菱ケミカル社製
エチルシリケート48:シリケートオリゴマー、コルコート社製
GBL:γ-ブチロラクトン
(Examples 2 to 16, Comparative Examples 1 to 5)
A laminate was obtained and each measurement was carried out under the same conditions as in Example 1, except that the compositions and thicknesses of the organic and inorganic layers were as shown in Tables 1 and 2. The details of the raw materials in the tables are as follows.
QSG-100: Silica filler, manufactured by Shin-Etsu Silicone Co., Ltd., Shape: True Spherical NSS-3N: Silica filler, manufactured by Tokuyama Corporation, Shape: True Spherical Sciqas 0.1 μm: Silica filler, manufactured by Sakai Chemical Industry Co., Ltd., Shape: True Spherical MS-51: Silica oligomer, manufactured by Mitsubishi Chemical Corporation Ethyl silicate 48: Silica oligomer, manufactured by Colcoat Co., Ltd. GBL: γ-butyrolactone

<評価>
実施例及び比較例で得られた積層体について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The laminates obtained in the examples and comparative examples were evaluated as follows. The results are shown in Tables 1 and 2.

(表面粗さの評価)
得られた積層体の無機層表面をレーザー顕微鏡で観察することで、積層体(無機層)の表面粗さを測定した。具体的にはレーザー顕微鏡(OLS4100、オリンパス社製)を用い20倍、643μm四方の観察範囲において観察を行い、表面粗さSa値を算出した。
(Evaluation of surface roughness)
The surface of the inorganic layer of the obtained laminate was observed with a laser microscope to measure the surface roughness of the laminate (inorganic layer). Specifically, a laser microscope (OLS4100, manufactured by Olympus Corporation) was used to observe the surface at 20 times magnification in an observation range of 643 μm square, and the surface roughness Sa value was calculated.

(無機層のシワの評価)
得られた積層体の無機層を目視にて観察し、全面でシワが生じていなかった場合を「〇」、ウエハ面内でシワが無い箇所とシワがある箇所が混在していた場合を「△」、全面でシワが生じていた場合を「×」として、無機層のシワを評価した。
(Evaluation of Wrinkles in Inorganic Layer)
The inorganic layer of the obtained laminate was visually observed, and wrinkles in the inorganic layer were evaluated as follows: "O" if no wrinkles occurred over the entire surface, "△" if there was a mixture of wrinkle-free and wrinkled areas within the wafer surface, and "X" if wrinkles occurred over the entire surface.

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

本発明によれば、硬化物上に無機層を形成した場合であっても無機層にシワが生じ難く、工程異常を抑えることができる硬化性樹脂組成物、該硬化性樹脂組成物の硬化膜、該硬化膜を用いた積層体、該積層体を有する撮像装置及び半導体装置、該積層体の製造方法を提供することができる。 The present invention provides a curable resin composition that is less likely to cause wrinkles in the inorganic layer even when an inorganic layer is formed on the cured product, and that can suppress process abnormalities, a cured film of the curable resin composition, a laminate using the cured film, an imaging device and a semiconductor device having the laminate, and a method for manufacturing the laminate.

1  第1の基板
2  チップ
3  有機層
4  無機層
5  支持基板
6  第2の基板
7  第3の基板
8  電極
9  第4の基板
10 貫通孔
11 バリアメタル層

 
REFERENCE SIGNS LIST 1 First substrate 2 Chip 3 Organic layer 4 Inorganic layer 5 Support substrate 6 Second substrate 7 Third substrate 8 Electrode 9 Fourth substrate 10 Through hole 11 Barrier metal layer

Claims (17)

シルセスキオキサンと、溶剤と、無機充填剤としてシリカフィラーとを含有し、125℃10分の条件で前記溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、300℃における弾性率が0.2MPa以上である硬化性樹脂組成物。 A curable resin composition containing silsesquioxane, a solvent, and silica filler as an inorganic filler, in which the solvent is dried at 125°C for 10 minutes, and the cured product is thermally cured by heat treatment at 300°C for 1 hour, and the cured product has an elastic modulus at 300°C of 0.2 MPa or more. 125℃10分の条件で溶剤を乾燥し、300℃1時間の熱処理によって熱硬化させた後の硬化物について、-40℃から100℃の範囲における線膨張係数(CTE)が500ppm/℃以下である、請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, in which the solvent is dried at 125°C for 10 minutes, and the cured product is heat-cured by heat treatment at 300°C for 1 hour, and the coefficient of linear expansion (CTE) in the range of -40°C to 100°C is 500 ppm/°C or less. シルセスキオキサンは一分子内に下記構造式(A)及び(B)で表される構造を有する、請求項1又は2記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
構造式(A)、(B)中、R、Rはそれぞれ独立して脂肪族基、芳香族基又は水素を表す。j、kはそれぞれ1以上の整数を表す。
The curable resin composition according to claim 1 or 2, wherein the silsesquioxane has structures represented by the following structural formulas (A) and (B) in one molecule.
Figure JPOXMLDOC01-appb-C000001
In structural formulae (A) and (B), R A and R B each independently represent an aliphatic group, an aromatic group, or hydrogen, and j and k each represent an integer of 1 or more.
シルセスキオキサンは下記構造式(1)で表される構造を有する、請求項1~3のいずれかに記載の硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
構造式(1)中、R、R及びRはそれぞれ独立して直鎖状、分岐鎖状若しくは環状の脂肪族基、芳香族基又は水素を表す。前記脂肪族基及び前記芳香族基は置換基を有していても有していなくてもよい。m、nはそれぞれ1以上の整数を表す。
The curable resin composition according to any one of claims 1 to 3, wherein the silsesquioxane has a structure represented by the following structural formula (1):
Figure JPOXMLDOC01-appb-C000002
In the structural formula (1), R 0 , R 1 and R 2 each independently represent a linear, branched or cyclic aliphatic group, an aromatic group or hydrogen. The aliphatic group and the aromatic group may or may not have a substituent. m and n each represent an integer of 1 or more.
シリカフィラーの含有量が、シルセスキオキサン100重量部に対して15重量部以上40重量部以下である、請求項1~4のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the content of the silica filler is 15 parts by weight or more and 40 parts by weight or less per 100 parts by weight of the silsesquioxane. 溶剤は沸点が130℃以上250℃以下である、請求項1~5のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, wherein the solvent has a boiling point of 130°C or higher and 250°C or lower. 熱硬化させた硬化物の上に無機層を積層させて用いられる、請求項1~6のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, which is used by laminating an inorganic layer on a heat-cured product. 請求項1~6のいずれかに記載の硬化性樹脂組成物を熱硬化させた硬化膜。 A cured film obtained by thermally curing the curable resin composition according to any one of claims 1 to 6. 第1の基板上に請求項8記載の硬化膜からなる有機層、前記有機層上に無機層が積層された積層体であって、
前記第1の基板は複数のチップを有する第1面とその反対面となる第2面を有し、前記第1面側に前記有機層及び前記無機層を有する積層体。
A laminate comprising an organic layer formed of the cured film according to claim 8 on a first substrate, and an inorganic layer laminated on the organic layer,
The first substrate has a first surface having a plurality of chips and a second surface opposite thereto, and the organic layer and the inorganic layer are disposed on the first surface side of the first substrate.
無機層上に支持基板が積層されている、請求項9記載の積層体。 The laminate according to claim 9, in which a support substrate is laminated on the inorganic layer. 第1の基板の第2面上に更に第2の基板を有し、前記第1の基板と前記第2の基板が電気的に接続されている、請求項9又は10記載の積層体。 The laminate according to claim 9 or 10, further comprising a second substrate on the second surface of the first substrate, the first substrate and the second substrate being electrically connected. 電極を有する第3の基板と、電極を有する第4の基板との間に請求項8記載の硬化膜からなる有機層と無機層とを有する積層体であって、
前記第3の基板の電極と前記第4の基板の電極とが、前記有機層及び前記無機層を貫通する貫通孔を介して電気的に接続されている積層体。
A laminate having an organic layer and an inorganic layer, each of which is made of the cured film according to claim 8, between a third substrate having an electrode and a fourth substrate having an electrode,
A laminate in which the electrode of the third substrate and the electrode of the fourth substrate are electrically connected via a through hole penetrating the organic layer and the inorganic layer.
貫通孔の表面にバリアメタル層を有する、請求項12記載の積層体。 The laminate according to claim 12, having a barrier metal layer on the surface of the through hole. 請求項9~13のいずれかに記載の積層体を有する、撮像装置。 An imaging device having a laminate according to any one of claims 9 to 13. 請求項9~13のいずれかに記載の積層体を有する、半導体装置。 A semiconductor device having a laminate according to any one of claims 9 to 13. 複数のチップを有する第1面とその反対面となる第2面を有する第1の基板の前記第1面上に請求項1~6のいずれかに記載の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、
前記有機層上に無機層を形成する工程を有する積層体の製造方法。
A step of applying the curable resin composition according to any one of claims 1 to 6 onto a first surface of a first substrate having a first surface having a plurality of chips and a second surface opposite to the first surface, and then drying the composition with a solvent and thermally curing the composition to form an organic layer;
A method for producing a laminate, comprising the step of forming an inorganic layer on the organic layer.
電極を有する第3の基板及び電極を有する第4の基板の前記電極を有する面上に請求項1~6のいずれかに記載の硬化性樹脂組成物を塗布し、溶剤乾燥、熱硬化することで有機層を形成する工程と、
前記有機層上に無機層を形成する工程と、
各前記有機層及び前記無機層に貫通孔を形成する工程と、
各前記貫通孔を導電性材料で充填する工程と、
前記電極を有する第3の基板及び前記電極を有する第4の基板の前記導電性材料を充填した側の表面を研磨して接合電極を形成する工程と、
前記電極を有する第3の基板及び前記電極を有する第4の基板の前記接合電極同士が接合するように貼り合せる工程を有する積層体の製造方法。

 
A step of applying the curable resin composition according to any one of claims 1 to 6 onto a surface of a third substrate having an electrode and a fourth substrate having an electrode, and then drying the composition with a solvent and thermally curing the composition to form an organic layer;
forming an inorganic layer on the organic layer;
forming through holes in each of the organic layer and the inorganic layer;
filling each of the through holes with a conductive material;
a step of polishing the surfaces of the third substrate having the electrode and the fourth substrate having the electrode, the surfaces being filled with the conductive material, to form bonding electrodes;
A method for manufacturing a laminate, comprising a step of bonding a third substrate having the electrode and a fourth substrate having the electrode together so that the bonding electrodes of the third substrate and the fourth substrate are bonded to each other.

PCT/JP2024/023874 2023-07-03 2024-07-02 Curable resin composition, cured film, multilayer object, imaging device, semiconductor device, and method for producing multilayer object WO2025009514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023109512 2023-07-03
JP2023-109512 2023-07-03

Publications (1)

Publication Number Publication Date
WO2025009514A1 true WO2025009514A1 (en) 2025-01-09

Family

ID=94171450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/023874 WO2025009514A1 (en) 2023-07-03 2024-07-02 Curable resin composition, cured film, multilayer object, imaging device, semiconductor device, and method for producing multilayer object

Country Status (2)

Country Link
TW (1) TW202506893A (en)
WO (1) WO2025009514A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185603A1 (en) * 2002-10-24 2004-09-23 Intel Corporation Flip-chip system and method of making same
JP2013504684A (en) * 2009-09-14 2013-02-07 ナミックス株式会社 Underfill for high density interconnect flip chip
WO2013073606A1 (en) * 2011-11-15 2013-05-23 株式会社日本触媒 Silane-containing composition, curable resin composition, and sealing material
WO2014077216A1 (en) * 2012-11-13 2014-05-22 Jnc株式会社 Thermosetting resin composition
WO2023120625A1 (en) * 2021-12-23 2023-06-29 積水化学工業株式会社 Curable resin composition, cured film, multilayered object, imaging device, semiconductor device, method for producing multilayered object, and method for producing element having junction electrode
JP2023094125A (en) * 2021-12-23 2023-07-05 積水化学工業株式会社 Resin cured product, curable resin composition, laminate, imaging device, semiconductor device, method for manufacturing laminate, and method for manufacturing element having joint electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185603A1 (en) * 2002-10-24 2004-09-23 Intel Corporation Flip-chip system and method of making same
JP2013504684A (en) * 2009-09-14 2013-02-07 ナミックス株式会社 Underfill for high density interconnect flip chip
WO2013073606A1 (en) * 2011-11-15 2013-05-23 株式会社日本触媒 Silane-containing composition, curable resin composition, and sealing material
WO2014077216A1 (en) * 2012-11-13 2014-05-22 Jnc株式会社 Thermosetting resin composition
WO2023120625A1 (en) * 2021-12-23 2023-06-29 積水化学工業株式会社 Curable resin composition, cured film, multilayered object, imaging device, semiconductor device, method for producing multilayered object, and method for producing element having junction electrode
JP2023094125A (en) * 2021-12-23 2023-07-05 積水化学工業株式会社 Resin cured product, curable resin composition, laminate, imaging device, semiconductor device, method for manufacturing laminate, and method for manufacturing element having joint electrode

Also Published As

Publication number Publication date
TW202506893A (en) 2025-02-16

Similar Documents

Publication Publication Date Title
JP7425257B2 (en) Curable resin composition, cured film, laminate, imaging device, semiconductor device, method for manufacturing a laminate, and method for manufacturing an element having a bonding electrode
CN1125138C (en) Alkoxysilane/organic polymer composition for thin insulating film prodution and use thereof
US6395649B1 (en) Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
JP7374270B2 (en) Curable resin composition
US7345351B2 (en) Coating composition for insulating film production, preparation method of insulation film by using the same, insulation film for semi-conductor device prepared therefrom, and semi-conductor device comprising the same
JP2023094125A (en) Resin cured product, curable resin composition, laminate, imaging device, semiconductor device, method for manufacturing laminate, and method for manufacturing element having joint electrode
JP2009275229A (en) Adhesive composition, adhesive film, and semiconductor device
WO2025009514A1 (en) Curable resin composition, cured film, multilayer object, imaging device, semiconductor device, and method for producing multilayer object
CN118139931A (en) Curable resin composition, cured film, laminate, imaging device, semiconductor device, method for producing laminate, and method for producing element having bonding electrode
JP2001287910A (en) Method for producing porous silicon oxide coating film
WO2025063069A1 (en) Curable resin composition, cured film, multilayer object, and semiconductor device
TW202521345A (en) Curable resin composition, cured film, laminate and semiconductor device
WO2024157914A1 (en) Laminated body, method for manufacturing laminated body, method for manufacturing element, imaging device, method for manufacturing imaging device, semiconductor device, and method for manufacturing semiconductor device
WO2024157936A1 (en) Resin composition, cured film, laminate, imaging device, semiconductor device, method for manufacturing laminate, and method for manufacturing element having bonding electrode
JP2025007848A (en) Manufacturing method of curable film, curable film, laminate, imaging device, semiconductor device, and manufacturing method of laminate
CN120380085A (en) Resin composition, cured film, laminate, imaging device, semiconductor device, method for producing laminate, and method for producing element having bonding electrode
JPH10313003A (en) Formation of silicon oxide dielectric film
JP2024013537A (en) Curable resin composition, cured film, laminate, imaging device and method for producing semiconductor device
JP5540416B2 (en) Borazine resin composition and method for producing the same, insulating coating film and method for forming the same, and electronic component
JP4730723B2 (en) Method for producing borazine resin
JP2004140341A (en) Insulation coating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024569412

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24836027

Country of ref document: EP

Kind code of ref document: A1