[go: up one dir, main page]

WO2025005195A1 - Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder - Google Patents

Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder Download PDF

Info

Publication number
WO2025005195A1
WO2025005195A1 PCT/JP2024/023404 JP2024023404W WO2025005195A1 WO 2025005195 A1 WO2025005195 A1 WO 2025005195A1 JP 2024023404 W JP2024023404 W JP 2024023404W WO 2025005195 A1 WO2025005195 A1 WO 2025005195A1
Authority
WO
WIPO (PCT)
Prior art keywords
lanthanum
powder
lithium
compound
composite oxide
Prior art date
Application number
PCT/JP2024/023404
Other languages
French (fr)
Japanese (ja)
Inventor
裕二 秋本
峰人 岩崎
陽輔 青木
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Publication of WO2025005195A1 publication Critical patent/WO2025005195A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium

Definitions

  • the present invention relates to a method for producing lithium-lanthanum-zirconium composite oxide powder and to lithium-lanthanum-zirconium composite oxide powder.
  • Lithium-lanthanum-zirconium composite oxide powder (hereinafter referred to as "LLZ powder") having a basic composition of Li 7 La 3 Zr 2 O 12 is known to be used as a solid electrolyte material for all-solid-state batteries.
  • LLZ powder Lithium-lanthanum-zirconium composite oxide powder
  • it has also been known to be used as a material for the solid electrolyte layer of capacitors and as a ceramic (so-called co-material) material added to a conductive paste used to form internal electrodes that constitute the capacitors (see, for example, Patent Documents 1 to 3).
  • the conventional manufacturing method involves mixing a zirconium compound, a lanthanum compound, and a lithium compound, then firing them for a long period of time.
  • Patent Document 1 discloses a method in which lithium carbonate, lanthanum hydroxide, and zirconium oxide are prepared as raw materials for a solid electrolyte, and these raw materials are weighed in predetermined amounts so that the composition of a Li ion conductive compound is Li 7 La 3 Zr 2 O 12 , to obtain a mixture, which is then heated to 900° C. in an air atmosphere, held for 5 hours, and then naturally cooled to obtain a Li ion conductive compound.
  • Patent Documents 2 and 3 disclose the following method. First, lithium carbonate, lanthanum hydroxide, and zirconium oxide are weighed out in predetermined amounts to obtain the stoichiometric composition of LLZ, and mixed to prepare a mixed material. This mixed material is mixed with a predetermined amount of ethyl alcohol using a nylon pot and zirconia balls to prepare a mixture. After drying this mixture, it is calcined in an alumina crucible at a maximum temperature of 1000°C in an air atmosphere for 10 hours to prepare LLZ calcined powder. Next, this LLZ calcined powder is mixed with a methyl ethyl ketone/toluene mixed solvent using a nylon pot and zirconia balls, pulverized, and dried to prepare LLZ powder.
  • Patent Document 4 discloses a method for producing a lithium-lanthanum-zirconium composite oxide powder as follows. First, lithium carbonate, lanthanum hydroxide, and zirconium oxide are mixed and placed in an alumina crucible, heated at 600° C./hour, and held at 900° C. for 6 hours. After that, about half of the weight of the part of the obtained powder that had been in contact with the alumina crucible is removed, and the powder that had not been in contact with the crucible is collected, and then crushed for 30 minutes with a grinding machine, placed again in the alumina crucible, heated at 600° C./hour, and held at 1125° C. for 6 hours to obtain a powder.
  • Patent Document 5 also discloses a method in which lanthanum zirconate, lithium carbonate, and lanthanum hydroxide are mixed in a wet ball mill for 24 hours, then dried at 100°C for 5 hours to prepare a raw material mixture powder, which is then placed in a crucible and heated in an electric furnace at 750°C for 12 hours, and then naturally cooled.
  • Patent Document 6 discloses a method in which lanthanum-containing zirconia powder with an average particle size of 100 nm is produced by coprecipitation, mixed with alumina powder and lithium carbonate powder, and fired at 700°C for 12 hours.
  • Patent Document 5 and Patent Document 6 state that long-term firing at high temperatures exceeding 1000°C causes lithium components to scatter, making it difficult to obtain the desired LLZ. Therefore, the invention described in Patent Document 5 uses lanthanum zirconate as one of the raw materials for LLZ, and the invention described in Patent Document 6 uses a coprecipitate of a zirconium compound and a lanthanum compound as one of the raw materials, thereby successfully obtaining a garnet-type LLZ fired body while suppressing the scattering of lithium components at firing temperatures below 1000°C.
  • Patent Document 3 describes that LLZ calcined powder is pulverized by the above-mentioned method to produce LLZ powder with a D50 of 0.2 ⁇ m to 12.1 ⁇ m, which is used for the solid electrolyte layer and internal electrode of a solid ion capacitor.
  • pulverization refers to the operation of applying an external force to a substance to crush it into smaller particles than their original size.
  • disintegration refers to the operation of applying an external force to a material that has aggregated with a relatively weak force, such as a particle aggregate or granulated material, to disperse or loosen it.
  • the present invention aims to provide a method for efficiently producing small-particle size lithium-lanthanum-zirconium composite oxide powder that suppresses lithium scattering and has excellent storage stability.
  • Another aim of the present invention is to provide a lithium-lanthanum-zirconium composite oxide powder that, despite its small particle size, minimizes the activity of the powder surface and has excellent storage stability.
  • a method for producing a precursor powder comprising the steps of: a first step of preparing lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound; a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder; and a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder .
  • the inventors have found that by using a method for producing a lithium-lanthanum-zirconium composite oxide powder, which comprises: a third step of using a gas having a pressure of more than 1.0 atm and not more than 1.0 atm as a carrier gas, heating the precursor powder at a temperature of 900° C. or more and 1200° C.
  • the present invention (1) includes a first step of preparing a lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound; a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder; a third step of obtaining a lithium-lanthanum-zirconium composite oxide powder by using a gas having an oxygen partial pressure of more than 1.0 ⁇ 10 ⁇ 30 atm and not more than 1.0 atm as a carrier gas and heating the precursor powder at a temperature of 900° C. or more and 1200° C.
  • the present invention provides a method for producing a lithium-lanthanum-zirconium composite oxide powder having the above formula:
  • the present invention (2) also provides a method for producing the lithium-lanthanum-zirconium composite oxide powder of the present invention (1), in which the lithium-lanthanum-zirconium composite oxide powder obtained in the third step has an average particle size of 30 nm or more and 1.0 ⁇ m or less.
  • the present invention (3) also provides a method for producing the lithium-lanthanum-zirconium composite oxide powder of the present invention (1), in which the lithium-lanthanum-zirconium composite oxide powder obtained in the third step has an average particle size of 30 nm or more and 300 nm or less.
  • the present invention (4) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (3), in which the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, and then calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to produce a precursor powder.
  • the present invention (5) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (3), in which the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to form a calcined product, and further pulverizing and/or crushing the calcined product to produce a precursor powder having an average particle size of 30 nm to 300 nm.
  • the present invention (6) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (5), in which the lanthanum zirconate powder is obtained by heating a coprecipitate of a lanthanum compound and a zirconium compound.
  • the present invention (7) also provides a lithium-lanthanum-zirconium composite oxide powder having an average particle size of 30 nm or more and 1.0 ⁇ m or less and a viscosity change rate of 1, as measured by the following method: ⁇ Method for measuring viscosity change rate> 100 parts by mass of nickel powder having an average particle size of 0.3 ⁇ m, 5 parts by mass of acrylic resin (methacrylic resin having a weight average molecular weight in the range of 40,000 to 50,000 and an acid value of 0 mgKOH/g), 20 parts by mass of the lithium-lanthanum-zirconium composite oxide powder, and 20 parts by mass of terpineol are mixed and kneaded using a three-roll mill to prepare a paste-like composition.
  • the viscosity immediately after preparation and the viscosity after storage at 25° C. for one week after preparation are measured using a rotational viscometer at 25° C. and a shear rate of 100/s, and the ratio of the viscosity one week after preparation to the viscosity immediately after preparation is calculated as the viscosity change ratio.
  • the manufacturing method of the present invention makes it possible to efficiently obtain a small-particle size lithium-lanthanum-zirconium composite oxide powder that has excellent storage stability while suppressing lithium scattering. Furthermore, despite its small particle size, the lithium-lanthanum-zirconium composite oxide powder of the present invention has minimized powder surface activity and has excellent storage stability.
  • the LLZ powder according to the present invention has a basic composition of Li 7 La 3 Zr 2 O 12 , and has an average particle size of 30 nm to 1.0 ⁇ m, particularly 30 nm to 300 nm, and is characterized by excellent storage stability.
  • the powder is observed using a scanning electron microscope (e.g., SU-1510, manufactured by Hitachi High-Tech Corporation), 100 particles constituting the powder are randomly selected from the observation, their particle sizes are measured, and the cumulative 50% particle size based on the number is calculated based on the particle sizes, and this value is defined as the average particle size.
  • the particle size is defined as the diameter of a perfect circle having the same area as the projected area of the particle. The value calculated by the above method is used not only for the LLZ powder but also for the average particle size of the nickel powder described later.
  • the ratio of lithium, lanthanum, and zirconium does not necessarily have to be precisely [7:3:2] (molar ratio). That is, as is widely known in the industry, it may be a ratio that is close to that ratio. Furthermore, a part of each element in the above basic composition may be replaced with another element. An example of the other element is aluminum. Furthermore, when the LLZ powder of the present invention is used as a solid electrolyte, it is preferable that it is a cubic crystal, but this is not necessarily limited to this, and when a tetragonal LLZ powder is desired, the heat treatment conditions, etc. may be appropriately adjusted to make it a tetragonal crystal.
  • the production method of the present invention is a method for producing a lithium-lanthanum-zirconium composite oxide powder, comprising: a first step of preparing lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound; a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder; a third step of using a gas having an oxygen partial pressure of more than 1.0 x 10 -30 atm and not more than 1.0 atm under atmospheric pressure as a carrier gas, heating the precursor powder at a temperature of 900°C or more and 1200°C or less for a time of 1 second or more and 30 seconds or less while the precursor powder is dispersed in the carrier gas; and a fourth step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step.
  • the manufacturing method of the present invention is characterized by using a small particle size lanthanum zirconate powder, coating the surface with a lanthanum compound and a lithium compound in advance, and then heating in a gas phase with a controlled atmosphere. Therefore, since the surface activity of the lanthanum zirconate powder is high, the lanthanum compound and lithium compound are easily diffused inside the lanthanum zirconate powder, and since the distance from the surface to the center (deepest part) of each particle constituting the powder is short, the lanthanum compound and lithium compound are easily able to reach the center (deepest part) of each particle constituting the lanthanum zirconate powder.
  • the precursor powder is heated at a temperature of 900°C to 1200°C for a short period of time of 1 second to 30 seconds, the lanthanum compound and lithium compound are easily diffused throughout the entire interior of each particle constituting the lanthanum zirconate powder, the amount of lithium compound scattered is also suppressed, and the desired LLZ powder can be efficiently manufactured.
  • the manufacturing method of the present invention may include the first, second, third, and fourth steps described below, but may also include a further step before the first step, a further step between the above steps, or a further step after the fourth step.
  • the first step according to the present invention is a step of preparing a lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound.
  • the average particle size of the lanthanum zirconate powder prepared in the first step may be 20 nm or more and 200 nm or less, but is preferably 30 nm or more and 180 nm or less, more preferably 40 nm or more and 160 nm or less, and particularly preferably 50 nm or more and 140 nm or less. This is preferable in that the lanthanum zirconate powder is more likely to react with other components in the third step described below, making it easier to obtain LLZ even with a short heating time.
  • Lanthanum zirconate powder may be manufactured, but commercially available powder can also be used. If the average particle size of commercially available lanthanum zirconate powder is greater than 200 nm, it can be used after being pulverized and/or crushed by a suitable known method such as a ball mill or bead mill so that the average particle size falls within the above-mentioned range.
  • the average particle size refers to the cumulative 50% particle size calculated based on the particle sizes of 100 or more particles randomly selected by observation with a scanning electron microscope.
  • the production method is not particularly limited, and it can be obtained by mixing and heating a zirconium compound and a lanthanum compound, but it is preferable to use a coprecipitation method, which is widely known as a powder production method as described in Patent Document 6, and heat a coprecipitate of a lanthanum compound and a zirconium compound to obtain it.
  • the average particle size When preparing lanthanum zirconate powder by this method, it is preferable to adjust the average particle size so that a coprecipitate having an average particle size of 20 nm to 200 nm is produced, but if the average particle size of the coprecipitate is larger than 200 nm, it is adjusted to 20 nm to 200 nm by crushing and/or disintegration.
  • lanthanum zirconate powder having an average particle size of 20 nm to 200 nm can be easily obtained by heating, and even if the average particle size of the obtained lanthanum zirconate powder is larger than 200 nm, the average particle size can be easily adjusted to 20 nm to 200 nm by crushing and/or disintegration.
  • the zirconium compound used in the production of lanthanum zirconate is not particularly limited, and for example, zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium carbonate, zirconium chloride, and zirconium nitrate can be used.
  • the zirconium compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less. When using a zirconium compound powder with an average particle size of more than 100 nm, it can be used after being adjusted to within the above range by a pulverization process and/or crushing process. Furthermore, when using a zirconium compound in a coprecipitation method, it is preferable that the zirconium compound has high dispersibility in the liquid, and is preferably in a sol state.
  • the lanthanum compound used in the production of lanthanum zirconate is not particularly limited, and for example, lanthanum oxide, lanthanum hydroxide, lanthanum sulfate, lanthanum carbonate, lanthanum chloride, and lanthanum nitrate can be used.
  • the lanthanum compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less.
  • the lanthanum compound when used in the coprecipitation method, it is preferable that the lanthanum compound has high dispersibility in the liquid, and is preferably in a sol state.
  • the lanthanum compound prepared in the first step is not particularly limited, and for example, the above-mentioned lanthanum compounds can be used.
  • the lithium compound prepared in the first step is not particularly limited, and for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium chloride can be used.
  • the lithium compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less. When using a lithium compound powder with an average particle size larger than 100 nm, it can be used after being adjusted to within the above range by pulverization and/or crushing.
  • the second step according to the present invention is a step of producing a precursor powder by depositing a lanthanum compound and a lithium compound on the surface of lanthanum zirconate powder.
  • the above-mentioned deposition method is not particularly limited, but for example, when the lanthanum compound and/or lithium compound prepared in the first step is in the form of a powder, the powder can be mixed with lanthanum zirconate powder using a ball mill, bead mill, or the like, to mechanochemically deposit the lanthanum compound powder and/or lithium compound powder onto the surface of the lanthanum zirconate powder, thereby producing a precursor powder.
  • a solvent that dissolves lanthanum compounds and/or lithium compounds but does not dissolve lanthanum zirconate powder may be prepared, and lanthanum zirconate powder may be introduced into the solution in which the lanthanum compounds and/or lithium compounds are dissolved, and then the lanthanum compounds and/or lithium compounds may be precipitated on the surface of the lanthanum zirconate powder by a method such as reduction or drying the aforementioned solution (solvent), thereby producing a precursor powder.
  • an organic binder that is thermally decomposed in a carrier gas by heating in the third step described below may be prepared, and a lanthanum compound and/or lithium compound may be kneaded into the organic binder and then coated onto lanthanum zirconate powder, thereby generating a precursor powder in which the lanthanum compound and/or lithium compound is attached to the surface of the lanthanum zirconate powder via the organic binder.
  • a lanthanum compound can be deposited on the surface of lanthanum zirconate powder by the above-mentioned liquid precipitation method, and then a lithium compound can be deposited by the above-mentioned mechanochemical method.
  • the second step described above is preferably a step of depositing a lanthanum compound and a lithium compound on the surface of the lanthanum zirconate powder, and then calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to produce a precursor powder.
  • the calcination temperature is not particularly limited, but is preferably 100°C to 700°C, more preferably 200°C to 650°C, and particularly preferably 300°C to 600°C.
  • the calcination time is not particularly limited, but is preferably 1 hour to 10 hours, more preferably 2 hours to 9 hours, and particularly preferably 3 hours to 8 hours.
  • the calcination atmosphere is not particularly limited, and calcination can be performed in an appropriate atmosphere such as air or nitrogen.
  • the lithium compounds and lanthanum compounds can be more firmly attached to the surface of the lanthanum zirconate powder, so that when the precursor powder is dispersed in a carrier gas in the third step described below, the lithium compounds and lanthanum compounds are less likely to dissociate from the surface of the lanthanum zirconate powder, making it easier to obtain LLZ powder.
  • the precursor powder can be dispersed with stronger force when dispersed in the carrier gas, making it easier to improve the dispersibility of the precursor powder in the carrier gas, and the particles that make up the obtained LLZ powder are less likely to bond or aggregate with each other.
  • the moisture content and hygroscopicity of the precursor powder can be reduced by calcination, dispersibility is improved when the precursor powder is dispersed in a carrier gas in the third step described below. Therefore, it becomes easier to eliminate the need for pulverization and/or crushing processes after the third step described below, and the activity of the powder surface of the LLZ powder can be suppressed, making it easier to achieve excellent storage stability.
  • the lithium compound and lanthanum compound attached to the surface of the lanthanum zirconate powder can be reacted with oxygen to form lithium oxide and lanthanum oxide, respectively, before the third step described below. Therefore, in the third step described below, the reactivity between the lanthanum zirconate powder and the lithium compound and lanthanum compound attached to the powder surface is increased, making it easier to obtain the desired LLZ powder even if the heating time is short.
  • the second step described above is a step of depositing a lanthanum compound and a lithium compound on the surface of lanthanum zirconate powder, then calcining the lanthanum zirconate powder with the lanthanum compound and lithium compound deposited thereon to form a calcined product, and further pulverizing and/or crushing the calcined product to produce a precursor powder having an average particle size of 30 nm to 300 nm.
  • the above-mentioned second step can be a step in which a lanthanum compound and a lithium compound are deposited on the surface of lanthanum zirconate powder, and then a pulverization process and/or crushing process are performed to generate a precursor powder with an average particle size of 30 nm to 300 nm.
  • the average particle size of the precursor powder produced in the second step described above is preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, even more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less.
  • the third step in the present invention is a step of obtaining a lithium-lanthanum-zirconium composite oxide powder by using a gas having an oxygen partial pressure of more than 1.0 ⁇ 10-30 atm and not more than 1.0 atm as a carrier gas, dispersing a precursor powder in the carrier gas, and heating the precursor powder at a temperature of 900° C. or more and 1200° C. or less for a time of 1 second or more and 30 seconds or less.
  • the oxygen partial pressure of the gas constituting the carrier gas under atmospheric pressure may be more than 1.0 ⁇ 10 ⁇ 30 atm and 1.0 atm or less, but is preferably 1.0 ⁇ 10 ⁇ 25 atm or more and 9.0 ⁇ 10 ⁇ 1 atm or less, more preferably 1.0 ⁇ 10 ⁇ 20 atm or more and 8.0 ⁇ 10 ⁇ 1 atm or less, even more preferably 1.0 ⁇ 10 ⁇ 15 atm or more and 7.0 ⁇ 10 ⁇ 1 atm or less, and particularly preferably 1.0 ⁇ 10 ⁇ 10 atm or more and 6.0 ⁇ 10 ⁇ 1 atm or less.
  • the carrier gas air, oxygen, nitrogen, argon, etc., and mixed gases thereof, etc. can be used.
  • reducing gases such as hydrogen, carbon monoxide, methane, ammonia gas, etc. It is not essential that the present invention be carried out under "atmospheric pressure," but the present invention can be carried out under any suitable pressure.
  • the carrier gas may further contain water vapor.
  • the partial pressure of the water vapor under atmospheric pressure is preferably 2.3 ⁇ 10 ⁇ 2 atm or more and less than 1.0 atm, more preferably 1.0 ⁇ 10 ⁇ 1 atm or more and less than 1.0 atm, more preferably 2.0 ⁇ 10 ⁇ 1 atm or more and less than 1.0 atm, more preferably 3.0 ⁇ 10 ⁇ 1 atm or more and less than 1.0 atm, more preferably 3.0 ⁇ 10 ⁇ 1 atm or more and 9.0 ⁇ 10 ⁇ 1 atm or less, even more preferably 3.0 ⁇ 10 ⁇ 1 atm or more and 8.0 ⁇ 10 ⁇ 1 atm or less, and particularly preferably 3.0 ⁇ 10 ⁇ 1 atm or more and 7.0 ⁇ 10 ⁇ 1 atm or less.
  • This allows each component in the precursor powder to react more easily, so that the reaction can proceed easily even in a short period of time, promoting the reaction for producing LLZ and making it easier to obtain the desired LLZ powder.
  • the precursor powder is supplied into the reaction vessel through a nozzle together with the above-mentioned carrier gas, and heated while dispersed in the carrier gas (i.e., in the gas phase).
  • a nozzle there are no particular limitations on the nozzle, and any shape may be used, including those with a circular, polygonal, or slit-shaped cross section, those with a narrowed tip, and those that are narrowed halfway and widen at the opening.
  • the precursor powder is preferably dispersed in the reaction vessel so that the concentration of the precursor powder in the gas phase is 10 g/L or less. If the concentration in the gas phase is higher than 10 g/L, the precursor powder particles may come into contact with each other in the gas phase, causing aggregation or coalescence, which may require a crushing process and/or disintegration process in the third step or later.
  • the concentration of the precursor powder in the gas phase may be appropriately determined based on the specifications of the manufacturing device used, but is more preferably 1 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • the lower limit of the precursor powder concentration in the gas phase is not particularly limited, but from the viewpoint of manufacturing efficiency, it is preferably 0.001 g/L or more.
  • the heating temperature of the precursor powder in the third step may be from 900°C to 1200°C, but is preferably from 950°C to 1150°C, and more preferably from 1000°C to 1100°C. Having the heating temperature in this range makes it easier to efficiently produce the LLZ powder.
  • the heating time of the precursor powder in the third step varies depending on the heating temperature and the average particle size of the precursor powder, but may be from 1 to 30 seconds, preferably from 1 to 20 seconds, more preferably from 1 to 15 seconds, and particularly preferably from 2 to 10 seconds. Having the heating time within this range makes it easier to efficiently produce the LLZ powder.
  • the heating method is preferably radiant heat, but the precursor powder can also be heated by directly contacting it with a heat source.
  • An electric furnace electric heater
  • radiant heat heating can be used for radiant heat heating, and radiant heat generated by a flame can also be used. From the viewpoint of uniform heating, heating by radiant heat is preferred.
  • the precursor powder can be heated by directly contacting it with a flame. From the viewpoint of energy efficiency, it is preferable to heat the precursor powder by directly contacting it with a heat source.
  • the precursor powder can also be heated by contacting it with a heated high-temperature gas.
  • the above heating methods can also be combined appropriately, for example, the precursor powder can be heated directly by a flame and then heated by radiant heat from an electric furnace.
  • the average particle size of the lithium-lanthanum-zirconium composite oxide powder obtained in the third step is not particularly limited, but is preferably 30 nm or more and 1.0 ⁇ m or less, more preferably 30 nm or more and 900 nm or less, more preferably 30 nm or more and 800 nm or less, more preferably 30 nm or more and 700 nm or less, more preferably 30 nm or more and 600 nm or less, more preferably 30 nm or more and 500 nm or less, more preferably 30 nm or more and 400 nm or less, more preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, even more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less.
  • the LLZ powder obtained in the third step can be used as it is after recovery in the fourth step described below, but since it can be easily reduced in particle size by a crushing process, it can also be used after being appropriately further reduced in particle size by a crushing process. However, from the viewpoint of suppressing the activity of the powder surface and improving storage stability, it is preferable not to carry out the crushing process.
  • the fourth step according to the present invention is a step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step.
  • the recovery method is not particularly limited, and for example, the LLZ powder transferred from the reaction vessel together with the carrier gas can be collected by a known means such as a bag filter.
  • the manufacturing method of the present invention may include a cooling step after the third step and before the fourth step.
  • a cooling step after the third step and before the fourth step.
  • the LLZ powder in a high temperature state immediately after heating can be cooled and then recovered using a known cooling means such as a cooling tube.
  • ⁇ LLZ powder of the present invention In the manufacturing method of the present invention, even if microcracks are generated on the surface of the precursor powder, no microcracks remain on the surface of the LLZ powder after the heat treatment, and neither pulverization nor crushing is required for the obtained LLZ powder, so that the activity of the powder surface is minimized and an LLZ powder with excellent storage stability can be obtained, even though the particle size is small. Note that, depending on the manufacturing conditions, the particles may sinter together, but even in that case, the particles can be crushed with an extremely weak force, so that microcracks and the like are unlikely to occur on the LLZ powder surface after crushing, the activity of the powder surface can be minimized, and the storage stability can be excellent.
  • the average particle size of the LLZ powder of the present invention may be 30 nm or more and 1.0 ⁇ m or less, but is preferably 30 nm or more and 900 nm or less, more preferably 30 nm or more and 800 nm or less, more preferably 30 nm or more and 700 nm or less, more preferably 30 nm or more and 600 nm or less, more preferably 30 nm or more and 500 nm or less, more preferably 30 nm or more and 400 nm or less, preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less.
  • the LLZ powder of the present invention is subjected to XRD measurement using an XRD measuring device (Rigaku Corporation, SmartLab) with CuK ⁇ radiation (wavelength ⁇ : 1.5418 ⁇ ) at a diffraction angle 2 ⁇ of 10 to 90° under conditions of a tube voltage of 40 kV, a tube current of 30 mA, a step angle of 0.01°, and a scanning speed of 10°/min.
  • the main peaks with the maximum peak intensity are detected for lithium-lanthanum-zirconium composite oxide and lanthanum zirconate, and the peak areas of each peak are measured.
  • the ratio of the peak area of lithium-lanthanum-zirconium composite oxide to the total peak area is calculated.
  • the ratio is more than 50%, but it is preferably 60% or more, more preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, and particularly preferably 95% or more.
  • the main peak can be around 31° for lithium-lanthanum-zirconium composite oxide, and around 29° for lanthanum zirconate.
  • the lithium-lanthanum-zirconium composite oxide powder of the present invention can be specified by a viscosity change ratio of 1 obtained by the following "Method for Measuring Viscosity Change Ratio".
  • a viscosity change ratio of 1 obtained by the following "Method for Measuring Viscosity Change Ratio".
  • the acrylic resin used in the method for measuring viscosity change ratio below, for example, BR-105 (a methacrylic resin with a weight average molecular weight of 45,000, an acid value of 0 mgKOH/g, and a glass transition point of 48°C) manufactured by Mitsubishi Chemical Corporation can be used, but the viscosity change ratio may also be measured using other acrylic resins with similar physical properties.
  • the viscosity change ratio can be measured using a methacrylic resin with a weight average molecular weight of 40,000 to 50,000 or 43,000 to 47,000, an acid value of 0 mgKOH/g, and a glass transition point of 40°C to 60°C or 45°C to 55°C.
  • ⁇ Method for measuring viscosity change rate 100 parts by mass of nickel powder having an average particle size of 0.3 ⁇ m, 5 parts by mass of acrylic resin (methacrylic resin having a weight average molecular weight in the range of 40,000 to 50,000 and an acid value of 0 mgKOH/g), 20 parts by mass of the lithium-lanthanum-zirconium composite oxide powder, and 20 parts by mass of terpineol are mixed and kneaded using a three-roll mill to prepare a paste-like composition.
  • the viscosity immediately after preparation and the viscosity after storage at 25° C. for one week after preparation are measured using a rotational viscometer at 25° C. and a shear rate of 100/s, and the ratio of the viscosity one week after preparation to the viscosity immediately after preparation is calculated as the viscosity change ratio.
  • the lithium-lanthanum-zirconium composite oxide powder of the present invention preferably has a weight loss rate at 100°C as determined by thermogravimetric analysis (air atmosphere, heating at 10°C/min) of 5.0% by mass or less, more preferably 4.0% by mass or less, more preferably 3.0% by mass or less, more preferably 2.0% by mass or less, more preferably 1.0% by mass or less, even more preferably 0.5% by mass or less, and particularly preferably 0.0% by mass. This inhibits the generation of impurities over time in the LLZ powder, and tends to improve storage stability.
  • the lithium-lanthanum-zirconium composite oxide powder of the present invention preferably has a weight loss rate at 300°C as determined by thermogravimetric analysis (air atmosphere, heating at 10°C/min) of 5.0% by mass or less, more preferably 4.0% by mass or less, more preferably 3.0% by mass or less, more preferably 2.0% by mass or less, more preferably 1.0% by mass or less, even more preferably 0.5% by mass or less, and particularly preferably 0.0% by mass. This inhibits the generation of impurities over time in the LLZ powder, and tends to improve storage stability.
  • Examples 1 to 6, Comparative Examples 1 to 5 First, lanthanum zirconate powders shown in Table 1 were prepared. Then, lithium carbonate and lanthanum hydroxide were dissolved in a liquid in which the lanthanum zirconate powder was suspended, and lithium hydroxide and lanthanum hydroxide were deposited on the surface of the lanthanum zirconate powder.
  • the lanthanum zirconate powder to which these compounds were attached was calcined at 700° C., and then crushed and/or pulverized to adjust the average particle size to a range of 80 nm to 150 nm (Examples 1 to 6 and Comparative Examples 2 to 5) or 800 nm to 1200 nm (Comparative Example 1), thereby obtaining a precursor powder.
  • a vertical tubular container having a nozzle for spraying the powder at the top was used, and the precursor powder was dispersed in the gas phase from a nozzle with a cross-sectional area of 2 cm 2 at the opening by a carrier gas (air was used in Examples 1 to 5 and Comparative Examples 1 to 4, a mixed gas of nitrogen and oxygen was used in Comparative Example 5, and pure oxygen was used in Example 6.
  • the partial oxygen pressure in the gas under atmospheric pressure was as shown in Table 1.).
  • the precursor powder dispersed in the gas phase was then passed through the vertical tubular container described above and heated at the temperature and for the time described in Table 1.
  • An electric furnace was installed outside the vertical tubular container used for heating, and the temperature inside the tubular container was set to the above-mentioned temperature.
  • the powder obtained by heating was then cooled to 180°C while dispersed in the gas phase, and the cooled powder was collected. No pulverization or crushing was performed after heating.
  • the obtained powder was evaluated by the method described below. The results are shown in Table 1.
  • Example 7 A powder was produced in the same manner as in Example 1, except that the precursor powder was dispersed in the gas phase at a concentration (g/L) ten times that of Example 1, and evaluation was carried out in the manner described below. The results are shown in Table 1.
  • Example 8 A powder was produced in the same manner as in Example 7, except that a crushing treatment was carried out after recovery, and evaluation was carried out in the manner described below. The results are shown in Table 1.
  • Example 9 A powder was produced in the same manner as in Example 1, except that a coprecipitate obtained by coprecipitating a zirconium compound and a lanthanum compound was fired, and the resulting sintered lanthanum zirconate was pulverized to prepare a lanthanum zirconate powder having an average particle size of 82 nm. The powder was evaluated in the manner described below. The results are shown in Table 1.
  • Example 10 A precursor powder was produced in the same manner as in Example 1, except that a lanthanum zirconate powder having an average particle size of 80 nm, a lithium carbonate powder, and a lanthanum hydroxide powder were mixed in a bead mill to cause the lithium carbonate powder and the lanthanum hydroxide powder to adhere to the surface of the lanthanum zirconate powder, and the powder was evaluated in the manner described below. The results are shown in Table 1.
  • ⁇ Evaluation method> Average particle size
  • the powder was observed using a scanning electron microscope (SU-1510, manufactured by Hitachi High-Technologies Corporation), and 100 particles constituting the powder were randomly selected from the observation to measure their particle diameters, and the cumulative 50% particle diameter based on the number was calculated based on the particle diameters, which was taken as the average particle diameter.
  • the particle diameter was measured as the diameter of a perfect circle having the same area as the projected area of the particle.
  • the main peak was selected to be near 31° in the case of the lithium-lanthanum-zirconium composite oxide, and near 29° in the case of lanthanum zirconate.
  • BR-105 a methacrylic resin having a weight average molecular weight of 45,000, an acid value of 0 mgKOH/g, and a glass transition point of 48 ° C.
  • the viscosity immediately after production and the viscosity one week after production were measured using a rotational viscometer (manufactured by Brookfield, HADV-II + Pro) at 25 ° C. and a shear rate of 100 / s, and the ratio of the viscosity one week after production to the viscosity immediately after production was calculated as the viscosity change rate.
  • the viscosity change rate rounded off to 1 was designated as "A”
  • the viscosity change rate exceeding 1 was designated as "B”.
  • the paste-like composition was stored in a sealed container at 25° C. until the viscosity was measured one week after preparation.
  • the manufacturing method according to the present invention can be used as a method for industrially manufacturing LLZ.
  • the LLZ according to the present invention can be used for various applications such as materials for electronic components such as capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The method for producing a lithium-lanthanum-zirconium composite oxide powder comprises: a first step for preparing a lanthanum zirconate powder having an average particle size of 20 nm to 200 nm, a lanthanum compound, and a lithium compound, respectively; a second step for depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to generate a precursor powder; a third step for obtaining a lithium-lanthanum-zirconium composite oxide powder by heating the precursor powder for from one second to 30 seconds at from 900°C to 1200°C with the precursor powder dispersed in a carrier gas, using a gas having an oxygen partial pressure of from more than 1.0×10-30 atm to 1.0 atm as the carrier gas; and a fourth step for recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step. According to the present invention, it is possible to suppress the scattering of Li and obtain a small-particle-size LLZ powder having excellent storage stability.

Description

リチウム-ランタン-ジルコニウム複合酸化物粉末の製造方法及びリチウム-ランタン-ジルコニウム複合酸化物粉末Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder

 本発明はリチウム-ランタン-ジルコニウム複合酸化物粉末の製造方法及びリチウム-ランタン-ジルコニウム複合酸化物粉末に関する。 The present invention relates to a method for producing lithium-lanthanum-zirconium composite oxide powder and to lithium-lanthanum-zirconium composite oxide powder.

 LiLaZr12を基本組成とするリチウム-ランタン-ジルコニウム複合酸化物粉末(以下、「LLZ粉末」という)は、全固体電池の固体電解質用材料としての用途が知られている。また、近年ではキャパシタの固体電解質層用材料としての用途や、当該キャパシタを構成する内部電極の形成に用いる導電性ペーストに添加するセラミック(いわゆる共材)用材料としての用途が知られている(例えば、特許文献1~3参照)。 Lithium-lanthanum-zirconium composite oxide powder (hereinafter referred to as "LLZ powder") having a basic composition of Li 7 La 3 Zr 2 O 12 is known to be used as a solid electrolyte material for all-solid-state batteries. In recent years, it has also been known to be used as a material for the solid electrolyte layer of capacitors and as a ceramic (so-called co-material) material added to a conductive paste used to form internal electrodes that constitute the capacitors (see, for example, Patent Documents 1 to 3).

 従来、その製造方法としてはジルコニウム化合物、ランタン化合物及びリチウム化合物を混合した後に、長時間焼成することが行われている。 The conventional manufacturing method involves mixing a zirconium compound, a lanthanum compound, and a lithium compound, then firing them for a long period of time.

 例えば特許文献1には、固体電解質の原材料として、炭酸リチウム、水酸化ランタン、及び酸化ジルコニウムを用意し、これら原材料をLiイオン伝導性化合物の組成がLiLaZr12となるように所定量秤量し、混合物を得た後、この混合物を大気雰囲気で900℃まで加熱し、5時間保持した後、自然冷却してLiイオン伝導性化合物を得る方法が開示されている。 For example, Patent Document 1 discloses a method in which lithium carbonate, lanthanum hydroxide, and zirconium oxide are prepared as raw materials for a solid electrolyte, and these raw materials are weighed in predetermined amounts so that the composition of a Li ion conductive compound is Li 7 La 3 Zr 2 O 12 , to obtain a mixture, which is then heated to 900° C. in an air atmosphere, held for 5 hours, and then naturally cooled to obtain a Li ion conductive compound.

 また、例えば、特許文献2、3では、次の方法が開示されている。まず、炭酸リチウム、水酸化ランタンおよび酸化ジルコニウムをLLZの化学量論組成となるように所定量秤量して混合した混合材料を作製する。この混合材料を所定量のエチルアルコールとともにナイロンポットおよびジルコニア球石を用いて混合し、混合物を作製する。この混合物を乾燥させた後に、アルミナ坩堝で、大気雰囲気下で、最高温度1000℃にて10時間保持して仮焼を行い、LLZ仮焼粉末を作製する。次に、このLLZ仮焼粉末を、メチルエチルケトン/トルエン混合溶剤とともに、ナイロンポットとジルコニア球石を用いて混合するとともに粉砕し、乾燥させてLLZ粉末を作製する。 Also, for example, Patent Documents 2 and 3 disclose the following method. First, lithium carbonate, lanthanum hydroxide, and zirconium oxide are weighed out in predetermined amounts to obtain the stoichiometric composition of LLZ, and mixed to prepare a mixed material. This mixed material is mixed with a predetermined amount of ethyl alcohol using a nylon pot and zirconia balls to prepare a mixture. After drying this mixture, it is calcined in an alumina crucible at a maximum temperature of 1000°C in an air atmosphere for 10 hours to prepare LLZ calcined powder. Next, this LLZ calcined powder is mixed with a methyl ethyl ketone/toluene mixed solvent using a nylon pot and zirconia balls, pulverized, and dried to prepare LLZ powder.

 また、例えば特許文献4では、次のようにしてリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法が開示されている。まず、炭酸リチウム、水酸化ランタン、酸化ジルコニウムを混合してアルミナ坩堝に入れ、600℃/時間にて昇温し、900℃にて6時間保持する。その後、得られた粉末のアルミナ坩堝に触れていた部分を重量にて約半分除去し、坩堝に触れていない粉末を回収した後、ライカイ機で30分間粉砕して、再度アルミナ坩堝に入れて600℃/時間にて昇温して1125℃にて6時間保持して粉末を得る。その後、更に、この粉末のアルミナ坩堝に触れていた部分を重量にて約半分除去し、坩堝に触れていない粉末を回収する。この粉末を篩通しした後、この粉末に対して、Alを添加してよく混合し、得られた混合粉末を、金型を用いてプレス成形してペレット化し、このペレットを前記混合粉末の中に埋めて60℃/時間で昇温し、1180℃にて36時間保持してリチウム-ランタン-ジルコニウム複合酸化物を得る。 Also, for example, Patent Document 4 discloses a method for producing a lithium-lanthanum-zirconium composite oxide powder as follows. First, lithium carbonate, lanthanum hydroxide, and zirconium oxide are mixed and placed in an alumina crucible, heated at 600° C./hour, and held at 900° C. for 6 hours. After that, about half of the weight of the part of the obtained powder that had been in contact with the alumina crucible is removed, and the powder that had not been in contact with the crucible is collected, and then crushed for 30 minutes with a grinding machine, placed again in the alumina crucible, heated at 600° C./hour, and held at 1125° C. for 6 hours to obtain a powder. After that, about half of the weight of the part of this powder that had been in contact with the alumina crucible is removed, and the powder that had not been in contact with the crucible is collected. After the powder is sieved, Al 2 O 3 is added to the powder and mixed thoroughly. The resulting mixed powder is press-molded using a die to form pellets. The pellets are embedded in the mixed powder, heated at a rate of 60° C./hour, and held at 1,180° C. for 36 hours to obtain a lithium-lanthanum-zirconium composite oxide.

 また、特許文献5ではジルコン酸ランタン、炭酸リチウム、水酸化ランタンを混合して得られた混合物を、湿式ボールミルで24時間混合したのち、100℃で5時間乾燥して原料混合粉を調製し、得られた原料混合粉をるつぼに入れ、電気炉で、750℃で12時間加熱した後、自然冷却する方法が開示されている。 Patent Document 5 also discloses a method in which lanthanum zirconate, lithium carbonate, and lanthanum hydroxide are mixed in a wet ball mill for 24 hours, then dried at 100°C for 5 hours to prepare a raw material mixture powder, which is then placed in a crucible and heated in an electric furnace at 750°C for 12 hours, and then naturally cooled.

 更に特許文献6では、共沈法により平均粒径100nmのランタン含有ジルコニア粉末を生成し、アルミナ粉末及び炭酸リチウム粉末と混合して700℃で12時間の焼成を行う方法が開示されている。 Furthermore, Patent Document 6 discloses a method in which lanthanum-containing zirconia powder with an average particle size of 100 nm is produced by coprecipitation, mixed with alumina powder and lithium carbonate powder, and fired at 700°C for 12 hours.

 特許文献5や特許文献6には、1000℃を超えるような高温で長時間焼成するとリチウム成分が飛散するために目的物であるLLZが得られにくくなることが記載されている。そこで、これらの特許文献5に記載された発明においては、LLZの原料の一つとしてジルコン酸ランタンを用い、特許文献6に記載された発明においては、ジルコニウム化合物とランタン化合物の共沈物を原料の一つとして用いることにより、1000℃未満の焼成温度でリチウム成分の飛散を抑制しながらガーネット型のLLZ焼成体を得ることに成功している。 Patent Document 5 and Patent Document 6 state that long-term firing at high temperatures exceeding 1000°C causes lithium components to scatter, making it difficult to obtain the desired LLZ. Therefore, the invention described in Patent Document 5 uses lanthanum zirconate as one of the raw materials for LLZ, and the invention described in Patent Document 6 uses a coprecipitate of a zirconium compound and a lanthanum compound as one of the raw materials, thereby successfully obtaining a garnet-type LLZ fired body while suppressing the scattering of lithium components at firing temperatures below 1000°C.

特開2015-130481号公報JP 2015-130481 A 特開2017-147398号公報JP 2017-147398 A 特開2018-041902号公報JP 2018-041902 A 特開2011-051800号公報JP 2011-051800 A 特開2014-172812号公報JP 2014-172812 A 特開2018-065704号公報JP 2018-065704 A

 ところで昨今、様々な用途において平均粒径が30nm~1.0μm程度、特には30nm~300nm程度の小粒径LLZ粉末の開発が要請されている。その一方、特許文献1~6で開示されている製造方法では、LLZの原料を混合したものを静置した状態で、長時間高温で加熱するため、加熱後のLLZは大きな塊状となることを避けられない。 Recently, there has been a demand for the development of small-particle LLZ powder with an average particle size of about 30 nm to 1.0 μm, especially 30 nm to 300 nm, for various applications. However, in the manufacturing methods disclosed in Patent Documents 1 to 6, the mixture of LLZ raw materials is left stationary and heated at high temperatures for a long period of time, so the LLZ inevitably becomes large lumps after heating.

 そのため、昨今要請されている小粒径のLLZ粉末を得るためには、特許文献1~6に記載された製造方法によって得られるLLZに対して、更に粉砕処理を行う必要がある。例えば、特許文献3においては、前述の方法でLLZ仮焼粉末を粉砕することで、D50が0.2μm~12.1μmのLLZ粉末を生成し、固体イオンキャパシタの固体電解質層及び内部電極に用いたことが記載されている。なお、本明細書においては、「粉砕処理」とは、物質に外力を加えて砕くことで元の大きさよりも小さくする操作を指す。また、「解砕処理」とは、粒子凝集体や造粒物のような比較的弱い力で凝集した材料に外力を加えて分散したり解きほぐしたりする操作を指す。 Therefore, in order to obtain the small particle size LLZ powder that is now in demand, it is necessary to further pulverize the LLZ obtained by the manufacturing methods described in Patent Documents 1 to 6. For example, Patent Document 3 describes that LLZ calcined powder is pulverized by the above-mentioned method to produce LLZ powder with a D50 of 0.2 μm to 12.1 μm, which is used for the solid electrolyte layer and internal electrode of a solid ion capacitor. In this specification, "pulverization" refers to the operation of applying an external force to a substance to crush it into smaller particles than their original size. In addition, "disintegration" refers to the operation of applying an external force to a material that has aggregated with a relatively weak force, such as a particle aggregate or granulated material, to disperse or loosen it.

 一般的に、1.0μm以下といった小粒径のセラミック粉末を得るためにセラミック粉末に対して粉砕処理を行う場合、セラミック粉末と溶媒を混合してセラミックスラリーを作製し、メディアミル等を用いて極めて強い力で長時間、粉砕する必要があり、そのため得られるセラミック粉末の表面に多数のマイクロクラックや高活性面が生じ、溶媒中にリチウム成分が溶出する問題は広く知られている。一般にセラミック粉末の粒径は小さければ小さいほど表面活性が高くなるが、特にLLZ粉末の場合は粉末の表面のリチウム成分がCOやHOと反応してセラミックが劣化する要因となる他、リチウムが抜け出て結晶構造の欠陥を招くこともあり、いずれにしても保存安定性に悪い影響を与える。 In general, when grinding ceramic powder to obtain ceramic powder with a small particle size of 1.0 μm or less, it is necessary to mix the ceramic powder with a solvent to prepare a ceramic slurry, and grind it for a long time with a very strong force using a media mill or the like, which causes a large number of microcracks and highly active surfaces on the surface of the obtained ceramic powder, and the problem of lithium components eluting into the solvent is widely known. In general, the smaller the particle size of the ceramic powder, the higher the surface activity, but in particular in the case of LLZ powder, the lithium components on the surface of the powder react with CO 2 or H 2 O, which causes the ceramic to deteriorate, and lithium may escape and cause defects in the crystal structure, which in any case has a negative effect on storage stability.

 そのため、例えばキャパシタの内部電極用導電性ペーストの共材として用いた場合、LLZ粉末表面から溶出したリチウム成分が導電性ペースト中の有機ビヒクルと反応し、導電性ペーストがゲル化するといった深刻な問題を生じている。 As a result, for example, when used as a co-material in a conductive paste for the internal electrodes of a capacitor, the lithium components eluted from the surface of the LLZ powder react with the organic vehicle in the conductive paste, causing serious problems such as the conductive paste gelling.

 更には、昨今、需要が増大している小粒径LLZ粉末を工業的に生産する上では製造時間は出来るだけ短時間であることが好ましい。 Furthermore, in industrial production of small particle size LLZ powder, for which demand has recently been increasing, it is preferable for the manufacturing time to be as short as possible.

 これらの課題に鑑み、本発明は、リチウムの飛散を抑制しつつ、保存安定性にも優れた小粒径のリチウム-ランタン-ジルコニウム複合酸化物粉末を効率的に製造する方法を提供することを目的とする。また、本発明は、小粒径であるにも拘わらず、粉末表面の活性を極力抑え、保存安定性に優れたリチウム-ランタン-ジルコニウム複合酸化物粉末を提供することを目的とする。 In view of these problems, the present invention aims to provide a method for efficiently producing small-particle size lithium-lanthanum-zirconium composite oxide powder that suppresses lithium scattering and has excellent storage stability. Another aim of the present invention is to provide a lithium-lanthanum-zirconium composite oxide powder that, despite its small particle size, minimizes the activity of the powder surface and has excellent storage stability.

 上記課題を解決すべく鋭意検討を重ねた結果、本発明者等は、平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末、ランタン化合物及びリチウム化合物をそれぞれ準備する第1工程と、前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物と前記リチウム化合物を被着させて前駆体粉末を生成する第2工程と、大気圧下での酸素分圧が1.0×10-30atm超1.0atm以下の気体をキャリアガスとし、前記キャリアガス中に前記前駆体粉末を分散させた状態で、前記前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下の時間、加熱することによって、リチウム-ランタン-ジルコニウム複合酸化物粉末を得る第3工程と、前記第3工程で得られたリチウム-ランタン-ジルコニウム複合酸化物粉末を回収する第4工程と、を有する、リチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を用いることで、リチウムの飛散を抑制しつつ、保存安定性にも優れた小粒径のリチウム-ランタン-ジルコニウム複合酸化物粉末を効率的に得ることができることを見出し、本発明の完成に至った。 As a result of intensive research to solve the above problems, the present inventors have discovered a method for producing a precursor powder comprising the steps of: a first step of preparing lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound; a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder; and a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder . The inventors have found that by using a method for producing a lithium-lanthanum-zirconium composite oxide powder, which comprises: a third step of using a gas having a pressure of more than 1.0 atm and not more than 1.0 atm as a carrier gas, heating the precursor powder at a temperature of 900° C. or more and 1200° C. or less for a time of 1 second to 30 seconds in a state in which the precursor powder is dispersed in the carrier gas to obtain a lithium-lanthanum-zirconium composite oxide powder, and a fourth step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step, it is possible to efficiently obtain a lithium-lanthanum-zirconium composite oxide powder having a small particle size and excellent storage stability while suppressing lithium scattering, which has led to the completion of the present invention.

 すなわち、本発明(1)は、平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末、ランタン化合物及びリチウム化合物をそれぞれ準備する第1工程と、
 前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させて前駆体粉末を生成する第2工程と、
 大気圧下での酸素分圧が1.0×10-30atm超1.0atm以下の気体をキャリアガスとし、前記キャリアガス中に前記前駆体粉末を分散させた状態で、前記前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下の時間、加熱することによって、リチウム-ランタン-ジルコニウム複合酸化物粉末を得る第3工程と、
 前記第3工程で得られたリチウム-ランタン-ジルコニウム複合酸化物粉末を回収する第4工程と、
を有する、リチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。
That is, the present invention (1) includes a first step of preparing a lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound;
a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder;
a third step of obtaining a lithium-lanthanum-zirconium composite oxide powder by using a gas having an oxygen partial pressure of more than 1.0×10 −30 atm and not more than 1.0 atm as a carrier gas and heating the precursor powder at a temperature of 900° C. or more and 1200° C. or less for a time of 1 second or more and 30 seconds or less in a state in which the precursor powder is dispersed in the carrier gas;
A fourth step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step;
The present invention provides a method for producing a lithium-lanthanum-zirconium composite oxide powder having the above formula:

 また、本発明(2)は、前記第3工程において得られるリチウム-ランタン-ジルコニウム複合酸化物粉末の平均粒径が30nm以上1.0μm以下である、本発明(1)のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。 The present invention (2) also provides a method for producing the lithium-lanthanum-zirconium composite oxide powder of the present invention (1), in which the lithium-lanthanum-zirconium composite oxide powder obtained in the third step has an average particle size of 30 nm or more and 1.0 μm or less.

 また、本発明(3)は、前記第3工程において得られるリチウム-ランタン-ジルコニウム複合酸化物粉末の平均粒径が30nm以上300nm以下である、本発明(1)のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。 The present invention (3) also provides a method for producing the lithium-lanthanum-zirconium composite oxide powder of the present invention (1), in which the lithium-lanthanum-zirconium composite oxide powder obtained in the third step has an average particle size of 30 nm or more and 300 nm or less.

 また、本発明(4)は、前記第2工程が、前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させ、次いで、前記ランタン化合物及び前記リチウム化合物が被着した前記ジルコン酸ランタン粉末を仮焼して前駆体粉末を生成する工程である、本発明(1)~(3)のうちのいずれかのリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。 The present invention (4) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (3), in which the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, and then calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to produce a precursor powder.

 また、本発明(5)は、前記第2工程が、前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させ、次いで、前記ランタン化合物及び前記リチウム化合物が被着した前記ジルコン酸ランタン粉末を仮焼して仮焼物を形成し、更に、当該仮焼物を粉砕処理及び/又は解砕処理して平均粒径が30nm以上300nm以下の前駆体粉末を生成する工程である、本発明(1)~(3)のうちのいずれかのリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。 The present invention (5) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (3), in which the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to form a calcined product, and further pulverizing and/or crushing the calcined product to produce a precursor powder having an average particle size of 30 nm to 300 nm.

 また、本発明(6)は、前記ジルコン酸ランタン粉末がランタン化合物とジルコニウム化合物との共沈物を加熱して得られたものである、本発明(1)~(5)のうちのいずれかのリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法を提供するものである。 The present invention (6) also provides a method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of the present inventions (1) to (5), in which the lanthanum zirconate powder is obtained by heating a coprecipitate of a lanthanum compound and a zirconium compound.

 また、本発明(7)は、平均粒径が30nm以上1.0μm以下であり、下記方法で測定した粘度変化倍率が1倍である、リチウム-ランタン-ジルコニウム複合酸化物粉末を提供するものである。
<粘度変化倍率の測定方法>
 平均粒径0.3μmのニッケル粉末100質量部と、アクリル樹脂(重量平均分子量が40000以上50000以下の範囲内にあり且つ酸価が0mgKOH/gであるメタクリル樹脂)を5質量部と、前記リチウム-ランタン-ジルコニウム複合酸化物粉末20質量部と、ターピネオール20質量部と、を混合した後に、三本ロールミルを用いて混錬してペースト状組成物を作製した後、作製直後の粘度と、作製後1週間25℃で保管した後の粘度を、回転粘度計を用いて、25℃において、せん断速度100/sの条件で測定し、作製直後の粘度に対する作製1週間後の粘度の比の値を粘度変化倍率として算出する。
The present invention (7) also provides a lithium-lanthanum-zirconium composite oxide powder having an average particle size of 30 nm or more and 1.0 μm or less and a viscosity change rate of 1, as measured by the following method:
<Method for measuring viscosity change rate>
100 parts by mass of nickel powder having an average particle size of 0.3 μm, 5 parts by mass of acrylic resin (methacrylic resin having a weight average molecular weight in the range of 40,000 to 50,000 and an acid value of 0 mgKOH/g), 20 parts by mass of the lithium-lanthanum-zirconium composite oxide powder, and 20 parts by mass of terpineol are mixed and kneaded using a three-roll mill to prepare a paste-like composition. The viscosity immediately after preparation and the viscosity after storage at 25° C. for one week after preparation are measured using a rotational viscometer at 25° C. and a shear rate of 100/s, and the ratio of the viscosity one week after preparation to the viscosity immediately after preparation is calculated as the viscosity change ratio.

 本発明の製造方法によれば、リチウムの飛散を抑制しつつ、保存安定性にも優れた小粒径のリチウム-ランタン-ジルコニウム複合酸化物粉末を効率的に得ることができる。また本発明のリチウム-ランタン-ジルコニウム複合酸化物粉末は、小粒径であるにも拘わらず、粉末表面の活性が極力抑えられ、保存安定性にも優れている。 The manufacturing method of the present invention makes it possible to efficiently obtain a small-particle size lithium-lanthanum-zirconium composite oxide powder that has excellent storage stability while suppressing lithium scattering. Furthermore, despite its small particle size, the lithium-lanthanum-zirconium composite oxide powder of the present invention has minimized powder surface activity and has excellent storage stability.

 以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。 The present invention is described in detail below, but is not limited to this.

 本発明に係るLLZ粉末は、LiLaZr12を基本組成とし、更に平均粒径が30nm以上1.0μm以下、特には30nm以上300nm以下であり、保存安定性に優れることを特徴とする。なお、本明細書(本発明)においては、走査型電子顕微鏡(例えば、日立ハイテク社製、SU-1510)を用いて粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて個数基準の累積50%粒子径を算出した値を平均粒径とする。粒子の投影面積と同じ面積を有する真円の直径を粒子径とする。なお、LLZ粉末だけでなく、後出のニッケル粉末の平均粒径についても、前記方法で算出した値を用いる。 The LLZ powder according to the present invention has a basic composition of Li 7 La 3 Zr 2 O 12 , and has an average particle size of 30 nm to 1.0 μm, particularly 30 nm to 300 nm, and is characterized by excellent storage stability. In this specification (the present invention), the powder is observed using a scanning electron microscope (e.g., SU-1510, manufactured by Hitachi High-Tech Corporation), 100 particles constituting the powder are randomly selected from the observation, their particle sizes are measured, and the cumulative 50% particle size based on the number is calculated based on the particle sizes, and this value is defined as the average particle size. The particle size is defined as the diameter of a perfect circle having the same area as the projected area of the particle. The value calculated by the above method is used not only for the LLZ powder but also for the average particle size of the nickel powder described later.

 前述のLLZ粉末において、リチウム、ランタン、ジルコニウムの比率は必ずしも精確に[7:3:2](モル比)である必要は無い。すなわち当業界で広く知られているように、当該比率に近似される比率であっても良い。更には上記基本組成の各元素の一部が他の元素に置換されていても良い。上記他の元素としては、例えば、アルミニウム元素が挙げられる。また、本発明のLLZ粉末は、固体電解質用として用いる場合には立方晶であることが好ましいが、必ずしもこれに限定されるものではなく、正方晶のLLZ粉末を所望する場合は加熱処理条件などを適宜調整して正方晶としても良い。 In the above-mentioned LLZ powder, the ratio of lithium, lanthanum, and zirconium does not necessarily have to be precisely [7:3:2] (molar ratio). That is, as is widely known in the industry, it may be a ratio that is close to that ratio. Furthermore, a part of each element in the above basic composition may be replaced with another element. An example of the other element is aluminum. Furthermore, when the LLZ powder of the present invention is used as a solid electrolyte, it is preferable that it is a cubic crystal, but this is not necessarily limited to this, and when a tetragonal LLZ powder is desired, the heat treatment conditions, etc. may be appropriately adjusted to make it a tetragonal crystal.

<本発明の製造方法>
 本発明の製造方法は、平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末、ランタン化合物及びリチウム化合物をそれぞれ準備する第1工程と、ジルコン酸ランタン粉末の表面に、ランタン化合物及びリチウム化合物を被着させて前駆体粉末を生成する第2工程と、大気圧下での酸素分圧が1.0×10-30atm超1.0atm以下の気体をキャリアガスとし、キャリアガス中に前駆体粉末を分散させた状態で、前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下の時間、加熱することによって、リチウム-ランタン-ジルコニウム複合酸化物粉末を得る第3工程と、前記第3工程で得られたリチウム-ランタン-ジルコニウム複合酸化物粉末を回収する第4工程と、を有する、リチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法である。
<Production Method of the Present Invention>
The production method of the present invention is a method for producing a lithium-lanthanum-zirconium composite oxide powder, comprising: a first step of preparing lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound; a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder; a third step of using a gas having an oxygen partial pressure of more than 1.0 x 10 -30 atm and not more than 1.0 atm under atmospheric pressure as a carrier gas, heating the precursor powder at a temperature of 900°C or more and 1200°C or less for a time of 1 second or more and 30 seconds or less while the precursor powder is dispersed in the carrier gas; and a fourth step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step.

 上述の通り、本発明の製造方法は、ジルコン酸ランタン粉末として小粒径のものを使用し、その表面に予めランタン化合物とリチウム化合物を被着させた上で、雰囲気が制御された気相中で加熱を行うことを特徴としている。それゆえ、ジルコン酸ランタン粉末の表面活性が高いためランタン化合物及びリチウム化合物がジルコン酸ランタン粉末内部に拡散しやすく、且つ、粉末を構成する各粒子の表面から中心部(最深部)までの距離が短いため、ランタン化合物及びリチウム化合物がジルコン酸ランタン粉末を構成する各粒子の中心部(最深部)に到達しやすい。そのため、前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下という短時間で加熱した場合であっても、ランタン化合物及びリチウム化合物がジルコン酸ランタン粉末を構成する各粒子の内部全体に渡って十分に拡散しやすくなり、リチウム化合物の飛散量も抑えられ、目的とするLLZ粉末を効率的に製造することができる。 As described above, the manufacturing method of the present invention is characterized by using a small particle size lanthanum zirconate powder, coating the surface with a lanthanum compound and a lithium compound in advance, and then heating in a gas phase with a controlled atmosphere. Therefore, since the surface activity of the lanthanum zirconate powder is high, the lanthanum compound and lithium compound are easily diffused inside the lanthanum zirconate powder, and since the distance from the surface to the center (deepest part) of each particle constituting the powder is short, the lanthanum compound and lithium compound are easily able to reach the center (deepest part) of each particle constituting the lanthanum zirconate powder. Therefore, even if the precursor powder is heated at a temperature of 900°C to 1200°C for a short period of time of 1 second to 30 seconds, the lanthanum compound and lithium compound are easily diffused throughout the entire interior of each particle constituting the lanthanum zirconate powder, the amount of lithium compound scattered is also suppressed, and the desired LLZ powder can be efficiently manufactured.

 以下、本発明の製造方法を構成する各工程について説明する。 The steps that make up the manufacturing method of the present invention are explained below.

 本発明の製造方法は、後述の第1工程、第2工程、第3工程及び第4工程を有していればよいが、第1工程の前に更に別の工程を有していてもよく、上記各工程間に更に別の工程を有していてもよく、第4工程の後に更に別の工程を有していてもよい。 The manufacturing method of the present invention may include the first, second, third, and fourth steps described below, but may also include a further step before the first step, a further step between the above steps, or a further step after the fourth step.

〔第1工程〕
 本発明に係る第1工程は、平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末、ランタン化合物及びリチウム化合物をそれぞれ準備する工程である。
[First step]
The first step according to the present invention is a step of preparing a lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound.

(ジルコン酸ランタン粉末)
 第1工程において準備するジルコン酸ランタン粉末の平均粒径は20nm以上200nm以下であればよいが、好ましくは30nm以上180nm以下であり、より好ましくは40nm以上160nm以下であり、特に好ましくは50nm以上140nm以下である。これにより、後述の第3工程において、ジルコン酸ランタン粉末が他の成分と反応しやすくなるため、加熱時間が短くてもLLZが得られやすくなるという点で好ましい。
(Lanthanum zirconate powder)
The average particle size of the lanthanum zirconate powder prepared in the first step may be 20 nm or more and 200 nm or less, but is preferably 30 nm or more and 180 nm or less, more preferably 40 nm or more and 160 nm or less, and particularly preferably 50 nm or more and 140 nm or less. This is preferable in that the lanthanum zirconate powder is more likely to react with other components in the third step described below, making it easier to obtain LLZ even with a short heating time.

 ジルコン酸ランタン粉末は製造しても良いが、市販のものを使用することもできる。入手できる市販のジルコン酸ランタン粉末の平均粒径が200nmより大きい場合はボールミルやビーズミルなどの適宜な公知の手法により粉砕処理及び/又は解砕処理を行って平均粒径が上述の範囲内になるよう調整して用いることができる。 Lanthanum zirconate powder may be manufactured, but commercially available powder can also be used. If the average particle size of commercially available lanthanum zirconate powder is greater than 200 nm, it can be used after being pulverized and/or crushed by a suitable known method such as a ball mill or bead mill so that the average particle size falls within the above-mentioned range.

 なお、本発明において平均粒径とは、走査型電子顕微鏡観察により無作為に選んだ100個以上の粒子の粒子径に基づいて算出される個数基準の累計50%粒子径をいう。 In the present invention, the average particle size refers to the cumulative 50% particle size calculated based on the particle sizes of 100 or more particles randomly selected by observation with a scanning electron microscope.

 ジルコン酸ランタン粉末を製造する場合、その製法は特に限定されず、ジルコニウム化合物とランタン化合物を混合して加熱することで得ることができるが、特に、特許文献6に記載されているような、粉末の製造方法として広く知られている共沈法を用い、ランタン化合物とジルコニウム化合物との共沈物を加熱して得ることが好ましい。この方法によりジルコン酸ランタン粉末を準備する場合、平均粒径が20nm以上200nm以下の共沈物が生成するよう調整することが好ましいが、共沈物の平均粒径が200nmより大きい場合は粉砕処理及び/又は解砕処理して20nm以上200nm以下に調製する。共沈物の平均粒径を上記範囲にすることで、加熱により平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末が得られやすく、得られたジルコン酸ランタン粉末の平均粒径が200nmより大きい場合であっても、粉砕処理及び/又は解砕処理により平均粒径を20nm以上200nm以下としやすい。 When producing lanthanum zirconate powder, the production method is not particularly limited, and it can be obtained by mixing and heating a zirconium compound and a lanthanum compound, but it is preferable to use a coprecipitation method, which is widely known as a powder production method as described in Patent Document 6, and heat a coprecipitate of a lanthanum compound and a zirconium compound to obtain it. When preparing lanthanum zirconate powder by this method, it is preferable to adjust the average particle size so that a coprecipitate having an average particle size of 20 nm to 200 nm is produced, but if the average particle size of the coprecipitate is larger than 200 nm, it is adjusted to 20 nm to 200 nm by crushing and/or disintegration. By setting the average particle size of the coprecipitate in the above range, lanthanum zirconate powder having an average particle size of 20 nm to 200 nm can be easily obtained by heating, and even if the average particle size of the obtained lanthanum zirconate powder is larger than 200 nm, the average particle size can be easily adjusted to 20 nm to 200 nm by crushing and/or disintegration.

 ジルコン酸ランタンの製造に用いるジルコニウム化合物としては特に限定されず、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、塩化ジルコニウム、硝酸ジルコニウムを用いることができる。ジルコニウム化合物は粉末状であってもよく、当該粉末の平均粒径は10nm以上100nm以下であることが好ましい。平均粒径が100nmよりも大きいジルコニウム化合物粉末を用いる場合、粉砕処理及び/又は解砕処理して上記範囲内に調整して用いることができる。また、ジルコニウム化合物を共沈法に用いる場合には、上記ジルコニウム化合物の液中での分散性が高いことが好ましく、ゾル状態であることが好ましい。 The zirconium compound used in the production of lanthanum zirconate is not particularly limited, and for example, zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium carbonate, zirconium chloride, and zirconium nitrate can be used. The zirconium compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less. When using a zirconium compound powder with an average particle size of more than 100 nm, it can be used after being adjusted to within the above range by a pulverization process and/or crushing process. Furthermore, when using a zirconium compound in a coprecipitation method, it is preferable that the zirconium compound has high dispersibility in the liquid, and is preferably in a sol state.

 ジルコン酸ランタンの製造に用いるランタン化合物としては、特に限定されず、例えば、酸化ランタン、水酸化ランタン、硫酸ランタン、炭酸ランタン、塩化ランタン、硝酸ランタンを用いることができる。ランタン化合物は粉末状であってもよく、当該粉末の平均粒径は10nm以上100nm以下であることが好ましい。また、ランタン化合物を共沈法に用いる場合には、上記ランタン化合物の液中での分散性が高いことが好ましく、ゾル状態であることが好ましい。 The lanthanum compound used in the production of lanthanum zirconate is not particularly limited, and for example, lanthanum oxide, lanthanum hydroxide, lanthanum sulfate, lanthanum carbonate, lanthanum chloride, and lanthanum nitrate can be used. The lanthanum compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less. In addition, when the lanthanum compound is used in the coprecipitation method, it is preferable that the lanthanum compound has high dispersibility in the liquid, and is preferably in a sol state.

(ランタン化合物)
 第1工程で準備するランタン化合物としては特に限定されず、例えば、上述のランタン化合物を用いることができる。
(Lanthanum compounds)
The lanthanum compound prepared in the first step is not particularly limited, and for example, the above-mentioned lanthanum compounds can be used.

(リチウム化合物)
 第1工程で準備するリチウム化合物としては特に限定されず、例えば、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、塩化リチウムを用いることができる。リチウム化合物は粉末状であってもよく、当該粉末の平均粒径は10nm以上100nm以下であることが好ましい。平均粒径が100nmよりも大きいリチウム化合物粉末を用いる場合、粉砕処理及び/又は解砕処理して上記範囲内に調整して用いることができる。
(Lithium compounds)
The lithium compound prepared in the first step is not particularly limited, and for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, and lithium chloride can be used. The lithium compound may be in a powder form, and the average particle size of the powder is preferably 10 nm or more and 100 nm or less. When using a lithium compound powder with an average particle size larger than 100 nm, it can be used after being adjusted to within the above range by pulverization and/or crushing.

〔第2工程〕
 本発明に係る第2工程は、ジルコン酸ランタン粉末の表面に、ランタン化合物とリチウム化合物を被着させて前駆体粉末を生成する工程である。
[Second step]
The second step according to the present invention is a step of producing a precursor powder by depositing a lanthanum compound and a lithium compound on the surface of lanthanum zirconate powder.

 上記被着方法は特に限定されないが、例えば、第1工程で準備したランタン化合物及び/又はリチウム化合物が粉末である場合は、当該粉末をジルコン酸ランタン粉末と共にボールミルやビーズミルなどを用いて混合することにより、ジルコン酸ランタン粉末の表面にメカノケミカル的にランタン化合物粉末及び/又はリチウム化合物粉末を被着させて、前駆体粉末を生成することができる。 The above-mentioned deposition method is not particularly limited, but for example, when the lanthanum compound and/or lithium compound prepared in the first step is in the form of a powder, the powder can be mixed with lanthanum zirconate powder using a ball mill, bead mill, or the like, to mechanochemically deposit the lanthanum compound powder and/or lithium compound powder onto the surface of the lanthanum zirconate powder, thereby producing a precursor powder.

 また、ランタン化合物及び/又はリチウム化合物は溶解するが、ジルコン酸ランタン粉末は溶解しない溶媒を準備し、ランタン化合物及び/又はリチウム化合物が溶解している溶液中にジルコン酸ランタン粉末を投入した後、還元或いは前述の溶液(溶媒)を乾燥させるなどの方法でランタン化合物及び/又はリチウム化合物をジルコン酸ランタン粉末の表面に析出させることで前駆体粉末を生成するようにしても良い。 Alternatively, a solvent that dissolves lanthanum compounds and/or lithium compounds but does not dissolve lanthanum zirconate powder may be prepared, and lanthanum zirconate powder may be introduced into the solution in which the lanthanum compounds and/or lithium compounds are dissolved, and then the lanthanum compounds and/or lithium compounds may be precipitated on the surface of the lanthanum zirconate powder by a method such as reduction or drying the aforementioned solution (solvent), thereby producing a precursor powder.

 その他、後述する第3工程の加熱によってキャリアガス中で熱分解する有機バインダーを準備し、ランタン化合物及び/又はリチウム化合物を有機バインダー中に混練させたものをジルコン酸ランタン粉末に被覆させることにより、有機バインダーを介してランタン化合物及び/又はリチウム化合物がジルコン酸ランタン粉末の表面に被着した前駆体粉末を生成するようにしても良い。 In addition, an organic binder that is thermally decomposed in a carrier gas by heating in the third step described below may be prepared, and a lanthanum compound and/or lithium compound may be kneaded into the organic binder and then coated onto lanthanum zirconate powder, thereby generating a precursor powder in which the lanthanum compound and/or lithium compound is attached to the surface of the lanthanum zirconate powder via the organic binder.

 また、上記方法を組み合わせて用いることもできる。すなわち、例えば、前述の液中で析出させる方法で、ジルコン酸ランタン粉末表面にランタン化合物を被着させた後に、前述のメカノケミカル的な方法によりリチウム化合物を被着させることができる。 The above methods can also be used in combination. That is, for example, a lanthanum compound can be deposited on the surface of lanthanum zirconate powder by the above-mentioned liquid precipitation method, and then a lithium compound can be deposited by the above-mentioned mechanochemical method.

 また、上述した第2工程は、ジルコン酸ランタン粉末の表面に、ランタン化合物及びリチウム化合物を被着させ、次いで、ランタン化合物及びリチウム化合物が被着したジルコン酸ランタン粉末を仮焼して前駆体粉末を生成する工程であることが好ましい。なお、仮焼温度は特に限定されないが、100℃以上700℃以下であることが好ましく、200℃以上650℃以下であることがより好ましく、300℃以上600℃以下であることが特に好ましい。また、仮焼時間は特に限定されないが、1時間以上10時間以下であることが好ましく、2時間以上9時間以下であることがより好ましく、3時間以上8時間以下であることが特に好ましい。仮焼雰囲気は特に限定されず、大気雰囲気や窒素雰囲気等、適宜の雰囲気で仮焼できる。 The second step described above is preferably a step of depositing a lanthanum compound and a lithium compound on the surface of the lanthanum zirconate powder, and then calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to produce a precursor powder. The calcination temperature is not particularly limited, but is preferably 100°C to 700°C, more preferably 200°C to 650°C, and particularly preferably 300°C to 600°C. The calcination time is not particularly limited, but is preferably 1 hour to 10 hours, more preferably 2 hours to 9 hours, and particularly preferably 3 hours to 8 hours. The calcination atmosphere is not particularly limited, and calcination can be performed in an appropriate atmosphere such as air or nitrogen.

 上述の仮焼を行うことにより、リチウム化合物及びランタン化合物をジルコン酸ランタン粉末表面により強固に被着させることができるため、後述の第3工程で前駆体粉末をキャリアガス中に分散させる際に、リチウム化合物及びランタン化合物がジルコン酸ランタン粉末表面から解離しにくくなり、LLZ粉末が得られやすくなる。また、リチウム化合物及びランタン化合物がジルコン酸ランタン粉末表面から解離しにくくなるため、前駆体粉末をキャリアガスに分散させる際により強い力で分散させることができ、前駆体粉末のキャリアガス中での分散性をより良好なものとしやすくなり、得られるLLZ粉末を構成する粒子同士が互いに結合或いは凝集状態となりにくい。 By carrying out the above-mentioned calcination, the lithium compounds and lanthanum compounds can be more firmly attached to the surface of the lanthanum zirconate powder, so that when the precursor powder is dispersed in a carrier gas in the third step described below, the lithium compounds and lanthanum compounds are less likely to dissociate from the surface of the lanthanum zirconate powder, making it easier to obtain LLZ powder. In addition, because the lithium compounds and lanthanum compounds are less likely to dissociate from the surface of the lanthanum zirconate powder, the precursor powder can be dispersed with stronger force when dispersed in the carrier gas, making it easier to improve the dispersibility of the precursor powder in the carrier gas, and the particles that make up the obtained LLZ powder are less likely to bond or aggregate with each other.

 また、仮焼により前駆体粉末の水分含量及び吸湿性を低減することができるため、後述の第3工程でキャリアガス中に前駆体粉末を分散させる場合に、分散性が向上する。それゆえ、後述の第3工程以降、粉砕処理及び/又は解砕処理を不要としやすくなり、LLZ粉末の粉末表面の活性を抑えることができ、保存安定性を優れたものとしやすくなる。 Also, since the moisture content and hygroscopicity of the precursor powder can be reduced by calcination, dispersibility is improved when the precursor powder is dispersed in a carrier gas in the third step described below. Therefore, it becomes easier to eliminate the need for pulverization and/or crushing processes after the third step described below, and the activity of the powder surface of the LLZ powder can be suppressed, making it easier to achieve excellent storage stability.

また、上述の仮焼を行うことにより、後述の第3工程の前に、ジルコン酸ランタン粉末表面に被着しているリチウム化合物及びランタン化合物を酸素と反応させてそれぞれ酸化リチウム及び酸化ランタンにすることができる。そのため、後述の第3工程においてジルコン酸ランタン粉末と、当該粉末表面に被着したリチウム化合物及びランタン化合物との反応性が高まり、加熱時間が短い場合であっても所望のLLZ粉末を得られやすくなる。 In addition, by carrying out the above-mentioned calcination, the lithium compound and lanthanum compound attached to the surface of the lanthanum zirconate powder can be reacted with oxygen to form lithium oxide and lanthanum oxide, respectively, before the third step described below. Therefore, in the third step described below, the reactivity between the lanthanum zirconate powder and the lithium compound and lanthanum compound attached to the powder surface is increased, making it easier to obtain the desired LLZ powder even if the heating time is short.

 また、上述した第2工程は、ジルコン酸ランタン粉末の表面に、ランタン化合物及びリチウム化合物を被着させ、次いで、ランタン化合物及びリチウム化合物が被着したジルコン酸ランタン粉末を仮焼して仮焼物を形成し、更に、仮焼物を粉砕処理及び/又は解砕処理して平均粒径が30nm以上300nm以下の前駆体粉末を生成する工程であることが特に好ましい。 Furthermore, it is particularly preferable that the second step described above is a step of depositing a lanthanum compound and a lithium compound on the surface of lanthanum zirconate powder, then calcining the lanthanum zirconate powder with the lanthanum compound and lithium compound deposited thereon to form a calcined product, and further pulverizing and/or crushing the calcined product to produce a precursor powder having an average particle size of 30 nm to 300 nm.

 なお、仮焼しない場合であっても、上述の被着処理等により二次粒子が生じる可能性があるため、必要に応じて、粉砕処理及び/又は解砕処理により前駆体粉末の平均粒径を特定の範囲に調整することができる。すなわち、上述した第2工程は、ジルコン酸ランタン粉末の表面に、ランタン化合物及びリチウム化合物を被着させ、次いで、粉砕処理及び/又は解砕処理して平均粒径が30nm以上300nm以下の前駆体粉末を生成する工程であることができる。 Even if calcination is not performed, secondary particles may be generated by the above-mentioned deposition process, etc., so the average particle size of the precursor powder can be adjusted to a specific range by a pulverization process and/or crushing process, if necessary. That is, the above-mentioned second step can be a step in which a lanthanum compound and a lithium compound are deposited on the surface of lanthanum zirconate powder, and then a pulverization process and/or crushing process are performed to generate a precursor powder with an average particle size of 30 nm to 300 nm.

 上述の第2工程で生成される前駆体粉末の平均粒径は、30nm以上300nm以下であることが好ましく、40nm以上250nm以下であることがより好ましく、50nm以上200nm以下であることが更に好ましく、60nm以上150nm以下であることが特に好ましい。 The average particle size of the precursor powder produced in the second step described above is preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, even more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less.

〔第3工程〕
 本発明における第3工程は、大気圧下での酸素分圧が1.0×10-30atm超1.0atm以下の気体をキャリアガスとし、キャリアガス中に前駆体粉末を分散させた状態で、前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下の時間、加熱することによって、リチウム-ランタン-ジルコニウム複合酸化物粉末を得る工程である。
[Third step]
The third step in the present invention is a step of obtaining a lithium-lanthanum-zirconium composite oxide powder by using a gas having an oxygen partial pressure of more than 1.0× 10-30 atm and not more than 1.0 atm as a carrier gas, dispersing a precursor powder in the carrier gas, and heating the precursor powder at a temperature of 900° C. or more and 1200° C. or less for a time of 1 second or more and 30 seconds or less.

 キャリアガスを構成する気体の大気圧下での酸素分圧は1.0×10-30atm超1.0atm以下であればよいが、1.0×10-25atm以上9.0×10-1atm以下が好ましく、1.0×10-20atm以上8.0×10-1atm以下がより好ましく、1.0×10-15atm以上7.0×10-1atm以下が更に好ましく、1.0×10-10atm以上6.0×10-1atm以下が特に好ましい。酸素分圧がこの範囲にあることで、酸素空孔の生成を抑制しつつ、Liの飛散も抑制でき、LLZ粉末を製造しやすくなる。また、酸素分圧の上限を上記とすることで、より安全にLLZ粉末を製造しやすくなる。キャリアガスとしては、空気、酸素、窒素、アルゴンなど、及びこれらの混合ガスなどが使用できる。また、雰囲気制御の必要性に応じて、水素、一酸化炭素、メタン、アンモニアガスなどの還元性ガスを用いることができる。なお、本発明は「大気圧下」での実施を必須とするものではなく、適宜の圧力下で実施することができる。 The oxygen partial pressure of the gas constituting the carrier gas under atmospheric pressure may be more than 1.0×10 −30 atm and 1.0 atm or less, but is preferably 1.0×10 −25 atm or more and 9.0×10 −1 atm or less, more preferably 1.0×10 −20 atm or more and 8.0×10 −1 atm or less, even more preferably 1.0×10 −15 atm or more and 7.0×10 −1 atm or less, and particularly preferably 1.0×10 −10 atm or more and 6.0×10 −1 atm or less. By having the oxygen partial pressure in this range, the generation of oxygen vacancies can be suppressed while the scattering of Li can also be suppressed, making it easier to produce LLZ powder. In addition, by setting the upper limit of the oxygen partial pressure as described above, it becomes easier to produce LLZ powder more safely. As the carrier gas, air, oxygen, nitrogen, argon, etc., and mixed gases thereof, etc. can be used. Depending on the necessity for controlling the atmosphere, reducing gases such as hydrogen, carbon monoxide, methane, ammonia gas, etc. It is not essential that the present invention be carried out under "atmospheric pressure," but the present invention can be carried out under any suitable pressure.

 上記キャリアガスは、更に、水蒸気を含んでいてもよい。キャリアガスが水蒸気を含む場合、大気圧下における水蒸気の分圧が2.3×10-2atm以上1.0atm未満であることが好ましく、1.0×10-1atm以上1.0atm未満であることがより好ましく、2.0×10-1atm以上1.0atm未満であることがより好ましく、3.0×10-1atm以上1.0atm未満であることがより好ましく、3.0×10-1atm以上9.0×10-1atm以下であることがより好ましく、3.0×10-1atm以上8.0×10-1atm以下であることが更に好ましく、3.0×10-1atm以上7.0×10-1atm以下であることが特に好ましい。これにより、前駆体粉末中の各成分が反応しやすくなるため、短時間であっても反応が進みやすくなり、LLZの生成反応が促進され、所望のLLZ粉末が得られやすくなる。 The carrier gas may further contain water vapor. When the carrier gas contains water vapor, the partial pressure of the water vapor under atmospheric pressure is preferably 2.3×10 −2 atm or more and less than 1.0 atm, more preferably 1.0×10 −1 atm or more and less than 1.0 atm, more preferably 2.0×10 −1 atm or more and less than 1.0 atm, more preferably 3.0×10 −1 atm or more and less than 1.0 atm, more preferably 3.0×10 −1 atm or more and 9.0×10 −1 atm or less, even more preferably 3.0×10 −1 atm or more and 8.0×10 −1 atm or less, and particularly preferably 3.0×10 −1 atm or more and 7.0×10 −1 atm or less. This allows each component in the precursor powder to react more easily, so that the reaction can proceed easily even in a short period of time, promoting the reaction for producing LLZ and making it easier to obtain the desired LLZ powder.

 前駆体粉末は上述したキャリアガスと共にノズルを通して反応容器中に供給され、キャリアガス中(すなわち気相中)に分散された状態で加熱される。ここでノズルには特に制限はなく、断面が円形、多角形、又はスリット状のものと、先端が絞られているもの、途中まで絞られており開口部で広がっているものなど、いかなる形状のものを使用してもよい。 The precursor powder is supplied into the reaction vessel through a nozzle together with the above-mentioned carrier gas, and heated while dispersed in the carrier gas (i.e., in the gas phase). There are no particular limitations on the nozzle, and any shape may be used, including those with a circular, polygonal, or slit-shaped cross section, those with a narrowed tip, and those that are narrowed halfway and widen at the opening.

 前駆体粉末は、反応容器内において気相中の前駆体粉末の濃度が10g/L以下となるように分散されることが好ましい。気相中における濃度が10g/Lより高いと、気相中で前駆体粉末の粒子同士が接触して凝集や合一が生じ、そのために第3工程以降での粉砕処理及び/又は解砕処理が必要となる場合がある。気相中における前駆体粉末の濃度は、使用する製造装置の仕様に基づいて適宜決定すれば良いが、1g/L以下とすることがより好ましく、0.5g/L以下とすることがより好ましく、0.1g/L以下とすることが更に好ましく、0.05g/L以下とすることが特に好ましい。なお、気相中における前駆体粉末の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。 The precursor powder is preferably dispersed in the reaction vessel so that the concentration of the precursor powder in the gas phase is 10 g/L or less. If the concentration in the gas phase is higher than 10 g/L, the precursor powder particles may come into contact with each other in the gas phase, causing aggregation or coalescence, which may require a crushing process and/or disintegration process in the third step or later. The concentration of the precursor powder in the gas phase may be appropriately determined based on the specifications of the manufacturing device used, but is more preferably 1 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. The lower limit of the precursor powder concentration in the gas phase is not particularly limited, but from the viewpoint of manufacturing efficiency, it is preferably 0.001 g/L or more.

 第3工程における前駆体粉末の加熱温度は、900℃以上1200℃以下であればよいが、950℃以上1150℃以下であることが好ましく、1000℃以上1100℃以下であることが特に好ましい。加熱温度がこの範囲にあることで、LLZ粉末を効率的に製造しやすくなる。 The heating temperature of the precursor powder in the third step may be from 900°C to 1200°C, but is preferably from 950°C to 1150°C, and more preferably from 1000°C to 1100°C. Having the heating temperature in this range makes it easier to efficiently produce the LLZ powder.

 第3工程における前駆体粉末の加熱時間は、加熱温度や前駆体粉末の平均粒径によっても異なるが、1秒以上30秒以下であればよく、1秒以上20秒以下であることが好ましく、1秒以上15秒以下であることがより好ましく、2秒以上10秒以下であることが特に好ましい。加熱時間がこの範囲にあることで、LLZ粉末を効率的に製造しやすくなる。 The heating time of the precursor powder in the third step varies depending on the heating temperature and the average particle size of the precursor powder, but may be from 1 to 30 seconds, preferably from 1 to 20 seconds, more preferably from 1 to 15 seconds, and particularly preferably from 2 to 10 seconds. Having the heating time within this range makes it easier to efficiently produce the LLZ powder.

 加熱方法としては、輻射熱により加熱することが好ましいが、前駆体粉末を直接熱源に接触させて加熱することもできる。輻射熱による加熱には電気炉(電気ヒーター)などを用いることができ、また、火炎により発生する輻射熱を用いることもできる。均一に加熱するという観点では、輻射熱による加熱が好ましい。前駆体粉末を直接熱源に接触させて加熱する方法としては、たとえば、前駆体粉末を火炎に直接接触させて加熱しても良い。エネルギー効率の観点では、前駆体粉末を直接熱源に接触させて加熱することが好ましい。また、前駆体粉末を加熱した高温の気体に接触させて加熱することもできる。また、以上に示した各加熱方法を適宜組合せて加熱することもでき、たとえば火炎により直接加熱した後に、電気炉の輻射熱により加熱することができる。 The heating method is preferably radiant heat, but the precursor powder can also be heated by directly contacting it with a heat source. An electric furnace (electric heater) can be used for radiant heat heating, and radiant heat generated by a flame can also be used. From the viewpoint of uniform heating, heating by radiant heat is preferred. As a method for heating the precursor powder by directly contacting it with a heat source, for example, the precursor powder can be heated by directly contacting it with a flame. From the viewpoint of energy efficiency, it is preferable to heat the precursor powder by directly contacting it with a heat source. The precursor powder can also be heated by contacting it with a heated high-temperature gas. The above heating methods can also be combined appropriately, for example, the precursor powder can be heated directly by a flame and then heated by radiant heat from an electric furnace.

 第3工程において得られるリチウム-ランタン-ジルコニウム複合酸化物粉末の平均粒径は特に制限されないが、30nm以上1.0μm以下であることが好ましく、30nm以上900nm以下であることがより好ましく、30nm以上800nm以下であることがより好ましく、30nm以上700nm以下であることがより好ましく、30nm以上600nm以下であることがより好ましく、30nm以上500nm以下であることがより好ましく、30nm以上400nm以下であることがより好ましく、30nm以上300nm以下であることがより好ましく、40nm以上250nm以下であることがより好ましく、50nm以上200nm以下であることが更に好ましく、60nm以上150nm以下であることが特に好ましい。これにより、小粒径のLLZ粉末を製造しやすくなる。すなわち、第3工程において得られたLLZ粉末は、後述の第4工程において回収した後、そのまま用いることもできるが、解砕処理により容易に小粒径化することができるため、解砕処理により適宜更に小粒径化して用いることもできる。但し、粉末表面の活性を抑制し保存安定性を優れたものとする観点からは、解砕処理を行わないことが好ましい。 The average particle size of the lithium-lanthanum-zirconium composite oxide powder obtained in the third step is not particularly limited, but is preferably 30 nm or more and 1.0 μm or less, more preferably 30 nm or more and 900 nm or less, more preferably 30 nm or more and 800 nm or less, more preferably 30 nm or more and 700 nm or less, more preferably 30 nm or more and 600 nm or less, more preferably 30 nm or more and 500 nm or less, more preferably 30 nm or more and 400 nm or less, more preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, even more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less. This makes it easier to produce a small particle size LLZ powder. That is, the LLZ powder obtained in the third step can be used as it is after recovery in the fourth step described below, but since it can be easily reduced in particle size by a crushing process, it can also be used after being appropriately further reduced in particle size by a crushing process. However, from the viewpoint of suppressing the activity of the powder surface and improving storage stability, it is preferable not to carry out the crushing process.

〔第4工程〕
 本発明に係る第4工程は、第3工程で得られたリチウム-ランタン-ジルコニウム複合酸化物粉末を回収する工程である。回収方法は特に限定されず、例えば、キャリアガスと共に反応容器から移送されるLLZ粉末をバグフィルターなどの公知の手段によって捕集することができる。
[Step 4]
The fourth step according to the present invention is a step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step. The recovery method is not particularly limited, and for example, the LLZ powder transferred from the reaction vessel together with the carrier gas can be collected by a known means such as a bag filter.

 本発明の製造方法は、前述の第3工程の後、第4工程の前に、冷却工程を有していてもよく、例えば、冷却管などの公知の冷却手段により、加熱直後で高温状態のLLZ粉末を冷却してから回収することができる。 The manufacturing method of the present invention may include a cooling step after the third step and before the fourth step. For example, the LLZ powder in a high temperature state immediately after heating can be cooled and then recovered using a known cooling means such as a cooling tube.

<本発明のLLZ粉末>
 本発明の製造方法においては、前駆体粉末の表面にマイクロクラックが生じている場合でも加熱処理後のLLZ粉末の表面にはマイクロクラックが残らず、得られたLLZ粉末に対する粉砕処理及び解砕処理のいずれも不要であることから、小粒径であるにも拘わらず、粉末表面の活性が極力抑えられ、保存安定性に優れるLLZ粉末を得ることができる。なお、製造条件によっては粒子同士が焼結することもあり得るが、その場合であっても、極めて弱い力で解砕できるため、解砕後のLLZ粉末表面にはマイクロクラック等が生じにくく、粉末表面の活性を極力抑えることができ、保存安定性を優れたものとできる。
<LLZ powder of the present invention>
In the manufacturing method of the present invention, even if microcracks are generated on the surface of the precursor powder, no microcracks remain on the surface of the LLZ powder after the heat treatment, and neither pulverization nor crushing is required for the obtained LLZ powder, so that the activity of the powder surface is minimized and an LLZ powder with excellent storage stability can be obtained, even though the particle size is small. Note that, depending on the manufacturing conditions, the particles may sinter together, but even in that case, the particles can be crushed with an extremely weak force, so that microcracks and the like are unlikely to occur on the LLZ powder surface after crushing, the activity of the powder surface can be minimized, and the storage stability can be excellent.

 本発明のLLZ粉末の平均粒径は、30nm以上1.0μm以下であればよいが、好ましくは30nm以上900nm以下であり、より好ましくは30nm以上800nm以下であり、より好ましくは30nm以上700nm以下であり、より好ましくは30nm以上600nm以下であり、より好ましくは30nm以上500nm以下であり、より好ましくは30nm以上400nm以下であり、好ましくは30nm以上300nm以下であり、より好ましくは40nm以上250nm以下であり、より好ましくは50nm以上200nm以下であり、特に好ましくは60nm以上150nm以下である。 The average particle size of the LLZ powder of the present invention may be 30 nm or more and 1.0 μm or less, but is preferably 30 nm or more and 900 nm or less, more preferably 30 nm or more and 800 nm or less, more preferably 30 nm or more and 700 nm or less, more preferably 30 nm or more and 600 nm or less, more preferably 30 nm or more and 500 nm or less, more preferably 30 nm or more and 400 nm or less, preferably 30 nm or more and 300 nm or less, more preferably 40 nm or more and 250 nm or less, more preferably 50 nm or more and 200 nm or less, and particularly preferably 60 nm or more and 150 nm or less.

 本発明に係るLLZ粉末は、XRD測定装置(リガク社製、SmartLab)を用いて、CuKα線(波長λ:1.5418Å)を使用し、管電圧40kV、管電流30mA、ステップ角度0.01°、走査速度10°/minの条件で、回折角2θ:10~90°についてXRD測定を行い、リチウム-ランタン-ジルコニウム複合酸化物及びジルコン酸ランタンについて、ピーク強度が最大となるメインピークを検出して当該各ピークのピーク面積を測定し、前記全ピーク面積に対するリチウム-ランタン-ジルコニウム複合酸化物のピーク面積の比率を算出したとき、当該比率が、50%超であればよいが、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、95%以上であることが特に好ましい。なお、メインピークは、例えば、リチウム-ランタン-ジルコニウム複合酸化物の場合は31°付近のもの、ジルコン酸ランタンの場合は29°付近のものを用いることができる。 The LLZ powder of the present invention is subjected to XRD measurement using an XRD measuring device (Rigaku Corporation, SmartLab) with CuKα radiation (wavelength λ: 1.5418 Å) at a diffraction angle 2θ of 10 to 90° under conditions of a tube voltage of 40 kV, a tube current of 30 mA, a step angle of 0.01°, and a scanning speed of 10°/min. The main peaks with the maximum peak intensity are detected for lithium-lanthanum-zirconium composite oxide and lanthanum zirconate, and the peak areas of each peak are measured. The ratio of the peak area of lithium-lanthanum-zirconium composite oxide to the total peak area is calculated. It is sufficient that the ratio is more than 50%, but it is preferably 60% or more, more preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, and particularly preferably 95% or more. For example, the main peak can be around 31° for lithium-lanthanum-zirconium composite oxide, and around 29° for lanthanum zirconate.

 本発明のリチウム-ランタン-ジルコニウム複合酸化物粉末は、以下の「粘度変化倍率の測定方法」によって得られる粘度変化倍率が1倍であることによって特定することができる。なお、下記粘度変化倍率の測定方法に用いるアクリル樹脂として、例えば、三菱ケミカル社製のBR-105(重量平均分子量が45000、酸価が0mgKOH/g、ガラス転移点が48℃のメタクリル樹脂)を用いることができるが、同様の物性を有する他のアクリル樹脂を用いて粘度変化倍率を測定してもよい。すなわち、例えば、重量平均分子量が40000以上50000以下又は43000以上47000以下であり、酸価が0mgKOH/gであり、ガラス転移点が40℃以上60℃以下又は45℃以上55℃以下であるメタクリル樹脂を用いて粘度変化倍率を測定することができる。 The lithium-lanthanum-zirconium composite oxide powder of the present invention can be specified by a viscosity change ratio of 1 obtained by the following "Method for Measuring Viscosity Change Ratio". As the acrylic resin used in the method for measuring viscosity change ratio below, for example, BR-105 (a methacrylic resin with a weight average molecular weight of 45,000, an acid value of 0 mgKOH/g, and a glass transition point of 48°C) manufactured by Mitsubishi Chemical Corporation can be used, but the viscosity change ratio may also be measured using other acrylic resins with similar physical properties. That is, for example, the viscosity change ratio can be measured using a methacrylic resin with a weight average molecular weight of 40,000 to 50,000 or 43,000 to 47,000, an acid value of 0 mgKOH/g, and a glass transition point of 40°C to 60°C or 45°C to 55°C.

<粘度変化倍率の測定方法>
 平均粒径0.3μmのニッケル粉末100質量部と、アクリル樹脂(重量平均分子量が40000以上50000以下の範囲内にあり且つ酸価が0mgKOH/gであるメタクリル樹脂)を5質量部と、前記リチウム-ランタン-ジルコニウム複合酸化物粉末20質量部と、ターピネオール20質量部と、を混合した後に、三本ロールミルを用いて混錬してペースト状組成物を作製した後、作製直後の粘度と、作製後1週間25℃で保管した後の粘度を、回転粘度計を用いて、25℃において、せん断速度100/sの条件で測定し、作製直後の粘度に対する作製1週間後の粘度の比の値を粘度変化倍率として算出する。
<Method for measuring viscosity change rate>
100 parts by mass of nickel powder having an average particle size of 0.3 μm, 5 parts by mass of acrylic resin (methacrylic resin having a weight average molecular weight in the range of 40,000 to 50,000 and an acid value of 0 mgKOH/g), 20 parts by mass of the lithium-lanthanum-zirconium composite oxide powder, and 20 parts by mass of terpineol are mixed and kneaded using a three-roll mill to prepare a paste-like composition. The viscosity immediately after preparation and the viscosity after storage at 25° C. for one week after preparation are measured using a rotational viscometer at 25° C. and a shear rate of 100/s, and the ratio of the viscosity one week after preparation to the viscosity immediately after preparation is calculated as the viscosity change ratio.

 前述の通り、セラミック粉末を溶媒と混合してセラミックスラリーを作製し、メディアミル等を用いて極めて強い力で長時間、粉砕して微細化した場合、得られるセラミック粉末の表面には多数のマイクロクラックや高活性面が生じ、溶媒中にリチウム成分が溶出する。そのため、当該処理を行って得たLLZ粉末と前述の材料とを混合・混錬してペースト状組成物を得た場合、LLZ粉末から溶出したリチウム成分が、他の材料、特に樹脂と反応することで、ペースト状組成物の粘度が増加する。すなわち、前述の方法で前記粘度の比を測定することで、LLZ粉末の結晶構造中に存在する欠陥の量の指標とすることができる。 As mentioned above, when ceramic powder is mixed with a solvent to prepare a ceramic slurry, and then pulverized for a long period of time using a media mill or the like with extremely strong force to reduce the size of the slurry, numerous microcracks and highly active surfaces are generated on the surface of the resulting ceramic powder, and lithium components are dissolved into the solvent. Therefore, when the LLZ powder obtained by this process is mixed and kneaded with the above-mentioned materials to obtain a paste-like composition, the lithium components dissolved from the LLZ powder react with other materials, particularly resins, thereby increasing the viscosity of the paste-like composition. In other words, measuring the viscosity ratio using the above-mentioned method can be used as an index of the amount of defects present in the crystal structure of the LLZ powder.

 本発明のリチウム-ランタン-ジルコニウム複合酸化物粉末は、熱重量分析(大気雰囲気、10℃/分で昇温)による100℃における重量減少率が5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましく、3.0質量%以下であることがより好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましく、0.0質量%であることが特に好ましい。これにより、LLZ粉末における経時的な不純物の生成が抑制され、保存安定性が良好となりやすい。 The lithium-lanthanum-zirconium composite oxide powder of the present invention preferably has a weight loss rate at 100°C as determined by thermogravimetric analysis (air atmosphere, heating at 10°C/min) of 5.0% by mass or less, more preferably 4.0% by mass or less, more preferably 3.0% by mass or less, more preferably 2.0% by mass or less, more preferably 1.0% by mass or less, even more preferably 0.5% by mass or less, and particularly preferably 0.0% by mass. This inhibits the generation of impurities over time in the LLZ powder, and tends to improve storage stability.

 また、本発明のリチウム-ランタン-ジルコニウム複合酸化物粉末は、熱重量分析(大気雰囲気、10℃/分で昇温)による、300℃における重量減少率が5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましく、3.0質量%以下であることがより好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましく、0.0質量%であることが特に好ましい。これにより、LLZ粉末における経時的な不純物の生成が抑制され、保存安定性が良好となりやすい。 Furthermore, the lithium-lanthanum-zirconium composite oxide powder of the present invention preferably has a weight loss rate at 300°C as determined by thermogravimetric analysis (air atmosphere, heating at 10°C/min) of 5.0% by mass or less, more preferably 4.0% by mass or less, more preferably 3.0% by mass or less, more preferably 2.0% by mass or less, more preferably 1.0% by mass or less, even more preferably 0.5% by mass or less, and particularly preferably 0.0% by mass. This inhibits the generation of impurities over time in the LLZ powder, and tends to improve storage stability.

 以下に本発明について実施例を用いてさらに具体的に説明するが、本発明は以下の実施例に制限されるものではない。 The present invention will be explained in more detail below using examples, but the present invention is not limited to the following examples.

(実施例1~6、比較例1~5)
 まず、表1に記載のジルコン酸ランタン粉末を準備した。次いで、当該ジルコン酸ランタン粉末が懸濁した液中に、炭酸リチウムと水酸化ランタンを溶解し、上記ジルコン酸ランタン粉末の表面に水酸化リチウムと水酸化ランタンを析出させることで被着させた。次いで、これらの化合物が被着したジルコン酸ランタン粉末を、700℃で仮焼し、更にその後、解砕処理及び/又は粉砕処理を行って平均粒径を80nm~150nmの範囲(実施例1~6及び比較例2~5)又は800nm~1200nmの範囲(比較例1)に調整し、前駆体粉末を得た。次いで、上部に粉末を噴出させるためのノズルが設置された縦型の管状容器を用い、前駆体粉末を、開口部の断面積2cmのノズルから、キャリアガス(実施例1~5及び比較例1~4は空気、比較例5は窒素と酸素の混合ガス、実施例6は純酸素を用いた。当該ガス中の大気圧下での酸素分圧は表1に記載の通りとした。)によって気相中に分散させた。そして、前駆体粉末が気相中に分散した状態で、前述の縦型の管状容器を通過させながら、表1に記載の温度で表1に記載の時間加熱した。なお、加熱に用いた縦型の管状容器の外側には電気炉が設置されており、管状容器内が前述の温度となるように設定されたものを用いた。次いで、加熱により得られた粉末が気相中に分散した状態で180℃まで冷却し、冷却した粉末を回収した。なお、加熱後は粉砕処理も解砕処理も行わなかった。得られた粉末について、後述の方法で評価を実施した。結果を表1に示す。
(Examples 1 to 6, Comparative Examples 1 to 5)
First, lanthanum zirconate powders shown in Table 1 were prepared. Then, lithium carbonate and lanthanum hydroxide were dissolved in a liquid in which the lanthanum zirconate powder was suspended, and lithium hydroxide and lanthanum hydroxide were deposited on the surface of the lanthanum zirconate powder. Next, the lanthanum zirconate powder to which these compounds were attached was calcined at 700° C., and then crushed and/or pulverized to adjust the average particle size to a range of 80 nm to 150 nm (Examples 1 to 6 and Comparative Examples 2 to 5) or 800 nm to 1200 nm (Comparative Example 1), thereby obtaining a precursor powder. Next, a vertical tubular container having a nozzle for spraying the powder at the top was used, and the precursor powder was dispersed in the gas phase from a nozzle with a cross-sectional area of 2 cm 2 at the opening by a carrier gas (air was used in Examples 1 to 5 and Comparative Examples 1 to 4, a mixed gas of nitrogen and oxygen was used in Comparative Example 5, and pure oxygen was used in Example 6. The partial oxygen pressure in the gas under atmospheric pressure was as shown in Table 1.). The precursor powder dispersed in the gas phase was then passed through the vertical tubular container described above and heated at the temperature and for the time described in Table 1. An electric furnace was installed outside the vertical tubular container used for heating, and the temperature inside the tubular container was set to the above-mentioned temperature. The powder obtained by heating was then cooled to 180°C while dispersed in the gas phase, and the cooled powder was collected. No pulverization or crushing was performed after heating. The obtained powder was evaluated by the method described below. The results are shown in Table 1.

(実施例7)
 前駆体粉末を実施例1の10倍の濃度(g/L)で気相中に分散させたこと以外は、実施例1と同様の方法で粉末を製造し、後述の方法で評価を実施した。結果を表1に示す。
(Example 7)
A powder was produced in the same manner as in Example 1, except that the precursor powder was dispersed in the gas phase at a concentration (g/L) ten times that of Example 1, and evaluation was carried out in the manner described below. The results are shown in Table 1.

(実施例8)
 回収後に解砕処理を行ったこと以外は、実施例7と同様の方法で粉末を製造し、後述の方法で評価を実施した。結果を表1に示す。
(Example 8)
A powder was produced in the same manner as in Example 7, except that a crushing treatment was carried out after recovery, and evaluation was carried out in the manner described below. The results are shown in Table 1.

(比較例6)
 まず、78nmのジルコン酸ランタン粉末と、炭酸リチウムと、酸化ランタンとを、湿式ミルを用いて20時間混合し、100℃で6時間乾燥させて原料粉末混合物を得た。次いで、得られた原料粉末混合物をるつぼに入れ、バッチ式の電気炉を用いて750℃で10時間加熱し、次いで、冷却して生成物を得た。更に、得られた生成物を、ターピネオールと混合してスラリーを作製し、当該スラリーを用いてビーズミルにより粉砕して粉末を得た。得られた粉末について、後述の方法で評価を実施した。結果を表1に示す。
(Comparative Example 6)
First, 78 nm lanthanum zirconate powder, lithium carbonate, and lanthanum oxide were mixed for 20 hours using a wet mill, and dried at 100°C for 6 hours to obtain a raw material powder mixture. The obtained raw material powder mixture was then placed in a crucible, heated at 750°C for 10 hours using a batch-type electric furnace, and then cooled to obtain a product. Furthermore, the obtained product was mixed with terpineol to prepare a slurry, and the slurry was used to pulverize the mixture using a bead mill to obtain a powder. The obtained powder was evaluated by the method described below. The results are shown in Table 1.

(実施例9)
 ジルコニウム化合物とランタン化合物とを共沈させて得た共沈物を焼成し、得られたジルコン酸ランタンの焼結物を粉砕処理して平均粒径82nmのジルコン酸ランタン粉末を準備したこと以外は、実施例1と同様の方法で粉末を製造し、後述の方法で評価を実施した。結果を表1に示す。
(Example 9)
A powder was produced in the same manner as in Example 1, except that a coprecipitate obtained by coprecipitating a zirconium compound and a lanthanum compound was fired, and the resulting sintered lanthanum zirconate was pulverized to prepare a lanthanum zirconate powder having an average particle size of 82 nm. The powder was evaluated in the manner described below. The results are shown in Table 1.

(実施例10)
 平均粒径80nmのジルコン酸ランタン粉末と、炭酸リチウム粉末と、水酸化ランタン粉末とをビーズミルにより混合することでジルコン酸ランタン粉末表面に炭酸リチウム粉末と水酸化ランタン粉末を被着させて前駆体粉末としたこと以外は、実施例1と同様の方法で粉末を製造し、後述の方法で評価を実施した。結果を表1に示す。
(Example 10)
A precursor powder was produced in the same manner as in Example 1, except that a lanthanum zirconate powder having an average particle size of 80 nm, a lithium carbonate powder, and a lanthanum hydroxide powder were mixed in a bead mill to cause the lithium carbonate powder and the lanthanum hydroxide powder to adhere to the surface of the lanthanum zirconate powder, and the powder was evaluated in the manner described below. The results are shown in Table 1.

<評価方法>
(平均粒径)
 走査型電子顕微鏡(日立ハイテク社製、SU-1510)を用いて粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて個数基準の累積50%粒子径を算出し、平均粒径とした。なお、粒子の投影面積と同じ面積を有する真円の直径を粒子径として測定した。
<Evaluation method>
(Average particle size)
The powder was observed using a scanning electron microscope (SU-1510, manufactured by Hitachi High-Technologies Corporation), and 100 particles constituting the powder were randomly selected from the observation to measure their particle diameters, and the cumulative 50% particle diameter based on the number was calculated based on the particle diameters, which was taken as the average particle diameter. The particle diameter was measured as the diameter of a perfect circle having the same area as the projected area of the particle.

(LLZ生成)
 XRD測定装置(リガク社製、SmartLab)を用いて、CuKα線(波長λ:1.5418Å)を使用し、管電圧40kV、管電流30mA、ステップ角度0.01°、走査速度10°/minの条件で、回折角2θ:10°~90°についてXRD測定を行った。リチウム-ランタン-ジルコニウム複合酸化物及びジルコン酸ランタンについて、ピーク強度が最大となるメインピークを検出して当該各ピークのピーク面積を測定し、前記全ピーク面積に対するリチウム-ランタン-ジルコニウム複合酸化物のピーク面積の比率を算出した。当該比率が50%超のものを「A」、50%未満のものを「B」とした。なお、メインピークとして、リチウム-ランタン-ジルコニウム複合酸化物の場合は31°付近のもの、ジルコン酸ランタンの場合は29°付近のものを用いた。
(LLZ Generation)
XRD measurement was performed using an XRD measuring device (Rigaku Corporation, SmartLab) with CuKα radiation (wavelength λ: 1.5418 Å) at a diffraction angle 2θ of 10° to 90° under the conditions of a tube voltage of 40 kV, a tube current of 30 mA, a step angle of 0.01°, and a scanning speed of 10°/min. For the lithium-lanthanum-zirconium composite oxide and lanthanum zirconate, the main peak with the maximum peak intensity was detected, the peak area of each peak was measured, and the ratio of the peak area of the lithium-lanthanum-zirconium composite oxide to the total peak area was calculated. Those with a ratio of more than 50% were designated "A", and those with a ratio of less than 50% were designated "B". In addition, the main peak was selected to be near 31° in the case of the lithium-lanthanum-zirconium composite oxide, and near 29° in the case of lanthanum zirconate.

(粘度変化倍率)
 平均粒径0.3μmのニッケル粉末100質量部と、アクリル樹脂として三菱ケミカル社製のBR-105(重量平均分子量が45000、酸価が0mgKOH/g、ガラス転移点が48℃のメタクリル樹脂)を5質量部と、LLZ粉末20質量部と、ターピネオール20質量部と、を混合後、三本ロールミル(井上製作所製)を用いて混錬し、ペースト状組成物を得た。次いで、作製直後の粘度と、作製1週間後の粘度を、回転粘度計(ブルックフィールド社製、HADV-II+Pro)を用いて、25℃において、せん断速度100/sの条件で測定し、作製直後の粘度に対する作製1週間後の粘度の比率を粘度変化倍率として算出した。当該粘度変化倍率を四捨五入した値が1倍となるものを「A」、1倍超となるものを「B」とした。なお、作製1週間後の粘度を測定するまでは、ペースト状組成物を25℃で密閉容器内に保管した。
(Viscosity change ratio)
100 parts by mass of nickel powder having an average particle size of 0.3 μm, 5 parts by mass of BR-105 (a methacrylic resin having a weight average molecular weight of 45,000, an acid value of 0 mgKOH/g, and a glass transition point of 48 ° C.) manufactured by Mitsubishi Chemical Corporation as an acrylic resin, 20 parts by mass of LLZ powder, and 20 parts by mass of terpineol were mixed and kneaded using a three-roll mill (manufactured by Inoue Seisakusho) to obtain a paste-like composition. Next, the viscosity immediately after production and the viscosity one week after production were measured using a rotational viscometer (manufactured by Brookfield, HADV-II + Pro) at 25 ° C. and a shear rate of 100 / s, and the ratio of the viscosity one week after production to the viscosity immediately after production was calculated as the viscosity change rate. The viscosity change rate rounded off to 1 was designated as "A", and the viscosity change rate exceeding 1 was designated as "B". The paste-like composition was stored in a sealed container at 25° C. until the viscosity was measured one week after preparation.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 本発明に係る製造方法は、工業的にLLZを製造するための方法として利用することができる。また本発明に係るLLZは、キャパシタ等の電子部品の材料等の各種用途に用いることができる。
 
The manufacturing method according to the present invention can be used as a method for industrially manufacturing LLZ. The LLZ according to the present invention can be used for various applications such as materials for electronic components such as capacitors.

Claims (7)

 平均粒径が20nm以上200nm以下のジルコン酸ランタン粉末、ランタン化合物及びリチウム化合物をそれぞれ準備する第1工程と、
 前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させて前駆体粉末を生成する第2工程と、
 大気圧下での酸素分圧が1.0×10-30atm超1.0atm以下の気体をキャリアガスとし、前記キャリアガス中に前記前駆体粉末を分散させた状態で、前記前駆体粉末を900℃以上1200℃以下の温度で1秒以上30秒以下の時間、加熱することによって、リチウム-ランタン-ジルコニウム複合酸化物粉末を得る第3工程と、
 前記第3工程で得られたリチウム-ランタン-ジルコニウム複合酸化物粉末を回収する第4工程と、
 を有する、リチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。
A first step of preparing a lanthanum zirconate powder having an average particle size of 20 nm or more and 200 nm or less, a lanthanum compound, and a lithium compound;
a second step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder to produce a precursor powder;
a third step of obtaining a lithium-lanthanum-zirconium composite oxide powder by using a gas having an oxygen partial pressure of more than 1.0×10 −30 atm and not more than 1.0 atm as a carrier gas and heating the precursor powder at a temperature of 900° C. or more and 1200° C. or less for a time of 1 second or more and 30 seconds or less in a state in which the precursor powder is dispersed in the carrier gas;
A fourth step of recovering the lithium-lanthanum-zirconium composite oxide powder obtained in the third step;
The present invention relates to a method for producing a lithium-lanthanum-zirconium composite oxide powder having the above structure.
 前記第3工程において得られるリチウム-ランタン-ジルコニウム複合酸化物粉末の平均粒径が30nm以上1.0μm以下である、請求項1に記載のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。 The method for producing lithium-lanthanum-zirconium composite oxide powder according to claim 1, wherein the average particle size of the lithium-lanthanum-zirconium composite oxide powder obtained in the third step is 30 nm or more and 1.0 μm or less.  前記第3工程において得られるリチウム-ランタン-ジルコニウム複合酸化物粉末の平均粒径が30nm以上300nm以下である、請求項1に記載のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。 The method for producing lithium-lanthanum-zirconium composite oxide powder according to claim 1, wherein the average particle size of the lithium-lanthanum-zirconium composite oxide powder obtained in the third step is 30 nm or more and 300 nm or less.  前記第2工程が、前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させ、次いで、前記ランタン化合物及び前記リチウム化合物が被着した前記ジルコン酸ランタン粉末を仮焼して前駆体粉末を生成する工程である、請求項1~3のうちいずれか1項に記載のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。 The method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of claims 1 to 3, wherein the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, and then calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to produce a precursor powder.  前記第2工程が、前記ジルコン酸ランタン粉末の表面に、前記ランタン化合物及び前記リチウム化合物を被着させ、次いで、前記ランタン化合物及び前記リチウム化合物が被着した前記ジルコン酸ランタン粉末を仮焼して仮焼物を形成し、更に、当該仮焼物を粉砕処理及び/又は解砕処理して平均粒径が30nm以上300nm以下の前駆体粉末を生成する工程である、請求項1~3のうちいずれか1項に記載のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。 The method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of claims 1 to 3, wherein the second step is a step of depositing the lanthanum compound and the lithium compound on the surface of the lanthanum zirconate powder, calcining the lanthanum zirconate powder to which the lanthanum compound and the lithium compound are deposited to form a calcined product, and further pulverizing and/or crushing the calcined product to produce a precursor powder having an average particle size of 30 nm to 300 nm.  前記ジルコン酸ランタン粉末がランタン化合物とジルコニウム化合物との共沈物を加熱して得られたものである、請求項1~3のうちいずれか1項に記載のリチウム-ランタン-ジルコニウム複合酸化物粉末を製造する方法。 The method for producing a lithium-lanthanum-zirconium composite oxide powder according to any one of claims 1 to 3, wherein the lanthanum zirconate powder is obtained by heating a coprecipitate of a lanthanum compound and a zirconium compound.  平均粒径が30nm以上1.0μm以下であり、下記方法で測定した粘度変化倍率が1倍である、リチウム-ランタン-ジルコニウム複合酸化物粉末。
<粘度変化倍率の測定方法>
 平均粒径0.3μmのニッケル粉末100質量部と、アクリル樹脂(重量平均分子量が40000以上50000以下の範囲内にあり且つ酸価が0mgKOH/gであるメタクリル樹脂)を5質量部と、前記リチウム-ランタン-ジルコニウム複合酸化物粉末20質量部と、ターピネオール20質量部と、を混合した後に、三本ロールミルを用いて混錬してペースト状組成物を作製した後、作製直後の粘度と、作製後1週間25℃で保管した後の粘度を、回転粘度計を用いて、25℃において、せん断速度100/sの条件で測定し、作製直後の粘度に対する作製1週間後の粘度の比の値を粘度変化倍率として算出する。
 
 
A lithium-lanthanum-zirconium composite oxide powder having an average particle size of 30 nm or more and 1.0 μm or less, and a viscosity change rate of 1, as measured by the following method.
<Method for measuring viscosity change rate>
100 parts by mass of nickel powder having an average particle size of 0.3 μm, 5 parts by mass of acrylic resin (methacrylic resin having a weight average molecular weight in the range of 40,000 to 50,000 and an acid value of 0 mgKOH/g), 20 parts by mass of the lithium-lanthanum-zirconium composite oxide powder, and 20 parts by mass of terpineol are mixed and kneaded using a three-roll mill to prepare a paste-like composition. The viscosity immediately after preparation and the viscosity after storage at 25° C. for one week after preparation are measured using a rotational viscometer at 25° C. and a shear rate of 100/s, and the ratio of the viscosity one week after preparation to the viscosity immediately after preparation is calculated as the viscosity change ratio.

PCT/JP2024/023404 2023-06-29 2024-06-27 Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder WO2025005195A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023107232 2023-06-29
JP2023-107232 2023-06-29
JP2023-120284 2023-07-24
JP2023120284 2023-07-24

Publications (1)

Publication Number Publication Date
WO2025005195A1 true WO2025005195A1 (en) 2025-01-02

Family

ID=93939203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/023404 WO2025005195A1 (en) 2023-06-29 2024-06-27 Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder

Country Status (2)

Country Link
TW (1) TW202502662A (en)
WO (1) WO2025005195A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065704A (en) * 2016-10-17 2018-04-26 国立大学法人三重大学 Garnet-type lithium-lanthanum-zirconium composite oxide and method for producing the same
JP2018125062A (en) * 2017-01-30 2018-08-09 セントラル硝子株式会社 Method for producing electrode laminate for all solid lithium battery, electrode composite for all solid lithium battery, and method for producing the same
JP2018195483A (en) * 2017-05-18 2018-12-06 日立化成株式会社 Solid electrolyte sheet and manufacturing method of the same, and solid-state battery
JP2022547694A (en) * 2019-09-13 2022-11-15 エボニック オペレーションズ ゲーエムベーハー Preparation of nanostructured mixed lithium zirconium oxides by spray pyrolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065704A (en) * 2016-10-17 2018-04-26 国立大学法人三重大学 Garnet-type lithium-lanthanum-zirconium composite oxide and method for producing the same
JP2018125062A (en) * 2017-01-30 2018-08-09 セントラル硝子株式会社 Method for producing electrode laminate for all solid lithium battery, electrode composite for all solid lithium battery, and method for producing the same
JP2018195483A (en) * 2017-05-18 2018-12-06 日立化成株式会社 Solid electrolyte sheet and manufacturing method of the same, and solid-state battery
JP2022547694A (en) * 2019-09-13 2022-11-15 エボニック オペレーションズ ゲーエムベーハー Preparation of nanostructured mixed lithium zirconium oxides by spray pyrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI JUN; ZHANG JIAXU; ZHAI HUIYU; TANG XINFENG; TAN GANGJIAN: "Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER, AMSTERDAM, NL, vol. 42, no. 4, 16 November 2021 (2021-11-16), AMSTERDAM, NL, pages 1568 - 1575, XP086919414, ISSN: 0955-2219, DOI: 10.1016/j.jeurceramsoc.2021.11.028 *
SACCI ROBERT L., MCAULIFFE REBECCA D., MALKOWSKI THOMAS F., KIDDER NATHAN, CHEN X. CHELSEA, HUQ ASHFIA, KIRKHAM MELANIE, ARMSTRONG: "La 2 Zr 2 O 7 Nanoparticle-Mediated Synthesis of Porous Al-Doped Li 7 La 3 Zr 2 O 12 Garnet", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 60, no. 13, 5 July 2021 (2021-07-05), Easton , US , pages 10012 - 10021, XP093252598, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.1c01300 *

Also Published As

Publication number Publication date
TW202502662A (en) 2025-01-16

Similar Documents

Publication Publication Date Title
WO2022214052A1 (en) Doped lithium ferromanganese phosphate-carbon composite material and preparation method therefor
US8546284B2 (en) Process for the production of plasma sprayable yttria stabilized zirconia (YSZ) and plasma sprayable YSZ powder produced thereby
KR102190774B1 (en) Process for the preparation of lithium titanium spinel and its use
TWI245742B (en) Method for manufacturing highly-crystallized oxide powder
KR102241096B1 (en) Manufacturing method of garnet oxide type solid electrolyte having cubic structrue
JP3894778B2 (en) Lithium titanate and lithium battery using the same
JP2005519831A (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JP6161467B2 (en) Composite oxide powder for solid oxide fuel cell and method for producing the same
JP6434555B2 (en) Negative electrode active material composite for lithium ion secondary battery and method for producing the same
CN103474645A (en) Preparation method for lithium titanate
CN101746834B (en) Preparation method of perovskite composite oxide La1-xCaxFeO3 ultrafine powder
Shangguan et al. Synthesis and performance of tetragonal BaTiO3 fine powders via a facile tartaric acid assisted method
JP7217514B2 (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
JPH1179746A (en) Perovskite composite oxide and its production
CN100579911C (en) A kind of method for synthesizing titanium dioxide nanopowder at low temperature
JP7471829B2 (en) Method for producing vanadium dioxide
KR101157460B1 (en) Aluminium doped zinc oxide particle and manufacturing method of producing the same using spray pyrolysis
WO2025005195A1 (en) Method for producing lithium-lanthanum-zirconium composite oxide powder and lithium-lanthanum-zirconium composite oxide powder
JP2011063494A (en) Cylindrical indium tin oxide powder and method for producing the same
JP4255256B2 (en) Magnesium oxide powder for raw material of magnesium oxide vapor deposition material
JP2001010867A (en) Method for producing ceramic raw material particle
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
WO2014021028A1 (en) Method for producing fuel electrode material for solid oxide fuel cell
CN115465879B (en) Spherical CeO 2 Is prepared by the preparation method of (2)
KR100491677B1 (en) METHOD FOR PREPARING OF CeO2 NANO POWDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24832053

Country of ref document: EP

Kind code of ref document: A1