[go: up one dir, main page]

WO2025005092A1 - Treatment solution, method for treating object, and method for producing semiconductor device - Google Patents

Treatment solution, method for treating object, and method for producing semiconductor device Download PDF

Info

Publication number
WO2025005092A1
WO2025005092A1 PCT/JP2024/023037 JP2024023037W WO2025005092A1 WO 2025005092 A1 WO2025005092 A1 WO 2025005092A1 JP 2024023037 W JP2024023037 W JP 2024023037W WO 2025005092 A1 WO2025005092 A1 WO 2025005092A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
treatment liquid
group
content
treatment
Prior art date
Application number
PCT/JP2024/023037
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 水谷
悠太 滋野井
大洋 三浦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2025005092A1 publication Critical patent/WO2025005092A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a processing liquid, a processing method for an object, and a manufacturing method for a semiconductor device.
  • Semiconductor elements are manufactured by forming a resist film on a laminate having a metal film, which serves as the wiring material on a substrate, an etching stop layer, and an interlayer insulating layer, and then carrying out a photolithography process.
  • a method is widely known in which a processing liquid that dissolves metals and/or organic substances is used to etch or remove foreign matter from the substrate surface.
  • a chemical mechanical polishing (CMP) process may be performed to planarize a semiconductor substrate surface having a metal wiring film, a barrier metal, an insulating film, and the like, using a polishing slurry containing abrasive particles (e.g., silica, alumina, and the like).
  • abrasive particles e.g., silica, alumina, and the like.
  • metal components derived from the polishing particles used in the CMP process, the polished wiring metal film and/or the barrier metal, etc. tend to remain on the polished semiconductor substrate surface. For this reason, after the CMP process, a step of removing these residues using a treatment liquid is generally carried out.
  • Patent Document 1 discloses "a water-based formulation having choline hydroxide together with a polymer selected from the group consisting of an acrylamide-methyl-propanesulfonate polymer, an acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer, and mixtures thereof, and a quaternary ammonium hydroxide having more than 4 carbon atoms or a non-acetylenic surfactant as a post-CMP cleaning formulation.”
  • the inventors of the present invention have investigated the removability of residues present on the copper surface of a target object after CMP processing using the post-CMP cleaning formulation described in Patent Document 1, and have found that it is difficult to simultaneously inhibit corrosion of the copper surface and remove organic residues from the copper surface.
  • an object of the present invention is to provide a treatment liquid which, when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes little corrosion of copper and is excellent in removing organic residues from the copper surface.
  • Another object of the present invention is to provide a method for treating an object using the treatment liquid, and a method for manufacturing a semiconductor device.
  • An anionic polymer A phosphonic acid compound, and a hydroxyl-containing carboxylic acid, a mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer is 0.1 to 1000;
  • a processing solution used in semiconductor manufacturing processes having a pH of 0.1 to 7.0.
  • hydroxyl group-containing carboxylic acid is selected from the group consisting of citric acid, malic acid, tartaric acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, citramalic acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, salicylic acid, creosote acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orselliic acid, gallic acid, mandelic acid, benzilic acid, atrolactic acid, mellotic acid, phloretic acid, coumaric acid, umbellic acid, caffeic acid, ferul
  • the anionic polymer is selected from the group consisting of polyacrylic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), 2-acrylamido-2-methyl-1-propanesulfonic acid-acrylic acid copolymer, polyvinylphosphonic acid, poly(N-vinylacetamide), and styrenesulfonic acid-acrylic acid-vinylphosphonic acid copolymer.
  • a method for treating an object comprising a step of contacting the object that has been subjected to chemical mechanical polishing with the treatment liquid according to any one of [1] to [14].
  • a method for manufacturing a semiconductor device comprising the method for treating an object according to [15].
  • a treatment liquid can be provided which, when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes little corrosion of copper and is excellent in removing organic residues from the copper surface.
  • the present invention also provides a method for treating an object using the treatment liquid, and a method for manufacturing a semiconductor device.
  • a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits.
  • total solid content refers to the total mass of all components contained in the treatment liquid other than water and solvents such as organic solvents.
  • the “content” of the component means the total content of those two or more components.
  • the compounds described herein may contain structural isomers, optical isomers, and isotopes.
  • the structural isomers, optical isomers, and isotopes may be contained alone or in combination of two or more kinds.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as "substituents, etc.") represented by specific symbols, or when a plurality of substituents, etc. are simultaneously specified, it means that the respective substituents, etc. may be the same or different from each other. This also applies to the specification of the number of substituents, etc.
  • the bonding direction of the divalent group described in this specification is not limited unless otherwise specified.
  • Y when Y is -COO- in a compound represented by the formula "X-Y-Z", Y may be -CO-O- or -O-CO-.
  • the above compound may be "X-CO-O-Z" or "X-O-CO-Z".
  • (meth)acrylic is a general term including acrylic and methacrylic, and means “at least one of acrylic and methacrylic.”
  • (meth)acrylic acid means “at least one of acrylic acid and methacrylic acid.”
  • the molecular weight of a compound having a molecular weight distribution is the weight average molecular weight.
  • the polymers used are commercially available and have catalog values (nominal values published by the manufacturer) for the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (also referred to as molecular weight distribution) (Mw/Mn) of the polymer, the catalog values are used.
  • ppm means “parts-per-million (10 -6 )" and “ppb” means “parts-per-billion (10 -9 ).”
  • 1 ⁇ angstrom corresponds to 0.1 nm.
  • the treatment liquid of the present invention is used in a semiconductor manufacturing process, and contains an anionic polymer, a phosphonic acid compound, and a hydroxyl group-containing carboxylic acid, the mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer being 0.1 to 1000, and the pH being 0.1 to 7.0.
  • the mechanism by which the treatment liquid of the present invention having the above-mentioned composition is able to solve the problems of the present invention is not entirely clear, but the present inventors speculate as follows.
  • the mechanism by which the effects are obtained is not limited by the following speculation. In other words, even if the effects are obtained by a mechanism other than the following, it is included in the scope of the present invention.
  • the treatment solution of the present invention is characterized in that it contains an anionic polymer.
  • Hydroxyl-containing carboxylic acid and acid compounds such as phosphonic acid compounds are effective in removing organic residues containing copper generated after CMP treatment, but they corrode copper.
  • the present inventors have now investigated the composition of the treatment solution and have surprisingly found that adding an anionic polymer to the treatment solution containing the above-mentioned hydroxyl-containing carboxylic acid and phosphonic acid compound not only inhibits copper corrosion but also has an effect on the removal of organic residues.
  • the treatment liquid of the present invention contains an anionic polymer.
  • the anionic polymer is a polymer containing a functional group (hereinafter also referred to as an "anionic functional group") that exhibits anionic properties when dissolved in water, such as a carboxy group.
  • the anionic polymer is preferably a polymer containing a repeating unit (hereinafter also referred to as "repeating unit A") having an anionic functional group.
  • the anionic polymer may have a repeating unit other than the repeating unit A, but is preferably a polymer consisting only of the repeating unit A.
  • the anionic polymer may have two or more kinds of repeating units A.
  • the polymerization mode is not particularly limited, and the polymer may be a graft copolymer, a block copolymer, or the like.
  • the anionic functional group contained in the repeating unit A is not particularly limited, and examples thereof include an acid group or a salt thereof.
  • Specific examples of the acid group include a carboxy group, a sulfonic acid group, a phosphonic acid group, and a phenolic hydroxyl group.
  • Salts of acid groups include, for example, ammonium, potassium, sodium, and lithium salts.
  • the number of acid groups or salts thereof contained in the repeating unit A is not particularly limited, but is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 or 2.
  • the anionic polymer is preferably a polymer containing a repeating unit A selected from the group consisting of a repeating unit having a carboxy group or a salt thereof, and a repeating unit having a sulfonic acid group or a salt thereof, more preferably a polymer consisting only of a repeating unit A selected from the group consisting of a repeating unit having a carboxy group or a salt thereof, and a repeating unit having a sulfonic acid group or a salt thereof, and even more preferably a polymer consisting only of a repeating unit A having a carboxy group, or a polymer consisting only of a repeating unit A having a sulfonic acid group.
  • repeating unit A examples include repeating units derived from a compound having an acid group or a salt thereof, and an ethylenically unsaturated group. Specific examples of the acid group or a salt thereof are as described above.
  • the ethylenically unsaturated group is a functional group having an ethylenically unsaturated bond.
  • Examples of the ethylenically unsaturated group include an aromatic vinyl group, an acryloyloxy group (CH 2 ⁇ CH-COO-), a methacryloyloxy group (CH 2 ⁇ CCH 3 -COO-), an acrylamide group (CH 2 ⁇ CH-CONH-), a methacrylamide group (CH 2 ⁇ CCH 3 -CONH-), a maleimide group, a vinyl group, and a vinyl ether group.
  • aromatic vinyl groups, acryloyloxy groups, methacryloyloxy groups, acrylamide groups, and vinyl groups are preferred, and as the aromatic vinyl group, a styryl group is preferred.
  • the repeating unit A may be a repeating unit derived from a compound having an acrylamide group (acrylamide-based monomer).
  • acrylamide-based monomer acrylamide-based monomer
  • this is preferred because there is little change in the physical properties of the treatment liquid over time and little corrosion of copper even when a copper-containing object is treated with the treatment liquid after storage over time.
  • the repeating unit A is preferably a repeating unit represented by formula (a).
  • R a1 , R a2 and R a3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an acid group or a salt thereof.
  • L a represents a single bond or a (k+1)-valent linking group.
  • A represents an acid group or a salt thereof.
  • k represents an integer of 1 to 4.
  • R a1 , R a2 and R a3 are preferably a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a methyl group, an ethyl group, a carboxy group or a salt thereof, and more preferably a hydrogen atom, a methyl group, or a carboxy group or a salt thereof.
  • R a1 , R a2 and R a3 represents a hydrogen atom, a methyl group, a carboxy group or a salt thereof, and the remaining two each represent a hydrogen atom.
  • the (k+1)-valent linking group represented by L a is not particularly limited as long as it is a group having a valence corresponding to the number of A, and examples include di- to pentavalent aliphatic hydrocarbon groups which may have a substituent, di- to pentavalent aromatic hydrocarbon groups which may have a substituent, di- to pentavalent aromatic heterocyclic groups which may have a substituent, -O-, -CO-, -SO 2 -, -NR L -, -N ⁇ , and groups formed by combining these.
  • R L represents a hydrogen atom or a monovalent aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear, branched, or cyclic.
  • examples of the divalent linking group represented by L a include a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, -O-, -CO-, -SO 2 -, -NR L -, and groups formed by combining these, and among these, a single bond, -CO-O-, -CO-NH-, an alkylene group having 1 to 5 carbon atoms, a phenylene group, and groups formed by combining these are preferred.
  • the acid group or salt thereof represented by A includes a carboxy group, a sulfonic acid group, a phosphonic acid group, a phenolic hydroxyl group, and salts thereof.
  • a carboxy group or a salt thereof, or a sulfonic acid group or a salt thereof is preferred, and a carboxy group or a salt thereof is more preferred.
  • repeating unit A examples include repeating units derived from compounds selected from the group consisting of acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, p-styrenesulfonic acid, vinylsulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, vinylphosphonic acid, and N-vinylacetamide.
  • the content of repeating unit A is not particularly limited, but is preferably 50 to 100 mol %, more preferably 75 to 100 mol %, and even more preferably 90 to 100 mol %, of the total repeating units of the anionic polymer.
  • the anionic polymer may include a repeat unit B which is different from the repeat unit A.
  • the repeating unit B is not particularly limited, and examples thereof include repeating units derived from a compound selected from the group consisting of alkylene oxide compounds, aromatic vinyl compounds, (meth)acrylic acid alkyl ester compounds which may have a hydroxyl group, unsaturated alcohol compounds, aliphatic conjugated diene compounds, vinyl cyanide compounds, and amide compounds having a polymerizable double bond.
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, vinyltoluene, and p-methylstyrene.
  • the content of repeating unit B is not particularly limited, but is preferably 0.1 to 50 mol %, more preferably 1 to 25 mol %, and even more preferably 1 to 15 mol %, based on the total repeating units of the anionic polymer.
  • the anionic polymer is preferably selected from the group consisting of polyacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), 2-acrylamido-2-methyl-1-propanesulfonic acid-acrylic acid copolymer, polyvinylphosphonic acid, poly(N-vinylacetamide), and styrenesulfonic acid-acrylic acid-vinylphosphonic acid copolymer.
  • the weight average molecular weight of the anionic polymer is preferably 500 to 80,000, more preferably 1,000 to 30,000, even more preferably 2,000 to 20,000, and particularly preferably 4,000 to 10,000.
  • the anionic polymer may be used alone or in combination of two or more kinds.
  • the content of the anionic polymer is preferably from 0.0001 to 10.0% by mass, more preferably from 0.001 to 1.0% by mass, and even more preferably from 0.01 to 1.0% by mass, based on the total mass of the treatment liquid.
  • the mass ratio of the content of the anionic polymer to the total solid content of the treatment liquid is preferably from 0.00001 to 1.0, more preferably from 0.0001 to 0.1, and even more preferably from 0.001 to 0.05.
  • the treatment liquid of the present invention contains a phosphonic acid compound.
  • the phosphonic acid compound refers to a compound that contains at least one phosphonic acid group (a group formed by removing one hydrogen atom on the phosphorus atom from phosphonic acid) in the molecule, and is a compound different from the above-mentioned anionic polymer.
  • the number of phosphonic acid groups in the phosphonic acid compound is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 or 3.
  • the phosphonic acid compound is preferably a low molecular weight compound having no repeating units.
  • the phosphonic acid compound is preferably a compound having no repeating units (corresponding to a low molecular weight compound) rather than a polymeric compound having multiple repeating units.
  • the molecular weight of the phosphonic acid compound is preferably 50 to 1,000, more preferably 100 to 600, and even more preferably 100 to 450.
  • the phosphonic acid compound is preferably an organic acid. That is, the phosphonic acid compound is preferably a phosphonic acid-based organic acid.
  • the number of carbon atoms (carbon number) contained in the phosphonic acid compound is preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.
  • Examples of the phosphonic acid-based organic acid include aliphatic phosphonic acid-based organic acids and aminophosphonic acid-based organic acids.
  • the aliphatic phosphonic acid-based organic acid may further have a hydroxyl group in addition to the phosphonic acid group and the aliphatic group.
  • Examples of phosphonic acid-based organic acids include ethylidene diphosphonic acid, 1-hydroxyethylidene-1,1'-diphosphonic acid (etidronic acid, HEDP), nitrilotris(methylene phosphonic acid) (NTMP), ethylenediaminetetra(methylene phosphonic acid) (EDTMP), 2-phosphonobutane-1,2,4-tricarboxylic acid, diethylenetriaminepenta(methylene phosphonic acid) (DEPPO), 1-hydroxypropylidene-1,1'-diphosphonic acid, 1-hydroxybutylidene-1,1'-diphosphonic acid, ethylaminobis(methylene phosphonic acid), dodecylaminobis(methylene Examples of suitable phosphonic acids include 1,3-propylenediamine bis(methylene phosphonic acid), ethylenediamine tetra(ethylene phosphonic acid), 1,3-propylenediamine tetra(methylene
  • the phosphonic acid compound is preferably selected from the group consisting of etidronic acid, nitrilotris(methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid.
  • examples of the phosphonic acid-based organic acid include the compounds described in paragraphs [0026] to [0036] of WO 2018/020878, the contents of which are incorporated herein by reference.
  • some commercially available phosphonic acid organic acids contain water, such as distilled water, deionized water, and ultrapure water, in addition to the phosphonic acid organic acid, and such phosphonic acid organic acids containing water may be used.
  • the phosphonic acid compounds may be used alone or in combination of two or more.
  • the content of the phosphonic acid compound is preferably from 0.0001 to 10% by mass, more preferably from 0.001 to 5% by mass, and even more preferably from 0.01 to 1% by mass, based on the total mass of the treatment liquid.
  • the mass ratio of the content of the phosphonic acid compound to the total solid content of the treatment liquid is preferably from 0.001 to 10, more preferably from 0.01 to 1.0, and even more preferably from 0.01 to 0.1.
  • the mass ratio of the phosphonic acid compound content to the anionic polymer content is not particularly limited as long as it is 0.1 to 1000, but is preferably 0.1 to 500, more preferably 0.1 to 50, and even more preferably 0.1 to 10.
  • the treatment liquid of the present invention contains a hydroxyl-containing carboxylic acid.
  • the hydroxyl-containing carboxylic acid refers to a compound having at least one hydroxyl group and at least one carboxyl group in the molecule, and is a compound different from the above-mentioned anionic polymer.
  • the number of carboxy groups in the hydroxyl-containing carboxylic acid is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 to 3.
  • the number of hydroxyl groups in the hydroxyl-containing carboxylic acid is preferably 1 to 5, and more preferably 1 to 3.
  • the hydroxyl-containing carboxylic acid is preferably a low molecular weight compound having no repeating units.
  • the molecular weight of the hydroxyl group-containing carboxylic acid is preferably 50 to 1,000, more preferably 100 to 600, and even more preferably 100 to 450.
  • the hydroxyl group-containing carboxylic acid preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 8 carbon atoms.
  • the hydroxyl-containing carboxylic acid is preferably an ⁇ -hydroxycarboxylic acid (a carboxylic acid having a hydroxyl group on the carbon atom to which the carboxyl group is bonded).
  • the hydroxyl group-containing carboxylic acid may be either an aliphatic hydroxycarboxylic acid or an aromatic hydroxycarboxylic acid, but is preferably an aliphatic hydroxycarboxylic acid, and more preferably an aliphatic hydroxycarboxylic acid having 1 to 15 carbon atoms.
  • a compound represented by formula (D) is preferred, and a compound represented by formula (D1) is more preferred.
  • Ld represents a divalent linking group having a hydroxyl group.
  • the divalent linking group include an ether group, a carbonyl group, an ester group, a thioether group, -SO 2 -, -NT-, a divalent hydrocarbon group (e.g., an alkylene group, an alkenylene group, an alkynylene group, and an arylene group), and a combination thereof.
  • T represents a hydrogen atom or a substituent.
  • the divalent linking group may further have a substituent in addition to the hydroxyl group. Examples of the substituent include an alkyl group, an aryl group, a carboxy group, an amino group, and a halogen atom.
  • Ld is preferably a divalent hydrocarbon group having a hydroxyl group, more preferably an alkylene group having a hydroxyl group.
  • the divalent linking group preferably has 1 to 5 hydroxyl groups, and more preferably has 1 to 3 hydroxyl groups.
  • the divalent linking group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 5 carbon atoms.
  • R d1 and R d2 each independently represent a hydrogen atom, a hydroxyl group, or a carboxyl group, and n represents an integer of 1 to 5. However, when n is 1, at least one of R d1 and R d2 represents a hydroxyl group, and when n is 2 or more, at least one of a plurality of R d1s and R d2s represents a hydroxyl group.
  • the total number of carboxy groups contained in the compound represented by formula (D1) is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 or 3.
  • the total number of hydroxyl groups contained in the compound represented by formula (D1) is preferably 1 to 5, and more preferably 1 to 3.
  • n represents an integer of 1 to 5.
  • n is preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • the hydroxyl group-containing carboxylic acid is preferably selected from the group consisting of citric acid, malic acid, tartaric acid, gluconic acid, heptonic acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, citramalic acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, phenyllactic acid, hydroxyphenyllactic acid, salicylic acid, creosote acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orselliic acid, gallic acid, mandelic acid, benzilic acid, atrolactic acid, mellitic acid, phloretic acid,
  • the hydroxyl group-containing carboxylic acids may be used alone or in combination of two or more.
  • the content of the hydroxyl group-containing carboxylic acid is preferably from 0.01 to 60% by mass, more preferably from 0.1 to 50% by mass, and even more preferably from 1 to 30% by mass, based on the total mass of the treatment liquid.
  • the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the total solid content of the treatment liquid is preferably from 0.001 to 10, and more preferably from 0.1 to 1.0.
  • the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is not particularly limited, but is preferably 1 to 12,000, more preferably 10 to 1,000, even more preferably 10 to 250, and particularly preferably 100 to 250.
  • the treatment liquid of the present invention may contain an anionic surfactant, and preferably further contains an anionic surfactant selected from the group consisting of sulfonic acid surfactants, carboxylic acid surfactants, and phosphate ester surfactants.
  • the anionic surfactant is a compound different from the above-mentioned components.
  • the anionic surfactant is preferably a low molecular weight compound that does not have a repeating unit.
  • the molecular weight of the anionic surfactant is preferably from 50 to 1,000, more preferably from 100 to 600, and even more preferably from 100 to 450.
  • Anionic surfactants often have at least one hydrophobic group selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and combinations thereof.
  • the carbon number of the hydrophobic group in the anionic surfactant is preferably 6 or more, and more preferably 10 or more.
  • the carbon number of the hydrophobic group in the anionic surfactant is preferably 9 or more, more preferably 13 or more, and even more preferably 16 or more.
  • the upper limit of the number of carbon atoms in the hydrophobic group of the anionic surfactant is preferably 20 or less, and more preferably 18 or less.
  • a sulfonic acid surfactant having an alkyl chain with 6 or more carbon atoms is preferable.
  • sulfonic acid surfactant examples include alkyl sulfonic acids, alkyl benzene sulfonic acids, alkyl naphthalene sulfonic acids, alkyl diphenyl ether disulfonic acids, alkyl methyl taurines, sulfosuccinic acid diesters, polyoxyalkylene alkyl ether sulfonic acids, and salts thereof.
  • the sulfonic acid surfactants include lauryl sulfonic acid, dodecylbenzene sulfonic acid, alkyl diphenyl ether disulfonic acid (the alkyl group preferably has 12 to 14 carbon atoms), and naphthalene sulfonic acid formalin condensate.
  • carboxylic acid surfactant examples include alkyl carboxylic acids, alkenyl carboxylic acids, alkyl benzene carboxylic acids, polyoxyalkylene alkyl ether carboxylic acids, anhydrides thereof, and salts thereof. More specifically, the carboxylic acid surfactant includes trideceth-4 carboxylic acid, dodecenyl succinic anhydride, lauric acid, myristic acid, palmitic acid, stearic acid, polyoxyethylene lauryl ether acetic acid, and polyoxyethylene tridecyl ether acetic acid.
  • phosphate ester surfactant examples include alkyl phosphate esters and polyoxyalkylene alkyl ether phosphate esters, as well as salts thereof.
  • the phosphate esters and polyoxyalkylene alkyl ether phosphate esters usually include both monoesters and diesters, but either the monoester or the diester can be used alone.
  • salts of the phosphate ester surfactants include sodium salts, potassium salts, ammonium salts, and organic amine salts.
  • phosphate ester surfactants include the compounds described in paragraphs [0012] to [0019] of JP 2011-040502 A, the contents of which are incorporated herein by reference.
  • the anionic surfactant may be used alone or in combination of two or more kinds.
  • the content of the anionic surfactant is preferably from 0.001 to 8.0% by mass, more preferably from 0.005 to 5.0% by mass, and even more preferably from 0.01 to 3.0% by mass, based on the total mass of the treatment liquid.
  • the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the total solid content of the treatment liquid is preferably from 0.0001 to 1.0, and more preferably from 0.001 to 0.1.
  • the treatment liquid may contain water as a solvent.
  • the type of water used in the treatment solution may be any type that does not adversely affect the semiconductor substrate, and may be distilled water, deionized water (DI: De Ionized) water, or pure water (ultrapure water). Pure water (ultrapure water) is preferred because it contains almost no impurities and has less effect on the semiconductor substrate during the manufacturing process of the semiconductor substrate.
  • the water content is preferably 1.0% by mass or more, more preferably 30.0% by mass or more, even more preferably 60.0% by mass or more, and particularly preferably 80.0% by mass or more, based on the total mass of the treatment liquid.
  • the upper limit of the water content is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, even more preferably 99.0% by mass or less, and particularly preferably 97.0% by mass or less, based on the total mass of the treatment liquid.
  • the treatment liquid of the present invention may contain other components in addition to the above-mentioned components, such as a pH adjuster, an organic solvent, a preservative (antibacterial agent), a reducing agent, and a dissolved gas. It is also preferable that the processing solution of the present invention does not contain a quaternary ammonium salt.
  • a pH adjuster such as a pH adjuster, an organic solvent, a preservative (antibacterial agent), a reducing agent, and a dissolved gas.
  • a preservative antibacterial agent
  • a reducing agent a reducing agent
  • a dissolved gas such as sodium bicarbonate, sodium bicarbonate
  • the treatment liquid of the present invention may contain a pH adjuster to adjust and maintain the pH of the treatment liquid of the present invention.
  • the pH adjuster is a basic compound or an acidic compound different from the components contained in the treatment liquid of the present invention described above, however, it is permissible to adjust the pH of the treatment liquid of the present invention by adjusting the amount of each component that can be contained in the treatment liquid of the present invention.
  • the basic compound is a compound that exhibits basicity (pH of more than 7.0) in an aqueous solution, and examples of such compounds include basic inorganic compounds.
  • Examples of basic inorganic compounds include amine compounds such as trishydroxymethylaminomethane, ammonia, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides.
  • the acidic compound serving as the pH adjuster is a compound that exhibits acidity (pH less than 7.0) in an aqueous solution, and examples of such compounds include acidic inorganic compounds.
  • acidic inorganic compounds include hydrochloric acid, nitric acid, nitrous acid, sulfurous acid, phosphoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and hexafluorophosphoric acid.
  • the acidic compound used as the pH adjuster may be a salt of an acidic compound, so long as it becomes an acid or an acid ion (anion) in an aqueous solution.
  • the content of the pH adjuster can be selected according to the type and amount of other components, and the desired pH of the treatment liquid.
  • the content of the pH adjuster is preferably 0.0001 to 10 mass %, more preferably 0.001 to 8 mass %, and even more preferably 0.001 to 0.1 mass %, relative to the total mass of the treatment liquid.
  • the treatment liquid of the present invention may contain an organic solvent.
  • the organic solvent include known organic solvents, such as alcohol-based solvents, glycol-based solvents, glycol ether-based solvents, and ketone-based solvents.
  • the organic solvent is preferably miscible with water in any ratio.
  • the organic solvent for example, the compounds exemplified in paragraphs [0135] to [140] of WO 2022/044893 can be used, the contents of which are incorporated herein by reference.
  • the treatment liquid of the present invention may contain a preservative.
  • the preservative is a compound different from the components contained in the processing solution of the present invention described above.
  • Examples of preservatives include benzoic acid, sodium benzoate, salicylic acid, propionic acid, isopropyl parahydroxybenzoate, isobutyl parahydroxybenzoate, ethyl parahydroxybenzoate, methyl parahydroxybenzoate, butyl parahydroxybenzoate, propyl parahydroxybenzoate, sodium sulfite, sodium hyposulfite, potassium metabisulfite, sorbic acid, potassium sorbate, sodium dehydroacetate, thujaplicin, Aralia udo extract, Styrax japonica extract, Artemisia capillaris extract, oolong tea extract, white milt protein extract, enzymatically hydrolyzed Job's tears extract, tea catechins, apple polyphenols, pectin hydrolyzates, chitosan,
  • the preservative content is preferably 0.0001 to 10.0% by mass, more preferably 0.0001 to 1.0% by mass, and even more preferably 0.0001 to 0.1% by mass, based on the total mass of the treatment solution.
  • the processing liquid of the present invention may contain a reducing agent.
  • the reducing agent is a compound having a reducing action and a function of reducing OH- ions or dissolved oxygen contained in the treatment liquid, and is also called an oxygen scavenger.
  • the reducing agent functions as an anticorrosive agent that improves the corrosion prevention performance of the treatment liquid.
  • the reducing agent used in the treatment liquid is not particularly limited, but examples thereof include ascorbic acid compounds, catechol compounds, hydroxylamine compounds, hydrazide compounds, and reducing sulfur compounds.
  • ascorbic acid compounds include the compounds described in paragraphs [0084] to [0093] of WO 2021/131452. The contents of these compounds are incorporated herein by reference.
  • the treatment liquid of the present invention may contain a dissolved gas.
  • concentration of the dissolved gas in the treatment liquid is preferably 0.01 to 10 mg/L based on the total volume of the treatment liquid of the present invention.
  • the concentration of the dissolved gas is preferably 0.05 mg/L or more, more preferably 0.1 mg/L or more, based on the total volume of the treatment solution of the present invention, in terms of a more excellent residue removal effect, while it is preferably 7 mg/L or less, more preferably 4 mg/L or less, and even more preferably 1.5 mg/L or less, based on the total volume of the treatment solution of the present invention, in terms of a more excellent storage stability.
  • the dissolved gas is not particularly limited, but is preferably clean air.
  • clean air refers to air of Class 8 or lower (Class 8 or a smaller Class) in the ISO standard ISO 14644-1:2015.
  • the concentration of dissolved gas in the treatment liquid can be evaluated by measuring the concentrations of oxygen gas ( O2 gas), nitrogen gas ( N2 gas), and carbon dioxide gas ( CO2 gas) and evaluating them as the sum of these values.
  • the measurement method for oxygen gas, nitrogen gas, and carbon dioxide gas can be the treatment method described in paragraph [0020] of International Publication No. 2020/194978, the contents of which are incorporated herein by reference.
  • the concentration of the dissolved gas can be controlled by known methods, for example, the methods described in paragraphs [0019], [0052] to [0056], and [0060] to [0062] of WO 2020/194978, the contents of which are incorporated herein by reference.
  • the treatment liquid is preferably substantially free of abrasive particles.
  • the abrasive particles refer to particles contained in the polishing liquid used in the polishing process of the semiconductor substrate, and have an average primary particle size of 5 nm or more.
  • the abrasive particles include particles of inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; and particles of organic solids such as polystyrene, polyacrylic resin, and polyvinyl chloride.
  • “Substantially free of abrasive particles” means that the content of abrasive particles is less than 0.1% by mass, preferably 0.01% by mass or less, more preferably 0.001% by mass or less, based on the total mass of the treatment liquid.
  • the lower limit is not particularly limited, and is 0% by mass.
  • the content of abrasive particles can be measured using a commercially available measuring device that uses a laser as a light source and is a liquid-borne particle measuring method based on light scattering.
  • the average primary particle diameter of particles such as abrasive particles is determined by measuring the particle diameters (equivalent circle diameters) of 1,000 primary particles arbitrarily selected from an image obtained using a transmission electron microscope TEM2010 (accelerating voltage 200 kV) manufactured by JEOL Ltd., and calculating the arithmetic mean of the particle diameters.
  • the equivalent circle diameter is the diameter of a perfect circle having the same projected area as the projected area of the particle during observation.
  • a method for removing the abrasive particles from the treatment liquid includes, for example, a purification process such as filtering.
  • the pH of the treatment liquid is not particularly limited as long as it is 0.1 to 7.0, but is preferably 0.1 to 6.0, and more preferably 1.0 to 4.0.
  • the pH of the treatment liquid is preferably in the above range.
  • the pH of the treatment liquid is preferably 3.0 to 7.0, and more preferably 5.0 to 7.0.
  • the pH of the treatment solution can be measured by a method conforming to JIS Z8802-1984 using a known pH meter. The pH is measured at a temperature of 25°C.
  • the content (measured as ion concentration) of metals (e.g., Fe, Co, Na, Cu, Mg, Mn, Li, Al, Cr, Ni, Zn, Sn, and Ag metal elements) contained as impurities in the treatment liquid is preferably 5 mass ppm or less, more preferably 1 mass ppm or less.
  • the content of sodium atoms in the treatment liquid is preferably 1 mass ppm or less relative to the total mass of the treatment liquid.
  • the content of the above metals is more preferably lower than 1 ppm by mass, that is, on the order of ppb by mass or less, particularly preferably 100 ppb by mass or less, and most preferably less than 10 ppb by mass.
  • the lower limit is preferably 0.
  • Methods for reducing the metal content include, for example, performing purification processes such as distillation and filtration using an ion exchange resin or a filter at the stage of the raw materials used in producing the treatment liquid, or at the stage after the treatment liquid is produced.
  • Other methods for reducing the metal content include using a container that is less likely to elute impurities as a container for containing the raw materials or the produced treatment liquid, as described below, and lining the inner walls of pipes with a fluororesin to prevent metal components from eluting from the pipes during the production of the treatment liquid.
  • the treatment liquid be substantially free of insoluble particles.
  • insoluble particles refer to particles of inorganic solids and organic solids, etc., which do not dissolve and ultimately exist as particles in the treatment liquid.
  • substantially free of insoluble particles means that the treatment liquid is diluted 10,000 times with a solvent contained in the treatment liquid to prepare a composition for measurement, and the number of particles having a particle size of 40 nm or more contained in 1 mL of the composition for measurement is 40,000 or less.
  • the number of particles contained in the composition for measurement can be measured in the liquid phase using a commercially available particle counter. As commercially available particle counter devices, devices manufactured by Rion and PMS can be used.
  • a representative device of the former is the KS-19F, and a representative device of the latter is the UltraChem 40.
  • devices such as the KS-42 series and LiQuilaz II S series can be used.
  • insoluble particles include particles of inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; and particles of organic solids such as polystyrene, polyacrylic resin, and polyvinyl chloride.
  • Methods for removing insoluble particles from the treatment liquid include, for example, purification treatments such as filtering.
  • the treatment liquid may contain coarse particles, but it is preferable that the content of coarse particles is low.
  • coarse particles refers to particles whose diameter (particle size) when considered as a sphere is 1 ⁇ m or more.
  • the coarse particles contained in the treatment liquid include particles such as dust, dirt, organic solids, and inorganic solids that are contained as impurities in the raw materials, as well as particles such as dust, dirt, organic solids, and inorganic solids that are brought in as contaminants during the preparation of the treatment liquid, and which ultimately exist as particles in the treatment liquid without dissolving.
  • the content of particles having a particle diameter of 1 ⁇ m or more per 1 mL of the treatment liquid is preferably 100 or less, more preferably 50 or less.
  • the lower limit is preferably 0 or more, more preferably 0.01 or more per 1 mL of the treatment liquid.
  • the content of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measuring device that employs a light scattering liquid particle measuring method using a laser as a light source. Examples of a method for removing coarse particles include a purification process such as filtering, which will be described later.
  • the processing solution can be produced by a known method, which will be described in detail below.
  • the treatment liquid can be produced, for example, by mixing the above-mentioned components.
  • a method for preparing the treatment liquid for example, an anionic polymer, a phosphonic acid compound, a hydroxyl group-containing carboxylic acid, and an optional component as required are sequentially added to a container containing purified pure water, and then the mixture is stirred and mixed, and a pH adjuster is added as required to adjust the pH of the mixture, thereby preparing the treatment liquid.
  • a pH adjuster is added as required to adjust the pH of the mixture, thereby preparing the treatment liquid.
  • the stirring device and stirring method used to prepare the treatment liquid may be a device known as a stirrer or disperser.
  • stirrers include industrial mixers, portable stirrers, mechanical stirrers, and magnetic stirrers.
  • dispersers include industrial dispersers, homogenizers, ultrasonic dispersers, and bead mills.
  • the mixing of the components in the preparation process of the treatment liquid, the purification process described below, and the storage of the produced treatment liquid are preferably carried out at 40°C or less, and more preferably at 30°C or less.
  • the lower limit is preferably 5°C or more, and more preferably 10°C or more.
  • ⁇ Refinification> It is preferable to carry out a purification treatment in advance for one or more of the raw materials for preparing the treatment liquid.
  • the purification treatment include known methods such as distillation, ion exchange, and filtration.
  • the degree of purification is preferably such that the purity of the raw material is 99% by mass or more, and more preferably such that the purity of the undiluted solution is 99.9% by mass or more.
  • the upper limit is preferably 99.9999% by mass or less.
  • the purification method examples include passing the raw material through an ion exchange resin or a reverse osmosis membrane (RO membrane), reprecipitation, distillation of the raw material, and filtering.
  • the purification process may be a combination of the above purification methods.
  • the raw material may be subjected to a primary purification process in which the raw material is passed through an RO membrane, and then a secondary purification process in which the raw material is passed through a purification device made of a cation exchange resin, an anion exchange resin, or a mixed-bed ion exchange resin.
  • the purification process may be carried out multiple times.
  • the filter used for filtering is not particularly limited as long as it is one that has been conventionally used for filtering purposes.
  • filters made of fluororesins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, polyarylsulfone (PAS), and polyolefin resins (including high density or ultra-high molecular weight) such as polyethylene and polypropylene (PP).
  • materials selected from the group consisting of polyethylene, polypropylene (including high density polypropylene), fluororesins (including PTFE and PFA), and polyamide resins (including nylon) are preferred, and fluororesin filters are more preferred. Filtering the raw material using a filter made of these materials can effectively remove highly polar foreign matter that is likely to cause defects.
  • the treatment liquid (including the diluted treatment liquid described below) can be filled into any container for storage, transport and use, so long as corrosiveness and other issues do not pose a problem.
  • the container is preferably one that is highly clean for semiconductor applications and that suppresses the elution of impurities from the inner wall of the container's storage section into each liquid.
  • Examples of such containers include various containers that are commercially available as containers for semiconductor processing liquids, such as the "Clean Bottle” series manufactured by Aicello Chemical Co., Ltd. and the “Pure Bottle” manufactured by Kodama Resin Industry Co., Ltd., but are not limited thereto.
  • the containers exemplified in paragraphs [0121] to [0124] of WO 2022/004217 can also be used, the contents of which are incorporated herein by reference.
  • the containers are preferably cleaned inside before being filled with the treatment liquid.
  • the liquid used for cleaning is preferably one that has a reduced amount of metal impurities.
  • the treatment liquid may be bottled in containers such as gallon bottles or coated bottles, and then transported and stored.
  • the inside of the container may be replaced with an inert gas (nitrogen, argon, etc.) with a purity of 99.99995% by volume or higher. Gases with a low water content are particularly preferred.
  • the treatment liquid may be stored and transported at room temperature, or the temperature may be controlled to a range of -20°C to 20°C to prevent deterioration.
  • ⁇ Clean room> It is preferable that all of the manufacturing of the treatment liquid, the opening and cleaning of the container, the handling including filling of the treatment liquid, the treatment analysis, and the measurement are carried out in a clean room.
  • the clean room preferably meets the 14644-1 clean room standard. It is preferable that the clean room meets any of ISO (International Organization for Standardization) Class 1, ISO Class 2, ISO Class 3, and ISO Class 4, more preferably ISO Class 1 or ISO Class 2, and even more preferably ISO Class 1.
  • ISO International Organization for Standardization
  • the treatment liquid may be subjected to a dilution process in which the concentrated liquid is diluted with a diluent such as water, and then the diluted treatment liquid (diluted treatment liquid) may be used to treat the target object.
  • the treatment liquid may be used after being diluted with a diluent containing water.
  • concentrated solutions and diluted processing solutions are also forms of the processing solution of the present invention so long as they satisfy the requirements of the present invention.
  • the purification treatment prefferably performs a purification treatment beforehand for the dilution liquid used in the dilution step. It is more preferable to perform a purification treatment on the diluted liquid obtained in the dilution step.
  • the purification treatment include the ion component reduction treatment using an ion exchange resin or an RO membrane, etc., and the removal of foreign matter using filtering, which are described above as purification treatments for the treatment liquid, and it is preferable to perform any one of these treatments.
  • the dilution rate of the treatment liquid in the dilution step may be appropriately adjusted depending on the type and content of each component, and the object to be treated.
  • the ratio of the diluted treatment liquid to the treatment liquid before dilution is preferably 10 to 10,000 times, more preferably 10 to 1,000 times, and even more preferably 10 to 300 times, in terms of mass ratio or volume ratio (volume ratio at 23° C.).
  • the dilution liquid preferably contains water, and more preferably is water.
  • the change in pH before and after dilution (the difference between the pH of the treatment liquid before dilution and the pH of the diluted treatment liquid) is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less.
  • the pH of the treatment liquid before dilution and the pH of the diluted treatment liquid are preferably in the above-mentioned preferred embodiments.
  • the specific method of the dilution process for diluting the treatment liquid may be similar to that of the above-mentioned treatment liquid preparation process.
  • the stirring device and stirring method used in the dilution process may also be the same as those known in the art as those mentioned in the above-mentioned treatment liquid preparation process.
  • the treatment liquid of the present invention is preferably used for cleaning an object that has been subjected to a chemical mechanical polishing (CMP) treatment.
  • CMP chemical mechanical polishing
  • the processing liquid may be diluted before use.
  • the object to which the treatment liquid is applied may be, for example, an object containing a metal, such as a semiconductor substrate containing a metal.
  • the metal may be present on any of the front and back surfaces, side surfaces, and inside the grooves of the semiconductor substrate, for example.
  • the metal may be present not only directly on the surface of the semiconductor substrate, but also on the semiconductor substrate via another layer.
  • the metal examples include at least one metal M selected from the group consisting of copper (Cu), cobalt (Co), ruthenium (Ru), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), chromium (Cr), hafnium (Hf), osmium (Os), platinum (Pt), nickel (Ni), manganese (Mn), iron (Fe), zirconium (Zr), molybdenum (Mo), palladium (Pd), lanthanum (La), and iridium (Ir), with Cu, Co, or Ru being preferred, and Cu or Co being more preferred.
  • the object is preferably an object containing at least one metal selected from the group consisting of Cu and Co.
  • the treatment liquid of the present invention can be suitably used for cleaning the copper surface of an object when the object has a copper surface that has been subjected to chemical mechanical polishing.
  • the metal may be any substance that contains a metal (metal atom), and examples include the metal M alone and alloys that contain metal M.
  • the object to be treated with the treatment liquid may include, for example, a semiconductor substrate, a metal wiring film, a barrier metal, and an insulating film.
  • wafers constituting semiconductor substrates include wafers made of silicon-based materials such as silicon (Si) wafers, silicon carbide (SiC) wafers, resin-based wafers containing silicon (glass epoxy wafers), gallium nitride (GaN), gallium phosphide (GaP) wafers, gallium arsenide (GaAs) wafers, and indium phosphide (InP) wafers.
  • silicon silicon
  • SiC silicon carbide
  • gallium phosphide (GaP) wafers gallium arsenide (GaAs) wafers
  • InP indium phosphide
  • silicon wafers examples include n-type silicon wafers doped with pentavalent atoms (e.g., phosphorus (P), arsenic (As), antimony (Sb), etc.) and p-type silicon wafers doped with trivalent atoms (e.g., boron (B), gallium (Ga), etc.).
  • silicon in silicon wafers include amorphous silicon, single crystal silicon, polycrystalline silicon, and polysilicon. Among these, wafers made of silicon-based materials such as silicon wafers, silicon carbide wafers, and resin-based wafers containing silicon (glass epoxy wafers) are preferred.
  • the insulating film examples include silicon oxide films (e.g., silicon dioxide (SiO 2 ) film and tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) film (TEOS film), etc.), silicon nitride films (e.g., silicon nitride (Si 3 N 4 ) and silicon carbide nitride (SiNC), etc.), and low dielectric constant (Low-k) films (e.g., carbon-doped silicon oxide (SiOC) film and silicon carbide (SiC) film, etc.), with low dielectric constant (Low-k) films being preferred.
  • silicon oxide films e.g., silicon dioxide (SiO 2 ) film and tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) film (TEOS film), etc.
  • silicon nitride films e.g., silicon nitride (Si 3 N 4 ) and silicon carbide
  • a copper-containing film As the metal wiring film, a copper-containing film, a cobalt-containing film, and a ruthenium-containing film are preferable.
  • copper-containing films include wiring films made only of metallic copper (copper wiring films) and wiring films made of an alloy of metallic copper and another metal (copper alloy wiring films).
  • copper alloy wiring films include wiring films made of an alloy of copper and one or more metals selected from Al, Ti, Cr, Mn, Ta, and W.
  • examples of the wiring film include a copper-aluminum alloy wiring film (CuAl alloy wiring film), a copper-titanium alloy wiring film (CuTi alloy wiring film), a copper-chromium alloy wiring film (CuCr alloy wiring film), a copper-manganese alloy wiring film (CuMn alloy wiring film), a copper-tantalum alloy wiring film (CuTa alloy wiring film), and a copper-tungsten alloy wiring film (CuW alloy wiring film).
  • CuAl alloy wiring film copper-aluminum alloy wiring film
  • CuTi alloy wiring film copper-titanium alloy wiring film
  • CuCr alloy wiring film copper-chromium alloy wiring film
  • CuMn alloy wiring film copper-manganese alloy wiring film
  • CuTa alloy wiring film copper-tantalum alloy wiring film
  • CuW alloy wiring film copper-tungsten alloy wiring film
  • cobalt-containing film examples include a metal film made only of metallic cobalt (cobalt metal film) and a metal film made of an alloy made of metallic cobalt and another metal (cobalt alloy metal film).
  • cobalt alloy metal film examples include metal films made of an alloy of cobalt and one or more metals selected from Ti, Cr, Fe, Ni, Mo, Pd, Ta, and W.
  • examples of the cobalt alloy metal film include a cobalt-titanium alloy metal film (CoTi alloy metal film), a cobalt-chromium alloy metal film (CoCr alloy metal film), a cobalt-iron alloy metal film (CoFe alloy metal film), a cobalt-nickel alloy metal film (CoNi alloy metal film), a cobalt-molybdenum alloy metal film (CoMo alloy metal film), a cobalt-palladium alloy metal film (CoPd alloy metal film), a cobalt-tantalum alloy metal film (CoTa alloy metal film), and a cobalt-tungsten alloy metal film (CoW alloy metal film).
  • CoTi alloy metal film cobalt-titanium alloy metal film
  • CoCr alloy metal film cobalt-chromium alloy metal film
  • CoFe alloy metal film cobalt-iron alloy metal film
  • CoMo alloy metal film cobalt-nickel alloy metal film
  • CoPd alloy metal film cobalt-palladium
  • ruthenium-containing films include metal films consisting only of metallic ruthenium (ruthenium metal film) and metal films made of alloys consisting of metallic ruthenium and other metals (ruthenium alloy metal film).
  • a method for forming an insulating film is a method in which a wafer constituting a semiconductor substrate is heat-treated in the presence of oxygen gas to form a silicon oxide film, and then silane and ammonia gases are introduced to form a silicon nitride film by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • Examples of methods for forming the copper-containing film, the cobalt-containing film, and the ruthenium-containing film include a method in which a circuit is formed on a wafer having the insulating film by a known method such as a resist, and then a copper-containing film, a cobalt-containing film, and a ruthenium-containing film are formed by a method such as plating and CVD.
  • the object is an object that has been subjected to a CMP process (preferably, an object having a metal that has been subjected to a CMP process).
  • CMP processing is a process in which the surface of a semiconductor substrate having, for example, a metal wiring film, a barrier metal, and an insulating film is planarized by a combined chemical and mechanical polishing action using a polishing slurry containing polishing particles (abrasive grains).
  • the surface of the object may be subjected to a pad cleaning process after the CMP process.
  • the pad cleaning process is a process for reducing residues present on the surface of a treated area using a pad. Specifically, the surface of a treated object that has been subjected to CMP is brought into contact with a pad, and the object and the pad are slid relative to each other while a pad cleaning composition is supplied to the contact portion. As a result, the residues on the surface of the object are removed by the frictional force of the pad and the chemical action of the pad cleaning composition.
  • the pad is not particularly limited and can be selected appropriately depending on the type of object, the type of residue to be removed, and the device to be used.
  • the pad may be an abrasive pad used in CMP processing, or a buff pad such as a foamed polyurethane buff pad, a nonwoven fabric, a suede buff pad, or a sponge. Note that pad cleaning processing using a pad includes processing called buff cleaning or buff polishing.
  • the pad cleaning composition a known cleaning composition can be used depending on the type of object and the type and amount of residue to be removed.
  • components contained in the pad cleaning composition include ammonium fluoride (NH 4 F), 1-hydroxyethylidene-1,1'-diphosphonic acid (HEDPO), water-soluble polymers such as polyvinyl alcohol, a dispersion medium such as water, and an acid such as nitric acid.
  • the pad cleaning composition does not contain abrasive particles.
  • the equipment and conditions used in the pad cleaning process can be appropriately selected from known equipment and conditions depending on the type of object and the type and amount of residue to be removed.
  • the processing method described in paragraphs [0085] to [0088] of WO 2017/169539 can be used, and the contents of these methods are incorporated herein.
  • the pad cleaning treatment it is also preferable to perform pad cleaning treatment on an object using the treatment liquid of the present invention as a pad cleaning composition.
  • the treatment liquid used in the pad cleaning process may be a diluted treatment liquid.
  • the pad cleaning process may be performed only once, or may be performed two or more times. For example, after the CMP process, a pad cleaning process using a polishing pad and a pad cleaning process using a buff pad may be performed.
  • the method for treating an object of the present invention is not particularly limited as long as it is a treatment method including a step of contacting the object with the treatment liquid of the present invention (contact step).
  • the above-mentioned processing method can be used to clean, for example, a semiconductor substrate that has been subjected to a CMP process.
  • the above-mentioned semiconductor substrate cleaning method preferably includes a step of applying the diluted processing solution obtained in the above-mentioned dilution step to a semiconductor substrate that has been subjected to a CMP process to clean the substrate.
  • the method for contacting the object with the treatment liquid is not particularly limited, and examples thereof include a method of immersing the object in the treatment liquid contained in a tank, a method of spraying the treatment liquid on the object, a method of pouring the treatment liquid on the object, and combinations thereof.
  • the above method may be appropriately selected depending on the purpose.
  • the above method may be appropriately adopted from the methods usually used in this field. For example, it may be a scrub cleaning method in which a cleaning member such as a brush is brought into physical contact with the surface of the object while supplying the processing liquid to remove residues, or a spin (drop) method in which the processing liquid is dropped onto the object while rotating the object.
  • the immersion method it is preferable to perform ultrasonic treatment on the object immersed in the processing liquid, since impurities remaining on the surface of the object can be further reduced.
  • the contact between the object and the treatment liquid in the contact step may be carried out only once, or may be carried out two or more times.
  • the same method may be repeated, or different methods may be combined.
  • the contact step may be carried out by either a single wafer method or a batch method.
  • the single-wafer method generally refers to a method in which objects are processed one by one
  • the batch method generally refers to a method in which a plurality of objects are processed simultaneously.
  • the temperature of the processing liquid there are no particular limitations on the temperature of the processing liquid, so long as it is a temperature that is normally used in this field. Generally, processing is performed at room temperature (approximately 25°C), but the temperature can be selected as desired to improve residue removal and minimize damage to components.
  • the temperature of the processing liquid is preferably 10 to 60°C, and more preferably 15 to 50°C.
  • the contact time between the object and the treatment liquid can be changed as appropriate depending on the type and amount of components contained in the treatment liquid. In practice, 10 seconds to 2 minutes is preferable, 20 seconds to 1 minute and 30 seconds is more preferable, and 30 seconds to 1 minute is even more preferable.
  • the amount (supply rate) of the treatment liquid supplied in the contact step is preferably 50 to 5,000 mL/min, and more preferably 500 to 2,000 mL/min.
  • a mechanical stirring method may be used to further enhance the residue removal properties of the treatment solution.
  • the mechanical stirring method include a method of circulating the treatment liquid above the semiconductor substrate, a method of passing or spraying the treatment liquid above the semiconductor substrate, and a method of stirring the treatment liquid by ultrasonic waves or megasonics.
  • a step of contacting the object with a rinse liquid (hereinafter, also referred to as a "rinsing step") may be performed.
  • the rinsing step is preferably performed consecutively after the cleaning step of the object, and is a step of rinsing the object with a rinsing liquid.
  • the rinsing step may be performed using the mechanical stirring method described above.
  • Rinse solvents include, for example, water (preferably deionized (DI) water), methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, gamma-butyrolactone, dimethylsulfoxide, ethyl lactate, and propylene glycol monomethyl ether acetate.
  • DI deionized
  • methanol preferably methanol
  • ethanol isopropyl alcohol
  • N-methylpyrrolidinone gamma-butyrolactone
  • dimethylsulfoxide ethyl lactate
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • an aqueous rinse solution having a pH greater than 8.0 such as diluted aqueous ammonium hydroxide
  • the above-mentioned method for contacting the object with the treatment liquid can be similarly applied.
  • the contact time between the object and the rinse liquid can be appropriately changed depending on the type and content of each component contained in the treatment liquid, and the object and purpose of use of the treatment liquid. In practice, the contact time is preferably 10 to 120 seconds, more preferably 20 to 90 seconds, and even more preferably 30 to 60 seconds.
  • a drying step may be performed to dry the object.
  • the drying method include a spin drying method, a method of passing a dry gas over a semiconductor substrate, a method of heating the substrate by a heating means such as a hot plate or an infrared lamp, a Marangoni drying method, a Rotagoni drying method, an IPA (isopropyl alcohol) drying method, and any combination of these methods.
  • the above-described method for processing an object can be suitably applied to a method for manufacturing a semiconductor device.
  • the cleaning method may be carried out in combination with other processes carried out on the substrate, before or after the other processes, or may be incorporated into other processes while carrying out the cleaning method, or may be incorporated into other processes.
  • Other processes include, for example, processes for forming structures such as metal wiring, gate structures, source structures, drain structures, insulating films, ferromagnetic layers, and non-magnetic layers (e.g., layer formation, etching, chemical mechanical polishing, and modification), resist formation processes, exposure processes, and removal processes, heat treatment processes, cleaning processes, and inspection processes.
  • the above processing method may be performed at any stage of the back-end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front-end process (FEOL: Front end of the line), and is preferably performed in the front-end process or middle process.
  • BEOL Back end of the line
  • MOL Middle of the line
  • FEOL Front end of the line
  • the pH of the treatment solution was measured at 25° C. using a pH meter (manufactured by Horiba, Ltd., model "F-74") in accordance with JIS Z8802-1984.
  • a pH meter manufactured by Horiba, Ltd., model "F-74”
  • handling of containers, preparation, filling, storage and analysis of the treatment solutions were all carried out in a clean room of a level satisfying ISO class 2 or lower.
  • PA Polyacrylic acid (Mw (weight average molecular weight): 6000)
  • PB Polystyrene sulfonic acid (Mw: 75,000)
  • PC Polyvinyl sulfonic acid (Mw: 8000)
  • PD Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (Mw: 6000)
  • PE 2-acrylamide-2-methyl-1-propanesulfonic acid-acrylic acid copolymer (Mw: 8500)
  • PF polycarboxylic acid polyalkylene glycol grafted compound (Mw: 3000, AQUALIC PM-303B, manufactured by Nippon Shokubai Co., Ltd.)
  • PG Polyvinylphosphonic acid (Mw: 24000)
  • pH adjuster As a pH adjuster, either potassium hydroxide (KOH) or sulfuric acid (H 2 SO 4 ) was used as necessary. The contents of potassium hydroxide and sulfuric acid were 2% by mass or less based on the total mass of each treatment liquid.
  • ultrapure water manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was used in preparing the treatment liquid.
  • Example 1 the manufacturing method of each of the treatment liquids of the examples and comparative examples will be described using Example 1 as an example.
  • Citric acid, HEDP, PA, and SA were added to ultrapure water so that the content of each component was the blending ratio shown in each table, and then a pH adjuster was added so that the pH of the mixed liquid was 1.4.
  • the content of ultrapure water is the remainder of the treatment liquid after subtracting the content of each component used in the preparation of the treatment liquid other than ultrapure water.
  • the resulting mixture was thoroughly stirred to prepare the treatment liquid of Example 1.
  • each treatment liquid of the Examples and Comparative Examples having the composition shown in the following table was prepared.
  • polishing liquid 2 as the polishing liquid
  • the wafer that had been subjected to the above polishing treatment was further polished under the conditions of an in-plane average polishing pressure of 70 hPa, a polishing liquid supply rate of 200 mL/min, and a polishing time of 60 seconds.
  • the resulting CMP-treated wafer was scrubbed for 1 minute with a 100-fold diluted sample (diluted with pure water) of the treatment liquid adjusted to room temperature (23° C.), and then dried.
  • the number of defects (total number of defects) having a length of 0.036 ⁇ m or more was counted on the polished surface of the obtained wafer.
  • images of 100 random defects were observed using a SemVision G5 (manufactured by Applied Materials), and the number of organic residues in the 100 defects was counted to estimate the proportion of defects originating from organic matter.
  • the number of organic residues was calculated by multiplying the "total number of defects" by the "ratio of organic matter", and was evaluated based on the following evaluation criteria: A rating is most preferable, and a rating of C or higher is practically preferable.
  • Tables 1 and 2 show the composition of each treatment liquid used in the examples and comparative examples, and the evaluation results of each treatment liquid.
  • Table 1 (continued) is a continuation of Table 1. The same applies to Table 2.
  • Example 1 a treatment solution having a composition of 20 mass % citric acid, 0.5 mass % HEDP, 0.1 mass % PA, and 0.07 mass % SA, and having a pH of 1.4 and 2.5 before and after dilution, respectively, was used for evaluation, and the results show that the organic residue removability was "A" and the copper etching rate was 0.3 ⁇ /min immediately after preparation and after storage at room temperature for 6 months.
  • the values in the "Content (wt %)" column indicate the content (mass %) of each component relative to the total mass of the treatment liquid.
  • the numerical values in the "pH” column indicate the pH of each treatment liquid prepared in the above-mentioned “Preparation of treatment liquid”
  • the numerical values in the "pH after dilution” column indicate the pH of the diluted sample of each treatment liquid used in the above-mentioned “Evaluation of organic residue removability”.
  • the numerical value in the “Ratio” column indicates the content ratio (mass ratio) of each component.
  • the numerical value in the "Phosphonic acid/Polymer” column indicates the mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer.
  • the numerical value in the "Carboxylic acid/Polymer” column indicates the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer.
  • the numerical value in the “Polymer/Total Solids” column indicates the mass ratio of the content of the anionic polymer to the total solids of the treatment liquid.
  • the treatment liquid of the present invention when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes less copper corrosion and is excellent in removing organic residues from the copper surface. Furthermore, it was confirmed that the treatment liquid of the present invention, when applied to an object having a tungsten surface that has been subjected to chemical mechanical polishing, is also excellent in removing organic residues from the tungsten surface. Furthermore, by comparing Examples 1 to 7, it was confirmed that when the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 10 or more, the removability of organic residues is superior, and when it is 100 or more, the removability of organic residues is even superior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention provides a treatment solution that, when the treatment solution is applied to an object having a copper surface which has been subjected to chemical-mechanical polishing treatment, causes little corrosion of copper and is excellent in ability to remove an organic residue on the copper surface. The present invention also provides a method for treating an object using the treatment solution, and a method for producing a semiconductor device using the treatment solution. A treatment solution according to the present invention comprises an anionic polymer, a phosphonic acid compound, and hydroxyl-group-containing carboxylic acid, wherein the mass ratio of the phosphonic acid compound content to the anionic polymer content is 0.1-1000, and the pH is 0.1-7.0. The treatment solution is used in a semiconductor production process.

Description

処理液、被対象物の処理方法、半導体デバイスの製造方法Treatment liquid, method for treating object, and method for manufacturing semiconductor device

 本発明は、処理液、被対象物の処理方法、及び半導体デバイスの製造方法に関する。 The present invention relates to a processing liquid, a processing method for an object, and a manufacturing method for a semiconductor device.

 半導体素子は、基板上に配線材料となる金属膜、エッチング停止層、及び、層間絶縁層を有する積層体上に、レジスト膜を形成し、フォトリソグラフィー工程を実施することにより製造される。上記フォトリソグラフィー工程において、金属及び/又は有機物を溶解する処理液を用いてエッチング又は基板表面の異物を除去する方法が広く知られている。 Semiconductor elements are manufactured by forming a resist film on a laminate having a metal film, which serves as the wiring material on a substrate, an etching stop layer, and an interlayer insulating layer, and then carrying out a photolithography process. In the photolithography process, a method is widely known in which a processing liquid that dissolves metals and/or organic substances is used to etch or remove foreign matter from the substrate surface.

 また、半導体素子の製造において、金属配線膜、バリアメタル、及び、絶縁膜等を有する半導体基板表面を、研磨微粒子(例えば、シリカ及びアルミナ等)を含む研磨スラリーを用いて平坦化する化学機械研磨(CMP:Chemical Mechanical Polishing)処理を行うことがある。
 CMP処理では、CMP処理で使用する研磨微粒子、研磨された配線金属膜及び/又はバリアメタル等に由来する金属成分が、研磨後の半導体基板表面に残存しやすい。このため、CMP処理後、処理液を用いてこれらの残渣物を除去する工程が一般的に実施される。
In the manufacture of semiconductor elements, a chemical mechanical polishing (CMP) process may be performed to planarize a semiconductor substrate surface having a metal wiring film, a barrier metal, an insulating film, and the like, using a polishing slurry containing abrasive particles (e.g., silica, alumina, and the like).
In the CMP process, metal components derived from the polishing particles used in the CMP process, the polished wiring metal film and/or the barrier metal, etc., tend to remain on the polished semiconductor substrate surface. For this reason, after the CMP process, a step of removing these residues using a treatment liquid is generally carried out.

 洗浄工程で用いられる処理液としては、例えば、特許文献1には、「CMP後洗浄配合物として、アクリルアミド-メチル-プロパンスルホナートポリマー、アクリル酸-2-アクリルアミド-2-メチルプロパンスルホン酸コポリマー及びこれらの混合物からなる群から選択されるポリマー、及び4超の炭素原子を有する第四級アンモニウムヒドロキシド又は非アセチレン性界面活性剤と共に水酸化コリンを有する水系配合物」が開示されている。 As a treatment liquid used in the cleaning process, for example, Patent Document 1 discloses "a water-based formulation having choline hydroxide together with a polymer selected from the group consisting of an acrylamide-methyl-propanesulfonate polymer, an acrylic acid-2-acrylamido-2-methylpropanesulfonic acid copolymer, and mixtures thereof, and a quaternary ammonium hydroxide having more than 4 carbon atoms or a non-acetylenic surfactant as a post-CMP cleaning formulation."

特開2011-040722号公報JP 2011-040722 A

 本発明者らが、特許文献1に記載のCMP後洗浄配合物を用いて、CMP処理後の被対象物における銅表面に存在する残渣の除去性を検討したところ、銅表面の腐食の抑制と、銅表面上の有機残渣の除去の両立が困難であることを知見した。 The inventors of the present invention have investigated the removability of residues present on the copper surface of a target object after CMP processing using the post-CMP cleaning formulation described in Patent Document 1, and have found that it is difficult to simultaneously inhibit corrosion of the copper surface and remove organic residues from the copper surface.

 そこで、本発明は、化学機械研磨処理が施された銅表面を有する被対象物に適用した際に、銅の腐食が少なく、且つ、銅表面上の有機残渣の除去性に優れる処理液を提供することを課題とする。
 また、本発明は、上記処理液を用いた被対象物の処理方法、及び半導体デバイスの製造方法を提供することも課題とする。
Therefore, an object of the present invention is to provide a treatment liquid which, when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes little corrosion of copper and is excellent in removing organic residues from the copper surface.
Another object of the present invention is to provide a method for treating an object using the treatment liquid, and a method for manufacturing a semiconductor device.

 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により課題を解決できることを見出した。  As a result of extensive research into solving the above problems, the inventors have discovered that the problems can be solved by the following configuration.

 〔1〕 アニオン性ポリマーと、
 ホスホン酸化合物と、
 水酸基含有カルボン酸と、を含み、
 上記アニオン性ポリマーの含有量に対する上記ホスホン酸化合物の含有量の質量比が0.1~1000であり、
 pHが0.1~7.0である、半導体製造工程で使用される処理液。
 〔2〕 上記水酸基含有カルボン酸が、クエン酸、リンゴ酸、酒石酸、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、シトラマル酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸、サリチル酸、クレオソート酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸、アトロラクチン酸、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、及びシナピン酸からなる群から選択される、〔1〕に記載の処理液。
 〔3〕 上記ホスホン酸化合物が、エチドロン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラメチレンホスホン酸、及び2-ホスホノブタン-1,2,4-トリカルボン酸からなる群から選択される、〔1〕又は〔2〕に記載の処理液。
 〔4〕 上記アニオン性ポリマーが、ポリアクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、2-アクリルアミド-2-メチル-1-プロパンスルホン酸-アクリル酸共重合体、ポリビニルホスホン酸、ポリ(N-ビニルアセトアミド)、及びスチレンスルホン酸-アクリル酸-ビニルホスホン酸共重合体からなる群から選択される、〔1〕~〔3〕のいずれか1つに記載の処理液。
 〔5〕 上記アニオン性ポリマーが、アクリルアミド系モノマーに由来する繰り返し単位を有さない、〔1〕~〔4〕のいずれか1つに記載の処理液。
 〔6〕 上記アニオン性ポリマーの含有量に対する、上記水酸基含有カルボン酸の含有量の質量比が10以上である、〔1〕~〔5〕のいずれか1つに記載の処理液。
 〔7〕 上記アニオン性ポリマーの含有量に対する、上記水酸基含有カルボン酸の含有量の質量比が100以上である、〔1〕~〔6〕のいずれか1つに記載の処理液。
 〔8〕 上記処理液の全固形分に対する、上記アニオン性ポリマーの含有量の質量比が0.0001~0.1である、〔1〕~〔7〕のいずれか1つに記載の処理液。
 〔9〕 スルホン酸系界面活性剤、カルボン酸系界面活性剤、及びリン酸エステル系界面活性剤からなる群から選択されるアニオン性界面活性剤を更に含む、〔1〕~〔8〕のいずれか1つに記載の処理液。
 〔10〕 上記アニオン性界面活性剤が、炭素数6以上のアルキル鎖を有する上記スルホン酸系界面活性剤である、〔9〕に記載の処理液。
 〔11〕 化学機械研磨処理が施された被対象物の洗浄に用いられる、〔1〕~〔10〕のいずれか1つに記載の処理液。
 〔12〕 上記被対象物が化学機械研磨処理が施された銅表面を有し、上記銅表面の洗浄に用いられる、〔11〕に記載の処理液。
 〔13〕 水を含む希釈液で希釈される、〔1〕~〔12〕のいずれか1つに記載の処理液。
 〔14〕 第4級アンモニウム塩を含まない、〔1〕~〔13〕のいずれか1つに記載の処理液。
 〔15〕 化学機械研磨処理が施された被対象物と、〔1〕~〔14〕のいずれか1つに記載の処理液とを接触させる工程を含む、被対象物の処理方法。
 〔16〕 〔15〕に記載の被対象物の処理方法を有する、半導体デバイスの製造方法。
[1] An anionic polymer;
A phosphonic acid compound,
and a hydroxyl-containing carboxylic acid,
a mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer is 0.1 to 1000;
A processing solution used in semiconductor manufacturing processes, having a pH of 0.1 to 7.0.
[2] The treatment solution according to [1], wherein the hydroxyl group-containing carboxylic acid is selected from the group consisting of citric acid, malic acid, tartaric acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, citramalic acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, salicylic acid, creosote acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orselliic acid, gallic acid, mandelic acid, benzilic acid, atrolactic acid, mellotic acid, phloretic acid, coumaric acid, umbellic acid, caffeic acid, ferulic acid, and sinapic acid.
[3] The treatment liquid according to [1] or [2], wherein the phosphonic acid compound is selected from the group consisting of etidronic acid, nitrilotris(methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid.
[4] The treatment liquid according to any one of [1] to [3], wherein the anionic polymer is selected from the group consisting of polyacrylic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), 2-acrylamido-2-methyl-1-propanesulfonic acid-acrylic acid copolymer, polyvinylphosphonic acid, poly(N-vinylacetamide), and styrenesulfonic acid-acrylic acid-vinylphosphonic acid copolymer.
[5] The treatment liquid according to any one of [1] to [4], wherein the anionic polymer does not have a repeating unit derived from an acrylamide-based monomer.
[6] The treatment liquid according to any one of [1] to [5], wherein a mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 10 or more.
[7] The treatment liquid according to any one of [1] to [6], wherein a mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 100 or more.
[8] The treatment liquid according to any one of [1] to [7], wherein a mass ratio of the content of the anionic polymer to the total solid content of the treatment liquid is 0.0001 to 0.1.
[9] The treatment liquid according to any one of [1] to [8], further comprising an anionic surfactant selected from the group consisting of sulfonic acid surfactants, carboxylic acid surfactants, and phosphate ester surfactants.
[10] The treatment liquid according to [9], wherein the anionic surfactant is a sulfonic acid surfactant having an alkyl chain with 6 or more carbon atoms.
[11] The treatment liquid according to any one of [1] to [10], which is used for cleaning an object that has been subjected to a chemical mechanical polishing process.
[12] The treatment solution according to [11], wherein the object has a copper surface that has been subjected to a chemical mechanical polishing treatment, and the treatment solution is used to clean the copper surface.
[13] The treatment liquid according to any one of [1] to [12], which is diluted with a diluent containing water.
[14] The treatment liquid according to any one of [1] to [13], which does not contain a quaternary ammonium salt.
[15] A method for treating an object, comprising a step of contacting the object that has been subjected to chemical mechanical polishing with the treatment liquid according to any one of [1] to [14].
[16] A method for manufacturing a semiconductor device, comprising the method for treating an object according to [15].

 本発明によれば、化学機械研磨処理が施された銅表面を有する被対象物に適用した際に、銅の腐食が少なく、且つ、銅表面上の有機残渣の除去性に優れる処理液を提供できる。
 また、上記処理液を用いた被対象物の処理方法、及び半導体デバイスの製造方法も提供できる。
According to the present invention, a treatment liquid can be provided which, when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes little corrosion of copper and is excellent in removing organic residues from the copper surface.
The present invention also provides a method for treating an object using the treatment liquid, and a method for manufacturing a semiconductor device.

 以下、本発明について詳述する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
The present invention will be described in detail below.
The following description of the configuration may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.

 以下、本明細書における各記載の意味を表す。 The following explains the meaning of each description in this specification.

 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、「全固形分」は、水及び有機溶媒等の溶媒以外の処理液に含まれる全ての成分の合計質量を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書に記載の化合物において、特段の断りがない限り、構造異性体、光学異性体、及び、同位体が含まれていてもよい。また、構造異性体、光学異性体、及び、同位体は、1種単独で含まれていてもよく、2種以上含まれていてもよい。
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In this specification, the term "total solid content" refers to the total mass of all components contained in the treatment liquid other than water and solvents such as organic solvents.
In this specification, when two or more types of a component are present, the "content" of the component means the total content of those two or more components.
Unless otherwise specified, the compounds described herein may contain structural isomers, optical isomers, and isotopes. In addition, the structural isomers, optical isomers, and isotopes may be contained alone or in combination of two or more kinds.

 本明細書において、特定の符号で表示された置換基及び連結基等(以下、置換基等という)が複数あるとき、又は、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 本明細書において表記される2価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。また、上記化合物は「X-CO-O-Z」であってもよく「X-O-CO-Z」であってもよい。
In this specification, when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as "substituents, etc.") represented by specific symbols, or when a plurality of substituents, etc. are simultaneously specified, it means that the respective substituents, etc. may be the same or different from each other. This also applies to the specification of the number of substituents, etc.
The bonding direction of the divalent group described in this specification is not limited unless otherwise specified. For example, when Y is -COO- in a compound represented by the formula "X-Y-Z", Y may be -CO-O- or -O-CO-. In addition, the above compound may be "X-CO-O-Z" or "X-O-CO-Z".

 本明細書における、「(メタ)アクリル」とは、アクリル及びメタクリルを含む総称であり、「アクリル及びメタクリルの少なくとも1種」を意味する。同様に「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。 In this specification, "(meth)acrylic" is a general term including acrylic and methacrylic, and means "at least one of acrylic and methacrylic." Similarly, "(meth)acrylic acid" means "at least one of acrylic acid and methacrylic acid."

 本明細書において、特に断らない限り、分子量分布を有する化合物の分子量は、重量平均分子量である。
 本明細書において、使用したポリマーが市販品であり、そのポリマーの重量平均分子量(Mw)、数平均分子量(Mn)、及び多分散度(分子量分布ともいう)(Mw/Mn)に関してカタログ値(メーカー公称値)がある場合には、カタログ値を採用する。
 カタログ値などが無い場合、又は、測定によりポリマーの重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn)を求める場合、重量平均分子量(Mw)、数平均分子量(Mn)、及び多分散度(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(島津製作所製 ProminenceUFLC)によるGPC測定(溶離液:リン酸緩衝液(pH=7)とアセトニトリルの体積比9:1溶液、流量(サンプル注入量):50μL、カラム:東ソー社製 TSK guardcolumn α + TSK gel α-6000 + TSK gel α-3000、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。なお、上記「TSK guardcolumn α + TSK gel α-6000 + TSK gel α-3000」の記載は、上記3種のカラムを連結して用いたことを示す。
In this specification, unless otherwise specified, the molecular weight of a compound having a molecular weight distribution is the weight average molecular weight.
In this specification, when the polymers used are commercially available and have catalog values (nominal values published by the manufacturer) for the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (also referred to as molecular weight distribution) (Mw/Mn) of the polymer, the catalog values are used.
When there are no catalog values or the like, or when the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw/Mn) of a polymer are determined by measurement, the weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw/Mn) are measured by GPC (Gel Permeation Chromatography) using a GPC device (Shimadzu Corporation, Prominence UFLC) (eluent: phosphate buffer (pH = 7) and acetonitrile in a volume ratio of 9:1, flow rate (sample injection amount): 50 μL, column: Tosoh Corporation, TSK guardcolumn α + TSK gel α-6000 + TSK gel α-3000, column temperature: 40°C, flow rate: 1.0 mL/min, detector: differential refractive index detector (Refractive Index Detector) It is defined as a polystyrene equivalent value measured by a HPLC-MS/MS Detector). The above description of "TSK guard column α + TSK gel α-6000 + TSK gel α-3000" indicates that the above three types of columns were used in combination.

 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味する。
 本明細書において、1Å(オングストローム)は0.1nmに相当する。
In this specification, "ppm" means "parts-per-million (10 -6 )" and "ppb" means "parts-per-billion (10 -9 )."
In this specification, 1 Å (angstrom) corresponds to 0.1 nm.

[処理液]
 本発明の処理液は、アニオン性ポリマーと、ホスホン酸化合物と、水酸基含有カルボン酸と、を含み、アニオン性ポリマーの含有量に対するホスホン酸化合物の含有量の質量比が0.1~1000であり、pHが0.1~7.0である、半導体製造工程で使用される処理液である。
 本発明の処理液が上記構成を取ることで、本発明の課題を解決できる機序は必ずしも明らかではないが、本発明者らは以下の通り推測している。
 なお、下記推測により、効果が得られる機序が制限されるものではない。換言すれば、下記以外の機序により効果が得られる場合でも、本発明の範囲に含まれる。
[Processing solution]
The treatment liquid of the present invention is used in a semiconductor manufacturing process, and contains an anionic polymer, a phosphonic acid compound, and a hydroxyl group-containing carboxylic acid, the mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer being 0.1 to 1000, and the pH being 0.1 to 7.0.
The mechanism by which the treatment liquid of the present invention having the above-mentioned composition is able to solve the problems of the present invention is not entirely clear, but the present inventors speculate as follows.
The mechanism by which the effects are obtained is not limited by the following speculation. In other words, even if the effects are obtained by a mechanism other than the following, it is included in the scope of the present invention.

 本発明の処理液は、アニオン性ポリマーを含む点が大きな特徴である。水酸基含有カルボン酸、及びホスホン酸化合物のような酸化合物はCMP処理後に生じる銅を含む有機残渣の除去に有効であるが、銅を腐食する。
 ここで本発明者らが処理液の組成について検討したところ、上述した水酸基含有カルボン酸、及びホスホン酸化合物を含む処理液に、アニオン性ポリマーを添加することで、驚くべきことに、銅の腐食を抑制できるだけでなく、有機残渣の除去性にも効果があることも見出した。
The treatment solution of the present invention is characterized in that it contains an anionic polymer. Hydroxyl-containing carboxylic acid and acid compounds such as phosphonic acid compounds are effective in removing organic residues containing copper generated after CMP treatment, but they corrode copper.
The present inventors have now investigated the composition of the treatment solution and have surprisingly found that adding an anionic polymer to the treatment solution containing the above-mentioned hydroxyl-containing carboxylic acid and phosphonic acid compound not only inhibits copper corrosion but also has an effect on the removal of organic residues.

 以下、本発明の処理液に含まれる各成分について詳述する。
 なお、本明細書において、化学機械研磨処理が施された銅表面を有する被対象物に適用した際に、銅の腐食が少ないこと、及び、銅表面上の有機残渣の除去性に優れることの少なくとも一方の効果が得られることを、「本発明の効果がより優れる」ともいう。
Each component contained in the processing liquid of the present invention will be described in detail below.
In this specification, when the present invention is applied to an object having a copper surface that has been subjected to a chemical mechanical polishing process, at least one of the effects of reducing copper corrosion and being excellent in the removability of organic residues on the copper surface is obtained, this is also referred to as "the effect of the present invention being superior."

〔アニオン性ポリマー〕
 本発明の処理液はアニオン性ポリマーを含む。アニオン性ポリマーとは、カルボキシ基等の、水に溶解した際にアニオン性を示す官能基(以下、「アニオン性官能基」ともいう。)を含むポリマーである。上記アニオン性ポリマーは、アニオン性官能基を有する繰り返し単位(以下、「繰り返し単位A」ともいう。)を含むポリマーであることが好ましい。
 後段で詳述するように、アニオン性ポリマーは繰り返し単位A以外の繰り返し単位を有してもよいが、繰り返し単位Aのみからなるポリマーであることが好ましい。アニオン性ポリマーは2種以上の繰り返し単位Aを有してもよい。
 アニオン性ポリマーが2種以上の繰り返し単位を有する場合、重合様式は特に制限されず、グラフト共重合体、及びブロック共重合体等であってもよい。
[Anionic polymer]
The treatment liquid of the present invention contains an anionic polymer. The anionic polymer is a polymer containing a functional group (hereinafter also referred to as an "anionic functional group") that exhibits anionic properties when dissolved in water, such as a carboxy group. The anionic polymer is preferably a polymer containing a repeating unit (hereinafter also referred to as "repeating unit A") having an anionic functional group.
As described in detail later, the anionic polymer may have a repeating unit other than the repeating unit A, but is preferably a polymer consisting only of the repeating unit A. The anionic polymer may have two or more kinds of repeating units A.
When the anionic polymer has two or more kinds of repeating units, the polymerization mode is not particularly limited, and the polymer may be a graft copolymer, a block copolymer, or the like.

<繰り返し単位A>
 繰り返し単位Aが有するアニオン性官能基は特に制限されないが、例えば、酸基又はその塩が挙げられる。
 上記酸基としては、具体的には、カルボキシ基、スルホン酸基、ホスホン酸基、及び、フェノール性水酸基が挙げられる。
 酸基の塩としては、例えば、アンモニウム塩、カリウム塩、ナトリウム塩、及びリチウム塩が挙げられる。
 繰り返し単位Aが有する酸基又はその塩の個数は、特に制限されないが、1~4が好ましく、1~3がより好ましく、1又は2が更に好ましい。
<Repeating unit A>
The anionic functional group contained in the repeating unit A is not particularly limited, and examples thereof include an acid group or a salt thereof.
Specific examples of the acid group include a carboxy group, a sulfonic acid group, a phosphonic acid group, and a phenolic hydroxyl group.
Salts of acid groups include, for example, ammonium, potassium, sodium, and lithium salts.
The number of acid groups or salts thereof contained in the repeating unit A is not particularly limited, but is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 or 2.

 本発明の効果がより優れる点で、アニオン性ポリマーは、カルボキシ基又はその塩を有する繰り返し単位、及びスルホン酸基又はその塩を有する繰り返し単位からなる群から選択される繰り返し単位Aを含むポリマーであることが好ましく、カルボキシ基又はその塩を有する繰り返し単位、及びスルホン酸基又はその塩を有する繰り返し単位からなる群から選択される繰り返し単位Aのみからなるポリマーであることがより好ましく、カルボキシ基を有する繰り返し単位Aのみからなるポリマー、又は、スルホン酸基を有する繰り返し単位Aのみからなるポリマーであることが更に好ましい。 In terms of achieving better effects of the present invention, the anionic polymer is preferably a polymer containing a repeating unit A selected from the group consisting of a repeating unit having a carboxy group or a salt thereof, and a repeating unit having a sulfonic acid group or a salt thereof, more preferably a polymer consisting only of a repeating unit A selected from the group consisting of a repeating unit having a carboxy group or a salt thereof, and a repeating unit having a sulfonic acid group or a salt thereof, and even more preferably a polymer consisting only of a repeating unit A having a carboxy group, or a polymer consisting only of a repeating unit A having a sulfonic acid group.

 繰り返し単位Aとしては、例えば、酸基又はその塩、及びエチレン性不飽和基を有する化合物由来の繰り返し単位が挙げられる。
 酸基又はその塩の具体例は、上述した通りである。
 エチレン性不飽和基とは、エチレン性不飽和結合を有する官能基である。エチレン性不飽和基としては、例えば、芳香族ビニル基、アクリロイルオキシ基(CH=CH-COO-)、メタクリロイルオキシ基(CH=CCH-COO-)、アクリルアミド基(CH=CH-CONH-)、メタクリルアミド基(CH=CCH-CONH-)、マレイミド基、ビニル基及びビニルエーテル基が挙げられる。
 エチレン性不飽和基としては、なかでも、芳香族ビニル基、アクリロイルオキシ基、メタクリロイルオキシ基、アクリルアミド基、又はビニル基が好ましい。芳香族ビニル基としては、スチリル基が好ましい。
 繰り返し単位Aは、アクリルアミド基を有する化合物(アクリルアミド系モノマー)に由来する繰り返し単位であってもよいが、アニオン性ポリマーが、アクリルアミド系モノマーに由来する繰り返し単位を有さない場合、経時保管後の処理液を用いて銅を含む被対象物を処理した場合でも、処理液物性の経時変化が小さく銅の腐食が少ないため好ましい。
Examples of the repeating unit A include repeating units derived from a compound having an acid group or a salt thereof, and an ethylenically unsaturated group.
Specific examples of the acid group or a salt thereof are as described above.
The ethylenically unsaturated group is a functional group having an ethylenically unsaturated bond. Examples of the ethylenically unsaturated group include an aromatic vinyl group, an acryloyloxy group (CH 2 ═CH-COO-), a methacryloyloxy group (CH 2 ═CCH 3 -COO-), an acrylamide group (CH 2 ═CH-CONH-), a methacrylamide group (CH 2 ═CCH 3 -CONH-), a maleimide group, a vinyl group, and a vinyl ether group.
Of the ethylenically unsaturated groups, aromatic vinyl groups, acryloyloxy groups, methacryloyloxy groups, acrylamide groups, and vinyl groups are preferred, and as the aromatic vinyl group, a styryl group is preferred.
The repeating unit A may be a repeating unit derived from a compound having an acrylamide group (acrylamide-based monomer). However, when the anionic polymer does not have a repeating unit derived from an acrylamide-based monomer, this is preferred because there is little change in the physical properties of the treatment liquid over time and little corrosion of copper even when a copper-containing object is treated with the treatment liquid after storage over time.

 繰り返し単位Aとしては、式(a)で表される繰り返し単位が好ましい。 The repeating unit A is preferably a repeating unit represented by formula (a).

 式(a)中、Ra1、Ra2及びRa3は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、又は、酸基若しくはその塩を表す。
 Lは、単結合又は(k+1)価の連結基を表す。
 Aは、酸基又はその塩を表す。
 kは、1~4の整数を表す。
 式(a)において酸基又はその塩が複数存在する場合、複数の酸基又はその塩は、同一であっても異なっていてもよい。
In formula (a), R a1 , R a2 and R a3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an acid group or a salt thereof.
L a represents a single bond or a (k+1)-valent linking group.
A represents an acid group or a salt thereof.
k represents an integer of 1 to 4.
When a plurality of acid groups or salts thereof are present in formula (a), the plurality of acid groups or salts thereof may be the same or different.

 Ra1、Ra2及びRa3としては、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又は、ヨウ素原子)、メチル基、エチル基、又は、カルボキシ基若しくはその塩が好ましく、水素原子、メチル基、又は、カルボキシ基若しくはその塩がより好ましい。
 なかでも、Ra1、Ra2及びRa3のうち1つが水素原子、メチル基又はカルボキシ基若しくはその塩を表し、残り2つがいずれも水素原子を表すことが好ましい。
R a1 , R a2 and R a3 are preferably a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a methyl group, an ethyl group, a carboxy group or a salt thereof, and more preferably a hydrogen atom, a methyl group, or a carboxy group or a salt thereof.
Among these, it is preferable that one of R a1 , R a2 and R a3 represents a hydrogen atom, a methyl group, a carboxy group or a salt thereof, and the remaining two each represent a hydrogen atom.

 Lで表される(k+1)価の連結基としては、Aの数に応じた価数を有する基であれば特に制限されないが、例えば、置換基を有していてもよい2~5価の脂肪族炭化水素基、置換基を有していてもよい2~5価の芳香族炭化水素基、置換基を有していてもよい2~5価の芳香族複素環基、-O-、-CO-、-SO-、-NR-、-N<、及び、これらを組み合わせてなる基が挙げられる。Rは、水素原子又は1価の脂肪族炭化水素基を表す。
 上記脂肪族炭化水素基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。
 kとしては1が好ましく、その場合、Lで表される2価の連結基としては、2価の脂肪族炭化水素基、2価の芳香族炭化水素基、2価の芳香族複素環基、-O-、-CO-、-SO-、-NR-、及び、これらを組み合わせてなる基が挙げられ、なかでも、単結合、-CO-O-、-CO-NH-、炭素数1~5のアルキレン基、フェニレン基、及びこれらを組み合わせてなる基が好ましい。
The (k+1)-valent linking group represented by L a is not particularly limited as long as it is a group having a valence corresponding to the number of A, and examples include di- to pentavalent aliphatic hydrocarbon groups which may have a substituent, di- to pentavalent aromatic hydrocarbon groups which may have a substituent, di- to pentavalent aromatic heterocyclic groups which may have a substituent, -O-, -CO-, -SO 2 -, -NR L -, -N<, and groups formed by combining these. R L represents a hydrogen atom or a monovalent aliphatic hydrocarbon group.
The aliphatic hydrocarbon group may be linear, branched, or cyclic.
k is preferably 1, and in that case, examples of the divalent linking group represented by L a include a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, -O-, -CO-, -SO 2 -, -NR L -, and groups formed by combining these, and among these, a single bond, -CO-O-, -CO-NH-, an alkylene group having 1 to 5 carbon atoms, a phenylene group, and groups formed by combining these are preferred.

 Aで表される酸基又はその塩としては、カルボキシ基、スルホン酸基、ホスホン酸基、フェノール性水酸基、及び、これらの塩が挙げられ、カルボキシ基若しくはその塩、又はスルホン酸基若しくはその塩が好ましく、カルボキシ基又はその塩がより好ましい。 The acid group or salt thereof represented by A includes a carboxy group, a sulfonic acid group, a phosphonic acid group, a phenolic hydroxyl group, and salts thereof. A carboxy group or a salt thereof, or a sulfonic acid group or a salt thereof is preferred, and a carboxy group or a salt thereof is more preferred.

 繰り返し単位Aとしては、例えば、アクリル酸、マレイン酸、イタコン酸、ビニル酢酸、アリル酢酸、フマル酸、p-スチレンスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸、ビニルホスホン酸、及びN-ビニルアセトアミドからなる群から選択される化合物由来の繰り返し単位が挙げられる。 Examples of repeating unit A include repeating units derived from compounds selected from the group consisting of acrylic acid, maleic acid, itaconic acid, vinyl acetic acid, allyl acetic acid, fumaric acid, p-styrenesulfonic acid, vinylsulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, vinylphosphonic acid, and N-vinylacetamide.

 繰り返し単位Aの含有量は特に制限されないが、アニオン性ポリマーの全繰り返し単位に対し、50~100モル%が好ましく、75~100モル%がより好ましく、90~100モル%が更に好ましい。 The content of repeating unit A is not particularly limited, but is preferably 50 to 100 mol %, more preferably 75 to 100 mol %, and even more preferably 90 to 100 mol %, of the total repeating units of the anionic polymer.

<繰り返し単位B>
 上記アニオン性ポリマーは、繰り返し単位Aとは異なる、繰り返し単位Bを含んでいてもよい。
 繰り返し単位Bは特に制限されないが、例えば、アルキレンオキサイド化合物、芳香族ビニル化合物、水酸基を有していてもよい(メタ)アクリル酸アルキルエステル化合物、不飽和アルコール化合物、脂肪族共役ジエン化合物、ビニルシアン化合物、及び、重合性二重結合を有するアミド化合物からなる群から選択される化合物由来の繰り返し単位が挙げられる。
<Repeating Unit B>
The anionic polymer may include a repeat unit B which is different from the repeat unit A.
The repeating unit B is not particularly limited, and examples thereof include repeating units derived from a compound selected from the group consisting of alkylene oxide compounds, aromatic vinyl compounds, (meth)acrylic acid alkyl ester compounds which may have a hydroxyl group, unsaturated alcohol compounds, aliphatic conjugated diene compounds, vinyl cyanide compounds, and amide compounds having a polymerizable double bond.

 上記芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、及び、p-メチルスチレンが挙げられる。 Examples of the aromatic vinyl compounds include styrene, α-methylstyrene, vinyltoluene, and p-methylstyrene.

 繰り返し単位Bの含有量は特に制限されないが、アニオン性ポリマーの全繰り返し単位に対し、0.1~50モル%が好ましく、1~25モル%がより好ましく、1~15モル%が更に好ましい。 The content of repeating unit B is not particularly limited, but is preferably 0.1 to 50 mol %, more preferably 1 to 25 mol %, and even more preferably 1 to 15 mol %, based on the total repeating units of the anionic polymer.

 アニオン性ポリマーとしては、ポリアクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、2-アクリルアミド-2-メチル-1-プロパンスルホン酸-アクリル酸共重合体、ポリビニルホスホン酸、ポリ(N-ビニルアセトアミド)、及び、スチレンスルホン酸-アクリル酸-ビニルホスホン酸共重合体からなる群から選択されることが好ましい。 The anionic polymer is preferably selected from the group consisting of polyacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), 2-acrylamido-2-methyl-1-propanesulfonic acid-acrylic acid copolymer, polyvinylphosphonic acid, poly(N-vinylacetamide), and styrenesulfonic acid-acrylic acid-vinylphosphonic acid copolymer.

 アニオン性ポリマーの重量平均分子量は、500~80000が好ましく、1000~30000がより好ましく、2000~20000が更に好ましく、4000~10000が特に好ましい。 The weight average molecular weight of the anionic polymer is preferably 500 to 80,000, more preferably 1,000 to 30,000, even more preferably 2,000 to 20,000, and particularly preferably 4,000 to 10,000.

 アニオン性ポリマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 アニオン性ポリマーの含有量は、処理液の全質量に対して、0.0001~10.0質量%が好ましく、0.001~1.0質量%がより好ましく、0.01~1.0質量%が更に好ましい。
 また、処理液の全固形分に対する、アニオン性ポリマーの含有量の質量比は、0.00001~1.0が好ましく、0.0001~0.1がより好ましく、0.001~0.05が更に好ましい。
The anionic polymer may be used alone or in combination of two or more kinds.
The content of the anionic polymer is preferably from 0.0001 to 10.0% by mass, more preferably from 0.001 to 1.0% by mass, and even more preferably from 0.01 to 1.0% by mass, based on the total mass of the treatment liquid.
The mass ratio of the content of the anionic polymer to the total solid content of the treatment liquid is preferably from 0.00001 to 1.0, more preferably from 0.0001 to 0.1, and even more preferably from 0.001 to 0.05.

〔ホスホン酸化合物〕
 本発明の処理液は、ホスホン酸化合物を含む。ホスホン酸化合物とは、分子内にホスホン酸基(ホスホン酸からリン原子上の水素原子を1つ除いてなる基)を少なくとも1つ含む化合物をいい、上述したアニオン性ポリマーとは異なる化合物である。
 ホスホン酸化合物が有するホスホン酸基の数は、2~8が好ましく、2~4がより好ましく、2~3が更に好ましい。
 ホスホン酸化合物は繰り返し単位を有さない、低分子化合物であることが好ましい。つまり、ホスホン酸化合物は、複数の繰り返し単位を有する高分子化合物ではなく、繰り返し単位を有さない化合物(低分子化合物に該当)であることが好ましい。
 ホスホン酸化合物の分子量は、50~1000が好ましく、100~600がより好ましく、100~450が更に好ましい。
[Phosphonic acid compounds]
The treatment liquid of the present invention contains a phosphonic acid compound. The phosphonic acid compound refers to a compound that contains at least one phosphonic acid group (a group formed by removing one hydrogen atom on the phosphorus atom from phosphonic acid) in the molecule, and is a compound different from the above-mentioned anionic polymer.
The number of phosphonic acid groups in the phosphonic acid compound is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 or 3.
The phosphonic acid compound is preferably a low molecular weight compound having no repeating units. In other words, the phosphonic acid compound is preferably a compound having no repeating units (corresponding to a low molecular weight compound) rather than a polymeric compound having multiple repeating units.
The molecular weight of the phosphonic acid compound is preferably 50 to 1,000, more preferably 100 to 600, and even more preferably 100 to 450.

 ホスホン酸化合物は、有機酸であることが好ましい。つまり、ホスホン酸化合物は、ホスホン酸系有機酸であることが好ましい。ホスホン酸化合物に含まれる炭素原子の数(炭素数)は、1~12が好ましく、1~10がより好ましく、1~8が更に好ましい。
 ホスホン酸系有機酸としては、例えば、脂肪族ホスホン酸系有機酸及びアミノホスホン酸系有機酸が挙げられる。
 脂肪族ホスホン酸系有機酸は、ホスホン酸基と脂肪族基と以外に、水酸基を更に有していてもよい。
 ホスホン酸系有機酸としては、例えば、エチリデンジホスホン酸、1-ヒドロキシエチリデン-1,1’-ジホスホン酸(エチドロン酸、HEDP)、ニトリロトリス(メチレンホスホン酸)(NTMP)、エチレンジアミンテトラ(メチレンホスホン酸)(EDTMP)、2-ホスホノブタン-1,2,4-トリカルボン酸、ジエチレントリアミンペンタ(メチレンホスホン酸)(DEPPO)、1-ヒドロキシプロピリデン-1,1’-ジホスホン酸、1-ヒドロキシブチリデン-1,1’-ジホスホン酸、エチルアミノビス(メチレンホスホン酸)、ドデシルアミノビス(メチレンホスホン酸)、エチレンジアミンビス(メチレンホスホン酸)(EDDPO)、1,3-プロピレンジアミンビス(メチレンホスホン酸)、エチレンジアミンテトラ(エチレンホスホン酸)、1,3-プロピレンジアミンテトラ(メチレンホスホン酸)(PDTMP)、1,2-ジアミノプロパンテトラ(メチレンホスホン酸)、1,6-ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(エチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)及びトリエチレンテトラミンヘキサ(エチレンホスホン酸)が挙げられる。
 ホスホン酸化合物としては、エチドロン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラメチレンホスホン酸、及び2-ホスホノブタン-1,2,4-トリカルボン酸からなる群から選択されることが好ましい。
The phosphonic acid compound is preferably an organic acid. That is, the phosphonic acid compound is preferably a phosphonic acid-based organic acid. The number of carbon atoms (carbon number) contained in the phosphonic acid compound is preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8.
Examples of the phosphonic acid-based organic acid include aliphatic phosphonic acid-based organic acids and aminophosphonic acid-based organic acids.
The aliphatic phosphonic acid-based organic acid may further have a hydroxyl group in addition to the phosphonic acid group and the aliphatic group.
Examples of phosphonic acid-based organic acids include ethylidene diphosphonic acid, 1-hydroxyethylidene-1,1'-diphosphonic acid (etidronic acid, HEDP), nitrilotris(methylene phosphonic acid) (NTMP), ethylenediaminetetra(methylene phosphonic acid) (EDTMP), 2-phosphonobutane-1,2,4-tricarboxylic acid, diethylenetriaminepenta(methylene phosphonic acid) (DEPPO), 1-hydroxypropylidene-1,1'-diphosphonic acid, 1-hydroxybutylidene-1,1'-diphosphonic acid, ethylaminobis(methylene phosphonic acid), dodecylaminobis(methylene Examples of suitable phosphonic acids include 1,3-propylenediamine bis(methylene phosphonic acid), ethylenediamine tetra(ethylene phosphonic acid), 1,3-propylenediamine tetra(methylene phosphonic acid) (PDTMP), 1,2-diaminopropane tetra(methylene phosphonic acid), 1,6-hexamethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(ethylene phosphonic acid), triethylenetetramine hexa(methylene phosphonic acid), and triethylenetetramine hexa(ethylene phosphonic acid).
The phosphonic acid compound is preferably selected from the group consisting of etidronic acid, nitrilotris(methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid.

 ホスホン酸系有機酸としては、上記のほか、国際公開第2018/020878号の段落[0026]~[0036]に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 また、市販のホスホン酸系有機酸には、ホスホン酸系有機酸以外に、蒸留水、脱イオン水及び超純水等の水を含むものもあるが、このような水を含んでいるホスホン酸系有機酸を用いてもよい。
In addition to the above, examples of the phosphonic acid-based organic acid include the compounds described in paragraphs [0026] to [0036] of WO 2018/020878, the contents of which are incorporated herein by reference.
In addition, some commercially available phosphonic acid organic acids contain water, such as distilled water, deionized water, and ultrapure water, in addition to the phosphonic acid organic acid, and such phosphonic acid organic acids containing water may be used.

 ホスホン酸化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ホスホン酸化合物の含有量は、処理液の全質量に対して、0.0001~10質量%が好ましく、0.001~5質量%がより好ましく、0.01~1質量%が更に好ましい。
 また、処理液の全固形分に対する、ホスホン酸化合物の含有量の質量比は、0.001~10が好ましく、0.01~1.0がより好ましく、0.01~0.1が更に好ましい。
The phosphonic acid compounds may be used alone or in combination of two or more.
The content of the phosphonic acid compound is preferably from 0.0001 to 10% by mass, more preferably from 0.001 to 5% by mass, and even more preferably from 0.01 to 1% by mass, based on the total mass of the treatment liquid.
The mass ratio of the content of the phosphonic acid compound to the total solid content of the treatment liquid is preferably from 0.001 to 10, more preferably from 0.01 to 1.0, and even more preferably from 0.01 to 0.1.

 また、アニオン性ポリマーの含有量に対するホスホン酸化合物の含有量の質量比は、0.1~1000であれば特に制限されないが、0.1~500が好ましく、0.1~50がより好ましく、0.1~10が更に好ましい。 The mass ratio of the phosphonic acid compound content to the anionic polymer content is not particularly limited as long as it is 0.1 to 1000, but is preferably 0.1 to 500, more preferably 0.1 to 50, and even more preferably 0.1 to 10.

〔水酸基含有カルボン酸〕
 本発明の処理液は、水酸基含有カルボン酸を含む。水酸基含有カルボン酸とは、分子内に少なくとも1つの水酸基、及び少なくとも1つのカルボキシ基を有する化合物をいい、上述したアニオン性ポリマーとは異なる化合物である。
 水酸基含有カルボン酸が有するカルボキシ基の数は、2~8が好ましく、2~4がより好ましく、2~3が更に好ましい。
 水酸基含有カルボン酸が有する水酸基の数は、1~5が好ましく、1~3がより好ましい。
 水酸基含有カルボン酸は繰り返し単位を有さない、低分子化合物であることが好ましい。
 水酸基含有カルボン酸の分子量は、50~1000が好ましく、100~600がより好ましく、100~450が更に好ましい。
 水酸基含有カルボン酸の炭素数は、1~12が好ましく、1~10がより好ましく、1~8が更に好ましい。
[Hydroxyl-containing carboxylic acid]
The treatment liquid of the present invention contains a hydroxyl-containing carboxylic acid. The hydroxyl-containing carboxylic acid refers to a compound having at least one hydroxyl group and at least one carboxyl group in the molecule, and is a compound different from the above-mentioned anionic polymer.
The number of carboxy groups in the hydroxyl-containing carboxylic acid is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 to 3.
The number of hydroxyl groups in the hydroxyl-containing carboxylic acid is preferably 1 to 5, and more preferably 1 to 3.
The hydroxyl-containing carboxylic acid is preferably a low molecular weight compound having no repeating units.
The molecular weight of the hydroxyl group-containing carboxylic acid is preferably 50 to 1,000, more preferably 100 to 600, and even more preferably 100 to 450.
The hydroxyl group-containing carboxylic acid preferably has 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 8 carbon atoms.

 水酸基含有カルボン酸としては、α-ヒドロキシカルボン酸(カルボキシ基が結合する炭素原子に水酸基(ヒドロキシ基)を有するカルボン酸)が好ましい。
 水酸基含有カルボン酸は、脂肪族ヒドロキシカルボン酸及び芳香族ヒドロキシカルボン酸のいずれであってもよいが、脂肪族ヒドロキシカルボン酸が好ましく、炭素数1~15の脂肪族ヒドロキシカルボン酸がより好ましい。
The hydroxyl-containing carboxylic acid is preferably an α-hydroxycarboxylic acid (a carboxylic acid having a hydroxyl group on the carbon atom to which the carboxyl group is bonded).
The hydroxyl group-containing carboxylic acid may be either an aliphatic hydroxycarboxylic acid or an aromatic hydroxycarboxylic acid, but is preferably an aliphatic hydroxycarboxylic acid, and more preferably an aliphatic hydroxycarboxylic acid having 1 to 15 carbon atoms.

 カルボン酸系有機酸としては、式(D)で表される化合物が好ましく、式(D1)で表される化合物がより好ましい。 As the carboxylic acid-based organic acid, a compound represented by formula (D) is preferred, and a compound represented by formula (D1) is more preferred.

 式(D)中、Lは、水酸基を有する2価の連結基を表す。
 上記2価の連結基としては、例えば、エーテル基、カルボニル基、エステル基、チオエーテル基、-SO-、-NT-、2価の炭化水素基(例えば、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基)及びこれらを組み合わせた基が挙げられる。Tは、水素原子又は置換基を表す。上記2価の連結基は、水酸基のほかに更に置換基を有していてもよい。
 上記置換基としては、例えば、アルキル基、アリール基、カルボキシ基、アミノ基及びハロゲン原子が挙げられる。
 なかでも、Lとしては、水酸基を有する2価の炭化水素基が好ましく、水酸基を有するアルキレン基がより好ましい。
 上記2価の連結基が有する水酸基の数は、1~5が好ましく、1~3がより好ましい。
 上記2価の連結基の炭素数は、1~15が好ましく、1~10がより好ましく、1~5が更に好ましい。
In formula (D), Ld represents a divalent linking group having a hydroxyl group.
Examples of the divalent linking group include an ether group, a carbonyl group, an ester group, a thioether group, -SO 2 -, -NT-, a divalent hydrocarbon group (e.g., an alkylene group, an alkenylene group, an alkynylene group, and an arylene group), and a combination thereof. T represents a hydrogen atom or a substituent. The divalent linking group may further have a substituent in addition to the hydroxyl group.
Examples of the substituent include an alkyl group, an aryl group, a carboxy group, an amino group, and a halogen atom.
Of these, Ld is preferably a divalent hydrocarbon group having a hydroxyl group, more preferably an alkylene group having a hydroxyl group.
The divalent linking group preferably has 1 to 5 hydroxyl groups, and more preferably has 1 to 3 hydroxyl groups.
The divalent linking group preferably has 1 to 15 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 5 carbon atoms.

 式(D1)中、Rd1及びRd2は、それぞれ独立に、水素原子、水酸基又はカルボキシ基を表す。nは1~5の整数を表す。
 但し、nが1の場合は、Rd1及びRd2の少なくとも一方は水酸基を表し、nが2以上の場合は、複数存在するRd1及びRd2のうち少なくとも1つが水酸基を表す。
In formula (D1), R d1 and R d2 each independently represent a hydrogen atom, a hydroxyl group, or a carboxyl group, and n represents an integer of 1 to 5.
However, when n is 1, at least one of R d1 and R d2 represents a hydroxyl group, and when n is 2 or more, at least one of a plurality of R d1s and R d2s represents a hydroxyl group.

 式(D1)で表される化合物が有するカルボキシ基の合計数は、2~8が好ましく、2~4がより好ましく、2~3が更に好ましい。
 式(D1)で表される化合物が有する水酸基の合計数は、1~5が好ましく、1~3がより好ましい。
The total number of carboxy groups contained in the compound represented by formula (D1) is preferably 2 to 8, more preferably 2 to 4, and even more preferably 2 or 3.
The total number of hydroxyl groups contained in the compound represented by formula (D1) is preferably 1 to 5, and more preferably 1 to 3.

 nは1~5の整数を表す。
 nとしては、1~4が好ましく、1~3がより好ましい。
n represents an integer of 1 to 5.
n is preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.

 水酸基含有カルボン酸としては、クエン酸、リンゴ酸、酒石酸、グルコン酸、ヘプトン酸、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、シトラマル酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸、フェニル乳酸、ヒドロキシフェニル乳酸、サリチル酸、クレオソート酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸、アトロラクチン酸、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、及びシナピン酸からなる群から選択されることが好ましい。 The hydroxyl group-containing carboxylic acid is preferably selected from the group consisting of citric acid, malic acid, tartaric acid, gluconic acid, heptonic acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, citramalic acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, phenyllactic acid, hydroxyphenyllactic acid, salicylic acid, creosote acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orselliic acid, gallic acid, mandelic acid, benzilic acid, atrolactic acid, mellitic acid, phloretic acid, coumaric acid, umbellic acid, caffeic acid, ferulic acid, and sinapic acid.

 水酸基含有カルボン酸は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 水酸基含有カルボン酸の含有量は、処理液の全質量に対して、0.01~60質量%が好ましく、0.1~50質量%がより好ましく、1~30質量%が更に好ましい。
 また、処理液の全固形分に対する、水酸基含有カルボン酸の含有量の質量比は、0.001~10が好ましく、0.1~1.0がより好ましい。
The hydroxyl group-containing carboxylic acids may be used alone or in combination of two or more.
The content of the hydroxyl group-containing carboxylic acid is preferably from 0.01 to 60% by mass, more preferably from 0.1 to 50% by mass, and even more preferably from 1 to 30% by mass, based on the total mass of the treatment liquid.
The mass ratio of the content of the hydroxyl group-containing carboxylic acid to the total solid content of the treatment liquid is preferably from 0.001 to 10, and more preferably from 0.1 to 1.0.

 また、アニオン性ポリマーの含有量に対する水酸基含有カルボン酸の含有量の質量比は、特に制限されないが、1~12000が好ましく、10~1000がより好ましく、10~250が更に好ましく、100~250が特に好ましい。 The mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is not particularly limited, but is preferably 1 to 12,000, more preferably 10 to 1,000, even more preferably 10 to 250, and particularly preferably 100 to 250.

〔アニオン性界面活性剤〕
 本発明の処理液は、アニオン性界面活性剤を含んでいてもよく、スルホン酸系界面活性剤、カルボン酸系界面活性剤、及びリン酸エステル系界面活性剤からなる群から選択されるアニオン性界面活性剤を更に含むことが好ましい。
 アニオン性界面活性剤は、上述した各成分とは異なる化合物である。
 アニオン性界面活性剤は、繰り返し単位を有さない、低分子化合物であることが好ましい。
 アニオン性界面活性剤の分子量は、50~1000が好ましく、100~600がより好ましく、100~450が更に好ましい。
[Anionic Surfactants]
The treatment liquid of the present invention may contain an anionic surfactant, and preferably further contains an anionic surfactant selected from the group consisting of sulfonic acid surfactants, carboxylic acid surfactants, and phosphate ester surfactants.
The anionic surfactant is a compound different from the above-mentioned components.
The anionic surfactant is preferably a low molecular weight compound that does not have a repeating unit.
The molecular weight of the anionic surfactant is preferably from 50 to 1,000, more preferably from 100 to 600, and even more preferably from 100 to 450.

 アニオン性界面活性剤は、脂肪族炭化水素基、芳香族炭化水素基及びこれらの組み合わせた基からなる群から選択される少なくとも1つの疎水基を有する場合が多い。
 疎水基が芳香族炭化水素基を含む場合、アニオン性界面活性剤が有する疎水基の炭素数は、6以上が好ましく、10以上がより好ましい。疎水基が芳香族炭化水素基を含まず、脂肪族炭化水素基のみからなる場合、アニオン性界面活性剤が有する疎水基の炭素数は、9以上が好ましく、13以上がより好ましく、16以上が更に好ましい。
 アニオン性界面活性剤が有する疎水基炭素数の上限は、20以下が好ましく、18以下がより好ましい。
 アニオン性界面活性剤としては、なかでも、炭素数6以上のアルキル鎖を有するスルホン酸系界面活性剤が好ましい。
Anionic surfactants often have at least one hydrophobic group selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and combinations thereof.
When the hydrophobic group contains an aromatic hydrocarbon group, the carbon number of the hydrophobic group in the anionic surfactant is preferably 6 or more, and more preferably 10 or more. When the hydrophobic group does not contain an aromatic hydrocarbon group and is composed only of an aliphatic hydrocarbon group, the carbon number of the hydrophobic group in the anionic surfactant is preferably 9 or more, more preferably 13 or more, and even more preferably 16 or more.
The upper limit of the number of carbon atoms in the hydrophobic group of the anionic surfactant is preferably 20 or less, and more preferably 18 or less.
As the anionic surfactant, among others, a sulfonic acid surfactant having an alkyl chain with 6 or more carbon atoms is preferable.

(スルホン酸系界面活性剤)
 スルホン酸系界面活性剤としては、例えば、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、アルキルメチルタウリン、スルホコハク酸ジエステル、ポリオキシアルキレンアルキルエーテルスルホン酸及びこれらの塩が挙げられる。
 スルホン酸系界面活性剤としては、より具体的には、ラウリルスルホン酸、ドデシルベンゼンスルホン酸、アルキルジフェニルエーテルジスルホン酸(アルキル基の炭素数は12~14が好ましい)、及びナフタレンスルホン酸ホルマリン縮合物が挙げられる。
(Sulfonic acid surfactant)
Examples of sulfonic acid surfactants include alkyl sulfonic acids, alkyl benzene sulfonic acids, alkyl naphthalene sulfonic acids, alkyl diphenyl ether disulfonic acids, alkyl methyl taurines, sulfosuccinic acid diesters, polyoxyalkylene alkyl ether sulfonic acids, and salts thereof.
More specifically, the sulfonic acid surfactants include lauryl sulfonic acid, dodecylbenzene sulfonic acid, alkyl diphenyl ether disulfonic acid (the alkyl group preferably has 12 to 14 carbon atoms), and naphthalene sulfonic acid formalin condensate.

(カルボン酸系界面活性剤)
 カルボン酸系界面活性剤としては、例えば、アルキルカルボン酸、アルケニルカルボン酸、アルキルベンゼンカルボン酸及びポリオキシアルキレンアルキルエーテルカルボン酸、これらの無水物、並びに、これらの塩が挙げられる。
 カルボン酸系界面活性剤としては、より具体的には、トリデセス-4カルボン酸、ドデセニルコハク酸無水物、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ポリオキシエチレンラウリルエーテル酢酸及びポリオキシエチレントリデシルエーテル酢酸が挙げられる。
(Carboxylic acid surfactant)
Examples of the carboxylic acid surfactant include alkyl carboxylic acids, alkenyl carboxylic acids, alkyl benzene carboxylic acids, polyoxyalkylene alkyl ether carboxylic acids, anhydrides thereof, and salts thereof.
More specifically, the carboxylic acid surfactant includes trideceth-4 carboxylic acid, dodecenyl succinic anhydride, lauric acid, myristic acid, palmitic acid, stearic acid, polyoxyethylene lauryl ether acetic acid, and polyoxyethylene tridecyl ether acetic acid.

(リン酸エステル系界面活性剤)
 リン酸エステル系界面活性剤としては、例えば、アルキルリン酸エステル及びポリオキシアルキレンアルキルエーテルリン酸エステル、並びに、これらの塩が挙げられる。
 リン酸エステル及びポリオキシアルキレンアルキルエーテルリン酸エステルは、通常モノエステル及びジエステルの両者を含むが、モノエステル又はジエステルを単独で使用できる。
 リン酸エステル系界面活性剤の塩としては、例えば、ナトリウム塩、カリウム塩、アンモニウム塩及び有機アミン塩が挙げられる。
(Phosphate ester surfactant)
Examples of phosphate surfactants include alkyl phosphate esters and polyoxyalkylene alkyl ether phosphate esters, as well as salts thereof.
The phosphate esters and polyoxyalkylene alkyl ether phosphate esters usually include both monoesters and diesters, but either the monoester or the diester can be used alone.
Examples of salts of the phosphate ester surfactants include sodium salts, potassium salts, ammonium salts, and organic amine salts.

 リン酸エステル系界面活性剤としては、例えば、特開2011-040502号公報の段落[0012]~[0019]に記載の化合物も挙げられ、これらの内容は本明細書に組み込まれる。 Examples of phosphate ester surfactants include the compounds described in paragraphs [0012] to [0019] of JP 2011-040502 A, the contents of which are incorporated herein by reference.

 アニオン性界面活性剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 アニオン性界面活性剤の含有量は、処理液の全質量に対して、0.001~8.0質量%が好ましく、0.005~5.0質量%がより好ましく、0.01~3.0質量%が更に好ましい。
 また、処理液の全固形分に対する、水酸基含有カルボン酸の含有量の質量比は、0.0001~1.0が好ましく、0.001~0.1がより好ましい。
The anionic surfactant may be used alone or in combination of two or more kinds.
The content of the anionic surfactant is preferably from 0.001 to 8.0% by mass, more preferably from 0.005 to 5.0% by mass, and even more preferably from 0.01 to 3.0% by mass, based on the total mass of the treatment liquid.
The mass ratio of the content of the hydroxyl group-containing carboxylic acid to the total solid content of the treatment liquid is preferably from 0.0001 to 1.0, and more preferably from 0.001 to 0.1.

〔水〕
 処理液は、溶媒として水を含んでいてもよい。
 処理液に使用される水の種類は、半導体基板に悪影響を及ぼさないものであればよく、蒸留水、脱イオン水(DI:De Ionized)水及び純水(超純水)が使用できる。不純物をほとんど含まず、半導体基板の製造工程における半導体基板への影響がより少ない点から、純水(超純水)が好ましい。
 水の含有量は、処理液の全質量に対して、1.0質量%以上が好ましく、30.0質量%以上がより好ましく、60.0質量%以上が更に好ましく、80.0質量%以上が特に好ましい。上記含有量の上限は、処理液の全質量に対して、99.99質量%以下が好ましく、99.9質量%以下がより好ましく、99.0質量%以下が更に好ましく、97.0質量%以下が特に好ましい。
〔water〕
The treatment liquid may contain water as a solvent.
The type of water used in the treatment solution may be any type that does not adversely affect the semiconductor substrate, and may be distilled water, deionized water (DI: De Ionized) water, or pure water (ultrapure water). Pure water (ultrapure water) is preferred because it contains almost no impurities and has less effect on the semiconductor substrate during the manufacturing process of the semiconductor substrate.
The water content is preferably 1.0% by mass or more, more preferably 30.0% by mass or more, even more preferably 60.0% by mass or more, and particularly preferably 80.0% by mass or more, based on the total mass of the treatment liquid. The upper limit of the water content is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, even more preferably 99.0% by mass or less, and particularly preferably 97.0% by mass or less, based on the total mass of the treatment liquid.

〔その他の成分〕
 本発明の処理液は、上述した成分の他の成分を含んでいてもよい。その他の成分としては、pH調整剤、有機溶媒、防腐剤(抗菌剤)、還元剤、及び溶存ガスが挙げられる。
 また、本発明の処理液は第4級アンモニウム塩を含まないことが好ましい。
 以下、その他の成分について説明する。
[Other ingredients]
The treatment liquid of the present invention may contain other components in addition to the above-mentioned components, such as a pH adjuster, an organic solvent, a preservative (antibacterial agent), a reducing agent, and a dissolved gas.
It is also preferable that the processing solution of the present invention does not contain a quaternary ammonium salt.
The other ingredients will be described below.

<pH調整剤>
 本発明の処理液は、本発明の処理液のpHを調整及び維持するためにpH調整剤を含んでいてもよい。
 pH調整剤は、上述した本発明の処理液に含まれる成分とは異なる、塩基性化合物及び酸性化合物である。ただし、本発明の処理液に含まれ得る各成分の添加量を調整することで、本発明の処理液のpHを調整させることは許容される。
<pH Adjuster>
The treatment liquid of the present invention may contain a pH adjuster to adjust and maintain the pH of the treatment liquid of the present invention.
The pH adjuster is a basic compound or an acidic compound different from the components contained in the treatment liquid of the present invention described above, however, it is permissible to adjust the pH of the treatment liquid of the present invention by adjusting the amount of each component that can be contained in the treatment liquid of the present invention.

 塩基性化合物とは、水溶液中で塩基性(pHが7.0超)を示す化合物であり、塩基性無機化合物が挙げられる。
 塩基性無機化合物としては、例えば、トリスヒドロキシメチルアミノメタン等のアミン化合物、アンモニア、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、並びに、アルカリ土類金属水酸化物が挙げられる。
The basic compound is a compound that exhibits basicity (pH of more than 7.0) in an aqueous solution, and examples of such compounds include basic inorganic compounds.
Examples of basic inorganic compounds include amine compounds such as trishydroxymethylaminomethane, ammonia, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides.

 pH調整剤としての酸性化合物は、水溶液中で酸性(pHが7.0未満)を示す化合物であり、酸性無機化合物が挙げられる。
 酸性無機化合物としては、例えば、塩酸、硝酸、亜硝酸、亜硫酸、リン酸、ホウ酸、炭酸、次亜リン酸、亜リン酸及び、六フッ化リン酸が挙げられる。
 pH調整剤としての酸性化合物は、水溶液中で酸又は酸イオン(アニオン)となるものであれば、酸性化合物の塩を用いてもよい。
The acidic compound serving as the pH adjuster is a compound that exhibits acidity (pH less than 7.0) in an aqueous solution, and examples of such compounds include acidic inorganic compounds.
Examples of acidic inorganic compounds include hydrochloric acid, nitric acid, nitrous acid, sulfurous acid, phosphoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and hexafluorophosphoric acid.
The acidic compound used as the pH adjuster may be a salt of an acidic compound, so long as it becomes an acid or an acid ion (anion) in an aqueous solution.

 pH調整剤の含有量は、その他成分の種類及び量、並びに、目的とする処理液のpHに応じて選択できる。例えば、pH調整剤の含有量は、処理液の全質量に対して、0.0001~10質量%が好ましく、0.001~8質量%がより好ましく、0.001~0.1質量%が更に好ましい。 The content of the pH adjuster can be selected according to the type and amount of other components, and the desired pH of the treatment liquid. For example, the content of the pH adjuster is preferably 0.0001 to 10 mass %, more preferably 0.001 to 8 mass %, and even more preferably 0.001 to 0.1 mass %, relative to the total mass of the treatment liquid.

<有機溶媒>
 本発明の処理液は、有機溶媒を含んでいてもよい。有機溶媒としては、公知の有機溶媒が挙げられ、例えば、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒、及び、ケトン系溶媒が挙げられる。
 有機溶媒は、水と任意の比率で混和することが好ましい。
 有機溶媒としては、例えば、国際公開第2022/044893号の段落[0135]~[140]に例示される化合物が援用でき、これらの内容は本明細書に組み込まれる。
<Organic solvent>
The treatment liquid of the present invention may contain an organic solvent. Examples of the organic solvent include known organic solvents, such as alcohol-based solvents, glycol-based solvents, glycol ether-based solvents, and ketone-based solvents.
The organic solvent is preferably miscible with water in any ratio.
As the organic solvent, for example, the compounds exemplified in paragraphs [0135] to [140] of WO 2022/044893 can be used, the contents of which are incorporated herein by reference.

<防腐剤>
 本発明の処理液は、防腐剤を含んでいてもよい。
 防腐剤は、上述した本発明の処理液に含まれる成分とは異なる化合物である。
 防腐剤としては、例えば、安息香酸、安息香酸ナトリウム、サリチル酸、プロピオン酸、パラオキシ安息香酸イソプロピル、パラオキシ安息香酸イソブチル、パラオキシ安息香酸エチル、パラオキシ安息香酸メチル、パラオキシ安息香酸ブチル、パラオキシ安息香酸プロピル、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム、ソルビン酸、ソルビン酸カリウム、デヒドロ酢酸ナトリウム、ツヤプリシン、ウド抽出物、エゴノキ抽出物、カワラヨモギ抽出物、ウーロン茶抽出物、しらこたん白抽出物、酵素分解ハトムギ抽出物、茶カテキン類、リンゴポリフェノール、ペクチン分解物、キトサン、リゾチーム、及び、ε-ポリリジンが挙げられる。
 なかでも、防腐剤としては、安息香酸、ソルビン酸、サリチル酸、又は、プロピオン酸が好ましい。
<Preservatives>
The treatment liquid of the present invention may contain a preservative.
The preservative is a compound different from the components contained in the processing solution of the present invention described above.
Examples of preservatives include benzoic acid, sodium benzoate, salicylic acid, propionic acid, isopropyl parahydroxybenzoate, isobutyl parahydroxybenzoate, ethyl parahydroxybenzoate, methyl parahydroxybenzoate, butyl parahydroxybenzoate, propyl parahydroxybenzoate, sodium sulfite, sodium hyposulfite, potassium metabisulfite, sorbic acid, potassium sorbate, sodium dehydroacetate, thujaplicin, Aralia udo extract, Styrax japonica extract, Artemisia capillaris extract, oolong tea extract, white milt protein extract, enzymatically hydrolyzed Job's tears extract, tea catechins, apple polyphenols, pectin hydrolyzates, chitosan, lysozyme, and ε-polylysine.
Among these, the preservative is preferably benzoic acid, sorbic acid, salicylic acid, or propionic acid.

 防腐剤の含有量は、処理液の全質量に対して、0.0001~10.0質量%が好ましく、0.0001~1.0質量%がより好ましく、0.0001~0.1質量%が更に好ましい。 The preservative content is preferably 0.0001 to 10.0% by mass, more preferably 0.0001 to 1.0% by mass, and even more preferably 0.0001 to 0.1% by mass, based on the total mass of the treatment solution.

<還元剤>
 本発明の処理液は、還元剤を含んでいてもよい。
 還元剤は、還元作用を有し、処理液に含まれるOHイオン又は溶存酸素を還元する機能を有する化合物であり、脱酸素剤とも称される。還元剤は、処理液の腐食防止性能を向上させる防食剤として機能する。
 処理液に用いられる還元剤としては、特に制限されないが、例えば、アスコルビン酸化合物、カテコール化合物、ヒドロキシルアミン化合物、ヒドラジド化合物、及び還元性硫黄化合物が挙げられる。
 アスコルビン酸化合物、カテコール化合物、ヒドロキシルアミン化合物、ヒドラジド化合物、及び還元性硫黄化合物の具体例としては、国際公開第2021/131452号の段落[0084]~[0093]に記載の化合物が援用でき、これらの内容は本明細書に組み込まれる。
<Reducing Agent>
The processing liquid of the present invention may contain a reducing agent.
The reducing agent is a compound having a reducing action and a function of reducing OH- ions or dissolved oxygen contained in the treatment liquid, and is also called an oxygen scavenger. The reducing agent functions as an anticorrosive agent that improves the corrosion prevention performance of the treatment liquid.
The reducing agent used in the treatment liquid is not particularly limited, but examples thereof include ascorbic acid compounds, catechol compounds, hydroxylamine compounds, hydrazide compounds, and reducing sulfur compounds.
Specific examples of ascorbic acid compounds, catechol compounds, hydroxylamine compounds, hydrazide compounds, and reducing sulfur compounds include the compounds described in paragraphs [0084] to [0093] of WO 2021/131452. The contents of these compounds are incorporated herein by reference.

<溶存ガス>
 本発明の処理液は、溶存ガスを含んでもよい。処理液中の溶存ガスの濃度を適切な範囲に設定することで、残渣除去性を高めることが可能である。
 溶存ガスの濃度は、本発明の処理液の総体積に対して、0.01~10mg/Lが好ましい。
 溶存ガスの濃度は、残渣除去効果がより優れる点で、本発明の処理液の総体積に対して、0.05mg/L以上が好ましく、0.1mg/L以上がより好ましい。一方、保管安定性がより優れる点で、本発明の処理液の総体積に対して、7mg/L以下が好ましく、4mg/L以下がより好ましく、1.5mg/L以下が更に好ましい。
<Dissolved gas>
The treatment liquid of the present invention may contain a dissolved gas. By setting the concentration of the dissolved gas in the treatment liquid within an appropriate range, it is possible to enhance the removability of residues.
The concentration of the dissolved gas is preferably 0.01 to 10 mg/L based on the total volume of the treatment liquid of the present invention.
The concentration of the dissolved gas is preferably 0.05 mg/L or more, more preferably 0.1 mg/L or more, based on the total volume of the treatment solution of the present invention, in terms of a more excellent residue removal effect, while it is preferably 7 mg/L or less, more preferably 4 mg/L or less, and even more preferably 1.5 mg/L or less, based on the total volume of the treatment solution of the present invention, in terms of a more excellent storage stability.

 溶存ガスとしては、特に制限されないが、清浄空気であることが好ましい。なお、本明細書において、「清浄空気」とは、ISO規格 ISO 14644-1:2015におけるClass8以下(Class8又はこれより小さいClass)の空気を表すものとする。
 処理液における溶存ガスの濃度は、酸素ガス(Oガス)、窒素ガス(Nガス)、及び二酸化炭素ガス(COガス)の濃度を測定し、これらの合計値として評価することができる。酸素ガス、窒素ガス、及び二酸化炭素ガスの測定方法は、国際公開第2020/194978号の段落[0020]に記載の処理方法が使用でき、これらの内容は本明細書に組み込まれる。
The dissolved gas is not particularly limited, but is preferably clean air. In this specification, "clean air" refers to air of Class 8 or lower (Class 8 or a smaller Class) in the ISO standard ISO 14644-1:2015.
The concentration of dissolved gas in the treatment liquid can be evaluated by measuring the concentrations of oxygen gas ( O2 gas), nitrogen gas ( N2 gas), and carbon dioxide gas ( CO2 gas) and evaluating them as the sum of these values. The measurement method for oxygen gas, nitrogen gas, and carbon dioxide gas can be the treatment method described in paragraph [0020] of International Publication No. 2020/194978, the contents of which are incorporated herein by reference.

 溶存ガスの濃度は、公知の方法で制御でき、例えば、国際公開第2020/194978号の段落[0019]、[0052]~[0056]、及び[0060]~[0062]に記載の方法が参酌でき、これらの内容は本明細書に組み込まれる。 The concentration of the dissolved gas can be controlled by known methods, for example, the methods described in paragraphs [0019], [0052] to [0056], and [0060] to [0062] of WO 2020/194978, the contents of which are incorporated herein by reference.

<研磨粒子>
 処理液は、研磨粒子を実質的に含まないことが好ましい。
 研磨粒子とは、半導体基板の研磨処理に使用する研磨液に含まれる粒子であって、その平均一次粒子径が5nm以上である粒子を意味する。
 上記研磨粒子としては、シリカ(コロイダルシリカ及びヒュームドシリカを含む)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、酸化マンガン、及び、炭化珪素等の無機固形物;ポリスチレン、ポリアクリル樹脂、及び、ポリ塩化ビニル等の有機固形物等の粒子が挙げられる。
 研磨粒子を実質的に含まないとは、研磨粒子の含有量が、処理液の全質量に対して、0.1質量%未満であることを意味し、0.01質量%以下が好ましく、0.001質量%以下がより好ましい。下限は特に制限されず、0質量%である。
 研磨粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定できる。
 また、研磨粒子等の粒子の平均一次粒子径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加速電圧200kV)を用いて取得された像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求める。なお、円相当径とは、観察時の粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 処理液から研磨粒子を除去する方法としては、例えば、フィルタリング等の精製処理が挙げられる。
<Abrasive particles>
The treatment liquid is preferably substantially free of abrasive particles.
The abrasive particles refer to particles contained in the polishing liquid used in the polishing process of the semiconductor substrate, and have an average primary particle size of 5 nm or more.
Examples of the abrasive particles include particles of inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; and particles of organic solids such as polystyrene, polyacrylic resin, and polyvinyl chloride.
"Substantially free of abrasive particles" means that the content of abrasive particles is less than 0.1% by mass, preferably 0.01% by mass or less, more preferably 0.001% by mass or less, based on the total mass of the treatment liquid. The lower limit is not particularly limited, and is 0% by mass.
The content of abrasive particles can be measured using a commercially available measuring device that uses a laser as a light source and is a liquid-borne particle measuring method based on light scattering.
The average primary particle diameter of particles such as abrasive particles is determined by measuring the particle diameters (equivalent circle diameters) of 1,000 primary particles arbitrarily selected from an image obtained using a transmission electron microscope TEM2010 (accelerating voltage 200 kV) manufactured by JEOL Ltd., and calculating the arithmetic mean of the particle diameters. The equivalent circle diameter is the diameter of a perfect circle having the same projected area as the projected area of the particle during observation.
A method for removing the abrasive particles from the treatment liquid includes, for example, a purification process such as filtering.

〔処理液の物性〕
<pH>
 処理液のpHは、0.1~7.0であれば特に制限されないが、0.1~6.0が好ましく、1.0~4.0がより好ましい。なお、本発明の処理液を化学機械研磨処理が施された銅表面を有する被対象物に適用する場合には、処理液のpHは上記範囲が好ましい。また、本発明の処理液を化学機械研磨処理が施されたタングステン表面を有する被対象物に適用する場合には、処理液のpHは3.0~7.0が好ましく、5.0~7.0がより好ましい。
 なお、処理液のpHは、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定できる。pHの測定温度は25℃とする。
[Physical properties of processing solution]
<pH>
The pH of the treatment liquid is not particularly limited as long as it is 0.1 to 7.0, but is preferably 0.1 to 6.0, and more preferably 1.0 to 4.0. When the treatment liquid of the present invention is applied to an object having a copper surface that has been subjected to chemical mechanical polishing, the pH of the treatment liquid is preferably in the above range. When the treatment liquid of the present invention is applied to an object having a tungsten surface that has been subjected to chemical mechanical polishing, the pH of the treatment liquid is preferably 3.0 to 7.0, and more preferably 5.0 to 7.0.
The pH of the treatment solution can be measured by a method conforming to JIS Z8802-1984 using a known pH meter. The pH is measured at a temperature of 25°C.

<金属含有量>
 処理液中に不純物として含まれる金属(例えば、Fe、Co、Na、Cu、Mg、Mn、Li、Al、Cr、Ni、Zn、Sn、及び、Agの金属元素)の含有量(イオン濃度として測定される)は、いずれも5質量ppm以下であることが好ましく、1質量ppm以下であることがより好ましい。なかでも、処理液中のナトリウム原子の含有量が、処理液の全質量に対して1質量ppm以下であることが好ましい。
 最先端の半導体素子の製造においては、更に高純度の処理液が求められることが想定されることから、上記金属の含有量が1質量ppmよりも低い値、つまり、質量ppbオーダー以下であることが更に好ましく、100質量ppb以下であることが特に好ましく、10質量ppb未満であることが最も好ましい。下限としては、0が好ましい。
<Metal content>
The content (measured as ion concentration) of metals (e.g., Fe, Co, Na, Cu, Mg, Mn, Li, Al, Cr, Ni, Zn, Sn, and Ag metal elements) contained as impurities in the treatment liquid is preferably 5 mass ppm or less, more preferably 1 mass ppm or less. In particular, the content of sodium atoms in the treatment liquid is preferably 1 mass ppm or less relative to the total mass of the treatment liquid.
In the manufacture of cutting-edge semiconductor devices, it is expected that a treatment solution with even higher purity will be required, so the content of the above metals is more preferably lower than 1 ppm by mass, that is, on the order of ppb by mass or less, particularly preferably 100 ppb by mass or less, and most preferably less than 10 ppb by mass. The lower limit is preferably 0.

 金属含有量の低減方法としては、例えば、処理液を製造する際に使用する原材料の段階、又は、処理液の製造後の段階において、蒸留及びイオン交換樹脂又はフィルタを用いたろ過等の精製処理を行うことが挙げられる。
 他の金属含有量の低減方法としては、原材料又は製造された処理液を収容する容器として、後述する不純物の溶出が少ない容器を用いることが挙げられる。また、処理液の製造時に配管等から金属成分が溶出しないように、配管内壁にフッ素樹脂のライニングを施すことも挙げられる。
Methods for reducing the metal content include, for example, performing purification processes such as distillation and filtration using an ion exchange resin or a filter at the stage of the raw materials used in producing the treatment liquid, or at the stage after the treatment liquid is produced.
Other methods for reducing the metal content include using a container that is less likely to elute impurities as a container for containing the raw materials or the produced treatment liquid, as described below, and lining the inner walls of pipes with a fluororesin to prevent metal components from eluting from the pipes during the production of the treatment liquid.

<不溶性粒子>
 処理液は、不溶性粒子を実質的に含まないことが好ましい。
 上記「不溶性粒子」とは、無機固形物及び有機固形物等の粒子であって、最終的に処理液中で溶解せずに粒子として存在するものが該当する。
 上記「不溶性粒子を実質的に含まない」とは、処理液が含む溶媒で処理液を10000倍に希釈して測定用組成物とし、測定用組成物の1mL中に含まれる粒径40nm以上の粒子の個数が、40000個以下であることを意味する。なお、測定用組成物に含まれる粒子の個数は、市販のパーティクルカウンターを利用して液相で測定できる。
 市販のパーティクルカウンター装置としてはリオン社製、PMS社製の装置が使用できる。前者の代表装置としてはKS-19F、後者の代表装置としてはUltraChem 40などが挙げられる。より大きな粗大粒子を測定するためには、KS-42シリーズ、LiQuilaz II Sシリーズ、等の装置が使用できる。
 不溶性粒子としては、例えば、シリカ(コロイダルシリカ及びヒュームドシリカを含む)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、酸化マンガン、及び、炭化珪素等の無機固形物;ポリスチレン、ポリアクリル樹脂、及び、ポリ塩化ビニル等の有機固形物等の粒子が挙げられる。
 処理液から不溶性粒子を除去する方法としては、例えば、フィルタリング等の精製処理が挙げられる。
<Insoluble particles>
It is preferred that the treatment liquid be substantially free of insoluble particles.
The above-mentioned "insoluble particles" refer to particles of inorganic solids and organic solids, etc., which do not dissolve and ultimately exist as particles in the treatment liquid.
The above-mentioned "substantially free of insoluble particles" means that the treatment liquid is diluted 10,000 times with a solvent contained in the treatment liquid to prepare a composition for measurement, and the number of particles having a particle size of 40 nm or more contained in 1 mL of the composition for measurement is 40,000 or less. The number of particles contained in the composition for measurement can be measured in the liquid phase using a commercially available particle counter.
As commercially available particle counter devices, devices manufactured by Rion and PMS can be used. A representative device of the former is the KS-19F, and a representative device of the latter is the UltraChem 40. To measure larger coarse particles, devices such as the KS-42 series and LiQuilaz II S series can be used.
Examples of insoluble particles include particles of inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; and particles of organic solids such as polystyrene, polyacrylic resin, and polyvinyl chloride.
Methods for removing insoluble particles from the treatment liquid include, for example, purification treatments such as filtering.

<粗大粒子>
 処理液は、粗大粒子を含んでいてもよいが、その含有量が低いことが好ましい。
 粗大粒子とは、粒子の形状を球体とみなした場合における直径(粒径)が1μm以上である粒子を意味する。
 処理液に含まれる粗大粒子は、原料に不純物として含まれる塵、埃、有機固形物、及び、無機固形物等の粒子、並びに、処理液の調液中に汚染物として持ち込まれる塵、埃、有機固形物、及び、無機固形物等の粒子であって、最終的に処理液中で溶解せずに粒子として存在するものが該当する。
<Coarse particles>
The treatment liquid may contain coarse particles, but it is preferable that the content of coarse particles is low.
The term "coarse particles" refers to particles whose diameter (particle size) when considered as a sphere is 1 μm or more.
The coarse particles contained in the treatment liquid include particles such as dust, dirt, organic solids, and inorganic solids that are contained as impurities in the raw materials, as well as particles such as dust, dirt, organic solids, and inorganic solids that are brought in as contaminants during the preparation of the treatment liquid, and which ultimately exist as particles in the treatment liquid without dissolving.

 処理液における粗大粒子の含有量としては、粒径1μm以上の粒子の含有量が、処理液1mLあたり100個以下であることが好ましく、50個以下であることがより好ましい。下限は、処理液1mLあたり0個以上が好ましく、0.01個以上がより好ましい。
 処理液中に存在する粗大粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定できる。
 粗大粒子の除去方法としては、例えば、後述するフィルタリング等の精製処理が挙げられる。
Regarding the content of coarse particles in the treatment liquid, the content of particles having a particle diameter of 1 μm or more per 1 mL of the treatment liquid is preferably 100 or less, more preferably 50 or less. The lower limit is preferably 0 or more, more preferably 0.01 or more per 1 mL of the treatment liquid.
The content of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measuring device that employs a light scattering liquid particle measuring method using a laser as a light source.
Examples of a method for removing coarse particles include a purification process such as filtering, which will be described later.

[処理液の製造方法]
 処理液は、公知の方法により製造できる。以下、処理液の製造方法について詳述する。
[Method of manufacturing the treatment liquid]
The processing solution can be produced by a known method, which will be described in detail below.

〔調液工程〕
 処理液は、例えば、上記各成分を混合することにより製造できる。
 処理液の調液方法としては、例えば、精製した純水を入れた容器に、アニオン性ポリマーと、ホスホン酸化合物と、水酸基含有カルボン酸と、必要に応じて任意成分とを順次添加した後、撹拌して混合するとともに、必要に応じてpH調整剤を添加して混合液のpHを調整することにより、処理液を調液する方法が挙げられる。また、各成分を容器に添加する場合、一括して添加してもよいし、複数回にわたって分割して添加してもよい。
[Liquid preparation process]
The treatment liquid can be produced, for example, by mixing the above-mentioned components.
As a method for preparing the treatment liquid, for example, an anionic polymer, a phosphonic acid compound, a hydroxyl group-containing carboxylic acid, and an optional component as required are sequentially added to a container containing purified pure water, and then the mixture is stirred and mixed, and a pH adjuster is added as required to adjust the pH of the mixture, thereby preparing the treatment liquid. When each component is added to the container, it may be added all at once, or may be added in portions over several times.

 処理液の調液に使用する撹拌装置及び撹拌方法は、撹拌機又は分散機として公知の装置を使用すればよい。撹拌機としては、例えば、工業用ミキサー、可搬型撹拌器、メカニカルスターラー、及び、マグネチックスターラーが挙げられる。分散機としては、例えば、工業用分散器、ホモジナイザー、超音波分散器、及び、ビーズミルが挙げられる。 The stirring device and stirring method used to prepare the treatment liquid may be a device known as a stirrer or disperser. Examples of stirrers include industrial mixers, portable stirrers, mechanical stirrers, and magnetic stirrers. Examples of dispersers include industrial dispersers, homogenizers, ultrasonic dispersers, and bead mills.

 処理液の調液工程における各成分の混合及び後述する精製処理、並びに、製造された処理液の保管は、40℃以下で行うことが好ましく、30℃以下で行うことがより好ましい。また、下限としては、5℃以上が好ましく、10℃以上がより好ましい。上記の温度範囲で処理液の調液、処理及び/又は保管を行うことにより、長期間安定に性能を維持できる。 The mixing of the components in the preparation process of the treatment liquid, the purification process described below, and the storage of the produced treatment liquid are preferably carried out at 40°C or less, and more preferably at 30°C or less. The lower limit is preferably 5°C or more, and more preferably 10°C or more. By preparing, processing, and/or storing the treatment liquid within the above temperature range, the performance can be maintained stably for a long period of time.

<精製>
 処理液を調液するための原料のいずれか1種以上に対して、事前に精製処理を行うことが好ましい。精製処理としては、例えば、蒸留、イオン交換、及び、ろ過(フィルタリング)等の公知の方法が挙げられる。
 精製の程度は、原料の純度が99質量%以上となるまで精製することが好ましく、原液の純度が99.9質量%以上となるまで精製することがより好ましい。上限としては、99.9999質量%以下が好ましい。
<Refinification>
It is preferable to carry out a purification treatment in advance for one or more of the raw materials for preparing the treatment liquid. Examples of the purification treatment include known methods such as distillation, ion exchange, and filtration.
The degree of purification is preferably such that the purity of the raw material is 99% by mass or more, and more preferably such that the purity of the undiluted solution is 99.9% by mass or more. The upper limit is preferably 99.9999% by mass or less.

 精製処理の方法としては、例えば、原料をイオン交換樹脂又はRO膜(Reverse Osmosis Membrane)等に通液する方法、再沈殿、原料の蒸留、及び、フィルタリングが挙げられる。
 精製処理として、上記精製方法を複数組み合わせて実施してもよい。例えば、原料に対して、RO膜に通液する1次精製を行った後、カチオン交換樹脂、アニオン交換樹脂、又は、混床型イオン交換樹脂からなる精製装置に通液する2次精製を実施してもよい。
 また、精製処理は、複数回実施してもよい。
Examples of the purification method include passing the raw material through an ion exchange resin or a reverse osmosis membrane (RO membrane), reprecipitation, distillation of the raw material, and filtering.
The purification process may be a combination of the above purification methods. For example, the raw material may be subjected to a primary purification process in which the raw material is passed through an RO membrane, and then a secondary purification process in which the raw material is passed through a purification device made of a cation exchange resin, an anion exchange resin, or a mixed-bed ion exchange resin.
The purification process may be carried out multiple times.

 フィルタリングに用いるフィルタとしては、従来からろ過用途等に用いられているものであれば特に制限されない。例えば、ポリテトラフルオロエチレン(PTFE)及びテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリアリルスルホン(PAS)、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度又は超高分子量を含む)からなるフィルタが挙げられる。これらの材料のなかでもポリエチレン、ポリプロピレン(高密度ポリプロピレンを含む)、フッ素樹脂(PTFE及びPFAを含む)、及び、ポリアミド系樹脂(ナイロンを含む)からなる群から選択される材料が好ましく、フッ素樹脂のフィルタがより好ましい。これらの材料により形成されたフィルタを用いて原料のろ過を行うことで、欠陥の原因となりやすい極性の高い異物を効果的に除去できる。 The filter used for filtering is not particularly limited as long as it is one that has been conventionally used for filtering purposes. Examples include filters made of fluororesins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, polyarylsulfone (PAS), and polyolefin resins (including high density or ultra-high molecular weight) such as polyethylene and polypropylene (PP). Among these materials, materials selected from the group consisting of polyethylene, polypropylene (including high density polypropylene), fluororesins (including PTFE and PFA), and polyamide resins (including nylon) are preferred, and fluororesin filters are more preferred. Filtering the raw material using a filter made of these materials can effectively remove highly polar foreign matter that is likely to cause defects.

<容器>
 処理液(後述する希釈処理液の態様を含む)は、腐食性等が問題とならない限り、任意の容器に充填して保管、運搬及び使用できる。
<Container>
The treatment liquid (including the diluted treatment liquid described below) can be filled into any container for storage, transport and use, so long as corrosiveness and other issues do not pose a problem.

 容器としては、半導体用途向けに、容器内のクリーン度が高く、容器の収容部の内壁から各液への不純物の溶出が抑制された容器が好ましい。そのような容器としては、半導体処理液用容器として市販されている各種容器が挙げられ、例えば、アイセロ化学社製の「クリーンボトル」シリーズ及びコダマ樹脂工業製の「ピュアボトル」等が挙げられ、これらに制限されない。
 また、容器としては、国際公開第2022/004217号の段落[0121]~[0124]に例示される容器も援用でき、これらの内容は本明細書に組み込まれる。
The container is preferably one that is highly clean for semiconductor applications and that suppresses the elution of impurities from the inner wall of the container's storage section into each liquid. Examples of such containers include various containers that are commercially available as containers for semiconductor processing liquids, such as the "Clean Bottle" series manufactured by Aicello Chemical Co., Ltd. and the "Pure Bottle" manufactured by Kodama Resin Industry Co., Ltd., but are not limited thereto.
In addition, the containers exemplified in paragraphs [0121] to [0124] of WO 2022/004217 can also be used, the contents of which are incorporated herein by reference.

 これらの容器は、処理液を充填する前にその内部が洗浄されることが好ましい。洗浄に使用される液体は、その液中における金属不純物量が低減されていることが好ましい。処理液は、製造後にガロン瓶又はコート瓶等の容器にボトリングし、輸送、保管されてもよい。 These containers are preferably cleaned inside before being filled with the treatment liquid. The liquid used for cleaning is preferably one that has a reduced amount of metal impurities. After production, the treatment liquid may be bottled in containers such as gallon bottles or coated bottles, and then transported and stored.

 保管における処理液中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(窒素又はアルゴン等)で置換しておいてもよい。特に含水率が少ないガスが好ましい。また、輸送及び保管に際しては、常温であってもよく、変質を防ぐため、-20℃から20℃の範囲に温度制御してもよい。 In order to prevent changes in the components of the treatment liquid during storage, the inside of the container may be replaced with an inert gas (nitrogen, argon, etc.) with a purity of 99.99995% by volume or higher. Gases with a low water content are particularly preferred. In addition, the treatment liquid may be stored and transported at room temperature, or the temperature may be controlled to a range of -20°C to 20°C to prevent deterioration.

<クリーンルーム>
 処理液の製造、容器の開封及び洗浄、処理液の充填等を含めた取り扱い、処理分析、並びに、測定は、全てクリーンルームで行うことが好ましい。クリーンルームは、14644-1クリーンルーム基準を満たすことが好ましい。ISO(国際標準化機構)クラス1、ISOクラス2、ISOクラス3及びISOクラス4のいずれかを満たすことが好ましく、ISOクラス1又はISOクラス2を満たすことがより好ましく、ISOクラス1を満たすことが更に好ましい。
<Clean room>
It is preferable that all of the manufacturing of the treatment liquid, the opening and cleaning of the container, the handling including filling of the treatment liquid, the treatment analysis, and the measurement are carried out in a clean room. The clean room preferably meets the 14644-1 clean room standard. It is preferable that the clean room meets any of ISO (International Organization for Standardization) Class 1, ISO Class 2, ISO Class 3, and ISO Class 4, more preferably ISO Class 1 or ISO Class 2, and even more preferably ISO Class 1.

〔希釈工程〕
 処理液は、濃縮液を水等の希釈剤を用いて希釈する希釈工程を経た後、希釈された処理液(希釈処理液)として被対象物の処理に供されてもよい。つまり、処理液は、水を含む希釈液で希釈されて使用されてもよい。
 なお、濃縮液及び希釈処理液も、本発明の要件を満たす限り、本発明の処理液の一形態である。
[Dilution process]
The treatment liquid may be subjected to a dilution process in which the concentrated liquid is diluted with a diluent such as water, and then the diluted treatment liquid (diluted treatment liquid) may be used to treat the target object. In other words, the treatment liquid may be used after being diluted with a diluent containing water.
In addition, concentrated solutions and diluted processing solutions are also forms of the processing solution of the present invention so long as they satisfy the requirements of the present invention.

 希釈工程に用いる希釈液に対しては、事前に精製処理を行うことが好ましい。また、希釈工程により得られた希釈処理液に対して、精製処理を行うことがより好ましい。
 精製処理としては、上記処理液に対する精製処理として記載した、イオン交換樹脂又はRO膜等を用いたイオン成分低減処理及びフィルタリングを用いた異物除去が挙げられ、これらのうちいずれかの処理を行うことが好ましい。
It is preferable to perform a purification treatment beforehand for the dilution liquid used in the dilution step. It is more preferable to perform a purification treatment on the diluted liquid obtained in the dilution step.
Examples of the purification treatment include the ion component reduction treatment using an ion exchange resin or an RO membrane, etc., and the removal of foreign matter using filtering, which are described above as purification treatments for the treatment liquid, and it is preferable to perform any one of these treatments.

 希釈工程における処理液の希釈率は、各成分の種類及び含有量、並びに、処理対象である被対象物に応じて適宜調整すればよいが、希釈前の処理液に対する希釈処理液の比率(希釈倍率)は、質量比又は体積比(23℃における体積比)で10~10000倍が好ましく、10~1000倍がより好ましく、10~300倍が更に好ましい。
 また、残渣の除去性により優れる点で、希釈液は水を含むことが好ましく、水であることがより好ましい。
The dilution rate of the treatment liquid in the dilution step may be appropriately adjusted depending on the type and content of each component, and the object to be treated. The ratio of the diluted treatment liquid to the treatment liquid before dilution (dilution ratio) is preferably 10 to 10,000 times, more preferably 10 to 1,000 times, and even more preferably 10 to 300 times, in terms of mass ratio or volume ratio (volume ratio at 23° C.).
In addition, in terms of superior removability of residues, the dilution liquid preferably contains water, and more preferably is water.

 希釈前後におけるpHの変化(希釈前の処理液のpHと希釈処理液のpHとの差分)は、2.0以下が好ましく、1.8以下がより好ましく、1.5以下が更に好ましい。
 希釈前の処理液のpH及び希釈処理液のpHは、それぞれ、上記好適態様であることが好ましい。
The change in pH before and after dilution (the difference between the pH of the treatment liquid before dilution and the pH of the diluted treatment liquid) is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less.
The pH of the treatment liquid before dilution and the pH of the diluted treatment liquid are preferably in the above-mentioned preferred embodiments.

 処理液を希釈する希釈工程の具体的方法は、上記の処理液の調液工程に準じて行えばよい。希釈工程で使用する撹拌装置及び撹拌方法もまた、上記の処理液の調液工程において挙げた公知の撹拌装置を用いて行えばよい。 The specific method of the dilution process for diluting the treatment liquid may be similar to that of the above-mentioned treatment liquid preparation process. The stirring device and stirring method used in the dilution process may also be the same as those known in the art as those mentioned in the above-mentioned treatment liquid preparation process.

[処理液の用途]
 本発明の処理液は、化学機械研磨(CMP)処理が施された被対象物の洗浄に用いられることが好ましい。
 上述した通り、処理液を用いる際には、処理液を希釈して用いてもよい。
[Use of processing liquid]
The treatment liquid of the present invention is preferably used for cleaning an object that has been subjected to a chemical mechanical polishing (CMP) treatment.
As described above, when the processing liquid is used, the processing liquid may be diluted before use.

<被対象物>
 処理液の被対象物としては、例えば、金属を有する被対象物が挙げられ、金属を有する半導体基板が挙げられる。
 なお、半導体基板が金属を有する場合、例えば、半導体基板の表裏、側面、及び、溝内等のいずれに金属を有していてもよい。また、半導体基板が金属を有する場合、半導体基板の表面上に直接金属がある場合のみならず、半導体基板上に他の層を介して金属がある場合も含む。
<Target object>
The object to which the treatment liquid is applied may be, for example, an object containing a metal, such as a semiconductor substrate containing a metal.
When the semiconductor substrate contains a metal, the metal may be present on any of the front and back surfaces, side surfaces, and inside the grooves of the semiconductor substrate, for example. When the semiconductor substrate contains a metal, the metal may be present not only directly on the surface of the semiconductor substrate, but also on the semiconductor substrate via another layer.

 金属としては、例えば、銅(Cu)、コバルト(Co)、ルテニウム(Ru)、アルミニウム(Al)、タングステン(W)、チタン(Ti)、タンタル(Ta)、クロム(Cr)、ハフニウム(Hf)、オスミウム(Os)、白金(Pt)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、ジルコニウム(Zr)、モリブデン(Mo)、パラジウム(Pd)、ランタン(La)、及び、イリジウム(Ir)からなる群から選択される少なくとも1種の金属Mが挙げられ、Cu、Co、又は、Ruが好ましく、Cu又はCoがより好ましい。つまり、被対象物としては、Cu及びCoからなる群から選択される少なくとも1種の金属を含む被対象物が好ましい。
 本発明の処理液は、被対象物が化学機械研磨処理が施された銅表面を有する場合に、上記被対象物における銅表面の洗浄に好適に用いることができる。
Examples of the metal include at least one metal M selected from the group consisting of copper (Cu), cobalt (Co), ruthenium (Ru), aluminum (Al), tungsten (W), titanium (Ti), tantalum (Ta), chromium (Cr), hafnium (Hf), osmium (Os), platinum (Pt), nickel (Ni), manganese (Mn), iron (Fe), zirconium (Zr), molybdenum (Mo), palladium (Pd), lanthanum (La), and iridium (Ir), with Cu, Co, or Ru being preferred, and Cu or Co being more preferred. In other words, the object is preferably an object containing at least one metal selected from the group consisting of Cu and Co.
The treatment liquid of the present invention can be suitably used for cleaning the copper surface of an object when the object has a copper surface that has been subjected to chemical mechanical polishing.

 金属は、金属(金属原子)を含む物質であればよく、例えば、金属Mの単体、及び、金属Mを含む合金が挙げられる。 The metal may be any substance that contains a metal (metal atom), and examples include the metal M alone and alloys that contain metal M.

 処理液の被対象物は、例えば、半導体基板、金属配線膜、バリアメタル、及び、絶縁膜を有していてもよい。 The object to be treated with the treatment liquid may include, for example, a semiconductor substrate, a metal wiring film, a barrier metal, and an insulating film.

 半導体基板を構成するウエハとしては、例えば、シリコン(Si)ウエハ、シリコンカーバイド(SiC)ウエハ、シリコンを含む樹脂系ウエハ(ガラスエポキシウエハ)等のシリコン系材料からなるウエハ、窒化ガリウム(GaN)、ガリウムリン(GaP)ウエハ、ガリウムヒ素(GaAs)ウエハ及びインジウムリン(InP)ウエハが挙げられる。
 シリコンウエハとしては、例えば、シリコンウエハに5価の原子(例えば、リン(P)、ヒ素(As)及びアンチモン(Sb)等)をドープしたn型シリコンウエハ、並びに、シリコンウエハに3価の原子(例えば、ホウ素(B)及びガリウム(Ga)等)をドープしたp型シリコンウエハが挙げられる。シリコンウエハのシリコンとしては、例えば、アモルファスシリコン、単結晶シリコン、多結晶シリコン及びポリシリコンが挙げられる。
 なかでも、シリコンウエハ、シリコンカーバイドウエハ及びシリコンを含む樹脂系ウエハ(ガラスエポキシウエハ)等のシリコン系材料からなるウエハが好ましい。
Examples of wafers constituting semiconductor substrates include wafers made of silicon-based materials such as silicon (Si) wafers, silicon carbide (SiC) wafers, resin-based wafers containing silicon (glass epoxy wafers), gallium nitride (GaN), gallium phosphide (GaP) wafers, gallium arsenide (GaAs) wafers, and indium phosphide (InP) wafers.
Examples of silicon wafers include n-type silicon wafers doped with pentavalent atoms (e.g., phosphorus (P), arsenic (As), antimony (Sb), etc.) and p-type silicon wafers doped with trivalent atoms (e.g., boron (B), gallium (Ga), etc.). Examples of silicon in silicon wafers include amorphous silicon, single crystal silicon, polycrystalline silicon, and polysilicon.
Among these, wafers made of silicon-based materials such as silicon wafers, silicon carbide wafers, and resin-based wafers containing silicon (glass epoxy wafers) are preferred.

 絶縁膜としては、例えば、シリコン酸化膜(例えば、二酸化ケイ素(SiO)膜及びオルトケイ酸テトラエチル(Si(OC)膜(TEOS膜)等)、シリコン窒化膜(例えば、窒化シリコン(Si)及び窒化炭化シリコン(SiNC)等)、並びに、低誘電率(Low-k)膜(例えば、炭素ドープ酸化ケイ素(SiOC)膜及びシリコンカーバイド(SiC)膜等)が挙げられ、低誘電率(Low-k)膜が好ましい。 Examples of the insulating film include silicon oxide films (e.g., silicon dioxide (SiO 2 ) film and tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) film (TEOS film), etc.), silicon nitride films (e.g., silicon nitride (Si 3 N 4 ) and silicon carbide nitride (SiNC), etc.), and low dielectric constant (Low-k) films (e.g., carbon-doped silicon oxide (SiOC) film and silicon carbide (SiC) film, etc.), with low dielectric constant (Low-k) films being preferred.

 金属配線膜としては、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜が好ましい。
 銅含有膜としては、例えば、金属銅のみからなる配線膜(銅配線膜)及び金属銅と他の金属とからなる合金製の配線膜(銅合金配線膜)が挙げられる。
 銅合金配線膜としては、Al、Ti、Cr、Mn、Ta、及び、Wから選ばれる1種以上の金属と銅とからなる合金製の配線膜が挙げられる。より具体的には、銅-アルミニウム合金配線膜(CuAl合金配線膜)、銅-チタン合金配線膜(CuTi合金配線膜)、銅-クロム合金配線膜(CuCr合金配線膜)、銅-マンガン合金配線膜(CuMn合金配線膜)、銅-タンタル合金配線膜(CuTa合金配線膜)、及び、銅-タングステン合金配線膜(CuW合金配線膜)が挙げられる。
As the metal wiring film, a copper-containing film, a cobalt-containing film, and a ruthenium-containing film are preferable.
Examples of copper-containing films include wiring films made only of metallic copper (copper wiring films) and wiring films made of an alloy of metallic copper and another metal (copper alloy wiring films).
Examples of copper alloy wiring films include wiring films made of an alloy of copper and one or more metals selected from Al, Ti, Cr, Mn, Ta, and W. More specifically, examples of the wiring film include a copper-aluminum alloy wiring film (CuAl alloy wiring film), a copper-titanium alloy wiring film (CuTi alloy wiring film), a copper-chromium alloy wiring film (CuCr alloy wiring film), a copper-manganese alloy wiring film (CuMn alloy wiring film), a copper-tantalum alloy wiring film (CuTa alloy wiring film), and a copper-tungsten alloy wiring film (CuW alloy wiring film).

 コバルト含有膜としては、例えば、金属コバルトのみからなる金属膜(コバルト金属膜)、及び、金属コバルトと他の金属とからなる合金製の金属膜(コバルト合金金属膜)が挙げられる。
 コバルト合金金属膜としては、Ti、Cr、Fe、Ni、Mo、Pd、Ta、及び、Wから選ばれる1種以上の金属とコバルトとからなる合金製の金属膜が挙げられる。より具体的には、コバルト-チタン合金金属膜(CoTi合金金属膜)、コバルト-クロム合金金属膜(CoCr合金金属膜)、コバルト-鉄合金金属膜(CoFe合金金属膜)、コバルト-ニッケル合金金属膜(CoNi合金金属膜)、コバルト-モリブデン合金金属膜(CoMo合金金属膜)、コバルト-パラジウム合金金属膜(CoPd合金金属膜)、コバルト-タンタル合金金属膜(CoTa合金金属膜)、及び、コバルト-タングステン合金金属膜(CoW合金金属膜)が挙げられる。
Examples of the cobalt-containing film include a metal film made only of metallic cobalt (cobalt metal film) and a metal film made of an alloy made of metallic cobalt and another metal (cobalt alloy metal film).
Examples of the cobalt alloy metal film include metal films made of an alloy of cobalt and one or more metals selected from Ti, Cr, Fe, Ni, Mo, Pd, Ta, and W. More specifically, examples of the cobalt alloy metal film include a cobalt-titanium alloy metal film (CoTi alloy metal film), a cobalt-chromium alloy metal film (CoCr alloy metal film), a cobalt-iron alloy metal film (CoFe alloy metal film), a cobalt-nickel alloy metal film (CoNi alloy metal film), a cobalt-molybdenum alloy metal film (CoMo alloy metal film), a cobalt-palladium alloy metal film (CoPd alloy metal film), a cobalt-tantalum alloy metal film (CoTa alloy metal film), and a cobalt-tungsten alloy metal film (CoW alloy metal film).

 ルテニウム含有膜としては、例えば、金属ルテニウムのみからなる金属膜(ルテニウム金属膜)、及び、金属ルテニウムと他の金属とからなる合金製の金属膜(ルテニウム合金金属膜)が挙げられる。 Examples of ruthenium-containing films include metal films consisting only of metallic ruthenium (ruthenium metal film) and metal films made of alloys consisting of metallic ruthenium and other metals (ruthenium alloy metal film).

 半導体基板を構成するウエハ上に、上記の絶縁膜、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法としては、通常この分野で行われる方法であれば特に制限はない。
 絶縁膜の形成方法としては、例えば、半導体基板を構成するウエハに対して、酸素ガス存在下で熱処理を行うことによりシリコン酸化膜を形成し、次いで、シラン及びアンモニアのガスを流入して、化学気相蒸着(CVD:Chemical Vapor Deposition)法によりシリコン窒化膜を形成する方法が挙げられる。
 銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法としては、例えば、上記の絶縁膜を有するウエハ上に、レジスト等の公知の方法で回路を形成し、次いで、鍍金及びCVD法等の方法により、銅含有膜、コバルト含有膜、及び、ルテニウム含有膜を形成する方法が挙げられる。
There are no particular limitations on the method for forming the insulating film, copper-containing film, cobalt-containing film, and ruthenium-containing film on the wafer constituting the semiconductor substrate, so long as it is a method commonly used in this field.
An example of a method for forming an insulating film is a method in which a wafer constituting a semiconductor substrate is heat-treated in the presence of oxygen gas to form a silicon oxide film, and then silane and ammonia gases are introduced to form a silicon nitride film by a chemical vapor deposition (CVD) method.
Examples of methods for forming the copper-containing film, the cobalt-containing film, and the ruthenium-containing film include a method in which a circuit is formed on a wafer having the insulating film by a known method such as a resist, and then a copper-containing film, a cobalt-containing film, and a ruthenium-containing film are formed by a method such as plating and CVD.

<CMP処理>
 上記被対象物は、CMP処理が施された被対象物(好ましくは、CMP処理が施された、金属を有する被対象物)である。
 CMP処理は、例えば、金属配線膜、バリアメタル、及び、絶縁膜を有する半導体基板の表面を、研磨微粒子(砥粒)を含む研磨スラリーを用いて、化学的作用と機械的研磨の複合作用で平坦化する処理である。
<CMP Treatment>
The object is an object that has been subjected to a CMP process (preferably, an object having a metal that has been subjected to a CMP process).
CMP processing is a process in which the surface of a semiconductor substrate having, for example, a metal wiring film, a barrier metal, and an insulating film is planarized by a combined chemical and mechanical polishing action using a polishing slurry containing polishing particles (abrasive grains).

<パッド洗浄処理が施された被対象物>
 被対象物の表面は、CMP処理が施された後、パッド洗浄処理が施されていてもよい。
 パッド洗浄処理は、パッドを用いて、被処理部表面に存在する残渣を低減する処理である。具体的には、CMP処理が施された被対象物の表面と、パッドとを接触させて、その接触部分にパッド洗浄用組成物を供給しながら、被対象物とパッドとを相対摺動させる。その結果、被対象物の表面の残渣が、パッドによる摩擦力及びパッド洗浄用組成物による化学的作用によって除去される。
<Objects that have been subjected to pad cleaning treatment>
The surface of the object may be subjected to a pad cleaning process after the CMP process.
The pad cleaning process is a process for reducing residues present on the surface of a treated area using a pad. Specifically, the surface of a treated object that has been subjected to CMP is brought into contact with a pad, and the object and the pad are slid relative to each other while a pad cleaning composition is supplied to the contact portion. As a result, the residues on the surface of the object are removed by the frictional force of the pad and the chemical action of the pad cleaning composition.

 上記パッドとしては特に制限されず、被対象物の種類、除去対象とする残渣の種類、及び、使用する装置に応じて適宜選択できる。パッドとしては、CMP処理で用いられる研磨パッドを用いてもよく、発泡ポリウレタン系バフパッド、不織布、スウェード系バフパッド、及び、スポンジ等のバフパッドを用いてもよい。なお、パッドを用いたパッド洗浄処理は、バフ洗浄又はバフ研磨と呼ばれる処理を含む。 The pad is not particularly limited and can be selected appropriately depending on the type of object, the type of residue to be removed, and the device to be used. The pad may be an abrasive pad used in CMP processing, or a buff pad such as a foamed polyurethane buff pad, a nonwoven fabric, a suede buff pad, or a sponge. Note that pad cleaning processing using a pad includes processing called buff cleaning or buff polishing.

 上記パッド洗浄用組成物としては、被対象物の種類、並びに、除去対象とする残渣の種類及び量に応じて、公知の洗浄用組成物を使用できる。パッド洗浄用組成物に含まれる成分としては、例えば、フッ化アンモニウム(NHF)、1-ヒドロキシエチリデン-1,1’-ジホスホン酸(HEDPO)、ポリビニルアルコール等の水溶性ポリマー、水等の分散媒、及び、硝酸等の酸が挙げられる。また、パッド洗浄用組成物は、研磨粒子を含まない。 As the pad cleaning composition, a known cleaning composition can be used depending on the type of object and the type and amount of residue to be removed. Examples of components contained in the pad cleaning composition include ammonium fluoride (NH 4 F), 1-hydroxyethylidene-1,1'-diphosphonic acid (HEDPO), water-soluble polymers such as polyvinyl alcohol, a dispersion medium such as water, and an acid such as nitric acid. In addition, the pad cleaning composition does not contain abrasive particles.

 パッド洗浄処理において使用する装置及び条件については、被対象物の種類、並びに、除去対象とする残渣の種類及び量に応じて、公知の装置及び条件から適宜選択できる。例えば、国際公開第2017/169539号の段落[0085]~[0088]に記載の処理方法が使用でき、これらの内容は本明細書に組み込まれる。 The equipment and conditions used in the pad cleaning process can be appropriately selected from known equipment and conditions depending on the type of object and the type and amount of residue to be removed. For example, the processing method described in paragraphs [0085] to [0088] of WO 2017/169539 can be used, and the contents of these methods are incorporated herein.

 また、パッド洗浄処理の一実施形態としては、パッド洗浄用組成物として本発明の処理液を用いて被対象物にパッド洗浄処理を施すことも好ましい。
 パッド洗浄処理に供される処理液は、希釈処理液であってもよい。
As one embodiment of the pad cleaning treatment, it is also preferable to perform pad cleaning treatment on an object using the treatment liquid of the present invention as a pad cleaning composition.
The treatment liquid used in the pad cleaning process may be a diluted treatment liquid.

 パッド洗浄処理は、1回のみ実施されていてもよく、2回以上実施されていてもよい。例えば、CMP処理後、研磨パッドを用いたパッド洗浄処理、及び、バフパッドを用いたパッド洗浄処理が施されていてもよい。 The pad cleaning process may be performed only once, or may be performed two or more times. For example, after the CMP process, a pad cleaning process using a polishing pad and a pad cleaning process using a buff pad may be performed.

[被対象物の処理方法]
 本発明の被対象物の処理方法は、上記被対象物と本発明の処理液とを接触させる工程(接触工程)を含む処理方法であれば、特に制限されない。
 上記処理方法により、例えば、CMP処理が施された半導体基板を洗浄することができる。上記半導体基板の洗浄方法は、上記の希釈工程で得られる希釈処理液をCMP処理が施された半導体基板に適用して洗浄する工程を含むことが好ましい。
[Method of processing object]
The method for treating an object of the present invention is not particularly limited as long as it is a treatment method including a step of contacting the object with the treatment liquid of the present invention (contact step).
The above-mentioned processing method can be used to clean, for example, a semiconductor substrate that has been subjected to a CMP process. The above-mentioned semiconductor substrate cleaning method preferably includes a step of applying the diluted processing solution obtained in the above-mentioned dilution step to a semiconductor substrate that has been subjected to a CMP process to clean the substrate.

 被対象物と処理液とを接触させる方法としては、特に制限されず、例えば、タンクに入れた処理液中に被対象物を浸漬する方法、被対象物上に処理液を噴霧する方法、被対象物上に処理液を流す方法、及び、これらの組み合わせが挙げられる。上記方法は、目的に応じて適宜選択すればよい。
 また、上記方法は、通常この分野で行われる様式を適宜採用してもよい。例えば、処理液を供給しながらブラシ等の洗浄部材を被対象物の表面に物理的に接触させて残渣等を除去するスクラブ洗浄、及び、被対象物を回転させながら処理液を滴下するスピン(滴下)式等であってもよい。浸漬式では、被対象物の表面に残存する不純物をより低減できる点で、処理液に浸漬された被対象物に対して超音波処理を施すことが好ましい。
The method for contacting the object with the treatment liquid is not particularly limited, and examples thereof include a method of immersing the object in the treatment liquid contained in a tank, a method of spraying the treatment liquid on the object, a method of pouring the treatment liquid on the object, and combinations thereof. The above method may be appropriately selected depending on the purpose.
The above method may be appropriately adopted from the methods usually used in this field. For example, it may be a scrub cleaning method in which a cleaning member such as a brush is brought into physical contact with the surface of the object while supplying the processing liquid to remove residues, or a spin (drop) method in which the processing liquid is dropped onto the object while rotating the object. In the immersion method, it is preferable to perform ultrasonic treatment on the object immersed in the processing liquid, since impurities remaining on the surface of the object can be further reduced.

 接触工程における被対象物と処理液との接触は、1回のみ実施してもよく、2回以上実施してもよい。2回以上接触させる場合は、同じ方法を繰り返してもよいし、異なる方法を組み合わせてもよい。 The contact between the object and the treatment liquid in the contact step may be carried out only once, or may be carried out two or more times. When the object is contacted two or more times, the same method may be repeated, or different methods may be combined.

 接触工程の方法としては、枚葉方式及びバッチ方式のいずれであってもよい。
 枚葉方式とは、一般的に被対象物を1枚ずつ処理する方式であり、バッチ方式とは、一般的に複数枚の被対象物を同時に処理する方式である。
The contact step may be carried out by either a single wafer method or a batch method.
The single-wafer method generally refers to a method in which objects are processed one by one, while the batch method generally refers to a method in which a plurality of objects are processed simultaneously.

 処理液の温度は、通常この分野で行われる温度であれば特に制限はない。一般的には室温(約25℃)が行われるが、残渣除去性の向上及び部材へのダメージを抑えるために、温度は任意に選択できる。例えば、処理液の温度としては、10~60℃が好ましく、15~50℃がより好ましい。 There are no particular limitations on the temperature of the processing liquid, so long as it is a temperature that is normally used in this field. Generally, processing is performed at room temperature (approximately 25°C), but the temperature can be selected as desired to improve residue removal and minimize damage to components. For example, the temperature of the processing liquid is preferably 10 to 60°C, and more preferably 15 to 50°C.

 被対象物と処理液との接触時間は、処理液に含まれる成分の種類及び含有量等に応じて適宜変更できる。実用的には、10秒間~2分間が好ましく、20秒間~1分30秒間がより好ましく、30秒間~1分間が更に好ましい。 The contact time between the object and the treatment liquid can be changed as appropriate depending on the type and amount of components contained in the treatment liquid. In practice, 10 seconds to 2 minutes is preferable, 20 seconds to 1 minute and 30 seconds is more preferable, and 30 seconds to 1 minute is even more preferable.

 接触工程における処理液の供給量(供給速度)は50~5000mL/分が好ましく、500~2000mL/分がより好ましい。 The amount (supply rate) of the treatment liquid supplied in the contact step is preferably 50 to 5,000 mL/min, and more preferably 500 to 2,000 mL/min.

 接触工程において、処理液の残渣除去性をより増進するために、機械的撹拌方法を用いてもよい。
 機械的撹拌方法としては、例えば、半導体基板上で処理液を循環させる方法、半導体基板上で処理液を流過又は噴霧させる方法及び超音波又はメガソニックにて処理液を撹拌する方法が挙げられる。
In the contact step, a mechanical stirring method may be used to further enhance the residue removal properties of the treatment solution.
Examples of the mechanical stirring method include a method of circulating the treatment liquid above the semiconductor substrate, a method of passing or spraying the treatment liquid above the semiconductor substrate, and a method of stirring the treatment liquid by ultrasonic waves or megasonics.

 また、接触工程の後に、被対象物とリンス液とを接触させる工程(以下、「リンス工程」ともいう。)を行ってもよい。リンス工程を実施することにより、接触工程で得られた被対象物をリンス液で洗浄し、残渣を効率的に除去できる。
 リンス工程は、被対象物の洗浄工程の後に連続して行われ、リンス液を用いて被対象物をすすぐ工程であることが好ましい。リンス工程は、上記機械的撹拌方法を用いて行ってもよい。
In addition, after the contacting step, a step of contacting the object with a rinse liquid (hereinafter, also referred to as a "rinsing step") may be performed. By performing the rinsing step, the object obtained in the contacting step can be washed with the rinse liquid, and residues can be efficiently removed.
The rinsing step is preferably performed consecutively after the cleaning step of the object, and is a step of rinsing the object with a rinsing liquid. The rinsing step may be performed using the mechanical stirring method described above.

 リンス溶媒としては、例えば、水(好ましくは脱イオン(DI:De Ionized)水)、メタノール、エタノール、イソプロピルアルコール、N-メチルピロリジノン、γ-ブチロラクトン、ジメチルスルホキシド、乳酸エチル及びプロピレングリコールモノメチルエーテルアセテートが挙げられる。また、pHが8.0超である水性リンス液(希釈した水性の水酸化アンモニウム等)を利用してもよい。 Rinse solvents include, for example, water (preferably deionized (DI) water), methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, gamma-butyrolactone, dimethylsulfoxide, ethyl lactate, and propylene glycol monomethyl ether acetate. In addition, an aqueous rinse solution having a pH greater than 8.0 (such as diluted aqueous ammonium hydroxide) may be used.

 リンス液を被対象物に接触させる方法としては、上記処理液を被対象物に接触させる方法を同様に適用できる。
 被対象物とリンス液との接触時間は、処理液に含まれる各成分の種類及び含有量、並びに、処理液の使用対象及び目的に応じて適宜変更できる。実用的には、10~120秒が好ましく、20~90秒がより好ましく、30~60秒が更に好ましい。
As a method for contacting the object with the rinse liquid, the above-mentioned method for contacting the object with the treatment liquid can be similarly applied.
The contact time between the object and the rinse liquid can be appropriately changed depending on the type and content of each component contained in the treatment liquid, and the object and purpose of use of the treatment liquid. In practice, the contact time is preferably 10 to 120 seconds, more preferably 20 to 90 seconds, and even more preferably 30 to 60 seconds.

 また、上記リンス工程の後に、被対象物を乾燥させる乾燥工程を行ってもよい。
 乾燥方法としては、例えば、スピン乾燥法、半導体基板上に乾性ガスを流過させる方法、ホットプレート及び赤外線ランプ等の加熱手段によって基板を加熱する方法、マランゴニ乾燥法、ロタゴニ乾燥法、IPA(イソプロピルアルコール)乾燥法、並びに、これらの任意の組み合わせた方法が挙げられる。
After the rinsing step, a drying step may be performed to dry the object.
Examples of the drying method include a spin drying method, a method of passing a dry gas over a semiconductor substrate, a method of heating the substrate by a heating means such as a hot plate or an infrared lamp, a Marangoni drying method, a Rotagoni drying method, an IPA (isopropyl alcohol) drying method, and any combination of these methods.

[半導体デバイスの製造方法]
 上記被対象物の処理方法は、半導体デバイスの製造方法に好適に適用できる。
 上記洗浄方法は、基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。上記洗浄方法を実施する中にその他の工程に組み込んでもよいし、その他の工程の中に上記洗浄方法を組み込んで実施してもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁膜、強磁性層、及び、非磁性層等の構造の形成工程(例えば、層形成、エッチング、化学機械研磨、及び、変成等)、レジストの形成工程、露光工程、及び、除去工程、熱処理工程、洗浄工程、並びに、検査工程が挙げられる。
[Method of manufacturing semiconductor device]
The above-described method for processing an object can be suitably applied to a method for manufacturing a semiconductor device.
The cleaning method may be carried out in combination with other processes carried out on the substrate, before or after the other processes, or may be incorporated into other processes while carrying out the cleaning method, or may be incorporated into other processes.
Other processes include, for example, processes for forming structures such as metal wiring, gate structures, source structures, drain structures, insulating films, ferromagnetic layers, and non-magnetic layers (e.g., layer formation, etching, chemical mechanical polishing, and modification), resist formation processes, exposure processes, and removal processes, heat treatment processes, cleaning processes, and inspection processes.

 上記処理方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)、及び、フロントエンドプロセス(FEOL:Front end of the line)中のいずれの段階で行ってもよく、フロントエンドプロセス又はミドルプロセス中で行うことが好ましい。 The above processing method may be performed at any stage of the back-end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front-end process (FEOL: Front end of the line), and is preferably performed in the front-end process or middle process.

 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
The present invention will be described in further detail below with reference to examples.
The materials, amounts, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the following examples.

 以下の実施例において、処理液のpHは、pHメーター(堀場製作所社製、型式「F-74」)を用いて、JIS Z8802-1984に準拠して25℃において測定した。
 また、実施例及び比較例の処理液の製造にあたって、容器の取り扱い、処理液の調液、充填、保管及び分析測定は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。
In the following examples, the pH of the treatment solution was measured at 25° C. using a pH meter (manufactured by Horiba, Ltd., model "F-74") in accordance with JIS Z8802-1984.
In addition, in producing the treatment solutions of the Examples and Comparative Examples, handling of containers, preparation, filling, storage and analysis of the treatment solutions were all carried out in a clean room of a level satisfying ISO class 2 or lower.

[処理液の原料]
 処理液を製造するために、以下の化合物を使用した。なお、実施例で使用した各成分はいずれも、半導体グレードに分類されるもの又はそれに準ずる高純度グレードに分類されるものを使用した。
[Raw materials for processing liquid]
The following compounds were used to prepare the treatment solution. Note that all of the components used in the examples were classified as semiconductor grade or equivalent high purity grade.

〔水酸基含有カルボン酸〕
 ・クエン酸
 ・リンゴ酸
 ・酒石酸
[Hydroxyl-containing carboxylic acid]
・Citric acid ・Malic acid ・Tartaric acid

〔ホスホン酸化合物〕
 ・HEDP
 ・NTMP
 ・EDTMP
[Phosphonic acid compounds]
・H.E.D.P.
・NTMP
EDTMP

〔アニオン性ポリマー〕
 ・PA:ポリアクリル酸(Mw(重量平均分子量):6000)
 ・PB:ポリスチレンスルホン酸(Mw:75000)
 ・PC:ポリビニルスルホン酸(Mw:8000)
 ・PD:ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)(Mw:6000)
 ・PE:2-アクリルアミド-2-メチル-1-プロパンスルホン酸-アクリル酸共重合体(Mw:8500)
 ・PF:ポリカルボン酸 ポリアルキレングリコール グラフト体(Mw:3000、アクアリックPM-303B、日本触媒(株)製)
 ・PG:ポリビニルホスホン酸(Mw:24000)
[Anionic polymer]
PA: Polyacrylic acid (Mw (weight average molecular weight): 6000)
PB: Polystyrene sulfonic acid (Mw: 75,000)
PC: Polyvinyl sulfonic acid (Mw: 8000)
PD: Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (Mw: 6000)
PE: 2-acrylamide-2-methyl-1-propanesulfonic acid-acrylic acid copolymer (Mw: 8500)
PF: polycarboxylic acid polyalkylene glycol grafted compound (Mw: 3000, AQUALIC PM-303B, manufactured by Nippon Shokubai Co., Ltd.)
PG: Polyvinylphosphonic acid (Mw: 24000)

〔アニオン性界面活性剤〕
 ・SA:ドデシルベンゼンスルホン酸
 ・SB:ナフタレンスルホン酸ホルマリン縮合物(Mw:2000)
 ・SC:C12~C14アルキルジフェニルエーテルジスルホン酸
 ・SD:ラウリルスルホン酸
 ・SE:トリデセス-4カルボン酸
[Anionic Surfactants]
SA: Dodecylbenzenesulfonic acid SB: Naphthalenesulfonic acid formalin condensate (Mw: 2000)
SC: C12-C14 alkyl diphenyl ether disulfonic acid SD: lauryl sulfonic acid SE: trideceth-4 carboxylic acid

〔その他成分〕
 ・シュウ酸
[Other ingredients]
Oxalic acid

〔pH調整剤、超純水〕
 pH調整剤として、必要に応じて、水酸化カリウム(KOH)及び硫酸(HSO)のいずれか一方を用いた。
 なお、水酸化カリウム及び硫酸の含有量は、各処理液の全質量に対して2質量%以下であった。
 また、処理液の調製の際に、超純水(富士フイルム和光純薬社製)を用いた。
[pH adjuster, ultrapure water]
As a pH adjuster, either potassium hydroxide (KOH) or sulfuric acid (H 2 SO 4 ) was used as necessary.
The contents of potassium hydroxide and sulfuric acid were 2% by mass or less based on the total mass of each treatment liquid.
In addition, ultrapure water (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used in preparing the treatment liquid.

[処理液の製造]
 次に、実施例及び比較例の各処理液の製造方法について、実施例1を例に説明する。
 各成分の含有量が各表に記載の配合比となるよう、超純水に、クエン酸、HEDP、PA及びSAをそれぞれ添加した後、混合液のpHが1.4となるようにpH調整剤を添加した。超純水の含有量は、超純水以外の処理液の調製に用いた各成分の含有量を差し引いた、処理液の残部である。
 得られた混合液を十分に撹拌することにより、実施例1の処理液を調製した。
 実施例1の処理液の製造方法に準じて、下記表に示す組成を有する実施例及び比較例の各処理液をそれぞれ調製した。
[Preparation of Processing Solution]
Next, the manufacturing method of each of the treatment liquids of the examples and comparative examples will be described using Example 1 as an example.
Citric acid, HEDP, PA, and SA were added to ultrapure water so that the content of each component was the blending ratio shown in each table, and then a pH adjuster was added so that the pH of the mixed liquid was 1.4. The content of ultrapure water is the remainder of the treatment liquid after subtracting the content of each component used in the preparation of the treatment liquid other than ultrapure water.
The resulting mixture was thoroughly stirred to prepare the treatment liquid of Example 1.
According to the manufacturing method of the treatment liquid of Example 1, each treatment liquid of the Examples and Comparative Examples having the composition shown in the following table was prepared.

[評価]
 続いて、上記の方法で製造した実施例又は比較例の各処理液を用いて、以下評価を実施した。
[evaluation]
Next, the following evaluations were carried out using each of the treatment solutions of the Examples and Comparative Examples produced by the above-mentioned methods.

〔銅(Cu)膜を有するウエハ上の有機物残渣除去性の評価〕
 化学機械研磨を施した半導体基板を洗浄した際の有機物残渣除去性(欠陥数)を評価した。
 FREX300S-II(研磨装置、荏原製作所社製)を用いて、研磨液として研磨液1を使用し、研磨圧力の面内平均値が105hPa、研磨液供給速度が200mL/min、研磨時間が30秒間となる条件で、表面にCu膜を有するウエハ(直径12インチ)を研磨した。次に、研磨液として研磨液2を使用し、研磨圧力の面内平均値が70hPa、研磨液供給速度が200mL/min、研磨時間が60秒間となる条件で、上記の研磨処理が施されたウエハを更に研磨した。
 得られたCMP処理が施されたウエハを、室温(23℃)に調整した処理液の100倍希釈サンプル(純水による希釈)を用いて1分間スクラブ洗浄し、乾燥処理した。
 なお、上記研磨液1及び研磨液2の組成は下記の通りである。
研磨液1(pH7.0)
 ・コロイダルシリカ(PL3、扶桑化学工業社製) 0.1質量%
 ・グリシン                   1.0質量%
 ・3-アミノ-1,2,4-トリアゾール     0.2質量%
 ・ベンゾトリアゾール(BTA)         30質量ppm
 ・過酸化水素                  1.0質量%
 ・pH調整剤(アンモニア及び硝酸)
 ・水                      残部
 研磨液2(pH10.5)
 ・コロイダルシリカ(PL3、扶桑化学工業社製) 6.0質量%
 ・クエン酸                   1.0質量%
 ・アルキルアルコキシレート界面活性剤      100質量ppm
 ・BTA                    0.2質量%
 ・過酸化水素                  1.0質量%
 ・pH調整剤(水酸化カリウム及び硝酸)
 ・水                      残部
[Evaluation of organic residue removal on wafers having copper (Cu) films]
The removability of organic residues (number of defects) when a chemically mechanically polished semiconductor substrate was cleaned was evaluated.
Using a FREX300S-II (polishing device, manufactured by Ebara Corporation), a wafer (diameter 12 inches) having a Cu film on its surface was polished using polishing liquid 1 as the polishing liquid under the conditions of an in-plane average polishing pressure of 105 hPa, a polishing liquid supply rate of 200 mL/min, and a polishing time of 30 seconds. Next, using polishing liquid 2 as the polishing liquid, the wafer that had been subjected to the above polishing treatment was further polished under the conditions of an in-plane average polishing pressure of 70 hPa, a polishing liquid supply rate of 200 mL/min, and a polishing time of 60 seconds.
The resulting CMP-treated wafer was scrubbed for 1 minute with a 100-fold diluted sample (diluted with pure water) of the treatment liquid adjusted to room temperature (23° C.), and then dried.
The compositions of the polishing solutions 1 and 2 are as follows:
Polishing liquid 1 (pH 7.0)
Colloidal silica (PL3, manufactured by Fuso Chemical Co., Ltd.) 0.1% by mass
Glycine 1.0% by mass
0.2% by mass of 3-amino-1,2,4-triazole
Benzotriazole (BTA) 30 ppm by mass
Hydrogen peroxide 1.0% by mass
・pH adjuster (ammonia and nitric acid)
・Water remainder Polishing liquid 2 (pH 10.5)
Colloidal silica (PL3, manufactured by Fuso Chemical Co., Ltd.) 6.0% by mass
Citric acid 1.0% by mass
Alkyl alkoxylate surfactant 100 ppm by mass
・BTA 0.2% by mass
Hydrogen peroxide 1.0% by mass
・pH adjuster (potassium hydroxide and nitric acid)
・Water remainder

 次に、欠陥検出装置(KLA社製 Surfscan SP5)を用いて、得られたウエハの研磨面において、長さが0.036μm以上である欠陥に対応する信号強度の検出数(総欠陥数)を計測した。
 その後、SemVision G5(Applied Materials社製)にて任意の欠陥100個を画像観察し、欠陥100個における有機残渣の数を計測することで、欠陥のうち有機物に由来するものの割合を見積もった。
 「総欠陥数」と「有機物の割合」をかけて、有機物残渣の数を算出し、下記評価基準に基づいて評価した。Aの評価が最も好ましく、実用上C以上の評価が好ましい。
Next, using a defect detection device (Surfscan SP5 manufactured by KLA Corporation), the number of defects (total number of defects) having a length of 0.036 μm or more was counted on the polished surface of the obtained wafer.
Thereafter, images of 100 random defects were observed using a SemVision G5 (manufactured by Applied Materials), and the number of organic residues in the 100 defects was counted to estimate the proportion of defects originating from organic matter.
The number of organic residues was calculated by multiplying the "total number of defects" by the "ratio of organic matter", and was evaluated based on the following evaluation criteria: A rating is most preferable, and a rating of C or higher is practically preferable.

(評価基準)
 A:ウエハあたりの有機物残渣の数が20個未満
 B:ウエハあたりの有機物残渣の数が20個以上、50個未満
 C:ウエハあたりの有機物残渣の数が50個以上、100個未満
 D:ウエハあたりの有機物残渣の数が100個以上
(Evaluation Criteria)
A: The number of organic residues per wafer is less than 20. B: The number of organic residues per wafer is 20 or more and less than 50. C: The number of organic residues per wafer is 50 or more and less than 100. D: The number of organic residues per wafer is 100 or more.

〔タングステン(W)膜を有するウエハ上の有機物残渣除去性の評価〕
 表面にCu膜を有するウエハ(直径12インチ)を、表面にW膜を有するウエハ(直径12インチ)に変更し、研磨液1及び2のpHを4.0に変更した以外は、上記〔銅(Cu)膜を有するウエハ上の有機物残渣除去性の評価〕に記載の評価方法、及び評価基準と同様にして、W膜を有するウエハ上の有機物残渣除去性を評価した。
[Evaluation of organic residue removal on wafers having tungsten (W) films]
The removability of organic residue on a wafer having a W film was evaluated in the same manner as in the evaluation method and evaluation criteria described above in [Evaluation of organic residue removability on a wafer having a copper (Cu) film], except that a wafer (diameter 12 inches) having a Cu film on its surface was changed to a wafer (diameter 12 inches) having a W film on its surface and the pH of the polishing solutions 1 and 2 was changed to 4.0.

〔腐食抑制性能の評価〕
 2×2cmの銅のクーポンウエハを準備し、これらを用いて、Cuに対する処理液の腐食抑制性能を評価した。
 上記ウエハをそれぞれ、各処理液、及び、室温(25℃)で6か月間静置処理した各処理液に室温(25℃)で30分間浸漬した。
 その後、得られたウエハの膜厚を測定し、上記浸漬処理前後の膜厚差からエッチングレート(Å/min)を求めた。エッチングレートが低いほど腐食抑制性能に優れ、実用上1.0Å/min以下が好ましい。
[Evaluation of corrosion inhibition performance]
Copper coupon wafers measuring 2×2 cm were prepared and used to evaluate the corrosion inhibition performance of the treatment liquid against Cu.
The wafers were immersed for 30 minutes at room temperature (25° C.) in each of the treatment liquids and in each of the treatment liquids that had been left stationary for 6 months at room temperature (25° C.).
The thickness of the wafer was then measured, and the etching rate (Å/min) was calculated from the difference in thickness before and after the immersion treatment. The lower the etching rate, the better the corrosion inhibition performance, and a rate of 1.0 Å/min or less is preferable for practical use.

[結果]
 表1及び表2に、実施例及び比較例にて使用した各処理液の組成、並びに、各処理液の評価結果を示す。
 表1(続き)は、表1の続きである。また、表2についても同様である。例えば、実施例1においては、クエン酸20質量%、HEDP0.5質量%、PA0.1質量%、及びSA0.07質量%の組成であり、希釈前後のpHがそれぞれ1.4及び2.5である処理液を用い、評価を実施した結果、有機物残渣除去性が「A」、調液直後、及び室温で6か月間保管した後の銅エッチングレートがいずれも0.3Å/minであったことを示す。
 表中、「含有量(wt%)」欄の数値は、処理液の全質量に対する各成分の含有量(質量%)を示す。
 「pH」欄の数値は、上記[処理液の製造]にて調製した各処理液のpHを示し、「希釈後のpH」欄の数値は、上記〔有機物残渣除去性の評価〕にて用いた各処理液の希釈サンプルのpHを示す。
 「比率」欄の数値は各成分の含有量比(質量比)を示す。「ホスホン酸/ポリマー」欄の数値は、アニオン性ポリマーの含有量に対するホスホン酸化合物の含有量の質量比を示し、「カルボン酸/ポリマー」欄の数値は、アニオン性ポリマーの含有量に対する水酸基含有カルボン酸の含有量の質量比を示し、「ポリマー/全固形分」欄の数値は、処理液の全固形分に対するアニオン性ポリマーの含有量の質量比を示す。
[result]
Tables 1 and 2 show the composition of each treatment liquid used in the examples and comparative examples, and the evaluation results of each treatment liquid.
Table 1 (continued) is a continuation of Table 1. The same applies to Table 2. For example, in Example 1, a treatment solution having a composition of 20 mass % citric acid, 0.5 mass % HEDP, 0.1 mass % PA, and 0.07 mass % SA, and having a pH of 1.4 and 2.5 before and after dilution, respectively, was used for evaluation, and the results show that the organic residue removability was "A" and the copper etching rate was 0.3 Å/min immediately after preparation and after storage at room temperature for 6 months.
In the table, the values in the "Content (wt %)" column indicate the content (mass %) of each component relative to the total mass of the treatment liquid.
The numerical values in the "pH" column indicate the pH of each treatment liquid prepared in the above-mentioned "Preparation of treatment liquid", and the numerical values in the "pH after dilution" column indicate the pH of the diluted sample of each treatment liquid used in the above-mentioned "Evaluation of organic residue removability".
The numerical value in the "Ratio" column indicates the content ratio (mass ratio) of each component. The numerical value in the "Phosphonic acid/Polymer" column indicates the mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer. The numerical value in the "Carboxylic acid/Polymer" column indicates the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer. The numerical value in the "Polymer/Total Solids" column indicates the mass ratio of the content of the anionic polymer to the total solids of the treatment liquid.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

 表の結果から、本発明の処理液は、化学機械研磨処理が施された銅表面を有する被対象物に適用した際に、銅の腐食が少なく、且つ、銅表面上の有機残渣の除去性に優れることが確認された。更に、本発明の処理液は、化学機械研磨処理が施されたタングステン表面を有する被対象物に適用した際に、タングステン表面上の有機残渣の除去性にも優れることが確認された。
 また、実施例1~7の対比等から、アニオン性ポリマーの含有量に対する水酸基含有カルボン酸の含有量の質量比が10以上である場合、有機残渣の除去性がより優れ、100以上である場合、有機残渣の除去性が更に優れることが確認された。
 実施例1~4の対比等から、処理液の全固形分に対するアニオン性ポリマーの含有量の質量比が0.1以下である場合、有機物残渣除去性がより優れ、処理液の全固形分に対するアニオン性ポリマーの含有量の質量比が更に0.0001以上である場合、有機残渣の除去性がより優れ、かつ、銅の腐食がより少ないことが確認された。
 実施例8~16の対比等から、アニオン性ポリマーがアクリルアミド系モノマーに由来する繰り返し単位を有さない場合、室温で6か月間保管した後の処理液を用いて銅を含む被対象物を処理した場合でも、処理液物性の経時変化が小さく銅の腐食が少ないことが確認された。
From the results in the table, it was confirmed that the treatment liquid of the present invention, when applied to an object having a copper surface that has been subjected to chemical mechanical polishing, causes less copper corrosion and is excellent in removing organic residues from the copper surface. Furthermore, it was confirmed that the treatment liquid of the present invention, when applied to an object having a tungsten surface that has been subjected to chemical mechanical polishing, is also excellent in removing organic residues from the tungsten surface.
Furthermore, by comparing Examples 1 to 7, it was confirmed that when the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 10 or more, the removability of organic residues is superior, and when it is 100 or more, the removability of organic residues is even superior.
From a comparison of Examples 1 to 4, it was confirmed that when the mass ratio of the anionic polymer content to the total solid content of the treatment liquid is 0.1 or less, the organic residue removability is superior, and when the mass ratio of the anionic polymer content to the total solid content of the treatment liquid is 0.0001 or more, the organic residue removability is superior and copper corrosion is reduced.
Comparison of Examples 8 to 16 and the like confirmed that when the anionic polymer did not have a repeating unit derived from an acrylamide-based monomer, even when a copper-containing object was treated with a treatment liquid that had been stored at room temperature for six months, there was little change in the properties of the treatment liquid over time and little corrosion of copper.

Claims (16)

 アニオン性ポリマーと、
 ホスホン酸化合物と、
 水酸基含有カルボン酸と、を含み、
 前記アニオン性ポリマーの含有量に対する前記ホスホン酸化合物の含有量の質量比が0.1~1000であり、
 pHが0.1~7.0である、半導体製造工程で使用される処理液。
an anionic polymer;
A phosphonic acid compound,
and a hydroxyl-containing carboxylic acid,
a mass ratio of the content of the phosphonic acid compound to the content of the anionic polymer is 0.1 to 1000;
A processing solution used in semiconductor manufacturing processes, having a pH of 0.1 to 7.0.
 前記水酸基含有カルボン酸が、クエン酸、リンゴ酸、酒石酸、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、シトラマル酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸、サリチル酸、クレオソート酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸、アトロラクチン酸、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、及びシナピン酸からなる群から選択される、請求項1に記載の処理液。 The treatment solution according to claim 1, wherein the hydroxyl-containing carboxylic acid is selected from the group consisting of citric acid, malic acid, tartaric acid, glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, citramalic acid, isocitric acid, leucic acid, mevalonic acid, pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, salicylic acid, creosote acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orselliic acid, gallic acid, mandelic acid, benzilic acid, atrolactic acid, mellitic acid, phloretic acid, coumaric acid, umbellic acid, caffeic acid, ferulic acid, and sinapic acid.  前記ホスホン酸化合物が、エチドロン酸、ニトリロトリス(メチレンホスホン酸)、エチレンジアミンテトラメチレンホスホン酸、及び2-ホスホノブタン-1,2,4-トリカルボン酸からなる群から選択される、請求項1に記載の処理液。 The treatment solution according to claim 1, wherein the phosphonic acid compound is selected from the group consisting of etidronic acid, nitrilotris(methylene phosphonic acid), ethylenediaminetetramethylene phosphonic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid.  前記アニオン性ポリマーが、ポリアクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、2-アクリルアミド-2-メチル-1-プロパンスルホン酸-アクリル酸共重合体、ポリビニルホスホン酸、ポリ(N-ビニルアセトアミド)、及びスチレンスルホン酸-アクリル酸-ビニルホスホン酸共重合体からなる群から選択される、請求項1に記載の処理液。 The treatment solution according to claim 1, wherein the anionic polymer is selected from the group consisting of polyacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, poly(2-acrylamido-2-methyl-1-propanesulfonic acid), 2-acrylamido-2-methyl-1-propanesulfonic acid-acrylic acid copolymer, polyvinyl phosphonic acid, poly(N-vinyl acetamide), and styrene sulfonic acid-acrylic acid-vinyl phosphonic acid copolymer.  前記アニオン性ポリマーが、アクリルアミド系モノマーに由来する繰り返し単位を有さない、請求項1に記載の処理液。 The treatment liquid according to claim 1, wherein the anionic polymer does not have repeating units derived from an acrylamide monomer.  前記アニオン性ポリマーの含有量に対する、前記水酸基含有カルボン酸の含有量の質量比が10以上である、請求項1に記載の処理液。 The treatment liquid according to claim 1, wherein the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 10 or more.  前記アニオン性ポリマーの含有量に対する、前記水酸基含有カルボン酸の含有量の質量比が100以上である、請求項1に記載の処理液。 The treatment liquid according to claim 1, wherein the mass ratio of the content of the hydroxyl group-containing carboxylic acid to the content of the anionic polymer is 100 or more.  前記処理液の全固形分に対する、前記アニオン性ポリマーの含有量の質量比が0.0001~0.1である、請求項1に記載の処理液。 The treatment liquid according to claim 1, wherein the mass ratio of the content of the anionic polymer to the total solid content of the treatment liquid is 0.0001 to 0.1.  スルホン酸系界面活性剤、カルボン酸系界面活性剤、及びリン酸エステル系界面活性剤からなる群から選択されるアニオン性界面活性剤を更に含む、請求項1に記載の処理液。 The treatment liquid according to claim 1, further comprising an anionic surfactant selected from the group consisting of sulfonic acid surfactants, carboxylic acid surfactants, and phosphate ester surfactants.  前記アニオン性界面活性剤が、炭素数6以上のアルキル鎖を有する前記スルホン酸系界面活性剤である、請求項9に記載の処理液。 The treatment liquid according to claim 9, wherein the anionic surfactant is a sulfonic acid surfactant having an alkyl chain with 6 or more carbon atoms.  化学機械研磨処理が施された被対象物の洗浄に用いられる、請求項1に記載の処理液。 The treatment solution according to claim 1, which is used to clean an object that has been subjected to chemical mechanical polishing.  前記被対象物が化学機械研磨処理が施された銅表面を有し、前記銅表面の洗浄に用いられる、請求項11に記載の処理液。 The treatment solution according to claim 11, wherein the object has a copper surface that has been subjected to a chemical mechanical polishing process, and the treatment solution is used to clean the copper surface.  水を含む希釈液で希釈される、請求項1に記載の処理液。 The treatment solution according to claim 1, which is diluted with a diluent containing water.  第4級アンモニウム塩を含まない、請求項1に記載の処理液。 The treatment solution according to claim 1, which does not contain a quaternary ammonium salt.  化学機械研磨処理が施された被対象物と、請求項1~14のいずれか1項に記載の処理液とを接触させる工程を含む、被対象物の処理方法。 A method for treating an object, comprising a step of contacting the object that has been subjected to chemical mechanical polishing with the treatment liquid according to any one of claims 1 to 14.  請求項15に記載の被対象物の処理方法を有する、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising the method for processing an object according to claim 15.
PCT/JP2024/023037 2023-06-28 2024-06-25 Treatment solution, method for treating object, and method for producing semiconductor device WO2025005092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-106088 2023-06-28
JP2023106088 2023-06-28

Publications (1)

Publication Number Publication Date
WO2025005092A1 true WO2025005092A1 (en) 2025-01-02

Family

ID=93939246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/023037 WO2025005092A1 (en) 2023-06-28 2024-06-25 Treatment solution, method for treating object, and method for producing semiconductor device

Country Status (2)

Country Link
TW (1) TW202511465A (en)
WO (1) WO2025005092A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004968A (en) * 2018-06-26 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Post chemical mechanical planarization (CMP) cleaning
WO2022014287A1 (en) * 2020-07-14 2022-01-20 富士フイルムエレクトロニクスマテリアルズ株式会社 Semiconductor substrate cleaning solution
WO2022168687A1 (en) * 2021-02-03 2022-08-11 富士フイルム株式会社 Semiconductor substrate cleaning solution
WO2022264931A1 (en) * 2021-06-14 2022-12-22 富士フイルム株式会社 Cleaning composition, method for cleaning semiconductor substrate, and method for manufacturing semiconductor element
JP2023522830A (en) * 2020-03-19 2023-06-01 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド CLEANING COMPOSITION AND METHOD OF USE THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004968A (en) * 2018-06-26 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Post chemical mechanical planarization (CMP) cleaning
JP2023522830A (en) * 2020-03-19 2023-06-01 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド CLEANING COMPOSITION AND METHOD OF USE THEREOF
WO2022014287A1 (en) * 2020-07-14 2022-01-20 富士フイルムエレクトロニクスマテリアルズ株式会社 Semiconductor substrate cleaning solution
WO2022168687A1 (en) * 2021-02-03 2022-08-11 富士フイルム株式会社 Semiconductor substrate cleaning solution
WO2022264931A1 (en) * 2021-06-14 2022-12-22 富士フイルム株式会社 Cleaning composition, method for cleaning semiconductor substrate, and method for manufacturing semiconductor element

Also Published As

Publication number Publication date
TW202511465A (en) 2025-03-16

Similar Documents

Publication Publication Date Title
JP6066552B2 (en) Cleaning composition for electronic devices
KR20160130169A (en) TiN HARD MASK AND ETCH RESIDUE REMOVAL
WO2019073931A1 (en) Cleaning fluids, cleaning method, and production method for semiconductor wafer
US12098301B2 (en) Polishing liquid and chemical mechanical polishing method
JP7509883B2 (en) Semiconductor substrate cleaning solution
WO2019151001A1 (en) Method for processing substrate, method for manufacturing semiconductor device, and substrate-processing kit
US20220098444A1 (en) Polishing liquid and chemical mechanical polishing method
WO2021205797A1 (en) Cleaning solution for semiconductor substrate
WO2025005092A1 (en) Treatment solution, method for treating object, and method for producing semiconductor device
JP2024018964A (en) Processing liquid, method for processing object, and method for manufacturing semiconductor devices
WO2023181739A1 (en) Composition, and production method for semiconductor element
KR102727373B1 (en) Polishing solution, and chemical mechanical polishing method
WO2022264931A1 (en) Cleaning composition, method for cleaning semiconductor substrate, and method for manufacturing semiconductor element
WO2024190141A1 (en) Treatment liquid, method for cleaning object to be treated, and method for producing electronic device
WO2025069904A1 (en) Processing liquid, method for processing object to be processed, method for processing pad, and method for manufacturing electronic device
WO2024071285A1 (en) Method for manufacturing semiconductor device, processing solution, and kit
TWI804963B (en) Post chemical mechanical planarization (cmp) cleaning
WO2023189432A1 (en) Cleaning composition, and method for producing semiconductor substrate
WO2025134878A1 (en) Kit and method for producing a semiconductor device
WO2024185373A1 (en) Composition, method for cleaning semiconductor substrate, and method for producing electronic device
WO2024071182A1 (en) Semiconductor manufacturing treatment liquid, treated object washing method, and semiconductor manufacturing method
WO2025154728A1 (en) Cleaning liquid for semiconductor substrate, method for cleaning object to be processed, and method for manufacturing semiconductor device
WO2024048241A1 (en) Composition, method for treating object to be treated, and manufacturing method for semiconductor device
TW202403019A (en) Treating liquid, method for treating substrate, and method for manufacturing semiconductor device
JP2022190401A (en) Cleaning composition, method for cleaning semiconductor substrate and method for manufacturing semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24831952

Country of ref document: EP

Kind code of ref document: A1