[go: up one dir, main page]

WO2025004331A1 - Control device for injection device, injection molding system, and method for controlling injection device - Google Patents

Control device for injection device, injection molding system, and method for controlling injection device Download PDF

Info

Publication number
WO2025004331A1
WO2025004331A1 PCT/JP2023/024386 JP2023024386W WO2025004331A1 WO 2025004331 A1 WO2025004331 A1 WO 2025004331A1 JP 2023024386 W JP2023024386 W JP 2023024386W WO 2025004331 A1 WO2025004331 A1 WO 2025004331A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
motor
motor control
rotation position
rotational position
Prior art date
Application number
PCT/JP2023/024386
Other languages
French (fr)
Japanese (ja)
Inventor
市原稔章
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2023/024386 priority Critical patent/WO2025004331A1/en
Publication of WO2025004331A1 publication Critical patent/WO2025004331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Definitions

  • This disclosure relates to a control device for an injection device, an injection molding system, and a control method for an injection device.
  • Japanese Patent Application Laid-Open Publication No. 9-117946 discloses a method for correcting the zero point of a pressure sensor (load cell) installed in the injection unit of an injection molding machine.
  • a better injection unit control device, injection molding system, and injection unit control method are desired for correcting the zero point of the pressure sensor.
  • a first aspect of the present disclosure is a control device for an injection device including an injection cylinder, an injection member inserted into the injection cylinder and movable within the injection cylinder, a support part connected to a rear end of the injection member and supporting the injection member, an injection motor that applies a driving force to the support part to move the injection member, and a pressure sensor that detects a pressure applied to the support part, the control device including a first motor control part that controls the injection motor so that the injection member and the support part move forward with a limit torque, thereby bringing the support part into contact with the injection cylinder and pressing it against it, a second motor control part that controls the injection motor so that the injection member and the support part move backward with the limit torque after control by the first motor control part, and a pressure sensor that controls the injection motor so that the injection member and the support part move backward with the limit torque after control by the second motor control part.
  • the control device for the injection device includes a third motor control unit that stops driving the injection motor when the rotational position of the injection motor is within a range between a first rotational position of the injection motor when the support part is pressed against the injection cylinder and a second rotational position of the injection motor when the control by the second motor control unit is performed, and a zero point correction unit that corrects the zero point of the pressure sensor so that the detection value detected based on the pressure sensor becomes zero when the drive of the injection motor is stopped by the third motor control unit.
  • a second aspect of the present disclosure is an injection molding system comprising the control device of the injection device and the injection device.
  • a third aspect of the present disclosure is a control method for an injection device including an injection cylinder, an injection member inserted into the injection cylinder and movable within the injection cylinder, a support part connected to a rear end of the injection member and supporting the injection member, an injection motor applying a driving force to the support part to move the injection member, and a pressure sensor detecting a pressure applied to the support part, the control method including a first motor control step of controlling the injection motor so that the injection member and the support part move forward with a limit torque to bring the support part into contact with and press it against the injection cylinder, a second motor control step of controlling the injection motor after the first motor control step so that the injection member and the support part move backward with the limit torque, and a second motor control step of controlling the injection motor after the second motor control step to move forward in the first motor control step.
  • the method includes a third motor control step of stopping the drive of the injection motor in a state where the rotational position of the injection motor is within a range between a first rotational position of the injection motor in a state where the support part is pressed against the injection cylinder and a second rotational position of the injection motor in a state where the second motor control step is performed, and a zero point correction step of correcting the zero point of the pressure sensor so that the detection value detected based on the pressure sensor becomes zero in a state where the drive of the injection motor is stopped by the third motor control step, and when the injection member and the support part advance and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and the force of the support part moving due to the limit torque is smaller than the adhesive force.
  • FIG. 1 is a diagram showing the overall configuration of an injection molding system according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the injection device.
  • FIG. 3 is a block diagram of the control device.
  • FIG. 4 is a schematic diagram showing the injection cylinder and the support portion in contact with each other.
  • FIG. 5 is a number line illustrating a first rotational position, a second rotational position, and a third rotational position.
  • FIG. 6 is a flowchart illustrating a method for controlling the injection device.
  • FIG. 7 is a schematic diagram showing the configuration of an injection device according to the second modification.
  • the zero point misalignment of the pressure sensor be appropriately corrected. Also, the shorter the time required to correct the zero point of the pressure sensor, the better.
  • FIG. 1 is a diagram showing the overall configuration of an injection molding system SYS according to this embodiment.
  • the injection molding system SYS includes an injection molding machine 10 and a control device 12.
  • the injection molding machine 10 is a machine that performs injection molding using a mold 20 to produce a molded product.
  • the injection molding machine 10 is equipped with a mold clamping device 14, an injection device 16, and a machine base 18.
  • the clamping device 14 is a device that applies a clamping force to the mold 20.
  • the clamping device 14 is arranged on the machine base 18.
  • the clamping device 14 opens and closes the mold 20.
  • the clamping device 14 applies a clamping force to the mold 20 so that the mold 20 does not open.
  • the mold 20 forms a cavity 20c in a closed state.
  • the mold 20 shown in FIG. 1 is in a closed state. A more detailed explanation of the clamping device 14 will be omitted.
  • the injection device 16 is a device that plasticizes the molding material and injects the plasticized molding material into the cavity 20c of the mold 20.
  • the injection device 16 is arranged on the machine stand 18.
  • the injection molding machine 10 produces a molded product by solidifying the molding material filled into the cavity 20c by the injection device 16.
  • the molding material is, for example, a resin. Note that the injection device 16 is shown diagrammatically in FIG. 1. A more detailed configuration of the injection device 16 is shown in FIG. 2.
  • the front-to-rear direction D shown in FIG. 1 corresponds to the arrangement direction of the mold clamping unit 14 and the injection unit 16 on the machine base 18.
  • the front-to-rear direction D includes a front direction D1 and a rear direction D2.
  • the front direction D1 is the direction from the injection unit 16 toward the mold clamping unit 14.
  • the rear direction D2 is the opposite direction to the front direction D1.
  • FIG. 2 is a schematic diagram showing the configuration of the injection device 16.
  • the injection device 16 includes an injection cylinder 22, an injection member 24, a front plate 26, a rear plate 28, a pusher plate 30, and a slide mechanism 32.
  • the injection cylinder 22 is a cylindrical member.
  • the axis LA of the injection cylinder 22 is parallel to the front-rear direction D.
  • the axis LA coincides with the axis of the injection member 24, which will be described later.
  • a nozzle 34 is provided at the front end 22a of the injection cylinder 22.
  • the nozzle 34 has an injection port 34p.
  • the injection port 34p is an opening for injecting the molding material in the injection cylinder 22 into the cavity 20c.
  • the injection cylinder 22 is also provided with a hopper 36.
  • the hopper 36 is provided at a relatively rear portion of the injection cylinder 22.
  • the hopper 36 stores the molding material.
  • the hopper 36 also supplies the stored molding material into the injection cylinder 22.
  • the injection member 24 is a member that is inserted into the injection cylinder 22 and moves within the injection cylinder 22 in the forward and backward direction D to inject molding material into the cavity 20c (see FIG. 1) of the mold 20. More specifically, the injection member 24 is, for example, a screw 24A or a plunger. In this embodiment, a case will be described in which the injection member 24 is a screw 24A.
  • the screw 24A has a front end 24a, a body 24b, and a rear end 24c.
  • the front end 24a is provided with a screw head.
  • the body 24b is provided with a spiral flight formed along the front-to-rear direction D.
  • the flight may be a single flight or a double flight.
  • the rear end 24c of the screw 24A protrudes from the rear end 22b of the injection cylinder 22.
  • the front plate 26 is a member that supports the injection cylinder 22.
  • the injection cylinder 22 passes through the front plate 26.
  • the rear end 24c of the screw 24A is located rearward of the front plate 26.
  • the rear plate 28 is located behind the front plate 26. A predetermined distance is provided between the rear plate 28 and the front plate 26.
  • the pusher plate 30 is provided between the front plate 26 and the rear plate 28.
  • the slide mechanism 32 includes a rail 38 and a slider 40.
  • the rail 38 extends in the front-rear direction D.
  • the slider 40 is movable along the rail 38.
  • the slider 40 supports the pusher plate 30. Therefore, the pusher plate 30 is movable along the rail 38.
  • the front plate 26, rear plate 28, and slide mechanism 32 are provided on a flat base 42.
  • the front plate 26, rear plate 28, and base 42 may be integrally molded.
  • the injection device 16 includes a support portion 44, a screw sleeve 46, a pressure sensor 48, a first drive device 50, and a second drive device 52.
  • the support portion 44 supports the rear end portion 24c of the injection member 24.
  • the support portion 44 is, for example, a spline bushing.
  • the rear end portion 24c of the injection member 24 has a male spline (not shown).
  • the support portion 44 has a female spline (not shown). The male spline of the rear end portion 24c fits into the female spline of the support portion 44, whereby the support portion 44 supports the rear end portion 24c of the injection member 24.
  • the screw sleeve 46 is provided between the pusher plate 30 and the support portion 44.
  • the screw sleeve 46 rotatably supports the support portion 44.
  • the screw sleeve 46 also restricts the support portion 44 from moving relative to the screw sleeve 46 in the forward/backward direction D.
  • the screw sleeve 46 has, for example, a bearing member (not shown). The bearing member restricts the support portion 44 from moving relative to the screw sleeve 46 in the forward/backward direction D while supporting the support portion 44 rotatably with respect to the screw sleeve 46.
  • the pressure sensor 48 is provided to detect the pressure of molding material, such as resin, inside the injection cylinder 22. This pressure is the pressure applied to the support portion 44 via the injection member 24.
  • the pressure sensor 48 is, for example, a load cell.
  • the pressure sensor 48 is provided, for example, inside the screw sleeve 46. The location where the pressure sensor 48 is installed may be changed as appropriate.
  • the first drive unit 50 is a device that rotates the injection member 24 around the axis LA.
  • the first drive unit 50 includes a rotation motor 54, a first drive pulley 56, a first belt 58, and a first driven pulley 60.
  • the rotation motor 54 is, for example, an electric servo motor.
  • the rotation motor 54 has a shaft 54a.
  • the shaft 54a rotates when a current is supplied to the rotation motor 54.
  • the shaft 54a is connected to a first drive pulley 56.
  • the first drive pulley 56 rotates in response to the rotation of the shaft 54a.
  • the first belt 58 is stretched between the first drive pulley 56 and the first driven pulley 60.
  • the first belt 58 transmits the rotation of the first drive pulley 56 to the first driven pulley 60.
  • the first driven pulley 60 rotates following the rotation of the first drive pulley 56 transmitted via the first belt 58. In other words, the first driven pulley 60 rotates according to the rotation of the shaft 54a.
  • the first driven pulley 60 is provided, for example, inside the pusher plate 30.
  • the first driven pulley 60 is connected to the support portion 44.
  • the first driven pulley 60 and the support portion 44 rotate integrally.
  • the rotation of the shaft 54a causes the support portion 44 to rotate.
  • the rotation of the support portion 44 causes the ejection member 24 to rotate.
  • the first drive device 50 can rotate the ejection member 24 around the axis LA.
  • the second drive device 52 is a device that moves the injection member 24 in the forward and backward direction D.
  • the second drive device 52 includes an injection motor 62, a second drive pulley 64, a second belt 66, a second driven pulley 68, a ball screw 70, and a nut 72.
  • the injection motor 62 is, for example, an electric servo motor.
  • the injection motor 62 includes a shaft 62a and a rotational position sensor 62b.
  • the shaft 62a rotates when a current is supplied to the injection motor 62.
  • the shaft 62a is connected to the second drive pulley 64.
  • the rotational position sensor 62b detects the rotational position of the shaft 62a.
  • the rotational position sensor 62b is, for example, a rotary encoder.
  • the second drive pulley 64 rotates in response to the rotation of the shaft 62a.
  • the second belt 66 is stretched between the second drive pulley 64 and the second driven pulley 68.
  • the second belt 66 transmits the rotation of the second drive pulley 64 to the second driven pulley 68.
  • the second driven pulley 68 rotates in response to the rotation of the second drive pulley 64, which is transmitted via the second belt 66.
  • the second driven pulley 68 rotates in response to the rotation of the shaft 62a.
  • the axis of the ball screw 70 is parallel to the front-rear direction D.
  • the ball screw 70 passes through the rear plate 28.
  • the rear plate 28 supports the ball screw 70 so that it can rotate.
  • the ball screw 70 is connected to the second driven pulley 68.
  • the ball screw 70 rotates integrally with the second driven pulley 68. Therefore, the ball screw 70 rotates in response to the rotation of the shaft 62a.
  • the nut 72 is provided on the rear side of the pusher plate 30.
  • the pusher plate 30 rotatably supports the nut 72. More specifically, the pusher plate 30 rotatably supports the nut 72 using a bearing member (not shown) provided on the pusher plate 30.
  • the nut 72 screws onto the ball screw 70.
  • the nut 72 moves in the axial direction of the ball screw 70 in response to the rotation of the ball screw 70. That is, the nut 72 moves in the forward/backward direction D in response to the rotation of the shaft 62a.
  • the pusher plate 30 moves in the forward direction D1 together with the nut 72.
  • the pusher plate 30 moves in the rearward direction D2 together with the nut 72. Because the slide mechanism 32 supports the pusher plate 30, the pusher plate 30 can move smoothly in the forward/backward direction D.
  • the pusher plate 30 When the pusher plate 30 moves in the forward direction D1, the pusher plate 30 pushes the injection member 24 in the forward direction D1 via the screw sleeve 46 and the support portion 44. When the pusher plate 30 moves in the rearward direction D2, the pusher plate 30 pulls the injection member 24 in the rearward direction D2 via the screw sleeve 46 and the support portion 44.
  • the injection member 24 moves in the injection cylinder 22 in the forward direction D1 or the backward direction D2 depending on the force it receives from the pusher plate 30. In other words, the injection member 24 can move along the forward/backward direction D.
  • the rotation direction of the shaft 62a when moving the injection member 24 in the forward direction D1 and the rotation direction of the shaft 62a when moving the injection member 24 in the rearward direction D2 are opposite to each other.
  • the rotation direction of the shaft 62a when moving the injection member 24 in the forward direction D1 is also referred to as the first rotation direction in the following description.
  • the rotation direction of the shaft 62a when moving the injection member 24 in the rearward direction D2 is also referred to as the second rotation direction in the following description.
  • the amount of movement of the ejection member 24 correlates with the amount of rotation of the shaft 62a.
  • the amount of movement of the ejection member 24 in the forward direction D1 correlates with the amount of rotation of the shaft 62a in a first rotation direction.
  • the amount of movement of the ejection member 24 in the backward direction D2 correlates with the amount of rotation of the shaft 62a in a second rotation direction. Because the amount of movement of the ejection member 24 correlates with the amount of rotation of the shaft 62a, the rotational position of the shaft 62a detected by the rotational position sensor 62b essentially indicates the position of the ejection member 24 in the forward/backward direction D.
  • the origin of the position of the injection member 24 in the front-rear direction D is determined in advance.
  • FIG. 2 shows the distance X in the front-rear direction D between the front end 44a of the support portion 44 and the rear end 22b of the injection cylinder 22.
  • the position of the injection member 24 when the distance X is 1 mm (millimeter) is determined in advance as the above-mentioned origin.
  • the method of determining the origin is not limited to this.
  • the injection device 16 further includes an attraction member 98.
  • the attraction member 98 is a member for generating an attraction force between the injection cylinder 22 (rear end 22b) and the support portion 44.
  • the attraction member 98 includes, for example, a magnet (electromagnet 98A) provided on at least one of the rear end 22b of the injection cylinder 22 and the support portion 44. In this embodiment, a case will be described in which the electromagnet 98A is provided on the support portion 44 and the injection cylinder 22 (rear end 22b) contains a metal.
  • FIG. 3 is a block diagram of the control device 12.
  • the control device 12 is a computer that controls at least the injection device 16 of the injection molding machine 10.
  • the control device 12 is, for example, a numerical control device.
  • the control device 12 includes a display unit 74, an operation unit 76, a memory unit 78, and a calculation unit 80.
  • the operation unit 76 includes, for example, an operation panel (not shown).
  • the operation panel includes, for example, but is not limited to, a keyboard, a pointing device, etc.
  • the operation unit 76 accepts input operations performed by an operator.
  • the display unit 74 includes a display element (not shown).
  • the display element is a liquid crystal display element, an organic electroluminescence display element, etc.
  • the operation unit 76 and the display unit 74 may be configured by a touch panel (not shown) equipped with such a display element.
  • the storage unit 78 includes, for example, one or more memories. More specifically, the storage unit 78 includes, for example, non-volatile memory such as ROM (Read Only Memory), flash memory, and magnetic disk, and volatile memory such as RAM (Random Access Memory).
  • the non-volatile memory stores, for example, computer-executable programs.
  • the volatile memory stores, for example, data etc. that is temporarily required when the processor (calculation unit 80) described below performs calculations based on a program.
  • At least a part of the storage unit 78 may be realized by a portable storage medium such as a USB (Universal Serial Bus) memory, memory card, etc.
  • USB Universal Serial Bus
  • the memory unit 78 stores limit torque information 82.
  • the limit torque information 82 is information indicating the magnitude of the limit torque.
  • the limit torque is a designated value of the torque of the shaft 62a (injection motor 62).
  • the limit torque is determined in advance, for example, based on experiments, so that the force in the forward/backward direction D that moves the injection member 24 is smaller than the adhesive force between the injection cylinder 22 and the support portion 44 described above.
  • the calculation unit 80 includes a predetermined processing circuit.
  • This processing circuit has one or more processors, such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the processing circuit may include a predetermined integrated circuit, such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
  • the calculation unit 80 includes a pressure acquisition unit 84, a rotational position acquisition unit 86, an electromagnet control unit 88, a first motor control unit 90, a second motor control unit 92, a third motor control unit 94, and a zero point correction unit 96.
  • the pressure acquisition unit 84, the rotational position acquisition unit 86, the electromagnet control unit 88, the first motor control unit 90, the second motor control unit 92, the third motor control unit 94, and the zero point correction unit 96 are realized by the calculation unit 80 (processor) executing a program stored in the storage unit 78 (memory).
  • At least a part of the pressure acquisition unit 84, the rotational position acquisition unit 86, the electromagnet control unit 88, the first motor control unit 90, the second motor control unit 92, the third motor control unit 94, and the zero point correction unit 96 may be realized by the integrated circuit or the like described above.
  • the pressure acquisition unit 84 acquires information indicating the pressure applied to the support unit 44. As described above, the pressure applied to the support unit 44 is detected by the pressure sensor 48. Therefore, the pressure acquisition unit 84 can acquire information indicating the pressure applied to the support unit 44 based on the detection signal of the pressure sensor 48.
  • the rotational position acquisition unit 86 acquires information indicating the rotational position of the injection motor 62. As described above, the rotational position of the injection motor 62 (shaft 62a) is detected by the rotational position sensor 62b. Therefore, the rotational position acquisition unit 86 can acquire information indicating the rotational position of the injection motor 62 based on the detection of the rotational position sensor 62b.
  • the electromagnet control unit 88 supplies power to the electromagnet 98A described above to generate an adhesive force (magnetic force) between the injection cylinder 22 and the support unit 44.
  • the first motor control unit 90 executes the first motor control described below. That is, the first motor control unit 90 controls the injection motor 62 so that the injection member 24 and the support unit 44 move forward, and the support unit 44 contacts and presses against the injection cylinder 22. While the support unit 44 is pressed against the injection cylinder 22, the first motor control unit 90 limits the magnitude of the first torque, which is the torque in the first rotation direction of the injection motor 62, to the magnitude of the limit torque described above. That is, while the support unit 44 is pressed against the injection cylinder 22, the first motor control unit 90 allows the magnitude of the first torque to increase within a range less than the magnitude of the limit torque, but does not allow the magnitude of the first torque to exceed the magnitude of the limit torque. As described above, the first rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the forward direction D1.
  • Figure 4 is a schematic diagram showing the injection cylinder 22 and the support part 44 in contact.
  • the rotational position of the injection motor 62 when the support portion 44 is pressed against the injection cylinder 22 and the magnitude of the first torque is the limit torque magnitude is also referred to as the first rotational position P1.
  • the rotational position acquisition unit 86 can acquire information indicating the first rotational position P1 based on the detection result of the rotational position sensor 62b.
  • the second motor control unit 92 executes the second motor control described below after the control by the first motor control unit 90. That is, after the control by the first motor control unit 90, the second motor control unit 92 controls the injection motor 62 so that the injection member 24 and the support unit 44 move backward. In this case, the second motor control unit 92 limits the magnitude of the second torque, which is the torque in the second rotation direction of the injection motor 62, to the magnitude of the limit torque described above. That is, the second motor control unit 92 allows the magnitude of the second torque to increase within a range less than the magnitude of the limit torque, but does not allow the magnitude of the second torque to exceed the magnitude of the limit torque. Note that, as described above, the second rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the rearward direction D2.
  • an adhesive force is generated between the injection cylinder 22 and the support portion 44.
  • the limit torque is determined so that the moving force in the forward/backward direction D between the injection member 24 and the support portion 44 is smaller than the adhesive force. Therefore, while the second motor control is being performed, the injection member 24 and the support portion 44 are pulled in the rear direction D2, but the adhesive force between the injection cylinder 22 and the support portion 44 is not released. Therefore, while the second motor control is being performed, the injection member 24 and the support portion 44 cannot move backward.
  • the rotational position of the injection motor 62 when the second motor control is being performed and the magnitude of the second torque is the limit torque magnitude is also referred to as the second rotational position P2.
  • the rotational position acquisition unit 86 can acquire information indicating the second rotational position P2 based on the detection result of the rotational position sensor 62b.
  • the support part 44 when the support part 44 is pressed against the injection cylinder 22 by the first motor control unit 90 and when the support part 44 is pulled in the rear direction D2 by the second motor control unit 92, the support part 44 does not move in the front-rear direction D.
  • the first rotation position P1 and the second rotation position P2 are different.
  • the mechanism part (second drive device 52) connecting the injection motor 62 and the support part 44 includes backlash. More specifically, when the second motor control unit 92 is controlling the injection motor 62, the injection motor 62 can rotate in the second rotation direction within the range allowed by the backlash. As a result, the first rotation position P1 and the second rotation position P2 are different.
  • first rotation position P1 and the second rotation position P2 Another reason for the difference between the first rotation position P1 and the second rotation position P2 is the elastic deformation (distortion) that may occur in the injection device 16 due to the driving of the injection motor 62.
  • the shaft 62a is allowed to rotate in response to distortion of the second drive device 52, the support portion 44, the injection cylinder 22, etc. in the front-rear direction D.
  • the first rotational position P1 and the second rotational position P2 may differ.
  • the third motor control unit 94 executes the third motor control described below after the control by the second motor control unit 92. That is, after the control by the second motor control unit 92, the third motor control unit 94 controls the injection motor 62 to move the rotational position of the injection motor 62 to the third rotational position P3 and stops driving the injection motor 62. More specifically, the third motor control unit 94 stops the supply of power to the injection motor 62.
  • the third rotational position P3 is a predetermined rotational position that falls within the range between the first rotational position P1 and the second rotational position P2 described above. This range includes the first rotational position P1 and the second rotational position P2.
  • the third rotational position P3 is, for example, a rotational position (midpoint) that is exactly halfway between the first rotational position P1 and the second rotational position P2.
  • FIG. 5 is a number line illustrating the first rotational position P1, the second rotational position P2, and the third rotational position P3. Note that the positive direction of this number line is the first rotational direction of the shaft 62a.
  • the first rotational position P1 is the rotational position of the injection motor 62 when the support 44 is pressed against the injection cylinder 22 and the magnitude of the first torque is the limit torque.
  • the second rotational position P2 is the rotational position of the injection motor 62 when the second motor control is being performed and the magnitude of the second torque is the limit torque.
  • the force in the front-rear direction D applied to the support part 44 when the injection motor 62 is located at the third rotational position P3, which is the midpoint between the first rotational position P1 and the second rotational position P2, is zero.
  • the detection value (pressure value) based on the pressure sensor 48 when the injection motor 62 is located at the third rotational position P3 will be zero.
  • the zero point correction unit 96 can correct the zero point of the pressure sensor 48 based on the above. That is, the zero point correction unit 96 corrects the zero point of the pressure sensor 48 so that the detection value based on the pressure sensor 48 becomes zero when the drive of the injection motor 62 is stopped by the third motor control unit 94. In this case, the zero point correction can be achieved, for example, by changing the correction amount by which the control device 12 corrects the pressure value obtained from the detection result of the pressure sensor 48. More specifically, for example, the zero point correction unit 96 adjusts the correction amount so that the result of correcting the pressure value based on the pressure sensor 48 based on the correction amount when the drive of the injection motor 62 is stopped by the third motor control unit 94 indicates zero. In this way, the zero point correction unit 96 can achieve the zero point correction.
  • FIG. 6 is a flowchart illustrating a method for controlling the injection device 16.
  • the control device 12 can execute, for example, the control method shown in FIG. 6 based on the above-mentioned program.
  • This control method includes an electromagnet start-up step S1, a first motor control step S2, a first rotational position acquisition step S3, and a second motor control step S4.
  • This control method also includes a second rotational position acquisition step S5, a third rotational position acquisition step S6, a third motor control step S7, a zero point correction step S8, and an electromagnet stop step S9.
  • the electromagnet control unit 88 starts supplying power to the electromagnet 98A. This generates an adhesive force (magnetic force) between the injection cylinder 22 (rear end 22b) and the support part 44.
  • the first motor control described above is executed. That is, in the first motor control step S2, the first motor control unit 90 controls the injection motor 62 so that the injection member 24 and the support portion 44 move forward, and the support portion 44 contacts and presses against the injection cylinder 22. In this case, the first motor control unit 90 limits the magnitude of the first torque, which is the torque in the first rotation direction of the injection motor 62, to the magnitude of the limit torque based on the limit torque information 82. This allows the rotational position sensor 62b to detect the first rotational position P1 described above in the first motor control step S2.
  • the rotational position acquisition unit 86 acquires information indicating the first rotational position P1 detected by the rotational position sensor 62b.
  • second motor control step S4 the above-mentioned second motor control is executed. That is, in second motor control step S4, the second motor control unit 92 controls the ejection motor 62 so that the ejection member 24 and the support unit 44 move backward. In this case, the second motor control unit 92 limits the magnitude of the second torque, which is the torque in the second rotational direction of the ejection motor 62, to the magnitude of the limit torque based on the limit torque information 82. As a result, the support unit 44 is pulled in the rear direction D2. By executing such second motor control, the rotational position sensor 62b can detect the above-mentioned second rotational position P2 in the second motor control step S4.
  • the rotational position acquisition unit 86 acquires information indicating the second rotational position P2 detected by the rotational position sensor 62b.
  • the third rotational position acquisition step S6 information indicating the third rotational position P3 is acquired based on the information indicating the first rotational position P1 acquired in the first rotational position acquisition step S3 and the information indicating the second rotational position P2 acquired in the second rotational position acquisition step S5.
  • the third motor control unit 94 calculates the third rotational position P3 based on the first rotational position P1 and the second rotational position P2.
  • the third rotational position P3 is, for example, the midpoint between the first rotational position P1 and the second rotational position P2.
  • the third motor control step S7 the third motor control described above is executed based on the information indicating the third rotational position P3 acquired in the third rotational position acquisition step S6. That is, in the third motor control step S7, the third motor control unit 94 controls the injection motor 62 to move the rotational position of the injection motor 62 to the third rotational position P3 and stops driving the injection motor 62.
  • the zero point correction unit 96 corrects the zero point so that the detection value of the pressure sensor 48 becomes zero.
  • electromagnet stop step S9 the electromagnet control unit 88 stops the power supply to the electromagnet 98A. This causes the adhesive force between the injection cylinder 22 and the support portion 44 to disappear. This allows the injection member 24 and the support portion 44 to be retracted.
  • control method shown in FIG. 6 ends.
  • the electromagnet stopping step S9 may be executed prior to the zero point correction step S8.
  • the control device 12 can appropriately correct the zero point of the pressure sensor 48.
  • the number of times that the injection member 24 moves to correct the zero point of the pressure sensor 48 can be reduced to two: a forward movement performed to bring the injection cylinder 22 into contact with the support portion 44, and a backward movement performed after the electromagnet is stopped in step S9.
  • the control device 12 can correct the zero point of the pressure sensor 48 while minimizing the number of movements of the injection member 24.
  • the control method of FIG. 6 reduces the number of movements of the injection member 24, and therefore reduces the time required to execute the control method. In other words, because the number of movements of the injection member 24 is reduced, the time required to correct the zero point of the pressure sensor 48 is also reduced.
  • the risk of air being drawn into the injection cylinder 22 from the injection port 34p due to, for example, the multiple movements of the injection member 24 is reduced.
  • the risk of the air drawn into the injection cylinder 22 causing molding material burns in the molding material in the injection cylinder 22 is also reduced.
  • the electromagnet control unit 88 can control the electromagnet 98A to switch between a state in which an adhesive force is generated between the injection cylinder 22 and the support unit 44 and a state in which the adhesive force is lost.
  • the electromagnet control unit 88 can cause the above-mentioned adhesive force to disappear.
  • the above-mentioned adhesive force is prevented from affecting the operation of the injection device 16 while the molding cycle is being executed.
  • the magnet used as the attraction member 98 is not limited to the electromagnet 98A, and may be a permanent magnet. In this case, for example, the entire support portion 44 may be formed of the attraction member (permanent magnet).
  • FIG. 7 is a schematic diagram showing the configuration of an injection device 16 according to the second modification.
  • the suction member 98 may be an adhesive sheet 98B provided on at least one of the injection cylinder 22 (rear end 22b) and the support portion 44.
  • An example in which the adhesive sheet 98B is provided on the front end portion 44a of the support portion 44 is shown in FIG. 7.
  • the injection cylinder 22 and the support portion 44 can be suctioned by the adhesive sheet 98B.
  • the adhesive sheet 98B can generate an adhesive force between the injection cylinder 22 and the support portion 44.
  • the third rotational position P3 is not particularly limited as long as it is within the range between the first rotational position P1 and the second rotational position P2.
  • the third motor control unit 94 may stop the power supply to the injection motor 62 without rotating the injection motor 62.
  • the rotational position of the injection motor 62 naturally falls within the range between the first rotational position P1 and the second rotational position P2.
  • the third rotational position acquisition step S6 shown in FIG. 6 may be omitted.
  • the first rotational position acquisition step S3 and the second rotational position acquisition step S5 shown in FIG. 6 may be omitted. If the first rotational position acquisition step S3, the second rotational position acquisition step S5, and the third rotational position acquisition step S6 are omitted, the rotational position acquisition unit 86 shown in FIG. 3 may be omitted.
  • control device 12 and control method can relatively quickly and accurately correct the zero point of the pressure sensor 48.
  • a control device (12) for an injection device (16) includes an injection cylinder (22), an injection member (24) inserted into the injection cylinder and movable within the injection cylinder, a support part (44) connected to a rear end part (24c) of the injection member and supporting the injection member, an injection motor (62) that applies a driving force to the support part to move the injection member, and a pressure sensor (48) that detects a pressure applied to the support part.
  • the control device for an injection device includes a first motor control part (90) that controls the injection motor so that the injection member and the support part move forward with a limited torque, and presses the support part against the injection cylinder, a second motor control part (92) that controls the injection motor so that the injection member and the support part move backward with the limited torque after control by the first motor control part, and a pressure sensor (48) that detects a pressure applied to the support part after control by the second motor control part.
  • a third motor control unit (94) that stops driving of the injection motor in a state where the rotational position of the injection motor is within a range between a first rotational position (P1) of the injection motor in a state where the support part is pressed against the injection cylinder by control of the first motor control unit and a second rotational position (P2) of the injection motor in a state where the control is performed by the second motor control unit; and a zero point correction unit (96) that corrects a zero point of the pressure sensor so that a detection value detected based on the pressure sensor becomes zero in a state where the drive of the injection motor is stopped by the third motor control unit, wherein when the injection member and the support part advance and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and a force of the support part that moves due to the limit torque is smaller than the adhesive force.
  • the control device for the injection device described in Appendix 1 may be such that the first rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque while the support part is pressed against the injection cylinder, and the second rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque while control is being performed by the second motor control part.
  • the third motor control unit may be configured to stop the injection motor without rotating it after control by the second motor control unit.
  • the third motor control unit may be configured to control the injection motor after control by the second motor control unit to rotate the injection motor to a third rotation position (P3) located within a range from the first rotation position to the second rotation position, and then stop the injection motor.
  • the third rotational position may be a midpoint between the first rotational position and the second rotational position.
  • the third motor control unit may calculate the third rotational position based on the first rotational position and the second rotational position acquired from a rotational position sensor (62 b) that detects the rotational position of the injection motor.
  • control device for an injection device may be such that at least one of the support portion and the injection cylinder is provided with a magnet that generates the adhesive force.
  • the control device for the injection device described in Supplementary Note 7 may be the control device for the injection device, wherein the magnet includes an electromagnet (98A), and further includes an electromagnet control unit (88) that supplies power to the electromagnet to generate the adsorptive force.
  • the magnet includes an electromagnet (98A)
  • an electromagnet control unit 88
  • the control device for an injection device according to any one of Appendices 1 to 6 may be such that at least one of the support portion and the injection cylinder is provided with an adhesive sheet (98B) that generates the adhesive force.
  • An injection molding system (SYS) is an injection molding system including a control device for an injection device according to any one of Supplementary Notes 1 to 9, and the injection device.
  • a control method for an injection device (16) is a control method for an injection device including an injection cylinder (22), an injection member (24) inserted into the injection cylinder and movable within the injection cylinder, a support part (44) connected to a rear end part (24c) of the injection member and supporting the injection member, an injection motor (62) that applies a driving force to the support part to move the injection member, and a pressure sensor (48) that detects a pressure applied to the support part, the control method including a first motor control step (S2) of controlling the injection motor so that the injection member and the support part move forward with a limited torque, thereby bringing the support part into contact with and pressing it against the injection cylinder, a second motor control step (S4) of controlling the injection motor so that the injection member and the support part move backward with the limited torque after the first motor control step, and a second motor control step (S5) of controlling the injection motor so that the injection member and the support part move backward with the limited torque after the second motor control step
  • the control method for an injection device described in Appendix 11 may be such that the first rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque in a state where the support part is pressed against the injection cylinder, and the second rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque in a state where control is performed by the second motor control step.
  • the control method for an injection device according to Supplementary Note 11 or 12 may be such that, in the third motor control step, after the second motor control step, the injection motor is stopped without rotating.
  • the control method of the injection device described in Supplementary Note 11 or 12 may be a control method of an injection device, in which, in the third motor control step, after the second motor control step, the injection motor is controlled to rotate the injection motor to a third rotation position (P3) located within a range from the first rotation position to the second rotation position, and then the injection motor is stopped.
  • P3 third rotation position
  • Control device 16 Injection device 22: Injection cylinder 24: Injection member 24c: Rear end portion 44: Support portion 48: Pressure sensor 62: Injection motor 62b: Rotational position sensor 88: Electromagnet control portion 90: First motor control portion 92: Second motor control portion 94: Third motor control portion 96: Zero point correction portion 98A: Attraction member (electromagnet) 98B: Adsorption member (adhesive sheet) P1: First rotational position P2: Second rotational position P3: Third rotational position SYS: Injection molding system

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

This control device for an injection device comprises: a first motor control unit that presses, with a force which is smaller than attaching force generated between an injection cylinder and a support part which is connected to an injection member, the support part against the injection cylinder; a second motor control unit that carries out control so that the support part retracts with a force smaller than the attaching force after the pressing; a third motor control unit that stops drive of an injection motor after the retracting; and a zero point correction unit that corrects a zero point of a pressure sensor, which detects pressure applied to the support part, so that the detection value in a state in which the injection motor is stopped becomes zero.

Description

射出装置の制御装置、射出成形システムおよび射出装置の制御方法Injection unit control device, injection molding system, and injection unit control method

 本開示は、射出装置の制御装置、射出成形システムおよび射出装置の制御方法に関する。 This disclosure relates to a control device for an injection device, an injection molding system, and a control method for an injection device.

 特開平9-117946号公報には、射出成形機の射出装置に備えられる圧力センサ(ロードセル)のゼロ点を補正する方法が開示されている。  Japanese Patent Application Laid-Open Publication No. 9-117946 discloses a method for correcting the zero point of a pressure sensor (load cell) installed in the injection unit of an injection molding machine.

 圧力センサのゼロ点を補正することに関して、より良好な射出装置の制御装置、射出成形システムおよび射出装置の制御方法が望まれている。 A better injection unit control device, injection molding system, and injection unit control method are desired for correcting the zero point of the pressure sensor.

 本開示の第1の態様は、射出用シリンダと、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材の後端部に連結され、前記射出部材を支持する支持部と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータと、前記支持部に付与される圧力を検出する圧力センサと、を備える射出装置の制御装置であって、制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御部と、前記第1モータ制御部による制御の後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御部と、前記第2モータ制御部による制御の後、前記第1モータ制御部の制御によって前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置と、前記第2モータ制御部による制御が行われた状態の前記射出用モータの第2回転位置との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御部と、前記第3モータ制御部によって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正部と、を備え、前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御装置である。 A first aspect of the present disclosure is a control device for an injection device including an injection cylinder, an injection member inserted into the injection cylinder and movable within the injection cylinder, a support part connected to a rear end of the injection member and supporting the injection member, an injection motor that applies a driving force to the support part to move the injection member, and a pressure sensor that detects a pressure applied to the support part, the control device including a first motor control part that controls the injection motor so that the injection member and the support part move forward with a limit torque, thereby bringing the support part into contact with the injection cylinder and pressing it against it, a second motor control part that controls the injection motor so that the injection member and the support part move backward with the limit torque after control by the first motor control part, and a pressure sensor that controls the injection motor so that the injection member and the support part move backward with the limit torque after control by the second motor control part. The control device for the injection device includes a third motor control unit that stops driving the injection motor when the rotational position of the injection motor is within a range between a first rotational position of the injection motor when the support part is pressed against the injection cylinder and a second rotational position of the injection motor when the control by the second motor control unit is performed, and a zero point correction unit that corrects the zero point of the pressure sensor so that the detection value detected based on the pressure sensor becomes zero when the drive of the injection motor is stopped by the third motor control unit. When the injection member and the support part move forward and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and the force of the support part moving due to the limit torque is smaller than the adhesive force.

 本開示の第2の態様は、前記射出装置の前記制御装置と、前記射出装置と、を備える、射出成形システムである。 A second aspect of the present disclosure is an injection molding system comprising the control device of the injection device and the injection device.

 本開示の第3の態様は、射出用シリンダと、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材の後端部に連結され、前記射出部材を支持する支持部と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータと、前記支持部に付与される圧力を検出する圧力センサと、を備える射出装置の制御方法であって、制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御ステップと、前記第1モータ制御ステップの後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御ステップと、前記第2モータ制御ステップの後、前記第1モータ制御ステップにおいて前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置と、前記第2モータ制御ステップが行われた状態の前記射出用モータの第2回転位置との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御ステップと、前記第3モータ制御ステップによって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正ステップと、を含み、前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御方法である。 A third aspect of the present disclosure is a control method for an injection device including an injection cylinder, an injection member inserted into the injection cylinder and movable within the injection cylinder, a support part connected to a rear end of the injection member and supporting the injection member, an injection motor applying a driving force to the support part to move the injection member, and a pressure sensor detecting a pressure applied to the support part, the control method including a first motor control step of controlling the injection motor so that the injection member and the support part move forward with a limit torque to bring the support part into contact with and press it against the injection cylinder, a second motor control step of controlling the injection motor after the first motor control step so that the injection member and the support part move backward with the limit torque, and a second motor control step of controlling the injection motor after the second motor control step to move forward in the first motor control step. The method includes a third motor control step of stopping the drive of the injection motor in a state where the rotational position of the injection motor is within a range between a first rotational position of the injection motor in a state where the support part is pressed against the injection cylinder and a second rotational position of the injection motor in a state where the second motor control step is performed, and a zero point correction step of correcting the zero point of the pressure sensor so that the detection value detected based on the pressure sensor becomes zero in a state where the drive of the injection motor is stopped by the third motor control step, and when the injection member and the support part advance and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and the force of the support part moving due to the limit torque is smaller than the adhesive force.

図1は、一実施形態に係る射出成形システムの全体構成図である。FIG. 1 is a diagram showing the overall configuration of an injection molding system according to an embodiment. 図2は、射出装置の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the injection device. 図3は、制御装置のブロック図である。FIG. 3 is a block diagram of the control device. 図4は、接触した射出用シリンダと支持部とを示す模式図である。FIG. 4 is a schematic diagram showing the injection cylinder and the support portion in contact with each other. 図5は、第1回転位置と、第2回転位置と、第3回転位置とを例示する数直線である。FIG. 5 is a number line illustrating a first rotational position, a second rotational position, and a third rotational position. 図6は、射出装置の制御方法を例示するフローチャートである。FIG. 6 is a flowchart illustrating a method for controlling the injection device. 図7は、変形例2に係る射出装置の構成を示す模式図である。FIG. 7 is a schematic diagram showing the configuration of an injection device according to the second modification.

 射出装置に備えられている圧力センサのゼロ点がずれている状態で射出成形が実行されると、成形品の品質に悪影響が及ぼされる。したがって、圧力センサのゼロ点のずれは適切に補正されることが好ましい。また、圧力センサのゼロ点を補正するために要する時間は、短時間であるほど好ましい。 If injection molding is performed with the zero point of the pressure sensor installed in the injection device misaligned, it will have a detrimental effect on the quality of the molded product. Therefore, it is preferable that the zero point misalignment of the pressure sensor be appropriately corrected. Also, the shorter the time required to correct the zero point of the pressure sensor, the better.

 以上の予備的説明を踏まえ、以下に一実施形態が説明される。 Based on the above preliminary explanation, one embodiment is described below.

 (一実施形態)
 図1は、本実施形態に係る射出成形システムSYSの全体構成図である。
(One embodiment)
FIG. 1 is a diagram showing the overall configuration of an injection molding system SYS according to this embodiment.

 射出成形システムSYSは、射出成形機10と制御装置12とを備える。 The injection molding system SYS includes an injection molding machine 10 and a control device 12.

 射出成形機10は、金型20を用いた射出成形を実行して、成形品を成形する機械である。射出成形機10は、型締装置14と射出装置16と機台18とを備える。 The injection molding machine 10 is a machine that performs injection molding using a mold 20 to produce a molded product. The injection molding machine 10 is equipped with a mold clamping device 14, an injection device 16, and a machine base 18.

 型締装置14は、金型20に型締力を付与する装置である。型締装置14は、機台18の上に配置されている。型締装置14は、金型20を開閉させる。型締装置14は、金型20が開かないように、金型20に型締力を付与する。金型20は、閉状態においてキャビティ20cを形成する。図1に示されている金型20は、閉状態である。型締装置14のより詳しい説明は割愛する。 The clamping device 14 is a device that applies a clamping force to the mold 20. The clamping device 14 is arranged on the machine base 18. The clamping device 14 opens and closes the mold 20. The clamping device 14 applies a clamping force to the mold 20 so that the mold 20 does not open. The mold 20 forms a cavity 20c in a closed state. The mold 20 shown in FIG. 1 is in a closed state. A more detailed explanation of the clamping device 14 will be omitted.

 射出装置16は、成形材料を可塑化するとともに、可塑化した成形材料を金型20のキャビティ20cに射出する装置である。射出装置16は、機台18の上に配置されている。射出成形機10は、射出装置16によってキャビティ20cに充填された成形材料を固化することで、成形品を生産する。成形材料は、例えば樹脂である。なお、図1において、射出装置16は模式的に示されている。射出装置16のより詳細な構成は、図2に示されている。 The injection device 16 is a device that plasticizes the molding material and injects the plasticized molding material into the cavity 20c of the mold 20. The injection device 16 is arranged on the machine stand 18. The injection molding machine 10 produces a molded product by solidifying the molding material filled into the cavity 20c by the injection device 16. The molding material is, for example, a resin. Note that the injection device 16 is shown diagrammatically in FIG. 1. A more detailed configuration of the injection device 16 is shown in FIG. 2.

 図1に示されている前後方向Dは、機台18の上における型締装置14と射出装置16との並び方向に合致する。前後方向Dは、前方向D1と後方向D2とを含む。本実施形態において、前方向D1は、射出装置16から型締装置14に向かう方向である。後方向D2は、前方向D1の反対方向である。 The front-to-rear direction D shown in FIG. 1 corresponds to the arrangement direction of the mold clamping unit 14 and the injection unit 16 on the machine base 18. The front-to-rear direction D includes a front direction D1 and a rear direction D2. In this embodiment, the front direction D1 is the direction from the injection unit 16 toward the mold clamping unit 14. The rear direction D2 is the opposite direction to the front direction D1.

 図2は、射出装置16の構成を示す模式図である。 FIG. 2 is a schematic diagram showing the configuration of the injection device 16.

 射出装置16は、射出用シリンダ22と、射出部材24と、フロントプレート26と、リアプレート28と、プッシャプレート30と、スライド機構32とを備える。 The injection device 16 includes an injection cylinder 22, an injection member 24, a front plate 26, a rear plate 28, a pusher plate 30, and a slide mechanism 32.

 射出用シリンダ22は、筒状の部材である。射出用シリンダ22の軸線LAは、前後方向Dに平行である。軸線LAは、後述する射出部材24の軸線と合致する。 The injection cylinder 22 is a cylindrical member. The axis LA of the injection cylinder 22 is parallel to the front-rear direction D. The axis LA coincides with the axis of the injection member 24, which will be described later.

 射出用シリンダ22の前端22aには、ノズル34が備えられる。ノズル34は射出口34pを有する。射出口34pは、射出用シリンダ22内の成形材料をキャビティ20cに射出するための開口部である。 A nozzle 34 is provided at the front end 22a of the injection cylinder 22. The nozzle 34 has an injection port 34p. The injection port 34p is an opening for injecting the molding material in the injection cylinder 22 into the cavity 20c.

 また、射出用シリンダ22には、ホッパ36が備えられる。ホッパ36は、射出用シリンダ22のうちの比較的後部に備えられる。ホッパ36は、成形材料を貯留する。また、ホッパ36は、貯留した成形材料を射出用シリンダ22内に供給する。 The injection cylinder 22 is also provided with a hopper 36. The hopper 36 is provided at a relatively rear portion of the injection cylinder 22. The hopper 36 stores the molding material. The hopper 36 also supplies the stored molding material into the injection cylinder 22.

 射出部材24は、射出用シリンダ22内に挿入されるとともに、金型20のキャビティ20c(図1参照)に成形材料を射出するために射出用シリンダ22内を前後方向Dに沿って移動する部材である。より具体的には、射出部材24は、例えばスクリュ24Aまたはプランジャである。本実施形態では射出部材24がスクリュ24Aである場合を説明する。 The injection member 24 is a member that is inserted into the injection cylinder 22 and moves within the injection cylinder 22 in the forward and backward direction D to inject molding material into the cavity 20c (see FIG. 1) of the mold 20. More specifically, the injection member 24 is, for example, a screw 24A or a plunger. In this embodiment, a case will be described in which the injection member 24 is a screw 24A.

 スクリュ24Aは、前端部24aと、胴部24bと、後端部24cとを有する。前端部24aには、スクリュヘッドが備えられる。胴部24bには、前後方向Dに沿って形成される螺旋状のフライトが備えられる。フライトが備えられることにより、スクリュ24Aは、後述する第1駆動装置50によってスクリュ24Aが回転することに応じて、射出用シリンダ22内の成形材料を剪断することができる。当該フライトはシングルフライトでもよいし、ダブルフライトでもよい。スクリュ24Aの後端部24cは、射出用シリンダ22の後端22bから突出する。 The screw 24A has a front end 24a, a body 24b, and a rear end 24c. The front end 24a is provided with a screw head. The body 24b is provided with a spiral flight formed along the front-to-rear direction D. By being provided with the flight, the screw 24A can shear the molding material in the injection cylinder 22 in response to the rotation of the screw 24A by the first drive device 50 described below. The flight may be a single flight or a double flight. The rear end 24c of the screw 24A protrudes from the rear end 22b of the injection cylinder 22.

 フロントプレート26は、射出用シリンダ22を支持する部材である。射出用シリンダ22は、フロントプレート26を貫通している。スクリュ24Aの後端部24cは、フロントプレート26よりも後方に位置する。 The front plate 26 is a member that supports the injection cylinder 22. The injection cylinder 22 passes through the front plate 26. The rear end 24c of the screw 24A is located rearward of the front plate 26.

 リアプレート28は、フロントプレート26の後方に位置する。リアプレート28とフロントプレート26との間には所定の間隔が空けられる。 The rear plate 28 is located behind the front plate 26. A predetermined distance is provided between the rear plate 28 and the front plate 26.

 プッシャプレート30は、フロントプレート26とリアプレート28との間に備えられる。 The pusher plate 30 is provided between the front plate 26 and the rear plate 28.

 スライド機構32は、レール38とスライダ40とを備える。レール38は、前後方向Dに延在する。スライダ40は、レール38に沿って移動可能である。スライダ40は、プッシャプレート30を支持する。したがって、プッシャプレート30は、レール38に沿って移動可能である。 The slide mechanism 32 includes a rail 38 and a slider 40. The rail 38 extends in the front-rear direction D. The slider 40 is movable along the rail 38. The slider 40 supports the pusher plate 30. Therefore, the pusher plate 30 is movable along the rail 38.

 フロントプレート26と、リアプレート28と、スライド機構32とは、平板状のベース42上に備えられている。フロントプレート26とリアプレート28とベース42とは、一体成形されていてもよい。 The front plate 26, rear plate 28, and slide mechanism 32 are provided on a flat base 42. The front plate 26, rear plate 28, and base 42 may be integrally molded.

 射出装置16は、支持部44と、スクリュスリーブ46と、圧力センサ48と、第1駆動装置50と、第2駆動装置52とを備える。 The injection device 16 includes a support portion 44, a screw sleeve 46, a pressure sensor 48, a first drive device 50, and a second drive device 52.

 支持部44は、射出部材24の後端部24cを支持する。支持部44は、例えばスプラインブッシュである。この場合は、射出部材24の後端部24cは、不図示のオススプラインを有する。これに対し、支持部44は、不図示のメススプラインを有する。後端部24cのオススプラインと、支持部44のメススプラインとが嵌合することで、支持部44は、射出部材24の後端部24cを支持する。 The support portion 44 supports the rear end portion 24c of the injection member 24. The support portion 44 is, for example, a spline bushing. In this case, the rear end portion 24c of the injection member 24 has a male spline (not shown). In contrast, the support portion 44 has a female spline (not shown). The male spline of the rear end portion 24c fits into the female spline of the support portion 44, whereby the support portion 44 supports the rear end portion 24c of the injection member 24.

 スクリュスリーブ46は、プッシャプレート30と支持部44との間に備えられる。スクリュスリーブ46は、支持部44を回転可能に支持する。また、スクリュスリーブ46は、支持部44がスクリュスリーブ46に対して、前後方向Dに相対移動することを制限する。スクリュスリーブ46は、例えば不図示の軸受部材を有する。当該軸受部材は、支持部44をスクリュスリーブ46に対して回転可能に支持しつつ、前後方向Dに支持部44が相対移動することを制限する。 The screw sleeve 46 is provided between the pusher plate 30 and the support portion 44. The screw sleeve 46 rotatably supports the support portion 44. The screw sleeve 46 also restricts the support portion 44 from moving relative to the screw sleeve 46 in the forward/backward direction D. The screw sleeve 46 has, for example, a bearing member (not shown). The bearing member restricts the support portion 44 from moving relative to the screw sleeve 46 in the forward/backward direction D while supporting the support portion 44 rotatably with respect to the screw sleeve 46.

 圧力センサ48は、射出用シリンダ22内における樹脂等の成形材料の圧力を検出するために設けられている。当該圧力は、射出部材24を介して支持部44に付与される圧力である。圧力センサ48は、例えばロードセルである。圧力センサ48は、例えばスクリュスリーブ46の内部に備えられる。圧力センサ48の設置箇所は、適宜変更されてもよい。 The pressure sensor 48 is provided to detect the pressure of molding material, such as resin, inside the injection cylinder 22. This pressure is the pressure applied to the support portion 44 via the injection member 24. The pressure sensor 48 is, for example, a load cell. The pressure sensor 48 is provided, for example, inside the screw sleeve 46. The location where the pressure sensor 48 is installed may be changed as appropriate.

 第1駆動装置50は、軸線LAを中心として射出部材24を回転させる装置である。第1駆動装置50は、回転用モータ54と、第1駆動プーリ56と、第1ベルト58と、第1従動プーリ60とを備える。 The first drive unit 50 is a device that rotates the injection member 24 around the axis LA. The first drive unit 50 includes a rotation motor 54, a first drive pulley 56, a first belt 58, and a first driven pulley 60.

 回転用モータ54は、例えば電動のサーボモータである。回転用モータ54は、シャフト54aを備える。シャフト54aは、回転用モータ54に電流が供給されることで、回転する。シャフト54aは、第1駆動プーリ56に接続される。 The rotation motor 54 is, for example, an electric servo motor. The rotation motor 54 has a shaft 54a. The shaft 54a rotates when a current is supplied to the rotation motor 54. The shaft 54a is connected to a first drive pulley 56.

 第1駆動プーリ56は、シャフト54aの回転に応じて回転する。第1ベルト58は、第1駆動プーリ56と第1従動プーリ60とに架け渡される。第1ベルト58は、第1駆動プーリ56の回転を第1従動プーリ60に伝達する。 The first drive pulley 56 rotates in response to the rotation of the shaft 54a. The first belt 58 is stretched between the first drive pulley 56 and the first driven pulley 60. The first belt 58 transmits the rotation of the first drive pulley 56 to the first driven pulley 60.

 第1従動プーリ60は、第1ベルト58を介して伝達される第1駆動プーリ56の回転に従動して、回転する。つまり、第1従動プーリ60は、シャフト54aの回転に応じて回転する。第1従動プーリ60は、例えばプッシャプレート30の内部に備えられる。第1従動プーリ60は、支持部44に接続される。第1従動プーリ60と支持部44とは一体的に回転する。 The first driven pulley 60 rotates following the rotation of the first drive pulley 56 transmitted via the first belt 58. In other words, the first driven pulley 60 rotates according to the rotation of the shaft 54a. The first driven pulley 60 is provided, for example, inside the pusher plate 30. The first driven pulley 60 is connected to the support portion 44. The first driven pulley 60 and the support portion 44 rotate integrally.

 上述したように、シャフト54aが回転することで、支持部44が回転する。支持部44が回転することで、射出部材24が回転する。このように、第1駆動装置50は、軸線LAを中心として射出部材24を回転させ得る。 As described above, the rotation of the shaft 54a causes the support portion 44 to rotate. The rotation of the support portion 44 causes the ejection member 24 to rotate. In this manner, the first drive device 50 can rotate the ejection member 24 around the axis LA.

 第2駆動装置52は、射出部材24を前後方向Dに移動させる装置である。第2駆動装置52は、射出用モータ62と、第2駆動プーリ64と、第2ベルト66と、第2従動プーリ68と、ボールネジ70と、ナット72とを備える。 The second drive device 52 is a device that moves the injection member 24 in the forward and backward direction D. The second drive device 52 includes an injection motor 62, a second drive pulley 64, a second belt 66, a second driven pulley 68, a ball screw 70, and a nut 72.

 射出用モータ62は、例えば電動のサーボモータである。射出用モータ62は、シャフト62aと回転位置センサ62bとを備える。シャフト62aは、射出用モータ62に電流が供給されることで、回転する。シャフト62aは、第2駆動プーリ64に接続される。回転位置センサ62bは、シャフト62aの回転位置を検出する。回転位置センサ62bは、例えばロータリエンコーダである。 The injection motor 62 is, for example, an electric servo motor. The injection motor 62 includes a shaft 62a and a rotational position sensor 62b. The shaft 62a rotates when a current is supplied to the injection motor 62. The shaft 62a is connected to the second drive pulley 64. The rotational position sensor 62b detects the rotational position of the shaft 62a. The rotational position sensor 62b is, for example, a rotary encoder.

 第2駆動プーリ64は、シャフト62aの回転に応じて回転する。第2ベルト66は、第2駆動プーリ64と第2従動プーリ68とに架け渡される。第2ベルト66は、第2駆動プーリ64の回転を第2従動プーリ68に伝達する。 The second drive pulley 64 rotates in response to the rotation of the shaft 62a. The second belt 66 is stretched between the second drive pulley 64 and the second driven pulley 68. The second belt 66 transmits the rotation of the second drive pulley 64 to the second driven pulley 68.

 第2従動プーリ68は、第2ベルト66を介して伝達される第2駆動プーリ64の回転に従動して、回転する。つまり、第2従動プーリ68は、シャフト62aの回転に応じて回転する。 The second driven pulley 68 rotates in response to the rotation of the second drive pulley 64, which is transmitted via the second belt 66. In other words, the second driven pulley 68 rotates in response to the rotation of the shaft 62a.

 ボールネジ70の軸線の方向は前後方向Dに平行である。ボールネジ70は、リアプレート28を貫通する。リアプレート28は、ボールネジ70を回転可能に支持する。 The axis of the ball screw 70 is parallel to the front-rear direction D. The ball screw 70 passes through the rear plate 28. The rear plate 28 supports the ball screw 70 so that it can rotate.

 ボールネジ70は、第2従動プーリ68に接続される。ボールネジ70は、第2従動プーリ68と一体的に回転する。したがって、ボールネジ70は、シャフト62aの回転に応じて回転する。 The ball screw 70 is connected to the second driven pulley 68. The ball screw 70 rotates integrally with the second driven pulley 68. Therefore, the ball screw 70 rotates in response to the rotation of the shaft 62a.

 ナット72は、プッシャプレート30の後ろ側に備えられる。プッシャプレート30は、ナット72を回転可能に支持する。より具体的には、プッシャプレート30は、当該プッシャプレート30に備えられた不図示の軸受部材を用いて、ナット72を回転可能に支持する。 The nut 72 is provided on the rear side of the pusher plate 30. The pusher plate 30 rotatably supports the nut 72. More specifically, the pusher plate 30 rotatably supports the nut 72 using a bearing member (not shown) provided on the pusher plate 30.

 ナット72は、ボールネジ70に螺合する。ナット72は、ボールネジ70の回転に応じて、ボールネジ70の軸線の方向に移動する。つまり、ナット72は、シャフト62aの回転に応じて、前後方向Dに移動する。ナット72が前方向D1に移動する場合、プッシャプレート30は、ナット72と一緒に、前方向D1に移動する。ナット72が後方向D2に移動する場合、プッシャプレート30は、ナット72と一緒に、後方向D2に移動する。スライド機構32がプッシャプレート30を支持しているので、プッシャプレート30は、前後方向Dにスムーズに移動できる。 The nut 72 screws onto the ball screw 70. The nut 72 moves in the axial direction of the ball screw 70 in response to the rotation of the ball screw 70. That is, the nut 72 moves in the forward/backward direction D in response to the rotation of the shaft 62a. When the nut 72 moves in the forward direction D1, the pusher plate 30 moves in the forward direction D1 together with the nut 72. When the nut 72 moves in the rearward direction D2, the pusher plate 30 moves in the rearward direction D2 together with the nut 72. Because the slide mechanism 32 supports the pusher plate 30, the pusher plate 30 can move smoothly in the forward/backward direction D.

 プッシャプレート30が前方向D1に移動する場合、プッシャプレート30は、スクリュスリーブ46と支持部44とを介して、射出部材24を前方向D1に押す。プッシャプレート30が後方向D2に移動する場合、プッシャプレート30は、スクリュスリーブ46と支持部44とを介して、射出部材24を後方向D2に引っ張る。 When the pusher plate 30 moves in the forward direction D1, the pusher plate 30 pushes the injection member 24 in the forward direction D1 via the screw sleeve 46 and the support portion 44. When the pusher plate 30 moves in the rearward direction D2, the pusher plate 30 pulls the injection member 24 in the rearward direction D2 via the screw sleeve 46 and the support portion 44.

 射出部材24は、プッシャプレート30から受ける力に応じて、射出用シリンダ22内を前方向D1または後方向D2へと移動する。すなわち、射出部材24は、前後方向Dに沿って可動し得る。 The injection member 24 moves in the injection cylinder 22 in the forward direction D1 or the backward direction D2 depending on the force it receives from the pusher plate 30. In other words, the injection member 24 can move along the forward/backward direction D.

 射出部材24を前方向D1に移動させる場合のシャフト62aの回転方向と、射出部材24を後方向D2に移動させる場合のシャフト62aの回転方向とは、互いに反対方向である。射出部材24を前方向D1に移動させる場合のシャフト62aの回転方向は、以下の説明において第1回転方向とも称される。射出部材24を後方向D2に移動させる場合のシャフト62aの回転方向は、以下の説明において第2回転方向とも称される。 The rotation direction of the shaft 62a when moving the injection member 24 in the forward direction D1 and the rotation direction of the shaft 62a when moving the injection member 24 in the rearward direction D2 are opposite to each other. The rotation direction of the shaft 62a when moving the injection member 24 in the forward direction D1 is also referred to as the first rotation direction in the following description. The rotation direction of the shaft 62a when moving the injection member 24 in the rearward direction D2 is also referred to as the second rotation direction in the following description.

 射出部材24の移動量は、シャフト62aの回転量に相関する。例えば、前方向D1への射出部材24の移動量は、第1回転方向におけるシャフト62aの回転量に相関する。同様に、後方向D2への射出部材24の移動量は、第2回転方向におけるシャフト62aの回転量に相関する。射出部材24の移動量がシャフト62aの回転量に相関するので、回転位置センサ62bによって検出されるシャフト62aの回転位置は、前後方向Dにおける射出部材24の位置を実質的に示す。 The amount of movement of the ejection member 24 correlates with the amount of rotation of the shaft 62a. For example, the amount of movement of the ejection member 24 in the forward direction D1 correlates with the amount of rotation of the shaft 62a in a first rotation direction. Similarly, the amount of movement of the ejection member 24 in the backward direction D2 correlates with the amount of rotation of the shaft 62a in a second rotation direction. Because the amount of movement of the ejection member 24 correlates with the amount of rotation of the shaft 62a, the rotational position of the shaft 62a detected by the rotational position sensor 62b essentially indicates the position of the ejection member 24 in the forward/backward direction D.

 射出部材24の前後方向Dにおける位置の原点は、あらかじめ決められる。例えば、支持部44の前端部44aと、射出用シリンダ22の後端22bとの前後方向Dにおける間隔Xが、図2には示されている。間隔Xが1mm(ミリメートル)である場合における射出部材24の位置が、上記原点としてあらかじめ決められる。ただし、原点の決め方は、これに限定されない。 The origin of the position of the injection member 24 in the front-rear direction D is determined in advance. For example, FIG. 2 shows the distance X in the front-rear direction D between the front end 44a of the support portion 44 and the rear end 22b of the injection cylinder 22. The position of the injection member 24 when the distance X is 1 mm (millimeter) is determined in advance as the above-mentioned origin. However, the method of determining the origin is not limited to this.

 射出装置16は、吸着部材98をさらに備える。吸着部材98は、射出用シリンダ22(後端22b)と、支持部44との間に吸着力を発生させるための部材である。吸着部材98は、例えば、射出用シリンダ22の後端22bと支持部44とのうちの少なくとも一方に備えられる磁石(電磁石98A)を含む。本実施形態では、支持部44に電磁石98Aが備えられるとともに、射出用シリンダ22(後端22b)に金属が含有されている場合を説明する。 The injection device 16 further includes an attraction member 98. The attraction member 98 is a member for generating an attraction force between the injection cylinder 22 (rear end 22b) and the support portion 44. The attraction member 98 includes, for example, a magnet (electromagnet 98A) provided on at least one of the rear end 22b of the injection cylinder 22 and the support portion 44. In this embodiment, a case will be described in which the electromagnet 98A is provided on the support portion 44 and the injection cylinder 22 (rear end 22b) contains a metal.

 図3は、制御装置12のブロック図である。 FIG. 3 is a block diagram of the control device 12.

 制御装置12は、射出成形機10のうちの少なくとも射出装置16を制御するコンピュータである。制御装置12は、例えば数値制御装置である。制御装置12は、表示部74と、操作部76と、記憶部78と、演算部80とを備える。 The control device 12 is a computer that controls at least the injection device 16 of the injection molding machine 10. The control device 12 is, for example, a numerical control device. The control device 12 includes a display unit 74, an operation unit 76, a memory unit 78, and a calculation unit 80.

 操作部76は、例えば、不図示の操作盤を含む。当該操作盤は、例えばキーボード、ポインティングデバイス等を含むが、これらに限定されない。操作部76は、オペレータが行う入力操作を受け付ける。表示部74は、不図示の表示素子を含む。表示素子は、液晶表示素子、有機エレクトロルミネッセンス表示素子等である。このような表示素子が備えられた不図示のタッチパネルによって、操作部76と表示部74とが構成されてもよい。 The operation unit 76 includes, for example, an operation panel (not shown). The operation panel includes, for example, but is not limited to, a keyboard, a pointing device, etc. The operation unit 76 accepts input operations performed by an operator. The display unit 74 includes a display element (not shown). The display element is a liquid crystal display element, an organic electroluminescence display element, etc. The operation unit 76 and the display unit 74 may be configured by a touch panel (not shown) equipped with such a display element.

 記憶部78は、例えば1以上のメモリを含む。より具体的には、記憶部78は、例えば、ROM(Read Only Memory)、フラッシュメモリ、磁気ディスク等の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリとを含む。不揮発性メモリは、例えば、コンピュータ実行可能なプログラムを記憶する。揮発性メモリは、例えば、後述するプロセッサ(演算部80)がプログラムに基づいて演算を行う際に一時的に必要なデータ等を記憶する。記憶部78の少なくとも一部は、USB(Universal Serial Bus)メモリ、メモリカード等の可搬型記憶媒体によって実現されてもよい。 The storage unit 78 includes, for example, one or more memories. More specifically, the storage unit 78 includes, for example, non-volatile memory such as ROM (Read Only Memory), flash memory, and magnetic disk, and volatile memory such as RAM (Random Access Memory). The non-volatile memory stores, for example, computer-executable programs. The volatile memory stores, for example, data etc. that is temporarily required when the processor (calculation unit 80) described below performs calculations based on a program. At least a part of the storage unit 78 may be realized by a portable storage medium such as a USB (Universal Serial Bus) memory, memory card, etc.

 記憶部78は、制限トルク情報82を記憶する。制限トルク情報82は、制限トルクの大きさを示す情報である。制限トルクは、シャフト62a(射出用モータ62)のトルクの指定値である。制限トルクは、射出部材24を移動させる前後方向Dの力が、上述した射出用シリンダ22と支持部44との吸着力よりも小さくなるように、例えば実験に基づいてあらかじめ決められる。 The memory unit 78 stores limit torque information 82. The limit torque information 82 is information indicating the magnitude of the limit torque. The limit torque is a designated value of the torque of the shaft 62a (injection motor 62). The limit torque is determined in advance, for example, based on experiments, so that the force in the forward/backward direction D that moves the injection member 24 is smaller than the adhesive force between the injection cylinder 22 and the support portion 44 described above.

 演算部80は、所定の処理回路(Processing circuitry)を含む。この処理回路は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)等のプロセッサを1以上備える。上記の処理回路は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の所定の集積回路を含んでもよい。 The calculation unit 80 includes a predetermined processing circuit. This processing circuit has one or more processors, such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The processing circuit may include a predetermined integrated circuit, such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).

 演算部80は、圧力取得部84と、回転位置取得部86と、電磁石制御部88と、第1モータ制御部90と、第2モータ制御部92と、第3モータ制御部94と、ゼロ点補正部96とを備える。圧力取得部84と、回転位置取得部86と、電磁石制御部88と、第1モータ制御部90と、第2モータ制御部92と、第3モータ制御部94と、ゼロ点補正部96とは、記憶部78(メモリ)によって記憶されているプログラムを演算部80(プロセッサ)が実行することによって、実現される。上述した集積回路等によって、圧力取得部84と、回転位置取得部86と、電磁石制御部88と、第1モータ制御部90と、第2モータ制御部92と、第3モータ制御部94と、ゼロ点補正部96とのうちの少なくとも一部が実現されてもよい。 The calculation unit 80 includes a pressure acquisition unit 84, a rotational position acquisition unit 86, an electromagnet control unit 88, a first motor control unit 90, a second motor control unit 92, a third motor control unit 94, and a zero point correction unit 96. The pressure acquisition unit 84, the rotational position acquisition unit 86, the electromagnet control unit 88, the first motor control unit 90, the second motor control unit 92, the third motor control unit 94, and the zero point correction unit 96 are realized by the calculation unit 80 (processor) executing a program stored in the storage unit 78 (memory). At least a part of the pressure acquisition unit 84, the rotational position acquisition unit 86, the electromagnet control unit 88, the first motor control unit 90, the second motor control unit 92, the third motor control unit 94, and the zero point correction unit 96 may be realized by the integrated circuit or the like described above.

 圧力取得部84は、支持部44に付与される圧力を示す情報を取得する。上述したように、支持部44に付与される圧力は、圧力センサ48によって検出される。したがって、圧力取得部84は、支持部44に付与される圧力を示す情報を、圧力センサ48の検出信号に基づいて取得することができる。 The pressure acquisition unit 84 acquires information indicating the pressure applied to the support unit 44. As described above, the pressure applied to the support unit 44 is detected by the pressure sensor 48. Therefore, the pressure acquisition unit 84 can acquire information indicating the pressure applied to the support unit 44 based on the detection signal of the pressure sensor 48.

 回転位置取得部86は、射出用モータ62の回転位置を示す情報を取得する。上述したように、射出用モータ62(シャフト62a)の回転位置は、回転位置センサ62bによって検出される。したがって、回転位置取得部86は、射出用モータ62の回転位置を示す情報を、回転位置センサ62bの検出に基づいて取得することができる。 The rotational position acquisition unit 86 acquires information indicating the rotational position of the injection motor 62. As described above, the rotational position of the injection motor 62 (shaft 62a) is detected by the rotational position sensor 62b. Therefore, the rotational position acquisition unit 86 can acquire information indicating the rotational position of the injection motor 62 based on the detection of the rotational position sensor 62b.

 電磁石制御部88は、上述した電磁石98Aに電力を供給して、射出用シリンダ22と支持部44との間に吸着力(磁力)を発生させる。 The electromagnet control unit 88 supplies power to the electromagnet 98A described above to generate an adhesive force (magnetic force) between the injection cylinder 22 and the support unit 44.

 第1モータ制御部90は、次に説明される第1モータ制御を実行する。すなわち、第1モータ制御部90は、射出部材24と支持部44とが前進するように射出用モータ62を制御して、支持部44を射出用シリンダ22に接触させて押しつける。支持部44が射出用シリンダ22に押しつけられている間は、第1モータ制御部90は、射出用モータ62の第1回転方向のトルクである第1トルクの大きさを、上述した制限トルクの大きさに制限する。すなわち、支持部44が射出用シリンダ22に押しつけられている間は、第1モータ制御部90は、第1トルクの大きさが制限トルクの大きさ未満の範囲内で上昇することは許容するが、第1トルクの大きさが制限トルクの大きさを超えることは許容しない。なお、上述したように、第1回転方向は、射出部材24を前方向D1に移動させる場合におけるシャフト62aの回転方向である。 The first motor control unit 90 executes the first motor control described below. That is, the first motor control unit 90 controls the injection motor 62 so that the injection member 24 and the support unit 44 move forward, and the support unit 44 contacts and presses against the injection cylinder 22. While the support unit 44 is pressed against the injection cylinder 22, the first motor control unit 90 limits the magnitude of the first torque, which is the torque in the first rotation direction of the injection motor 62, to the magnitude of the limit torque described above. That is, while the support unit 44 is pressed against the injection cylinder 22, the first motor control unit 90 allows the magnitude of the first torque to increase within a range less than the magnitude of the limit torque, but does not allow the magnitude of the first torque to exceed the magnitude of the limit torque. As described above, the first rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the forward direction D1.

 図4は、接触した射出用シリンダ22と支持部44とを示す模式図である。 Figure 4 is a schematic diagram showing the injection cylinder 22 and the support part 44 in contact.

 以下の説明において、支持部44が射出用シリンダ22に押しつけられた状態で、第1トルクの大きさが制限トルクの大きさである場合における射出用モータ62の回転位置は、第1回転位置P1とも称される。第1モータ制御が実行された場合は、回転位置取得部86は、回転位置センサ62bの検出結果に基づいて、第1回転位置P1を示す情報を取得することができる。 In the following description, the rotational position of the injection motor 62 when the support portion 44 is pressed against the injection cylinder 22 and the magnitude of the first torque is the limit torque magnitude is also referred to as the first rotational position P1. When the first motor control is executed, the rotational position acquisition unit 86 can acquire information indicating the first rotational position P1 based on the detection result of the rotational position sensor 62b.

 第2モータ制御部92は、第1モータ制御部90による制御の後、次に説明される第2モータ制御を実行する。すなわち、第2モータ制御部92は、第1モータ制御部90による制御の後、射出部材24と支持部44とが後退するように、射出用モータ62を制御する。この場合において、第2モータ制御部92は、射出用モータ62の第2回転方向のトルクである第2トルクの大きさを、上述した制限トルクの大きさに制限する。すなわち、第2モータ制御部92は、第2トルクの大きさが制限トルクの大きさ未満の範囲内で上昇することは許容するが、第2トルクの大きさが制限トルクの大きさを超えることは許容しない。なお、上述したように、第2回転方向は、射出部材24を後方向D2に移動させる場合におけるシャフト62aの回転方向である。 The second motor control unit 92 executes the second motor control described below after the control by the first motor control unit 90. That is, after the control by the first motor control unit 90, the second motor control unit 92 controls the injection motor 62 so that the injection member 24 and the support unit 44 move backward. In this case, the second motor control unit 92 limits the magnitude of the second torque, which is the torque in the second rotation direction of the injection motor 62, to the magnitude of the limit torque described above. That is, the second motor control unit 92 allows the magnitude of the second torque to increase within a range less than the magnitude of the limit torque, but does not allow the magnitude of the second torque to exceed the magnitude of the limit torque. Note that, as described above, the second rotation direction is the rotation direction of the shaft 62a when the injection member 24 is moved in the rearward direction D2.

 上述したように、射出用シリンダ22と支持部44との間には吸着力が発生している。また、上述したように、制限トルクは、射出部材24と支持部44との前後方向Dの移動力が、上記吸着力より小さくなるように、決められている。したがって、第2モータ制御が行われている間は、射出部材24と支持部44とは後方向D2に引っ張られるものの、射出用シリンダ22と支持部44との吸着は解除されない。そのため、第2モータ制御が行われている間は、射出部材24と支持部44とは、後退することができない。 As described above, an adhesive force is generated between the injection cylinder 22 and the support portion 44. Also, as described above, the limit torque is determined so that the moving force in the forward/backward direction D between the injection member 24 and the support portion 44 is smaller than the adhesive force. Therefore, while the second motor control is being performed, the injection member 24 and the support portion 44 are pulled in the rear direction D2, but the adhesive force between the injection cylinder 22 and the support portion 44 is not released. Therefore, while the second motor control is being performed, the injection member 24 and the support portion 44 cannot move backward.

 以下の説明において、第2モータ制御が行われている状態で、第2トルクの大きさが制限トルクの大きさである場合における射出用モータ62の回転位置は、第2回転位置P2とも称される。第2モータ制御が実行された場合は、回転位置取得部86は、回転位置センサ62bの検出結果に基づいて、第2回転位置P2を示す情報を取得することができる。 In the following description, the rotational position of the injection motor 62 when the second motor control is being performed and the magnitude of the second torque is the limit torque magnitude is also referred to as the second rotational position P2. When the second motor control is being performed, the rotational position acquisition unit 86 can acquire information indicating the second rotational position P2 based on the detection result of the rotational position sensor 62b.

 本実施形態によれば、第1モータ制御部90によって支持部44が射出用シリンダ22に押しつけられている場合と、第2モータ制御部92によって支持部44が後方向D2に引っ張られている場合とで、支持部44は前後方向Dに移動しない。しかしながら、第1回転位置P1と第2回転位置P2とは相違する。その理由の1つは、射出用モータ62と支持部44とを接続する機構部分(第2駆動装置52)がバックラッシを含んでいるからである。より具体的には、第2モータ制御部92によって制御が行われている場合は、射出用モータ62は、上記のバックラッシによって許容される範囲内で第2回転方向に回転することができる。その結果、第1回転位置P1と第2回転位置P2とは相違する。また、第1回転位置P1と第2回転位置P2とが相違する他の理由としては、射出用モータ62の駆動に起因して射出装置16に発生し得る弾性変形(歪み)が挙げられる。例えば、第2駆動装置52、支持部44、射出用シリンダ22等が前後方向Dに歪むことに応じて、シャフト62aが回転することが許容される。その結果、第1回転位置P1と第2回転位置P2とは相違し得る。 According to this embodiment, when the support part 44 is pressed against the injection cylinder 22 by the first motor control unit 90 and when the support part 44 is pulled in the rear direction D2 by the second motor control unit 92, the support part 44 does not move in the front-rear direction D. However, the first rotation position P1 and the second rotation position P2 are different. One of the reasons for this is that the mechanism part (second drive device 52) connecting the injection motor 62 and the support part 44 includes backlash. More specifically, when the second motor control unit 92 is controlling the injection motor 62, the injection motor 62 can rotate in the second rotation direction within the range allowed by the backlash. As a result, the first rotation position P1 and the second rotation position P2 are different. Another reason for the difference between the first rotation position P1 and the second rotation position P2 is the elastic deformation (distortion) that may occur in the injection device 16 due to the driving of the injection motor 62. For example, the shaft 62a is allowed to rotate in response to distortion of the second drive device 52, the support portion 44, the injection cylinder 22, etc. in the front-rear direction D. As a result, the first rotational position P1 and the second rotational position P2 may differ.

 第3モータ制御部94は、第2モータ制御部92による制御の後に、次に説明される第3モータ制御を実行する。すなわち、第3モータ制御部94は、第2モータ制御部92による制御の後に、射出用モータ62を制御して、射出用モータ62の回転位置を第3回転位置P3に移動させるとともに、射出用モータ62の駆動を停止する。より具体的に、第3モータ制御部94は、射出用モータ62に対する電力供給を停止する。第3回転位置P3は、上述した第1回転位置P1と第2回転位置P2との範囲内に収まる所定の回転位置である。当該範囲は第1回転位置P1と第2回転位置P2とを含む。第3回転位置P3は、例えば、第1回転位置P1と第2回転位置P2とのちょうど中間の回転位置(中点)である。 The third motor control unit 94 executes the third motor control described below after the control by the second motor control unit 92. That is, after the control by the second motor control unit 92, the third motor control unit 94 controls the injection motor 62 to move the rotational position of the injection motor 62 to the third rotational position P3 and stops driving the injection motor 62. More specifically, the third motor control unit 94 stops the supply of power to the injection motor 62. The third rotational position P3 is a predetermined rotational position that falls within the range between the first rotational position P1 and the second rotational position P2 described above. This range includes the first rotational position P1 and the second rotational position P2. The third rotational position P3 is, for example, a rotational position (midpoint) that is exactly halfway between the first rotational position P1 and the second rotational position P2.

 図5は、第1回転位置P1と、第2回転位置P2と、第3回転位置P3とを例示する数直線である。なお、この数直線の正方向は、シャフト62aの第1回転方向である。 FIG. 5 is a number line illustrating the first rotational position P1, the second rotational position P2, and the third rotational position P3. Note that the positive direction of this number line is the first rotational direction of the shaft 62a.

 上述したように、第1回転位置P1は、支持部44が射出用シリンダ22に押しつけられた状態で、第1トルクの大きさが制限トルクの大きさである場合における射出用モータ62の回転位置である。第2回転位置P2は、第2モータ制御が行われている状態で、第2トルクの大きさが制限トルクの大きさである場合における射出用モータ62の回転位置である。第1モータ制御の実行中において第1回転位置P1に射出用モータ62が位置している場合は、支持部44には制限トルクの大きさに応じた押付力が付与されている。第2モータ制御の実行中において第2回転位置P2に射出用モータ62が位置している場合は、支持部44には制限トルクの大きさに応じた引張力が付与されている。当該押付力と当該引張力とは、力の方向が互いに反対向きである。また、当該押付力の大きさと、当該引張力の大きさとは、等しい。 As described above, the first rotational position P1 is the rotational position of the injection motor 62 when the support 44 is pressed against the injection cylinder 22 and the magnitude of the first torque is the limit torque. The second rotational position P2 is the rotational position of the injection motor 62 when the second motor control is being performed and the magnitude of the second torque is the limit torque. When the injection motor 62 is located at the first rotational position P1 during execution of the first motor control, a pressing force corresponding to the limit torque is applied to the support 44. When the injection motor 62 is located at the second rotational position P2 during execution of the second motor control, a pulling force corresponding to the limit torque is applied to the support 44. The pressing force and the pulling force are in opposite directions. Furthermore, the pressing force and the pulling force are equal in magnitude.

 この場合、第1回転位置P1と第2回転位置P2との中点である第3回転位置P3に射出用モータ62が位置している際に支持部44に付与される前後方向Dの力は、ゼロである。すなわち、圧力センサ48のゼロ点が適切に設定されていれば、第3回転位置P3に射出用モータ62が位置している場合の圧力センサ48に基づく検出値(圧力値)は、ゼロになる。 In this case, the force in the front-rear direction D applied to the support part 44 when the injection motor 62 is located at the third rotational position P3, which is the midpoint between the first rotational position P1 and the second rotational position P2, is zero. In other words, if the zero point of the pressure sensor 48 is appropriately set, the detection value (pressure value) based on the pressure sensor 48 when the injection motor 62 is located at the third rotational position P3 will be zero.

 ゼロ点補正部96は、以上を踏まえた圧力センサ48のゼロ点の補正を行い得る。すなわち、ゼロ点補正部96は、第3モータ制御部94によって射出用モータ62の駆動が停止された状態で、圧力センサ48に基づく検出値がゼロとなるように、圧力センサ48のゼロ点を補正する。この場合において、ゼロ点の補正は、例えば圧力センサ48の検出結果から得られる圧力の値を制御装置12が補正するための補正量を変更することにより、達成され得る。より具体的には、例えばゼロ点補正部96は、第3モータ制御部94によって射出用モータ62の駆動が停止された状態で圧力センサ48に基づく圧力値を当該補正量に基づいて補正した結果がゼロを示すように、補正量を調整する。これにより、ゼロ点補正部96は、ゼロ点の補正を達成し得る。 The zero point correction unit 96 can correct the zero point of the pressure sensor 48 based on the above. That is, the zero point correction unit 96 corrects the zero point of the pressure sensor 48 so that the detection value based on the pressure sensor 48 becomes zero when the drive of the injection motor 62 is stopped by the third motor control unit 94. In this case, the zero point correction can be achieved, for example, by changing the correction amount by which the control device 12 corrects the pressure value obtained from the detection result of the pressure sensor 48. More specifically, for example, the zero point correction unit 96 adjusts the correction amount so that the result of correcting the pressure value based on the pressure sensor 48 based on the correction amount when the drive of the injection motor 62 is stopped by the third motor control unit 94 indicates zero. In this way, the zero point correction unit 96 can achieve the zero point correction.

 図6は、射出装置16の制御方法を例示するフローチャートである。 FIG. 6 is a flowchart illustrating a method for controlling the injection device 16.

 制御装置12は、上述のプログラムに基づいて、例えば図6に示す制御方法を実行することができる。この制御方法は、電磁石起動ステップS1と、第1モータ制御ステップS2と、第1回転位置取得ステップS3と、第2モータ制御ステップS4とを含む。また、この制御方法は、第2回転位置取得ステップS5と、第3回転位置取得ステップS6と、第3モータ制御ステップS7と、ゼロ点補正ステップS8と、電磁石停止ステップS9とを含む。 The control device 12 can execute, for example, the control method shown in FIG. 6 based on the above-mentioned program. This control method includes an electromagnet start-up step S1, a first motor control step S2, a first rotational position acquisition step S3, and a second motor control step S4. This control method also includes a second rotational position acquisition step S5, a third rotational position acquisition step S6, a third motor control step S7, a zero point correction step S8, and an electromagnet stop step S9.

 電磁石起動ステップ(電磁石制御ステップ)S1では、電磁石制御部88が、電磁石98Aに対する電力供給を開始する。これにより、射出用シリンダ22(後端22b)と支持部44との間に、吸着力(磁力)が発生する。 In the electromagnet activation step (electromagnet control step) S1, the electromagnet control unit 88 starts supplying power to the electromagnet 98A. This generates an adhesive force (magnetic force) between the injection cylinder 22 (rear end 22b) and the support part 44.

 第1モータ制御ステップS2では、上述した第1モータ制御が実行される。すなわち、第1モータ制御ステップS2では、第1モータ制御部90が、射出部材24と支持部44とが前進するように射出用モータ62を制御して、支持部44を射出用シリンダ22に接触させて押しつける。この場合において、第1モータ制御部90は、制限トルク情報82に基づいて、射出用モータ62の第1回転方向のトルクである第1トルクの大きさを、制限トルクの大きさに制限する。これにより、回転位置センサ62bは、上述した第1回転位置P1を第1モータ制御ステップS2において検出することができる。 In the first motor control step S2, the first motor control described above is executed. That is, in the first motor control step S2, the first motor control unit 90 controls the injection motor 62 so that the injection member 24 and the support portion 44 move forward, and the support portion 44 contacts and presses against the injection cylinder 22. In this case, the first motor control unit 90 limits the magnitude of the first torque, which is the torque in the first rotation direction of the injection motor 62, to the magnitude of the limit torque based on the limit torque information 82. This allows the rotational position sensor 62b to detect the first rotational position P1 described above in the first motor control step S2.

 第1回転位置取得ステップS3では、回転位置取得部86が、回転位置センサ62bによって検出された第1回転位置P1を示す情報を取得する。 In the first rotational position acquisition step S3, the rotational position acquisition unit 86 acquires information indicating the first rotational position P1 detected by the rotational position sensor 62b.

 第1回転位置P1を示す情報が取得された場合は、第2モータ制御ステップS4に移行して、上述した第2モータ制御が実行される。すなわち、第2モータ制御ステップS4では、第2モータ制御部92が、射出部材24と支持部44とが後退するように射出用モータ62を制御する。この場合において、第2モータ制御部92は、制限トルク情報82に基づいて、射出用モータ62の第2回転方向のトルクである第2トルクの大きさを、制限トルクの大きさに制限する。これにより、支持部44は、後方向D2に引っ張られる。このような第2モータ制御が実行されることにより、回転位置センサ62bは、上述した第2回転位置P2を第2モータ制御ステップS4において検出することができる。 If information indicating the first rotational position P1 is acquired, the process proceeds to second motor control step S4, where the above-mentioned second motor control is executed. That is, in second motor control step S4, the second motor control unit 92 controls the ejection motor 62 so that the ejection member 24 and the support unit 44 move backward. In this case, the second motor control unit 92 limits the magnitude of the second torque, which is the torque in the second rotational direction of the ejection motor 62, to the magnitude of the limit torque based on the limit torque information 82. As a result, the support unit 44 is pulled in the rear direction D2. By executing such second motor control, the rotational position sensor 62b can detect the above-mentioned second rotational position P2 in the second motor control step S4.

 第2回転位置取得ステップS5では、回転位置取得部86が、回転位置センサ62bによって検出された第2回転位置P2を示す情報を取得する。 In the second rotational position acquisition step S5, the rotational position acquisition unit 86 acquires information indicating the second rotational position P2 detected by the rotational position sensor 62b.

 第3回転位置取得ステップS6では、第1回転位置取得ステップS3において取得された第1回転位置P1を示す情報と、第2回転位置取得ステップS5において取得された第2回転位置P2を示す情報とに基づいて、第3回転位置P3を示す情報が取得される。例えば、第3回転位置取得ステップS6では、第3モータ制御部94が、第1回転位置P1と第2回転位置P2とに基づいて、第3回転位置P3を算出する。第3回転位置P3は、例えば第1回転位置P1と第2回転位置P2との中点である。 In the third rotational position acquisition step S6, information indicating the third rotational position P3 is acquired based on the information indicating the first rotational position P1 acquired in the first rotational position acquisition step S3 and the information indicating the second rotational position P2 acquired in the second rotational position acquisition step S5. For example, in the third rotational position acquisition step S6, the third motor control unit 94 calculates the third rotational position P3 based on the first rotational position P1 and the second rotational position P2. The third rotational position P3 is, for example, the midpoint between the first rotational position P1 and the second rotational position P2.

 第3モータ制御ステップS7では、第3回転位置取得ステップS6において取得された第3回転位置P3を示す情報に基づいて、上述した第3モータ制御が実行される。すなわち、第3モータ制御ステップS7では、第3モータ制御部94が、射出用モータ62を制御して、射出用モータ62の回転位置を第3回転位置P3に移動させるとともに、射出用モータ62の駆動を停止する。 In the third motor control step S7, the third motor control described above is executed based on the information indicating the third rotational position P3 acquired in the third rotational position acquisition step S6. That is, in the third motor control step S7, the third motor control unit 94 controls the injection motor 62 to move the rotational position of the injection motor 62 to the third rotational position P3 and stops driving the injection motor 62.

 ゼロ点補正ステップS8では、射出用モータ62の駆動が停止している状態で、ゼロ点補正部96が、圧力センサ48の検出値がゼロとなるように、ゼロ点を補正する。 In the zero point correction step S8, while the drive of the injection motor 62 is stopped, the zero point correction unit 96 corrects the zero point so that the detection value of the pressure sensor 48 becomes zero.

 電磁石停止ステップS9では、電磁石制御部88が、電磁石98Aに対する電力供給を休止する。これにより、射出用シリンダ22と支持部44との間の吸着力は消失する。これにより、射出部材24と支持部44とを後退させることが許容される。 In electromagnet stop step S9, the electromagnet control unit 88 stops the power supply to the electromagnet 98A. This causes the adhesive force between the injection cylinder 22 and the support portion 44 to disappear. This allows the injection member 24 and the support portion 44 to be retracted.

 こうして、図6に示す制御方法は終了する。なお、ゼロ点補正ステップS8より先に電磁石停止ステップS9が実行されてもよい。 Thus, the control method shown in FIG. 6 ends. Note that the electromagnet stopping step S9 may be executed prior to the zero point correction step S8.

 制御装置12によれば、圧力センサ48のゼロ点を適切に補正することができる。 The control device 12 can appropriately correct the zero point of the pressure sensor 48.

 しかも、圧力センサ48のゼロ点を補正するために射出部材24が移動する回数は、射出用シリンダ22と支持部44とを接触させるために実行される前進と、電磁石停止ステップS9後に実行される後退との2回で済み得る。換言すれば、制御装置12は、射出部材24の移動回数を抑えつつ、圧力センサ48のゼロ点を補正し得る。 Moreover, the number of times that the injection member 24 moves to correct the zero point of the pressure sensor 48 can be reduced to two: a forward movement performed to bring the injection cylinder 22 into contact with the support portion 44, and a backward movement performed after the electromagnet is stopped in step S9. In other words, the control device 12 can correct the zero point of the pressure sensor 48 while minimizing the number of movements of the injection member 24.

 図6の制御方法は、射出部材24の移動回数が抑えられているので、当該制御方法の実行に要する時間も抑えられている。換言すれば、射出部材24の移動回数が抑えられるので、圧力センサ48のゼロ点を補正するために要する時間も抑えられる。 The control method of FIG. 6 reduces the number of movements of the injection member 24, and therefore reduces the time required to execute the control method. In other words, because the number of movements of the injection member 24 is reduced, the time required to correct the zero point of the pressure sensor 48 is also reduced.

 また、射出部材24の移動回数が抑えられることで、例えば、射出部材24が何度も移動することに起因して、射出口34pから射出用シリンダ22内に空気が引き込まれるリスクが低減される。射出用シリンダ22内に空気が引き込まれるリスクが低減されることで、射出用シリンダ22内に引き込まれた空気が射出用シリンダ22内の成形材料に成形材料焼けを発生させるリスクも低減される。 In addition, by reducing the number of movements of the injection member 24, the risk of air being drawn into the injection cylinder 22 from the injection port 34p due to, for example, the multiple movements of the injection member 24 is reduced. By reducing the risk of air being drawn into the injection cylinder 22, the risk of the air drawn into the injection cylinder 22 causing molding material burns in the molding material in the injection cylinder 22 is also reduced.

 さらに、本実施形態によれば、電磁石制御部88は、電磁石98Aを制御して、射出用シリンダ22と支持部44との間に吸着力が発生している状態と、当該吸着力が消失している状態とを切り替えることができる。これにより、例えば、射出成形機10が成形サイクルを実行する場合は、電磁石制御部88は、上記の吸着力を消失させることができる。その結果、成形サイクルの実行中において上記の吸着力が射出装置16の動作に影響を及ぼすことが防止される。 Furthermore, according to this embodiment, the electromagnet control unit 88 can control the electromagnet 98A to switch between a state in which an adhesive force is generated between the injection cylinder 22 and the support unit 44 and a state in which the adhesive force is lost. As a result, for example, when the injection molding machine 10 is executing a molding cycle, the electromagnet control unit 88 can cause the above-mentioned adhesive force to disappear. As a result, the above-mentioned adhesive force is prevented from affecting the operation of the injection device 16 while the molding cycle is being executed.

 一実施形態は、下記のように変形してもよい。下記の変形例では、実施形態と重複する説明は割愛する。また、下記の変形例に用いられる図は、実施形態において説明した構成と同一の構成については同一の符号を付す。 One embodiment may be modified as follows. In the following modified examples, explanations that overlap with the embodiment will be omitted. Also, in the figures used in the following modified examples, the same reference numerals are used for configurations that are the same as those described in the embodiment.

 (変形例1)
 吸着部材98として用いられる磁石は、電磁石98Aに限定されず、永久磁石でもよい。この場合において、例えば支持部44の全部が、吸着部材(永久磁石)によって形成されてもよい。
(Variation 1)
The magnet used as the attraction member 98 is not limited to the electromagnet 98A, and may be a permanent magnet. In this case, for example, the entire support portion 44 may be formed of the attraction member (permanent magnet).

 (変形例2)
 図7は、変形例2に係る射出装置16の構成を示す模式図である。
(Variation 2)
FIG. 7 is a schematic diagram showing the configuration of an injection device 16 according to the second modification.

 吸着部材98は、射出用シリンダ22(後端22b)と支持部44とのうちの少なくとも一方に備えられる粘着シート98Bでもよい。支持部44の前端部44aに粘着シート98Bが備えられる場合の例が、図7には示されている。粘着シート98Bによって、射出用シリンダ22と支持部44とは吸着することができる。すなわち、本変形例によれば、粘着シート98Bによって、射出用シリンダ22と支持部44との間に吸着力を発生させることができる。 The suction member 98 may be an adhesive sheet 98B provided on at least one of the injection cylinder 22 (rear end 22b) and the support portion 44. An example in which the adhesive sheet 98B is provided on the front end portion 44a of the support portion 44 is shown in FIG. 7. The injection cylinder 22 and the support portion 44 can be suctioned by the adhesive sheet 98B. In other words, according to this modified example, the adhesive sheet 98B can generate an adhesive force between the injection cylinder 22 and the support portion 44.

 (変形例3)
 第3回転位置P3は、第1回転位置P1と第2回転位置P2との範囲内であれば、特に限定されない。
(Variation 3)
The third rotational position P3 is not particularly limited as long as it is within the range between the first rotational position P1 and the second rotational position P2.

 例えば、第2モータ制御(第2モータ制御ステップS4)が実行された後、第3モータ制御部94は、射出用モータ62を回転させることなく、射出用モータ62に対する電力供給を停止してもよい。この場合において、射出用モータ62の回転位置は、第1回転位置P1と第2回転位置P2との範囲内に自ずと収まっている。この場合は、第3回転位置P3をあえて取得する必要がないので、図6に示した第3回転位置取得ステップS6は、省略されてもよい。この場合における第3モータ制御ステップS7では、射出用モータ62の駆動停止のみが実行されれば足りる。これにより、一実施形態と比較して、制御方法の実行に要する所要時間が短縮され得る。 For example, after the second motor control (second motor control step S4) is executed, the third motor control unit 94 may stop the power supply to the injection motor 62 without rotating the injection motor 62. In this case, the rotational position of the injection motor 62 naturally falls within the range between the first rotational position P1 and the second rotational position P2. In this case, since there is no need to acquire the third rotational position P3, the third rotational position acquisition step S6 shown in FIG. 6 may be omitted. In the third motor control step S7 in this case, it is sufficient to only stop the drive of the injection motor 62. This can reduce the time required to execute the control method compared to the one embodiment.

 また、第3回転位置P3を取得する必要がない場合は、第1回転位置P1と第2回転位置P2とを取得する必要もない。したがって、図6に示した第1回転位置取得ステップS3と、第2回転位置取得ステップS5とは、省略され得る。第1回転位置取得ステップS3と、第2回転位置取得ステップS5と、第3回転位置取得ステップS6とが省略される場合は、図3に示した回転位置取得部86は省略され得る。 Furthermore, if there is no need to acquire the third rotational position P3, there is no need to acquire the first rotational position P1 and the second rotational position P2. Therefore, the first rotational position acquisition step S3 and the second rotational position acquisition step S5 shown in FIG. 6 may be omitted. If the first rotational position acquisition step S3, the second rotational position acquisition step S5, and the third rotational position acquisition step S6 are omitted, the rotational position acquisition unit 86 shown in FIG. 3 may be omitted.

 (複数の変形例の組み合わせ)
 上述されている複数の変形例は、矛盾が生じない範囲内で適宜組み合わされてもよい。
(Combination of multiple modified examples)
The above-described multiple modified examples may be combined as appropriate within the scope of not causing any contradiction.

 上述した一実施形態および変形例によれば、制御装置12および制御方法は、圧力センサ48のゼロ点を比較的速やかに、且つ正確に補正することができる。 According to the embodiment and modified example described above, the control device 12 and control method can relatively quickly and accurately correct the zero point of the pressure sensor 48.

 上記実施形態に関し、さらに以下の付記を開示する。 The following notes are further provided with respect to the above embodiment.

 (付記1)
 本開示に係る射出装置(16)の制御装置(12)は、射出用シリンダ(22)と、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材の後端部(24c)に連結され、前記射出部材を支持する支持部(44)と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータ(62)と、前記支持部に付与される圧力を検出する圧力センサ(48)と、を備える射出装置の制御装置であって、制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御部(90)と、前記第1モータ制御部による制御の後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御部(92)と、前記第2モータ制御部による制御の後、前記第1モータ制御部の制御によって前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置(P1)と、前記第2モータ制御部による制御が行われた状態の前記射出用モータの第2回転位置(P2)との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御部(94)と、前記第3モータ制御部によって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正部(96)と、を備え、前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御装置である。
(Appendix 1)
A control device (12) for an injection device (16) according to the present disclosure includes an injection cylinder (22), an injection member (24) inserted into the injection cylinder and movable within the injection cylinder, a support part (44) connected to a rear end part (24c) of the injection member and supporting the injection member, an injection motor (62) that applies a driving force to the support part to move the injection member, and a pressure sensor (48) that detects a pressure applied to the support part. The control device for an injection device includes a first motor control part (90) that controls the injection motor so that the injection member and the support part move forward with a limited torque, and presses the support part against the injection cylinder, a second motor control part (92) that controls the injection motor so that the injection member and the support part move backward with the limited torque after control by the first motor control part, and a pressure sensor (48) that detects a pressure applied to the support part after control by the second motor control part. a third motor control unit (94) that stops driving of the injection motor in a state where the rotational position of the injection motor is within a range between a first rotational position (P1) of the injection motor in a state where the support part is pressed against the injection cylinder by control of the first motor control unit and a second rotational position (P2) of the injection motor in a state where the control is performed by the second motor control unit; and a zero point correction unit (96) that corrects a zero point of the pressure sensor so that a detection value detected based on the pressure sensor becomes zero in a state where the drive of the injection motor is stopped by the third motor control unit, wherein when the injection member and the support part advance and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and a force of the support part that moves due to the limit torque is smaller than the adhesive force.

 (付記2)
 付記1に記載の射出装置の制御装置であって、前記第1回転位置は、前記支持部が前記射出用シリンダに押しつけられた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置であり、前記第2回転位置は、前記第2モータ制御部による制御が行われた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置である、射出装置の制御装置でもよい。
(Appendix 2)
The control device for the injection device described in Appendix 1 may be such that the first rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque while the support part is pressed against the injection cylinder, and the second rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque while control is being performed by the second motor control part.

 (付記3)
 付記1または2に記載の射出装置の制御装置であって、前記第3モータ制御部は、前記第2モータ制御部による制御の後、前記射出用モータを回転させることなく停止させる、射出装置の制御装置でもよい。
(Appendix 3)
In the control device for the injection device according to Supplementary Note 1 or 2, the third motor control unit may be configured to stop the injection motor without rotating it after control by the second motor control unit.

 (付記4)
 付記1または2に記載の射出装置の制御装置であって、前記第3モータ制御部は、前記第2モータ制御部による制御の後、前記射出用モータを制御して、前記第1回転位置から前記第2回転位置までの範囲内に位置する第3回転位置(P3)に前記射出用モータを回転させた後、前記射出用モータを停止させる、射出装置の制御装置でもよい。
(Appendix 4)
In the control device for the injection device described in Supplementary Note 1 or 2, the third motor control unit may be configured to control the injection motor after control by the second motor control unit to rotate the injection motor to a third rotation position (P3) located within a range from the first rotation position to the second rotation position, and then stop the injection motor.

 (付記5)
 付記4に記載の射出装置の制御装置であって、前記第3回転位置は、前記第1回転位置と前記第2回転位置との中点である、射出装置の制御装置でもよい。
(Appendix 5)
In the control device for the injection device according to Supplementary Note 4, the third rotational position may be a midpoint between the first rotational position and the second rotational position.

 (付記6)
 付記4または5に記載の射出装置の制御装置であって、前記第3モータ制御部は、前記射出用モータの回転位置を検出する回転位置センサ(62b)から取得した前記第1回転位置および前記第2回転位置に基づいて、前記第3回転位置を算出する、射出装置の制御装置でもよい。
(Appendix 6)
In the control device for the injection device described in Supplementary Note 4 or 5, the third motor control unit may calculate the third rotational position based on the first rotational position and the second rotational position acquired from a rotational position sensor (62 b) that detects the rotational position of the injection motor.

 (付記7)
 付記1~6のいずれか1つに記載の射出装置の制御装置であって、前記支持部と前記射出用シリンダとのうちの少なくとも一方には、前記吸着力を発生させる磁石が備えられている、射出装置の制御装置でもよい。
(Appendix 7)
The control device for an injection device according to any one of Supplementary Notes 1 to 6 may be such that at least one of the support portion and the injection cylinder is provided with a magnet that generates the adhesive force.

 (付記8)
 付記7に記載の射出装置の制御装置であって、前記磁石は、電磁石(98A)を含み、前記電磁石に電力を供給して、前記吸着力を発生させる電磁石制御部(88)をさらに備える、射出装置の制御装置でもよい。
(Appendix 8)
The control device for the injection device described in Supplementary Note 7 may be the control device for the injection device, wherein the magnet includes an electromagnet (98A), and further includes an electromagnet control unit (88) that supplies power to the electromagnet to generate the adsorptive force.

 (付記9)
 付記1~6のいずれか1つに記載の射出装置の制御装置であって、前記支持部と前記射出用シリンダとのうちの少なくとも一方には、前記吸着力を発生させる粘着シート(98B)が備えられている、射出装置の制御装置でもよい。
(Appendix 9)
The control device for an injection device according to any one of Appendices 1 to 6 may be such that at least one of the support portion and the injection cylinder is provided with an adhesive sheet (98B) that generates the adhesive force.

 (付記10)
 本開示に係る射出成形システム(SYS)は、付記1~9のいずれか1つに記載の射出装置の制御装置と、前記射出装置と、を備える、射出成形システムである。
(Appendix 10)
An injection molding system (SYS) according to the present disclosure is an injection molding system including a control device for an injection device according to any one of Supplementary Notes 1 to 9, and the injection device.

 (付記11)
 本開示に係る射出装置(16)の制御方法は、射出用シリンダ(22)と、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材(24)と、前記射出部材の後端部(24c)に連結され、前記射出部材を支持する支持部(44)と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータ(62)と、前記支持部に付与される圧力を検出する圧力センサ(48)と、を備える射出装置の制御方法であって、制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御ステップ(S2)と、前記第1モータ制御ステップの後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御ステップ(S4)と、前記第2モータ制御ステップの後、前記第1モータ制御ステップにおいて前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置(P1)と、前記第2モータ制御ステップが行われた状態の前記射出用モータの第2回転位置(P2)との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御ステップ(S7)と、前記第3モータ制御ステップによって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正ステップ(S8)と、を含み、前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御方法である。
(Appendix 11)
A control method for an injection device (16) according to the present disclosure is a control method for an injection device including an injection cylinder (22), an injection member (24) inserted into the injection cylinder and movable within the injection cylinder, a support part (44) connected to a rear end part (24c) of the injection member and supporting the injection member, an injection motor (62) that applies a driving force to the support part to move the injection member, and a pressure sensor (48) that detects a pressure applied to the support part, the control method including a first motor control step (S2) of controlling the injection motor so that the injection member and the support part move forward with a limited torque, thereby bringing the support part into contact with and pressing it against the injection cylinder, a second motor control step (S4) of controlling the injection motor so that the injection member and the support part move backward with the limited torque after the first motor control step, and a second motor control step (S5) of controlling the injection motor so that the injection member and the support part move backward with the limited torque after the second motor control step. a third motor control step (S7) of stopping the drive of the injection motor in a state where the rotation position of the injection motor is within a range between a first rotation position (P1) of the injection motor in a state where the support part is pressed against the injection cylinder in the motor control step and a second rotation position (P2) of the injection motor in a state where the second motor control step is performed; and a zero point correction step (S8) of correcting a zero point of the pressure sensor so that a detection value detected based on the pressure sensor becomes zero in a state where the drive of the injection motor is stopped by the third motor control step, wherein when the injection member and the support part move forward and the support part comes into contact with the injection cylinder, an adhesive force is generated between the support part and the injection cylinder, and a force of the support part moving due to the limit torque is smaller than the adhesive force.

 (付記12)
 付記11に記載の射出装置の制御方法であって、前記第1回転位置は、前記支持部が前記射出用シリンダに押しつけられた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置であり、前記第2回転位置は、前記第2モータ制御ステップによる制御が行われた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置である、射出装置の制御方法でもよい。
(Appendix 12)
The control method for an injection device described in Appendix 11 may be such that the first rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque in a state where the support part is pressed against the injection cylinder, and the second rotation position is a rotation position of the injection motor when the torque magnitude of the injection motor reaches the limit torque in a state where control is performed by the second motor control step.

 (付記13)
 付記11または12に記載の射出装置の制御方法は、前記第3モータ制御ステップでは、前記第2モータ制御ステップの後、前記射出用モータを回転させることなく停止させる、射出装置の制御方法でもよい。
(Appendix 13)
The control method for an injection device according to Supplementary Note 11 or 12 may be such that, in the third motor control step, after the second motor control step, the injection motor is stopped without rotating.

 (付記14)
 付記11または12に記載の射出装置の制御方法は、前記第3モータ制御ステップでは、前記第2モータ制御ステップの後、前記射出用モータを制御して、前記第1回転位置から前記第2回転位置までの範囲内に位置する第3回転位置(P3)に前記射出用モータを回転させた後、前記射出用モータを停止させる、射出装置の制御方法でもよい。
(Appendix 14)
The control method of the injection device described in Supplementary Note 11 or 12 may be a control method of an injection device, in which, in the third motor control step, after the second motor control step, the injection motor is controlled to rotate the injection motor to a third rotation position (P3) located within a range from the first rotation position to the second rotation position, and then the injection motor is stopped.

 (付記15)
 付記14に記載の射出装置の制御方法であって、前記第3回転位置は、前記第1回転位置と前記第2回転位置との中点である、射出装置の制御方法でもよい。
(Appendix 15)
The control method for the injection device according to Supplementary Note 14, wherein the third rotational position is a midpoint between the first rotational position and the second rotational position.

 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値または数式が用いられている場合も同様である。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the spirit of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these. The same applies when numerical values or formulas are used to explain the above-mentioned embodiments.

12…制御装置             16…射出装置
22…射出用シリンダ          24…射出部材
24c…後端部             44…支持部
48…圧力センサ            62…射出用モータ
62b…回転位置センサ         88…電磁石制御部
90…第1モータ制御部         92…第2モータ制御部
94…第3モータ制御部         96…ゼロ点補正部
98A…吸着部材(電磁石)
98B…吸着部材(粘着シート)     P1…第1回転位置
P2…第2回転位置           P3…第3回転位置
SYS…射出成形システム
Reference Signs List 12: Control device 16: Injection device 22: Injection cylinder 24: Injection member 24c: Rear end portion 44: Support portion 48: Pressure sensor 62: Injection motor 62b: Rotational position sensor 88: Electromagnet control portion 90: First motor control portion 92: Second motor control portion 94: Third motor control portion 96: Zero point correction portion 98A: Attraction member (electromagnet)
98B: Adsorption member (adhesive sheet) P1: First rotational position P2: Second rotational position P3: Third rotational position SYS: Injection molding system

Claims (15)

 射出用シリンダと、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材の後端部に連結され、前記射出部材を支持する支持部と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータと、前記支持部に付与される圧力を検出する圧力センサと、を備える射出装置の制御装置であって、
 制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御部と、
 前記第1モータ制御部による制御の後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御部と、
 前記第2モータ制御部による制御の後、前記第1モータ制御部の制御によって前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置と、前記第2モータ制御部による制御が行われた状態の前記射出用モータの第2回転位置との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御部と、
 前記第3モータ制御部によって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正部と、
 を備え、
 前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、
 前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御装置。
A control device for an injection device, comprising: an injection cylinder; an injection member inserted into the injection cylinder and movable within the injection cylinder; a support part connected to a rear end of the injection member and supporting the injection member; an injection motor applying a driving force to the support part to move the injection member; and a pressure sensor detecting a pressure applied to the support part,
a first motor control unit that controls the injection motor so that the injection member and the support unit move forward with a limited torque to press the support unit against the injection cylinder;
a second motor control unit that controls the injection motor so that the injection member and the support unit move backward with the limited torque after control by the first motor control unit;
a third motor control unit that stops driving of the injection motor in a state where, after control by the second motor control unit, the rotation position of the injection motor is within a range between a first rotation position of the injection motor in a state where the support part is pressed against the injection cylinder by control of the first motor control unit and a second rotation position of the injection motor in a state where control by the second motor control unit is performed; and
a zero point correction unit that corrects a zero point of the pressure sensor so that a detection value detected based on the pressure sensor becomes zero in a state in which driving of the injection motor is stopped by the third motor control unit; and
Equipped with
When the injection member and the support portion move forward and the support portion comes into contact with the injection cylinder, an adhesive force is generated between the support portion and the injection cylinder,
A control device for an injection device, wherein a force of the support part that moves due to the limited torque is smaller than the adsorption force.
 請求項1に記載の射出装置の制御装置であって、
 前記第1回転位置は、前記支持部が前記射出用シリンダに押しつけられた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置であり、
 前記第2回転位置は、前記第2モータ制御部による制御が行われた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置である、射出装置の制御装置。
The control device for the injection device according to claim 1,
the first rotation position is a rotation position of the injection motor when a magnitude of a torque of the injection motor reaches the limit torque in a state in which the support portion is pressed against the injection cylinder,
the second rotation position is a rotation position of the injection motor when a magnitude of the torque of the injection motor reaches the limit torque in a state where control is performed by the second motor control unit.
 請求項1または2に記載の射出装置の制御装置であって、
 前記第3モータ制御部は、前記第2モータ制御部による制御の後、前記射出用モータを回転させることなく停止させる、射出装置の制御装置。
The control device for the injection device according to claim 1 or 2,
The control device for the injection device, wherein the third motor control unit stops the injection motor without rotating it after control by the second motor control unit.
 請求項1または2に記載の射出装置の制御装置であって、
 前記第3モータ制御部は、前記第2モータ制御部による制御の後、前記射出用モータを制御して、前記第1回転位置から前記第2回転位置までの範囲内に位置する第3回転位置に前記射出用モータを回転させた後、前記射出用モータを停止させる、射出装置の制御装置。
The control device for the injection device according to claim 1 or 2,
the third motor control unit, after control by the second motor control unit, controls the injection motor to rotate the injection motor to a third rotation position which is located within a range from the first rotation position to the second rotation position, and then stops the injection motor.
 請求項4に記載の射出装置の制御装置であって、
 前記第3回転位置は、前記第1回転位置と前記第2回転位置との中点である、射出装置の制御装置。
The control device for the injection device according to claim 4,
A control device for an injection device, wherein the third rotational position is a midpoint between the first rotational position and the second rotational position.
 請求項4または5に記載の射出装置の制御装置であって、
 前記第3モータ制御部は、前記射出用モータの回転位置を検出する回転位置センサから取得した前記第1回転位置および前記第2回転位置に基づいて、前記第3回転位置を算出する、射出装置の制御装置。
The control device for the injection device according to claim 4 or 5,
The third motor control unit calculates the third rotation position based on the first rotation position and the second rotation position acquired from a rotation position sensor that detects a rotation position of the injection motor.
 請求項1~6のいずれか1項に記載の射出装置の制御装置であって、
 前記支持部と前記射出用シリンダとのうちの少なくとも一方には、前記吸着力を発生させる磁石が備えられている、射出装置の制御装置。
The control device for the injection device according to any one of claims 1 to 6,
At least one of the support portion and the injection cylinder is provided with a magnet that generates the attraction force.
 請求項7に記載の射出装置の制御装置であって、
 前記磁石は、電磁石を含み、
 前記電磁石に電力を供給して、前記吸着力を発生させる電磁石制御部をさらに備える、射出装置の制御装置。
The control device for the injection device according to claim 7,
The magnet includes an electromagnet,
The control device for the injection device further includes an electromagnet control unit that supplies power to the electromagnet to generate the adsorptive force.
 請求項1~6のいずれか1項に記載の射出装置の制御装置であって、
 前記支持部と前記射出用シリンダとのうちの少なくとも一方には、前記吸着力を発生させる粘着シートが備えられている、射出装置の制御装置。
The control device for the injection device according to any one of claims 1 to 6,
A control device for an injection device, wherein at least one of the support portion and the injection cylinder is provided with an adhesive sheet that generates the adhesive force.
 請求項1~9のいずれか1項に記載の射出装置の制御装置と、
 前記射出装置と、
 を備える、射出成形システム。
A control device for an injection device according to any one of claims 1 to 9;
The injection device;
An injection molding system comprising:
 射出用シリンダと、前記射出用シリンダ内に挿入され、前記射出用シリンダ内を移動可能な射出部材と、前記射出部材の後端部に連結され、前記射出部材を支持する支持部と、前記支持部に駆動力を与えて前記射出部材を移動させる射出用モータと、前記支持部に付与される圧力を検出する圧力センサと、を備える射出装置の制御方法であって、
 制限トルクで前記射出部材および前記支持部が前進するように前記射出用モータを制御して、前記支持部を前記射出用シリンダに接触させて押しつける第1モータ制御ステップと、
 前記第1モータ制御ステップの後、前記制限トルクで前記射出部材および前記支持部が後退するように、前記射出用モータを制御する第2モータ制御ステップと、
 前記第2モータ制御ステップの後、前記第1モータ制御ステップにおいて前記支持部が前記射出用シリンダに押しつけられた状態の前記射出用モータの第1回転位置と、前記第2モータ制御ステップが行われた状態の前記射出用モータの第2回転位置との範囲内に前記射出用モータの回転位置が収まっている状態で、前記射出用モータの駆動を停止する第3モータ制御ステップと、
 前記第3モータ制御ステップによって前記射出用モータの駆動が停止された状態で、前記圧力センサに基づいて検出される検出値がゼロとなるように、前記圧力センサのゼロ点を補正するゼロ点補正ステップと、
 を含み、
 前記射出部材および前記支持部が前進して前記支持部が前記射出用シリンダに接触した場合に、前記支持部と前記射出用シリンダとの間には吸着力が発生し、
 前記制限トルクによって移動する前記支持部の力は、前記吸着力よりも小さい、射出装置の制御方法。
1. A control method for an injection device including an injection cylinder, an injection member inserted into the injection cylinder and movable within the injection cylinder, a support part connected to a rear end part of the injection member and supporting the injection member, an injection motor applying a driving force to the support part to move the injection member, and a pressure sensor detecting a pressure applied to the support part,
a first motor control step of controlling the injection motor so that the injection member and the support part move forward with a limited torque to bring the support part into contact with and press it against the injection cylinder;
a second motor control step of controlling the injection motor so that the injection member and the support part move backward with the limited torque after the first motor control step;
a third motor control step of stopping driving of the injection motor in a state where a rotation position of the injection motor is within a range between a first rotation position of the injection motor in a state where the support portion is pressed against the injection cylinder in the first motor control step and a second rotation position of the injection motor in a state where the second motor control step is performed;
a zero point correction step of correcting a zero point of the pressure sensor so that a detection value detected based on the pressure sensor becomes zero in a state in which the driving of the injection motor is stopped by the third motor control step;
Including,
When the injection member and the support portion move forward and the support portion comes into contact with the injection cylinder, an adhesive force is generated between the support portion and the injection cylinder,
A control method for an injection device, wherein a force of the support part moving due to the limited torque is smaller than the adsorption force.
 請求項11に記載の射出装置の制御方法であって、
 前記第1回転位置は、前記支持部が前記射出用シリンダに押しつけられた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置であり、
 前記第2回転位置は、前記第2モータ制御ステップによる制御が行われた状態で、前記射出用モータのトルクの大きさが前記制限トルクに到達したときの前記射出用モータの回転位置である、射出装置の制御方法。
A method for controlling an injection device according to claim 11, comprising the steps of:
the first rotation position is a rotation position of the injection motor when a magnitude of a torque of the injection motor reaches the limit torque in a state in which the support portion is pressed against the injection cylinder,
a torque limiting step of controlling the injection motor when the torque of the injection motor reaches the limit torque, the second rotational position being a rotational position of the injection motor when the torque of the injection motor reaches the limit torque while the control is being performed by the second motor control step.
 請求項11または12に記載の射出装置の制御方法であって、
 前記第3モータ制御ステップでは、前記第2モータ制御ステップの後、前記射出用モータを回転させることなく停止させる、射出装置の制御方法。
A method for controlling the injection device according to claim 11 or 12, comprising the steps of:
In the third motor control step, after the second motor control step, the injection motor is stopped without rotating.
 請求項11または12に記載の射出装置の制御方法であって、
 前記第3モータ制御ステップでは、前記第2モータ制御ステップの後、前記射出用モータを制御して、前記第1回転位置から前記第2回転位置までの範囲内に位置する第3回転位置に前記射出用モータを回転させた後、前記射出用モータを停止させる、射出装置の制御方法。
A method for controlling the injection device according to claim 11 or 12, comprising the steps of:
In the third motor control step, after the second motor control step, the injection motor is controlled to rotate to a third rotation position which is located within a range from the first rotation position to the second rotation position, and then the injection motor is stopped.
 請求項14に記載の射出装置の制御方法であって、
 前記第3回転位置は、前記第1回転位置と前記第2回転位置との中点である、射出装置の制御方法。
A method for controlling an injection device according to claim 14, comprising the steps of:
The third rotational position is a midpoint between the first rotational position and the second rotational position.
PCT/JP2023/024386 2023-06-30 2023-06-30 Control device for injection device, injection molding system, and method for controlling injection device WO2025004331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/024386 WO2025004331A1 (en) 2023-06-30 2023-06-30 Control device for injection device, injection molding system, and method for controlling injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/024386 WO2025004331A1 (en) 2023-06-30 2023-06-30 Control device for injection device, injection molding system, and method for controlling injection device

Publications (1)

Publication Number Publication Date
WO2025004331A1 true WO2025004331A1 (en) 2025-01-02

Family

ID=93938061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024386 WO2025004331A1 (en) 2023-06-30 2023-06-30 Control device for injection device, injection molding system, and method for controlling injection device

Country Status (1)

Country Link
WO (1) WO2025004331A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288209A (en) * 1988-09-26 1990-03-28 Sumitomo Heavy Ind Ltd Resin pressure detector of injection molding machine
JPH07205229A (en) * 1994-01-21 1995-08-08 Fanuc Ltd Zero point correcting method for pressure detector of injection molding machine
JP2000006217A (en) * 1998-06-18 2000-01-11 Sumitomo Heavy Ind Ltd Starting point adjusting method of load cell in motorized injection molder
JP2001038786A (en) * 1999-07-30 2001-02-13 Sumitomo Heavy Ind Ltd Method for adjusting zero point of pressure sensor for injection apparatus
JP2002254470A (en) * 2001-02-28 2002-09-11 Toshiba Mach Co Ltd Zero adjustment method of load cell in electromotive injection molding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288209A (en) * 1988-09-26 1990-03-28 Sumitomo Heavy Ind Ltd Resin pressure detector of injection molding machine
JPH07205229A (en) * 1994-01-21 1995-08-08 Fanuc Ltd Zero point correcting method for pressure detector of injection molding machine
JP2000006217A (en) * 1998-06-18 2000-01-11 Sumitomo Heavy Ind Ltd Starting point adjusting method of load cell in motorized injection molder
JP2001038786A (en) * 1999-07-30 2001-02-13 Sumitomo Heavy Ind Ltd Method for adjusting zero point of pressure sensor for injection apparatus
JP2002254470A (en) * 2001-02-28 2002-09-11 Toshiba Mach Co Ltd Zero adjustment method of load cell in electromotive injection molding machine

Similar Documents

Publication Publication Date Title
KR101160536B1 (en) Injection molding machine
KR101135556B1 (en) Molding machine
KR20070107080A (en) Molding condition setting method and injection molding machine control method
US9120264B2 (en) Injection molding machine
US7214049B2 (en) System for controlling nozzle touch force
CN207256796U (en) A kind of full motor injection device of four leading screws, four motor-direct-drive type
WO2025004331A1 (en) Control device for injection device, injection molding system, and method for controlling injection device
WO2025004330A1 (en) Control device for injection device, injection molding system, and method for controlling injection device
JP2001038786A (en) Method for adjusting zero point of pressure sensor for injection apparatus
KR20170062383A (en) Injection device
US6615637B2 (en) Method of zero adjustment of a load cell for detecting back pressure of a screw in an electric injection molding machine
JP2649111B2 (en) Injection unit of injection molding machine
JP5052246B2 (en) Injection molding machine
EP3222403B1 (en) Injection unit
WO2024009513A1 (en) Control device for injection molding machine and control method for injection molding machine
JPH0628253Y2 (en) Holding pressure control device for electric injection molding machine
WO2024009511A1 (en) Control device for injection molding machine and control method for injection molding machine
JP3258151B2 (en) Control device for gate cutting pin position of injection molding machine
JPH02141221A (en) Control of injection molding machine
WO2024009512A1 (en) Control device for injection molding machine and control method for injection molding machine
JP3500284B2 (en) Injection equipment
JP2004106388A (en) Injection molding machine
JP2002018900A (en) Injection molding machine having nozzle touch mechanism
JPH11129296A (en) Control method of injection molding machine
JP2971284B2 (en) Control method and control device for electric injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23943720

Country of ref document: EP

Kind code of ref document: A1