WO2025003598A1 - Nuclear reactor having a convective exchanger - Google Patents
Nuclear reactor having a convective exchanger Download PDFInfo
- Publication number
- WO2025003598A1 WO2025003598A1 PCT/FR2024/050819 FR2024050819W WO2025003598A1 WO 2025003598 A1 WO2025003598 A1 WO 2025003598A1 FR 2024050819 W FR2024050819 W FR 2024050819W WO 2025003598 A1 WO2025003598 A1 WO 2025003598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exchanger
- core
- heat transfer
- pool
- nuclear
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 238000012546 transfer Methods 0.000 claims abstract description 21
- 238000004891 communication Methods 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 8
- 238000009434 installation Methods 0.000 claims description 33
- 239000013529 heat transfer fluid Substances 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 17
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 6
- 230000007935 neutral effect Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 description 22
- 230000000712 assembly Effects 0.000 description 21
- 238000000429 assembly Methods 0.000 description 21
- 230000009257 reactivity Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 230000009182 swimming Effects 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 8
- 230000002285 radioactive effect Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000011358 absorbing material Substances 0.000 description 5
- 230000004992 fission Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000011824 nuclear material Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000016571 aggressive behavior Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 206010001488 Aggression Diseases 0.000 description 2
- 229910000712 Boron steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002915 spent fuel radioactive waste Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003904 radioactive pollution Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/32—Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
- G21C1/322—Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed above the core
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/26—Promoting flow of the coolant by convection, e.g. using chimneys, using divergent channels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/04—Safety arrangements
- G21D3/06—Safety arrangements responsive to faults within the plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D9/00—Arrangements to provide heat for purposes other than conversion into power, e.g. for heating buildings
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/02—Details
- G21C13/022—Ventilating arrangements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/10—Means for preventing contamination in the event of leakage, e.g. double wall
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/28—Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
- G21C19/30—Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
- G21C19/303—Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present disclosure relates to the field of nuclear reactors and in particular low-power nuclear reactors intended for use as heat generators for heating networks.
- District heating which is highly developed in northern and eastern Europe, is experiencing significant growth but remains highly dependent on fossil fuels, particularly gas and coal. The latter is a major contributor to pollution in highly urbanized areas. Solutions such as geothermal energy exist, but are difficult to deploy on a large scale. The main route being considered is the use of biomass, but this limited resource is wished by several energy sectors, such as aeronautics, and will inevitably be subject to strong tensions on the prices of the combustible raw material.
- Nuclear energy which a number of countries, including France, have chosen as a means of controlling their carbon emissions in electricity production, can be considered as a potential solution in the field of urban heating.
- Document FR2 314 560 A1 describes a nuclear reactor for a district heating network comprising so-called shutter tubes replacing valves, the primary cooling circuit being constantly in open communication with a cooling basin via an exhaust port and an intake port in the boundary walls of the primary cooling circuit, the exhaust port at least being provided with a connection member provided for this purpose, in the form of a gas shutter tube.
- Document US 4,363,780 relates to a steam generating reactor which comprises valves allowing, in the event of overheating, the evacuation of steam and the entry of water from a pool into the container of the reactor core.
- the present disclosure proposes several improvements for a nuclear reactor installation suitable for district heating.
- the present disclosure relates in particular to a reactor comprising a convective exchanger in the reactor vessel for transmitting heat to an improved intermediate circuit and comprising equipment designed so that the heat transfer fluid, for example consisting of water, contained in the pool can naturally cool the reactor without any intervention by an operator, a cooling solution making it possible to cover all its operating states, normal or accidental.
- This reactor will therefore not require any human intervention to guarantee safety for an extended period, typically at least one week, and does not use any electrical source to ensure cooling of the core.
- the present invention relates in particular to a nuclear reactor comprising a vessel provided with a nuclear core and a primary convective exchanger for transferring heat to an intermediate circuit comprising at least one annular envelope around a portion of the cylindrical wall of the vessel.
- the present disclosure proposes a nuclear reactor provided with a nuclear core, arranged on a support in a bottom of a cylindrical vessel oriented along a vertical axis, filled with a heat transfer liquid, in particular water, under an upper dome of the vessel, comprising an annular primary exchanger surrounding a chimney for installing and extracting said core, said exchanger starting above said core, extending along the cylindrical wall of the vessel under said dome, and comprising a primary circuit consisting of by the heat transfer fluid circulating in the core and in said primary exchanger by convection, for which a first part of the cylindrical wall of said tank is surrounded by a first annular envelope forming a cold plenum placed in communication with an inlet of a secondary circuit of said exchanger in the lower part of said exchanger and extending from the bottom of the tank to under an outlet of the primary exchanger, in that a second part of said cylindrical wall is surrounded by a second annular envelope, above said first annular envelope, forming a hot plenum placed in communication with the
- envelopes forming a hot and cold plenum increases the efficiency of heat transfer from the primary exchanger to the intermediate circuit by recovering part of the heat from the wall of the tank.
- the upper dome of the tank is filled with a chemically neutral gas such as nitrogen to regulate the pressure in the tank.
- the tank is preferably placed in a well made in the bottom of a swimming pool filled with the same heat transfer liquid as the intermediate circuit, said first casing and said second casing being surrounded by the heat transfer liquid contained in the swimming pool.
- the first casing comprises a first opening for placing said cold plenum in the first casing in communication with the pool, said first opening being kept closed by a first gravity valve pushed back under the action of a first flow of said heat transfer fluid between the first pipe, for the arrival of cold heat transfer fluid of an intermediate circuit and the second pipe for the departure of hot heat transfer fluid of said intermediate circuit, said first opening opening under the action of the first gravity valve in the absence of said first flow so as to allow heat transfer fluid to pass between the first casing and the pool.
- Said first gravity valve may comprise a mass calibrated according to said first flow to close the first opening from a given first flow value. This makes the operation of the valve completely passive and linked to the presence or absence of the expected flow.
- the second casing may advantageously comprise a second opening for connecting said hot plenum with the pool, said second opening being kept closed by a second gravity valve in the presence of said first flow leaving the reactor via a second pipe, said second opening opening under the action of the second gravity valve in the absence of said first flow so as to allow heat transfer fluid to pass between the second casing and the pool.
- the second valve is passive and only the presence or absence of the first flow changes its position.
- Said second gravity valve may comprise a mass calibrated according to said first flow to close the second opening from a given first flow value.
- the volume of the pool is preferably sized so as to guarantee passive cooling of a residual power of the core in the absence of other cooling means and to maintain the heat transfer fluid of the primary circuit below a fixed temperature for a determined duration.
- the temperature can be defined as the boiling temperature of the pool water or a lower temperature and the duration can be a usual duration in the field to allow a troubleshooting intervention, namely approximately one week.
- first pipe and the second pipe are part of the intermediate circuit comprising an intermediate exchanger and at least one pump.
- the intermediate exchanger can in particular distribute the heat from the intermediate circuit to a primary district heating distribution network supplying first buildings and substations supplying heat to second buildings.
- FIG. 1 is a schematic cross-sectional view of a nuclear facility of the present disclosure
- FIG. 3 is a variant of the reactor of Fig. 2;
- FIG. 4A [Fig. 4B] show a gravity inlet valve in two positions
- FIG. 5A [Fig. 5B] show a gravity outlet valve in two positions
- FIG. 6 is a top view of a reactor core in a basket
- FIG. 7 is a sectional side view of a lower part of the reactor.
- FIG. 8A is a top view of an intermediate plate of a nuclear core support basket
- FIG. 8B is a top view of a top plate of a nuclear core support basket
- FIG. 8C is a top view of a bottom plate of a nuclear core support basket
- FIG. 9 shows a nuclear core in a basket in side view
- FIG. 10 shows a top view of parts of a nuclear facility building of the present disclosure
- FIG. 1 is a schematic view of a nuclear installation comprising a nuclear reactor vessel 1 in which there is a nuclear reactor core with a removable cover 11.
- the vessel is arranged in a well 2 of a pool 3 filled with a heat transfer fluid for cooling and blocking radiation such as water and more particularly demineralized water.
- a heat transfer fluid for cooling and blocking radiation such as water and more particularly demineralized water.
- Water or heat transfer fluid will be used interchangeably in the description below given that water is the easiest heat transfer fluid to use.
- the pool 3 is located in a reactor hall 4 of a building 10 which comprises a bridge 41 and its sling 42 and a reloading machine 43.
- the nuclear installation of the present disclosure is in particular adapted to serve as a heat generator for a heating network such as a district heating network and Figure 11 proposes a schematic diagram of the installation of the nuclear installation of Figure 1 in a heat network.
- the core of the reactor in the tank 9 produces heat, transferred to a primary exchanger 91 by means of a primary circuit 92, the heat is transferred to an intermediate circuit 8 provided with one or more circulation pumps 101 to a secondary exchanger 100 which supplies heat to a main distribution network 105 on which there are possibly other production installations 106 which may be of various technologies, conventional or nuclear.
- This organization makes it possible to guarantee a continuous supply of heat to tertiary exchangers supplying heating circuits 115, 125 for buildings 107, 108, 109.
- the presence of several production installations makes it possible to provide heating even during maintenance periods or in the event of an incident on one of the production components.
- the reactor is composed of two circuits.
- the primary cooling circuit 92 extracts the heat from the core where the chain reaction occurs and this heat is transferred to the intermediate cooling circuit 8, of pressure equal to or greater than the primary circuit, in order to guarantee that any possible radioactive pollution cannot propagate. It is this intermediate circuit which is, through an exchanger, in interface with the main distribution network.
- the present disclosure relates to a cooling solution for a reactor immersed in a pool and having a core outlet temperature in a range of 70°-110°C.
- This reactor does not require any human intervention to guarantee its safety for an extended period of at least one week, and does not use any electrical source to ensure cooling of the core, thus providing inherent safety and the possibility of installing the reactor near urbanized areas without risk.
- the present disclosure proposes to optimise the recovery of heat from the core. Furthermore, as unlike conventional boilers using fossil fuels, nuclear reactors continue to produce heat, a few percent of the nominal power, after the chain reaction has stopped, this residual heat must therefore be able to be extracted, whether the reactor is in a normal shutdown state or in an unexpected shutdown, following an incident or accident of internal or external origin.
- the nuclear part of the reactor, object of the invention is immersed in a pool, a solution usually used for research reactors, as shown in Figure 1.
- This pool is located in a reactor hall which has a controlled atmosphere according to nuclear criteria and protected against all external aggressions always considered for nuclear installations.
- the reactor hall is located in a building whose other rooms contain all the equipment necessary for the operation of the installation.
- Figure 2 describes the operation of the primary circuit 9 and its interface with the intermediate circuit 8 when the reactor is in production mode.
- the primary circuit is encapsulated in a cylindrical vessel 9 comprising a peripheral wall 94 and which contains in its lower part the nuclear core 6, composed of fuel assemblies containing the uranium necessary for the chain reaction.
- These fuel assemblies can take the form of rods, as in power water reactors, or plates, as in research reactors.
- the present disclosure concerns a reactor with a power of approximately 15 MW to 80 MW thermal comprising a tank with a height of the order of 15 m to 25 m and a diameter of the order of 3.50 m to 4 m.
- control rods 601 arranged at the end of rods 7 and which can be pushed in or out of the core to regulate the chain reaction and stop it to bring the reactor into a safe state whatever the initial conditions, normal or accidental.
- the rods carrying the control rods are, as known in the art, moved by electric motors, for example electric motors integrated in cylindrical sleeves crossed by the rods and welded to a cover of the vessel 9, and held in position by a magnetic field in a control device 74. In the event of a lack of power supply to the motors, the rods 7 are released and the bars 601 fall into the core, stopping the chain reaction.
- the tank also comprises an internal chimney 9a for guiding by convection towards the top of the tank a first heat transfer fluid, for example water, heated by the core and an annular space for the descent of the heat transfer fluid towards the bottom of the tank under the core, which creates a closed circuit for circulation of the heat transfer fluid passing through the core 6.
- the annular descent space integrates a counter-current heat exchanger or primary exchanger 91 comprising a primary circuit in which the first heat transfer fluid circulates.
- the exchanger 91 allows the heat generated by the core 6 to be evacuated towards the intermediate circuit 8.
- the temperature of the heat transfer fluid in the tank, at the outlet of the core, is in the present application of the order of 70°C to 110°C and more precisely between 75°C and 90°C, which does not require the tank to be sized for high pressures and high temperatures.
- the intermediate circuit 8 is a loop mainly composed of the downstream part or secondary circuit of the exchanger 91, a pumping system composed of one or more pumps 101 electrically powered by an external network, ensuring forced circulation in the intermediate circuit and making it possible to accommodate the different operating states of the reactor when it is in operation, pipes 81, 82 connecting the different components and the upstream part of a secondary exchanger 100 between the intermediate circuit 8 and the main distribution network 105.
- a lower part of the cylindrical wall 94 of the tank 9 is surrounded by a first annular envelope 1a forming a cold plenum 83 of the intermediate circuit 8 which is placed in communication with an inlet 91a of the secondary circuit of the primary exchanger 91 in the lower part of said exchanger.
- the first annular envelope extends from the bottom of the tank to under an outlet 91 b of the primary exchanger 91 in the upper part of this exchanger.
- An upper part of the cylindrical wall 94 of the tank is surrounded by a second annular envelope 1 b, above said first annular envelope 1 a.
- This second annular envelope 1 b encompasses the outlet 91 b of the secondary circuit of the primary exchanger 91.
- the radial distance between the external wall of the first and second annular envelopes and the wall of the tank 9 is given to achieve an exchange volume adapted to the heat of the tank and the expected flow rate and is for example of the order of 20 cm to 30 cm for a reactor as defined above.
- This second annular envelope forms a hot plenum of the intermediate circuit 8 in communication with the outlet 91 b of said secondary circuit of the primary exchanger 91 in the upper part of said exchanger.
- the intermediate circuit further comprises a first pipe 81, for the arrival of a cold heat transfer liquid, for example cold water, opening into the first casing 1a in the upper part of said first casing 1a while a second pipe for the departure of hot heat transfer liquid exits in the upper part of said second casing 1b.
- the intermediate circuit is designed to operate with a temperature difference of the order of 20°C to 30°C between the cold heat transfer liquid inlet pipe and the hot heat transfer liquid outlet pipe.
- the first and second annular envelopes constitute a cylindrical interface housing, which envelops a large part of the primary tank 9, at the level of the main exchanger and which is organized as follows:
- the inlet pipes 81 and outlet pipes 82 of the intermediate circuit are connected to this housing.
- a. The inlet plenum or cold plenum 83 guides the water of the intermediate circuit towards inlets in the lower part of the exchanger 91 integrated in the primary tank 9, b. -
- regularly distributed plates ensure the distribution of the flow, the efficiency of the heat exchange and the vibrational maintenance of exchanger tubes, c. -
- the hot water leaves the exchanger 91 to be injected into the upper plenum from where it joins the hot pipes of the intermediate circuit.
- This box also recovers heat leaks from the primary tank to inject them into the useful heat production system.
- FIG. 3 depicts an aspect of the present disclosure wherein valves 85, 86 are incorporated in the envelopes 1a and 1b between said envelopes and the pool 3.
- valves are configured to isolate the intermediate circuit of the swimming pool when the pump(s) 101 are in operation but configured to put the hot and cold plenums in communication with the heat transfer fluid contained in the swimming pool when the pump(s) 101 of the intermediate circuit are stopped, which allows on the one hand the entry of the water from the swimming pool into the cold plenum of the interface box and on the other hand the exit of the heated water from the hot plenum towards the swimming pool.
- the device is designed so that, on the cold plenum side, the cold water from the pool descends to the inlet vent 91a in the primary exchanger 91, where it rises while heating up.
- the difference in density between the descending and rising water provides sufficient driving force for establishing natural circulation.
- the reactor when circulation in the primary circuit stops, the reactor is designed so that the control rods descend into the core and so that the residual power of the core is only a few percent of its nominal power.
- the flow rate of the natural circulation between the pool and the exchanger will be only a small fraction of the nominal flow rate, pumping through the intermediate circuit, leading to very significantly lower water speeds.
- FIG. 4A shows the inlet valve 85 in a position where the water inlet from the pool is closed and the water inlet from the intermediate circuit is open while FIG. 4B shows the inlet valve 85 in the position where the water inlet from the pool is open while the water inlet from the intermediate circuit is closed.
- the valve is a gravity valve comprising a flap 85 for closing an opening 83a for placing the cold plenum 83 in communication with the pool above the inlet of the pipe 81 in the cold plenum.
- This valve comprises a counterweighted vane 86 at the level of the arrival of the pipe 81 in the casing 1 a forming the cold plenum 83.
- Figure 5A shows the outlet valve 87 in the closed position while Figure 5B shows the outlet valve 87 in the open position.
- the outlet valve does not need to close the outlet to the intermediate circuit which is further preferred to avoid problems
- valves 85, 87 do not necessarily need a qualified seal in closed position, a slight tolerance on leaks being acceptable.
- the volume of the pool 3 is in particular sized so as to guarantee passive cooling of the residual power of the core 6 in the event of a problem with the electrical supply of the pump 101 and to maintain the heat transfer liquid of the primary circuit below a fixed temperature for a determined duration.
- This fixed temperature may in particular be a boiling temperature of the heat transfer liquid, possibly minus a safety margin of 10°C to 20°C, and the determined duration may for example be 5 to 10 days and in particular one week.
- the radioactive materials present in the reactor installation described here will be located in the pool 3 which contains the primary vessel of the reactor 1, the bench 32 for reloading the reactor with fuel, the racks 31 for storing new or used fuel assemblies, the core reloading zone 33.
- the pool as shown in Figure 10 is located in the reactor hall 4 of building 10.
- the nuclear part of the reactor is thus immersed in the pool, a solution usually used for research reactors. This provides a water reserve guaranteeing a large autonomy without requiring any human intervention.
- This pool is located in the reactor hall which has a controlled atmosphere according to nuclear criteria and protected against all external aggressions always considered for nuclear installations.
- Reactor hall 4 is located in building 10, the other rooms of which contain all the equipment necessary for the operation of the installation.
- Building 10 comprises structures - walls, roof and access airlocks - sealed with reinforced concrete walls to ensure their resistance in the event of internal or external aggression.
- dynamic confinement is ensured by a nuclear ventilation system according to which the parts of the installation containing nuclear materials, the coolant or other fluids that may be contaminated are subject to specific ventilation, of nuclear quality.
- a nuclear ventilation system traditionally fulfills two missions: ensuring ambient conditions allowing human activities, where necessary, and the proper functioning of the equipment on the one hand, and on the other hand ensuring the filtration of the air in the installation before its release when it may be contaminated by radioactive bodies. To do this and with reference to FIG.
- the outside air is sucked in through an air inlet 201 a in the form of dedicated and protected calibrated external vents at an inlet treatment room 201 providing in particular filtration of the incoming air.
- Extraction fans 202 powered by an external electrical network, maintain a slight depression in the room(s) likely to contain fission products in gaseous or aerosol form during normal operation, then the air is discharged through an atmospheric chimney 210 after passing through adsorption or filtration devices 203 which retain these possible fission products in gaseous or aerosol form.
- the rooms likely to contain radioactive elements are isolated and maintain their depression for a certain time, depending on the tightness of the isolation means.
- an important point of the present disclosure is to ensure that a depression is maintained over time in the rooms likely to contain radioactive isotopes and in the reactor hall without requiring any action by an operator or using active means, such as electric fans, the aim being to guarantee that the filtration of gaseous discharges is maintained over a period consistent with the 7 days typically considered for passive cooling of the reactor after stopping the circulation of the heat transfer liquid of the intermediate circuit 8.
- the safety of the installation of the present disclosure includes a nuclear ventilation system that ensures the containment of radioactive gases and particles that may be emitted in the installation. To allow the activity of the personnel, it purifies the air, regulates the temperature and the humidity in specified ranges. It therefore protects the public, the environment and the personnel.
- the ventilation system comprises a water/air exchanger 5, installed in the pool of the reactor hall 4 on the ventilation circuit, upstream of the extractor(s) 202.
- the arrows indicate the air movements between the different rooms: a. fresh air is continuously introduced into the installation through one or more air inlets 201 a each comprising a calibrated opening; b. this air is purified and treated (heated or cooled) in an inlet treatment room 201 before being distributed to the various rooms requiring nuclear ventilation.
- a first circuit comprises an air outlet 201 b in the reactor hall 4 comprising the reactor 1 in a cooling pool 3 of said reactor.
- the air passes through an air/water heat exchanger 5 placed in the pool. It heats up there because the pool water is, in normal operation, maintained at 50°C by a circuit 220 dedicated to the management of the pool water installed in the auxiliary systems room, this circuit, also having a filtration function, being configured to recover the heat from the pool water by heat pumps to reinject it into the production system.
- An electrically powered air extractor 202 downstream of the exchanger, ensures that the reactor hall is kept under vacuum.
- the other rooms of building 10, likely to contain radioactive elements, such as here the auxiliary systems room 12, a heat transfer room 13 and the loading/unloading hall 14 are supplied with air from the inlet treatment room 201 via an air duct 201c and each provided with a third air outlet 203a, 203b, 203c towards the reactor hall 4 so that the air extracted from these rooms follows the same outlet path as the air from the reactor hall.
- the air extracted by the extractor 202 then passes through filters of different mesh sizes and activated carbon traps or equivalent in a filtration device 203 before being evacuated by a chimney 210.
- the exchanger 5 when the reactor is in normal operation, can contribute to the cooling of the water in the pool, heated by the thermal leaks from the primary tank and by any spent fuel assemblies present in the storage racks 31. It thus relieves a possible auxiliary system for regulating the temperature of the water which maintains it at 50°C.
- its main function, according to the present disclosure is its contribution to maintaining dynamic confinement in an accidental situation where the power supply to the reactor by the network is no longer ensured, involving the loss of the extraction fan 202 and the auxiliary circuit for regulating the temperature of the pool. In such a accidental sequence, the reactor is immediately shut down by the fall of control rods into the core. In addition, the absence of electrical power causes a shutter to fall or a diaphragm to close at the air inlet(s) 201 a.
- the shutter or diaphragm in normal operation, is held open by an electromagnetic field and said air inlet 201a in the wall of the building 10 is configured in the maximum open position and, when said extractor is stopped, the released shutter or diaphragm reduces the surface area of the air inlet of the nuclear ventilation in order to adapt it to a configuration where the electric extractors are no longer in operation.
- the exchanger then ensures the chimney draft, the outside air having a lower temperature than the air heated by the pool water.
- the radioactive elements present in the air in the reactor hall are therefore, almost 100%, trapped in the outlet filtration device 203 and the releases therefore no longer present any risk to the environment.
- the present disclosure concerns means intended to prevent control of the reactivity of the core from being guaranteed, which contributes to the inherent safety of the installation and reinforces the possibility of installing the reactor in urbanized areas by eliminating a whole family of risks.
- control rods 601 which, as seen above, under the impulse 7 control rods operated by traditional type electromagnetic mechanisms, move vertically in the heart.
- the very low pressure difference between the reactor vessel and the surrounding pool makes it possible to exclude accidents of the control rod ejection type, which are penalizing on most power reactors.
- the maximum speed of extraction of the rods by the control mechanisms is very slow, rapid power variations not being necessary in district heating given the high thermal inertia of the networks.
- the increase in power due to an unexpected withdrawal of control rods will leave a large delay for the protection system to react and cause all the rods to drop.
- the core of a nuclear reactor is the site of a chain reaction that must be able to be maintained over time. It therefore has an excess of reactivity which is usually represented by the neutron multiplication factor between two successive generations (keff). This excess is compensated, at the beginning of the core's life, by neutron absorbers which maintain this factor equal to 1. These absorbers are gradually removed to compensate for the increase in neutron capture of the bodies created and residues of nuclear fission, until the reactivity reserve is no longer sufficient to maintain the critical core. At this time, worn assemblies are removed from the core and replaced by new assemblies.
- Nuclear regulations impose under-reactivity criteria when the reactor is shut down, whether the fuel assemblies are still in the core, moving for loading and unloading operations, or in storage at the reactor site.
- the usual criterion is to guarantee in all cold shutdown configurations keff ⁇ 0.95.
- the shutdown, reloading - unloading or storage configurations are defined in such a way that a return to criticality is physically impossible and that the regulatory criteria are naturally respected, making it possible to exclude any uncontrolled reactivity excursion.
- Figure 6 gives the example of a core 6, in top view, equipped with a plate fuel 600, but the invention is just as relevant when it is a rod fuel, similar to that of pressurized water power reactors.
- the core comprises 45 assemblies and 32 control rods 601 in the shape of a cross and regularly distributed in the core.
- the neutron absorbing material of the rods can be boron carbide, hafnium or an alloy of particular metals containing silver, indium and cadmium, according to the state of the art.
- These 32 rods 601 are organized into several groups, each managed autonomously by means of control rods 7 shown diagrammatically in particular in Figure 2.
- the control rods can be organized into groups: a. - A group dedicated to regulating the reactor power. b. - A group dedicated to compensating for wear of the fuel assemblies. c. - Two shutdown groups, each having the capacity to shut down the reactor and provide the regulatory anti-reactivity margin to carry out the unloading - reloading operations.
- FIG. 7 The heart is shown schematically in Figure 7 in a side section view.
- control rods are composed of cross-shaped plates 601 also visible from above in FIG. 8A and are inserted between the fuel assemblies 600.
- the control rods are attached to rods 7 as seen previously.
- the core 6 is particularly small, compared to that of a power reactor, which leads to very significant peripheral and axial neutron leaks.
- the neutron economy is preserved by surrounding the core with light materials, which capture neutrons poorly, such as heavy water, beryllium or graphite, which reflect the neutrons towards the fissile material, and increase the performance, in particular that on the neutron flux, an essential parameter for this type of reactor.
- the core is surrounded according to FIGS. 6 and 7 by four corner reflectors 62 and four peripheral reflectors 61 under the exchanger 91.
- the core is arranged in a basket 60.
- the basket shown more precisely in FIG. 9 comprises, according to the example, an openwork bottom supporting the fuel assemblies and two removable openwork plates: an intermediate plate 70 covering the fuel assemblies 600, comprising cross-shaped slots 71 for the passage of the control rods and water passage holes 72 shown in FIG. 8A, an upper plate 73 provided with holes 74 for the passage of the control rods 7 and water passage holes 72 shown in FIG. 8B and a lower plate 75 comprising water passage openings 76 also making it possible to locate the fuel assemblies.
- the control rods are mechanically disconnectable from the control rods to allow their removal while maintaining the rods in the core and therefore in the basket.
- This basket comprises side uprights provided with corners 60a for passing the corner reflectors 62 and is a metal structure which can be made of steel and/or a material transparent to neutrons such as zircaloy or aluminum.
- the basket 60 allows the core to be completely removed from its tank and placed on a reloading bench 32 in the pool by means of an overhead crane 41 and for example a sling 42 or a spreader connected to the overhead crane and itself comprising slings.
- a reloading bench 32 the walls of which are for example composed of neutron-absorbing materials (boron steel, hafnium, cadmium, etc.)
- the upper internals (plates 70, 73 and bars 601) of the basket are removed in order to allow the unloading-reloading operations.
- a reloading machine positioned above the pool can ensure the removal of worn assemblies and the insertion of new assemblies into the core and the storage of the assemblies in the adjacent racks 31.
- the unloaded fuel assemblies are stored temporarily in racks before being transferred by the reloading machine into transport casks which will be evacuated from the reactor hall by truck.
- the core exhibits its highest intrinsic reactivity when new assemblies have just been introduced into it, at the start of the cycle. Minimizing this reactivity directly translates into the available antireactivity margin when the core is in its various operational configurations, in or out of the reactor, and therefore facilitates the achievement of regulatory antireactivity margins.
- the first way to lower this intrinsic reactivity, while maintaining the energy produced during the cycle, can be the use of consumable poisons.
- bodies are introduced into the fuel whose nuclei capture neutrons, creating new isotopes which are themselves non-absorbent. They are in common use in the nuclear industry; among the solutions that can be considered for the present disclosure, we can cite cadmium wires or gadolinium oxide, integrated into the fuel part of the assemblies.
- reflectors 61, 62 also makes it possible to significantly reduce the number of new assemblies to be introduced into the core at each reloading, while maintaining the same energy produced during the fuel cycle. This therefore makes it possible to lower the initial intrinsic reactivity of the core, when it is no longer swaddled by its reflector covers.
- the reactor can be recharged every year, in the summer period, when the demand for heat is lowest, for a period of a few days during which additional means of production on the heat network are activated. This is also the time when maintenance is carried out and the systems are tested.
- the shutdown and unloading operations can be performed according to the following sequence: a. - Shutting down the reactor and inserting all the control rods 601 into the core; b. - Equalizing the pressures of the reactor and the pool; c. - Opening the primary vessel in the pool, removing and removing the cover 11 in a dedicated area 33; d. - Dismantling and removing the upper internals of the vessel, leaving the control rods inserted into the core; e. - movement, by an overhead crane 41 from the reactor hall 4 of the basket containing the core with the control rods inserted between the bottom of the tank 9 and a reloading bench 32 in the pool 3 containing the tank 9.
- the core in the reloading bench, can be surrounded by neutron-absorbing materials (boron steel for example, or other neutron-absorbing materials), which provide sufficient antireactivity to manipulate the control rods and insert new assemblies.
- neutron-absorbing materials boron steel for example, or other neutron-absorbing materials
- Important features include:
- the core in operation, is surrounded by neutron reflecting materials, making it possible to limit their leakage, very important given its small size and to reduce as much as possible its intrinsic reactivity.
- the basket containing the core is placed in a reloading bench composed of neutron-absorbing materials, thus allowing the handling of the control and shutdown rods.
- the invention is not limited to the examples described above, only as an example, but it encompasses all the variants that a person skilled in the art may envisage. art within the framework of the protection sought.
- the configuration described allows the installation of the nuclear installation presented in urbanized areas.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
Description Description
Titre : REACTEUR NUCLEAIRE AVEC ECHANGEUR CONVECTIF Title: NUCLEAR REACTOR WITH CONVECTIVE EXCHANGER
Domaine technique Technical field
[0001] La présente divulgation relève du domaine des réacteurs nucléaires et notamment des réacteurs nucléaires de faible puissance et destinés à un usage de générateur de chaleur pour réseau de chauffage. [0001] The present disclosure relates to the field of nuclear reactors and in particular low-power nuclear reactors intended for use as heat generators for heating networks.
Technique antérieure Previous technique
[0002] La lutte contre le réchauffement climatique conduit à réduire l’empreinte carbone de tous les secteurs énergétiques. L’habitat fait partie de ceux-ci, et est aujourd’hui encore très dépendant des énergies fossiles. Des politiques publiques très incitatives pour s’orienter vers des solutions décarbonées se mettent en place dans l’ensemble de l’Europe. [0002] The fight against global warming leads to reducing the carbon footprint of all energy sectors. Housing is one of these, and is still very dependent on fossil fuels today. Highly incentivizing public policies to move towards low-carbon solutions are being implemented throughout Europe.
[0003] Le chauffage urbain, très développé dans les contrées du nord et de l’est européen, voit une croissance importante mais reste très dépendant des combustibles fossiles, et particulièrement du gaz et du charbon. Ce dernier est notamment un fort contributeur à la pollution des zones très urbanisées. Des solutions, comme la géothermie, existent, mais peuvent difficilement être déployées à grande échelle. La voie principalement envisagée est l’usage de la biomasse, mais cette ressource, limitée, est convoitée par plusieurs secteurs énergétiques, comme l’aéronautique, et fera inéluctablement l’objet de fortes tensions sur les prix de la matière première combustible. [0003] District heating, which is highly developed in northern and eastern Europe, is experiencing significant growth but remains highly dependent on fossil fuels, particularly gas and coal. The latter is a major contributor to pollution in highly urbanized areas. Solutions such as geothermal energy exist, but are difficult to deploy on a large scale. The main route being considered is the use of biomass, but this limited resource is coveted by several energy sectors, such as aeronautics, and will inevitably be subject to strong tensions on the prices of the combustible raw material.
[0004] L’ énergie nucléaire, qu’un certain nombre de pays, dont la France, a retenu comme moyen de maîtriser ses émissions de carbone dans la production électrique, peut être envisagée comme solution potentielle dans le domaine du chauffage urbain. [0004] Nuclear energy, which a number of countries, including France, have chosen as a means of controlling their carbon emissions in electricity production, can be considered as a potential solution in the field of urban heating.
[0005] Selon l’Agence Internationale pour l’Energie Atomique, une quarantaine de réacteurs nucléaires dans le monde cogénèrent actuellement de l’électricité et de la chaleur destinée à l’habitat. De nombreux projets sont actuellement en développement pour utiliser la chaleur « fatale » des réacteurs nucléaires dans le chauffage urbain, notamment pour la nouvelle génération de petits réacteurs (SMR) en cours de gestation. [0005] According to the International Atomic Energy Agency, about forty nuclear reactors in the world currently cogenerate electricity and heat for housing. Many projects are currently in development to use the “fatal” heat from nuclear reactors in urban heating, particularly for the new generation of small reactors (SMR) currently in the pipeline.
[0006] Cependant, le couplage des contraintes liées à la production électrique et la production de chaleur ne facilite pas la mise en place de solutions duales optimales. [0006] However, the coupling of constraints linked to electricity production and heat production does not facilitate the implementation of optimal dual solutions.
[0007] Des réacteurs nucléaires purement dédiés au chauffage urbain ont été développés dans le passé, mais aucun n’a vu de réalisation concrète à ce jour. [0007] Nuclear reactors purely dedicated to district heating have been developed in the past, but none have seen concrete implementation to date.
[0008] On peut citer par exemple le réacteur Thermos, du Commissariat à l’Energie Atomique français (CEA), conçu pendant les années 1970. Toutefois, outre les problèmes d’acceptation de cette technologie, la puissance du réacteur, 100 MW, s’est avérée surdimensionnée par rapport aux capacités des réseaux de chaleur locaux et la pertinence économique d’une telle réalisation est apparue peu convaincante face à la construction d’une centrale à charbon. [0008] For example, we can cite the Thermos reactor, from the French Atomic Energy Commission (CEA), designed during the 1970s. However, in addition to the problems of acceptance of this technology, the power of the reactor, 100 MW, proved to be oversized compared to the capacities of local heat networks and the economic relevance of such an achievement appeared unconvincing compared to the construction of a coal-fired power station.
[0009] Un réacteur de petites dimensions est par ailleurs décrit dans les documents WO2022/106756 A1 . [0009] A small-sized reactor is also described in documents WO2022/106756 A1.
[0010] La question de la sécurité d’un réacteur pour chauffage urbain impose de gérer des situations de refroidissement d’urgence en cas de défaut sur l’installation et notamment dans le cas d’arrêt de pompes de circulation du liquide de refroidissement d’un circuit secondaire. [0010] The question of the safety of a reactor for district heating requires the management of emergency cooling situations in the event of a fault in the installation and in particular in the event of the shutdown of the cooling liquid circulation pumps of a secondary circuit.
[0011] Le document FR2 314 560 A1 décrit un réacteur nucléaire pour un réseau de chauffage urbain comportant des tubes dites obturateurs remplaçant des soupapes, le circuit de refroidissement primaire étant constamment en communication ouverte avec un bassin de refroidissement par un orifice d'échappement et un orifice d'admission dans les parois limites du circuit de refroidissement primaire, l'orifice d'échappement au moins étant muni d'un organe de connexion prévu à cet effet, sous la forme d'un tube obturateur à gaz. [0011] Document FR2 314 560 A1 describes a nuclear reactor for a district heating network comprising so-called shutter tubes replacing valves, the primary cooling circuit being constantly in open communication with a cooling basin via an exhaust port and an intake port in the boundary walls of the primary cooling circuit, the exhaust port at least being provided with a connection member provided for this purpose, in the form of a gas shutter tube.
[0012] Le document US 4,363,780 concerne un réacteur générateur de vapeur qui comporte des soupapes permettant en cas de surchauffe d’évacuer de la vapeur et de faire entrer de l’eau d’une piscine dans le conteneur du cœur du réacteur. Problème technique [0012] Document US 4,363,780 relates to a steam generating reactor which comprises valves allowing, in the event of overheating, the evacuation of steam and the entry of water from a pool into the container of the reactor core. Technical problem
[0013] Il est souhaitable de réaliser des réacteurs de faible puissance et donc d’améliorer leur rendement tout en réalisant un dispositif de sécurité passif adapté à refroidir le cœur du réacteur en cas de panne d’un circuit actif de récupération de chaleur dudit cœur. [0013] It is desirable to produce low-power reactors and therefore to improve their efficiency while producing a passive safety device suitable for cooling the core of the reactor in the event of failure of an active heat recovery circuit of said core.
Exposé de l’invention Disclosure of the invention
[0014] Au vu de cette situation la présente divulgation propose plusieurs améliorations pour une installation de réacteur nucléaire adaptée au chauffage urbain. [0014] In view of this situation, the present disclosure proposes several improvements for a nuclear reactor installation suitable for district heating.
[0015] La présente divulgation concerne notamment un réacteur comportant un échangeur convectif dans la cuve du réacteur permettant de transmettre de la chaleur à un circuit intermédiaire perfectionné et comportant des équipements conçus pour que le liquide caloporteur, par exemple constitué par de l’eau, contenu dans la piscine puisse naturellement refroidir le réacteur sans aucune intervention d’un opérateur, une solution de refroidissement permettant de couvrir tous ses états de fonctionnement, normaux ou accidentels. Ce réacteur ne nécessitera donc aucune intervention humaine pour garantir la sûreté pendant une période étendue, typiquement d’au moins une semaine, et ne fait appel à aucune source électrique pour assurer le refroidissement du cœur. [0015] The present disclosure relates in particular to a reactor comprising a convective exchanger in the reactor vessel for transmitting heat to an improved intermediate circuit and comprising equipment designed so that the heat transfer fluid, for example consisting of water, contained in the pool can naturally cool the reactor without any intervention by an operator, a cooling solution making it possible to cover all its operating states, normal or accidental. This reactor will therefore not require any human intervention to guarantee safety for an extended period, typically at least one week, and does not use any electrical source to ensure cooling of the core.
[0016] La présente invention concerne en particulier un réacteur nucléaire comportant une cuve munie d’un cœur nucléaire et d’un échangeur primaire convectif de transfert de chaleur vers un circuit intermédiaire comportant au moins une enveloppe annulaire autour d’une partie de paroi cylindrique de la cuve. [0016] The present invention relates in particular to a nuclear reactor comprising a vessel provided with a nuclear core and a primary convective exchanger for transferring heat to an intermediate circuit comprising at least one annular envelope around a portion of the cylindrical wall of the vessel.
[0017] Plus précisément la présente divulgation propose un réacteur nucléaire pourvu d’un cœur nucléaire, disposé sur un support dans un fond d’une cuve cylindrique orientée selon un axe vertical, remplie d’un liquide caloporteur notamment de l’eau sous un dôme supérieur de la cuve, comportant un échangeur primaire annulaire entourant une cheminée d’installation et d’extraction dudit cœur, ledit échangeur débutant au-dessus dudit cœur, s’étendant le long de la paroi cylindrique de la cuve sous ledit dôme, et comportant un circuit primaire constitué par le liquide caloporteur circulant dans le cœur et dans ledit échangeur primaire par convexion, pour lequel une première partie de la paroi cylindrique de ladite cuve st entourée par une première enveloppe annulaire formant un plenum froid mis en communication avec une entrée d’un circuit secondaire dudit échangeur en partie basse dudit échangeur et s’étendant depuis le bas de la cuve jusque sous une sortie de l’échangeur primaire, en ce qu’une seconde partie de ladite paroi cylindrique est entourée par une seconde enveloppe annulaire, au-dessus de ladite première enveloppe annulaire, formant un plenum chaud mis en communication avec la sortie dudit circuit secondaire dudit échangeur en partie haute dudit échangeur, un circuit intermédiaire d’extraction de chaleur comportant une première tubulure, d’arrivée de liquide caloporteur froid, débouchant en partie supérieure de ladite première enveloppe tandis qu’une deuxième tubulure de départ de liquide caloporteur chaud sort en partie supérieure de ladite seconde enveloppe. [0017] More specifically, the present disclosure proposes a nuclear reactor provided with a nuclear core, arranged on a support in a bottom of a cylindrical vessel oriented along a vertical axis, filled with a heat transfer liquid, in particular water, under an upper dome of the vessel, comprising an annular primary exchanger surrounding a chimney for installing and extracting said core, said exchanger starting above said core, extending along the cylindrical wall of the vessel under said dome, and comprising a primary circuit consisting of by the heat transfer fluid circulating in the core and in said primary exchanger by convection, for which a first part of the cylindrical wall of said tank is surrounded by a first annular envelope forming a cold plenum placed in communication with an inlet of a secondary circuit of said exchanger in the lower part of said exchanger and extending from the bottom of the tank to under an outlet of the primary exchanger, in that a second part of said cylindrical wall is surrounded by a second annular envelope, above said first annular envelope, forming a hot plenum placed in communication with the outlet of said secondary circuit of said exchanger in the upper part of said exchanger, an intermediate heat extraction circuit comprising a first pipe, for the arrival of cold heat transfer fluid, opening into the upper part of said first envelope while a second pipe for the departure of hot heat transfer fluid exits in the upper part of said second envelope.
[0018] L’ usage des enveloppes formant plenum chaud et froid accroît le rendement du transfert de chaleur de l’échangeur primaire vers le circuit intermédiaire en récupérant une partie de la chaleur de la paroi de la cuve. [0018] The use of envelopes forming a hot and cold plenum increases the efficiency of heat transfer from the primary exchanger to the intermediate circuit by recovering part of the heat from the wall of the tank.
[0019] Avantageusement le dôme supérieur de la cuve est rempli d’un gaz chimiquement neutre tel que de l’azote de régulation de pression dans la cuve. [0019] Advantageously, the upper dome of the tank is filled with a chemically neutral gas such as nitrogen to regulate the pressure in the tank.
[0020] La cuve est préférablement disposée dans un puits ménagé dans le fond d’une piscine remplie du même liquide caloporteur que le circuit intermédiaire, ladite première enveloppe et ladite seconde enveloppe étant entourées par le liquide caloporteur contenu dans la piscine. [0020] The tank is preferably placed in a well made in the bottom of a swimming pool filled with the same heat transfer liquid as the intermediate circuit, said first casing and said second casing being surrounded by the heat transfer liquid contained in the swimming pool.
[0021] Selon un mode de réalisation avantageux, la première enveloppe comporte une première ouverture de mise en communication dudit plenum froid dans la première enveloppe avec la piscine, ladite première ouverture étant maintenue fermée par un premier clapet gravitaire repoussé sous l’action d’un premier flux dudit liquide caloporteur entre la première tubulure, d’arrivée de liquide caloporteur froid d’un circuit intermédiaire et la deuxième tubulure de départ de liquide caloporteur chaud dudit circuit intermédiaire, ladite première ouverture s’ouvrant sous l’action du premier clapet gravitaire en l’absence dudit premier flux en sorte de laisser passer du liquide caloporteur entre la première enveloppe et la piscine. [0022] Ledit premier clapet gravitaire peut comporter une masse calibrée en fonction dudit premier flux pour refermer la première ouverture à partir d’une valeur de premier flux donnée. Ceci rend le fonctionnement du clapet totalement passif et lié à la présence ou non du flux attendu. [0021] According to an advantageous embodiment, the first casing comprises a first opening for placing said cold plenum in the first casing in communication with the pool, said first opening being kept closed by a first gravity valve pushed back under the action of a first flow of said heat transfer fluid between the first pipe, for the arrival of cold heat transfer fluid of an intermediate circuit and the second pipe for the departure of hot heat transfer fluid of said intermediate circuit, said first opening opening under the action of the first gravity valve in the absence of said first flow so as to allow heat transfer fluid to pass between the first casing and the pool. [0022] Said first gravity valve may comprise a mass calibrated according to said first flow to close the first opening from a given first flow value. This makes the operation of the valve completely passive and linked to the presence or absence of the expected flow.
[0023] La deuxième enveloppe peut avantageusement comporter une seconde ouverture de mise en communication dudit plenum chaud avec la piscine, ladite seconde ouverture étant maintenue fermée par un deuxième clapet gravitaire en présence dudit premier flux ressortant du réacteur par une deuxième tubulure, ladite deuxième ouverture s’ouvrant sous l’action du deuxième clapet gravitaire en l’absence dudit premier flux en sorte de laisser passer du liquide caloporteur entre la deuxième enveloppe et la piscine. Comme le premier clapet, le second clapet est passif et seule la présence ou l’absence du premier flux en change la position. [0023] The second casing may advantageously comprise a second opening for connecting said hot plenum with the pool, said second opening being kept closed by a second gravity valve in the presence of said first flow leaving the reactor via a second pipe, said second opening opening under the action of the second gravity valve in the absence of said first flow so as to allow heat transfer fluid to pass between the second casing and the pool. Like the first valve, the second valve is passive and only the presence or absence of the first flow changes its position.
[0024] Ledit deuxième clapet gravitaire peut comporter une masse calibrée en fonction dudit premier flux pour fermer la seconde ouverture à partir d’une valeur de premier flux donnée. [0024] Said second gravity valve may comprise a mass calibrated according to said first flow to close the second opening from a given first flow value.
[0025] Le volume de la piscine est préférablement dimensionné de sorte à garantir un refroidissement passif d’une puissance résiduelle du cœur en l’absence d’autre moyen de refroidissement et maintenir le liquide caloporteur du circuit primaire au- dessous d’une température fixée pendant une durée déterminée. La température peut être définie comme la température d’ébullition de l’eau de la piscine ou une température inférieure et la durée peut être une durée habituelle dans le domaine pour permettre une intervention de dépannage à savoir environ une semaine. [0025] The volume of the pool is preferably sized so as to guarantee passive cooling of a residual power of the core in the absence of other cooling means and to maintain the heat transfer fluid of the primary circuit below a fixed temperature for a determined duration. The temperature can be defined as the boiling temperature of the pool water or a lower temperature and the duration can be a usual duration in the field to allow a troubleshooting intervention, namely approximately one week.
[0026] Plus particulièrement, la première tubulure et la deuxième tubulure sont parties du circuit intermédiaire comportant un échangeur intermédiaire et au moins une pompe. L’échangeur intermédiaire peut notamment distribuer la chaleur du circuit intermédiaire à un réseau de distribution primaire de chauffage urbain alimentant des premiers bâtiments et des sous stations alimentant en chaleur des seconds bâtiment. [0026] More particularly, the first pipe and the second pipe are part of the intermediate circuit comprising an intermediate exchanger and at least one pump. The intermediate exchanger can in particular distribute the heat from the intermediate circuit to a primary district heating distribution network supplying first buildings and substations supplying heat to second buildings.
Brève description des dessins [0027] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après d’exemples de réalisation non limitatifs, et à l’analyse des dessins annexés, sur lesquels : Brief description of the drawings [0027] Other characteristics, details and advantages of the invention will appear on reading the detailed description below of non-limiting exemplary embodiments, and on analyzing the appended drawings, in which:
[0028] [Fig. 1] est une vue schématique en coupe transversale d’une installation nucléaire de la présente divulgation ; [0028] [Fig. 1] is a schematic cross-sectional view of a nuclear facility of the present disclosure;
[0029] [Fig. 2] est une vue en coupe d’un puits et d’un exemple de réacteur dans sa cuve; [0029] [Fig. 2] is a sectional view of a well and an example of a reactor in its vessel;
[0030] [Fig. 3] est une variante du réacteur de la figure 2; [0030] [Fig. 3] is a variant of the reactor of Fig. 2;
[0031] [Fig. 4A], [Fig. 4B] montrent un clapet gravitaire d’entrée selon deux positions; [0031] [Fig. 4A], [Fig. 4B] show a gravity inlet valve in two positions;
[0032] [Fig. 5A], [Fig. 5B] montrent un clapet gravitaire de sortie selon deux positions; [0032] [Fig. 5A], [Fig. 5B] show a gravity outlet valve in two positions;
[0033] [Fig. 6] est une vue de dessus d’un cœur de réacteur dans un panier; [0033] [Fig. 6] is a top view of a reactor core in a basket;
[0034] [Fig. 7] est une vue de côté en coupe d’une partie basse de réacteur; [0034] [Fig. 7] is a sectional side view of a lower part of the reactor;
[0035] [Fig. 8A] est une vue de dessus d’une plaque intermédiaire d’un panier support de cœur nucléaire; [0035] [Fig. 8A] is a top view of an intermediate plate of a nuclear core support basket;
[0036] [Fig. 8B] est une vue de dessus d’une plaque supérieure d’un panier support de cœur nucléaire; [0036] [Fig. 8B] is a top view of a top plate of a nuclear core support basket;
[0037] [Fig. 8C] est une vue de dessus d’une plaque inférieure d’un panier support de cœur nucléaire; [0037] [Fig. 8C] is a top view of a bottom plate of a nuclear core support basket;
[0038] [Fig. 9] montre un cœur nucléaire dans un panier en vue de côté; [0038] [Fig. 9] shows a nuclear core in a basket in side view;
[0039] [Fig. 10] montre une vue de dessus de pièces d’un bâtiment d’installation nucléaire de la présente divulgation; [0039] [Fig. 10] shows a top view of parts of a nuclear facility building of the present disclosure;
[0040] [Fig. 11] montre un schéma d’un réseau de chauffage urbain comportant une installation nucléaire de la présente divulgation. [0040] [Fig. 11] shows a diagram of a district heating network comprising a nuclear installation of the present disclosure.
Description de modes de réalisation [0041] Les dessins et la description ci-après contiennent des éléments pouvant non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. Description of embodiments [0041] The following drawings and description contain elements which may not only serve to better understand the present invention, but also contribute to its definition, where appropriate.
[0042] La figure 1 est une vue schématique d’une installation nucléaire comportant une cuve de réacteur nucléaire 1 dans laquelle se trouve un cœur de réacteur nucléaire avec un couvercle amovible 11 . La cuve est disposée dans un puits 2 d’une piscine 3 remplie d’un liquide caloporteur de refroidissement et de blocage des radiations tel que de l’eau et plus particulièrement de l’eau déminéralisée. On emploiera indifféremment eau ou liquide caloporteur dans la description ci-après compte tenu que l’eau est le liquide caloporteur le plus simple à utiliser. Dans la piscine se trouvent un espace 33 de dépose du couvercle amovible 11 , un ou plusieurs râteliers d’entreposage de combustible 31 dans la piscine, un banc de rechargement 32 et un échangeur eau/air 5. La piscine 3 est située dans un hall réacteur 4 d’un bâtiment 10 qui comporte un pont 41 et son élingue 42 et une machine de rechargement 43. [0042] Figure 1 is a schematic view of a nuclear installation comprising a nuclear reactor vessel 1 in which there is a nuclear reactor core with a removable cover 11. The vessel is arranged in a well 2 of a pool 3 filled with a heat transfer fluid for cooling and blocking radiation such as water and more particularly demineralized water. Water or heat transfer fluid will be used interchangeably in the description below given that water is the easiest heat transfer fluid to use. In the pool there is a space 33 for depositing the removable cover 11, one or more fuel storage racks 31 in the pool, a reloading bench 32 and a water/air exchanger 5. The pool 3 is located in a reactor hall 4 of a building 10 which comprises a bridge 41 and its sling 42 and a reloading machine 43.
[0043] L’ installation nucléaire de la présente divulgation est en particulier adaptée à servir de générateur de chaleur pour un réseau de chauffage tel qu’un réseau de chauffage urbain et la Figure 11 propose un schéma de principe d’implantation de l’installation nucléaire de la figure 1 dans un réseau de chaleur. [0043] The nuclear installation of the present disclosure is in particular adapted to serve as a heat generator for a heating network such as a district heating network and Figure 11 proposes a schematic diagram of the installation of the nuclear installation of Figure 1 in a heat network.
[0044] Le cœur du réacteur dans la cuve 9 produit de la chaleur, transférée à un échangeur primaire 91 au moyen d’un circuit primaire 92, la chaleur est transférée à un circuit intermédiaire 8 muni d’une ou plusieurs pompes de circulation 101 vers un échangeur secondaire 100 qui alimente en chaleur un réseau principal de distribution 105 sur lequel se trouve éventuellement d’autres installations de production 106 qui peuvent être de technologies variées, classiques ou nucléaires. Cette organisation permet de garantir un approvisionnement continu en chaleur vers des échangeurs tertiaires alimentant des circuits de chauffage 115, 125 pour des bâtiments 107, 108, 109. La présence de plusieurs installations de production permet de fournir du chauffage même en période de maintenance ou en cas d’incident sur une des composantes de la production. [0045] Comme il sera vu plus loin, le réacteur est composé de deux circuits. Le circuit de refroidissement primaire 92 extrait la chaleur du cœur où se produit la réaction en chaine et cette chaleur est transférée au circuit de refroidissement intermédiaire 8, de pression égale ou supérieure au circuit primaire, afin de garantir qu’une éventuelle pollution radioactive ne puisse se propager. C’est ce circuit intermédiaire qui est, au-travers d’un échangeur, en interface avec le réseau principal de distribution. [0044] The core of the reactor in the tank 9 produces heat, transferred to a primary exchanger 91 by means of a primary circuit 92, the heat is transferred to an intermediate circuit 8 provided with one or more circulation pumps 101 to a secondary exchanger 100 which supplies heat to a main distribution network 105 on which there are possibly other production installations 106 which may be of various technologies, conventional or nuclear. This organization makes it possible to guarantee a continuous supply of heat to tertiary exchangers supplying heating circuits 115, 125 for buildings 107, 108, 109. The presence of several production installations makes it possible to provide heating even during maintenance periods or in the event of an incident on one of the production components. [0045] As will be seen later, the reactor is composed of two circuits. The primary cooling circuit 92 extracts the heat from the core where the chain reaction occurs and this heat is transferred to the intermediate cooling circuit 8, of pressure equal to or greater than the primary circuit, in order to guarantee that any possible radioactive pollution cannot propagate. It is this intermediate circuit which is, through an exchanger, in interface with the main distribution network.
[0046] Dans ce cadre la présente divulgation concerne une solution de refroidissement pour un réacteur immergé en piscine et présentant une température de sortie cœur dans une plage de 70°-110°C. Ce réacteur ne nécessite aucune intervention humaine pour garantir sa sûreté pendant une période étendue d’au moins une semaine, et ne fait appel à aucune source électrique pour assurer le refroidissement du cœur, fournissant ainsi une sûreté inhérente et la possibilité d’installer le réacteur à proximité de zones urbanisées sans risque. [0046] In this context, the present disclosure relates to a cooling solution for a reactor immersed in a pool and having a core outlet temperature in a range of 70°-110°C. This reactor does not require any human intervention to guarantee its safety for an extended period of at least one week, and does not use any electrical source to ensure cooling of the core, thus providing inherent safety and the possibility of installing the reactor near urbanized areas without risk.
[0047] En premier lieu la présente divulgation propose d’optimiser la récupération de chaleur du cœur. Par ailleurs, comme contrairement aux chaufferies classiques utilisant des combustibles fossiles, les réacteurs nucléaires continuent à produire de la chaleur, quelques pourcents de la puissance nominale, après l’arrêt de la réaction en chaine, cette chaleur résiduelle doit donc pouvoir être extraite, que le réacteur soit dans un état d’arrêt normal ou en arrêt inopiné, à la suite d’un incident ou accident d’origine interne ou externe. [0047] Firstly, the present disclosure proposes to optimise the recovery of heat from the core. Furthermore, as unlike conventional boilers using fossil fuels, nuclear reactors continue to produce heat, a few percent of the nominal power, after the chain reaction has stopped, this residual heat must therefore be able to be extracted, whether the reactor is in a normal shutdown state or in an unexpected shutdown, following an incident or accident of internal or external origin.
[0048] Comme vu plus haut, la partie nucléaire du réacteur, objet de l’invention, est immergé dans une piscine, solution habituellement utilisée pour les réacteurs de recherche, comme indiqué sur la Figure 1. Celle-ci apporte une réserve d’eau garantissant une large autonomie sans nécessiter aucune intervention humaine. Cette piscine se trouve dans un hall réacteur qui a une atmosphère contrôlée selon les critères nucléaires et protégée contre toutes les agressions externes toujours considérées pour les installations nucléaires. Le hall réacteur est implanté dans un bâtiment dont les autres pièces contiennent l’ensemble des équipements nécessaires au fonctionnement de l’installation. [0049] La Figure 2 décrit le fonctionnement du circuit primaire 9 et son interface avec le circuit intermédiaire 8 lorsque le réacteur est en mode de production. [0048] As seen above, the nuclear part of the reactor, object of the invention, is immersed in a pool, a solution usually used for research reactors, as shown in Figure 1. This provides a water reserve guaranteeing a large autonomy without requiring any human intervention. This pool is located in a reactor hall which has a controlled atmosphere according to nuclear criteria and protected against all external aggressions always considered for nuclear installations. The reactor hall is located in a building whose other rooms contain all the equipment necessary for the operation of the installation. [0049] Figure 2 describes the operation of the primary circuit 9 and its interface with the intermediate circuit 8 when the reactor is in production mode.
[0050] Le circuit primaire est encapsulé dans une cuve 9 cylindrique comportant une paroi périphérique 94 et qui contient dans sa partie basse le cœur nucléaire 6, composé par des assemblages combustibles contenant l’uranium nécessaire à la réaction en chaine. Ces assemblages combustibles peuvent prendre la forme de crayons, comme dans les réacteurs à eau de puissance, ou de plaques, comme dans les réacteurs de recherche. [0050] The primary circuit is encapsulated in a cylindrical vessel 9 comprising a peripheral wall 94 and which contains in its lower part the nuclear core 6, composed of fuel assemblies containing the uranium necessary for the chain reaction. These fuel assemblies can take the form of rods, as in power water reactors, or plates, as in research reactors.
[0051] Pour fixer les idées la présente divulgation concerne un réacteur d’une puissance d’environ 15 MW à 80 MW thermiques comportant une cuve d’une hauteur de l’ordre de 15 m à 25 m et d’un diamètre de l’ordre de 3,50 m à 4 m. [0051] To clarify the ideas, the present disclosure concerns a reactor with a power of approximately 15 MW to 80 MW thermal comprising a tank with a height of the order of 15 m to 25 m and a diameter of the order of 3.50 m to 4 m.
[0052] Dans la cuve 9 se trouvent aussi les barres de contrôle 601 disposées au bout de tiges 7 et pouvant être enfoncées ou sorties du cœur pour réguler la réaction en chaine et l’arrêter pour amener le réacteur dans un état sûr quelque soient les conditions initiales, normales ou accidentelles. Les tiges portant les barres de contrôle sont, comme connu dans le domaine, déplacées par des moteurs électriques, par exemple des moteurs électriques intégrés dans des manchons cylindriques traversés par les tiges et soudés sur un couvercle de la cuve 9, et maintenues en position par un champ magnétique dans un dispositif de commande 74. En cas d’absence de courant d’alimentation des moteurs, les tiges 7 sont libérées et les barres 601 tombent dans le cœur, arrêtant la réaction en chaine. [0052] In the vessel 9 there are also the control rods 601 arranged at the end of rods 7 and which can be pushed in or out of the core to regulate the chain reaction and stop it to bring the reactor into a safe state whatever the initial conditions, normal or accidental. The rods carrying the control rods are, as known in the art, moved by electric motors, for example electric motors integrated in cylindrical sleeves crossed by the rods and welded to a cover of the vessel 9, and held in position by a magnetic field in a control device 74. In the event of a lack of power supply to the motors, the rods 7 are released and the bars 601 fall into the core, stopping the chain reaction.
[0053] La cuve comporte par ailleurs une cheminée interne 9a permettant de guider par convection vers le haut de la cuve un premier liquide caloporteur, par exemple de l’eau, chauffé par le cœur et un espace annulaire de redescente du liquide caloporteur vers le bas de la cuve sous le cœur ce qui réalise un circuit fermé de circulation du fluide caloporteur traversant le cœur 6. L’espace annulaire de redescente intègre un échangeur de chaleur à contre-courant ou échangeur primaire 91 comportant un circuit primaire dans lequel circule le premier liquide caloporteur. L’échangeur 91 permet l’évacuation de la chaleur générée par le cœur 6 vers le circuit intermédiaire 8. [0054] La température du liquide caloporteur dans la cuve, en sortie du cœur, est dans la présente application de l’ordre de 70°C à 110°C et plus précisément entre 75°C et 90°C ce qui n’impose pas de dimensionner la cuve pour de fortes pressions et de fortes températures. [0053] The tank also comprises an internal chimney 9a for guiding by convection towards the top of the tank a first heat transfer fluid, for example water, heated by the core and an annular space for the descent of the heat transfer fluid towards the bottom of the tank under the core, which creates a closed circuit for circulation of the heat transfer fluid passing through the core 6. The annular descent space integrates a counter-current heat exchanger or primary exchanger 91 comprising a primary circuit in which the first heat transfer fluid circulates. The exchanger 91 allows the heat generated by the core 6 to be evacuated towards the intermediate circuit 8. [0054] The temperature of the heat transfer fluid in the tank, at the outlet of the core, is in the present application of the order of 70°C to 110°C and more precisely between 75°C and 90°C, which does not require the tank to be sized for high pressures and high temperatures.
[0055] Le circuit intermédiaire 8 est une boucle composée principalement de la partie aval ou circuit secondaire de l’échangeur 91 , d’un système de pompage composé d’une ou plusieurs pompes 101 alimentées électriquement par un réseau externe, assurant une circulation forcée dans le circuit intermédiaire et permettant d’accommoder les différents états de fonctionnement du réacteur lorsqu’il est en fonctionnement, de tuyauteries 81 , 82 reliant les différents composants et la partie amont d’un échangeur secondaire 100 entre le circuit intermédiaire 8 et le réseau principal de distribution 105. [0055] The intermediate circuit 8 is a loop mainly composed of the downstream part or secondary circuit of the exchanger 91, a pumping system composed of one or more pumps 101 electrically powered by an external network, ensuring forced circulation in the intermediate circuit and making it possible to accommodate the different operating states of the reactor when it is in operation, pipes 81, 82 connecting the different components and the upstream part of a secondary exchanger 100 between the intermediate circuit 8 and the main distribution network 105.
[0056] Toujours selon la figure 2, une partie inférieure de la paroi cylindrique 94 de la cuve 9 est entourée par une première enveloppe annulaire 1a formant un plenum froid 83 du circuit intermédiaire 8 qui est mis en communication avec une entrée 91 a du circuit secondaire de l’échangeur primaire 91 en partie basse dudit échangeur. [0056] Still according to FIG. 2, a lower part of the cylindrical wall 94 of the tank 9 is surrounded by a first annular envelope 1a forming a cold plenum 83 of the intermediate circuit 8 which is placed in communication with an inlet 91a of the secondary circuit of the primary exchanger 91 in the lower part of said exchanger.
[0057] La première enveloppe annulaire s’étend depuis le bas de la cuve jusque sous une sortie 91 b de l’échangeur primaire 91 en partie haute de cet échangeur. [0057] The first annular envelope extends from the bottom of the tank to under an outlet 91 b of the primary exchanger 91 in the upper part of this exchanger.
[0058] Une partie haute de la paroi cylindrique 94 de la cuve est entourée par une seconde enveloppe annulaire 1 b, au-dessus de ladite première enveloppe annulaire 1 a. Cette seconde enveloppe annulaire 1 b englobe la sortie 91 b du circuit secondaire de l’échangeur primaire 91 . [0058] An upper part of the cylindrical wall 94 of the tank is surrounded by a second annular envelope 1 b, above said first annular envelope 1 a. This second annular envelope 1 b encompasses the outlet 91 b of the secondary circuit of the primary exchanger 91.
[0059] La distance radiale entre la paroi externe de la première et la seconde enveloppes annulaires et la paroi de la cuve 9 est donnée pour réaliser un volume d’échange adapté à la chaleur de la cuve et au débit attendu et est par exemple de l’ordre de 20 cm à 30 cm pour un réacteur tel que défini ci-dessus. [0059] The radial distance between the external wall of the first and second annular envelopes and the wall of the tank 9 is given to achieve an exchange volume adapted to the heat of the tank and the expected flow rate and is for example of the order of 20 cm to 30 cm for a reactor as defined above.
[0060] Cette seconde enveloppe annulaire forme un plenum chaud du circuit intermédiaire 8 en communication avec la sortie 91 b dudit circuit secondaire de l’échangeur primaire 91 en partie haute dudit échangeur. [0061] Le circuit intermédiaire comporte en outre une première tubulure 81 , d’arrivée d’un liquide caloporteur froid, par exemple de l’eau froide, débouchant dans la première enveloppe 1 a en partie supérieure de ladite première enveloppe 1 a tandis qu’une deuxième tubulure de départ de liquide caloporteur chaud sort en partie supérieure de ladite seconde enveloppe 1 b. [0060] This second annular envelope forms a hot plenum of the intermediate circuit 8 in communication with the outlet 91 b of said secondary circuit of the primary exchanger 91 in the upper part of said exchanger. [0061] The intermediate circuit further comprises a first pipe 81, for the arrival of a cold heat transfer liquid, for example cold water, opening into the first casing 1a in the upper part of said first casing 1a while a second pipe for the departure of hot heat transfer liquid exits in the upper part of said second casing 1b.
[0062] En fonctionnement, le circuit intermédiaire est prévu pour fonctionner avec une différence de température de l’ordre de 20°C à 30°C entre la tubulure d’arrivée du liquide caloporteur froid et la tubulure de départ de liquide caloporteur chaud. [0062] In operation, the intermediate circuit is designed to operate with a temperature difference of the order of 20°C to 30°C between the cold heat transfer liquid inlet pipe and the hot heat transfer liquid outlet pipe.
[0063] Les première et seconde enveloppes annulaires constituent un boitier d’interface cylindrique, qui enveloppe une grande partie de la cuve primaire 9, au niveau de l’échangeur principal et qui est organisé de la façon suivante : [0063] The first and second annular envelopes constitute a cylindrical interface housing, which envelops a large part of the primary tank 9, at the level of the main exchanger and which is organized as follows:
[0064] - Les tuyauteries d’entrée 81 et de sortie 82 du circuit intermédiaire sont connectées à ce boitier. a. - Le plenum d’entrée ou plenum froid 83 guide l’eau du circuit intermédiaire vers des entrées en partie basse de l’échangeur 91 intégré dans la cuve primaire 9, b. - Dans l’échangeur 91 des plaques régulièrement réparties assurent la répartition du débit, l’efficacité de l’échange de chaleur et le maintien vibratoire de tubes d’échangeur, c. - En partie haute, l’eau chaude sort de l’échangeur 91 pour être injectée dans le plenum supérieur d’où elle rejoint les tuyauteries chaudes du circuit intermédiaire. [0064] - The inlet pipes 81 and outlet pipes 82 of the intermediate circuit are connected to this housing. a. - The inlet plenum or cold plenum 83 guides the water of the intermediate circuit towards inlets in the lower part of the exchanger 91 integrated in the primary tank 9, b. - In the exchanger 91, regularly distributed plates ensure the distribution of the flow, the efficiency of the heat exchange and the vibrational maintenance of exchanger tubes, c. - In the upper part, the hot water leaves the exchanger 91 to be injected into the upper plenum from where it joins the hot pipes of the intermediate circuit.
[0065] Ce boitier récupère aussi les fuites calorifiques de la cuve primaire pour les injecter dans le système de production de chaleur utile. [0065] This box also recovers heat leaks from the primary tank to inject them into the useful heat production system.
[0066] Le circuit intermédiaire et la piscine utilisent le même fluide caloporteur, par exemple de l’eau qui sert au refroidissement du réacteur lorsque celui-ci est en opération et en arrêt. [0067] La Figure 3 décrit un aspect de la présente divulgation selon lequel des clapets 85, 86 sont incorporés dans les enveloppes 1 a et 1 b entre lesdites enveloppes et la piscine 3. [0066] The intermediate circuit and the pool use the same heat transfer fluid, for example water which is used to cool the reactor when it is in operation and when it is shut down. [0067] Figure 3 depicts an aspect of the present disclosure wherein valves 85, 86 are incorporated in the envelopes 1a and 1b between said envelopes and the pool 3.
[0068] Ces clapets sont configurés pour isoler le circuit intermédiaire de la piscine lorsque la ou les pompes 101 sont en fonction mais configurés pour mettre les plenums chaud et froid en communication avec le liquide caloporteur contenu dans la piscine lorsque la ou les pompes 101 du circuit intermédiaire sont arrêtées ce qui permet d’une part l’entrée de l’eau de la piscine dans le plenum froid du boitier d’interface et d’autre part la sortie de l’eau réchauffée du plenum chaud vers la piscine. [0068] These valves are configured to isolate the intermediate circuit of the swimming pool when the pump(s) 101 are in operation but configured to put the hot and cold plenums in communication with the heat transfer fluid contained in the swimming pool when the pump(s) 101 of the intermediate circuit are stopped, which allows on the one hand the entry of the water from the swimming pool into the cold plenum of the interface box and on the other hand the exit of the heated water from the hot plenum towards the swimming pool.
[0069] En effet, pompe arrêtée, par exemple dans le cas d’une perte d’alimentation électrique de la ou des pompes ou sur décision de l’opérateur, par exemple en l’absence de demande de chaleur ou lors d’une opération de maintenance, le dispositif est conçu pour que, côté plenum froid, l’eau froide de la piscine descende jusqu’à l’évent d’entrée 91 a dans l’échangeur primaire 91 , où elle remonte en s’échauffant. La différence de densité entre l’eau descendante et celle montante apporte une force motrice suffisante pour l’établissement d’une circulation naturelle. [0069] Indeed, with the pump stopped, for example in the event of a loss of electrical power to the pump(s) or by decision of the operator, for example in the absence of a heat demand or during a maintenance operation, the device is designed so that, on the cold plenum side, the cold water from the pool descends to the inlet vent 91a in the primary exchanger 91, where it rises while heating up. The difference in density between the descending and rising water provides sufficient driving force for establishing natural circulation.
[0070] Il faut souligner que lorsque la circulation dans le circuit primaire s’arrête, le réacteur est conçu pour que les barres de contrôle descendent dans le cœur et pour que la puissance résiduelle du cœur ne soit que de quelques pourcents de sa puissance nominale. En configuration d’arrêt de la ou des pompes 101 , le débit de la circulation naturelle entre la piscine et l’échangeur ne sera qu’une faible fraction du débit nominal, en pompage par le circuit intermédiaire, conduisant à des vitesses d’eau très significativement plus faibles. [0070] It should be emphasized that when circulation in the primary circuit stops, the reactor is designed so that the control rods descend into the core and so that the residual power of the core is only a few percent of its nominal power. In the shutdown configuration of the pump(s) 101, the flow rate of the natural circulation between the pool and the exchanger will be only a small fraction of the nominal flow rate, pumping through the intermediate circuit, leading to very significantly lower water speeds.
[0071] La figure 4A représente le clapet d’entrée 85 dans une position où l’entrée d’eau depuis la piscine est fermée et l’entrée d’eau depuis le circuit intermédiaire est ouverte tandis que la figure 4B représente le clapet d’entrée 85 dans la position où l’entrée d’eau depuis la piscine est ouverte alors que l’entrée d’eau depuis le circuit intermédiaire est fermée. Selon l’exemple le clapet est un clapet gravitaire comportant un volet 85 d’obturation d’une ouverture 83a de mise en communication du plenum froid 83 avec la piscine au-dessus de l’entrée de la tubulure 81 dans le plenum froid. Ce clapet comporte une palette à contrepoids 86 au niveau de l’arrivée de la tubulure 81 dans l’enveloppe 1 a formant le plenum froid 83. En figure 4A le flux du liquide caloporteur F1 circulant dans le circuit intermédiaire 8 et arrivant par la tubulure d’entrée 81 pousse la palette à contrepoids ce qui pousse le volet 85 et ferme l’ouverture 83a. En figure 4B, le liquide caloporteur ne circule plus dans le circuit intermédiaire 8, le contrepoids redescend sous l’action de la gravité ce qui écarte le volet 85 de l’ouverture 83a et laisse entrer un flux F3 d’eau de la piscine dans le plenum froid tandis que la sortie de la tubulure 81 dans le plenum froid est fermée. [0071] FIG. 4A shows the inlet valve 85 in a position where the water inlet from the pool is closed and the water inlet from the intermediate circuit is open while FIG. 4B shows the inlet valve 85 in the position where the water inlet from the pool is open while the water inlet from the intermediate circuit is closed. According to the example, the valve is a gravity valve comprising a flap 85 for closing an opening 83a for placing the cold plenum 83 in communication with the pool above the inlet of the pipe 81 in the cold plenum. This valve comprises a counterweighted vane 86 at the level of the arrival of the pipe 81 in the casing 1 a forming the cold plenum 83. In figure 4A the flow of the heat transfer fluid F1 circulating in the intermediate circuit 8 and arriving via the inlet pipe 81 pushes the counterweighted vane which pushes the flap 85 and closes the opening 83a. In figure 4B, the heat transfer fluid no longer circulates in the intermediate circuit 8, the counterweight descends under the action of gravity which moves the flap 85 away from the opening 83a and lets a flow F3 of water from the swimming pool enter the cold plenum while the outlet of the pipe 81 in the cold plenum is closed.
[0072] La figure 5A représente le clapet de sortie 87 en position fermée tandis que la figure 5B représente le clapet de sortie 87 en position ouverte. [0072] Figure 5A shows the outlet valve 87 in the closed position while Figure 5B shows the outlet valve 87 in the open position.
[0073] A la figure 5A, le flux F1 sortant de l’échangeur primaire est aspiré par le conduit 82 sous l’action de la pompe du circuit intermédiaire. Ce flux de liquide contraint le clapet 87 en position fermée ce qui ne permet pas à l’eau du plenum chaud de sortir dans la piscine 3. [0073] In Figure 5A, the flow F1 leaving the primary exchanger is sucked in by the conduit 82 under the action of the pump of the intermediate circuit. This flow of liquid forces the valve 87 into the closed position, which does not allow the water from the hot plenum to exit into the pool 3.
[0074] En figure 5B, le flux F1 est stoppé lorsque la pompe 101 de la figure 2 s’arrête, le clapet s’ouvre sous l’action de son contrepoids 88 et l’eau chauffée dans l’échangeur 91 s’échappe dans la piscine selon le flux F3. [0074] In Figure 5B, the flow F1 is stopped when the pump 101 of Figure 2 stops, the valve opens under the action of its counterweight 88 and the water heated in the exchanger 91 escapes into the swimming pool according to the flow F3.
[0075] Le clapet de sortie n’a pas besoin de refermée la sortie vers le circuit intermédiaire ce qui est en outre préféré pour éviter des problèmes [0075] The outlet valve does not need to close the outlet to the intermediate circuit which is further preferred to avoid problems
[0076] Comme indiqué précédemment, lorsque la ou les pompes sont arrêtées, la circulation naturelle, qui se met en place dans le boitier d’interface, n’est qu’une très faible fraction de la circulation nominale avec les pompes. Dans cette configuration, les vitesses d’eau sont faibles et insuffisantes pour empêcher l’ouverture par gravité des clapets, ceux-ci étant lestés d’un poids suffisant pour être maintenus ouverts par la pression dynamique et fermés lorsque celle-ci est réduite. Lorsque les pompes redémarrent, la force du jet est suffisante pour repousser le clapet en position fermée et le maintenir dans cette position. [0076] As previously indicated, when the pump(s) are stopped, the natural circulation, which is set up in the interface box, is only a very small fraction of the nominal circulation with the pumps. In this configuration, the water speeds are low and insufficient to prevent the valves from opening by gravity, the latter being ballasted with a sufficient weight to be kept open by the dynamic pressure and closed when the latter is reduced. When the pumps restart, the force of the jet is sufficient to push the valve back into the closed position and maintain it in this position.
[0077] Il est à noter que du fait que le liquide caloporteur et que le liquide de la piscine sont identiques, les clapets 85, 87 n’ont pas forcément besoin d’une étanchéité qualifiée en position fermée, une légère tolérance sur les fuites étant acceptable. [0077] It should be noted that since the heat transfer fluid and the pool liquid are identical, the valves 85, 87 do not necessarily need a qualified seal in closed position, a slight tolerance on leaks being acceptable.
[0078] Du fait de la chaleur dégagée par le cœur dans la cuve 9, le fluide caloporteur circulant dans cette cuve se dilate et crée une légère surpression qui est stabilisée par la présence d’un gaz tel que de l’azote dans un dôme 93 de la cuve en partie haute de la cuve. [0078] Due to the heat released by the core in the tank 9, the heat transfer fluid circulating in this tank expands and creates a slight overpressure which is stabilized by the presence of a gas such as nitrogen in a dome 93 of the tank in the upper part of the tank.
[0079] Le volume de la piscine 3 est notamment dimensionné de sorte à garantir un refroidissement passif de la puissance résiduelle du cœur 6 en cas de problème d’alimentation électrique des pompe 101 et maintenir le liquide caloporteur du circuit primaire au-dessous d’une température fixée pendant une durée déterminée. [0079] The volume of the pool 3 is in particular sized so as to guarantee passive cooling of the residual power of the core 6 in the event of a problem with the electrical supply of the pump 101 and to maintain the heat transfer liquid of the primary circuit below a fixed temperature for a determined duration.
[0080] Cette température fixée peut notamment être une température d’ébullition du liquide caloporteur éventuellement moins une marge de sécurité de 10°C à 20°C et la durée déterminée peut par exemple être de 5 à 10 jours et notamment une semaine. [0080] This fixed temperature may in particular be a boiling temperature of the heat transfer liquid, possibly minus a safety margin of 10°C to 20°C, and the determined duration may for example be 5 to 10 days and in particular one week.
[0081] Le confinement des matières radioactives, selon la manière habituelle des réacteurs nucléaires, est assuré à la fois de manière statique et dynamique. Le confinement statique s’appuie sur les barrières physiques interposées entre les matières nucléaires et l’environnement : le gainage du combustible, le circuit primaire et le bâtiment dans lequel le réacteur est implanté. [0081] The confinement of radioactive materials, in the usual manner of nuclear reactors, is ensured both statically and dynamically. Static confinement is based on the physical barriers interposed between the nuclear materials and the environment: the fuel cladding, the primary circuit and the building in which the reactor is located.
[0082] Ces trois barrières sont étanches et dimensionnées pour garder cette étanchéité même en cas d’éventuelles agressions internes et externes subies par l’installation. Notamment, la troisième barrière, le bâtiment, doit garder en toute situation une intégrité suffisante pour confiner l’ensemble des matières nucléaires qu’il contient. [0082] These three barriers are watertight and sized to maintain this watertightness even in the event of possible internal and external attacks suffered by the installation. In particular, the third barrier, the building, must maintain sufficient integrity in all situations to confine all the nuclear materials it contains.
[0083] De retour à la figure 1 , les matières radioactives présentes dans l’installation du réacteur ici décrit seront localisées dans la piscine 3 qui contient la cuve primaire du réacteur 1 , le banc de rechargement 32 du réacteur en combustible, les râteliers 31 d’entreposage des assemblages combustibles neufs ou usés, la zone de rechargement du cœur 33. La piscine comme représenté en figure 10 se trouve dans le hall réacteur 4 du bâtiment 10. [0084] La partie nucléaire du réacteur, est ainsi immergée dans la piscine, solution habituellement utilisée pour les réacteurs de recherche. Celle-ci apporte une réserve d’eau garantissant une large autonomie sans nécessiter aucune intervention humaine. Cette piscine se trouve dans le hall réacteur qui a une atmosphère contrôlée selon les critères nucléaires et protégée contre toutes les agressions externes toujours considérées pour les installations nucléaires. Le hall réacteur 4 est implanté dans le bâtiment 10 dont les autres pièces contiennent l’ensemble des équipements nécessaires au fonctionnement de l’installation. [0083] Returning to Figure 1, the radioactive materials present in the reactor installation described here will be located in the pool 3 which contains the primary vessel of the reactor 1, the bench 32 for reloading the reactor with fuel, the racks 31 for storing new or used fuel assemblies, the core reloading zone 33. The pool as shown in Figure 10 is located in the reactor hall 4 of building 10. [0084] The nuclear part of the reactor is thus immersed in the pool, a solution usually used for research reactors. This provides a water reserve guaranteeing a large autonomy without requiring any human intervention. This pool is located in the reactor hall which has a controlled atmosphere according to nuclear criteria and protected against all external aggressions always considered for nuclear installations. Reactor hall 4 is located in building 10, the other rooms of which contain all the equipment necessary for the operation of the installation.
[0085] Le bâtiment 10 comporte des structures - murs, toit et sas d’accès - étanches avec des parois en béton renforcé pour garantir leur tenue en cas d’agression interne ou externe. Selon la présente divulgation, un confinement dynamique est assuré par un système de ventilation nucléaire selon lequel les parties de l’installation contenant des matières nucléaires, le liquide de refroidissement ou d’autres fluides possiblement contaminés font l’objet d’une ventilation spécifique, de qualité nucléaire. Un système de ventilation nucléaire remplit de façon classique deux missions : assurer des conditions d’ambiance permettant les activités humaines, là où cela est nécessaire, et le bon fonctionnement des équipements d’une part, et d’autre part assurer la filtration de l’air de l’installation avant son rejet quand il peut être contaminé par des corps radioactifs. Pour ce faire et en référence à la figure 10, l’air extérieur est aspiré par une entrée d’air 201 a sous la forme de bouches extérieures calibrées dédiées et protégées au niveau d’un local de traitement d’entrée 201 apportant notamment une filtration de l’air entrant. Des ventilateurs d’extraction 202, alimentés par un réseau électrique externe, maintiennent en fonctionnement normal une légère dépression dans la ou les salles susceptibles de renfermer des produits de fission sous forme gazeuse ou d’aérosols puis l’air est rejeté par une cheminée atmosphérique 210 après être passé dans des dispositifs d’adsorption ou de filtration 203 qui retiennent ces éventuels produits de fission sous forme gazeuse ou d’aérosols. Pour garantir que les produits radioactifs qui pourraient être présent dans l’air de l’installation ne peuvent sortir qu’au-travers de la cheminée 210, après filtration d’entrée dans le local de traitement d’entrée 201 , une légère dépression est maintenue dans les salles où des matières nucléaires sont présentes au moyen d’un ou plusieurs extracteurs 202 qui aspirent l’air contenu dans le hall réacteur 4. Ainsi, les rejets de radioactivité sous forme gazeuse, par de petites fuites comme aux joints de portes, sont donc exclus car la dépression garantit un flot d’entrée et non de sortie. Les quelques résidus éventuels, ayant échappé à la filtration, sont rejetés en hauteur par la cheminée 210 et sont donc extrêmement dilués, évitant ainsi toute contrainte sur la population environnante. [0085] Building 10 comprises structures - walls, roof and access airlocks - sealed with reinforced concrete walls to ensure their resistance in the event of internal or external aggression. According to the present disclosure, dynamic confinement is ensured by a nuclear ventilation system according to which the parts of the installation containing nuclear materials, the coolant or other fluids that may be contaminated are subject to specific ventilation, of nuclear quality. A nuclear ventilation system traditionally fulfills two missions: ensuring ambient conditions allowing human activities, where necessary, and the proper functioning of the equipment on the one hand, and on the other hand ensuring the filtration of the air in the installation before its release when it may be contaminated by radioactive bodies. To do this and with reference to FIG. 10, the outside air is sucked in through an air inlet 201 a in the form of dedicated and protected calibrated external vents at an inlet treatment room 201 providing in particular filtration of the incoming air. Extraction fans 202, powered by an external electrical network, maintain a slight depression in the room(s) likely to contain fission products in gaseous or aerosol form during normal operation, then the air is discharged through an atmospheric chimney 210 after passing through adsorption or filtration devices 203 which retain these possible fission products in gaseous or aerosol form. To ensure that radioactive products which may be present in the air of the installation can only exit through the chimney 210, after inlet filtration in the inlet treatment room 201, a slight depression is maintained in the rooms where nuclear materials are present by means of one or more extractors 202 which suck the air contained in the reactor hall 4. Thus, the releases of radioactivity in gaseous form, through small leaks such as at door seals, are therefore excluded because the depression guarantees an inflow and not an outflow. Any possible residues, having escaped filtration, are released upwards through the chimney 210 and are therefore extremely diluted, thus avoiding any constraint on the surrounding population.
[0086] De façon usuelle sur les réacteurs nucléaires, en cas d’accident, les salles susceptibles de contenir des éléments radioactifs sont isolées et gardent leur dépression un certain temps, selon l’étanchéité des moyens d’isolation. Dans le cas présent, un point important de la présente divulgation est d’assurer qu’une dépression est maintenue dans la durée dans les pièces susceptibles de renfermer des isotopes radioactifs et dans le hall réacteur sans nécessiter aucun recours à des actions d’un opérateur ou d’utiliser des moyens actifs, tels que des ventilateurs électriques, le but étant de garantir le maintien de la filtration des rejets gazeux sur une durée cohérentes avec les 7 jours typiquement considérés pour le refroidissement passif du réacteur après arrêt de la circulation du liquide caloporteur du circuit intermédiaire 8. [0086] As is customary in nuclear reactors, in the event of an accident, the rooms likely to contain radioactive elements are isolated and maintain their depression for a certain time, depending on the tightness of the isolation means. In the present case, an important point of the present disclosure is to ensure that a depression is maintained over time in the rooms likely to contain radioactive isotopes and in the reactor hall without requiring any action by an operator or using active means, such as electric fans, the aim being to guarantee that the filtration of gaseous discharges is maintained over a period consistent with the 7 days typically considered for passive cooling of the reactor after stopping the circulation of the heat transfer liquid of the intermediate circuit 8.
[0087] La sécurité de l’installation de la présente divulgation comprend un système de ventilation nucléaire assure le confinement des gaz et des particules radioactifs pouvant être émis dans l’installation. Pour y permettre l’activité du personnel, il assainit l’air, régule la température et l’hygrométrie dans des plages spécifiées. Il protège donc le public, l’environnement et le personnel. [0087] The safety of the installation of the present disclosure includes a nuclear ventilation system that ensures the containment of radioactive gases and particles that may be emitted in the installation. To allow the activity of the personnel, it purifies the air, regulates the temperature and the humidity in specified ranges. It therefore protects the public, the environment and the personnel.
[0088] Le système de ventilation comprend un échangeur eau/air 5, implanté dans la piscine du hall réacteur 4 sur le circuit de ventilation, en amont du ou des extracteurs 202. [0088] The ventilation system comprises a water/air exchanger 5, installed in the pool of the reactor hall 4 on the ventilation circuit, upstream of the extractor(s) 202.
[0089] En figure 10, les flèches indiquent les mouvements d’air entre les différentes salles : a. de l’air frais est introduit en continu dans l’installation par une ou plusieurs entrées d’air 201 a comportant chacune une ouverture calibrée ; b. cet air est épuré et traité (chauffé ou refroidi) dans un local de traitement d’entrée 201 avant d’être distribué dans les différentes salles nécessitant une ventilation nucléaire. [0089] In Figure 10, the arrows indicate the air movements between the different rooms: a. fresh air is continuously introduced into the installation through one or more air inlets 201 a each comprising a calibrated opening; b. this air is purified and treated (heated or cooled) in an inlet treatment room 201 before being distributed to the various rooms requiring nuclear ventilation.
[0090] Un premier circuit comporte une sortie d’air 201 b dans le hall réacteur 4 comportant le réacteur 1 dans une piscine 3 de refroidissement dudit réacteur. [0090] A first circuit comprises an air outlet 201 b in the reactor hall 4 comprising the reactor 1 in a cooling pool 3 of said reactor.
[0091] Dans le hall réacteur 4, l’air passe dans un échangeur de chaleur air/eau 5 placé dans la piscine. Il s’y échauffe car l’eau de la piscine est, en fonctionnement normal, maintenue à 50°C par un circuit 220 dédié à la gestion de l’eau de la piscine implanté dans le local de systèmes auxiliaires, ce circuit, ayant de plus une fonction de filtration étant configuré pour récupérer la chaleur de l’eau de la piscine par des pompes à chaleur pour la réinjecter dans le système de production. Un extracteur d’air 202 à alimentation électrique, en aval de l’échangeur, assure le maintien en dépression du hall réacteur. [0091] In the reactor hall 4, the air passes through an air/water heat exchanger 5 placed in the pool. It heats up there because the pool water is, in normal operation, maintained at 50°C by a circuit 220 dedicated to the management of the pool water installed in the auxiliary systems room, this circuit, also having a filtration function, being configured to recover the heat from the pool water by heat pumps to reinject it into the production system. An electrically powered air extractor 202, downstream of the exchanger, ensures that the reactor hall is kept under vacuum.
[0092] Les autres salles du bâtiment 10, susceptibles de contenir des éléments radioactifs, telles qu’ici local de systèmes auxiliaires 12, un local de transfert de chaleur 13 et hall chargement/déchargement 14 sont alimentées en air depuis le local de traitement d’entrée 201 paru une conduite d’air 201 c et chacun pourvu d’une troisième sortie d’air 203a, 203b, 203c vers le hall réacteur 4 de sorte que l’air extrait de ces salles suive le même chemin de sortie que l’air du hall réacteur. [0092] The other rooms of building 10, likely to contain radioactive elements, such as here the auxiliary systems room 12, a heat transfer room 13 and the loading/unloading hall 14 are supplied with air from the inlet treatment room 201 via an air duct 201c and each provided with a third air outlet 203a, 203b, 203c towards the reactor hall 4 so that the air extracted from these rooms follows the same outlet path as the air from the reactor hall.
[0093] L’ air extrait par l’extracteur 202 passe ensuite à travers des filtres de maillages différents et des pièges au charbon actif ou équivalent dans un dispositif de filtration 203 avant d’être évacué par une cheminée 210. L’échangeur 5, lorsque le réacteur est en fonctionnement normal, peut apporter une contribution au refroidissement de l’eau de la piscine, chauffée par les fuites thermiques de la cuve primaire et par les éventuels assemblages combustibles usés présents dans les râteliers d’entreposage 31. Elle soulage ainsi un éventuel système auxiliaire de régulation de la température de l’eau qui la maintient à 50°C. Mais sa fonction principale, selon la présente divulgation, est son apport au maintien du confinement dynamique dans une situation accidentelle où l’alimentation électrique du réacteur par le réseau n’est plus assurée, impliquant la perte du ventilateur d’extraction 202 et du circuit auxiliaire de régulation de température de la piscine. Dans une telle séquence accidentelle, le réacteur est immédiatement arrêté par chute de barres de contrôle dans le cœur. En plus, l’absence d’alimentation électrique fait tomber un volet ou refermer un diaphragme au niveau de la ou des entrées d’air 201 a. [0093] The air extracted by the extractor 202 then passes through filters of different mesh sizes and activated carbon traps or equivalent in a filtration device 203 before being evacuated by a chimney 210. The exchanger 5, when the reactor is in normal operation, can contribute to the cooling of the water in the pool, heated by the thermal leaks from the primary tank and by any spent fuel assemblies present in the storage racks 31. It thus relieves a possible auxiliary system for regulating the temperature of the water which maintains it at 50°C. But its main function, according to the present disclosure, is its contribution to maintaining dynamic confinement in an accidental situation where the power supply to the reactor by the network is no longer ensured, involving the loss of the extraction fan 202 and the auxiliary circuit for regulating the temperature of the pool. In such a accidental sequence, the reactor is immediately shut down by the fall of control rods into the core. In addition, the absence of electrical power causes a shutter to fall or a diaphragm to close at the air inlet(s) 201 a.
[0094] En effet, en fonctionnement normal, le volet ou le diaphragme est tenu ouvert par un champ électromagnétique et ladite entrée d’air 201 a dans la paroi du bâtiment 10 est configurée en position d’ouverture maximale et, lors d’un arrêt dudit extracteur, le volet ou le diaphragme relâché réduit la surface de l’entrée d’air de la ventilation nucléaire afin de l’adapter à une configuration où les extracteurs électriques ne sont plus en fonction. [0094] Indeed, in normal operation, the shutter or diaphragm is held open by an electromagnetic field and said air inlet 201a in the wall of the building 10 is configured in the maximum open position and, when said extractor is stopped, the released shutter or diaphragm reduces the surface area of the air inlet of the nuclear ventilation in order to adapt it to a configuration where the electric extractors are no longer in operation.
[0095] Dans le cœur du réacteur, les réactions de fission sont arrêtées, mais les résidus des fissions précédentes continuent à émettre de la chaleur à un niveau faible : à quelques pourcents de la puissance nominale dans les premières heures, puis, puis à quelques pour milles les premiers jours. Cette chaleur résiduelle du combustible est évacuée dans la piscine qui monte progressivement en température, au-delà de 50°C, son circuit de refroidissement étant non opérationnel. La masse d’eau de la piscine est dimensionnée pour cette température reste inférieure à 80°C au bout d’une semaine d’isolation du réacteur. Au niveau de l’échangeur 5, l’air réchauffé par l’eau de la piscine est filtré et n’a que la cheminée comme porte de sortie, notamment du fait que les entrées d’air ont été réduites pour accroître la dépression dans le hall réacteur. L’échangeur assure alors le tirage de la cheminée, l’air extérieur ayant une température inférieure à l’air réchauffé par l’eau de la piscine. Les éléments radioactifs présents dans l’air du hall réacteur sont donc, à près de 100%, piégés dans le dispositif de filtration de sortie 203 et les rejets ne présentent donc plus de risques pour l’environnement. [0095] In the core of the reactor, the fission reactions are stopped, but the residues from previous fissions continue to emit heat at a low level: at a few percent of the nominal power in the first hours, then at a few percent in the first days. This residual heat from the fuel is evacuated into the pool, which gradually increases in temperature, beyond 50°C, its cooling circuit being non-operational. The mass of water in the pool is sized for this temperature and remains below 80°C after a week of reactor insulation. At exchanger 5, the air heated by the pool water is filtered and only has the chimney as an outlet, in particular because the air inlets have been reduced to increase the depression in the reactor hall. The exchanger then ensures the chimney draft, the outside air having a lower temperature than the air heated by the pool water. The radioactive elements present in the air in the reactor hall are therefore, almost 100%, trapped in the outlet filtration device 203 and the releases therefore no longer present any risk to the environment.
[0096] Dans la même logique, la présente divulgation concerne des moyens destinés à éviter que la maitrise de la réactivité du cœur ne soit pas garantie ce qui contribue à une sûreté inhérente de l’installation et renforce la possibilité d’installer le réacteur dans des zones urbanisées en supprimant tout une famille de risques. [0096] In the same vein, the present disclosure concerns means intended to prevent control of the reactivity of the core from being guaranteed, which contributes to the inherent safety of the installation and reinforces the possibility of installing the reactor in urbanized areas by eliminating a whole family of risks.
[0097] Dans le réacteur, l’ensemble des besoins en variation de réactivité du cœur est assuré par les barres de contrôle 601 qui, comme vu plus haut, sous l’impulsion des tiges de contrôle 7 manœuvrées par des mécanismes électromagnétiques de type traditionnel, se déplacent verticalement dans le cœur. [0097] In the reactor, all the needs for variation in reactivity of the core are ensured by the control rods 601 which, as seen above, under the impulse 7 control rods operated by traditional type electromagnetic mechanisms, move vertically in the heart.
[0098] Un des accidents les plus sévères qui puisse arriver sur un réacteur nucléaire est un emballement non contrôlé de la réaction en chaine qui provoquerait une excursion exponentielle de puissance. Pour éviter une telle situation, des moyens de prévention et de mitigation sont classiquement implantés dans les réacteurs afin d’éviter ce qu’on appelle une prompte criticité. Ils ramènent les conséquences d’un tel accident à un niveau acceptable. [0098] One of the most severe accidents that can occur in a nuclear reactor is an uncontrolled runaway chain reaction that would cause an exponential power excursion. To avoid such a situation, prevention and mitigation measures are conventionally implemented in reactors to avoid what is called prompt criticality. They reduce the consequences of such an accident to an acceptable level.
[0099] Dans la présente installation de faible puissance, par exemple de 15 à 80 MWth, la très faible différence de pression entre la cuve du réacteur et la piscine environnante permet d’exclure les accidents de type éjection de barres de contrôle, qui sont pénalisants sur la plupart des réacteurs de puissance. Par ailleurs, la vitesse maximum d’extraction des barres par les mécanismes de contrôle est très lente, des variations de puissance rapides n’étant pas nécessaires en chauffage urbain étant donné la grande inertie thermique des réseaux. L’augmentation de puissance due à un retrait inopiné de barres de contrôle laissera un large délai au système de protection pour réagir et faire chuter toutes les barres. [0099] In the present low-power installation, for example from 15 to 80 MWth, the very low pressure difference between the reactor vessel and the surrounding pool makes it possible to exclude accidents of the control rod ejection type, which are penalizing on most power reactors. Furthermore, the maximum speed of extraction of the rods by the control mechanisms is very slow, rapid power variations not being necessary in district heating given the high thermal inertia of the networks. The increase in power due to an unexpected withdrawal of control rods will leave a large delay for the protection system to react and cause all the rods to drop.
[0100] Le cœur d’un réacteur nucléaire est le lieu d’une réaction en chaine qui doit pouvoir être maintenue dans la durée. Il présente donc un excès de réactivité qui est usuellement représenté par le facteur de multiplication des neutrons entre deux générations successives (keff). Cet excès est compensé, en début de vie du cœur, par des absorbants de neutrons qui maintiennent ce facteur égal à 1 . Ces absorbants sont retirés progressivement pour compenser la montée de la capture neutronique des corps créés et résidus de la fission nucléaire, jusqu’à ce que la réserve de réactivité ne soit plus suffisante pour maintenir le cœur critique. A ce moment, des assemblages usés sont retirés du cœur et remplacés par des assemblages neufs. [0100] The core of a nuclear reactor is the site of a chain reaction that must be able to be maintained over time. It therefore has an excess of reactivity which is usually represented by the neutron multiplication factor between two successive generations (keff). This excess is compensated, at the beginning of the core's life, by neutron absorbers which maintain this factor equal to 1. These absorbers are gradually removed to compensate for the increase in neutron capture of the bodies created and residues of nuclear fission, until the reactivity reserve is no longer sufficient to maintain the critical core. At this time, worn assemblies are removed from the core and replaced by new assemblies.
[0101] La réglementation nucléaire impose des critères de sous-réactivité lorsque le réacteur est en arrêt, que les assemblages combustibles soient toujours dans le cœur, en déplacement pour les opérations de chargement et déchargement, ou en entreposage sur le site du réacteur. Le critère usuel est de garantir dans toutes les configurations d’arrêt à froid keff < 0,95. [0101] Nuclear regulations impose under-reactivity criteria when the reactor is shut down, whether the fuel assemblies are still in the core, moving for loading and unloading operations, or in storage at the reactor site. The usual criterion is to guarantee in all cold shutdown configurations keff < 0.95.
[0102] Dans la solution proposée, les configurations d’arrêts, de rechargement - déchargement ou d’entreposage sont définies de telle manière qu’un retour à la criticité soit physiquement impossible et que les critères réglementaires soient naturellement respectés, permettant d’exclure toute excursion de réactivité incontrôlée. [0102] In the proposed solution, the shutdown, reloading - unloading or storage configurations are defined in such a way that a return to criticality is physically impossible and that the regulatory criteria are naturally respected, making it possible to exclude any uncontrolled reactivity excursion.
[0103] Lorsque la réserve de réactivité devient insuffisante, en fin de cycle combustible, l’ensemble des barres de contrôle sont insérées dans le cœur, stoppent la réaction en chaine et apportent la marge d’antiréactivité réglementaire. [0103] When the reactivity reserve becomes insufficient, at the end of the fuel cycle, all of the control rods are inserted into the core, stopping the chain reaction and providing the regulatory anti-reactivity margin.
[0104] La figure 6 donne l’exemple d’un cœur 6, en vue de dessus, doté d’un combustible à plaque 600, mais l’invention est tout aussi pertinente lorsqu’il s’agit d’un combustible crayons, similaire à celui des réacteurs à eau pressurisée de puissance. Dans le cas présenté, le cœur comporte 45 assemblages et 32 barres de contrôle 601 en forme de croix et régulièrement réparties dans le cœur. Le matériau absorbant de neutrons des barres peut être du carbure de bore, de l’hafnium ou un alliage de métaux particuliers contenant de l’argent, de l’indium et du cadmium, suivant l’état de l’art. Ces 32 barres 601 sont organisées en plusieurs groupes, chacun géré de manière autonome au moyen de barres de contrôle 7 schématisées notamment en figure 2. [0104] Figure 6 gives the example of a core 6, in top view, equipped with a plate fuel 600, but the invention is just as relevant when it is a rod fuel, similar to that of pressurized water power reactors. In the case presented, the core comprises 45 assemblies and 32 control rods 601 in the shape of a cross and regularly distributed in the core. The neutron absorbing material of the rods can be boron carbide, hafnium or an alloy of particular metals containing silver, indium and cadmium, according to the state of the art. These 32 rods 601 are organized into several groups, each managed autonomously by means of control rods 7 shown diagrammatically in particular in Figure 2.
[0105] Les barres de contrôle peuvent être organisées en groupes : a. - Un groupe dédié à la régulation de la puissance du réacteur. b. - Un groupe dédié à la compensation de l’usure des assemblages combustibles. c. - Deux groupes d’arrêt, chacun ayant la capacité d’arrêter le réacteur et d’apporter la marge d’antiréactivité règlementaire pour mener les opérations de déchargement - rechargement. [0105] The control rods can be organized into groups: a. - A group dedicated to regulating the reactor power. b. - A group dedicated to compensating for wear of the fuel assemblies. c. - Two shutdown groups, each having the capacity to shut down the reactor and provide the regulatory anti-reactivity margin to carry out the unloading - reloading operations.
[0106] Le déplacement de chacune des barres est assuré par des mécanismes électromagnétiques traditionnels agissant sur les barres de contrôle, et, en cas d’absence de courant électrique, les barres chutent dans le cœur, selon les principes habituels dans les réacteurs nucléaires : une sortie d’un paramètre de la plage normale de fonctionnement induit la coupure de l’alimentation électrique des mécanismes, et les barres arrêtent la réaction en chaine et assurent la sous-criticité réglementaire. [0106] The movement of each of the bars is ensured by traditional electromagnetic mechanisms acting on the control bars, and, in the absence of electric current, the bars fall into the core, according to the usual principles in nuclear reactors: an exit of a parameter from the normal operating range induces the cutting of the electrical supply to the mechanisms, and the rods stop the chain reaction and ensure regulatory subcriticality.
[0107] Le cœur est schématisé en figure 7 en vue de côté coupe. [0107] The heart is shown schematically in Figure 7 in a side section view.
[0108] Pour permettre l’extraction du cœur, ce dernier est implanté dans une cheminée entourée par l’échangeur 91 annulaire. Les barres de contrôle sont composées de plaques en forme de croix 601 aussi visibles du dessus en figure 8A et s’insèrent entre les assemblages combustibles 600. Les barres de contrôle sont accrochées à des tiges 7 comme vu précédemment. [0108] To allow the extraction of the core, the latter is implanted in a chimney surrounded by the annular exchanger 91. The control rods are composed of cross-shaped plates 601 also visible from above in FIG. 8A and are inserted between the fuel assemblies 600. The control rods are attached to rods 7 as seen previously.
[0109] Le cœur 6 est particulièrement petit, comparé à celui d’un réacteur de puissance ce qui conduit à des fuites périphériques et axiales de neutrons très importantes. Usuellement, dans les réacteurs de recherche, on préserve l’économie de neutrons en entourant le cœur de matériaux légers, peu capturant les neutrons, comme l’eau lourde, le béryllium ou le graphite, qui réfléchissent les neutrons vers la matière fissile, et augmentent les performances, notamment celles sur le flux neutronique, paramètre essentiel pour ce type de réacteur. Dans la présente divulgation, le cœur est entouré selon les figures 6 et 7 de quatre réflecteurs de coin 62 et de quatre réflecteurs périphériques 61 sous l’échangeur 91 . [0109] The core 6 is particularly small, compared to that of a power reactor, which leads to very significant peripheral and axial neutron leaks. Usually, in research reactors, the neutron economy is preserved by surrounding the core with light materials, which capture neutrons poorly, such as heavy water, beryllium or graphite, which reflect the neutrons towards the fissile material, and increase the performance, in particular that on the neutron flux, an essential parameter for this type of reactor. In the present disclosure, the core is surrounded according to FIGS. 6 and 7 by four corner reflectors 62 and four peripheral reflectors 61 under the exchanger 91.
[0110] Selon un aspect important, le cœur est disposé dans un panier 60. Le panier représenté plus précisément en figure 9 comporte selon l’exemple un fond ajouré supportant les assemblages combustibles et deux plaques ajourées amovibles : une plaque intermédiaire 70 recouvrant les assemblages combustibles 600, comportant des fentes en croix 71 de passage des barres de contrôle et des trous de passage d’eau 72 représentée à la figure 8A, une plaque supérieure 73 pourvue de trous 74 de passage des tiges de contrôle 7 et des trous de passage d’eau 72 représentée à la figure 8B et une plaque inférieure 75 comportant des ouvertures de passage d’eau 76 permettant en outre de localiser les assemblages combustibles. Les tiges de contrôle sont mécaniquement déconnectables des barres de contrôle pour permettre leur retrait tout en maintenant les barres dans le cœur et donc dans le panier. [0111] Ce panier comporte des montants latéraux pourvus de cornières 60a de passage des réflecteurs de coins 62 et est une structure métallique qui peut être en acier et/ou dans un matériau transparent aux neutrons comme le zircaloy ou l’aluminium. [0110] According to an important aspect, the core is arranged in a basket 60. The basket shown more precisely in FIG. 9 comprises, according to the example, an openwork bottom supporting the fuel assemblies and two removable openwork plates: an intermediate plate 70 covering the fuel assemblies 600, comprising cross-shaped slots 71 for the passage of the control rods and water passage holes 72 shown in FIG. 8A, an upper plate 73 provided with holes 74 for the passage of the control rods 7 and water passage holes 72 shown in FIG. 8B and a lower plate 75 comprising water passage openings 76 also making it possible to locate the fuel assemblies. The control rods are mechanically disconnectable from the control rods to allow their removal while maintaining the rods in the core and therefore in the basket. [0111] This basket comprises side uprights provided with corners 60a for passing the corner reflectors 62 and is a metal structure which can be made of steel and/or a material transparent to neutrons such as zircaloy or aluminum.
[0112] La panier 60 permet de sortir entièrement le cœur de sa cuve et de le déposer sur un banc de rechargement 32 dans la piscine au moyen d’un pont roulant 41 et par exemple d’une élingue 42 ou d’un palonnier connecté au pont roulant et comportant lui-même des élingues. Une fois dans le banc de rechargement dont les parois sont par exemple composées de matériaux absorbants les neutrons (acier au bore, hafnium, cadmium...), les internes supérieurs (plaques 70, 73 et barres 601 ) du panier sont retirés afin de permettre les opérations de déchargement - rechargement. Une machine de rechargement positionnée au-dessus de la piscine peut assurer le retrait d’assemblages usés et l’insertion d’assemblages neufs dans le cœur et l’entreposage des assemblages dans les râteliers 31 adjacents. [0112] The basket 60 allows the core to be completely removed from its tank and placed on a reloading bench 32 in the pool by means of an overhead crane 41 and for example a sling 42 or a spreader connected to the overhead crane and itself comprising slings. Once in the reloading bench, the walls of which are for example composed of neutron-absorbing materials (boron steel, hafnium, cadmium, etc.), the upper internals (plates 70, 73 and bars 601) of the basket are removed in order to allow the unloading-reloading operations. A reloading machine positioned above the pool can ensure the removal of worn assemblies and the insertion of new assemblies into the core and the storage of the assemblies in the adjacent racks 31.
[0113] Une fois le cœur reconfiguré pour un nouveau cycle, avec les barres de contrôle insérées, les opérations inverses de celles du déchargement sont réalisées et le panier contenant le cœur est repositionné dans le réacteur par le pont roulant, les internes mis en place et la cuve 11 refermée. [0113] Once the core has been reconfigured for a new cycle, with the control rods inserted, the reverse operations to those of unloading are carried out and the basket containing the core is repositioned in the reactor by the overhead crane, the internals put in place and the vessel 11 closed.
[0114] Les assemblages combustibles déchargés sont entreposés de manière temporaire dans des râteliers avant leur transfert par la machine de rechargement dans des châteaux de transports qui seront évacués du hall réacteur par un camion. [0114] The unloaded fuel assemblies are stored temporarily in racks before being transferred by the reloading machine into transport casks which will be evacuated from the reactor hall by truck.
[0115] Le cœur présente sa plus forte réactivité intrinsèque lorsque des assemblages neufs viennent d’y être introduits, en début de cycle. La minimisation de cette réactivité se traduit directement sur la marge d’antiréactivité disponible quand le cœur est dans ses différentes configurations opérationnelles, dans ou hors du réacteur et donc facilite l’atteinte des marges d’antiréactivité règlementaire. [0115] The core exhibits its highest intrinsic reactivity when new assemblies have just been introduced into it, at the start of the cycle. Minimizing this reactivity directly translates into the available antireactivity margin when the core is in its various operational configurations, in or out of the reactor, and therefore facilitates the achievement of regulatory antireactivity margins.
[0116] Le premier moyen de baisser cette réactivité intrinsèque, tout en maintenant l’énergie produite durant le cycle, peut être l’utilisation de poisons consommables. Pour ce faire, on introduit dans le combustible des corps dont les noyaux capturent les neutrons, en créant de nouveaux isotopes eux-mêmes non absorbants. Ils sont d’un usage courant dans l’industrie nucléaire ; parmi les solutions envisageables pour la présente divulgation, on peut citer des fils de cadmium ou de l’oxyde de gadolinium, intégrés dans la partie combustible des assemblages. [0116] The first way to lower this intrinsic reactivity, while maintaining the energy produced during the cycle, can be the use of consumable poisons. To do this, bodies are introduced into the fuel whose nuclei capture neutrons, creating new isotopes which are themselves non-absorbent. They are in common use in the nuclear industry; among the solutions that can be considered for the present disclosure, we can cite cadmium wires or gadolinium oxide, integrated into the fuel part of the assemblies.
[0117] L’ utilisation des réflecteurs 61 , 62 permet aussi de réduire de manière significative le nombre d’assemblages neufs à introduire dans le cœur à chaque rechargement, tout en maintenant la même énergie produite pendant le cycle combustible. Cela permet donc de baisser la réactivité initiale intrinsèque du cœur, lorsqu’il n’est plus emmailloté par ses couvertures de réflecteur. [0117] The use of reflectors 61, 62 also makes it possible to significantly reduce the number of new assemblies to be introduced into the core at each reloading, while maintaining the same energy produced during the fuel cycle. This therefore makes it possible to lower the initial intrinsic reactivity of the core, when it is no longer swaddled by its reflector covers.
[0118] Cette minimisation de la réactivité initiale, cœur nu, sans barres de contrôle, permet une plus grande marge d’antiréactivité lorsque celles-ci sont insérées, et donc facilite le respect des critères réglementaires. Lors des opérations de déchargement - rechargement, le cœur, dans son intégralité, est extrait de son environnement réflecteur avec les barres insérées et voit donc sa marge d’antiréactivité augmentée jusqu’à son dépôt dans le banc de rechargement. [0118] This minimization of the initial reactivity, bare core, without control rods, allows a greater margin of anti-reactivity when these are inserted, and therefore facilitates compliance with regulatory criteria. During unloading - reloading operations, the core, in its entirety, is extracted from its reflective environment with the bars inserted and therefore sees its margin of anti-reactivity increased until it is deposited in the reloading bench.
[0119] Le réacteur peut être rechargé tous les ans, en période estivale, lorsque la demande de chaleur est la plus faible, pendant une période de quelques jours durant laquelle des moyens complémentaires de production sur le réseau de chaleur sont activés. C’est aussi le moment où la maintenance est effectuée et les systèmes testés. [0119] The reactor can be recharged every year, in the summer period, when the demand for heat is lowest, for a period of a few days during which additional means of production on the heat network are activated. This is also the time when maintenance is carried out and the systems are tested.
[0120] Les opérations d’arrêt et de déchargement peuvent être réalisées selon la séquence suivante : a. - Arrêt du réacteur et insertion de l’ensemble des barres de contrôle 601 dans le cœur ; b. - Egalisation des pressions du réacteur et de la piscine ; c. - Ouverture de la cuve primaire dans la piscine, retrait et dépose du couvercle 11 dans une zone dédiée 33; d. - Démontage et dépose des internes supérieurs de la cuve, laissant les barres de contrôle insérées dans le cœur ; e. - déplacement, par un pont roulant 41 du hall réacteur 4 du panier comportant le cœur avec les barres de contrôle insérées entre le fond de la cuve 9 et un banc de rechargement 32 dans la piscine 3 contenant la cuve 9. [0120] The shutdown and unloading operations can be performed according to the following sequence: a. - Shutting down the reactor and inserting all the control rods 601 into the core; b. - Equalizing the pressures of the reactor and the pool; c. - Opening the primary vessel in the pool, removing and removing the cover 11 in a dedicated area 33; d. - Dismantling and removing the upper internals of the vessel, leaving the control rods inserted into the core; e. - movement, by an overhead crane 41 from the reactor hall 4 of the basket containing the core with the control rods inserted between the bottom of the tank 9 and a reloading bench 32 in the pool 3 containing the tank 9.
[0121] Le cœur, dans le banc de rechargement, peut être entouré de matériaux absorbants les neutrons (acier au bore par exemple, ou autres matériaux neutrophages), qui fournissent suffisamment d’antiréactivité pour manipuler les barres de contrôle et insérer des assemblages neufs. [0121] The core, in the reloading bench, can be surrounded by neutron-absorbing materials (boron steel for example, or other neutron-absorbing materials), which provide sufficient antireactivity to manipulate the control rods and insert new assemblies.
[0122] Des caractéristiques importantes sont les suivantes : [0122] Important features include:
[0123] - Un ensemble de mesures sont prises sur le réacteur, lorsqu’il est en fonctionnement pour interdire une excursion rapide de réactivité. [0123] - A set of measures are taken on the reactor, when it is in operation to prevent a rapid excursion in reactivity.
[0124] - Le cœur, en opération, est entouré de matériaux réflecteurs de neutrons, permettant de limiter leur fuite, très importante étant donné sa petite taille et réduire autant que possible sa réactivité intrinsèque. [0124] - The core, in operation, is surrounded by neutron reflecting materials, making it possible to limit their leakage, very important given its small size and to reduce as much as possible its intrinsic reactivity.
[0125] Des poisons consommables, qui disparaissent progressivement au cours du cycle combustible, contribuent aussi à la réduction de la réactivité intrinsèque du cœur. [0125] Consumable poisons, which gradually disappear during the fuel cycle, also contribute to the reduction of the intrinsic reactivity of the core.
[0126] - Le cœur est toujours installé dans un panier qui permet son extraction et son insertion dans le réacteur tout en maintenant la présence de l’ensemble des barres de contrôle et d’arrêt. [0126] - The core is always installed in a basket which allows its extraction and insertion into the reactor while maintaining the presence of all the control and shutdown rods.
[0127] - Pour les opérations d’extractions du combustible usé et d’insertion du combustible neuf, le panier contenant le cœur est déposé dans un banc de rechargement composé de matériaux neutrophages, permettant ainsi la manipulation des barres de contrôle et d’arrêt. [0127] - For the operations of extracting spent fuel and inserting new fuel, the basket containing the core is placed in a reloading bench composed of neutron-absorbing materials, thus allowing the handling of the control and shutdown rods.
[0128] - Le cœur respecte ainsi les marges d’antiréactivité réglementaires même en cas de défaillance mécanique ou d’erreur opérateur. [0128] - The core thus respects the regulatory anti-reactivity margins even in the event of mechanical failure or operator error.
Application industrielle Industrial application
[0129] L’ invention ne se limite pas aux exemples décrits ci-avant, seulement à titre d’exemple, mais elle englobe toutes les variantes que pourra envisager l’homme de l’art dans le cadre de la protection recherchée. La configuration décrite permet l’installation de l’installation nucléaire présentée dans des zones urbanisées. [0129] The invention is not limited to the examples described above, only as an example, but it encompasses all the variants that a person skilled in the art may envisage. art within the framework of the protection sought. The configuration described allows the installation of the nuclear installation presented in urbanized areas.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2306983 | 2023-06-30 | ||
FR2306983A FR3150630A1 (en) | 2023-06-30 | 2023-06-30 | NUCLEAR REACTOR WITH CONVECTIVE EXCHANGER |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025003598A1 true WO2025003598A1 (en) | 2025-01-02 |
Family
ID=88291239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2024/050819 WO2025003598A1 (en) | 2023-06-30 | 2024-06-20 | Nuclear reactor having a convective exchanger |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3150630A1 (en) |
WO (1) | WO2025003598A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2314560A1 (en) | 1975-06-10 | 1977-01-07 | Asea Atom Ab | Light water reactor immersed in water filled basin - has inlet from basin opened automatically to provide emergency cooling |
US4363780A (en) | 1979-12-17 | 1982-12-14 | Ab Asea-Atom | Boiling reactor |
US4696791A (en) * | 1984-07-17 | 1987-09-29 | Sulzer Brothers Limited | Nuclear reactor installation |
WO2015089662A1 (en) * | 2013-12-17 | 2015-06-25 | Hatch Ltd. | Nuclear reactor safety system |
WO2022106756A2 (en) | 2020-11-20 | 2022-05-27 | Teknologian Tutkimuskeskus Vtt Oy | A nuclear reactor module and a nuclear district heating reactor comprising and method of operating the same |
-
2023
- 2023-06-30 FR FR2306983A patent/FR3150630A1/en active Pending
-
2024
- 2024-06-20 WO PCT/FR2024/050819 patent/WO2025003598A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2314560A1 (en) | 1975-06-10 | 1977-01-07 | Asea Atom Ab | Light water reactor immersed in water filled basin - has inlet from basin opened automatically to provide emergency cooling |
US4363780A (en) | 1979-12-17 | 1982-12-14 | Ab Asea-Atom | Boiling reactor |
US4696791A (en) * | 1984-07-17 | 1987-09-29 | Sulzer Brothers Limited | Nuclear reactor installation |
WO2015089662A1 (en) * | 2013-12-17 | 2015-06-25 | Hatch Ltd. | Nuclear reactor safety system |
WO2022106756A2 (en) | 2020-11-20 | 2022-05-27 | Teknologian Tutkimuskeskus Vtt Oy | A nuclear reactor module and a nuclear district heating reactor comprising and method of operating the same |
Also Published As
Publication number | Publication date |
---|---|
FR3150630A1 (en) | 2025-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1464058B1 (en) | Compact pressurized water nuclear reactor | |
RU2596160C2 (en) | Small nuclear power plant on fast neutron reactors with long refuelling intervals | |
US20050069074A1 (en) | Nuclear plant spent fuel low temperature reactor | |
FR3131060A1 (en) | Liquid metal cooled nuclear reactor incorporating a cold source passive residual heat removal (EPUR) system with phase change material (PCM) thermal tank and removable thermal insulation layer around the PCM tank. | |
Carre et al. | Update of the French R&D strategy on gas-cooled reactors | |
Lane et al. | Advances in technology, design and deployment of microreactors-a review | |
WO2025003598A1 (en) | Nuclear reactor having a convective exchanger | |
WO2025003596A1 (en) | Nuclear reactor core arrangement and method for handling this arrangement | |
FR3150631A1 (en) | SECURITY SYSTEM OF A NUCLEAR INSTALLATION AND METHOD FOR MAKING SUCH AN INSTALLATION SAFE | |
FR2944377A1 (en) | COLD STOP SYSTEM FOR SODIUM COOLED REACTOR. | |
FR3146368A1 (en) | Liquid cooled nuclear reactor and solid fuel assemblies, integrating a liquid metal bath and material(s) (MCP) nominal power evacuation system for the evacuation of residual power in the event of an accident. | |
Petrochenko et al. | SVBR-100 nuclear technology as a possible option for developing countries | |
EP4390972B1 (en) | Installation comprising at least one nuclear reactor and a thermal storage pit at least partly arranged above the reactor and connected to a heat network | |
WO2024133281A1 (en) | Nuclear facility comprising at least one modular nuclear reactor (smr) and a vessel pit delimiting a water basin in which the smr reactor block is submerged | |
FR3143824A1 (en) | Modular type pressurized water nuclear reactor (PWR) with pressurizer without water spray. | |
Yamashita et al. | An innovative conceptual design of safe and simplified boiling water reactor (SSBWR) | |
FR3134221A1 (en) | Internal vessel for nuclear reactor and reactor comprising several internal vessels | |
WO2015097304A1 (en) | Method for the management of nuclear reactors, and corresponding management assembly | |
Paparusso et al. | World status of the SMR projects | |
WO2024256546A1 (en) | Heat-generating nuclear reactor with liquid metal coolant and core comprising coolant-sealed tubes each housing "triso" nuclear fuel particles | |
Geraci | Initiating Event Analysis of a Lithium Fluoride Thorium Reactor | |
Kambe et al. | RAPID-L and RAPID operator free fast reactor concepts without any control rods | |
Schleicher et al. | Design and Development of EM2 | |
Khan et al. | A review on specific features of small and medium sized nuclear power plants | |
JP2018013399A (en) | Transuranium element nuclear fuel assembly suitable for purification and shipping plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24738359 Country of ref document: EP Kind code of ref document: A1 |