[go: up one dir, main page]

WO2025002592A1 - Wall construction made of stone slabs as a co2 sink with carbon fibres consisting of biomass - Google Patents

Wall construction made of stone slabs as a co2 sink with carbon fibres consisting of biomass Download PDF

Info

Publication number
WO2025002592A1
WO2025002592A1 PCT/EP2024/000038 EP2024000038W WO2025002592A1 WO 2025002592 A1 WO2025002592 A1 WO 2025002592A1 EP 2024000038 W EP2024000038 W EP 2024000038W WO 2025002592 A1 WO2025002592 A1 WO 2025002592A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
wall element
bearing wall
stone
element according
Prior art date
Application number
PCT/EP2024/000038
Other languages
German (de)
French (fr)
Inventor
Mera Kuse
Coline KUSE
Kolja Kuse
Original Assignee
Mera Kuse
Kuse Coline
Kolja Kuse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202023001382.8U external-priority patent/DE202023001382U1/en
Priority claimed from DE202024000312.4U external-priority patent/DE202024000312U1/en
Application filed by Mera Kuse, Kuse Coline, Kolja Kuse filed Critical Mera Kuse
Publication of WO2025002592A1 publication Critical patent/WO2025002592A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/296Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/002Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising natural stone or artificial stone
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Definitions

  • the present invention relates to an innovative wall construction that serves as a CO2 sink.
  • This construction is based on the principles of EP08874021 and EP20702566, whereby a symmetrical arrangement of pressure-stable panels is also used here. Between these panels there is an insulating layer that contributes to the rigidity of the construction.
  • the panels are made of pressure-stable materials such as natural stone, artificial stone, concrete, glaze or ceramic, which are pressure-resistant but usually also brittle and prone to breakage. This includes in particular natural stones such as granite, gneiss, marble, limestone, basalt and gabbro, as well as concrete. These materials weather on the surface and absorb CO2 in the process.
  • the aim of this invention is to bind carbon in the insulation material in order to make the building material CO 2 -negative.
  • the insulation layer in this case consists of pure BioChar.
  • BioChar is a form of coal produced by pyrolysis of biomass. In this thermochemical process, organic material is decomposed in the absence of oxygen at temperatures between 300 and 700 oC. BioChar, incorporated into the insulation layer, provides excellent thermal insulation and reduces the weight of the wall construction. It stores carbon in a highly concentrated form.
  • the wall is made of thin stone or ceramic panels that are stabilized using an innovative method so that they are self-supporting.
  • This construction also serves as highly efficient carbon sink. Materials such as gabbro rock remain dimensionally stable up to 1050°C and only lose their compressive strength minimally, which is particularly important for lightweight constructions in the event of a fire.
  • the construction ensures that the stone slabs remain dimensionally stable and do not collapse even when temperatures fluctuate.
  • BioChar and carbon fiber reinforced materials carbon is permanently bound, meaning that the wall construction contributes to reducing CO 2 in the atmosphere.
  • the wall construction consists of two pressure-resistant panels with an insulating layer of BioChar between them.
  • the panels can be made of natural stone, artificial stone, concrete, ceramic or glass.
  • the insulation layer of BioChar is highly porous and offers excellent thermal insulation while being lightweight.
  • the carbon fibers preferably made from biomass such as bioglycerin or lignin, stabilize the panels against tensile and bending loads.
  • the load-bearing panels are connected using temperature-stable mineral adhesives such as high-temperature water glass to ensure structural integrity in the event of a fire.
  • the use of gabbro rocks or other heat-resistant materials also contributes to safety and stability at high temperatures.
  • stiffening ribs are made of temperature-resistant materials and integrated into the construction with the help of wood, glass or ceramic to avoid thermal bridges. These ribs are designed to distribute the loads evenly over the entire wall surface without forming thermal bridges.
  • Another new aspect of this invention is the use of the rock or mineral powder that accrues during the production of the panels. This powder, which is created when the panels are cut, has a high potential for weathering (enhanced weathering), in which CO2 from the atmosphere is permanently incorporated into the mineral structure.
  • the use of stone suitable for weathering to build the wall offers an additional opportunity for CO2 binding and contributes to the climate neutrality of the construction method.
  • the present invention describes a novel wall construction that is not only mechanically stable and thermally insulating, but also serves as an efficient CO2 sink.
  • the integration of BioChar and carbon fiber reinforced materials enables a sustainable and environmentally friendly construction method that actively contributes to the reduction of CO2 emissions.
  • This construction offers a promising solution for modern, sustainable building construction by combining the advantages of natural stone and innovative materials to create a stable, lightweight and environmentally friendly wall construction.
  • the present invention relates to the use of pure BioChar as a stiffening insulation layer which is optionally supported with rock wool.
  • This carbon serves the purpose of good thermal insulation and reduces the weight of the insulation layer and it stores carbon in a highly concentrated form.
  • the present invention proposes a way to make the laid out stone or earthenware slabs or ceramic or artificial stone or concrete slabs, which are sustainably stabilized in a cost-effective manner and become self-supporting wall elements in the way proposed here, whereby these are also made to act as highly efficient carbon sinks.
  • the stone, the ceramic or even gypsum and other pressure-stable mineral materials - generally referred to here as earthenware - which until now meant additional weight for the construction of buildings purely as facade cladding, will now themselves become the load-bearing element of the house wall and the insulation layer together with the carbon fiber, if they are made from organic oil or organic lignin, for example, will become an efficient carbon sink.
  • the stone Due to its high temperature resistance, the stone is able to set concrete in the event of a fire. Gabbro rocks are dimensionally stable up to 1050°C, they lose compressive strength, but remain able to absorb compressive loads even in the form of slim slabs if the wall is weakened by fire loads. Normal construction concrete is not able to withstand such high fire loads without losing any load-bearing capacity if thin panels are used. This is important for future lightweight construction potential in the building sector.
  • the connection between the fiber and the stone is made using temperature-stable water glass in order to support the stone sustainably and for long enough in the event of a fire.
  • the method ensures that the earthenware is stabilized under a wide range of thermally induced mechanical loads, as well as purely mechanical loads, in such a way that it is protected from mechanical destruction by cracking of the wall panel on the one hand, and in particular also from thermally induced deformation, by means of a stabilization suitable for the respective application and load case.
  • the dimensional stability in the event of temperature differences on the inside and outside of the wall and also the resulting temperature changes on the weather-dependent side is also of significant importance, which can also be supported by the fact that the panels can be made of different materials with different expansion coefficients.
  • the core of the solution to finding the most suitable insulation material for such self-supporting walls in sandwich construction is to keep the total expansion coefficient of the inner and outer panels as small as possible and, in particular, as equal as possible, to enable the absorption of carbon, to ensure good fire protection behavior and to have a high insulation value, as well as to be dimensionally stable, waterproof and frost-proof and to avoid thermal bridges.
  • Promising candidates for bonding the elements of such a wall are mineral adhesives that have sufficient flexibility and sufficient tensile strength in order to prevent the fibre-stabilised earthenware panels from buckling or other failure even in the event of a fire by bonding them to them and transferring the load.
  • the invention filed for registration relates to the construction sector, in particular to building construction, more precisely to house construction with service buildings, residential buildings, pavilions, halls and all types of buildings in general.
  • the core of the invention relates to a new technology for creating a house wall as a building element, with the functions of static load transfer and the facade with all the functions of a building shell and the corresponding physical requirements in accordance with current standards.
  • the wall elements are prefabricated and installed on site.
  • the ceiling structures are placed on the wall elements.
  • the wall elements combine all static and building physics requirements in a sandwich structure.
  • the outer thin panes made of earthenware or other pressure-resistant materials mainly take on the normal forces (pane forces). They can be used directly as finished Surfaces can be used both indoors and outdoors.
  • the core of the sandwich is made up of a shear-resistant, heat-insulating foam that is shear-resistantly connected to the outer panes. The core absorbs the shear forces from bending stresses, resulting in sufficient bending stiffness across the element. The element is thus protected against buckling and loads occurring horizontally across the element, such as wind loads, can be absorbed.
  • the load introduction and load transfer construction made of well-insulating stone from the floor slabs to this sandwich element applies the vertical loads symmetrically to the panes without creating a thermal bridge that is unacceptable from a building physics perspective.
  • the watertightness and vapor-tightness are ensured by the interaction of the sandwich materials with special connection details.
  • the elements are installed as pendulum supports in the ceilings above and below, held in place by the static principle.
  • the thermal insulation values can achieve the Swiss Minergie standard.
  • the thin panes are made of a pressure and shear-resistant, waterproof material such as concrete, natural stone, gypsum, ceramic. They are secured by reinforcements against tensile stresses from thermally asymmetrical deformations and against tensile stresses in the area of stress distribution in the load introduction zones, which could lead to unannounced total brittle fractures. Imperfections in the material and construction can also be bridged and the most forgiving ductile material behavior possible is created.
  • the sandwich core is made of a highly thermally insulating material made of BioChar.
  • the load introduction consists of a thermally weakly conductive, compression- and shear-resistant element made of stone or wood or a combination of stone and wood, which is force-fitted to the stone discs with mineral adhesive material or dovetail galvanization or both.
  • connection between the panes and the load introduction, the panes and stiffening ribs are made using permanent, shear-resistant adhesives.
  • Commercially available mineral adhesives such as high-temperature water glass with a temperature resistance of at least 600°C are used.
  • fiber materials with a mineral matrix such as carbon fibers, preferably those made from biomass and in turn preferably from bioglycerin or lignin, which stabilize the stone either over a large area or only partially with individual rovings and prevent it from expanding and breaking.
  • the natural stone itself has a very low temperature expansion modulus, which can be adjusted with the fiber stabilization, since natural stone is compressible due to its porous structure. If the fiber tension is sufficiently large and the right fiber is used, or if the fiber can be used to introduce appropriate prestress into the composite of fiber matrix and stone, temperature-related expansion of the stone slab is minimized or even completely prevented.
  • the invention described here also relates to carbon fibers made from lignin, since these are cheaper than PAN-based fibers and have sufficient rigidity for the purpose described here when used as tensile reinforcement on the outside of the stone slabs. be installed.
  • the carrier material hereinafter referred to as the carrier, consists - as described for example in the patent application EP 106 20 92 - of a fiber-reinforced matrix based on water glass.
  • Carbon fibers for example, are used, which can withstand high tensile loads and contract under the influence of heat, i.e. have a negative thermal expansion coefficient and sustainably stabilize a more or less thin stone slab.
  • temperature-stable mineral water glass adhesives in combination with, for example, carbon fibers, which have a negative thermal expansion coefficient, such a secure stabilization of even very large stone slabs is possible.
  • the requirement to optimize the mechanical load-bearing capacity and temperature load-bearing capacity of thin stone structures is met so that the overall expansion coefficient of the slab is controlled over a wide temperature range in order to avoid the entire slab warping and still achieve a lightweight construction is achieved.
  • the invention describes stiffening ribs that are connected to the stone slabs using mineral adhesives. The connection can be improved by galvanizing. Wood can make sense in the construction, especially for fire protection reasons, for example for connecting internal or even external stiffening ribs that prevent the walls from buckling. The wood in the construction is safe from catching fire and can withstand even extreme temperatures if there is no air supply.
  • the external ribs can be connected not only to the stone slab using galvanizing techniques, but the ribs can also be connected to each other in a high-temperature-safe manner in order to prevent the slabs from buckling in the event of a fire.
  • the overall construction of the new type of wall construction described here takes into account the fact that special vapor barriers are not necessary, as the stone is sufficiently waterproof, but its porosity ensures the necessary breathing of moisture.
  • the stone slabs can absorb, let through and release a certain amount of water over longer periods of time and act thus regulating the moisture balance between the interior and exterior spaces, with the BioChar also having an effect here through its water absorption and water release capabilities.
  • the supporting stone or mineral material layers play an important role in the invention as an additional CO2 sink.
  • the rock or mineral powder created when the panels are cut has a high weathering potential, depending on the type. When this powder or dust is exposed to water and CO2 , carbonation processes take place that incorporate the atmospheric carbon in the form of CO2 into the mineral structure and thus bind the carbon permanently. This process is known in climate science as Enhanced Weathering of Stone or Enhanced Weathering of Rock (EWR) and promises to become a de facto infinitely scalable sink for carbon dioxide if this dust can be spread in nature or on arable land.
  • EWR Enhanced Weathering of Stone
  • EWR Enhanced Weathering of Rock
  • the stone dust is generated as waste in the processes of building walls, so it does not have to be recycled by the climate science assumes that the stones will be specially ground using renewable energy, as the grain size and surface area usually produced when the plates are cut correspond to the values that are expected to be successful in climate models. EWR will thus become part of a self-sustaining business model in a construction sector that will expand rapidly in the future.
  • Gabbro rock or basalt rock has a weathering rate of 450 grams of CO2 per kilogram of stone powder.
  • this house wall is highly CO 2 negative due to the CO 2 binding in the biochar and the stone dust, whereby according to calculations the CO 2 binding in the coal and the stone dust is more or less balanced.
  • the carbon fiber then contributes an additional amount to the CO 2 negativity if it is not burned after use but can be stored permanently underground.
  • the relatively loose insulation layer means that the load-bearing stone panels must be stiffened so that no buckling forces strong enough to break the wall panels can occur. This is done by means of longitudinally mounted stiffening ribs that are firmly connected to the stone panels. These stiffening ribs must not form thermal bridges, which is why they are located in the middle of the wall. do not meet. In addition, a force-fit connection is made at least in the middle using a material that is poorly heat-conducting, so that in the event of a fire, the stone slabs, which lose their compressive strength at high temperatures, still have to offer sufficient resistance to buckling forces.
  • this material should not only have low thermal conductivity, but also the highest possible temperature resistance, wood, gypsum or ceramic are used for this, which represent a good compromise.
  • This element should also not be connected to the opposing stiffening ribs by gluing, but should be made purely mechanically using a force-fit geometry, for example by dovetail galvanization, as is common in timber construction.
  • the horizontal section through the wall is shown in Fig. 1.
  • the wall is shown with two stone slabs (1) which are stabilized on the outside with a carbon layer with a water glass matrix (2).
  • Figs. 2, 3 and 4 show the vertical sections through the wall in the places where the sufficiently pressure and tensile stable ribs (5) are located, which are attached to the inside of the slabs and are firmly attached to the stone slabs on one side with mineral adhesive.
  • the load introductions (4) at the top and bottom transfer the compressive forces into and out of the wall.
  • Fig. 4 shows the wall with an inner and an outer rib reinforcement in a place without galvanization.
  • Fig. 3 shows the walls connected to each other with a wooden wedge (6) in a dovetail shape. connected rib reinforcements in order to be able to absorb the kick forces for as long as possible even in the event of a fire. If necessary, the carbon filling can be mechanically supported by means of stone wool fibers.
  • Fig. 5 shows the section at a point where there is no bracing in the wall and where, in contrast to Figure 1, only one of the two stone slabs (1a) is stabilized on the outside with carbon fibers, and the other stone slab (1b) on the inside.
  • Which of the two sides has the matrix fiber layer on the inside can depend, for example, on which stone slab is exposed to higher or longer temperatures in the event of a fire. The case that the interior is exposed to higher temperatures suggests coating the stone slab that is located in the interior with carbon on the inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Building Environments (AREA)

Abstract

The invention relates to the construction of more or less thin fibre-stabilised house walls, the load-bearing slabs (1) of which are stabilised such that they form an insulating intermediate layer for reinforcement across the cross-section, wherein the intermediate layer (3) contains pure carbon in the form of biochar or charcoal which is preferably derived from atmospheric CO2, and the stabilising fibres are derived from carbon fibres from biogenic sources and are applied either to the inside or to the outside of the stone slabs. Together with the weathering potential of the stone dust produced during manufacture, the house wall becomes highly CO2-negative.

Description

Wandkonstruktion aus Steinplaten als C02 - Senke mit Carbonfasern aus Biomasse Wall construction made of stone slabs as a C0 2 sink with carbon fibers from biomass

Die vorliegende Erfindung betrifft eine innovative Wandkonstruktion, die als CO2-Senke dient. Diese Konstruktion basiert auf den Prinzipien der EP08874021 und EP20702566, wobei auch hier eine symmetrische Anordnung von druckstabilen Platten verwendet wird. Zwischen diesen Platten befindet sich eine isolierende Schicht, die zur Steifigkeit der Konstruktion beitragt. Die Platten bestehen aus druckstabilen Materialien wie Naturstein, Kunststein, Beton, Gias oder Keramik, die zwar druckbeständig, aber in der Regel auch spröde und bruchgefahrdet sind. Hierzu zahlen insbesondere auch Natursteine wie Granit, Gneis, Marmor, Kalkstein, Basalt und Gabbro, sowie auch Beton. Diese Materialien verwittern an der Oberfläche und nehmen dabei CO2 auf. The present invention relates to an innovative wall construction that serves as a CO2 sink. This construction is based on the principles of EP08874021 and EP20702566, whereby a symmetrical arrangement of pressure-stable panels is also used here. Between these panels there is an insulating layer that contributes to the rigidity of the construction. The panels are made of pressure-stable materials such as natural stone, artificial stone, concrete, glaze or ceramic, which are pressure-resistant but usually also brittle and prone to breakage. This includes in particular natural stones such as granite, gneiss, marble, limestone, basalt and gabbro, as well as concrete. These materials weather on the surface and absorb CO2 in the process.

Ziel dieser Erfindung ist es, Kohlenstoff im Isolationsmaterial zu binden, um das Baumaterial CO2-negativ zu machen. Im Unterschied zu den vorangegangenen Patenten besteht die Isolationsschicht in diesem Fall aus reinem BioChar. BioChar ist eine Form von Kohle, die durch Pyrolyse von Biomasse hergestellt wird. Bei diesem thermochemischen Verfahren wird organisches Material unter Ausschluss von Sauerstoff bei Temperaturen zwischen 300 und 700 ºC zersetzt. BioChar, eingebracht in die Isolationsschicht, bietet hervorragende thermische Isolierung und verringert das Gewicht der Wandkonstruktion. Es speichert Kohlenstoff in hochkonzentrierter Form. The aim of this invention is to bind carbon in the insulation material in order to make the building material CO 2 -negative. In contrast to the previous patents, the insulation layer in this case consists of pure BioChar. BioChar is a form of coal produced by pyrolysis of biomass. In this thermochemical process, organic material is decomposed in the absence of oxygen at temperatures between 300 and 700 ºC. BioChar, incorporated into the insulation layer, provides excellent thermal insulation and reduces the weight of the wall construction. It stores carbon in a highly concentrated form.

Die Wand besteht aus dünnen Stein- oder Keramikplatten, die durch eine innovative Methode stabilisiert werden, sodass sie selbsttragend sind. Diese Konstruktion dient gleichzeitig als hocheffiziente Kohlenstoffsenke. Materialien wie Gabbro-Gestein bleiben bis zu 1050°C formstabil und verlieren ihre Druckfestigkeit nur minimal, was besonders für Leichtbaukonstruktionen im Brandfall wichtig ist Die Konstruktion sorgt dafür, dass die Steinplatten auch bei Temperaturschwankungen formstabil bleiben und nicht schusseln. Durch die Verwendung von BioChar und carbonfaserverstarkten Materialien wird Kohlenstoff dauerhaft gebunden, wodurch die Wandkonstruktion zur Reduktion von CO2 in der Atmosphäre beitragt. The wall is made of thin stone or ceramic panels that are stabilized using an innovative method so that they are self-supporting. This construction also serves as highly efficient carbon sink. Materials such as gabbro rock remain dimensionally stable up to 1050°C and only lose their compressive strength minimally, which is particularly important for lightweight constructions in the event of a fire. The construction ensures that the stone slabs remain dimensionally stable and do not collapse even when temperatures fluctuate. By using BioChar and carbon fiber reinforced materials, carbon is permanently bound, meaning that the wall construction contributes to reducing CO 2 in the atmosphere.

Die Wandkonstruktion besteht aus zwei druckstabilen Platten, zwischen denen sich eine isolierende Schicht aus BioChar befindet. Die Platten können aus Naturstein, Kunststein, Beton, Keramik oder Glas bestehen. Die Isolationsschicht aus BioChar ist hochporös und bietet hervorragende thermische Isolierung bei gleichzeitig geringerem Gewicht. Die Kohlenstofffasern, vorzugsweise aus Biomasse wie Bioglycerin oder Lignin hergestellt, stabilisieren die Platten gegen Zug- und Biegebelastungen. Die tragenden Platten werden durch temperaturstabile mineralische Klebstoffe wie hochtemperaturfestes Wasserglas verbunden, um im Brandfall die strukturelle Integritat zu gewährleisten. Die Verwendung von Gabbro-Gesteinen oder anderen hitzebeständigen Materialien tragt zusatzlich zur Sicherheit und Stabilität bei hohen Temperaturen bei. The wall construction consists of two pressure-resistant panels with an insulating layer of BioChar between them. The panels can be made of natural stone, artificial stone, concrete, ceramic or glass. The insulation layer of BioChar is highly porous and offers excellent thermal insulation while being lightweight. The carbon fibers, preferably made from biomass such as bioglycerin or lignin, stabilize the panels against tensile and bending loads. The load-bearing panels are connected using temperature-stable mineral adhesives such as high-temperature water glass to ensure structural integrity in the event of a fire. The use of gabbro rocks or other heat-resistant materials also contributes to safety and stability at high temperatures.

Um die mechanische Belastbarkeit zu optimieren und die Gefahr des Knickens der dünnen Platten zu minimieren, werden Aussteifungsrippen aus temperaturbeständigen Materialien gebildet und mit Hilfe von Holz, Gias oder Keramik um Wärmebrucken zu vermeiden in die Konstruktion integriert. Diese Rippen sind so konzipiert, dass sie ohne Warmebrückenbildung die Lasten gleichmäßig auf die gesamte Wandflache verteilen. Ein weiterer neuer Aspekt dieser Erfindung ist die Verwendung des bei der Plattenherstellung anfallenden Gesteins- oder Mineralienmehls. Dieses Mehl, das beim Schneiden der Platten entsteht, hat ein hohes Potenzial für die Verwitterung (Enhanced Weathering), bei der CO2 aus der Atmosphäre dauerhaft in das Mineraliengefüge eingebaut wird. Die Verwendung von für die Verwitterung geeigneten Steins für den Bau der Wand bietet eine zusatzliche Möglichkeit zur CO2-Bindung und trägt zur Klimaneutralität der Bauweise bei. In order to optimise the mechanical load capacity and minimise the risk of buckling of the thin panels, stiffening ribs are made of temperature-resistant materials and integrated into the construction with the help of wood, glass or ceramic to avoid thermal bridges. These ribs are designed to distribute the loads evenly over the entire wall surface without forming thermal bridges. Another new aspect of this invention is the use of the rock or mineral powder that accrues during the production of the panels. This powder, which is created when the panels are cut, has a high potential for weathering (enhanced weathering), in which CO2 from the atmosphere is permanently incorporated into the mineral structure. The use of stone suitable for weathering to build the wall offers an additional opportunity for CO2 binding and contributes to the climate neutrality of the construction method.

Die vorliegende Erfindung beschreibt eine neuartige Wandkonstruktion, die nicht nur mechanisch stabil und thermisch isolierend ist, sondern auch als effiziente CO2-Senke dient. Durch die Integration von BioChar und kohlenstofffaserverstarkten Materialien wird eine nachhaltige und umweltfreundliche Bauweise ermöglicht, die aktiv zur Reduktion der CO2-Emissionen beiträgt. Diese Konstruktion bietet eine vielversprechende Lösung für den modernen, nachhaltigen Hochbau, indem sie die Vorteile von Naturstein und innovativen Materialien kombiniert, um eine stabile, leichte und umweltfreundliche Wandkonstruktion zu schaffen. The present invention describes a novel wall construction that is not only mechanically stable and thermally insulating, but also serves as an efficient CO2 sink. The integration of BioChar and carbon fiber reinforced materials enables a sustainable and environmentally friendly construction method that actively contributes to the reduction of CO2 emissions. This construction offers a promising solution for modern, sustainable building construction by combining the advantages of natural stone and innovative materials to create a stable, lightweight and environmentally friendly wall construction.

Die vorliegende Erfindung bezieht sich im Unterschied zu EP08874021 und EP20702566 auf die Verwendung von reinem BioChar als aussteifende Isolationsschicht welche ggfls. mit Steinwolle gestutzt wird. In contrast to EP08874021 and EP20702566, the present invention relates to the use of pure BioChar as a stiffening insulation layer which is optionally supported with rock wool.

Dabei handelt es sich vorwiegend um hochporöse Kohle, die in die Isolationsschicht eingebracht wird. Diese Kohle dient dem Zweck einer guten thermischen Isolierung und verringert das Gewicht der Isolationsschicht und sie speichert Kohlenstoff in hoch konzentrierter Form. This is mainly highly porous carbon that is introduced into the insulation layer. This carbon serves the purpose of good thermal insulation and reduces the weight of the insulation layer and it stores carbon in a highly concentrated form.

Die vorliegende Erfindung schlagt einen Weg vor möglichst dünn ausgelegten Stein bzw. Steingutplatten oder Keramik- bzw. Kunststein- oder Betonplatten, die nachhaltig auf preiswerte Weise stabilisiert werden, und auf dem hier vorgeschlagenen Weg zum selbsttragenden Wandelement werden, wobei diese zusatzlich als hocheffiziente Kohlenstoffsenke ertuchtigt werden. Der Stein, die Keramik oder auch Gias und sonstige druckstabile mineralische Materialien - generell hier als das Steingut gezeichnet - welche bisher rein als Fassadenverkleidung zusätzliches Gewicht für den Bau von Gebauden bedeutet, werden nunmehr selbst zum tragenden Element der Hauswand und die Isolationsschicht zusammen mit der Carbonfaser, wenn sie zum Beispiel aus organischem Öl oder organischem Lignin hergestellt werden, zur effiziente Kohlenstoffsenke werden. Der Stein ist in der Lage aufgrund der hohen Temperaturbeständigkeit im Brandfall Beton zu setzen. Gabbro-Gesteine sind bis 1050°C formstabil, sie verlieren an Druckfestigkeit, bleiben jedoch selbst in Form von schlanken Platten in der Lage Drucklasten aufzunehmen, wenn die Wand durch Brandlasten geschwacht wird. Normaler Bau-Beton ist nicht in der Lage im Fall der Verwendung dünner Platten so hoher Brandlasten zu überstehen, ohne jegliche Tragfähigkeit zu verlieren. Das ist wichtig für kunftiges Leichtbaupotenzial im Baubereich. Die Verbindung zwischen Faser und Stein wird mit Hilfe von temperaturstabilem Wasserglas hergestellt, um den Stein im Brandfall nachhaltig und lange genug zu stutzen. The present invention proposes a way to make the laid out stone or earthenware slabs or ceramic or artificial stone or concrete slabs, which are sustainably stabilized in a cost-effective manner and become self-supporting wall elements in the way proposed here, whereby these are also made to act as highly efficient carbon sinks. The stone, the ceramic or even gypsum and other pressure-stable mineral materials - generally referred to here as earthenware - which until now meant additional weight for the construction of buildings purely as facade cladding, will now themselves become the load-bearing element of the house wall and the insulation layer together with the carbon fiber, if they are made from organic oil or organic lignin, for example, will become an efficient carbon sink. Due to its high temperature resistance, the stone is able to set concrete in the event of a fire. Gabbro rocks are dimensionally stable up to 1050°C, they lose compressive strength, but remain able to absorb compressive loads even in the form of slim slabs if the wall is weakened by fire loads. Normal construction concrete is not able to withstand such high fire loads without losing any load-bearing capacity if thin panels are used. This is important for future lightweight construction potential in the building sector. The connection between the fiber and the stone is made using temperature-stable water glass in order to support the stone sustainably and for long enough in the event of a fire.

Wichtig ist dabei zudem, dass solche Wandelemente in weiten Temperaturbereichen formstabil bleiben und der “Bi-Metalleffekt” unterdrückt wird. Um dieses Ziel zu erreichen ist es nicht nur nötig, die Steingutplatten oder Keramikplatten gegen Zug und damit verbundenen Bruch zu stabilisieren, sondern auch einen auf der zu stabilisierenden Steinseite an der Grenzfläche zwischen zu stabilisierendem Stein und Isolationsschicht Ausdehnungsverteilung einzustellen, deren Gradient praktisch gegen Null geht, damit die Steinplatte weder zu der einen Seite, noch zu der anderen Seite, auch bei wechselnden Temperaturen, gebogen wird und somit die sichtbare Fläche großflächig gerade und eben bleibt und nicht schusseln. It is also important that such wall elements remain dimensionally stable over a wide temperature range and that the “bi-metal effect” is suppressed. To achieve this goal, it is not only necessary to stabilize the earthenware or ceramic panels against tension and the associated breakage, but also to create a barrier on the side of the stone to be stabilized at the interface between the stone to be stabilized and the insulation layer. Expansion distribution should be set so that the gradient is practically zero, so that the stone slab is not bent to one side or the other, even at changing temperatures, and thus the visible surface remains straight and level over a large area and does not warp.

Der Weg gewahrleistet, daft das Steingut unter den unterschiedlichsten thermisch bedingten mechanischen Belastungen, sowie auch rein mechanischen Belastungen so stabilisiert wird, daß sie durch eine, für die jeweiligen Einsatz- und Belastungsfalle geeignete, Stabilisierung vor mechanischer Zerstörung durch Reißen der Wandplatte einerseits, und insbesondere auch zusatzlich vor thermisch bedingter Verformung geschutzt werden. Die Formstabilität bei Temperaturunterschied auf der Wandinnen- und Wandaußenseite und auch damit bedingter Temperaturänderungen auf der wettabhängigen Seite ist dabei ebenfalls von kennzeichnender Bedeutung, die auch dadurch unterstutzt werden kann, dass die Platten aus jeweils unterschiedlichen Materialien mit unterschiedlichen Ausdehnungskoeffizienten bestehen können. The method ensures that the earthenware is stabilized under a wide range of thermally induced mechanical loads, as well as purely mechanical loads, in such a way that it is protected from mechanical destruction by cracking of the wall panel on the one hand, and in particular also from thermally induced deformation, by means of a stabilization suitable for the respective application and load case. The dimensional stability in the event of temperature differences on the inside and outside of the wall and also the resulting temperature changes on the weather-dependent side is also of significant importance, which can also be supported by the fact that the panels can be made of different materials with different expansion coefficients.

Kern der Lösung, das für solche selbsttragenden Wande in Sandwichbauweise am besten geeignete Isolationsmaterial zu finden ist es, den Gesamtausdehnungskoeffizient der inneren und außeren Platte möglich klein und insbesondere möglichst gleich zu halten, die Aufnahme von Kohlenstoff zu ermöglichen, ein gutes Brandschutzverhalten zu gewahrleisten und einen hohen Isolationswert zu besitzen, sowie formstabil, wasserfest und frostsicher zu sein und Wärmebrucken zu vermeiden.The core of the solution to finding the most suitable insulation material for such self-supporting walls in sandwich construction is to keep the total expansion coefficient of the inner and outer panels as small as possible and, in particular, as equal as possible, to enable the absorption of carbon, to ensure good fire protection behavior and to have a high insulation value, as well as to be dimensionally stable, waterproof and frost-proof and to avoid thermal bridges.

Aussichtsreiche Kandidaten, um die Teilelemente einer solchen Wand zu verkleben sind mineralische Klebstoffe, die eine ausreichende Flexibilität und eine ausreichende Zugfestigkeit besitzen, um durch Verklebung mit den faserstabilisieren Steingutplatten und der Lasteinleitung diese auch im Brandfall am Ausknicken oder anderem Versagen zu hindern. Promising candidates for bonding the elements of such a wall are mineral adhesives that have sufficient flexibility and sufficient tensile strength in order to prevent the fibre-stabilised earthenware panels from buckling or other failure even in the event of a fire by bonding them to them and transferring the load.

Die optimale Statik wird damit erreicht, dass eine solche Natursteinplatte zum Beispiel aus Gabbrogestein eine doppelt so hohe Tragkraft besitzt, wie eine vergleichbare Betonplate gleichen Gewichts. Dadurch wird leichteres, höheres und raumgewinnendes Bauen möglich, im Vergleich zur klassischen Beton und Ziegelbauweise. Auch im Vergleich zum Bauen mit Stahl wird Gewicht und Raum gespart, weil zum Beispiel Granit mit einem spezifischen Gewicht von Aluminium um einen Faktor 2,7 leichter ist als Stahl, dabei aber eine Druckstabilität besitzt, die dem von Baustahl sehr nahe kommt. The optimal statics are achieved by the fact that such a natural stone slab, for example made of gabbro, has twice the load-bearing capacity of a comparable concrete slab of the same weight. This makes lighter, higher and more spacious construction possible compared to classic concrete and brick construction. Weight and space are also saved compared to building with steel because, for example, granite with a specific weight of aluminum is 2.7 times lighter than steel, but has a pressure stability that is very close to that of structural steel.

Es folgt eine bautechnische Beschreibung der Wandkonstruktion. Die zur Anmeldung gebrachte Erfindung betrifft den Bausektor, darin insbesondere den Hochbau, genauer den Hausbau mit Dienstleistungsgebauden, Wohnhausern, Pavilions, Hallen und jegliche Art von Gebauden allgemein. Kern der Erfindung betrifft eine neuartige Technik zur Erstellung einer Hauswand als Gebaudeelement, mit den Funktionen der statischen Lastabtragung und der Fassade mit alien Funktionen einer Gebäudehulle und den entsprechenden physikalischen Anforderungen gemäß den aktuellen Normierungen. A structural description of the wall construction follows. The invention filed for registration relates to the construction sector, in particular to building construction, more precisely to house construction with service buildings, residential buildings, pavilions, halls and all types of buildings in general. The core of the invention relates to a new technology for creating a house wall as a building element, with the functions of static load transfer and the facade with all the functions of a building shell and the corresponding physical requirements in accordance with current standards.

Die Wandelemente werden vorfabriziert und am Bau fertig versetzt. Die Decken konstruktionen werden auf die Wandelemente aufgesetzt. Die Wandelemente vereinigen alle statischen und bauphysikalischen Anforderungen in einem Sandwichaufbau. Die außeren dünnen Scheiben aus Steingut oder sonstigen druckstabilen Materialien übernehmen hauptsachlich die Normalkrafte (Scheibenkrafte). Sie können direkt als fertige Oberflächen auf Sicht im Innen- und Außenbereich genutzt werden. Den Kern des Sandwiches bildet zum Beispiel ein schubsteifer wärmedämmender Schaum, der schubsteif mit den außeren Scheiben verbunden ist. Mit dem Kern werden die Schubkrafte aus Biegebeanspruchungen aufgenommen, es ergibt sich eine ausreichende Biegesteifigkeit quer zum Element Das Element ist damit gegen Knicken gesichert und es können horizontal quer zum Element auftretende Lasten wie zum Beispiel Windlasten aufgenommen werden. Die Lasteinleitungs- und Lastausleitungskonstruktion aus gut isolierendem Stein von den Geschossdecken auf dieses Sandwichelement bringt die Vertikallasten symmetrisch auf die Scheiben ohne eine bauphysikalisch untragbare Wärmebrücke zu erzeugen. Die Wasserdichtigkeit, Dampfdichtigkeit wird durch Zusammenwirken der Sandwichmaterialien mit speziellen Verbindungsdetails gewahrleistet. Das Lastniveau ohne zusatzliche statische Strukturen liegt bei Gebrauchslasten >= 75 kN/m. Die Elemente werden vom statischen Prinzip als Pendelstutzen in den Decken oben und unten gehalten eingebaut. Die Wärmedämmwerte können Swiss-Minergiestandard erreichen. The wall elements are prefabricated and installed on site. The ceiling structures are placed on the wall elements. The wall elements combine all static and building physics requirements in a sandwich structure. The outer thin panes made of earthenware or other pressure-resistant materials mainly take on the normal forces (pane forces). They can be used directly as finished Surfaces can be used both indoors and outdoors. The core of the sandwich is made up of a shear-resistant, heat-insulating foam that is shear-resistantly connected to the outer panes. The core absorbs the shear forces from bending stresses, resulting in sufficient bending stiffness across the element. The element is thus protected against buckling and loads occurring horizontally across the element, such as wind loads, can be absorbed. The load introduction and load transfer construction made of well-insulating stone from the floor slabs to this sandwich element applies the vertical loads symmetrically to the panes without creating a thermal bridge that is unacceptable from a building physics perspective. The watertightness and vapor-tightness are ensured by the interaction of the sandwich materials with special connection details. The load level without additional static structures is at service loads >= 75 kN/m. The elements are installed as pendulum supports in the ceilings above and below, held in place by the static principle. The thermal insulation values can achieve the Swiss Minergie standard.

Die dünnen Scheiben bestehen aus einem druck- und schubfesten, wasserdichten Material wie zum Beispiel Beton, Naturstein, Gias, Keramik. Sie werden gesichert über Bewehrungen gegen Zugbeanspruchungen aus thermisch asymmetrischen Verformungen und gegen Zugspannungen im Bereich der Spannungsverteilung in den Lasteinleitungszonen, die zu unangekündigten Totalsprödbrüche fuhren konnten. Ebenso können Imperfektionen im Material und in der Konstruktion überbrückt werden und es wird ein möglichst gutmutiges duktiles Materialverhalten erzeugt. Der Sandwichkern besteht aus einem hoch wärmedämmenden Material aus BioChar. Die Lasteinleitung besteht aus einem thermisch schwach leitenden druck- und schubsteifen Element aus Stein oder Holz oder einer Kombination aus Stein und Holz, welches mit mineralischem Klebermaterial oder Schwalbenschwanz-Verzinkung oder beidem kraftschlüssig mit den Steinscheiben verbunden ist. The thin panes are made of a pressure and shear-resistant, waterproof material such as concrete, natural stone, gypsum, ceramic. They are secured by reinforcements against tensile stresses from thermally asymmetrical deformations and against tensile stresses in the area of stress distribution in the load introduction zones, which could lead to unannounced total brittle fractures. Imperfections in the material and construction can also be bridged and the most forgiving ductile material behavior possible is created. The sandwich core is made of a highly thermally insulating material made of BioChar. The load introduction consists of a thermally weakly conductive, compression- and shear-resistant element made of stone or wood or a combination of stone and wood, which is force-fitted to the stone discs with mineral adhesive material or dovetail galvanization or both.

Die Verbindungen zwischen den Scheiben und der Lasteinleitung, den Scheiben und aussteifenden Rippen werden über dauerhafte schubsteife Verklebungen hergestellt. Es kommen handelsubliche Verklebungen mineralischem Kleber wie hochtemperaturfeste Wassergläser mit einen Temperaturfestigkeit von mindestens 600°C zum Einsatz. The connections between the panes and the load introduction, the panes and stiffening ribs are made using permanent, shear-resistant adhesives. Commercially available mineral adhesives such as high-temperature water glass with a temperature resistance of at least 600°C are used.

Fur die Stabilisierung der Steinplatten selbst wird die Verwendung von Fasermaterialien mit mineralischer Matrix vorgeschlagen, wie Carbonfasern, vorzugsweise solche aus Biomasse hergestellt und wiederum vorzugsweise aus Bioglycerin oder Lignin, die den Stein entweder großflächig oder nur partiell mit einzelnen Rovings stabilisieren und an der Ausdehnung und dem Bruch hindern. Der Naturstein selbst hat ein sehr geringes Temperatut-Ausdehnungsmodul, welches mit der Faserstabilisierung eingestellt werden kann, da Naturstein aufgrund seiner porösen Struktur komprimierbar ist. In dem Fall, dass der Faserzug entsprechend groß wird und die richtige Faser verwendet wird, bzw. mit Hilfe der Faser eine entsprechende Vorspannung in den Verbund aus Fasermatrix und Stein gebracht werden kann, wird eine temperaturbedingte Ausdehnung der Steinplatte minimiert oder auch ganz unterbunden. Die hier beschriebene Erfindung bezieht sich auch auf Carbonfasern aus Lignin, da diese billiger als PAN-basierte Fasern sind und für den hier beschriebenen Zweck eine ausreichende Steifigkeit besitzen, wenn sie an der Außenseite der Steinplatten als Zugbewehrung angebracht werden. For the stabilization of the stone slabs themselves, the use of fiber materials with a mineral matrix is proposed, such as carbon fibers, preferably those made from biomass and in turn preferably from bioglycerin or lignin, which stabilize the stone either over a large area or only partially with individual rovings and prevent it from expanding and breaking. The natural stone itself has a very low temperature expansion modulus, which can be adjusted with the fiber stabilization, since natural stone is compressible due to its porous structure. If the fiber tension is sufficiently large and the right fiber is used, or if the fiber can be used to introduce appropriate prestress into the composite of fiber matrix and stone, temperature-related expansion of the stone slab is minimized or even completely prevented. The invention described here also relates to carbon fibers made from lignin, since these are cheaper than PAN-based fibers and have sufficient rigidity for the purpose described here when used as tensile reinforcement on the outside of the stone slabs. be installed.

Diese Neuerung der Verwendung der Fasermatrix an der Außenseite einer oder beider tragenden Steinplatten, um das Knicken der ebenen Platten trotz der verhaltnismäßig niedrigen Steifigkeit einer Lignin-basierten Faser zu begünstigen, ist in vorausgegangenen Anmeldungen nicht beschrieben. Aus optischen Grunden und auch als Schutzfunktion der Matrix kann diese Faserschicht dann noch mit einer dünnen Steinschicht abgedeckt werden. This innovation of using the fiber matrix on the outside of one or both load-bearing stone slabs to promote buckling of the flat slabs despite the relatively low stiffness of a lignin-based fiber is not described in previous applications. For optical reasons and also as a protective function of the matrix, this fiber layer can then be covered with a thin layer of stone.

Das Ergebnis ist eine ebene, druck- und zugspannungsbelastbare Plattenanordnung, die in diesem Anwendungsfall eine ausreichende Stabilisierung des Steinguts gegen Reißen und Bruch gewährleistet. Damit wird diese Plattenanordnung im symmetrischen Gesamtverbund - faserstabilisierte Steinplatte - Isolationsquerschnitt - weitere faserstabilisierte Steinplatte - nicht nur aus Sicht der Optik im Innenbereich und Außenbereich attraktiv, sondern es wird eine völlig neuartige Wandkonstruktion darstellt, die bei gleicher Tragkraft etwa zweifach leichter ist bzw. dünner gehalten werden kann, als herkommliche Hauswande und Gebaudekonstruktionen aus Stahlbeton. The result is a flat, pressure and tensile stress resistant panel arrangement, which in this application ensures sufficient stabilization of the stoneware against tearing and breakage. This panel arrangement in the symmetrical overall composite - fiber-stabilized stone panel - insulation cross-section - further fiber-stabilized stone panel - is therefore not only visually attractive both indoors and outdoors, but also represents a completely new type of wall construction that is about twice as light or can be kept thinner than conventional house walls and building constructions made of reinforced concrete, while having the same load-bearing capacity.

Das Tragermaterial, im folgenden Trager genannt, besteht - wie zum Beispiel in der Patentanmeldung EP 106 20 92 beschrieben - aus einer faserverstarkten Matrix basierend auf Wasserglas. Es kommen dabei z.B. Carbonfasern zum Einsatz, die hohe Zugbelastungen standhalten und sich unter Wärmeeinwirkung zusammenziehen, also einen negativen Temperaturausdehnungskoeffizienten besitzen und eine mehr oder weniger dünne Steinplatte nachhaltig stabilisieren. Mit Hilfe des Einsatzes von temperaturstabilen mineralischen Wasserglasklebern in Kombination mit z. B. Carbonfasern, die einen negativen Temperaturausdehnungskoeffizienten haben, wird eine solche sichere Stabilisierung auch von sehr großen Steinplatten möglich. Es wird darüber hinaus die Forderung erfullt, die mechanische Belastbarkeit und Temperaturbelastbarkeit von dünnen Steintragwerken so zu optimieren, daß der Gesamt-Ausdehnungskoeffizient der Plate in weiten Temperaturbereichen kontrolliert wird, um das Schü sseln der Gesamt-Platte zu vermeiden und trotzdem eine Leichtbauweise zu realisieren. Um die Druckkräfte, die von einer solchen Hauswand aufgenommen werden müssen, in die Wand einzuleiten, beschreibt die Erfindung Aussteifungsrippen, die mit Hilfe von mineralischen Klebern mit den Steinscheiben verbunden werden. Die Verbindung kann durch Verzinkung verbessert werden. Holz kann insbesondere aus brandschutztechnischen Gründen in der Konstruktion Sinn machen, zum Beispiel zur Verbindung von innenliegenden oder sogar außenliegenden Versteifungsrippen, die das Knicken der Wände verhindern. Das Holz ist in der Konstruktion sicher kein Feuer zu fangen und hält selbst extremen Temperaturen dann stand, wenn keine Luftzufuhr erfolgen kann. Im Fall der außenliegenden Rippen können diese mit Hilfe von Verzinkungstechniken nicht nur mit der Steinplatte verbunden, sondern auch die Rippen untereinander hochtemperatursicher verbunden werden, um das Ausknicken der Platen im Brandfall zu verhindern. Die Gesamtkonstruktion der hier beschriebenen neuartigen Wandkonstruktion tragt dem Umstand Rechnung, dass die spezielle Dampfsperren nicht notig sind, da der Stein hinreichend wasserdicht ist, aber aufgrund seiner Porositat die nötige Atmung von Feuchtigkeit gewährleistet. Die Steinplatten können über größere Zeitraume eine gewisse Menge Wasser absorbieren, durchlassen und auch wieder abgeben und wirken damit regulierend auf den Feuchtigkeitshaushalt zwischen Innenraum und Außenraum, wobei die BioChar- an dieser Stelle zusatzlich Wirkung zeigt durch Wasseraufnahme- und Wasserabgabe-Fähigkeiten. Wenn solche Wande nun zusatzlich in der Isolationsschicht so beschaffen sind, dass sie einen hohen Kohlenstoffanteil haben, dann bewirkt dieser Kohlenstoff nicht nur, dass die Isolationseigenschaften und Feuchtigkeitsregulierung verbessert, der Ausdehnungskoeffizient und das Gewicht der Isolationsschicht verringert werden, sondern machen die Konstruktion durch das relativ zur tragenden Struktur hohe Volumen der Isolationsschicht zu einer großen Kohlenstoffsenke, um das Erreichen der Klimaziele durch ein der Klimaproblematik angepasstes Baumaterial selbst zu ermöglichen, während bisherige Baumaterialien CO2 Emissionen verursacht haben, soil dieses neue Baumaterial-Konzept die CO2-Emissionen umkehren und helfen das CO2 ruckzuholen und wieder zu binden. The carrier material, hereinafter referred to as the carrier, consists - as described for example in the patent application EP 106 20 92 - of a fiber-reinforced matrix based on water glass. Carbon fibers, for example, are used, which can withstand high tensile loads and contract under the influence of heat, i.e. have a negative thermal expansion coefficient and sustainably stabilize a more or less thin stone slab. With the help of temperature-stable mineral water glass adhesives in combination with, for example, carbon fibers, which have a negative thermal expansion coefficient, such a secure stabilization of even very large stone slabs is possible. In addition, the requirement to optimize the mechanical load-bearing capacity and temperature load-bearing capacity of thin stone structures is met so that the overall expansion coefficient of the slab is controlled over a wide temperature range in order to avoid the entire slab warping and still achieve a lightweight construction is achieved. In order to transfer the compressive forces that must be absorbed by such a house wall into the wall, the invention describes stiffening ribs that are connected to the stone slabs using mineral adhesives. The connection can be improved by galvanizing. Wood can make sense in the construction, especially for fire protection reasons, for example for connecting internal or even external stiffening ribs that prevent the walls from buckling. The wood in the construction is safe from catching fire and can withstand even extreme temperatures if there is no air supply. In the case of the external ribs, these can be connected not only to the stone slab using galvanizing techniques, but the ribs can also be connected to each other in a high-temperature-safe manner in order to prevent the slabs from buckling in the event of a fire. The overall construction of the new type of wall construction described here takes into account the fact that special vapor barriers are not necessary, as the stone is sufficiently waterproof, but its porosity ensures the necessary breathing of moisture. The stone slabs can absorb, let through and release a certain amount of water over longer periods of time and act thus regulating the moisture balance between the interior and exterior spaces, with the BioChar also having an effect here through its water absorption and water release capabilities. If such walls are now also designed in such a way that they have a high carbon content in the insulation layer, then this carbon not only improves the insulation properties and moisture regulation, reduces the coefficient of expansion and the weight of the insulation layer, but also turns the construction into a large carbon sink due to the high volume of the insulation layer relative to the load-bearing structure, in order to enable the climate goals to be achieved using a building material that is adapted to the climate problem itself. While previous building materials have caused CO 2 emissions, this new building material concept is intended to reverse CO 2 emissions and help to recover the CO 2 and bind it again.

Eine wichtige Rolle kommt in der Erfindung den tragenden Stein- oder Mineralien-Material-Schichten als zusatzliche CO2-Senke zu. Das beim Schneiden der Platten entstehende Gesteins- oder Mineralienmehl hat je nach Sorte ein hohes Verwitterungspotenzial, wenn dieses Mehl oder der Staub Wasser und CO2 ausgesetzt wird, finden Carbonatisierungsprozesse statt, die den atmosphärischen Kohlenstoff in Form von CO2 in das Mineraliengefüge einbauen und damit den Kohlenstoff dauerhaft binden. Dieses Verfahren wird in den Klimawissenschaften als Enhanced Weathering of Stone oder Enhanced Weathering of Rock (EWR) bezeichnet und verspricht eine de facto grenzenlos skalierbare Senke für Kohlendioxyd zu werden, wenn dieser Staub in der Natur oder auf Ackerflächen ausgebracht werden kann. Der Steinstaub fällt in den Prozessen der Hauswandherstellung als Abfall an, muss also nicht wie zunachst von den Klimawissenschaften angenommen extra unter Verwendung von erneuerbarer Energie gemahlen werden, da die beim Schneiden der Platten üblicherweise erzeugte Korngröße und Oberflächen den Werten entsprechen, mit denen in den Klimamodellen erfolgversprechend gerechnet wird. EWR wird damit Teil eines sich selbst tragenden Geschaftsmodells in einem kü nftig stark expandierenden Baubereich. Das macht die Gesamtkonstruktion zu einem Zugpferd von effektiv bezahlbaren Maßnahmen gegen den Klimawandel, da die Gesamtkostenbilanz sich nicht grundlegend von der Bauweise mit Stahl und Stahlbeton unterscheidet, sondern im Gegenteil mit weniger Herstellungsenergie auskommt und keine inhärent CO2-emittierenden Prozesse beansprucht, wie im Fall der Herstellung von Zement. Gabbro-Gestein oder auch Basalt-Gestein hat eine Verwitterungsrate von 450 Gramm CO2 pro Kilogramm Steinmehl. The supporting stone or mineral material layers play an important role in the invention as an additional CO2 sink. The rock or mineral powder created when the panels are cut has a high weathering potential, depending on the type. When this powder or dust is exposed to water and CO2 , carbonation processes take place that incorporate the atmospheric carbon in the form of CO2 into the mineral structure and thus bind the carbon permanently. This process is known in climate science as Enhanced Weathering of Stone or Enhanced Weathering of Rock (EWR) and promises to become a de facto infinitely scalable sink for carbon dioxide if this dust can be spread in nature or on arable land. The stone dust is generated as waste in the processes of building walls, so it does not have to be recycled by the Climate science assumes that the stones will be specially ground using renewable energy, as the grain size and surface area usually produced when the plates are cut correspond to the values that are expected to be successful in climate models. EWR will thus become part of a self-sustaining business model in a construction sector that will expand rapidly in the future. This makes the overall construction a driving force for effectively affordable measures against climate change, as the overall cost balance is not fundamentally different from construction with steel and reinforced concrete, but on the contrary, requires less production energy and does not involve any inherently CO2 -emitting processes, as is the case with cement production. Gabbro rock or basalt rock has a weathering rate of 450 grams of CO2 per kilogram of stone powder.

Zudem wird die Herstellung dieser Hauswand durch die CO2-Bindung in der BioChar und dem Steinstaub hochgradig CO2-negativ, wobei laut Berechnungen sich die CO2-Bindung in der Kohle und dem Steinstaub etwa die Waage halten. Die Carbonfaser tragt dann zu der CO2-Negativitat einen zusatzlichen Anteil bei, wenn diese nach Gebrauch nicht verbrannt, sondern unterirdisch dauergelagert werden kann. In addition, the production of this house wall is highly CO 2 negative due to the CO 2 binding in the biochar and the stone dust, whereby according to calculations the CO 2 binding in the coal and the stone dust is more or less balanced. The carbon fiber then contributes an additional amount to the CO 2 negativity if it is not burned after use but can be stored permanently underground.

Die relativ lose Isolationsschuttung hat zur Folge, dass die tragenden Steinscheiben ausgesteift werden müssen, damit keine Knickkräfte ansetzen können, die stark genug waren, um die Wandscheiben zu brechen. Dies geschieht durch längs angebrachte Aussteifungsrippen, die fest mit den Steinscheiben verbunden sind. Diese Aussteifungsrippen dürfen keine Warmebrücken bilden, weshalb sie sich in der Mitte der Wand nicht treffen. Zusatzlich wird zumindest in der Mitte eine kraftschlüssige Verbindung mit Hilfe eines schlecht warmeleitenden Materials hergestellt, um im Brandfall die Steinplatten, die bei hohen Temperaturen ihre Druckfestigkeit verlieren, immer noch möglichst gut gegen einwirkende Knickkrafte einen ausreichenden Widerstand bieten müssen. Da auch dieses Material nicht nur eine geringe Wärmeleitfähigkeit, sondern auch eine möglichst hohe Temperaturbelastbarkeit haben sollte, wird hierfür Holz, Gias oder Keramik verwendet, die einem guten Kompromiss darstellen. Dieses Element sollte auch nicht durch Klebung mit den gegenüberliegenden Aussteifungsrippen verbunden sein, sondern durch eine kraftschlussige Geometrie rein mechanisch hergestellt werden, zum Beispiel durch eine Schwalbenschwanz-Verzinkung, wie sie im Holzbau üblich ist. The relatively loose insulation layer means that the load-bearing stone panels must be stiffened so that no buckling forces strong enough to break the wall panels can occur. This is done by means of longitudinally mounted stiffening ribs that are firmly connected to the stone panels. These stiffening ribs must not form thermal bridges, which is why they are located in the middle of the wall. do not meet. In addition, a force-fit connection is made at least in the middle using a material that is poorly heat-conducting, so that in the event of a fire, the stone slabs, which lose their compressive strength at high temperatures, still have to offer sufficient resistance to buckling forces. Since this material should not only have low thermal conductivity, but also the highest possible temperature resistance, wood, gypsum or ceramic are used for this, which represent a good compromise. This element should also not be connected to the opposing stiffening ribs by gluing, but should be made purely mechanically using a force-fit geometry, for example by dovetail galvanization, as is common in timber construction.

Als eines der vielen möglichen Ausfü hrungsbeispiele ist in Abb. 1 der Horizontalschnitt durch die Wand dargestellt. Gezeigt wird die Wand mit zwei Steinplatten (1) die mit einer Carbonschicht mit Wasserglasmatrix (2) an der Außenseite stabilisiert sind. Zwischen den faserbeschichteten Steinplatten ist eine Isolationsschicht (3) aus einer Schüttung aus CO2-basierter Kohle eingebracht, die einen hohen Kohlestoffanteil hat. Abb. 2, 3 und 4 zeigen die Vertikalschnitte durch die Wand in den Stellen, wo sich die hinreichend druck- und zugstabilen Rippen (5) befinden, die an den Innenseiten der Platten angebracht und einseitig an den Steinplatten mit Mineralkleber kraftschlüssig befestigt sind. Die Lasteinleitungen (4) oben und unten leiten die Druckkräfte in die Wand ein und aus. Abb. 2 und 3 zeigen Stellen, an denen die Rippen mit Verzinkung verklebt sind, Abb. 4 zeigt die Wand mit einer innenliegenden und einer außenliegenden Rippenversteifung an einer Stelle ohne Verzinkung. Abb. 3 zeigt die mit einem Holzkeil (6) in Schwalbenschwanzform kraftschlüssig miteinander verbundenen Rippenaussteifungen, um die Kickkrafte auch im Brandfall moglichst lange aufnehmen zu kdnnen. Gegebenenfalls kann die Kohlenstoffschü ttung durch eingewirkte Steinwolle-Fasern mechanisch gestutzt werden. As one of the many possible examples, the horizontal section through the wall is shown in Fig. 1. The wall is shown with two stone slabs (1) which are stabilized on the outside with a carbon layer with a water glass matrix (2). An insulation layer (3) made of a fill of CO2- based coal, which has a high carbon content, is inserted between the fiber-coated stone slabs. Figs. 2, 3 and 4 show the vertical sections through the wall in the places where the sufficiently pressure and tensile stable ribs (5) are located, which are attached to the inside of the slabs and are firmly attached to the stone slabs on one side with mineral adhesive. The load introductions (4) at the top and bottom transfer the compressive forces into and out of the wall. Fig. 2 and 3 show places where the ribs are glued with galvanization, Fig. 4 shows the wall with an inner and an outer rib reinforcement in a place without galvanization. Fig. 3 shows the walls connected to each other with a wooden wedge (6) in a dovetail shape. connected rib reinforcements in order to be able to absorb the kick forces for as long as possible even in the event of a fire. If necessary, the carbon filling can be mechanically supported by means of stone wool fibers.

Abb. 5 zeigt den Schnitt an einer Stelle, wo sich keine Aussteifung in der Wand befindet und bei der im Unterschied zu Abbildung 1 nur eine der beiden Steinplatten (1a) außen mit Carbonfasern stabilisiert ist, und die andere Steinplatte (1b) auf der Innenseite. Welche der beiden Seiten die Matrix-Faserschicht innen hat, kann zum Beispiel davon abhangen, welche Steinplate im Brandfall hdher oder langer temperaturbelastet ist. Der Fall, dass der Innenraum hdher temperaturbelastet ist, legt nahe die Steinplatte innen mit Carbon zu beschichten, die im Innenraum angeordnet ist. Fig. 5 shows the section at a point where there is no bracing in the wall and where, in contrast to Figure 1, only one of the two stone slabs (1a) is stabilized on the outside with carbon fibers, and the other stone slab (1b) on the inside. Which of the two sides has the matrix fiber layer on the inside can depend, for example, on which stone slab is exposed to higher or longer temperatures in the event of a fire. The case that the interior is exposed to higher temperatures suggests coating the stone slab that is located in the interior with carbon on the inside.

Claims

Patentansprü che patent claims 1) Tragendes Wandelement für Gebaude mit zwei symmetrisch angeordneten Trager-Platten aus Stein, Naturstein, Kunststein, Keramik, Beton, Gias oder glashaltigem Material, 1) Load-bearing wall element for buildings with two symmetrically arranged load-bearing panels made of stone, natural stone, artificial stone, ceramic, concrete, glazed or glass-containing material, - wobei eine querschnittserhbhende, isolierende Schicht aus Isolationsmaterial zwischen beiden Trager-Platten die Gesamtanordnung aussteift, wobei die Trager-Platten mit einer faserhaltigen temperaturfesten Matrix stabilisiert sind, - whereby a cross-section-increasing, insulating layer of insulation material between the two support plates stiffens the overall arrangement, whereby the support plates are stabilized with a fiber-containing temperature-resistant matrix, - wobei das tragende Wandelement oben und unten eine Lasteinleitungskonstruktion aufweist, die ü ber dauerhafte schubsteife Verklebungen mit den Trager-Platten verbunden ist und diese somit kraftschlü ssig verbinden, - whereby the load-bearing wall element has a load introduction structure at the top and bottom, which is connected to the support plates via permanent shear-resistant adhesives and thus connects them in a force-fitting manner, - wobei die querschnitterhdhende Isolationsschicht aus einer Schuttung von CO2-basiertem Kohlenstoff mit hoher Porositat besteht - the cross-section-increasing insulation layer consists of a bed of CO 2 -based carbon with high porosity - und wobei die beiden Tragerplatten jeweils aus unterschiedlichen oder gleichartigen Plattenmaterialien bestehen, dessen Herstellungs-Abfall-Mehl eine hohe Verwitterungsrate hat. - and wherein the two carrier plates each consist of different or similar plate materials, the manufacturing waste flour of which has a high weathering rate. 2) Tragendes Wandelement nach Anspruch 1, dadurch gekennzeichnet, dass die Schicht aus stabilisierender Fasermatrix bei mindestens einer der tragenden Steinplatten auf der Innenseite und/oder Außenseite der Platte angeordnet ist und Carbonfasern enthalt. 3) Tragendes Wandelement nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Schicht aus kohlenstoff-basiertem Isolationsmaterial aus atmosphärischem CO2 stammt. 2) Load-bearing wall element according to claim 1, characterized in that the layer of stabilizing fiber matrix is arranged on the inside and/or outside of at least one of the load-bearing stone slabs and contains carbon fibers. 3) Load-bearing wall element according to claim 1 and 2, characterized in that the layer of carbon-based insulation material originates from atmospheric CO 2 . 4) Tragendes Wandelement nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Schicht aus reinem BioChar besteht. 4) Load-bearing wall element according to claim 1 to 3, characterized in that the layer consists of pure BioChar. 5) Tragendes Wandelement nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Carbonfaser aus atmospharischem CO2 stammt, welche entweder aus bio-basiertem Glycerin oder bio-basiertem Lignin gewonnen wurden. 5) Load-bearing wall element according to claim 1 to 4, characterized in that the carbon fiber originates from atmospheric CO 2 , which was obtained either from bio-based glycerin or bio-based lignin. 6) Tragendes Wandelement nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Schicht aus kohlenstoff-basiertem Isolationsmaterial mit Hilfe von Steinwolle mechanisch gestutzt wird. 6) Load-bearing wall element according to claims 1 to 5, characterized in that the layer of carbon-based insulation material is mechanically supported by means of rock wool. 7) Tragendes Wandelement nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Trager-Platten auf den Innenseiten oder den Außenseiten mit jeweils eigener Aussteifungsrippe oder eigenen Aussteifungsrippen in bestimmten Abstanden mit Hilfe von temperaturfestem mineralischem Kleber verbunden sind. 7) Load-bearing wall element according to claims 1 to 6, characterized in that the load-bearing plates are connected on the inner sides or the outer sides with their own stiffening rib or stiffening ribs at certain distances by means of temperature-resistant mineral adhesive. 8) Tragendes Wandelement nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass der mineralische Kleber eine Wasserglasbasis hat. 8) Load-bearing wall element according to claims 1 to 7, characterized in that the mineral adhesive has a water glass base. 9) Tragendes Wandelement nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Trager-Platten in dem Fall, dass die Rippe oder alle Rippen innen liegen, kraftschlussig miteinander verbunden sind. 9) Load-bearing wall element according to claims 1 to 8, characterized in that the support plates are connected to one another in a force-locking manner in the case that the rib or all ribs are located on the inside. 10) Tragendes Wandelement nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass die kraftschlussige Verbindung der Rippen mit den tragenden Platten mit Hilfe von Verzinkung hergestellt ist. 11) Tragendes Wandelement nach Anspruch 1 bis 10, dadurch gekennzeichnet, dass die kraftschlü ssige Verbindung der Rippen untereinander mit Hilfe einer Schwalbenschwanz-Verzinkung aus Holz, Gias oder Keramik hergestellt ist. 10) Load-bearing wall element according to claims 1 to 9, characterized in that the frictional connection of the ribs with the load-bearing plates is made by means of galvanization. 11) Load-bearing wall element according to claims 1 to 10, characterized in that the force-fitting connection of the ribs to one another is made by means of a dovetail galvanization made of wood, cast iron or ceramic. 12) Tragendes Wandelement nach Anspruch 1 bis 11, dadurch gekennzeichnet, dass die Gesamtkonstruktion einen CO2-negativen Footprint hat, also CO2-negativ und damit eine Kohlenstoffsenke ist. 12) Load-bearing wall element according to claims 1 to 11, characterized in that the overall construction has a CO2-negative footprint, i.e. is CO2-negative and thus a carbon sink. 13) Tragendes Wandelement nach Anspruch 1 bis 12, dadurch gekennzeichnet, dass mindestens eine der tragenden Steinplatten aus Gabbro- und/oder Basalt-Gestein besteht. 13) Load-bearing wall element according to claims 1 to 12, characterized in that at least one of the load-bearing stone slabs consists of gabbro and/or basalt rock.
PCT/EP2024/000038 2023-06-30 2024-06-30 Wall construction made of stone slabs as a co2 sink with carbon fibres consisting of biomass WO2025002592A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202023001382.8 2023-06-30
DE202023001382.8U DE202023001382U1 (en) 2023-06-30 2023-06-30 Wall construction made of stone slabs as a CO2 sink
DE202024000312.4 2024-02-19
DE202024000312.4U DE202024000312U1 (en) 2024-02-19 2024-02-19 Wall construction made of stone slabs and CO2-based carbon fibers as a carbon sink

Publications (1)

Publication Number Publication Date
WO2025002592A1 true WO2025002592A1 (en) 2025-01-02

Family

ID=92263955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/000038 WO2025002592A1 (en) 2023-06-30 2024-06-30 Wall construction made of stone slabs as a co2 sink with carbon fibres consisting of biomass

Country Status (1)

Country Link
WO (1) WO2025002592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062092A1 (en) 1998-10-20 2000-12-27 Mera Kuse Earthenware support
US20120058299A1 (en) * 2009-03-17 2012-03-08 Connovate Aps Composite Sandwich Panel
WO2020141185A1 (en) * 2019-01-06 2020-07-09 Ithaka Institute For Carbon Strategies Sandwich wall construction formed of spaced-apart slabs with insulation in-between having a high carbon content
DE202022000393U1 (en) * 2022-02-16 2022-03-17 Kolja Kuse Carrier made of weathered stone powder and tension-resistant material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062092A1 (en) 1998-10-20 2000-12-27 Mera Kuse Earthenware support
US20120058299A1 (en) * 2009-03-17 2012-03-08 Connovate Aps Composite Sandwich Panel
WO2020141185A1 (en) * 2019-01-06 2020-07-09 Ithaka Institute For Carbon Strategies Sandwich wall construction formed of spaced-apart slabs with insulation in-between having a high carbon content
DE202022000393U1 (en) * 2022-02-16 2022-03-17 Kolja Kuse Carrier made of weathered stone powder and tension-resistant material

Similar Documents

Publication Publication Date Title
EP2350404B1 (en) Wall design made of plates
Orhon et al. Utilization of alternative building materials for sustainable construction
EP3953538A1 (en) Sandwich wall construction formed of spaced-apart slabs with insulation in-between having a high carbon content
WO2014086481A1 (en) Railway sleeper composed of fibre-reinforced stoneware
DE102019128118A1 (en) Facade element and process for the energetic renovation of buildings
DE202011102156U1 (en) Insulation module for walls with integrated moisture and energy management
WO2025002592A1 (en) Wall construction made of stone slabs as a co2 sink with carbon fibres consisting of biomass
WO2008101726A1 (en) Stone carrier with plant and other ecological fibers
DE102010010748B4 (en) Exterior wall system of a building
DE202024000312U1 (en) Wall construction made of stone slabs and CO2-based carbon fibers as a carbon sink
DE202023001382U1 (en) Wall construction made of stone slabs as a CO2 sink
DE10225167A1 (en) Structure for outside building walls comprises a load-carrying layer and a vacuum insulation layer, with the strength and stability of the structure substantially determined by the load-carrying layer
DE202011002553U1 (en) Heat-insulating components
DE202021001119U1 (en) Wall construction made of stone slabs
DE202006009793U1 (en) Method for stabilizing thin stone or ceramic panels using carbon fiber matrix and carbon fiber stone support layer
DE19962088A1 (en) Wall construction, wall component, wall for the construction of structures and methods for the production thereof
DE202009015287U1 (en) Pillar and crossbeam made of stone
DE202014008049U1 (en) Creation of structures from a variety of individual handy, compatible and modular structural members for dry and self-assembling timber structures
DE862662C (en) Construction
DE3531063A1 (en) Masonry structure
DE202022000925U1 (en) Lightweight facade panel
CN210658667U (en) Assembled structure with fire prevention daub
DE102023001683A1 (en) Component II- Sole CO2 free
AT519367A4 (en) WALL FOR A BUILDING
DE1609572A1 (en) Large-format, multi-layer wall construction panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24752349

Country of ref document: EP

Kind code of ref document: A1