[go: up one dir, main page]

WO2025002190A1 - 充电电路及供电设备 - Google Patents

充电电路及供电设备 Download PDF

Info

Publication number
WO2025002190A1
WO2025002190A1 PCT/CN2024/101698 CN2024101698W WO2025002190A1 WO 2025002190 A1 WO2025002190 A1 WO 2025002190A1 CN 2024101698 W CN2024101698 W CN 2024101698W WO 2025002190 A1 WO2025002190 A1 WO 2025002190A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
coupled
output port
power supply
Prior art date
Application number
PCT/CN2024/101698
Other languages
English (en)
French (fr)
Inventor
马超
饶小浪
Original Assignee
安克创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安克创新科技股份有限公司 filed Critical 安克创新科技股份有限公司
Publication of WO2025002190A1 publication Critical patent/WO2025002190A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the present application relates to the field of charging technology, and in particular to charging circuits and power supply equipment.
  • the embodiments of the present application provide a charging circuit and a power supply device, so as to charge devices with different charging voltages.
  • an embodiment of the present application provides a charging circuit, which includes: a power supply circuit, having a power supply end for outputting a voltage; a voltage conversion circuit, having an input end and an output end, the input end being coupled to the power supply end; a switch circuit, coupling the output end and the power supply end; a first output port, coupled to the switch circuit; a second output port, coupled to the switch circuit; a control circuit, coupled to the voltage conversion circuit and the switch circuit, and used to control the switch circuit to switch between a conductive state and a disconnected state; wherein the voltage conversion circuit is used to output a voltage to the output end when the voltage conversion circuit is in a working state, and to stop outputting a voltage to the output end when the voltage conversion circuit is in a non-working state; the switch circuit is used to, in a conductive state, couple the first output port to one of the power supply end and the output end, and/or couple the second output port to one of the power supply end and the output end; and in a disconnected state
  • an embodiment of the present application provides a power supply device, including a charging circuit and a power module, wherein the power module is coupled to the charging circuit and is used to couple to a charging port of an external power source and/or serve as an internal power source.
  • the beneficial effects of the present application are: different from the related art, the first output port and the second output port can be simultaneously coupled to the power supply end or the voltage conversion circuit output end through a switch, so that the first output port and the second output port can output the same voltage; in addition, the voltage conversion circuit can perform a boost or buck process, so that the output voltage of the output end of the voltage conversion circuit is different from the output voltage of the power supply end. In this state, when the first output port and the second output port are respectively connected to the power supply end and the output end of the voltage conversion circuit, the voltages of the first output port and the second output port are different, so that devices with different charging voltages can be charged.
  • FIG1 is a schematic block diagram of a circuit structure of a charging circuit in the related art
  • FIG2 is a schematic block diagram of a circuit structure of a voltage conversion circuit of a charging circuit in the related art
  • FIG3 is a schematic diagram of a module of an embodiment of a power supply device of the present application.
  • FIG4 is a schematic block diagram of the circuit structure of an embodiment of a charging circuit of the present application.
  • FIG5 is a schematic block diagram of a voltage conversion circuit according to an embodiment of the charging circuit of the present application.
  • FIG. 6 is another schematic block diagram of a voltage conversion circuit according to an embodiment of the charging circuit of the present application.
  • the charging circuit 10 generally has a main output port 11 and a slave output port 12, the main output port 11 can be directly coupled to the power supply terminal 13; and the slave output port 12 can be coupled to the power supply terminal 13 via the voltage conversion circuit 14.
  • the voltage conversion circuit 14 as a Buck-Boost circuit as an example, the Buck-Boost circuit can perform a voltage boost or voltage drop process so that the voltage of the slave output port 12 is greater than, less than or equal to the voltage of the main output port 11.
  • This charging circuit 10 has the advantage of simple structure, but also has the following disadvantages: for example, the structure of the Buck-Boost circuit is relatively complex (see Figure 2).
  • the Buck-Boost circuit needs to have the function of boosting and bucking, in addition to the inductor L and the capacitor C, it generally requires 4 controllable switches (such as MOS tubes).
  • MOS tubes controllable switches
  • the present application proposes the following embodiments.
  • the power supply device 2 may include a charging circuit 20 and a power module 21.
  • the power module 21 may be coupled to a charging circuit 29 for coupling to a charging port of an external power source and/or as an internal power source.
  • the power supply device 2 may be an energy storage device, such as a portable mobile power source, in which case the power module 21 may include a battery for coupling to a charging port of an external power source and serving as an internal power source.
  • the power supply device 2 may also be a charger, in which case the power module 21 may also be used only for coupling to a charging port of an external power source.
  • charging circuit 20 involved in the power supply device embodiment, reference may be made to the following description of the charging circuit embodiment of the present application.
  • the following charging circuit embodiment of the present application describes an exemplary structure of the charging circuit 20.
  • the charging circuit 20 described in the embodiment of the charging circuit of the present application is generally coupled between the power module 21 and the power-consuming device. As mentioned above, the output voltage of the charging circuit 20 can be used to charge the power-consuming device 21.
  • the charging circuit 20 may include: a power supply circuit 210, a voltage conversion circuit 220, a switch circuit 230, A first output port 240 and a second output port 250 .
  • the power supply circuit 210 may have a power supply terminal 211 for outputting a voltage.
  • the voltage conversion circuit 220 may be coupled to the power supply terminal 211 to perform a voltage step-up or voltage step-down process on the output voltage output by the power supply terminal 211.
  • the first output port 240 and the second output port 250 may be coupled to the power supply terminal 211 or the voltage conversion circuit 220 to output a voltage for charging an external electrical device.
  • the voltage conversion circuit 220 may have an input terminal 221 and an output terminal 222, wherein the input terminal 221 may be coupled to the power supply terminal 211, and the output terminal 222 may be coupled to the switch circuit 230.
  • the first output terminal and the second output port 250 may be indirectly coupled to the power supply terminal 211 and/or the output terminal 222 of the voltage conversion circuit 220 via the switch circuit 230. That is, the switch circuit 230 may couple the output terminal 222 of the voltage conversion circuit 220 and the power supply terminal 211.
  • the first output port 240 may be coupled to the switch circuit 230.
  • the second output port 250 may be coupled to the switch circuit 230.
  • the charging circuit 20 further includes a control circuit 260.
  • the control circuit 260 may be coupled to the voltage conversion circuit 220 to control the voltage conversion circuit 220 to switch between a working state and a non-working state.
  • the control circuit 260 may also be coupled to the switch circuit 230 to control the switch circuit 230 to switch between a conductive state and a disconnected state.
  • the switch circuit 230 is used to couple the first output port 240 to one of the power supply terminal 211 and the output terminal 222, and/or the second output port 250 to one of the power supply terminal 211 and the output terminal 222 in the on state.
  • the switch circuit 230 disconnects both the first output port 240 and the second output port 250 from the power supply terminal 211 and the voltage conversion circuit 220 in the off state.
  • one of the first output port 240 and the second output port 250 can be coupled to the power supply terminal 211 or the output terminal 222 of the voltage conversion circuit 220.
  • one of the first output port 240 and the second output port 250 coupled to the power supply terminal 211 or the output terminal 222 of the voltage conversion circuit 220 can output a voltage to power an external device.
  • the charging circuit 20 can charge a device, and the device can be coupled to the first output port 240 or the second output port 250.
  • one of the first output port 240 and the second output port 250 can be coupled to the power supply terminal 211, and the other can be coupled to the output terminal 222 of the voltage conversion circuit 220.
  • the output voltages of the first output port 240 and the second output port 250 can be different, thereby being able to charge two devices with different charging voltages.
  • the first output port 240 and the second output port 250 can be simultaneously coupled to the power supply terminal 211 or the output terminal 222 of the voltage conversion circuit 220.
  • the output voltages of the first output port 240 and the second output port 250 are the same, and two devices with the same charging voltage can be charged.
  • the switch circuit 230 may include a first switch circuit 231 and a second switch circuit 232.
  • the first switch circuit 231 and the second switch circuit 232 may be coupled to a control circuit 260.
  • the control circuit 260 is used to control the conduction or disconnection of the first switch circuit 231 and the second switch circuit 232.
  • the switch circuit 230 when both the first switch circuit 231 and the second switch circuit 232 are disconnected, the switch circuit 230 is in an off state.
  • the switch circuit 230 When at least one of the first switch circuit 231 and the second switch circuit 232 is turned on, the switch circuit 230 is in a on state.
  • the first switch circuit 231 is used to couple the first output port 240 to one of the power supply terminal 211 and the output terminal 222 when it is turned on.
  • the second switch circuit 232 is used to couple the second output port 250 to one of the power supply terminal 211 and the output terminal 222 when it is turned on.
  • the first switch circuit 231 can be coupled to the power supply terminal 211 and the output terminal 222, and coupled to the first output port 240.
  • the first switch circuit 231 includes a first switch K1 and a second switch K2.
  • the first switch K1 is coupled between the first output port 240 and the power supply terminal 211.
  • the second switch K2 is coupled between the first output port 240 and the output terminal 222.
  • the second switch circuit 232 can be coupled to the power supply terminal 211 and the output terminal 222, and coupled to the second output port 250.
  • the second switch circuit 232 can include a third switch K3 and a fourth switch K4.
  • the third switch K3 is coupled between the second output port 250 and the power supply terminal 211.
  • the fourth switch K4 is coupled between the second output port 250 and the output terminal 222.
  • the control circuit 260 may be coupled to the first switch K1 , the second switch K2 , the third switch K3 and the fourth switch K4 , respectively, to control the conduction or disconnection of the first switch K1 , the second switch K2 , the third switch K3 and the fourth switch K4 .
  • the first switch circuit 231 is disconnected.
  • the first switch circuit 231 is turned on.
  • the third switch K3 and the fourth switch K4 are disconnected, the second switch circuit 232 is disconnected.
  • the second switch circuit 232 is turned on.
  • the first output port 240 can be coupled to the power supply terminal 211.
  • the second switch K2 is turned on, the first output port 240 can be coupled to the output terminal 222 of the voltage conversion circuit 220.
  • the third switch K3 is turned on, the second output port 250 can be coupled to the power supply terminal 211.
  • the fourth switch K4 is turned on, the second output port 250 can be coupled to the output terminal 222 of the voltage conversion circuit 220.
  • the first switch K1, the second switch K2, the third switch K3 and the fourth switch K4 each include a control terminal, a first terminal and a second terminal.
  • the control circuit 260 can output a signal (eg, high or low level) to the control terminal to connect or disconnect the first terminal and the second terminal.
  • a first end of the first switch K1 is coupled to the first output port 240, a second end of the first switch K1 is coupled to the power supply terminal 211, and a control end of the first switch K1 is coupled to the control circuit 260.
  • a first end of the second switch K2 is coupled to the first output port 240, a second end of the second switch K2 is coupled to the output terminal 222, and a control end of the second switch K2 is coupled to the control circuit 260.
  • a first end of the third switch K3 is coupled to the second output port 250, a second end of the third switch K3 is coupled to the power supply terminal 211, and a control end of the third switch K3 is coupled to the control circuit 260.
  • a second end of the fourth switch K4 is coupled to the second output port 250, a second end of the fourth switch K4 is coupled to the output terminal 222, and a control end of the fourth switch K4 is coupled to the control circuit 260.
  • the first switch K1, the second switch K2, the third switch K3 and the fourth switch K4 may be MOS transistors (i.e., field effect transistors).
  • the gate of the MOS transistor may be used as a control terminal, and the source and the drain may be used as the first terminal and the second terminal, respectively.
  • the voltage of the gate changes from a high level to a low level or from a low level to a high level, the first terminal and the second terminal may be switched between an on and off state.
  • the first switch circuit 231 may include a first single-pole double-throw analog switch (not shown).
  • the first single-pole double-throw analog switch may include a first pole terminal and two first single-throw terminals.
  • the first pole terminal is coupled to the first output port 240.
  • the power supply terminal 211 and the output terminal 222 are coupled to the two first single-throw terminals in a one-to-one correspondence.
  • the control circuit 260 is coupled to the first pole terminal, and is used to control the disconnection between the first pole terminal and the two first single-throw terminals, or to couple one of the two first single-throw terminals.
  • the control circuit 260 controls the first pole terminal to be coupled to a first single-throw terminal
  • the first output port 240 can be coupled to the power supply terminal 211 or the output terminal 222 of the voltage conversion circuit 220.
  • the first switch circuit 231 may include a first single-pole three-throw analog switch (not shown).
  • the first single-pole three-throw analog switch may include a first pole terminal and three first single-throw terminals.
  • the first pole terminal may be coupled to the first output port 240.
  • the power supply terminal 211 and the output terminal 222 are coupled to two of the first single-throw terminals in a one-to-one correspondence.
  • the other first single-throw terminal is suspended.
  • the control circuit 260 is coupled to the first pole terminal, and is used to control the first pole terminal to selectively couple one of the three first single-throw terminals. When the control circuit 260 controls the first pole terminal to couple to the suspended first single-throw terminal, the first output port 240 does not output voltage.
  • the output voltage of the first output port 240 is the output voltage of the power supply terminal 211.
  • the control circuit 260 controls the first pole terminal to be coupled to the first single-throw terminal of the output terminal 222 of the voltage conversion circuit 220 , the output voltage of the first output port 240 is the output voltage of the voltage conversion circuit 220 .
  • the second switch circuit 232 may also include a second single-pole double-throw analog switch (not shown).
  • the second single-pole double-throw analog switch includes a second pole terminal and two second single-throw terminals.
  • the first pole terminal is coupled to the second output port 250.
  • the power supply terminal 211 and the output terminal 222 are coupled to the two second single-throw terminals in a one-to-one correspondence.
  • the control circuit 260 is coupled to the second pole terminal, and is used to control the second pole terminal to be disconnected from the two first single-throw terminals, or to be coupled to one of the two second single-throw terminals.
  • the second switch circuit 232 may also include a second single-pole three-throw analog switch (not shown).
  • the second single-pole three-throw analog switch includes a second pole terminal and three second single-throw terminals.
  • the second pole terminal is coupled to the second output port 250.
  • the power supply terminal 211 and the output terminal 222 are coupled to two of the second single-throw terminals in a one-to-one correspondence, and the other second single-throw terminal is left floating.
  • the control circuit 260 is coupled to the second pole terminal, and is used to control the second pole terminal to selectively couple to one of the three second single-throw terminals.
  • the working principle of the second switch circuit 232 including the second single-pole double-throw analog switch or the second single-pole three-throw analog switch can refer to the first switch circuit 231, which will not be repeated here.
  • the first switch circuit 231 and the second switch circuit 232 can also be of different types, for example, one of them includes two switches and the other includes a single-pole double (three) throw analog switch.
  • the voltage conversion circuit 220 can be used to output voltage to the output terminal 222 in a working state, and stop outputting voltage to the output terminal 222 in a non-working state.
  • the voltage conversion circuit 220 is a boost circuit when in operation.
  • the control circuit 260 obtains the first voltage feedback information and the second voltage feedback information to couple the first output port 240 and the second output port 250 with a higher required voltage to the output terminal 222 and the second output port 250 with a lower required voltage to the power supply terminal 211.
  • the control circuit 260 can control the first switch circuit 231 to couple the first output port 240 to the output terminal 222, and control the second switch circuit 232 to couple the second output port 250 to the power supply terminal 211.
  • the first switch circuit 231 may include a first switch K1 and a second switch K2, and may also be a first single-pole double-throw analog switch, or a first single-pole three-throw analog switch.
  • the second switch circuit 232 may include a third switch K3 and a fourth switch K4, and may also be a first single-pole double-throw analog switch, or a first single-pole three-throw analog switch.
  • the voltage conversion circuit 220 is a step-down circuit when in operation.
  • the control circuit 260 obtains the first voltage feedback information and the second voltage feedback information to couple the first output port 240 and the second output port 250 with a higher required voltage to the power supply terminal 211 and the second output port 250 with a lower required voltage to the output terminal 222.
  • the required voltage of the first output port 240 is higher than the required voltage of the second output port 250.
  • the voltage conversion circuit 220 is a step-down circuit at this time, so the voltage of the power supply terminal 211 is higher than the voltage of the output terminal 222.
  • the control circuit can control the first switch circuit 231 to couple the first output port 240 to the power supply terminal 211, and control the second switch circuit 232 to couple the second output port 250 to the output terminal 222.
  • the voltage conversion circuit 220 needs to have the function of adjusting the difference between the voltage of the output terminal 222 and the voltage of the power supply terminal 211.
  • the voltage conversion circuit 220 is a boost chopper circuit or a buck conversion circuit when it is in working state.
  • the voltage conversion circuit 220 can be a boost chopper circuit (also known as a Boost circuit, see FIG5 ) or a buck conversion circuit (also known as a Buck circuit, see FIG6 ).
  • the boost chopper circuit is an optional implementation of the boost circuit.
  • the buck conversion circuit is an optional implementation of the buck circuit.
  • the voltage conversion circuit 220 can also be a Buck-Boost circuit. In this case, the voltage conversion circuit 220 can be used as both a boost chopper circuit (Boost circuit) and a buck conversion circuit (Buck circuit).
  • control circuit 260 obtains the first voltage feedback information and the second voltage feedback information to calculate the difference between the required voltages of the first output port 240 and the second output port 250, and adjusts the duty cycle of the switch of the voltage conversion circuit 220 according to the difference. That is, when the voltage conversion circuit 220 is a boost chopper circuit or a buck conversion circuit, the duty cycle of the switch can be adjusted so that the voltage conversion circuit 220 performs boost or buck processing of different amplitudes.
  • the Buck circuit may include: a switch Q1, a switch Q2, an inductor L, and a capacitor C.
  • the switch Q1 and the switch Q2 may be connected in series between the power supply terminal 211 and the ground voltage.
  • the inductor L and the capacitor C may be coupled in series to both ends of the switch Q2.
  • both ends of the capacitor C may also be generally coupled to both ends of the load, such as an electrical device connected to the first output port 240 or the second output port 250 in the present application.
  • the switch Q1 may be a MOS transistor and coupled to the control circuit 260.
  • the switch Q2 may be a unidirectional conducting diode.
  • the control circuit 260 may control the MOS transistor to periodically switch between the on and off states to perform a voltage reduction process.
  • both the switch Q1 and the switch Q2 may be MOS transistors.
  • the switch Q1 and the switch Q2 are coupled to the control circuit 260.
  • the control circuit 260 can control the switch Q1 and the switch Q2 to switch between the on and off states at different times and periodically to perform a voltage reduction process.
  • the output voltage of the voltage conversion circuit 220 is lower than the output voltage of the power supply terminal 211.
  • the output voltage of the voltage conversion circuit 220 can be further changed by adjusting the on-off frequency of the switch Q1 (that is, the duty cycle of the switch).
  • the switch Q1 can also be in the on state all the time, and the switch Q2 can also be in the off state all the time.
  • the output voltage of the voltage conversion circuit 220 can also be equal to the output voltage of the power supply terminal 211.
  • the boost circuit may include: a switch Q3, a switch Q4, an inductor L and a capacitor C.
  • the inductor L and the switch Q3 may be connected in series between the power supply terminal 211 and the ground voltage.
  • the capacitor C and the switch Q4 may be coupled in series to both ends of the switch Q3.
  • both ends of the capacitor C may also be coupled to both ends of the load.
  • the switch Q3 may be a MOS transistor and coupled to the control circuit 260.
  • the switch Q4 may be a unidirectionally conducting diode.
  • the control circuit 260 may control the MOS transistor to be periodically turned on and off to perform a boost process.
  • both the switch Q3 and the switch Q4 may be MOS transistors and coupled to the control circuit 260.
  • the control circuit 260 may control the switch Q3 and the switch Q4 to be switched between the on and off states at different times and periodically to perform a boost process.
  • the output voltage of the voltage conversion circuit 220 is higher than the output voltage of the power supply terminal 211.
  • the output voltage of the voltage conversion circuit 220 can be further changed by adjusting the on-off frequency of the switch Q3 (that is, the duty cycle of the switch).
  • the switch Q3 can also be in the off state all the time
  • the switch Q4 can also be in the on state all the time.
  • the output voltage of the voltage conversion circuit 220 can also be equal to the output voltage of the power supply terminal 211.
  • control circuit 260 can also be coupled to the first output port 240, and is used to obtain the first voltage feedback information through the first output port 240 when the first output port 240 receives the power consumption device.
  • the control circuit 260 can also be coupled to the second output port 250, and is used to obtain the second voltage feedback information through the second output port 250 when the second output port 250 receives the power consumption device.
  • control circuit 260 is coupled to the power supply circuit 210 and is configured to:
  • the second voltage feedback information controls the switch circuit 230 to switch between the non-operating state and the operating state, and is used to control the switch circuit 230 to switch between the on state and the off state, so as to output voltage to the power-consuming device through the first output port 240 and/or the second output port 250 .
  • control circuit 260 is also used to control and adjust the power supply circuit 210 to output a matching voltage through the power supply end 211 according to the first voltage feedback information and/or the second voltage feedback information, so that the first output port 240 and/or the second output port 250 can respectively output a voltage that meets the requirements of the corresponding electrical equipment.
  • the power-consuming device may be coupled to the first output port 240 or the second output port 250.
  • the control circuit 260 may control the first switch K1 to open according to the first voltage feedback information of the first output port 240, so that the power-consuming device can be indirectly coupled to the power supply terminal 211 via the first switch K1.
  • the required voltage of the electrical device may be 5V or 10V. Therefore, the power supply circuit 210 may have a transformer so that the power supply terminal 211 can output different voltages to meet the requirements of different electrical devices. In this case, after the control circuit 260 obtains the first voltage feedback information of the first output port 240, it can also control the power supply circuit 210 to output the required voltage of the electrical device.
  • control circuit 260 can also control the second switch K2 to open, that is, the electrical device can be indirectly coupled to the output end 222 of the voltage conversion circuit 220 through the second switch K2.
  • control circuit 260 can also control the voltage conversion circuit 220 and the power supply circuit 210, so that the voltage conversion circuit 220 outputs the required voltage of the electrical device.
  • its working principle can refer to its coupling to the first output port 240, which will not be repeated here.
  • the voltage required by the first output port 240 is greater than the voltage required by the second output port 250.
  • the output voltage of the power supply terminal 211 may be greater than the output voltage of the output terminal 222 of the voltage conversion circuit 220.
  • the control circuit 260 may control the first switch K1 and the fourth switch K4 to be turned on, and the second switch K2 and the third switch K3 to be turned off according to the first voltage feedback information and the second voltage feedback information, so that the first output port 240 is coupled to the power supply terminal 211, and the second output terminal 222 is connected to the power supply terminal 211.
  • the first output port 250 is coupled to the output terminal 222 of the Buck circuit.
  • the control circuit 260 can also control the power supply circuit 210 to make its output voltage match the required voltage of the first output port 240, and further control the Buck circuit to make its output voltage match the required voltage of the second output port 250.
  • the output voltage of the power supply terminal 211 may be less than the output voltage of the output terminal 222 of the voltage conversion circuit 220.
  • the control circuit 260 may control the second switch K2 and the third switch K3 to be turned on, and the first switch K1 and the fourth switch K4 to be turned off, so that the first output port 240 can be coupled to the Boost output terminal 222, and the second output port 250 can be coupled to the power supply terminal 211.
  • the control circuit 260 may also control the power supply circuit 210 to make its output voltage match the required voltage of the second output port 250, and further control the Boost circuit to make its output voltage match the required voltage of the first output port 240.
  • the control circuit 260 can control the first switch K1 and the third switch K3 to be turned on, and the second switch K2 and the fourth switch K4 to be turned off according to the first voltage feedback information and the second voltage feedback information, so that the first output port 240 and the second output port 250 can be coupled to the power supply end 211 at the same time.
  • the control circuit 260 can also control the power supply circuit 210 to match its output voltage with the required voltage based on the first voltage feedback information and the second voltage feedback information.
  • control circuit 260 can also control the second switch K2 and the fourth switch K4 to be disconnected according to the first voltage feedback information and the second voltage feedback information, so that the first output port 240 and the second output port 250 can be simultaneously coupled to the output end 222 of the voltage conversion circuit 220.
  • control circuit 260 can also control the power supply circuit 210 and the voltage conversion circuit 220 based on the first voltage feedback information and the second voltage feedback information so that the output voltage of the voltage conversion circuit 220 can match the required voltage.
  • control circuit 260 can also control the first switch K1 and the fourth switch K4 to be turned on and the second switch K2 and the third switch K3 to be turned off, or control the second switch K2 and the third switch K3 to be turned on and the first switch K1 and the fourth switch K4 to be turned off, according to the first voltage feedback information and the second voltage feedback information, so that one of the first control port and the second control port is coupled to the power supply terminal 211, and the other is coupled to the output terminal 222 of the voltage conversion circuit 220.
  • the control circuit 260 can control the voltage conversion circuit 220 not to perform voltage boosting. Or the voltage is reduced so that the output voltage of the voltage conversion circuit 220 is the same as the output voltage of the power supply terminal 211.
  • the control circuit 260 can further control the power supply circuit 210 to make its output voltage match the required voltage.
  • the first output port 240 and the second output port 250 can be simultaneously coupled to the power supply terminal 211 or the output terminal 222 of the voltage conversion circuit 220 through a switch, so that the first output port 240 and the second output port 250 can output the same voltage; in addition, the voltage conversion circuit 220 can perform a boost or buck process, so that the output voltage of the output terminal 222 of the voltage conversion circuit 220 is different from the output voltage of the power supply terminal 211. In this state, when the first output port 240 and the second output port 250 are respectively connected to the power supply terminal 211 and the output terminal 222 of the voltage conversion circuit 220, the voltages of the first output port 240 and the second output port 250 are different, so that devices with different charging voltages can be charged.
  • the charging circuit 20 in the present application may also have 3 or 4 output ports, and correspondingly, the switch circuit 230 may also include a third switch circuit and a fourth switch circuit (not shown) and achieve the same technical effect, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种充电电路包括:供电电路,具有用于输出电压的供电端;电压变换电路,具有输入端和输出端,输入端耦接供电端;开关电路,耦接输出端和供电端;第一输出端口,耦接开关电路;第二输出端口,耦接开关电路;控制电路,耦接于电压变换电路和开关电路,以及用于控制开关电路在通路状态和断开状态之间切换;其中,开关电路用于在通路状态下,使得第一输出端口耦接供电端和输出端中的一者,和/或第二输出端口耦接供电端和输出端中的一者;开关电路在断开状态下使得第一输出端口和第二输出端口均与供电端和电压变换电路之间断开。

Description

充电电路及供电设备
本申请要求申请号为202321655269.4的中国专利申请的优先权,其内容通过引用结合在本申请中。
【技术领域】
本申请涉及充电技术领域,特别是涉及充电电路及供电设备。
【背景技术】
随着5G技术的发展和消费电子产品的快速普及,人们使用电子产品的时间大幅度提高,用电设备运行速度、网速等提升的同时,用电设备的功耗也逐步提高,进而需要频繁地对电池充电。
由于消费电子产品种类越来越多,能满足多个设备同时充电的需求也就越来越广。但是不同的设备充电时需要的充电电压不同,因此需要提供能够对不同充电电压的设备进行充电的充电电路及供电设备。
【发明内容】
本申请的实施例提供充电电路及供电设备,以能够对不同充电电压的设备进行充电。
第一方面,本申请实施例提供一种充电电路,该充电电路包括:供电电路,具有用于输出电压的供电端;电压变换电路,具有输入端和输出端,输入端耦接供电端;开关电路,耦接输出端和供电端;第一输出端口,耦接开关电路;第二输出端口,耦接开关电路;控制电路,耦接于电压变换电路和开关电路,以及用于控制开关电路在通路状态和断开状态之间切换;其中,电压变换电路用于在电压变换电路处于工作状态下向输出端输出电压,而在非工作状态下停止向输出端输出电压;开关电路用于在通路状态下,使得第一输出端口耦接供电端和输出端中的一者,和/或第二输出端口耦接供电端和输出端中的一者;开关电路在断开状态下使得第一输 出端口和第二输出端口均与供电端和电压变换电路之间断开。
第二方面,本申请实施例提供一种供电设备,包括充电电路和电源模块,电源模块耦接充电电路,用于耦接外部电源的充电端口和/或作为内部电源。
本申请的有益效果是:区别于相关技术的情况,第一输出端口和第二输出端口可以经开关同时耦接到供电端或者电压变换电路输出端,以使得第一输出端口和第二输出端口能够输出同样的电压;另外,电压变换电路可以进行升压或者降压处理,以使得电压变换电路的输出端的输出电压和所述供电端的输出电压不同,在这种状态下,当第一输出端口和第二输出端口分别连接到供电端和电压变换电路的输出端时,第一输出端口和第二输出端口的电压不同,以能够对不同充电电压的设备进行充电。
【附图说明】
图1是相关技术中充电电路的电路结构示意框图;
图2是相关技术中充电电路的电压变换电路的电路结构示意框图;
图3是本申请供电设备实施例的模块示意图;
图4是本申请充电电路实施例的电路结构示意框图;
图5是本申请充电电路实施例涉及的电压变换电路的一种电路示意框图;
图6是本申请充电电路实施例涉及的电压变换电路的另一种电路示意框图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
发明人经过长期研究发现,能够对不同充电电压的设备进行充电的充电电路及供电设备发展不够成熟。参见图1中的相关技术,以图1中示出的2口充电电路为 例,充电电路10一般具有主输出端口11和从输出端口12,主输出端口11可以直接耦接到供电端13;而从输出端口12可以经电压变换电路14耦接到供电端13。以电压变换电路14为Buck-Boostd电路为例,Buck-Boost电路可以进行升压或降压处理,以使得从输出端口12的电压大于、小于或者等于主输出端口11的电压。
这种充电电路10具有结构简单的优点,但是同时也存在以下缺点:比如Buck-Boost电路的结构比较复杂(参见图2),一般来说,当Buck-Boost电路需要具有升压和降压的功能时,其除了具有电感L和电容C外,一般还需要4个可控制的开关(例如MOS管),例如处于升压状态时,需要控制开关m1保持导通,开关m2保持断开,开关m3和开关m4间歇性地通断,而处于降压状态时,需要控制开关m3保持断开,开关m4保持导通,开关m1和开关m2间歇性地通断。另外,充电电路10的控制电路15需要具备能够同时控制这四个开关的功能,因此这可能会导致控制电路结构复杂,成本较高。再者,上述多个开关也可能会导致充电效率的下降。为了解决上述技术问题,本申请提出以下实施例。
以下本实施例的供电设备实施例描述供电设备的示例性结构:参见图3,供电设备2可以包括充电电路20和电源模块21。电源模块21可以耦接充电电路29,用于耦接外部电源的充电端口和/或作为内部电源。
在一些实施例中,供电设备2可以为储能设备,例如便携式移动电源,在这种情况下,电源模块21可以包括电池,用于耦接外部电源的充电端口,并且作为内部电源。在另一些示例中,供电设备2也可以为充电器,在这种情况下,电源模块21也可以仅用于耦接外部电源的充电端口。
关于供电设备实施例涉及的充电电路20可以参照下述的本申请充电电路实施例的描述。以下本申请充电电路实施例描述充电电路20的示例性结构。
本申请充电电路实施例描述的充电电路20,一般是耦接于电源模块21和用电设备之间。如上所述,充电电路20的输出电压可以供用电设备21充电。
充电电路20可以包括:供电电路210、电压变换电路220、开关电路230、第 一输出端口240和第二输出端口250。
其中,供电电路210可以具有用于输出电压的供电端211。电压变换电路220可以耦接供电端211,以用于对供电端211输出的输出电压进行升压处理或者降压处理。第一输出端口240和第二输出端口250可以耦接到供电端211或者电压变换电路220,以进行电压输出,用于对外部的用电设备进行充电。
具体地,电压变换电路220可以具有输入端221和输出端222,其输入端221可以耦接于供电端211,输出端222可以耦接于开关电路230。第一输出端和第二输出端口250可以经开关电路230间接耦接到耦接供电端211和/或电压变换电路220的输出端222。也即,开关电路230可以耦接电压变换电路220的输出端222和供电端211。第一输出端口240可以耦接开关电路230。第二输出端口250可以耦接开关电路230。
可选地,充电电路20还包括控制电路260。控制电路260可以耦接于电压变换电路220,用于控制电压变换电路220在工作状态和非工作状态之间进行切换。另外,控制电路260还可以耦接于开关电路230,用于控制开关电路230在通路状态和断开状态之间切换。
可选地,开关电路230用于在通路状态下,使得第一输出端口240耦接供电端211和输出端222中的一者,和/或第二输出端口250耦接供电端211和输出端222中的一者。开关电路230在断开状态下使得第一输出端口240和第二输出端口250均与供电端211和电压变换电路220之间断开。
也就是说,在开关电路230处于通路状态下,第一输出端口240和第二输出端口250中的一者可以耦接到供电端211或者电压变换电路220的输出端222。在这种情况下,第一输出端口240和第二输出端口250中耦接到供电端211或者电压变换电路220的输出端222的一者可以进行电压输出,以对外部设备进行供电。在这种状态下,充电电路20可以对一个设备进行充电,而且该设备可以耦接到第一输出端口240或者第二输出端口250。
另外,在开关电路230处于通路状态下,第一输出端口240和第二输出端口250中的一者可以耦接到供电端211,另一者可以耦接到电压变换电路220的输出端222。在这种情况下,由于电压变换电路220的升压作用或者降压作用,可以使得第一输出端口240和第二输出端口250的输出电压不同,进而能够对两个充电电压不同的设备进行充电。
另外,在开关电路230处于通路状态下,第一输出端口240和第二输出端口250可以同时耦接到供电端211或者电压变换电路220的输出端222。在这种情况下,第一输出端口240和第二输出端口250的输出电压相同,可以对两个充电电压相同的设备进行充电。
具体地,参见图4,在一些示例中,开关电路230可以包括第一开关电路231和第二开关电路232。第一开关电路231和第二开关电路232可以耦接控制电路260。控制电路260用于控制第一开关电路231和第二开关电路232的导通或断路。
可选地,在第一开关电路231和第二开关电路232均断路时,开关电路230处于断开状态。在第一开关电路231和第二开关电路232的至少一者导通时,开关电路230处于通路状态。第一开关电路231用于在导通时使得第一输出端口240耦接供电端211和输出端222的一者。第二开关电路232用于在导通时使得第二输出端口250耦接供电端211和输出端222的一者。
在一些实施例中,第一开关电路231可以耦接供电端211和输出端222,且耦接第一输出端口240。可选地,第一开关电路231包括第一开关K1和第二开关K2。第一开关K1耦接于第一输出端口240和供电端211之间。第二开关K2耦接于第一输出端口240和输出端222之间。
第二开关电路232可以耦接供电端211和输出端222,且耦接第二输出端口250。第二开关电路232可以包括第三开关K3和第四开关K4。第三开关K3耦接第二输出端口250和供电端211之间。第四开关K4耦接于第二输出端口250和输出端222之间。
控制电路260可以分别耦接第一开关K1、第二开关K2、第三开关K3和第四开关K4,用于控制第一开关K1、第二开关K2、第三开关K3和第四开关K4的导通或断路。
在第一开关K1和第二开关K2断路时,第一开关电路231断路。在第一开关K1和第二开关K2中的一者导通时,第一开关电路231导通。在第三开关K3和第四开关K4断路时,第二开关电路232断路。在第三开关K3和第四开关K4中的一者导通时,第二开关电路232导通。
换言之,当第一开关K1导通时,第一输出端口240可以耦接到供电端211。当第二开关K2导通时,第一输出端口240可以耦接到电压变换电路220的输出端222。当第三开关K3导通时,第二输出端口250可以耦接到供电端211。当第四开关K4导通时,第二输出端口250可以耦接到电压变换电路220的输出端222。
可选地,第一开关K1、第二开关K2、第三开关K3和第四开关K4均包括控制端、第一端和第二端。控制电路260可以通过向控制端输出信号(例如高低电平)以使得第一端和第二端导通或者断开。
第一开关K1的第一端耦接第一输出端口240,第一开关K1的第二端耦接供电端211,第一开关K1的控制端耦接控制电路260。第二开关K2的第一端耦接第一输出端口240,第二开关K2的第二端耦接输出端222,第二开关K2的控制端耦接控制电路260。第三开关K3的第一端耦接第二输出端口250,第三开关K3的第二端耦接供电端211,第三开关K3的控制端耦接控制电路260。第四开关K4的第二端耦接第二输出端口250,第四开关K4的第二端耦接输出端222,第四开关K4的控制端耦接控制电路260。
具体地,第一开关K1、第二开关K2、第三开关K3和第四开关K4可以为MOS管(也即场效应管)。MOS管的栅极可以作为控制端,源极和漏极可以分别作为第一端和第二端。当栅极的电压由高电平变化为低电平或者由低电平变化为高电平时,可以使得第一端和第二端在导通和断开的状态之间进行切换。
在这种情况下,尽管第一开关K1、第二开关K2、第三开关K3和第四开关K4的数量较多,且都需要控制电路260进行控制,但是上述四个开关在充电的过程中不需要频繁周期性地通断,因而能够降低对于控制电路260的要求。
在另一些示例中,第一开关电路231可以包括第一单刀双掷模拟开关(图未示)。第一单刀双掷模拟开关可以包括第一极点端子、两个第一单掷端子。第一极点端子耦接第一输出端口240。供电端211和输出端222一一对应耦接两个第一单掷端子。控制电路260耦接第一极点端子,用于控制第一极点端子与两个第一单掷端子之间断路,或耦接两个第一单掷端子中的一者。当控制电路260控制可以控制第一极点端子耦接到某个第一单掷端子时,可以使得第一输出端口240耦接到供电端211或者电压变换电路220的输出端222。
在另一些示例中,第一开关电路231可以包括第一单刀三掷模拟开关(图未示)。第一单刀三掷模拟开关可以包括第一极点端子和三个第一单掷端子。第一极点端子可以耦接第一输出端口240。供电端211和输出端222一一对应耦接其中两个第一单掷端子。另一第一单掷端子悬空。控制电路260耦接第一极点端子,用于控制第一极点端子择一耦接三个第一单掷端子中的一者。当控制电路260控制第一极点端子耦接到悬空的第一单掷端子时,第一输出端口240不输出电压。当控制电路260控制第一极点端子耦接连接于供电端211的第一单掷端子时,第一输出端口240的输出电压为供电端211的输出电压。当控制电路260控制第一极点端子耦接连接于电压变换电路220的输出端222的第一单掷端子时,第一输出端口240的输出电压为电压变换电路220的输出电压。
同理,第二开关电路232也可以包括第二单刀双掷模拟开关(图未示)。第二单刀双掷模拟开关包括第二极点端子和两个第二单掷端子。第一极点端子耦接第二输出端口250。供电端211和输出端222一一对应耦接两个第二单掷端子。控制电路260耦接第二极点端子,用于控制第二极点端子与两个第一单掷端子之间断路,或耦接两个第二单掷端子中的一者。
另外,第二开关电路232也可以包括第二单刀三掷模拟开关(图未示)。第二单刀三掷模拟开关包括第二极点端子和三个第二单掷端子。第二极点端子耦接第二输出端口250。供电端211和输出端222一一对应耦接其中两个第二单掷端子,另一第二单掷端子悬空。控制电路260耦接第二极点端子,用于控制第二极点端子择一耦接三个第二单掷端子中的一者。
关于第二开关电路232包括第二单刀双掷模拟开关或者第二单刀三掷模拟开关的工作原理可以参照第一开关电路231,在此不再赘述。另外,第一开关电路231和第二开关电路232也可以是不同类型的,例如其中一者包括两个开关,另一者包括单刀双(三)掷模拟开关。
电压变换电路220可以用于在工作状态下向输出端222输出电压,而在非工作状态下停止向输出端222输出电压。
可选地,电压变换电路220处于工作状态时为升压电路。控制电路260获取第一电压反馈信息和第二电压反馈信息,以将第一输出端口240和第二输出端口250的需求电压高的一者耦接到输出端222,需求电压低的一者耦接到供电端211。
以第一输出端口240的需求电压高于第二输出端口250的需求电压为例,由于电压变换电路220此时为升压电路,因此输出端222的电压高于供电端211的电压。控制电路260可以控制第一开关电路231使第一输出端口240耦接到输出端222,并控制第二开关电路232使第二输出端口250耦接到供电端211。如上所述,第一开关电路231可能包括第一开关K1和第二开关K2,也可能为第一单刀双掷模拟开关,也可能为第一单刀三掷模拟开关。第二开关电路232可能包括第三开关K3和第四开关K4,也可能为第一单刀双掷模拟开关,也可能为第一单刀三掷模拟开关。
可选地,电压变换电路220处于工作状态时为降压电路。控制电路260获取第一电压反馈信息和第二电压反馈信息,以将第一输出端口240和第二输出端口250的需求电压高的一者耦接到供电端211,需求电压低的一者耦接到输出端222。
以第一输出端口240的需求电压高于第二输出端口250的需求电压为例,由于 电压变换电路220此时为降压电路,因此供电端211的电压高于输出端222的电压。控制电路可以控制第一开关电路231使第一输出端口240耦接供电端211,并控制第二开关电路232使第二输出端口250耦接输出端222。
考虑到在不同场景下,第一输出端口240和第二输出端口250的需求电压可能不同,第一输出端口240和第二输出端口250的需求电压的差值也不一定是固定的,因此电压变换电路220需要具有调整输出端222的电压和供电端211的电压的差值的功能。
可选地,电压变换电路220处于工作状态时为升压斩波电路或降压变换电路。换言之,电压变换电路220可以为升压斩波电路(也即Boost电路,参见图5)或者降压变换电路(也即Buck电路,参见图6)。其中,升压斩波电路为升压电路中的一种可选实施方式。降压变换电路为降压电路中的一种可选实施方式。当然,电压变换电路220也可以为Buck-Boost电路,在这种情况下,电压变换电路220既可以作为升压斩波电路(Boost电路),也可以作为降压变换电路(Buck电路)。
可选地,控制电路260获取第一电压反馈信息和第二电压反馈信息,以计算第一输出端口240和第二输出端口250的需求电压的差值,并根据差值调整电压变换电路220的开关的占空比。也就是说,当电压变换电路220为升压斩波电路或者降压变换电路时,可以调整其开关的占空比以使得电压变换电路220进行不同幅度的升压或者降压处理。
可选地,Buck电路可以包括:开关Q1、开关Q2、电感L和电容C。开关Q1和开关Q2可以串联接入供电端211和地电压之间。电感L和电容C可以串联耦接到开关Q2两端。另外,电容C的两端一般还可以耦接到负载两端,例如本申请中连接于第一输出端口240或者第二输出端口250的用电设备。
在一些示例中,开关Q1可以为MOS管,并且耦接于控制电路260。开关Q2可以为单向导通的二极管。控制电路260可以控制MOS管周期性地在通断状态之间进行切换,以进行降压处理。在另一些示例中,开关Q1和开关Q2都可以为MOS 管,并且耦接于控制电路260。控制电路260可以控制开关Q1和开关Q2不同时、且周期性地在通断状态之间进行切换,以进行降压处理。
在这种情况下,电压变换电路220的输出电压低于供电端211的输出电压。另外,通过调节开关Q1的通断频率(也即开关的占空比)可以进一步改变电压变换电路220的输出电压。当然,开关Q1也可以一直处于导通状态,开关Q2也可以一直处于断开状态,在这种情况下,电压变换电路220的输出电压也可以等于供电端211的输出电压。
Boost电路可以包括:开关Q3、开关Q4、电感L和电容C。电感L和开关Q3可以串联接入供电端211和地电压之间。电容C和开关Q4可以串联耦接到开关Q3的两端。另外,电容C的两端一般还可以耦接到负载两端。
在一些示例中,开关Q3可以为MOS管,并且耦接于控制电路260。开关Q4可以为单向导通的二极管。控制电路260可以控制MOS管周期性地通断,以进行增压处理。在另一些示例中,开关Q3和开关Q4都可以为MOS管,并且耦接于控制电路260。控制电路260可以控制开关Q3和开关Q4不同时、且周期性地在通断状态之间进行切换,以进行增压处理。
在这种情况下,电压变换电路220的输出电压高于供电端211的输出电压。另外,通过调节开关Q3的通断频率(也即开关的占空比)也可以进一步改变电压变换电路220的输出电压。当然,开关Q3也可以一直处于断开状态,开关Q4也可以一直处于导通状态,在这种情况下,电压变换电路220的输出电压也可以等于供电端211的输出电压。
另外,控制电路260还可与耦接第一输出端口240,用于在第一输出端口240接受用电设备时经第一输出端口240获取第一电压反馈信息。控制电路260还可以耦接第二输出端口250,用于在第二输出端口250接受用电设备时经第二输出端口250获取第二电压反馈信息。
可选地,控制电路260耦接供电电路210,用于根据第一电压反馈信息和/或第 二电压反馈信息控制开关电路230在非工作状态和工作状态之间切换,以及用于控制开关电路230在通路状态和断开状态之间切换,以经第一输出端口240和/或第二输出端口250向用电设备输出电压。
另外,控制电路260还用于根据第一电压反馈信息和/或第二电压反馈信息控制调整供电电路210经供电端211输出相匹配的电压,使得第一输出端口240和/或第二输出端口250能够分别输出满足相对应的用电设备的需求电压。
在一些场景下,可能只有一个用电设备需要充电。该用电设备可能会耦接到第一输出端口240或者第二输出端口250。以该用电设备耦接到第一输出端口240为例,控制电路260可以根据第一输出端口240的第一电压反馈信息,控制第一开关K1打开,也即使得该用电设备能够经第一开关K1而间接耦接于供电端211。
另外,该用电设备的需求电压可能为5V或者10V。因此供电电路210可以具有变压器,以使得供电端211能够输出不同的电压,而满足不同用电设备的需求。在这种情况下,当控制电路260获取第一输出端口240的第一电压反馈信息后,还可以控制供电电路210输出用电设备的需求电压。
当然,控制电路260也可以控制第二开关K2打开,也即使得该用电设备能够经第二开关K2而间接耦接于电压变换电路220的输出端222。在这种情况下,控制电路260也可以控制电压变换电路220以及供电电路210,以使得电压变换电路220输出用电设备的需求电压。另外,当用电设备耦接到第二输出端口250时,其工作原理可以参照其耦接到第一输出端口240,在此不再赘述。
在另一些场景下,可能会存在两个需求电压不同的用电设备需要同时充电。以第一输出端口240的需求电压大于第二输出端口250的需求电压为例。
当电压变换电路220为Buck电路时,供电端211的输出电压可以大于电压变换电路220的输出端222的输出电压。在这种情况下,控制电路260可以根据第一电压反馈信息和第二电压反馈信息控制第一开关K1和第四开关K4导通,第二开关K2和第三开关K3断开,以使得第一输出端口240耦接于供电端211,第二输出端 口250耦接于Buck电路的输出端222。另外,控制电路260还可以控制供电电路210使其输出电压匹配第一输出端口240的需求电压,并进一步控制Buck电路使其输出电压匹配第二输出端口250的需求电压。
当电压变换电路220为Boost电路时,供电端211的输出电压可以小于电压变换电路220的输出端222的输出电压。控制电路260可以控制第二开关K2和第三开关K3导通,第一开关K1和第四开关K4断开,以使得第一输出端口240能够耦接到Boost的输出端222,第二输出端口250能够耦接到供电端211。另外,控制电路260还可以控制供电电路210使其输出电压匹配第二输出端口250的需求电压,并进一步控制Boost电路使其输出电压匹配第一输出端口240的需求电压。
在另一些场景下,可能会存在两个需求电压相同的用电设备需要同时充电。在这种情况下,控制电路260可以根据第一电压反馈信息和第二电压反馈信息控制第一开关K1和第三开关K3导通,第二开关K2和第四开关K4断开,以使得第一输出端口240和第二输出端口250能够同时耦接于供电端211。在这种情况下,控制电路260还可以基于第一电压反馈信息和第二电压反馈信息控制供电电路210使其输出电压匹配需求电压。
当然,控制电路260也可以根据第一电压反馈信息和第二电压反馈信息控制第二开关K2和第四开关K4断开,以使得第一输出端口240和第二输出端口250能够同时耦接于电压变换电路220的输出端222。在这种情况下,控制电路260还可以基于第一电压反馈信息和第二电压反馈信息控制供电电路210和电压变换电路220以使电压变换电路220的输出电压能够匹配需求电压。
当然,控制电路260也可以根据第一电压反馈信息和第二电压反馈信息控制第一开关K1和第四开关K4导通而第二开关K2和第三开关K3断开,或者控制第二开关K2和第三开关K3导通而第一开关K1和第四开关K4断开,以使得第一控制端口和第二控制端口中一者耦接于供电端211,另一者耦接于电压变换电路220的输出端222。在这种情况下,控制电路260可以控制电压变换电路220不进行升压 或者降压处理,以使得电压变换电路220的输出电压和供电端211的输出电压相同。控制电路260可以进一步控制供电电路210使其输出电压匹配需求电压。
区别于相关技术的情况,第一输出端口240和第二输出端口250可以经开关同时耦接到供电端211或者电压变换电路220的输出端222,以使得第一输出端口240和第二输出端口250能够输出同样的电压;另外,电压变换电路220可以进行升压或者降压处理,以使得电压变换电路220的输出端222的输出电压和所述供电端211的输出电压不同,在这种状态下,当第一输出端口240和第二输出端口250分别连接到供电端211和电压变换电路220的输出端222时,第一输出端口240和第二输出端口250的电压不同,以能够对不同充电电压的设备进行充电。
此外,本申请中的充电电路20还可以具有3个或者4个输出端口,对应地,开关电路230也可以包括第三开关电路和第四开关电路(图未示),并且取得等同的技术效果,在此不再赘述。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (12)

  1. 一种充电电路,其特征在于,包括:
    供电电路,具有用于输出电压的供电端;
    电压变换电路,具有输入端和输出端,所述输入端耦接所述供电端;
    开关电路,耦接所述输出端和所述供电端;
    第一输出端口,耦接所述开关电路;
    第二输出端口,耦接所述开关电路;
    控制电路,耦接于所述电压变换电路和所述开关电路,以及用于控制所述开关电路在通路状态和断开状态之间切换;
    其中,所述电压变换电路用于在所述电压变换电路处于工作状态下向所述输出端输出电压,而在非工作状态下停止向所述输出端输出电压;所述开关电路用于在所述通路状态下,使得所述第一输出端口耦接所述供电端和所述输出端中的一者,和/或所述第二输出端口耦接所述供电端和所述输出端中的一者;所述开关电路在所述断开状态下使得所述第一输出端口和所述第二输出端口均与所述供电端和所述电压变换电路之间断开。
  2. 根据权利要求1所述的充电电路,其特征在于,
    所述开关电路包括第一开关电路和第二开关电路;所述第一开关电路耦接所述供电端和所述输出端,且耦接所述第一输出端口;所述第二开关电路耦接所述供电端和所述输出端,且耦接所述第二输出端口;所述第一开关电路和所述第二开关电路耦接所述控制电路;所述控制电路用于控制所述第一开关电路和第二开关电路的导通或断路;
    在所述第一开关电路和所述第二开关电路均断路时,所述开关电路处于所述断开状态;在所述第一开关电路和所述第二开关电路的至少一者导通时,所述开关电路处于所述通路状态;所述第一开关电路用于在导通时使得所述第一输出端口耦接所述供电端和所述输出端的一者;所述第二开关电路用于在导通时使得所述第二输 出端口耦接所述供电端和所述输出端的一者。
  3. 根据权利要求2所述的充电电路,其特征在于,
    所述第一开关电路包括第一开关和第二开关,所述第一开关耦接于所述第一输出端口和所述供电端之间,所述第二开关耦接于所述第一输出端口和所述输出端之间;
    所述第二开关电路包括第三开关和第四开关,所述第三开关耦接所述第二输出端口和所述供电端之间,所述第四开关耦接于所述第二输出端口和所述输出端之间;
    其中,所述控制电路分别耦接所述第一开关、所述第二开关、第三开关和所述第四开关,用于控制所述第一开关、所述第二开关、所述第三开关和所述第四开关的导通或断路;在所述第一开关和所述第二开关断路时,所述第一开关电路断路;在所述第一开关和所述第二开关中的一者导通时,所述第一开关电路导通;在所述第三开关和所述第四开关断路时,所述第二开关电路断路;在所述第三开关和所述第四开关中的一者导通时,所述第二开关电路导通。
  4. 根据权利要求3所述的充电电路,其特征在于,
    所述第一开关、所述第二开关、所述第三开关和所述第四开关均包括控制端、第一端和第二端;
    所述第一开关的第一端耦接所述第一输出端口,所述第一开关的第二端耦接所述供电端,所述第一开关的控制端耦接所述控制电路;
    所述第二开关的第一端耦接所述第一输出端口,所述第二开关的第二端耦接所述输出端,所述第二开关的控制端耦接所述控制电路;
    所述第三开关的第一端耦接所述第二输出端口,所述第三开关的第二端耦接所述供电端,所述第三开关的控制端耦接所述控制电路;
    所述第四开关的第二端耦接所述第二输出端口,所述第四开关的第二端耦接所述输出端,所述第四开关的控制端耦接所述控制电路。
  5. 根据权利要求2所述的充电电路,其特征在于,
    所述第一开关电路包括第一单刀双掷模拟开关,所述第一单刀双掷模拟开关包括第一极点端子、两个第一单掷端子,所述第一极点端子耦接所述第一输出端口;所述供电端和所述输出端一一对应耦接所述两个第一单掷端子;所述控制电路耦接所述第一极点端子,用于控制所述第一极点端子与所述两个第一单掷端子之间断路,或耦接所述两个第一单掷端子中的一者;和/或,
    所述第二开关电路包括第二单刀双掷模拟开关,所述第二单刀双掷模拟开关包括第二极点端子、两个第二单掷端子,所述第一极点端子耦接所述第二输出端口;所述供电端和所述输出端一一对应耦接所述两个第二单掷端子;所述控制电路耦接所述第二极点端子,用于控制所述第二极点端子与所述两个第一单掷端子之间断路,或耦接所述两个第二单掷端子中的一者。
  6. 根据权利要求2所述的充电电路,其特征在于,
    所述第一开关电路包括第一单刀三掷模拟开关,所述第一单刀三掷模拟开关包括第一极点端子、三个第一单掷端子;所述第一极点端子耦接所述第一输出端口;所述供电端和所述输出端一一对应耦接其中两个所述第一单掷端子,另一所述第一单掷端子悬空;所述控制电路耦接所述第一极点端子,用于控制所述第一极点端子择一耦接所述三个第一单掷端子中的一者;和/或,
    所述第二开关电路包括第二单刀三掷模拟开关,所述第二单刀三掷模拟开关包括第二极点端子、三个第二单掷端子;所述第二极点端子耦接所述第二输出端口;所述供电端和所述输出端一一对应耦接其中两个所述第二单掷端子,另一所述第二单掷端子悬空;所述控制电路耦接所述第二极点端子,用于控制所述第二极点端子择一耦接所述三个第二单掷端子中的一者。
  7. 根据权利要求1-6任一项所述的充电电路,其特征在于,
    所述控制电路耦接所述第一输出端口,用于获取来自所述第一输出端口的第一电压反馈信息;
    所述控制电路耦接所述第二输出端口,用于获取来自所述第二输出端口的第二 电压反馈信息;
    所述控制电路耦接所述供电电路,用于根据所述第一电压反馈信息和/或所述第二电压反馈信息控制所述电压变换电路在所述非工作状态和所述工作状态之间切换。
  8. 根据权利要求7所述的充电电路,其特征在于,
    所述控制电路还用于根据所述第一电压反馈信息和/或所述第二电压反馈信息控制调整所述供电电路经所述供电端输出相匹配的电压,使得所述第一输出端口和/或所述第二输出端口能够分别输出满足相对应的用电设备的需求电压。
  9. 根据权利要求8所述的充电电路,其特征在于,
    所述电压变换电路处于所述工作状态时为升压电路,
    所述控制电路获取所述第一电压反馈信息和第二电压反馈信息,以将所述第一输出端口和所述第二输出端口的需求电压高的一者耦接到所述输出端,需求电压低的一者耦接到所述供电端。
  10. 根据权利要求8所述的充电电路,其特征在于,
    所述电压变换电路处于所述工作状态时为降压电路,
    所述控制电路获取所述第一电压反馈信息和第二电压反馈信息,以将所述第一输出端口和所述第二输出端口的需求电压高的一者耦接到所述供电端,需求电压低的一者耦接到所述输出端。
  11. 根据权利要求8所述的充电电路,其特征在于,
    所述电压变换电路处于所述工作状态时为升压斩波电路或降压变换电路,
    所述控制电路获取所述第一电压反馈信息和第二电压反馈信息,以计算所述第一输出端口和所述第二输出端口的需求电压的差值,并根据所述差值调整所述电压变换电路的开关的占空比。
  12. 一种供电设备,其特征在于,包括:
    如权利要求1-11任一项所述的充电电路;
    用于耦接外部电源的充电端口和/或作为内部电源的电源模块,耦接所述充电电路。
PCT/CN2024/101698 2023-06-27 2024-06-26 充电电路及供电设备 WO2025002190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202321655269.4 2023-06-27
CN202321655269.4U CN220043035U (zh) 2023-06-27 2023-06-27 充电电路及供电设备

Publications (1)

Publication Number Publication Date
WO2025002190A1 true WO2025002190A1 (zh) 2025-01-02

Family

ID=88726515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/101698 WO2025002190A1 (zh) 2023-06-27 2024-06-26 充电电路及供电设备

Country Status (2)

Country Link
CN (1) CN220043035U (zh)
WO (1) WO2025002190A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN220043035U (zh) * 2023-06-27 2023-11-17 安克创新科技股份有限公司 充电电路及供电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006567A (ja) * 2005-06-22 2007-01-11 Chugoku Electric Power Co Inc:The 複電圧電源装置
CN206472021U (zh) * 2016-12-29 2017-09-05 株式会社村田制作所 具有多路输出的电压变换装置
CN111769741A (zh) * 2020-07-22 2020-10-13 深圳市必易微电子有限公司 多路输出供电系统及其控制电路和电子封装体
CN213279502U (zh) * 2020-09-18 2021-05-25 深圳市云矽半导体有限公司 多供电端口的处理电路与电子设备
CN220043035U (zh) * 2023-06-27 2023-11-17 安克创新科技股份有限公司 充电电路及供电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006567A (ja) * 2005-06-22 2007-01-11 Chugoku Electric Power Co Inc:The 複電圧電源装置
CN206472021U (zh) * 2016-12-29 2017-09-05 株式会社村田制作所 具有多路输出的电压变换装置
CN111769741A (zh) * 2020-07-22 2020-10-13 深圳市必易微电子有限公司 多路输出供电系统及其控制电路和电子封装体
CN213279502U (zh) * 2020-09-18 2021-05-25 深圳市云矽半导体有限公司 多供电端口的处理电路与电子设备
CN220043035U (zh) * 2023-06-27 2023-11-17 安克创新科技股份有限公司 充电电路及供电设备

Also Published As

Publication number Publication date
CN220043035U (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US20190199214A1 (en) Direct current-direct current converter
CN103731031B (zh) 电源及电源调压方法
CN105356742B (zh) 一种高效率电荷泵
CN113595177B (zh) 混合模式充电电路、系统及充电方法
WO2021237615A1 (zh) 充电器驱动电路、集成电路、充电器、充电控制方法及充电控制系统
CN105553007A (zh) 一种升降压电池充电电路及其控制电路和控制方法
CN103560550B (zh) 一种可同时给移动电子设备供电及充电装置
CN107623440A (zh) 电压转换电路和电源切换电路
CN111884293B (zh) 双向双端口电源控制系统、移动电源及电源适配器
JP2020501488A (ja) バッテリ充電システム
US20230208287A1 (en) Dc/dc converter, voltage gain switching method and system
WO2025002190A1 (zh) 充电电路及供电设备
US11588391B1 (en) Power conversion structure, system, method, electronic device including power conversion structure, and chip unit
EP4187748A1 (en) Circuit for controlling cell, and electronic device
US20170085080A1 (en) Power Management Circuit
WO2020087284A1 (zh) 电池控制电路、电池和无人机
CN208190338U (zh) 一种低损耗的供电切换电路
CN117856610A (zh) 三路功率转换器
CN213305713U (zh) 一种双向开关及无线耳机充电盒
CN112953227B (zh) 开关电源电路、芯片及系统
WO2023151375A1 (zh) 电源电路及电子设备
CN113162160B (zh) 控制电路、充电电路及电子设备
WO2022067701A1 (zh) 一种充电电路及电子设备
TW202315291A (zh) 多模式電源系統及其電源轉換電路
CN115589146A (zh) 电压转换器及控制方法、电池模块、电子设备和充电柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24830825

Country of ref document: EP

Kind code of ref document: A1