[go: up one dir, main page]

WO2024262611A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2024262611A1
WO2024262611A1 PCT/JP2024/022593 JP2024022593W WO2024262611A1 WO 2024262611 A1 WO2024262611 A1 WO 2024262611A1 JP 2024022593 W JP2024022593 W JP 2024022593W WO 2024262611 A1 WO2024262611 A1 WO 2024262611A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wave power
control unit
freezing
circuit
Prior art date
Application number
PCT/JP2024/022593
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 新帯
貴代志 森
剛樹 平井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024262611A1 publication Critical patent/WO2024262611A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • This disclosure relates to a refrigerator equipped with a storage compartment that has the function of thawing frozen foods.
  • Patent Document 1 discloses a refrigerator capable of thawing frozen products.
  • the refrigerator described in Patent Document 1 includes, inside its main body, a refrigeration unit and a freezing chamber, as well as a high-frequency generating magnetron and a heating chamber.
  • the refrigerator described in Patent Document 1 can supply cold air from a refrigeration unit to a heating chamber via a cold air circulation duct, and can also supply high frequency waves from a magnetron to the heating chamber to thaw frozen items stored in the heating chamber.
  • this heating chamber is a storage chamber in which frozen items can be thawed.
  • Patent Document 2 discloses a refrigeration device capable of supplying cold air uniformly inside the freezer.
  • the freezer described in Patent Document 2 is equipped with one or both of an alternating electric field generating unit that applies an alternating electric field to the object to be frozen and a magnetic field generating unit that applies a magnetic field inside a closed space, and applies one or both of the alternating electric field and the magnetic field to the object to be frozen.
  • the objective of this disclosure is to provide a refrigerator that can detect a malfunction by detecting noise contained in sparks caused by frost, condensation, and deterioration over time such as temperature stress, and quickly shuts down the operation to prevent the malfunction from expanding.
  • the refrigerator disclosed herein comprises a storage compartment capable of heating stored items, and a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment.
  • the dielectric heating mechanism comprises an electrode disposed in the storage compartment, an oscillation circuit that supplies high-frequency power to the electrode, a matching circuit that matches the impedance of the electrode, a detection unit connected between the oscillation circuit and the matching circuit to measure incident wave power output from the matching circuit to the electrode and reflected wave power returning to the oscillation circuit, and a control unit.
  • the control unit controls the oscillation circuit and the matching circuit based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power.
  • the refrigerator disclosed herein can detect abnormalities more accurately and stop operation appropriately.
  • FIG. 1 is a vertical cross-sectional view of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a front cross-sectional view showing the freezing/thawing compartment of the refrigerator according to the embodiment.
  • FIG. 3 is a side cross-sectional view showing the freezing/thawing compartment of the refrigerator according to the embodiment.
  • FIG. 4 is a vertical cross-sectional view showing how the freezing/thawing compartment is incorporated into the main body of the refrigerator according to the embodiment.
  • FIG. 5 is a front sectional view showing a modified example of the freezing/thawing compartment in the refrigerator according to the embodiment.
  • FIG. 6 is a side cross-sectional view showing a modified example of the freezing/thawing compartment in the refrigerator according to the embodiment.
  • FIG. 1 is a vertical cross-sectional view of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a front cross-sectional view showing the freezing/thawing compartment of the refrigerator according to the embodiment.
  • FIG. 3 is
  • FIG. 7 is a vertical cross-sectional view showing how the freezing/thawing compartment is incorporated into the main body of the refrigerator according to the embodiment.
  • FIG. 8 is a schematic diagram showing an electrode holding area on the rear side of a freezing/thawing compartment in a refrigerator according to an embodiment.
  • FIG. 9 is a block diagram of a dielectric heating mechanism disposed in the refrigerator according to the embodiment.
  • FIG. 10 is a schematic circuit diagram of an AC/DC converter in the dielectric heating mechanism.
  • FIG. 11 is a plan view of a first electrode and a second electrode of a freezing/thawing compartment in a refrigerator according to an embodiment, as viewed from above.
  • FIG. 12 is a diagram showing the relationship between the electrode distance between the first electrode and the second electrode and the electric field intensity between the two electrodes.
  • FIG. 13A is an electric field simulation diagram showing the results of a simulation performed on a dielectric heating configuration.
  • FIG. 13B is an electric field simulation diagram showing the results of a simulation performed on the dielectric heating configuration of the freezing/thawing compartment in the refrigerator according to the embodiment.
  • FIG. 14 is a diagram showing the control signal in the electric field generation process, the temperatures of the food and the freezing/thawing compartment, and the humidity in the freezing/thawing compartment in the configuration of the embodiment.
  • FIG. 15 is a flow chart showing the control after the electric field generation process is completed in the freezing/thawing chamber in the configuration of this embodiment.
  • FIG. 16A is a waveform diagram showing a cooling operation in a conventional refrigerator.
  • FIG. 16B is a waveform diagram showing the cooling operation in the refrigerator according to the embodiment.
  • FIG. 17 is a waveform diagram showing the state of each element during a rapid cooling operation in the configuration of the embodiment.
  • FIG. 18A is a diagram illustrating an example of the high frequency blocking circuit when the door of the refrigerator according to the embodiment is opened.
  • FIG. 18B is a diagram illustrating another example of the high-frequency blocking circuit when the door of the refrigerator according to the embodiment is opened.
  • FIG. 18C is a diagram illustrating still another example of the high frequency blocking circuit when the door of the refrigerator in accordance with the embodiment is opened.
  • FIG. 19A is a cross-sectional view showing an example of cable wiring to a freezing/thawing compartment in a refrigerator according to an embodiment.
  • FIG. 19A is a cross-sectional view showing an example of cable wiring to a freezing/thawing compartment in a refrigerator according to an embodiment.
  • FIG. 19B is a cross-sectional view showing an example of cable wiring to a freezing/thawing compartment in a refrigerator according to an embodiment.
  • FIG. 20A is a timing chart showing a process for an abnormal sensor voltage of a dielectric heating mechanism in a refrigerator according to an embodiment.
  • FIG. 20B is a timing chart for detecting spark occurrence in a dielectric heating mechanism in a refrigerator according to an embodiment.
  • FIG. 20C is a timing chart for detecting spark generation in a dielectric heating mechanism in a refrigerator according to an embodiment.
  • FIG. 21 is a timing chart for detecting an abnormality in the electric circuit of the dielectric heating mechanism in the refrigerator according to the embodiment.
  • FIG. 20A is a timing chart showing a process for an abnormal sensor voltage of a dielectric heating mechanism in a refrigerator according to an embodiment.
  • FIG. 20B is a timing chart for detecting spark occurrence in a dielectric heating mechanism in a refrigerator according to an embodiment.
  • FIG. 20C is a timing chart for detecting
  • FIG. 22 is a timing chart for detecting an abnormality in the electric circuit of the dielectric heating mechanism in the refrigerator according to the embodiment.
  • FIG. 23 is a flowchart showing a process for determining whether or not there is an abnormality in the dielectric heating mechanism in the refrigerator according to the embodiment.
  • Patent Document 1 (The knowledge that formed the basis of this disclosure) At the time when the inventors conceived the subject matter of the present disclosure, the refrigerator described in Patent Document 1 was known.
  • the refrigerator described in Patent Document 1 irradiates the frozen items in the heating chamber with high-frequency waves from a magnetron via an antenna or the like, thereby heating the frozen items. Therefore, if there is an uneven distribution of high-frequency waves in the heating chamber, it is difficult to heat the frozen items evenly and defrost them to the desired state.
  • the above conventional refrigerators are equipped with a magnetron that generates high frequency waves, as well as a cooling mechanism for the magnetron. Therefore, it is difficult to reduce the size of the above conventional refrigerators.
  • Patent Document 2 describes a freezing device that applies an alternating electric field to the item to be frozen.
  • the freezing device described in Patent Document 2 it is difficult to melt the ice crystals that form in the preserved item, and freezing destroys the cell membrane of the preserved item.
  • Patent Document 1 and the technology described in Patent Document 2 are difficult to apply simultaneously due to differences in output frequency and output power.
  • Patent Document 2 when a device using metal components is used in a freezer environment, malfunctions may occur due to condensation or frost caused by moisture in food or moisture from the outside.
  • the inventors conceived the subject matter of the present disclosure.
  • the objective of this disclosure is to provide a small, reliable refrigerator that can freeze, store, and thaw items stored in a storage compartment in a desired state.
  • a refrigerator with a freezing function and a defrosting function will be described with reference to the attached drawings.
  • the refrigerator according to the present disclosure is not limited to the configuration described in the embodiment below, but can also be applied to a freezer that only has a freezing function. Therefore, in this disclosure, a refrigerator is a device that has one or both of a refrigerator compartment and a freezer compartment.
  • FIG. 1 is a vertical cross-sectional view of a refrigerator 1 according to the present embodiment.
  • the left and right sides in Fig. 1 correspond to the front side and rear side, respectively, of the refrigerator 1.
  • a main body 2 of the refrigerator 1 is an insulated box body including an outer box 3, an inner box 4, and a thermal insulation material 40.
  • the outer box 3 is mainly made of steel plate.
  • the inner box 4 is made of resin such as ABS (Acrylonitrile, Butadiene, Styrene).
  • the heat insulating material 40 is, for example, rigid urethane foam, which is foamed and filled into the space between the outer box 3 and the inner box 4.
  • the main body 2 of the refrigerator 1 has multiple storage compartments, namely, a refrigerator compartment 5, a freezer/thaw compartment 6, an ice-making compartment 7, a freezer compartment 8, and a vegetable compartment 9.
  • An openable and closable door is provided at the front opening of each storage compartment. The doors cover the front openings of the multiple storage compartments to prevent cold air from leaking out of the storage compartments.
  • the refrigerator compartment 5 is the uppermost of the multiple storage compartments. Directly below the refrigerator compartment 5, two storage compartments, the ice-making compartment 7 and the freezer/thaw compartment 6, are arranged side by side on the left and right.
  • the freezer compartment 8 is arranged directly below the ice-making compartment 7 and the freezer/thaw compartment 6.
  • the vegetable compartment 9 is arranged directly below the freezer compartment 8.
  • each storage compartment in the refrigerator 1 is an example, and the present disclosure is not limited thereto.
  • the configuration and arrangement of each storage compartment can be changed as appropriate depending on the specifications, etc.
  • Refrigerator compartment 5 is maintained at a temperature for refrigerating food and other preserved items, specifically 1°C to 5°C.
  • Vegetable compartment 9 is maintained at a temperature range equal to or slightly higher than refrigerator compartment 5, for example 2°C to 7°C.
  • Freezer compartment 8 is maintained in the freezing temperature range for frozen storage, specifically, for example -22°C to -15°C.
  • the freezing/thawing compartment 6 is normally maintained at the same freezing temperature range as the freezing compartment 8.
  • an electric field generation process is carried out to thaw the stored items (frozen goods) in response to a command from the user to start generating an electric field (hereinafter, an electric field generation command).
  • an electric field generation command The configuration of the freezing/thawing compartment 6 and the details of the electric field generation process will be described later.
  • a machine room 10 is located at the top of the refrigerator 1 (the top in this embodiment).
  • the machine room 10 houses components that make up the refrigeration cycle, such as a compressor 19 and a dryer that removes moisture during the refrigeration cycle.
  • the location of the machine room 10 is not limited to the top of the refrigerator 1, but is determined appropriately depending on the location of the refrigeration cycle, etc.
  • the machine room 10 may be located at the bottom of the refrigerator 1.
  • the cooling compartment 11 is located behind the freezer compartment 8 and vegetable compartment 9, which are located at the bottom of the refrigerator 1.
  • the cooling compartment 11 is equipped with a cooler 13 and a cooling fan 14.
  • the cooler 13 is a component of the refrigeration cycle that generates cold air.
  • the cooling fan 14 blows the cold air generated by the cooler 13 through the air passage 12 to the three storage compartments (the refrigerator compartment 5, the freezer/thaw compartment 6, and the ice-making compartment 7).
  • a damper 12a is disposed in the air passage 12.
  • the control unit 50 controls the rotation speed of the compressor 19 and the cooling fan 14, and controls the opening and closing of the damper 12a, to maintain the temperature of each storage compartment within a predetermined temperature range.
  • a defrost heater 15 is disposed at the bottom of the cooling chamber 11.
  • the defrost heater 15 is a heater for removing frost and ice that adheres to the cooler 13 and its surroundings.
  • a drain pan 16, a drain tube 17, and an evaporator dish 18 are disposed below the defrost heater 15. These are components for evaporating moisture that is generated during defrosting, etc.
  • the refrigerator 1 includes an operation unit 47 (see FIG. 9 described below).
  • a user uses the operation unit 47 to input various commands to the refrigerator 1 (for example, temperature settings for each storage compartment, a quick cooling command, a command to generate an electric field, a command to stop ice making, etc.).
  • the operation unit 47 has a display unit for notifying the user of necessary information.
  • the refrigerator 1 may be equipped with a wireless communication unit that can be connected to a wireless LAN (local area network) to input various commands from the user's external terminal.
  • the refrigerator 1 may also be equipped with a voice recognition unit for inputting commands by voice from the user.
  • FIGS 2, 3, 5, and 6 are vertical cross-sectional views showing the freezing/thawing compartment 6 of the refrigerator 1 according to this embodiment.
  • Figures 2 and 5 are views of refrigerator 1 as seen from the front side. Therefore, the left and right sides in Figures 2 and 5 correspond to the left and right sides of refrigerator 1, respectively.
  • Figures 3 and 6 are views of refrigerator 1 as seen from the right side. Therefore, the left and right sides in Figures 3 and 6 correspond to the front and rear sides of refrigerator 1, respectively.
  • the top and bottom of refrigerator 1 correspond to the top and bottom of the drawings.
  • the freezing/thawing chamber 6 is both a freezing chamber and a thawing chamber. That is, the freezing/thawing chamber 6 freezes stored items such as food and keeps them at a freezing temperature range.
  • an electric field generation command is input to the operation unit 47, an electric field generation process is performed in the freezing/thawing chamber 6, and the frozen stored items are thawed by dielectric heating.
  • An air passage 12 is disposed behind and above the freezing/thawing chamber 6.
  • the air passage 12 connects the cooling chamber 11 with the freezing/thawing chamber 6.
  • a plurality of cold air inlet holes 20 are disposed on the top surface of the freezing/thawing chamber 6.
  • the cold air generated by the cooler 13 flows through the air passage 12 and is introduced into the freezing/thawing chamber 6 through the plurality of cold air inlet holes 20. This allows the freezing/thawing chamber 6 to be maintained in the same freezing temperature range as the freezing chamber 8.
  • a damper 12a is disposed in the air passage 12.
  • the damper 12a is controlled to open and close so that the freezing/thawing chamber 6 is maintained at a predetermined freezing temperature range. This allows the items contained in the freezing/thawing chamber 6 to be frozen and preserved.
  • a cold air exhaust hole (not shown) is formed on the rear surface of the freezing/thawing compartment 6. After cooling the inside of the freezing/thawing compartment 6, the cold air returns to the cooling compartment 11 via the cold air exhaust hole and an air passage (not shown), and is re-cooled by the cooler 13. That is, in the refrigerator 1 according to this embodiment, the cold air generated by the cooler 13 circulates through the refrigerator 1.
  • inner surface members 32a, 32b, and 32c molded from an electrically insulating material (e.g., resin).
  • inner surface members 32a to 32c are collectively referred to as inner surface member 32.
  • a door 29 is placed at the front opening of the freezing/thawing chamber 6. When the door 29 is closed, the storage space of the freezing/thawing chamber 6 is sealed. A storage case 31 with an open top is placed on the rear side of the door 29 in the freezing/thawing chamber 6. When the door 29 is opened and closed back and forth, the storage case 31 moves back and forth in conjunction with this movement. This movement allows the storage case 31 to be removed from the freezing/thawing chamber 6, making it easier to take in and out stored items such as food.
  • the dielectric heating mechanism can adjust the amount of heat by controlling the output power. If the amount of heat applied to the stored item exceeds the amount of cooling in the freezing/thawing chamber 6, the stored item is heated. If the amount of heat applied to the stored item is less than the amount of cooling in the freezing/thawing chamber 6, the stored item is cooled.
  • FIG. 9 is a block diagram of the dielectric heating mechanism arranged in the refrigerator 1. As shown in FIG. 9, the dielectric heating mechanism in this embodiment includes a power supply unit 48, an oscillator circuit 22, a matching circuit 23, a first electrode 24, a second electrode 25, and a control unit 50.
  • the oscillator circuit 22 is an oscillator section that receives power from the power supply section 48 and generates a high-frequency signal.
  • the oscillator circuit 22 is constructed using semiconductor elements, is miniaturized, and is disposed on an electrode holding substrate 52 in an electrode holding area 30 (see Figures 3, 4, 6, and 7) described below.
  • the oscillator circuit 22 and the matching circuit 23 correspond to an electric field forming section for forming a high-frequency electric field to be applied between the first electrode 24 and the second electrode 25.
  • the first electrode 24 is a flat electrode located at the top (near the top surface) of the freezing/thawing chamber 6.
  • the second electrode 25 is a flat electrode located at the bottom (near the bottom surface) of the freezing/thawing chamber 6.
  • the first electrode 24 and the second electrode 25 are a pair of electrodes arranged facing each other at a predetermined vertical distance (see electrode distance H in Figure 8) in the storage space (thawing space) of the freezing/thawing chamber 6.
  • the first electrode 24 and the second electrode 25 are fixed to an electrode holding substrate 52, which will be described later.
  • the first electrode 24 and the second electrode 25 are arranged substantially parallel to each other.
  • substantially parallel does not mean strictly parallel, but includes errors resulting from variations in processing accuracy, etc.
  • the first electrode 24 is disposed near the top surface of the storage space
  • the second electrode 25 is disposed near the bottom surface of the storage space, with the storage space in between.
  • the inner surface member 32 covers the matching circuit 23 on the rear side, the first electrode 24 on the top surface, and the second electrode 25 on the bottom surface, thereby preventing damage to these elements due to contact with the stored items.
  • a first electrode 24 and a second electrode 25 are disposed near the top and bottom surfaces of the storage space, respectively.
  • the present disclosure is not limited to this configuration. It is sufficient that the first electrode 24 and the second electrode 25 are disposed substantially parallel to each other and facing each other across the storage space (thawing space).
  • the second electrode 25 may be disposed near the top surface of the storage space, and the first electrode 24 may be disposed near the bottom surface of the storage space.
  • the first electrode 24 and the second electrode 25 may be disposed opposite each other in the left-right direction (depth direction in FIG. 1).
  • the oscillator circuit 22 outputs a high-frequency voltage in the VHF band (40.68 MHz in this embodiment).
  • the high-frequency voltage output by the oscillator circuit 22 creates an electric field between the first electrode 24 and the second electrode 25, resulting in dielectric heating of the stored object, which is a dielectric placed in the storage space.
  • the first electrode 24, the second electrode 25, and the stored object form a load impedance in the storage space.
  • the matching circuit 23 adjusts the impedance in the matching circuit 23 so that the load impedance matches the output impedance of the oscillation circuit 22.
  • the matching circuit 23 performs impedance matching to minimize the reflected wave relative to the incident wave.
  • the incident wave is the electromagnetic wave output by the oscillator circuit 22 toward the first electrode 24.
  • the reflected wave is the electromagnetic wave of the incident wave that returns from the first electrode 24 to the oscillator circuit 22.
  • the refrigerator 1 further includes a current detection unit 57 and a cooling mechanism 58 as an abnormality avoidance means.
  • the current detection unit 57 is disposed at the input of the oscillator circuit 22, and detects the value of the current supplied from the power supply unit 48 to the oscillator circuit 22 (specifically, the second amplifier circuit 22c).
  • the cooling mechanism 58 dissipates heat generated by losses during conversion from DC power to high-frequency power in the oscillator circuit 22 and by consumption of reflected wave power from the electrode holding substrate 52 toward the oscillator circuit 22 due to impedance mismatch. Cooling control, described below, operates the oscillator circuit 22 within a temperature range where heat-induced failures do not occur.
  • the heat generated per unit time in the oscillator circuit 22 depends on the sum of the input power of the power supply unit 48 and the reflected wave power toward the oscillator circuit 22 minus the incident wave power output from the oscillator circuit 22.
  • the heat generated in the oscillation circuit 22 can be calculated from the output voltage of the power supply unit 48, the current value detected by the current detection unit 57, and the incident wave power value and reflected wave power value in the detection unit 51 described below.
  • the control unit 50 controls the cooling mechanism 58 to exert a predetermined cooling capacity for the calculated heat in the oscillation circuit 22, thereby maintaining the temperature of the oscillation circuit 22 at or below a predetermined value.
  • the oscillator circuit 22 includes a detector 51.
  • the detector 51 detects the incident wave and the reflected wave, and transmits the respective detection values to the controller 50.
  • the oscillator circuit 22 is electrically connected to the first electrode 24 via the detector 51 and the matching circuit 23.
  • the controller 50 calculates the ratio of the detection value of the reflected wave power to the detection value of the incident wave power as a reflectance, and performs various controls, which will be described later, based on the reflectance.
  • the control unit 50 may calculate the ratio of the detected value of the reflected wave power to the set power value of the electromagnetic wave output from the oscillator circuit 22 as the reflectivity.
  • the control unit 50 may perform various controls, described later, based only on the detected value of the reflected wave, regardless of the set output value of the electromagnetic wave and the detected value of the incident wave.
  • the control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on signals from the operation unit 47, the temperature sensor 49, etc.
  • the control unit 50 includes a processor such as a CPU (Central Processing Unit) and a memory such as a ROM (Read Only Memory).
  • the control unit 50 performs various controls by having the CPU execute a control program stored in the memory.
  • an A/D converter (not shown) is provided at the output section of the sensors (detection section 51, temperature sensor 49, current detection section 57) required for controlling the dielectric heating mechanism, or at the input section of the control section 50 for the output signals of these sensors.
  • the A/D converter converts the analog values output from the sensors into digital values and inputs them to the control section 50.
  • the electrode holding substrate 52 (see Figures 3, 4, 6, 7, 8, 19A, and 19B) and the first electrode 24 are directly connected without the use of a lead wire or a coaxial cable.
  • the electrode holding substrate 52 and the second electrode 25 are directly connected.
  • the electrode holding substrate 52 is disposed in the electrode holding area 30 at the rear of the freezing/thawing chamber 6 and includes a matching circuit 23.
  • the matching circuit 23 has adjustable inductance and capacitance values.
  • the control unit 50 adjusts the inductance and capacitance values of the matching circuit 23 to control impedance matching by the matching circuit 23.
  • the matching circuit 23 generates heat due to losses in the inductor. Hereinafter, this heat is referred to as waste heat by the matching circuit 23.
  • a matching circuit 23 In a device including a matching circuit 23 and metal parts such as a first electrode 24, a second electrode 25, and an electromagnetic shield 26 (described later, for example, the top-side electromagnetic shield 26a, the back-side electromagnetic shield 26b, the bottom-side electromagnetic shield 26c, and the door-side electromagnetic shield 26d shown in Figures 2 and 3) arranged around the matching circuit 23, condensation is likely to occur in the freezing temperature range.
  • the matching circuit 23 is arranged on the electrode holding substrate 52, so that waste heat from the matching circuit 23 is conducted to the device, preventing condensation.
  • the first electrode 24, the second electrode 25, and the electromagnetic shield 26 described below also generate heat due to electrical losses. However, this heat is usually slight and does not contribute to preventing condensation and frost. Therefore, it is possible to prevent condensation and frost by intentionally increasing the heat generation by using a material with high loss.
  • control unit 50 detects the possibility of condensation or frosting, regardless of whether an electric field is generated in the freezing/thawing chamber 6, it uses waste heat to prevent condensation and frosting. In other words, the control unit 50 prevents condensation and frosting by appropriately operating the oscillation circuit 22 to intentionally generate waste heat.
  • the detection unit 51 In order to more accurately determine whether the impedance matching provided by the matching circuit 23 is sufficient, it is desirable to place the detection unit 51 on the electrode holding substrate 52 together with the matching circuit 23. This eliminates the need for lead wires, coaxial cables, and connectors for connecting these between the matching circuit 23 and the detection unit 51, making it possible to simplify the structure.
  • the matching circuit 23, the detection unit 51, and the oscillator circuit 22 all on a single board, it is possible to further reduce transmission loss due to lead wires and coaxial cables, and improve the accuracy of impedance matching.
  • the oscillator circuit 22 and the matching circuit 23 may be arranged on separate boards and electrically connected by lead wires or a coaxial cable.
  • these elements are arranged rationally by making effective use of the space inside the refrigerator, for example by installing the oscillator circuit 22 in the machine room 10 which has a large amount of free space.
  • impedance matching including the coaxial cable it is preferable to arrange the oscillator circuit 22 and the detection unit 51 on a single board.
  • the first electrode 24 and the second electrode 25 face each other substantially parallel to each other with a predetermined gap (see electrode gap H in FIG. 8 ). This makes the electric field uniform in the storage space of the freezing/thawing chamber 6. In this dielectric heating mechanism, the electrode gap H is maintained as described below.
  • Figure 8 shows the electrode holding area 30 on the rear side of the freezing/thawing compartment 6.
  • Figure 8 is a schematic diagram of the electrode holding area 30 as viewed from the rear side of the freezing/thawing compartment 6. Therefore, the left and right sides in Figure 8 correspond to the right and left sides, respectively, of the refrigerator 1 when viewed from the front side.
  • a first electrode 24 is disposed at the top of the freezing/thawing chamber 6 (near the top surface), and a second electrode 25 is disposed at the bottom of the freezing/thawing chamber 6 (near the bottom surface).
  • the first electrode 24 has positive electrode terminal 24a, positive electrode terminal 24b, and positive electrode terminal 24c.
  • the positive electrode terminals 24a to 24c are arranged side by side in the left-right direction near the center of the rear end of the first electrode 24.
  • Each of the positive electrode terminals 24a to 24c protrudes from the rear end of the first electrode 24 and has a shape that is bent upward or downward at a right angle.
  • the second electrode 25 has cathode terminal 25a, cathode terminal 25b, and cathode terminal 25c.
  • Cathode terminals 25a to 25c are arranged side by side in the left-right direction near the center of the rear end of the second electrode 25.
  • Each of cathode terminals 25a to 25c protrudes from the rear end of the second electrode 25 and has a shape that is bent upward or downward at a right angle.
  • the first electrode 24 and the second electrode 25 are fixed to the upper and lower parts, respectively, of the electrode holding substrate 52.
  • the matching circuit 23 and the detection unit 51 are disposed on the electrode holding substrate 52. Therefore, the first electrode 24 and the second electrode 25 are held at a predetermined distance (see electrode distance H in Figure 8) by the electrode holding substrate 52.
  • the matching circuit 23 and the like are arranged on the electrode holding substrate 52, the rigidity of the electrode holding substrate 52 is improved by the copper foil wiring pattern. Therefore, the electrode holding substrate 52 can cantilever-support the first electrode 24 and the second electrode 25 at a predetermined interval (see electrode interval H in FIG. 8). As described above, the oscillator circuit 22 and the like may also be arranged on the electrode holding substrate 52.
  • the positive electrode terminals 24a to 24c of the first electrode 24 are connected to a connection terminal (not shown) on the positive side of the matching circuit 23.
  • the cathode terminals 25a to 25c of the second electrode 25 are connected to a connection terminal (not shown) on the cathode side of the matching circuit 23.
  • the positive electrode terminals 24a to 24c and the cathode terminals 25a to 25c are connected to the connection terminals of the matching circuit 23 by surface contact with a specified contact area to ensure reliability even when a large current flows.
  • the flat terminals are connected to each other by screwing.
  • the connection between the terminals is not limited to a connection by screwing, so long as a reliable connection is possible.
  • the electrode holding substrate 52 which is an electrode holding mechanism, is disposed behind the freezing/thawing chamber 6.
  • the electrode holding substrate 52 positions the first electrode 24 and the second electrode 25 substantially parallel to each other.
  • the freezing/thawing chamber 6 is equipped with a high-frequency heating module 53 (see, for example, FIG. 4).
  • the high-frequency heating module 53 is a module that integrates a first electrode 24, a second electrode 25 that is parallel to the first electrode 24, and an electrode holding substrate 52 that holds the first electrode 24 and the second electrode 25. This makes it easy to hold the first electrode 24 and the second electrode 25 approximately parallel.
  • Anomaly detection in dielectric heating mechanism Anomalies in the dielectric heating mechanism include temperature anomalies, sparks, and circuit failures. Temperature anomalies refer to an abnormal rise in temperature of the oscillation circuit 22 and the matching circuit 23 due to the operating conditions and the surrounding environment.
  • the high-frequency power input to the matching circuit 23 is converted into a high-frequency electric field between the first electrode 24, which is an oscillation electrode, and the second electrode 25, which is an opposing electrode.
  • the stored object is dielectrically heated by this high-frequency electric field.
  • the matching circuit 23 corresponds to the matching section.
  • the temperature of the components included in the matching circuit 23 may deviate from its operating temperature range due to the combination of heat generation from the matching circuit 23 and external factors that increase the ambient temperature.
  • External factors that increase the ambient temperature include opening and closing the freezer/thaw chamber 6 and defrosting.
  • a temperature sensor 49 is disposed in the matching circuit 23.
  • the control unit 50 causes the oscillator circuit 22 to stop high-frequency output, thereby allowing the matching circuit 23 to operate within a safe temperature range.
  • the output signal from the temperature sensor may not have a sufficient response speed. Therefore, the temperature characteristics of the capacitors and inductors included in the matching circuit 23 may be measured from the reflectance obtained based on the information from the detection unit 51, and the response speed of the output signal from the temperature sensor may be corrected.
  • the dielectric heating mechanism includes an oscillator circuit 22, a matching circuit 23, a detector 51, and a controller 50.
  • the oscillator circuit 22 supplies high-frequency power to the electrodes (first electrode 24, second electrode 25).
  • the matching circuit 23 performs impedance matching of the electrodes.
  • the detection unit 51 is connected between the oscillation circuit 22 and the matching circuit 23, and measures the incident wave power output from the matching circuit 23 to the electrode and the reflected wave power returning to the oscillation circuit 22.
  • the control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power. In other words, the control unit 50 functions as an abnormality detection means.
  • a spark refers to a momentary short circuit state that occurs between the first electrode 24 or the second electrode 25 and the electromagnetic shield 26, between the first electrode 24 or the second electrode 25 and a stored object, etc.
  • the control unit 50 detects sparks based on information obtained from the detection unit 51, and if a spark is detected, it immediately stops the oscillation circuit 22.
  • the detection unit 51 is a sensor that outputs a voltage whose magnitude corresponds to the input high-frequency power.
  • the VHF (Very High Frequency) band of 30 MHz to 300 MHz is used as the fundamental wave of the oscillator circuit 22. For this reason, the detection unit 51 is also designed to detect high-frequency power in the VHF band.
  • the detection unit 51 is also sensitive to high-frequency noise of several to several hundred MHz contained in the spark. Therefore, when high-frequency noise from the spark reaches the detection unit 51 via a coaxial cable 56 (cables 56a and 56b, described below with reference to Figures 19A and 19B), the detection unit 51 outputs the sum of the output voltage corresponding to the fundamental wave of the oscillator circuit 22 and the output voltage corresponding to the high-frequency noise.
  • the sum of the power of high-frequency noise is very large compared to the fundamental wave of the oscillator circuit 22, which contains a single frequency. For this reason, when a spark occurs, the output voltage of the detector 51 rises to a value that would not be possible under normal operation.
  • the voltage rise in the detection unit 51 due to a spark also occurs on the incident side of the detection unit 51.
  • the control unit 50 can more reliably detect the occurrence of a spark by using information on the incident wave power or information on the incident wave power and reflected wave power.
  • the detection unit 51 is exposed to noise even under normal circumstances, and may accidentally output an abnormal voltage without the occurrence of a spark.
  • this abnormal voltage exceeds a predetermined threshold, the oscillator circuit 22 stops outputting the high-frequency voltage and stops the operation of the dielectric heating mechanism, causing frequent abnormal stops. In this case, not only does it increase the burden on the user, but it can also significantly impair the quality of the stored items. For this reason, it is necessary to detect the occurrence of sparks more reliably.
  • FIGS 20A and 20B show the transition of the A/D converted value of the incident wave power or the reflected wave power.
  • This A/D converted value is a digital value obtained by converting the analog signal output from the detection unit 51, for example, by an A/D converter connected to the output unit of the detection unit 51.
  • the control unit 50 refers to the A/D converted values obtained from the several samplings immediately prior to the time of abnormality detection, and performs spark detection based on the number of these values that exceed a predetermined threshold value.
  • control unit 50 does not determine that a spark has occurred if the number is 1, and as shown in FIG. 20B, it determines that a spark has occurred if the number is 2 or more.
  • the above threshold for determining whether a spark has occurred can be freely set by the designer according to the circumstances of the noise occurrence, so long as it is 2 or more. This makes it possible to distinguish between accidental noise and noise caused by sparks, and to perform spark detection more reliably.
  • the load impedance fluctuates due to the momentary short circuit that occurs when a spark occurs, and the input current to the oscillator circuit 22 fluctuates significantly accordingly.
  • the control unit 50 may detect a spark when the incident wave power or the incident wave power and the reflected wave power exceed their respective predetermined thresholds, and the current value supplied to the oscillator circuit 22 detected by the current detection unit 57 exceeds another predetermined threshold. This can improve the accuracy of spark detection.
  • a circuit fault refers to a permanent short circuit between the first electrode 24 or the second electrode 25 and the electromagnetic shield 26, a short circuit in the matching circuit 23, a fault in the manipulator which is the impedance adjustment means in the matching circuit 23, and a short circuit or break in a high-frequency transmission line such as the coaxial cable 56 (see Figures 19A and 19B described below).
  • the load impedance is significantly different from that in the normal state. This makes it difficult for the matching circuit 23 to match the impedance, and the reflectance increases. The resulting strong temperature stress may cause the oscillator circuit 22 to fail.
  • control unit 50 fixes the impedance between the electrodes and the matching circuit 23 to the failure mode impedance, regardless of the state of the matching circuit 23 and the stored object.
  • the control unit 50 can immediately detect a circuit failure by detecting a sudden deterioration in reflectivity when the matching circuit 23 has not been controlled immediately before.
  • reflectance can take any value from 0% to 100%, making it difficult to determine the reflectance using a threshold value.
  • reflectance is constantly changing, making it difficult to determine the reflectance using the rate of change over time.
  • Graph (a) in Figure 21 shows the transition of reflectance when a circuit failure is detected during a period in which there is no change in reflectance due to control by the matching circuit 23.
  • the thick solid line shows the reflectance calculated based on the A/D converted value obtained from the detection unit 51.
  • the dashed dotted line shows the average value of the reflectance calculated based on the A/D converted values obtained by sampling the most recent few times.
  • the two dotted lines show the upper and lower limits of the normal range of reflectance centered on the average reflectance.
  • Graph (b) in Figure 21 shows the timing of detection of a circuit fault.
  • the rising edge of graph (b) in Figure 21 indicates the time when an abnormality is detected. If no circuit abnormality occurs, the most recent reflectance shows a value similar to the previous few reflectances, so the reflectance falls within the normal range.
  • the control unit 50 detects a circuit failure by detecting the point in time when the reflectance deviates from the normal range, not immediately after the impedance adjustment is performed by the matching circuit 23.
  • Figure 22 shows the change in reflectance when the impedance adjustment in the matching circuit 23 was performed immediately before.
  • Graph (a) in FIG. 22 shows the switching timing of the control signal to the matching circuit 23.
  • Graph (b) in FIG. 22 shows the change in reflectance from the control signal input to the matching circuit 23.
  • control unit 50 records the change in reflectance during the predetermined reflectance change acquisition time Rt from the input of the control signal to the matching circuit 23, that is, the difference between the maximum and minimum reflectance values, as ⁇ .
  • the control unit 50 determines that an abnormality has occurred, since the reflectance has not changed despite the impedance adjustment in the matching circuit 23. As shown in FIG. 22, the control unit 50 detects a circuit failure by making a determination based on a comparison of the reflectance change ⁇ immediately after the impedance adjustment in the matching circuit 23 with the threshold value.
  • the control unit 50 needs to detect sparks, circuit failures, and temperature abnormalities, safely shut down the dielectric heating mechanism, and identify the type of abnormality that has occurred in order to prompt the user to improve operating conditions and perform repairs.
  • FIG. 23 shows the flow of abnormality determination.
  • the control unit 50 determines whether the temperature of the matching circuit 23 is equal to or lower than a predetermined threshold value (step S201). If the temperature of the matching circuit 23 is higher than the threshold value (No in step S201), the control unit 50 determines that an abnormal temperature of the matching circuit 23 has been detected (step S202). If the temperature of the matching circuit 23 is equal to or lower than the threshold value (Yes in step S201), the control unit 50 determines that the temperature is within the normal range and moves the process to step S203.
  • step S203 to determine whether a spark has been detected, the control unit 50 calculates the number of values of incident wave power obtained during a predetermined period of time until the time of abnormality detection that exceed a predetermined threshold (see FIG. 20B). Alternatively, the control unit 50 may calculate the number of values of both incident wave power and reflected wave power obtained during a predetermined period of time until the time of abnormality detection that exceed another predetermined threshold.
  • control unit 50 performs this calculation based on the A/D conversion value of the incident wave power, or the A/D conversion values of both the incident wave power and the reflected wave power, obtained by sampling a predetermined number of times up to the timing of abnormality detection.
  • control unit 50 determines that a spark has been detected (step S204).
  • control unit 50 determines whether or not it is immediately after impedance adjustment in the matching circuit 23 (step S205).
  • step S205 If it is within a predetermined time since the impedance adjustment was performed (Yes in step S205), the control unit 50 records the maximum and minimum reflectance values within the predetermined time (step S206) and calculates the reflectance variation ⁇ (step S210). If the reflectance variation ⁇ is equal to or less than a predetermined threshold (No in step S207), the control unit 50 determines that the matching circuit 23 is faulty (step S209).
  • step S211 the control unit 50 refers to the A/D converted values of the incident wave power and the reflected wave power for the last few times and calculates the average value of the reflectivity for the last few times (see Figure 22).
  • step S212 the control unit 50 calculates the difference between the reflectance value at the time of the abnormality detection and the average value of the past several reflectance values before the abnormality detection was performed. If the difference exceeds a predetermined threshold value (No in step S208), the control unit 50 determines that a failure of the matching circuit 23 has been detected (step S209).
  • the detection method is different depending on whether it is within a predetermined time after the impedance adjustment in the matching circuit 23 or after a predetermined time has elapsed since the impedance adjustment.
  • the high frequency output of the oscillator circuit 22 is temporarily stopped, and depending on the type of abnormality, the system will automatically recover, the system will be stopped, or the details of the failure will be displayed to the user. Note that it is preferable to judge in the following order: temperature abnormality, spark detection, and circuit failure detection, but it is also possible to judge in a different order.
  • the main body 2 of the refrigerator 1 is an insulated box body composed of the outer box 3 formed of a steel plate, the inner box 4 made of resin, and the insulating material 40.
  • the insulating material 40 is, for example, rigid urethane foam, and is foamed and filled in the space between the outer box 3 and the inner box 4.
  • the freezing/thawing chamber 6 has an inner surface member 32a arranged inside the insulating material 40 as an outer frame.
  • An electromagnetic wave shield 26 is arranged around the freezing/thawing chamber 6.
  • the electromagnetic wave shield 26 includes a top-side electromagnetic wave shield 26a, a back-side electromagnetic wave shield 26b, a bottom-side electromagnetic wave shield 26c, and a door-side electromagnetic wave shield 26d, and surrounds the freezing/thawing chamber 6 to prevent electromagnetic waves from leaking to the outside.
  • the inner surface member 32a separates the electrode holding area 30 from the freezing/thawing chamber 6.
  • the rear electromagnetic shield 26b is disposed on the rear side of the inner surface member 32a.
  • the rear electromagnetic shield 26b separates the interior of the freezing/thawing chamber 6 from the electrode holding substrate 52, which includes the matching circuit 23 and the like. This makes it possible to prevent the freezing/thawing chamber 6 and the electrode holding substrate 52 from affecting each other in terms of impedance and electric field.
  • Plate-shaped inner surface members 32b and 32c are arranged at the top and bottom of the space surrounded by inner surface member 32a, respectively.
  • a first electrode 24 is arranged on the top surface of inner surface member 32b, and a second electrode 25 is arranged on the bottom surface of inner surface member 32c.
  • the inner surface members 32b and 32c are held at a predetermined distance (see electrode spacing H in Figures 2 and 3). In other words, the first electrode 24 and the second electrode 25 are held in a substantially parallel state by the electrode holding substrate 52 and the inner surface member 32.
  • the top and bottom surfaces of the freezing/thawing chamber 6 may not be parallel.
  • the first electrode 24 and the second electrode 25 are kept approximately parallel without being affected by the outer box 3.
  • FIG. 4 is a vertical cross-sectional view showing how the freezing/thawing compartment 6 is installed in the main body 2 of the refrigerator 1.
  • FIG. 4 is a view of the refrigerator 1 as seen from the right side. Therefore, the left and right sides in FIG. 4 correspond to the front and rear sides of the refrigerator 1, respectively.
  • the high-frequency heating module 53 is pre-assembled before the manufacturing process. As shown in FIG. 4, in the manufacturing process, first, the high-frequency heating module 53 is inserted into the outer box 3 of the refrigerator 1. Next, the door unit including the door 29, the door-side electromagnetic shield 26d, the gasket 36, and the storage case 31 is inserted into the high-frequency heating module 53. This completes the refrigerator 1.
  • Figure 7 is a vertical cross-sectional view showing how the freezing/thawing compartment 6 is incorporated into the main body 2 of the refrigerator 1. Therefore, the left and right sides in Figure 7 are the same as those in Figure 4.
  • the outer box 3, inner box 4, insulating material 40, inner surface member 32, and electromagnetic wave shield 26 are the same as those in Figures 2 and 3.
  • flat inner surface members 32b and 32c are arranged horizontally at the top and bottom of the space surrounded by inner surface member 32a.
  • a first electrode 24 is arranged on the top surface of inner surface member 32b, and a second electrode 25 is arranged on the bottom surface of inner surface member 32c.
  • the front sides of the inner surface members 32b and 32c are fixed by the support 54.
  • the back sides of the inner surface members 32b and 32c are fixed by the electrode holding substrate 52 and the inner surface member 32c. This keeps the first electrode 24 and the second electrode 25 in a substantially parallel state.
  • the inner surface members 32b and 32c are held at a predetermined distance (see electrode spacing H in Figures 5 to 7), so that the first electrode 24 and second electrode 25 are held in a substantially parallel state by the electrode holding substrate 52, the support 54, and the inner surface member 32.
  • the inner surface member 32 is preferably made of a material with a thermal conductivity equal to or less than 10 W/(m ⁇ k) of common industrial ceramic materials that is unlikely to cause condensation even in the freezer compartment 8.
  • the inner surface member 32 is made of a resin such as polypropylene, ABS (Acrylonitrile-Butadiene-Syrene), or polycarbonate.
  • the electromagnetic wave shield 26 is configured to be thinner than the inner surface member 32. This makes it possible to prevent condensation on the electromagnetic wave shield 26 and the inner surface member 32 that contacts the electromagnetic wave shield 26.
  • the electrode holding mechanism allows the first electrode 24 and the second electrode 25 to be arranged approximately parallel to each other with a predetermined distance between them (see, for example, electrode distance H in FIG. 5). Therefore, in the dielectric heating mechanism of the freezing/thawing chamber 6, bias in the high-frequency electric field on the electrode surface is suppressed, and the high-frequency electric field is made uniform. As a result, the stored items (frozen products) can be heated more uniformly.
  • the refrigerator 1 is completed by inserting the high-frequency heating module 53, which is a pre-assembled unit, into the outer box 3.
  • the refrigerator 1 can be manufactured through a simple manufacturing process.
  • Electromagnetic wave shielding mechanism As described above, in the refrigerator 1 according to this embodiment, it is possible to dielectrically heat a stored object (dielectric) by placing it between the first electrode 24 and the second electrode 25 in the freezing/thawing compartment 6. Therefore, in order to prevent electromagnetic waves from leaking outside the freezing/thawing compartment 6, the refrigerator 1 according to this embodiment is provided with an electromagnetic wave shielding mechanism that surrounds the freezing/thawing compartment 6.
  • a top-side electromagnetic wave shield 26a is disposed above the top surface of the freezing/thawing chamber 6.
  • the top-side electromagnetic wave shield 26a is disposed on the upper surface of the inner surface member 32a that constitutes the top surface of the freezing/thawing chamber 6, and is disposed so as to cover the top surface of the freezing/thawing chamber 6.
  • the top-side electromagnetic wave shield 26a has multiple openings. This reduces the area of the portion of the top-side electromagnetic wave shield 26a that faces the first electrode 24.
  • These openings have a slit shape with the longitudinal direction being the front-to-rear direction of the refrigerator 1. This allows the magnetic field (or current) flowing forward from the positive terminals 24a-24c to pass smoothly over the top-side electromagnetic shield 26a. This suppresses leakage magnetic fields from diffusing to the surrounding area.
  • the inventors analyzed this through electromagnetic wave simulations.
  • the top-side electromagnetic wave shield 26a may have a mesh structure with many openings.
  • the top electromagnetic wave shield 26a may be placed inside the refrigerator compartment 5 located above the freezer/thaw compartment 6. However, since a partial compartment and a chilled compartment are often placed in the refrigerator compartment 5, the top surfaces of the partial compartment and the chilled compartment may also be used as the electromagnetic wave shield.
  • the rear electromagnetic shield 26b is arranged to cover the electrode holding area 30 arranged on the rear side of the freezing/thawing chamber 6.
  • the rear electromagnetic shield 26b prevents the electric field generated between the first electrode 24 and the second electrode 25 and the high-frequency noise generated in the matching circuit 23 from affecting the control of the cooling fan 14 and the damper 12a.
  • An electromagnetic shield (not shown) is also arranged on the side of the freezing/thawing chamber 6.
  • the door-side electromagnetic shield 26d arranged on the door 29 will be described.
  • the door 29 is attached to the body of the refrigerator 1 and covers the front opening of the freezing/thawing compartment 6 in an openable and closable manner.
  • the wired path repeatedly expands and contracts as the door 29 is opened and closed. In other words, such a configuration is not preferable because it can cause metal fatigue in the wired path to break.
  • the gap between the door-side electromagnetic shield 26d and the cross rail 21 is the electromagnetic shield on the main body side that is connected to the outer box 3 and grounded. In this embodiment, this gap is made even smaller (for example, within 30 mm).
  • the door-side electromagnetic shield 26d comes close to the grounded cross rail 21.
  • This configuration provides the same effect as grounding by wired path.
  • the door-side electromagnetic shield 26d may be placed close to components other than the cross rail 21, such as the top-side electromagnetic shield 26a and the bottom-side electromagnetic shield 26c.
  • FIG 10 is a schematic circuit diagram of the AC/DC converter in the dielectric heating mechanism.
  • the AC voltage from the AC commercial power source ACV is rectified by the bridge diode BD1 and rectifier capacitor C0 and converted into a DC voltage. This DC voltage is input to the DC/DC converter.
  • the DC/DC converter shown in FIG. 10 is a flyback type switching power supply circuit.
  • the present disclosure is not limited to this, and any switching power supply that uses a transformer, such as a forward type, push-pull type, or half-bridge type, may be used.
  • FIG. 10 shows only the main circuit components, and omits the noise filter, power supply control circuit, and protection circuit.
  • the AC voltage from the AC commercial power supply ACV is rectified and smoothed by bridge diode BD1 and rectifier capacitor C0 and converted into a DC voltage.
  • This DC voltage is called the primary DC power supply DCV0 (or first power supply unit).
  • the zero volt reference potential of the primary DC power supply DCV0 is called the primary ground GND0 (or first ground).
  • the primary DC power supply DCV0 is applied to the primary winding P1 of the switching transformer T1.
  • the switching transformer T1 operates at a switching frequency of several tens of kHz using the field effect transistor Q1.
  • the power stored in the primary winding P1 is transferred to the electrically insulated secondary winding S1 by electromagnetic induction, and is rectified by the secondary rectifier diode D1 and secondary rectifier capacitor C1. This outputs the secondary DC power supply DCV1 (second power supply unit).
  • the secondary winding S2 has an output section disposed between its two ends.
  • the output voltage of the secondary winding S2 is rectified by the secondary rectifier diode D2 and the secondary rectifier capacitor C2.
  • the zero volt reference potential of the secondary DC power supplies DCV1 and DCV2 is called the secondary ground GND1 (or second ground).
  • the primary DC power supply DCV0 is applied to the primary winding P2 of the switching transformer T2 as well as to the switching transformer T1.
  • the switching transformer T2 operates at a switching frequency of several tens of kHz using the field effect transistor Q2.
  • the power stored in the primary winding P2 is transferred to the electrically insulated secondary winding S3 by electromagnetic induction and is rectified by the secondary rectifier diode D3 and secondary rectifier capacitor C3. This outputs a secondary DC power supply DCV3 (third power supply unit).
  • the zero volt reference potential of the secondary DC power supply DCV3 is called the secondary ground GND2 (or third ground).
  • the insulation between the primary winding P1 and the secondary winding S1 has a performance equal to or higher than the basic insulation specified in the Electrical Appliance and Material Safety Act of Japan or the IEC (International Electrotechnical Commission) standards. The same applies to the insulation between the primary winding P2 and the secondary winding S3 in the switching transformer T2.
  • the oscillator source 22a outputs micropower having a frequency of 40.68 MHz, which is assigned to the ISM band (Industrial Scientific and Medical Band), using a crystal oscillator or the like.
  • This micropower is amplified by the first amplifier circuit 22b, and further amplified by the second amplifier circuit 22c.
  • the power amplified by these amplifier circuits is output to the matching circuit 23. Note that the output frequency of the oscillator source 22a is not limited to 40.68 MHz.
  • the secondary side DC power supply DCV1 is supplied to the second amplifier circuit 22c of the oscillator circuit 22.
  • the secondary side DC power supply DCV2 is supplied to the oscillation source 22a, the first amplifier circuit 22b, the detector 51, and the matching circuit 23 of the oscillator circuit 22.
  • the secondary side DC power supply DCV3 is supplied to the controller 50.
  • the circuit system in which the secondary ground GND1 is the zero volt reference potential includes the oscillator circuit 22, the detector 51, the matching circuit 23, and the second electrode 25.
  • the circuit system in which the secondary ground GND2 is the zero volt reference potential includes the control unit 50.
  • the control unit 50 may be connected to the secondary DC power supply DCV2 and the secondary ground GND1.
  • the second electrode 25 has the same potential as the secondary ground GND1. It is desirable that the electromagnetic shield 26 is insulated from the second electrode 25 or is connected at a certain distance from the second electrode 25. This reduces the electric field and magnetic field applied to the electromagnetic shield, and suppresses leakage of the electric field and magnetic field to the outside. In other words, the effectiveness of the electromagnetic shield is improved.
  • the first method is to not connect the electromagnetic shield 26 to any of the primary ground GND0, secondary ground GND1, or secondary ground GND2. This method is particularly effective when the total area or volume of the electromagnetic shield is equal to or greater than a predetermined value. This method reduces the adverse effects of noise, such as high-frequency noise leaking to the outside through the ground line.
  • the second method is to connect the electromagnetic shield 26 to the primary ground GND0.
  • the primary ground GND0 is usually connected to the metal outer casing 3 and has a large ground surface area. Therefore, the zero volt reference potential of the primary ground GND0 is the most stable. This method not only improves the effectiveness of the electromagnetic shield 26, but also reduces malfunctions due to noise.
  • the third method is to connect the electromagnetic shield 26 to the secondary ground GND2.
  • the second electrode 25 and the electromagnetic shield 26 are insulated in two stages by the switching transformers T1 and T2. This makes it difficult for high-frequency noise to leak from the first electrode 24 to the electromagnetic shield 26, and stabilizes the electric field generated between the first electrode 24 and the second electrode 25.
  • the fourth method is to connect the secondary ground GND1 at a location some distance away from the second electrode 25 (at least outside the electromagnetic shield 26). This method provides a certain degree of shielding effect and makes it difficult for high-frequency noise to leak from the first electrode 24 to the electromagnetic shield 26. Therefore, the electric field generated between the first electrode 24 and the second electrode 25 is stable.
  • the effectiveness of the above methods for improving the shielding effect may vary depending on the system structure and wiring. Therefore, it is necessary to select the most suitable method from these methods, taking into consideration the efficiency of electric field generation between the first electrode 24 and the second electrode 25 and the effectiveness of the electromagnetic wave shielding.
  • the outer box 3 made of steel plate functions as an electromagnetic wave shield. This prevents electromagnetic waves inside the refrigerator 1 from leaking to the outside.
  • coaxial cables are usually used for transmitting high-frequency output.
  • common mode noise can also be transmitted to the outside of the outer conductor, which is supposed to act as a shield within a coaxial cable.
  • FIGS. 19A and 19B show a specific configuration for preventing malfunction and radio wave leakage due to common mode noise.
  • electrode holding substrate 52 including matching circuit 23 and the like is placed away from oscillator circuit 22 (not shown in FIG. 19A) including detection section 51.
  • Coaxial cable 56a electrically connects electrode holding substrate 52 and detection section 51.
  • the outer shell of outer box 3 of refrigerator 1 is made of a metal material, and coaxial cable 56a is wired inside outer box 3.
  • coaxial cables 56 This configuration prevents radio waves generated by common mode noise conducted to the coaxial cable 56a from leaking to the outside.
  • coaxial cables 56 the multiple types of coaxial cables shown below are collectively referred to as coaxial cables 56.
  • the coaxial cables 56 correspond to the connecting wires.
  • the coaxial cable 56a is wired so that it contacts the inside of the outer box 3 at at least one point.
  • the outer box 3 has a large surface area and a reference potential that is approximately equal to the potential of the primary ground GND0 (see FIG. 10). Therefore, common mode noise conducted to the coaxial cable 56a can escape to the primary ground GND0.
  • the coaxial cable 56b is wired inside the outer box 3, while the coaxial cable 56b is wired so as not to come into contact with the inside of the outer box 3.
  • either the configuration in FIG. 19A or the configuration in FIG. 19B is selected depending on the path of the common mode noise that is conducted through the coaxial cable 56 and the outer casing 3. It is necessary to design so that the positional relationship between the coaxial cable 56 and the outer casing 3 is reliably the configuration in FIG. 19A or the configuration in FIG. 19B. It is not desirable to have a design where it is unclear which will be the case during mass production.
  • Fig. 11 is a plan view of the first electrode 24 and the second electrode 25 of the freezing/thawing compartment 6 as viewed from above.
  • the left side, right side, upper side, and lower side in Fig. 11 correspond to the left side, right side, rear side, and front side of the refrigerator 1, respectively.
  • the size of the first electrode 24 is smaller than that of the second electrode 25.
  • the first electrode 24 has an electrode hole 41
  • the second electrode 25 has an electrode hole 42.
  • the electrode holes 41 and 42 correspond to the first electrode hole and the second electrode hole, respectively.
  • Each of the electrode holes 41, 42 has a plurality of through holes in the shape of elongated slits.
  • each of the plurality of through holes is arranged so that the longitudinal direction of the through hole is along the front-rear direction of the refrigerator 1.
  • the plurality of through holes are also arranged in the short direction of the through hole, i.e., in the left-right direction of the refrigerator 1.
  • the plurality of through holes in the electrode hole 41 have the same size and pitch as the plurality of through holes in the electrode hole 41.
  • This electrode shape makes it easier for high-frequency current input from the rear side of the freezing/thawing chamber 6, where the positive terminals 24a-24c (see FIG. 8) of the first electrode 24 are located, to flow forward. As a result, the electric field generated between the first electrode 24 and the second electrode 25 becomes stronger.
  • the through hole of electrode hole 41 does not completely overlap with the through hole of electrode hole 42 when viewed from above, but is positioned so that it is shifted by about half the width in the short direction (left and right direction) of the through holes.
  • electrode holes 41 having multiple through holes are formed on the electrode surface of the first electrode 24, so that the area where a strong electric field is formed on the electrode surface of the first electrode 24 is uniformly distributed.
  • the edge of the opening in the electrode hole 41 becomes an electric field concentration area where the electric field is concentrated on the electrode surface of the first electrode 24.
  • the shape and arrangement of electrode holes 41, 42 shown in FIG. 11 are examples.
  • the shape and arrangement of electrode holes 41, 42 are designed as appropriate depending on the specifications, configuration, efficiency, manufacturing costs, etc. of the refrigerator.
  • the shape of the through holes of electrode holes 41, 42 may be a perfect circle. In this case, similar to the above, it is desirable that the through hole of electrode hole 41 does not completely overlap with the through hole of electrode hole 42 when viewed from above, but is shifted in either direction by about half the diameter.
  • the first electrode 24 according to the present disclosure is not limited to the above configuration, and may, for example, have at least one opening.
  • the edge of the opening becomes an electric field concentration region where the electric field is concentrated on the electrode surface of the first electrode 24.
  • the first electrode 24 according to the present disclosure may be configured so that the electric field concentration region is dispersed on the electrode surface.
  • the second electrode 25 according to the present disclosure is not limited to the above configuration, but may have an opening for forming a desired electric field between the two electrodes.
  • the electrode holding substrate 52 is configured to reliably hold the first electrode 24 and the second electrode 25 at a predetermined distance (see, for example, electrode spacing H in FIG. 8).
  • the predetermined distance is shorter than the dimension of the long side of the first electrode 24 (dimension D in FIG. 11). If the first electrode 24 is circular, it is desirable that the electrode spacing H be shorter than its diameter, and if it is elliptical, it is desirable that the electrode spacing H be shorter than its major axis.
  • Figure 12 shows the relationship between the electrode spacing H (see, for example, Figure 8) and the electric field strength between the two electrodes. As shown in Figure 12, the wider the electrode spacing H, the weaker the electric field strength tends to be.
  • the electrode spacing H exceeds H1 (100 mm), the electric field strength drops significantly. Furthermore, if the electrode spacing H exceeds H2 (125 mm), the electric field strength drops to a level where heating is impossible. Therefore, the electrode spacing H must be 125 mm or less, and it is preferable that it is 100 mm or less.
  • the inventors performed a simulation of the generation of an electric field between electrodes using a freezing/thawing chamber 6 having the electrode configuration of this embodiment and a freezing/thawing chamber 6 having an electrode configuration of a comparative example.
  • the electrode configuration of the comparative example is an electrode configuration in which the first electrode 24 or the second electrode 25 does not have an electrode hole.
  • Figure 13A shows the results of a simulation performed on a freezing/thawing chamber 6 having an electrode configuration of a comparative example.
  • Figure 13B shows the results of a simulation performed on a freezing/thawing chamber 6 having an electrode configuration of this embodiment.
  • the darker areas are areas where the electric field is concentrated. From these results, it can be seen that in the case shown in Figure 13B, electric field concentration is alleviated over the entire electrode compared to the case shown in Figure 13A, and the electric field is made more uniform.
  • the first electrode 24 and the second electrode 25 are arranged so that the central axis of the electrode hole 41 along the vertical direction does not coincide with the central axis of the electrode hole 42 along the vertical direction.
  • the vertical direction of the electrode hole 41 is the direction along the normal to the flat plate-like first electrode 24, and the vertical direction of the electrode hole 42 is the direction along the normal to the flat plate-like second electrode 25.
  • the concentration of the electric field is generally alleviated compared to an electrode configuration including a second electrode 25 that does not have an electrode hole.
  • the alleviation of the electric field concentration is particularly noticeable at the four corners.
  • the freezing/thawing chamber 6 has a storage case 31 fixed to the back of the door 29, as shown in Figures 3 and 4.
  • the storage case 31 moves back and forth inside the freezing/thawing chamber 6 as the door 29 is opened and closed.
  • the freezing/thawing chamber 6 has rails arranged on both sides so that the storage case 31 can move smoothly inside the freezing/thawing chamber 6.
  • the freezing/thawing chamber 6 also has sliding members arranged on both outside sides of the storage case 31 that slide on the rails.
  • the rails and sliding members are arranged outside the area between the first electrode 24 and the second electrode 25 inside the freezing/thawing chamber 6 so as not to be dielectrically heated.
  • control unit 50 controls the cooling mechanism and the cold air introduction mechanism in addition to the dielectric heating mechanism.
  • the cooling mechanism includes a refrigeration cycle such as the compressor 19 and the cooler 13.
  • the cold air introduction mechanism includes the cooling fan 14 and the damper 12a.
  • a predetermined high-frequency voltage is applied between the first electrode 24 and the second electrode 25, and the food is dielectrically heated by the high-frequency electric field between the electrodes.
  • the control unit 50 controls the opening and closing of the damper 12a to introduce cold air continuously or intermittently.
  • Figure 14 shows the control signals (waveforms (a) and (b)) to the dielectric heating mechanism (oscillator circuit 22) and the cold air introduction mechanism (damper 12a) during the electric field generation process, the temperature [°C] of the food and the freezing/thawing chamber 6 (waveform (c)), and the humidity [% RH] of the freezing/thawing chamber 6 (waveform (d)).
  • the refrigerator 1 As a characteristic of the frequency used for the electric field generation process, a configuration using VHF waves is less likely to cause "partial cooking" than a configuration using microwaves. Furthermore, to achieve more uniform thawing, the refrigerator 1 according to this embodiment is equipped with an electrode holding substrate 52. This holds the flat plate-shaped first electrode 24 and second electrode 25 approximately parallel and at a predetermined distance (see electrode distance H in Figure 8).
  • the damper 12a is closed after a predetermined period of time has elapsed since the start of thawing (tm2 in FIG. 14). When the damper 12a is closed, the temperature in the freezing/thawing chamber 6 begins to rise. In the electric field generation process according to this embodiment, the damper 12a is controlled to open and close in conjunction with dielectric heating. This suppresses the rise in the surface temperature of the frozen product, and thawing is performed without causing so-called "partial cooking.”
  • the control unit 50 controls the opening and closing of the damper 12a based on the reflectance. When the reflectance increases and reaches a preset threshold, the control unit 50 opens the damper 12a to lower the temperature in the freezing/thawing chamber 6 (tm3 in FIG. 14).
  • control unit 50 detects the desired thawed state based on the reflectance, it ends the electric field generation process.
  • the control unit 50 causes the matching circuit 23 to perform impedance matching to reduce the reflectance.
  • the control unit 50 detects the completion of thawing when the reflectance after performing impedance matching by the matching circuit 23 exceeds a threshold value for detecting the completion of thawing.
  • the threshold value for detecting the completion of thawing is preset to detect when the melting of the stored item has reached the desired thawed state.
  • the desired thawed state of the stored item means that the user can cut the stored item with one hand and there is only a small amount of dripping from the stored item.
  • FIG. 15 is a flow chart showing the control of the cooling and electric field generation process for bringing food into a desired state in the freezing/thawing compartment 6.
  • the control unit 50 when the reflectance exceeds the threshold for detecting the completion of thawing after performing impedance matching in the electric field generation process, the control unit 50 performs the control after the electric field generation process shown in FIG. 15. For example, the stored item is maintained in the desired thawed state after the thawing process is completed.
  • One method of control for this purpose is to adjust the temperature of the freezing/thawing chamber 6 to the so-called slightly freezing temperature range, for example, about -1°C to -3°C.
  • Another method is to adjust the temperature of the freezing/thawing chamber 6 to the freezing temperature range, for example, -18°C to -20°C.
  • the temperature of the freezing/thawing chamber 6 may be periodically changed. By periodically changing the temperature of the freezing/thawing chamber 6, for example, from -12°C to -5°C, the composition of the food can be affected.
  • a low-output high-frequency electric field is continuously applied, or a high-frequency electric field is intermittently applied, to cool and heat the stored items and maintain them at the desired temperature ranges.
  • step S101 after the start of the preservation process, the control unit 50 detects the presence or absence of a stored item in the freezing/thawing chamber 6 based on the reflectance (step S101).
  • control unit 50 causes the matching circuit 23 to operate intermittently and causes the oscillator circuit 22 to output low-power electromagnetic waves intermittently.
  • the control unit 50 compares the reflectance with a preset threshold value for detecting the presence or absence of stored items to determine the presence or absence of stored items in the freezing/thawing chamber 6.
  • step S101 the control unit 50 detects that no stored item is present in the freezing/thawing chamber 6 (No in step S101). If the control unit 50 detects that no stored item is present in the freezing/thawing chamber 6 (No in step S101), the control unit 50 transitions the process to step S105.
  • step S105 the control unit 50 adjusts the temperature of the freezing/thawing chamber 6 to a freezing temperature range, for example, -18°C to -20°C.
  • the process of step S105 is referred to as the freezing process.
  • control unit 50 detects that a stored item is present in the freezing/thawing chamber 6 (Yes in step S101), in step S102, it determines whether the stored item includes a non-frozen item after thawing based on the change in reflectance.
  • the control unit 50 controls the cooling mechanism to maintain the slightly freezing temperature range in the freezing/thawing chamber 6, which allows the stored item to be kept in the desired thawed state, for a predetermined time. If the stored item is stored beyond this predetermined time, the control unit 50 shifts the temperature of the freezing/thawing chamber 6 to the freezing temperature range in order to maintain the freshness of the stored item.
  • step S102 if the control unit 50 determines that the time since the completion of thawing has exceeded the predetermined time while the thawed stored item is still stored (step S102), it also shifts the process to step S105 and performs the freezing process.
  • step S102 if the control unit 50 determines that no thawed non-frozen items are stored in the freezing/thawing compartment 6 (No in step S102), it transitions the process to step S103.
  • step S103 the control unit 50 determines whether the food temperature exceeds the target temperature. If the food temperature exceeds the target temperature (Yes in step S103), the control unit 50 shifts the process to step S105 and performs the freezing process. If not (No in step S103), the control unit 50 shifts the process to step S104 and raises the temperature of the food by generating an electric field.
  • the refrigerator 1 performs dielectric heating so that the stored items (food) are frozen and stored in a desired state.
  • frost forms on the inside of the food packaging.
  • frost forms on the surface of the food, the food suffers from freezer burn. Freezer burn is a phenomenon in which food becomes dry and flaky due to freezing, making it no longer fresh and tasty.
  • the refrigerator 1 performs cooling and dielectric heating simultaneously.
  • FIGS. 16A and 16B are waveform diagrams showing the state of each element during cooling operation.
  • FIG. 16A is a waveform diagram showing the cooling operation in a conventional refrigerator.
  • FIG. 16B is a waveform diagram showing the cooling operation in refrigerator 1 according to the present embodiment.
  • waveform (1) indicates the ON/OFF of the cooling operation.
  • the ON/OFF of the cooling operation corresponds to, for example, opening and closing of damper 12a, or turning compressor 19 ON/OFF. That is, when the cooling operation is "ON”, cold air is introduced into freezer compartment 8. When the cooling operation is "OFF”, damper 12a is closed, blocking the introduction of cold air into freezer compartment 8.
  • the temperature of the food in freezer compartment 8 fluctuates greatly around a preset freezing temperature t1 (e.g., -20°C).
  • t1 e.g., -20°C
  • the food may not be frozen in the desired state, with water evaporating and frosting occurring repeatedly on the surface of the food in freezer compartment 8.
  • Waveform (1) in FIG. 16B shows the opening and closing of damper 12a.
  • the waveform (2) in FIG. 16B shows the operating state of the oscillator circuit 22. As shown in the waveform (2) in FIG. 16B, the control unit 50 turns on the oscillator circuit 22 when the damper 12a is open to perform dielectric heating.
  • control unit 50 adjusts the output power by controlling the power supplied to the oscillation circuit 22 and by PWM control (intermittent control) of the output of the oscillation circuit 22.
  • the temperature of the food in the freezing/thawing chamber 6 is maintained at the preset freezing temperature t1 (e.g., -20°C). In other words, fluctuations in the food temperature are suppressed.
  • t1 e.g., -20°C
  • dielectric heating at the same frequency as thawing but with a lower output power than thawing, it is possible to suppress the extension of ice crystals inside the food.
  • dielectric heating is performed, an electric field tends to concentrate at the tips of the ice crystals that have formed inside the food. For this reason, even if the temperature inside the freezing/thawing chamber 6 is below the maximum ice crystal formation zone, the ice crystals will only extend slowly.
  • the refrigerator 1 performs dielectric heating during the cooling operation during frozen storage, allowing the frozen items to be frozen and stored in a desired state.
  • Fig. 17 is a waveform diagram showing the state of each element during the rapid cooling operation which is the freezing process.
  • the waveform (a) in FIG. 17 indicates whether or not a stored item (food) is present in the freezing/thawing chamber 6.
  • the control unit 50 determines whether or not a stored item is present in the freezing/thawing chamber 6 based on the reflectance.
  • Waveform (b) in FIG. 17 shows that the control unit 50 intermittently acquires information from the matching circuit 23 and the detection unit 51.
  • Waveform (c) in FIG. 17 shows an example of the transition of the reflectance.
  • the control unit 50 determines that a stored item has been placed in the freezing/thawing chamber 6.
  • control unit 50 When rapidly cooling food stored in the freezing/thawing compartment 6, the control unit 50 increases the rotation speed of the compressor 19 and cooling fan 14 of the cooling mechanism to perform forced continuous operation with increased cooling capacity. As shown in waveform (d) of Figure 17, the control unit 50 forcibly opens the damper 12a of the air passage 12 leading to the freezing/thawing compartment 6 to introduce cold air.
  • dielectric heating is performed to suppress the growth of ice crystals when the food temperature is in the maximum ice crystal formation zone (approximately -1°C to approximately -5°C). Dielectric heating at this time is performed intermittently (period h in waveform (e) in Figure 17) in order to reduce the output (for example, to several tens of watts or less) from that during thawing.
  • the control unit 50 detects that the food temperature has entered the maximum ice crystal formation zone by detecting an increasing change in reflectance as the food passes through the latent heat zone.
  • dielectric heating is started when the detected reflectance enters a preset second threshold value R2 [%] (see waveform (e) in Figure 17).
  • the control unit 50 determines that the temperature of the food is in the maximum ice crystal formation zone and continues dielectric heating. If a predetermined time pr1 (see waveform diagram (c) in Figure 17) has passed since the reflectance entered the third threshold value R3 [%], it determines that the temperature of the food has passed the maximum ice crystal formation zone and stops dielectric heating.
  • control unit 50 stops the dielectric heating, terminates the rapid cooling operation, and performs the normal cooling operation. In this way, even when performing the rapid cooling operation, the food can be maintained in a desired frozen state by performing dielectric heating for the desired period of time.
  • refrigerator 1 in order to prevent electromagnetic waves from leaking to the outside, refrigerator 1 according to this embodiment includes electromagnetic wave shield 26 surrounding freezing/thawing compartment 6. Furthermore, since the steel plate itself functions as an electromagnetic wave shield, external leakage of electromagnetic waves is prevented by closing door 29.
  • the refrigerator 1 includes a door open/close detector 55a (see FIG. 9) that detects the opening of the door 29.
  • the controller 50 stops the oscillator circuit 22 and stops the power supply to the first electrode 24.
  • refrigerator 1 In addition to door 29 of freezer/thaw compartment 6, refrigerator 1 has multiple doors that cover the front openings of refrigerator compartment 5, ice-making compartment 7, freezer compartment 8, and vegetable compartment 9. Refrigerator 1 also has door opening/closing detector 55b, door opening/closing detector 55c, door opening/closing detector 55d, and door opening/closing detector 55e. Door opening/closing detectors 55b, 55c, 55d, and 55e detect the opening of the doors of refrigerator compartment 5, ice-making compartment 7, freezer compartment 8, and vegetable compartment 9, respectively.
  • the controller 50 will continue to operate the oscillator circuit 22.
  • the control unit 50 stops the oscillation circuit 22.
  • the control unit 50 stops the oscillation circuit 22.
  • the control unit 50 stops the oscillation circuit 22.
  • control unit 50 stops the oscillator circuit 22 to prevent leakage of electromagnetic waves.
  • FIG. 18A shows a configuration in which the door open/close detector 55a cuts off the power supply from the power supply 48 to the oscillator circuit 22.
  • the door open/close detector 55a is a switch mechanism that is conductive when the door 29 is closed and cuts off the power when the door 29 is opened.
  • the door open/close detector 55a cuts off the power supply to the oscillator circuit 22, reliably stopping the operation of the oscillator circuit 22.
  • FIG. 18B shows a configuration in which a door open/close detector 55a stops the operation of the power supply controller 48a, which controls the power supply 48.
  • the door open/close detector 55a is a switch mechanism similar to that in FIG. 18A.
  • the door open/close detector 55a cuts off the power supply to the power supply controller 48a, thereby cutting off the power supply from the power supply 48 to the oscillation circuit 22, and reliably stops the operation of the oscillation circuit 22.
  • the operation of the oscillator circuit 22 is stopped by cutting off the power supply to the circuitry within the power supply control unit 48a, but the present disclosure is not limited to this.
  • the power supply control unit 48a may include an overcurrent protection circuit that detects an overcurrent. In this case, when the overcurrent protection circuit detects the occurrence of an overcurrent, the power supply control unit 48a stops the power supply. The power supply unit 48 may recognize the occurrence of an overcurrent as an overload state and stop the power supply.
  • FIG. 18C shows a configuration for determining whether the door 29 is open or closed using a door open/close detector 55a and a magnetic sensor 55f. As shown in FIG. 18C, the door open/close detector 55a is disposed between the magnetic sensor 55f and the controller 50.
  • the door open/close detection unit 55a is conductive when the door 29 is closed and is cut off when the door 29 is opened.
  • the magnetic sensor 55f sends a signal indicating whether the door 29 is open or closed to the control unit 50.
  • the control unit 50 sends a signal indicating whether the power supply control unit 48a is operating or not to the power supply control unit 48a in response to the signal from the magnetic sensor 55f.
  • the power supply control unit 48a when the door 29 is opened, the power supply control unit 48a is no longer able to receive a signal from the magnetic sensor 55f. This stops the power supply to the oscillation circuit 22.
  • the door open/close detection unit 55a is conductive when the door 29 is closed and is cut off when the door 29 is opened.
  • a circuit that is cut off when the door 29 is closed and is conductive when the door 29 is opened may be used. In that case, the logic for stopping the power supply control unit 48a is reversed.
  • the refrigerator 1 includes a freezing/thawing compartment 6 that has both a freezing function and a thawing function.
  • a freezing/thawing compartment 6 that has both a freezing function and a thawing function.
  • the same effect can be obtained even in a configuration that includes a thawing compartment that only has a thawing function.
  • the refrigerator 1 includes a storage compartment (freeze/thaw 6) capable of heating stored items, and a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment.
  • a storage compartment freeze/thaw 6
  • a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment.
  • the dielectric heating mechanism includes an oscillator circuit 22 that supplies high-frequency power to the electrodes (first electrode 24, second electrode 25), a matching circuit 23 that matches the impedance of the electrodes, a detector 51 that is connected between the oscillator circuit 22 and the matching circuit 23 and measures the incident wave power output from the matching circuit 23 to the electrodes and the reflected wave power returning to the oscillator circuit 22, and a controller 50.
  • the control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power.
  • the control unit 50 functions as an abnormality detection means. According to this aspect, in a refrigerator equipped with a dielectric heating mechanism, it is possible to more accurately detect abnormalities in the dielectric heating mechanism, thereby appropriately stopping heating.
  • a refrigerator 1 includes a storage compartment (freeze/thaw 6) capable of heating stored items, a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment, and a cooling mechanism 58 that cools the dielectric heating mechanism.
  • the dielectric heating mechanism includes an oscillator circuit 22 that supplies high-frequency power to the electrodes (first electrode 24, second electrode 25), a matching circuit 23 that matches the impedance of the electrodes, a detector 51 that is connected between the oscillator circuit 22 and the matching circuit 23 and measures the incident wave power output from the matching circuit 23 to the electrodes and the reflected wave power returning to the oscillator circuit 22, and a controller 50.
  • the control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and also controls the cooling mechanism 58, which is an anomaly avoidance means, to avoid anomalies in the incident wave power or the reflected wave power. According to this embodiment, an anomaly can be avoided by operating the cooling mechanism 58 before an anomaly is determined.
  • This disclosure is applicable to various refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

A refrigerator according to the present disclosure comprises: a storage chamber in which a stored object can be heated; and a dielectric heating mechanism that generates high-frequency power and that supplies the high-frequency power to the storage chamber to generate an electric field inside the storage chamber. The dielectric heating mechanism comprises: an electrode disposed in the storage chamber; an oscillation circuit that supplies high-frequency power to the electrode; a matching circuit that executes impedance matching; a detection unit that is connected between the oscillation circuit and the matching circuit and that measures incident wave power and reflected wave power; and a control unit. The control unit controls the oscillation circuit and the matching circuit on the basis of the incident wave power and the reflected wave power, and detects an abnormality in the incident wave power or the reflected wave power.

Description

冷蔵庫refrigerator

 本開示は、冷凍食品を解凍する機能を有する貯蔵室を備えた冷蔵庫に関する。 This disclosure relates to a refrigerator equipped with a storage compartment that has the function of thawing frozen foods.

 特許文献1は、冷凍品を解凍することが可能な冷蔵庫を開示する。特許文献1に記載の冷蔵庫は、その本体の内部に、冷凍装置および冷凍室とともに、高周波発生用マグネトロンおよび加熱室を備える。 Patent Document 1 discloses a refrigerator capable of thawing frozen products. The refrigerator described in Patent Document 1 includes, inside its main body, a refrigeration unit and a freezing chamber, as well as a high-frequency generating magnetron and a heating chamber.

 特許文献1に記載の冷蔵庫は、加熱室に冷気循環ダクトを介して冷凍装置からの冷気を供給可能であるともに、マグネトロンからの高周波を加熱室に供給して、加熱室に収納された冷凍品を解凍可能である。すなわち、この加熱室は、冷凍品を解凍可能な貯蔵室である。 The refrigerator described in Patent Document 1 can supply cold air from a refrigeration unit to a heating chamber via a cold air circulation duct, and can also supply high frequency waves from a magnetron to the heating chamber to thaw frozen items stored in the heating chamber. In other words, this heating chamber is a storage chamber in which frozen items can be thawed.

 特許文献2は、冷凍庫内に均一に冷風を供給可能な冷凍装置を開示する。特許文献2に記載の冷凍庫は、被冷凍物に交番電界を作用させる交番電界発生部および磁場を作用させる磁場発生部の一方または両方を閉空間内に備え、被冷凍物に交番電界および磁場の一方または両方を作用させる。 Patent Document 2 discloses a refrigeration device capable of supplying cold air uniformly inside the freezer. The freezer described in Patent Document 2 is equipped with one or both of an alternating electric field generating unit that applies an alternating electric field to the object to be frozen and a magnetic field generating unit that applies a magnetic field inside a closed space, and applies one or both of the alternating electric field and the magnetic field to the object to be frozen.

特開2002-147919号公報JP 2002-147919 A 特開2003-214751号公報JP 2003-214751 A

 本開示は、霜と、結露と、温度ストレスなどの経年劣化とによるスパークに含まれるノイズを検知することにより故障を検知し、速やかに動作を停止させることにより、故障の拡大を回避することができる冷蔵庫を提供することを目的とする。 The objective of this disclosure is to provide a refrigerator that can detect a malfunction by detecting noise contained in sparks caused by frost, condensation, and deterioration over time such as temperature stress, and quickly shuts down the operation to prevent the malfunction from expanding.

 本開示の冷蔵庫は、保存物を加熱可能な貯蔵室と、高周波電力を発生させ、高周波電力を貯蔵室に供給して貯蔵室の内部に電界を発生させる誘電加熱機構と、を備える。誘電加熱機構は、貯蔵室に配置された電極と、電極に高周波電力を供給する発振回路と、電極のインピーダンスを整合させる整合回路と、発振回路と整合回路との間に接続されて、整合回路から電極に出力される入射波電力と、発振回路に戻る反射波電力とを測定する検波部と、制御部と、を備える。制御部は、入射波電力と反射波電力とに基づいて発振回路と整合回路とを制御するとともに、入射波電力または反射波電力の異常を検知する。 The refrigerator disclosed herein comprises a storage compartment capable of heating stored items, and a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment. The dielectric heating mechanism comprises an electrode disposed in the storage compartment, an oscillation circuit that supplies high-frequency power to the electrode, a matching circuit that matches the impedance of the electrode, a detection unit connected between the oscillation circuit and the matching circuit to measure incident wave power output from the matching circuit to the electrode and reflected wave power returning to the oscillation circuit, and a control unit. The control unit controls the oscillation circuit and the matching circuit based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power.

 本開示に係る冷蔵庫によれば、より精度よく異常を検知することで、適切に動作を停止することができる。 The refrigerator disclosed herein can detect abnormalities more accurately and stop operation appropriately.

図1は、本開示の実施の形態に係る冷蔵庫の縦断面図である。FIG. 1 is a vertical cross-sectional view of a refrigerator according to an embodiment of the present disclosure. 図2は、実施の形態に係る冷蔵庫における冷凍/解凍室を示す正面断面図である。FIG. 2 is a front cross-sectional view showing the freezing/thawing compartment of the refrigerator according to the embodiment. 図3は、実施の形態に係る冷蔵庫における冷凍/解凍室を示す側面断面図である。FIG. 3 is a side cross-sectional view showing the freezing/thawing compartment of the refrigerator according to the embodiment. 図4は、実施の形態に係る冷蔵庫の本体に冷凍/解凍室を組み込む様子を示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing how the freezing/thawing compartment is incorporated into the main body of the refrigerator according to the embodiment. 図5は、実施の形態に係る冷蔵庫における冷凍/解凍室の変形例を示す正面断面図である。FIG. 5 is a front sectional view showing a modified example of the freezing/thawing compartment in the refrigerator according to the embodiment. 図6は、実施の形態に係る冷蔵庫における冷凍/解凍室の変形例を示す側面断面図である。FIG. 6 is a side cross-sectional view showing a modified example of the freezing/thawing compartment in the refrigerator according to the embodiment. 図7は、実施の形態に係る冷蔵庫の本体に冷凍/解凍室を組み込む様子を示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing how the freezing/thawing compartment is incorporated into the main body of the refrigerator according to the embodiment. 図8は、実施の形態に係る冷蔵庫における冷凍/解凍室の背面側の電極保持領域を示す概略図である。FIG. 8 is a schematic diagram showing an electrode holding area on the rear side of a freezing/thawing compartment in a refrigerator according to an embodiment. 図9は、実施の形態に係る冷蔵庫に配置された誘電加熱機構のブロック構成図である。FIG. 9 is a block diagram of a dielectric heating mechanism disposed in the refrigerator according to the embodiment. 図10は、誘電加熱機構におけるAC/DCコンバータの概略回路図である。FIG. 10 is a schematic circuit diagram of an AC/DC converter in the dielectric heating mechanism. 図11は、実施の形態に係る冷蔵庫における冷凍/解凍室の第一電極と第二電極とを上方から見た平面図である。FIG. 11 is a plan view of a first electrode and a second electrode of a freezing/thawing compartment in a refrigerator according to an embodiment, as viewed from above. 図12は、第一電極と第二電極との電極間隔と、両電極間の電界強度との関係を示した図である。FIG. 12 is a diagram showing the relationship between the electrode distance between the first electrode and the second electrode and the electric field intensity between the two electrodes. 図13Aは、誘電加熱構成に対してシミュレーションを行った結果を示す電界シミュレーション図である。FIG. 13A is an electric field simulation diagram showing the results of a simulation performed on a dielectric heating configuration. 図13Bは、実施の形態に係る冷蔵庫における冷凍/解凍室の誘電加熱構成に対してシミュレーションを行った結果を示す電界シミュレーション図である。FIG. 13B is an electric field simulation diagram showing the results of a simulation performed on the dielectric heating configuration of the freezing/thawing compartment in the refrigerator according to the embodiment. 図14は、実施の形態の構成において、電界発生処理における制御信号、食品および冷凍/解凍室の温度、ならびに冷凍/解凍室の湿度を示す図である。FIG. 14 is a diagram showing the control signal in the electric field generation process, the temperatures of the food and the freezing/thawing compartment, and the humidity in the freezing/thawing compartment in the configuration of the embodiment. 図15は、実施の形態の構成において、冷凍/解凍室で電界発生処理が完了した後の制御を示すフローチャートである。FIG. 15 is a flow chart showing the control after the electric field generation process is completed in the freezing/thawing chamber in the configuration of this embodiment. 図16Aは、従来の冷蔵庫における冷却動作を示す波形図である。FIG. 16A is a waveform diagram showing a cooling operation in a conventional refrigerator. 図16Bは、実施の形態に係る冷蔵庫における冷却動作を示す波形図である。FIG. 16B is a waveform diagram showing the cooling operation in the refrigerator according to the embodiment. 図17は、実施の形態の構成において、急冷動作中の各要素の状態を示す波形図である。FIG. 17 is a waveform diagram showing the state of each element during a rapid cooling operation in the configuration of the embodiment. 図18Aは、実施の形態に係る冷蔵庫のドアが開かれたときの高周波遮断回路例を示す図である。FIG. 18A is a diagram illustrating an example of the high frequency blocking circuit when the door of the refrigerator according to the embodiment is opened. 図18Bは、実施の形態に係る冷蔵庫のドアが開かれたときの高周波遮断回路の他の例を示す図である。FIG. 18B is a diagram illustrating another example of the high-frequency blocking circuit when the door of the refrigerator according to the embodiment is opened. 図18Cは、実施の形態に係る冷蔵庫のドアが開かれたときの高周波遮断回路の更に他の例を示す図である。FIG. 18C is a diagram illustrating still another example of the high frequency blocking circuit when the door of the refrigerator in accordance with the embodiment is opened. 図19Aは、実施の形態に係る冷蔵庫における冷凍/解凍室へのケーブル配線の一例を示す断面図である。FIG. 19A is a cross-sectional view showing an example of cable wiring to a freezing/thawing compartment in a refrigerator according to an embodiment. 図19Bは、実施の形態に係る冷蔵庫における冷凍/解凍室へのケーブル配線の一例を示す断面図である。FIG. 19B is a cross-sectional view showing an example of cable wiring to a freezing/thawing compartment in a refrigerator according to an embodiment. 図20Aは、実施の形態に係る冷蔵庫における誘電加熱機構のセンサ異常電圧に対する処理を示すタイミングチャートである。FIG. 20A is a timing chart showing a process for an abnormal sensor voltage of a dielectric heating mechanism in a refrigerator according to an embodiment. 図20Bは、実施の形態に係る冷蔵庫における誘電加熱機構のスパーク発生を検知する時のタイミングチャートである。FIG. 20B is a timing chart for detecting spark occurrence in a dielectric heating mechanism in a refrigerator according to an embodiment. 図20Cは、実施の形態に係る冷蔵庫における誘電加熱機構のスパーク発生を検知する時のタイミングチャートである。FIG. 20C is a timing chart for detecting spark generation in a dielectric heating mechanism in a refrigerator according to an embodiment. 図21は、実施の形態に係る冷蔵庫における誘電加熱機構の電気回路異常を検知する時のタイミングチャートである。FIG. 21 is a timing chart for detecting an abnormality in the electric circuit of the dielectric heating mechanism in the refrigerator according to the embodiment. 図22は、実施の形態に係る冷蔵庫における誘電加熱機構の電気回路異常を検知する時のタイミングチャートである。FIG. 22 is a timing chart for detecting an abnormality in the electric circuit of the dielectric heating mechanism in the refrigerator according to the embodiment. 図23は、実施の形態に係る冷蔵庫における誘電加熱機構の異常判別を実施するフローチャートである。FIG. 23 is a flowchart showing a process for determining whether or not there is an abnormality in the dielectric heating mechanism in the refrigerator according to the embodiment.

 (本開示の基礎となった知見など)
 発明者らが本開示の主題を着想した当時、特許文献1に記載された冷蔵庫が知られていた。
(The knowledge that formed the basis of this disclosure)
At the time when the inventors conceived the subject matter of the present disclosure, the refrigerator described in Patent Document 1 was known.

 特許文献1に記載の冷蔵庫は、加熱室内の冷凍品に対して、アンテナなどを経由して、マグネトロンからの高周波を照射し高周波加熱する。このため、加熱室内の高周波の分布に偏りが生じると、冷凍品を均一に加熱して所望の状態に解凍することが困難であった。 The refrigerator described in Patent Document 1 irradiates the frozen items in the heating chamber with high-frequency waves from a magnetron via an antenna or the like, thereby heating the frozen items. Therefore, if there is an uneven distribution of high-frequency waves in the heating chamber, it is difficult to heat the frozen items evenly and defrost them to the desired state.

 上記従来の冷蔵庫は、高周波を発生するマグネトロンに加えて、マグネトロン用の冷却機構を備える。従って、上記従来の冷蔵庫の小型化を図ることは困難である。 The above conventional refrigerators are equipped with a magnetron that generates high frequency waves, as well as a cooling mechanism for the magnetron. Therefore, it is difficult to reduce the size of the above conventional refrigerators.

 また、保存物を冷凍する際に、保存物に交番電界を作用させることにより、氷結晶の発生を抑制することが検討されている。例えば、特許文献2には、被冷凍物に交番電界を作用させる冷凍装置が記載される。しかし、特許文献2に記載の冷凍装置では、保存物に発生した氷結晶を融解することは難しく、凍結すると保存物の細胞膜が破壊されてしまう。 In addition, studies have been conducted to suppress the formation of ice crystals by applying an alternating electric field to the preserved item when freezing it. For example, Patent Document 2 describes a freezing device that applies an alternating electric field to the item to be frozen. However, with the freezing device described in Patent Document 2, it is difficult to melt the ice crystals that form in the preserved item, and freezing destroys the cell membrane of the preserved item.

 特許文献1に記載の技術および特許文献2に記載の技術は、出力周波数および出力電力の違いから、同時に適用することが困難である。特許文献2に記載のように、冷凍室の環境下で金属部材を使用したデバイスを使用すると、食品の水分または外部からの水分によって生じる結露または霜付きにより誤動作が生じることがある。これらの問題を解決するため、発明者らは本開示の主題を着想した。 The technology described in Patent Document 1 and the technology described in Patent Document 2 are difficult to apply simultaneously due to differences in output frequency and output power. As described in Patent Document 2, when a device using metal components is used in a freezer environment, malfunctions may occur due to condensation or frost caused by moisture in food or moisture from the outside. In order to solve these problems, the inventors conceived the subject matter of the present disclosure.

 本開示は、貯蔵室に収納された保存物を所望の状態で冷凍し、貯蔵し、解凍することが可能で、小型で信頼性の高い冷蔵庫を提供することを目的とする。 The objective of this disclosure is to provide a small, reliable refrigerator that can freeze, store, and thaw items stored in a storage compartment in a desired state.

 以下、本開示の実施の形態として、冷凍機能および解凍機能を備えた冷蔵庫について、添付の図面を参照しながら説明する。本開示に係る冷蔵庫は、以下の実施の形態において説明する構成に限定されるものではなく、冷凍機能のみを有する冷凍庫においても適用可能である。従って、本開示において、冷蔵庫とは、冷蔵室および冷凍室の一方または両方を備えた装置である。 Below, as an embodiment of the present disclosure, a refrigerator with a freezing function and a defrosting function will be described with reference to the attached drawings. The refrigerator according to the present disclosure is not limited to the configuration described in the embodiment below, but can also be applied to a freezer that only has a freezing function. Therefore, in this disclosure, a refrigerator is a device that has one or both of a refrigerator compartment and a freezer compartment.

 (実施の形態)
 本開示の実施の形態に係る冷蔵庫1について、図面を参照しながら説明する。
(Embodiment)
A refrigerator 1 according to an embodiment of the present disclosure will be described with reference to the drawings.

 [1-1.冷蔵庫の全体構成]
 図1は、本実施の形態に係る冷蔵庫1の縦断面である。図1における左側、右側は、それぞれ冷蔵庫1の正面側、背面側に相当する。図1に示すように、冷蔵庫1の本体2は、外箱3と内箱4と断熱材40とを含む断熱箱体である。
[1-1. Overall configuration of refrigerator]
Fig. 1 is a vertical cross-sectional view of a refrigerator 1 according to the present embodiment. The left and right sides in Fig. 1 correspond to the front side and rear side, respectively, of the refrigerator 1. As shown in Fig. 1, a main body 2 of the refrigerator 1 is an insulated box body including an outer box 3, an inner box 4, and a thermal insulation material 40.

 外箱3は、主に鋼板により形成される。内箱4は、ABS(アクリロニトリル(Acrylonitrile),ブタジエン(Butadiene),スチレン(Styrene))などの樹脂で成形される。断熱材40は、外箱3と内箱4との間の空間に充填発泡された、例えば、硬質発泡ウレタンである。 The outer box 3 is mainly made of steel plate. The inner box 4 is made of resin such as ABS (Acrylonitrile, Butadiene, Styrene). The heat insulating material 40 is, for example, rigid urethane foam, which is foamed and filled into the space between the outer box 3 and the inner box 4.

 冷蔵庫1の本体2は、複数の貯蔵室、すなわち、冷蔵室5、冷凍/解凍室6、製氷室7、冷凍室8、野菜室9を備える。各貯蔵室の正面開口には開閉可能な扉が配置される。扉は複数の貯蔵室の正面開口を覆って、貯蔵室からの冷気の漏洩を防止する。 The main body 2 of the refrigerator 1 has multiple storage compartments, namely, a refrigerator compartment 5, a freezer/thaw compartment 6, an ice-making compartment 7, a freezer compartment 8, and a vegetable compartment 9. An openable and closable door is provided at the front opening of each storage compartment. The doors cover the front openings of the multiple storage compartments to prevent cold air from leaking out of the storage compartments.

 本実施の形態に係る冷蔵庫1において、冷蔵室5は、複数の貯蔵室の最も上に配置された貯蔵室である。冷蔵室5の直下に、製氷室7、冷凍/解凍室6の2つの貯蔵室が左右に並んで配置される。冷凍室8は、製氷室7と冷凍/解凍室6の直下に配置される。野菜室9は、冷凍室8の直下に配置される。 In the refrigerator 1 according to this embodiment, the refrigerator compartment 5 is the uppermost of the multiple storage compartments. Directly below the refrigerator compartment 5, two storage compartments, the ice-making compartment 7 and the freezer/thaw compartment 6, are arranged side by side on the left and right. The freezer compartment 8 is arranged directly below the ice-making compartment 7 and the freezer/thaw compartment 6. The vegetable compartment 9 is arranged directly below the freezer compartment 8.

 本実施の形態に係る冷蔵庫1における各貯蔵室の構成および配置は一例であり、本開示はこれに限定されない。各貯蔵室の構成および配置は、仕様などに応じて適宜変更可能である。 The configuration and arrangement of each storage compartment in the refrigerator 1 according to this embodiment is an example, and the present disclosure is not limited thereto. The configuration and arrangement of each storage compartment can be changed as appropriate depending on the specifications, etc.

 冷蔵室5は、食品などの保存物を冷蔵保存するための温度、具体的には1℃~5℃に維持される。野菜室9は、冷蔵室5と同等または冷蔵室5より少し高い温度帯、例えば2℃~7℃に維持される。冷凍室8は、冷凍保存のために冷凍温度帯、具体的には、例えば-22℃~-15℃に維持される。 Refrigerator compartment 5 is maintained at a temperature for refrigerating food and other preserved items, specifically 1°C to 5°C. Vegetable compartment 9 is maintained at a temperature range equal to or slightly higher than refrigerator compartment 5, for example 2°C to 7°C. Freezer compartment 8 is maintained in the freezing temperature range for frozen storage, specifically, for example -22°C to -15°C.

 冷凍/解凍室6は、通常は冷凍室8と同じ冷凍温度帯に維持される。冷凍/解凍室6では、使用者からの電界発生開始の指令(以下、電界発生指令)に応じて、収納される保存物(冷凍品)を解凍するための電界発生処理が行われる。冷凍/解凍室6の構成、および、電界発生処理の詳細については後述する。 The freezing/thawing compartment 6 is normally maintained at the same freezing temperature range as the freezing compartment 8. In the freezing/thawing compartment 6, an electric field generation process is carried out to thaw the stored items (frozen goods) in response to a command from the user to start generating an electric field (hereinafter, an electric field generation command). The configuration of the freezing/thawing compartment 6 and the details of the electric field generation process will be described later.

 冷蔵庫1の上部(本実施の形態では最上部)には、機械室10が配置される。機械室10は、圧縮機19および冷凍サイクル中の水分除去を行うドライヤなどの冷凍サイクルを構成する部品などを収容する。機械室10の配置位置は、冷蔵庫1の上部に限定されるものではなく、冷凍サイクルの配置位置などに応じて適宜決定される。例えば、機械室10は、冷蔵庫1の下部などに配置されてもよい。 A machine room 10 is located at the top of the refrigerator 1 (the top in this embodiment). The machine room 10 houses components that make up the refrigeration cycle, such as a compressor 19 and a dryer that removes moisture during the refrigeration cycle. The location of the machine room 10 is not limited to the top of the refrigerator 1, but is determined appropriately depending on the location of the refrigeration cycle, etc. For example, the machine room 10 may be located at the bottom of the refrigerator 1.

 冷蔵庫1の下部に配置された冷凍室8と野菜室9との後方に、冷却室11が配置される。冷却室11は、冷却器13と冷却ファン14とを備える。冷却器13は、冷気を生成する冷凍サイクルの構成部品である。冷却ファン14は、冷却器13が生成した冷気を、風路12を介して3つの貯蔵室(冷蔵室5、冷凍/解凍室6、製氷室7)に送風する。 The cooling compartment 11 is located behind the freezer compartment 8 and vegetable compartment 9, which are located at the bottom of the refrigerator 1. The cooling compartment 11 is equipped with a cooler 13 and a cooling fan 14. The cooler 13 is a component of the refrigeration cycle that generates cold air. The cooling fan 14 blows the cold air generated by the cooler 13 through the air passage 12 to the three storage compartments (the refrigerator compartment 5, the freezer/thaw compartment 6, and the ice-making compartment 7).

 風路12にはダンパ12aが配置される。制御部50(後述する図9参照)は、圧縮機19および冷却ファン14の回転数制御と、ダンパ12aの開閉制御とを行って、各貯蔵室の温度を所定の温度帯に維持する。 A damper 12a is disposed in the air passage 12. The control unit 50 (see FIG. 9 described later) controls the rotation speed of the compressor 19 and the cooling fan 14, and controls the opening and closing of the damper 12a, to maintain the temperature of each storage compartment within a predetermined temperature range.

 冷却室11の下部には除霜ヒータ15が配置される。除霜ヒータ15は、冷却器13およびその周辺に付着する霜および氷を除去するためのヒータである。除霜ヒータ15の下方には、ドレンパン16、ドレンチューブ17、蒸発皿18が配置される。これらは、除霜時などに生じる水分を蒸発させるための構成である。 A defrost heater 15 is disposed at the bottom of the cooling chamber 11. The defrost heater 15 is a heater for removing frost and ice that adheres to the cooler 13 and its surroundings. A drain pan 16, a drain tube 17, and an evaporator dish 18 are disposed below the defrost heater 15. These are components for evaporating moisture that is generated during defrosting, etc.

 本実施の形態に係る冷蔵庫1は、操作部47(後述の図9参照)を備える。使用者は、操作部47を用いて、冷蔵庫1に対する各種指令(例えば、各貯蔵室の温度設定、急冷指令、電界発生指令、製氷停止指令など)を入力する。操作部47は、使用者に対して必要な情報を報知するための表示部を有する。 The refrigerator 1 according to this embodiment includes an operation unit 47 (see FIG. 9 described below). A user uses the operation unit 47 to input various commands to the refrigerator 1 (for example, temperature settings for each storage compartment, a quick cooling command, a command to generate an electric field, a command to stop ice making, etc.). The operation unit 47 has a display unit for notifying the user of necessary information.

 冷蔵庫1は、無線LAN(ローカルエリアネットワーク)に接続可能な無線通信部を備えて、使用者の外部端末から各種指令を入力してもよい。冷蔵庫1は、使用者の音声による指令を入力するための音声認識部を備えてもよい。 The refrigerator 1 may be equipped with a wireless communication unit that can be connected to a wireless LAN (local area network) to input various commands from the user's external terminal. The refrigerator 1 may also be equipped with a voice recognition unit for inputting commands by voice from the user.

 図2、図3、図5、図6は、本実施の形態に係る冷蔵庫1における冷凍/解凍室6を示す縦断面図である。 Figures 2, 3, 5, and 6 are vertical cross-sectional views showing the freezing/thawing compartment 6 of the refrigerator 1 according to this embodiment.

 図2、図5は、冷蔵庫1を正面側から見た図である。従って、図2、図5における左側、右側は、それぞれ冷蔵庫1の左側、右側に相当する。図3、図6は、冷蔵庫1を右側から見た図である。従って、図3、図6における左側、右側は、それぞれ冷蔵庫1の正面側、背面側に相当する。以下、冷蔵庫1の構成を示す図面(図11を除く)において、冷蔵庫1の上下は、図面の上下と一致する。 Figures 2 and 5 are views of refrigerator 1 as seen from the front side. Therefore, the left and right sides in Figures 2 and 5 correspond to the left and right sides of refrigerator 1, respectively. Figures 3 and 6 are views of refrigerator 1 as seen from the right side. Therefore, the left and right sides in Figures 3 and 6 correspond to the front and rear sides of refrigerator 1, respectively. In the following drawings showing the configuration of refrigerator 1 (except for Figure 11), the top and bottom of refrigerator 1 correspond to the top and bottom of the drawings.

 図2、図3、図5、図6において、冷凍/解凍室6は、冷凍室かつ解凍室である。すなわち、冷凍/解凍室6は、食品などの保存物を凍結させて冷凍温度帯で保持する。また、電界発生指令が操作部47に入力されると、冷凍/解凍室6において電界発生処理が行われ、冷凍された保存物が誘電加熱により解凍される。 In Figures 2, 3, 5, and 6, the freezing/thawing chamber 6 is both a freezing chamber and a thawing chamber. That is, the freezing/thawing chamber 6 freezes stored items such as food and keeps them at a freezing temperature range. When an electric field generation command is input to the operation unit 47, an electric field generation process is performed in the freezing/thawing chamber 6, and the frozen stored items are thawed by dielectric heating.

 図2、図3、図5、図6のそれぞれの特徴については後述する。 The features of Figures 2, 3, 5, and 6 will be described later.

 冷凍/解凍室6の後方および上方に風路12が配置される。風路12は、冷却室11と冷凍/解凍室6とを連通する。冷凍/解凍室6の天面に、複数の冷気導入孔20が配置される。冷却器13により生成された冷気は、風路12を流れ、複数の冷気導入孔20から冷凍/解凍室6に導入される。これにより、冷凍/解凍室6は、冷凍室8と同じ冷凍温度帯に維持される。 An air passage 12 is disposed behind and above the freezing/thawing chamber 6. The air passage 12 connects the cooling chamber 11 with the freezing/thawing chamber 6. A plurality of cold air inlet holes 20 are disposed on the top surface of the freezing/thawing chamber 6. The cold air generated by the cooler 13 flows through the air passage 12 and is introduced into the freezing/thawing chamber 6 through the plurality of cold air inlet holes 20. This allows the freezing/thawing chamber 6 to be maintained in the same freezing temperature range as the freezing chamber 8.

 風路12にはダンパ12aが配置される。ダンパ12aの開閉制御により、冷凍/解凍室6が所定の冷凍温度帯に維持される。これにより、冷凍/解凍室6に収容された保存物が冷凍保存される。 A damper 12a is disposed in the air passage 12. The damper 12a is controlled to open and close so that the freezing/thawing chamber 6 is maintained at a predetermined freezing temperature range. This allows the items contained in the freezing/thawing chamber 6 to be frozen and preserved.

 冷凍/解凍室6の背面には冷気排気孔(図示せず)が形成される。冷凍/解凍室6の内部を冷却した後の冷気は、冷気排気孔と風路(図示せず)とを介して冷却室11に戻り、冷却器13により再冷却される。すなわち、本実施の形態に係る冷蔵庫1において、冷却器13により生成された冷気は冷蔵庫1を循環する。 A cold air exhaust hole (not shown) is formed on the rear surface of the freezing/thawing compartment 6. After cooling the inside of the freezing/thawing compartment 6, the cold air returns to the cooling compartment 11 via the cold air exhaust hole and an air passage (not shown), and is re-cooled by the cooler 13. That is, in the refrigerator 1 according to this embodiment, the cold air generated by the cooler 13 circulates through the refrigerator 1.

 冷凍/解凍室6の天面、背面、2つの側面、および底面は、冷凍/解凍室6の貯蔵空間を形成する。これらの面は、電気絶縁性の材料(例えば樹脂)で成形された内面部材32a、33b、32cで形成される。以下、内面部材32a~32cを総称して内面部材32という。 The top, back, two sides, and bottom of the freezing/thawing chamber 6 form the storage space of the freezing/thawing chamber 6. These surfaces are formed by inner surface members 32a, 32b, and 32c molded from an electrically insulating material (e.g., resin). Hereinafter, inner surface members 32a to 32c are collectively referred to as inner surface member 32.

 冷凍/解凍室6の正面開口に、扉29が配置される。扉29の閉成により、冷凍/解凍室6の貯蔵空間が密閉される。冷凍/解凍室6には、扉29の背面側に、上部が開放された収納ケース31が配置される。扉29を前後に開閉させると、その動作に連動して収納ケース31が前後に移動する。この動作により、収納ケース31が冷凍/解凍室6から取り出されて、食品などの保存物の出し入れが容易になる。 A door 29 is placed at the front opening of the freezing/thawing chamber 6. When the door 29 is closed, the storage space of the freezing/thawing chamber 6 is sealed. A storage case 31 with an open top is placed on the rear side of the door 29 in the freezing/thawing chamber 6. When the door 29 is opened and closed back and forth, the storage case 31 moves back and forth in conjunction with this movement. This movement allows the storage case 31 to be removed from the freezing/thawing chamber 6, making it easier to take in and out stored items such as food.

 [1-2.貯蔵空間に電界を発生させるための誘電加熱機構]
 冷凍/解凍室6の貯蔵空間において電界を発生させる誘電加熱機構について説明する。
[1-2. Dielectric heating mechanism for generating an electric field in the storage space]
A dielectric heating mechanism for generating an electric field in the storage space of the freezing/thawing chamber 6 will now be described.

 誘電加熱機構は、出力電力の制御により加熱量を調節可能である。保存物への加熱量が冷凍/解凍室6の冷却量を上回る場合、保存物は加熱される。保存物への加熱量が冷凍/解凍室6の冷却量を下回る場合、保存物は冷却される。 The dielectric heating mechanism can adjust the amount of heat by controlling the output power. If the amount of heat applied to the stored item exceeds the amount of cooling in the freezing/thawing chamber 6, the stored item is heated. If the amount of heat applied to the stored item is less than the amount of cooling in the freezing/thawing chamber 6, the stored item is cooled.

 図9は、冷蔵庫1に配置された誘電加熱機構のブロック構成図である。図9に示すように、本実施の形態における誘電加熱機構は、電源部48、発振回路22、整合回路23、第一電極24、第二電極25、および制御部50を備える。 FIG. 9 is a block diagram of the dielectric heating mechanism arranged in the refrigerator 1. As shown in FIG. 9, the dielectric heating mechanism in this embodiment includes a power supply unit 48, an oscillator circuit 22, a matching circuit 23, a first electrode 24, a second electrode 25, and a control unit 50.

 発振回路22は、電源部48からの電力を受けて高周波信号を発生させる発振部である。発振回路22は、半導体素子を用いて構成されて小型化されて、後述する電極保持領域30(図3、図4、図6、図7を参照)内の電極保持基板52に配置される。発振回路22および整合回路23は、第一電極24と第二電極25との間に印加する高周波電界を形成するための電界形成部に相当する。 The oscillator circuit 22 is an oscillator section that receives power from the power supply section 48 and generates a high-frequency signal. The oscillator circuit 22 is constructed using semiconductor elements, is miniaturized, and is disposed on an electrode holding substrate 52 in an electrode holding area 30 (see Figures 3, 4, 6, and 7) described below. The oscillator circuit 22 and the matching circuit 23 correspond to an electric field forming section for forming a high-frequency electric field to be applied between the first electrode 24 and the second electrode 25.

 第一電極24は、冷凍/解凍室6の上部(天面近傍)に配置された平板状の電極である。第二電極25は、冷凍/解凍室6の下部(底面近傍)に配置された平板状の電極である。第一電極24および第二電極25は、冷凍/解凍室6の貯蔵空間(解凍空間)において、垂直方向に所定間隔(図8の電極間隔H参照)を隔てて対向して配置された一対の電極である。第一電極24および第二電極25は、後述する電極保持基板52に固定される。 The first electrode 24 is a flat electrode located at the top (near the top surface) of the freezing/thawing chamber 6. The second electrode 25 is a flat electrode located at the bottom (near the bottom surface) of the freezing/thawing chamber 6. The first electrode 24 and the second electrode 25 are a pair of electrodes arranged facing each other at a predetermined vertical distance (see electrode distance H in Figure 8) in the storage space (thawing space) of the freezing/thawing chamber 6. The first electrode 24 and the second electrode 25 are fixed to an electrode holding substrate 52, which will be described later.

 すなわち、本実施の形態に係る誘電加熱機構において、第一電極24と第二電極25とは略平行に配置される。本開示において、「略平行」とは、厳密な平行を意味するものではなく、加工精度などのばらつきに起因する誤差を含む。 In other words, in the dielectric heating mechanism according to this embodiment, the first electrode 24 and the second electrode 25 are arranged substantially parallel to each other. In this disclosure, "substantially parallel" does not mean strictly parallel, but includes errors resulting from variations in processing accuracy, etc.

 第一電極24は貯蔵空間の天面近傍に配置され、第二電極25は貯蔵空間を挟んで貯蔵空間の底面近傍に配置される。内面部材32は、背面側の整合回路23、天面側の第一電極24、底面側の第二電極25を覆うことで、保存物の接触によるこれらの要素の損傷を防止する。 The first electrode 24 is disposed near the top surface of the storage space, and the second electrode 25 is disposed near the bottom surface of the storage space, with the storage space in between. The inner surface member 32 covers the matching circuit 23 on the rear side, the first electrode 24 on the top surface, and the second electrode 25 on the bottom surface, thereby preventing damage to these elements due to contact with the stored items.

 本実施の形態において、貯蔵空間の天面近傍および底面近傍に、それぞれ第一電極24および第二電極25が配置される。しかし、本開示はこの構成に限定されるものではない。第一電極24と第二電極25とが、貯蔵空間(解凍空間)を挟んで対向して略平行に配置されればよい。 In this embodiment, a first electrode 24 and a second electrode 25 are disposed near the top and bottom surfaces of the storage space, respectively. However, the present disclosure is not limited to this configuration. It is sufficient that the first electrode 24 and the second electrode 25 are disposed substantially parallel to each other and facing each other across the storage space (thawing space).

 例えば、第二電極25が貯蔵空間の天面近傍に配置され、第一電極24が貯蔵空間の底面近傍に配置されてもよい。第一電極24と第二電極25とが左右方向(図1における奥行方向)に対向して配置されてもよい。 For example, the second electrode 25 may be disposed near the top surface of the storage space, and the first electrode 24 may be disposed near the bottom surface of the storage space. The first electrode 24 and the second electrode 25 may be disposed opposite each other in the left-right direction (depth direction in FIG. 1).

 発振回路22は、VHF帯の高周波(本実施の形態では40.68MHz帯)の電圧を出力する。発振回路22が出力した高周波電圧により、第一電極24と第二電極25との間に電界が形成され、その結果、貯蔵空間に配置された誘電体である保存物が誘電加熱される。 The oscillator circuit 22 outputs a high-frequency voltage in the VHF band (40.68 MHz in this embodiment). The high-frequency voltage output by the oscillator circuit 22 creates an electric field between the first electrode 24 and the second electrode 25, resulting in dielectric heating of the stored object, which is a dielectric placed in the storage space.

 第一電極24と第二電極25と保存物とによって、貯蔵空間における負荷インピーダンスが形成される。整合回路23は、負荷インピーダンスが発振回路22の出力インピーダンスと整合するように、整合回路23におけるインピーダンスを調節する。 The first electrode 24, the second electrode 25, and the stored object form a load impedance in the storage space. The matching circuit 23 adjusts the impedance in the matching circuit 23 so that the load impedance matches the output impedance of the oscillation circuit 22.

 整合回路23は、入射波に対する反射波を最小化するために、インピーダンス整合を行う。入射波とは、発振回路22が第一電極24に向けて出力した電磁波である。反射波とは、入射波のうち、第一電極24から発振回路22に戻る電磁波である。 The matching circuit 23 performs impedance matching to minimize the reflected wave relative to the incident wave. The incident wave is the electromagnetic wave output by the oscillator circuit 22 toward the first electrode 24. The reflected wave is the electromagnetic wave of the incident wave that returns from the first electrode 24 to the oscillator circuit 22.

 図9に示すように、冷蔵庫1はさらに、電流検知部57と、異常回避手段としての冷却機構58とを備える。電流検知部57は、発振回路22の入力部に配置されて、電源部48から発振回路22(具体的には、第二アンプ回路22c)に供給される電流の値を検知する。 As shown in FIG. 9, the refrigerator 1 further includes a current detection unit 57 and a cooling mechanism 58 as an abnormality avoidance means. The current detection unit 57 is disposed at the input of the oscillator circuit 22, and detects the value of the current supplied from the power supply unit 48 to the oscillator circuit 22 (specifically, the second amplifier circuit 22c).

 冷却機構58は、発振回路22における直流電力から高周波電力への変換時の損失と、インピーダンスの不整合による電極保持基板52から発振回路22に向かう反射波電力の消費とにより発生した熱を放熱する。後述の冷却制御により、熱による故障などが起きない温度範囲で発振回路22を動作させる。 The cooling mechanism 58 dissipates heat generated by losses during conversion from DC power to high-frequency power in the oscillator circuit 22 and by consumption of reflected wave power from the electrode holding substrate 52 toward the oscillator circuit 22 due to impedance mismatch. Cooling control, described below, operates the oscillator circuit 22 within a temperature range where heat-induced failures do not occur.

 発振回路22において単位時間当たりに発生する熱は、電源部48の入力電力と、発振回路22に向かう反射波電力との和から、発振回路22から出力される入射波電力を差し引いた値に依存する。 The heat generated per unit time in the oscillator circuit 22 depends on the sum of the input power of the power supply unit 48 and the reflected wave power toward the oscillator circuit 22 minus the incident wave power output from the oscillator circuit 22.

 このため、発振回路22で発生する熱は、電源部48の出力電圧と、電流検知部57で検知された電流値と、後述する検波部51における入射波電力の値および反射波電力の値とから計算することができる。制御部50は、計算された発振回路22における熱に対して所定の冷却能力を発揮するように冷却機構58を制御することで、発振回路22の温度を所定値以下に維持する。 Therefore, the heat generated in the oscillation circuit 22 can be calculated from the output voltage of the power supply unit 48, the current value detected by the current detection unit 57, and the incident wave power value and reflected wave power value in the detection unit 51 described below. The control unit 50 controls the cooling mechanism 58 to exert a predetermined cooling capacity for the calculated heat in the oscillation circuit 22, thereby maintaining the temperature of the oscillation circuit 22 at or below a predetermined value.

 発振回路22は検波部51を備える。検波部51は、入射波と反射波とを検出し、それぞれの検出値を制御部50に送信する。発振回路22は、検波部51と整合回路23とを介して第一電極24に電気的に接続される。制御部50は、入射波電力の検出値に対する反射波電力の検出値の割合を反射率として算出し、反射率に基づいて後述する各種制御を行う。 The oscillator circuit 22 includes a detector 51. The detector 51 detects the incident wave and the reflected wave, and transmits the respective detection values to the controller 50. The oscillator circuit 22 is electrically connected to the first electrode 24 via the detector 51 and the matching circuit 23. The controller 50 calculates the ratio of the detection value of the reflected wave power to the detection value of the incident wave power as a reflectance, and performs various controls, which will be described later, based on the reflectance.

 制御部50は、発振回路22から出力される電磁波の設定電力値に対する反射波電力の検出値の割合を、反射率として算出してもよい。制御部50は、電磁波の出力設定値および入射波の検出値によらずに、反射波の検出値のみに基づいて後述する各種制御を行ってもよい。 The control unit 50 may calculate the ratio of the detected value of the reflected wave power to the set power value of the electromagnetic wave output from the oscillator circuit 22 as the reflectivity. The control unit 50 may perform various controls, described later, based only on the detected value of the reflected wave, regardless of the set output value of the electromagnetic wave and the detected value of the incident wave.

 制御部50は、操作部47、温度センサ49などからの信号に基づいて、発振回路22および整合回路23を制御する。制御部50は、CPU(Central Processing Unit)などのプロセッサと、ROM(Read Only Memory)などのメモリとを備える。制御部50は、メモリに格納された制御プログラムをCPUに実行させることで各種制御を行う。 The control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on signals from the operation unit 47, the temperature sensor 49, etc. The control unit 50 includes a processor such as a CPU (Central Processing Unit) and a memory such as a ROM (Read Only Memory). The control unit 50 performs various controls by having the CPU execute a control program stored in the memory.

 なお、誘電加熱機構の制御に必要なセンサ(検波部51、温度センサ49、電流検知部57)の出力部、または、これらのセンサの出力信号のための制御部50の入力部に、A/D変換器(不図示)が配置される。A/D変換器は、センサから出力されるアナログ値をデジタル値に変換して制御部50に入力する。 In addition, an A/D converter (not shown) is provided at the output section of the sensors (detection section 51, temperature sensor 49, current detection section 57) required for controlling the dielectric heating mechanism, or at the input section of the control section 50 for the output signals of these sensors. The A/D converter converts the analog values output from the sensors into digital values and inputs them to the control section 50.

 [1-3.誘電加熱機構の回路基板の構成]
 発振回路22と整合回路23と第一電極24とを接続する配線は短いことが望ましい。同様に、発振回路22と整合回路23と第二電極25とを接続する配線も短いことが望ましい。
[1-3. Configuration of the circuit board of the dielectric heating mechanism]
It is desirable that the wiring connecting the oscillation circuit 22, the matching circuit 23, and the first electrode 24 be short. Similarly, it is desirable that the wiring connecting the oscillation circuit 22, the matching circuit 23, and the second electrode 25 be short.

 このため、電極保持基板52(図3、図4、図6、図7、図8、図19A、図19B参照)と第一電極24とは、リード線および同軸ケーブルを介さずに直接的に接続される。同様に、電極保持基板52と第二電極25とは直接的に接続される。電極保持基板52は、冷凍/解凍室6の後方の電極保持領域30に配置されて、整合回路23を含む。 For this reason, the electrode holding substrate 52 (see Figures 3, 4, 6, 7, 8, 19A, and 19B) and the first electrode 24 are directly connected without the use of a lead wire or a coaxial cable. Similarly, the electrode holding substrate 52 and the second electrode 25 are directly connected. The electrode holding substrate 52 is disposed in the electrode holding area 30 at the rear of the freezing/thawing chamber 6 and includes a matching circuit 23.

 整合回路23は、調節可能なインダクタンスおよびキャパシタンスの値を有する。制御部50は、整合回路23のインダクタンスおよびキャパシタンスの値を調節して、整合回路23によるインピーダンス整合を制御する。整合回路23は、インダクタにおける損失により発熱する。以下、この熱を整合回路23による廃熱という。 The matching circuit 23 has adjustable inductance and capacitance values. The control unit 50 adjusts the inductance and capacitance values of the matching circuit 23 to control impedance matching by the matching circuit 23. The matching circuit 23 generates heat due to losses in the inductor. Hereinafter, this heat is referred to as waste heat by the matching circuit 23.

 整合回路23と、整合回路23の周辺に配置された第一電極24、第二電極25、後述する電磁波シールド26(例えば、図2、図3に示す天面側電磁波シールド26a、背面側電磁波シールド26b、底面側電磁波シールド26c、扉側電磁波シールド26d)などの金属部品と、を含むデバイスにおいて、冷凍温度帯では結露が生じ易い。本実施の形態では、整合回路23は電極保持基板52に配置されるため、整合回路23による廃熱が上記デバイスに伝導して結露を防止する。 In a device including a matching circuit 23 and metal parts such as a first electrode 24, a second electrode 25, and an electromagnetic shield 26 (described later, for example, the top-side electromagnetic shield 26a, the back-side electromagnetic shield 26b, the bottom-side electromagnetic shield 26c, and the door-side electromagnetic shield 26d shown in Figures 2 and 3) arranged around the matching circuit 23, condensation is likely to occur in the freezing temperature range. In this embodiment, the matching circuit 23 is arranged on the electrode holding substrate 52, so that waste heat from the matching circuit 23 is conducted to the device, preventing condensation.

 第一電極24、第二電極25、および後述する電磁波シールド26でも、電気的損失による発熱が生じる。しかし、通常、この発熱は僅かなものであり、結露および霜付きの防止には寄与しない。そこで、意図的に損失の大きな材料を用いて発熱を増加させることで、結露および霜付きを防止することも可能である。 The first electrode 24, the second electrode 25, and the electromagnetic shield 26 described below also generate heat due to electrical losses. However, this heat is usually slight and does not contribute to preventing condensation and frost. Therefore, it is possible to prevent condensation and frost by intentionally increasing the heat generation by using a material with high loss.

 制御部50は、冷凍/解凍室6において電界を発生させるか否かに関わらず、結露または霜付きの可能性を検出した場合、廃熱を利用した結露、霜付きの防止を実施する。すなわち、制御部50は、発振回路22を適宜動作させて意図的に廃熱を発生させることで、結露、霜付きの防止を行う。 If the control unit 50 detects the possibility of condensation or frosting, regardless of whether an electric field is generated in the freezing/thawing chamber 6, it uses waste heat to prevent condensation and frosting. In other words, the control unit 50 prevents condensation and frosting by appropriately operating the oscillation circuit 22 to intentionally generate waste heat.

 整合回路23によるインピーダンス整合が十分か否かをより精度よく判別するために、検波部51を、整合回路23とともに電極保持基板52に配置することが望ましい。これにより、整合回路23と検波部51との間に配置されるリード線、同軸ケーブル、およびこれらを接続するためのコネクタ類が不要となり、構造の簡略化も可能となる。 In order to more accurately determine whether the impedance matching provided by the matching circuit 23 is sufficient, it is desirable to place the detection unit 51 on the electrode holding substrate 52 together with the matching circuit 23. This eliminates the need for lead wires, coaxial cables, and connectors for connecting these between the matching circuit 23 and the detection unit 51, making it possible to simplify the structure.

 また、整合回路23、検波部51、および発振回路22の全てを1つの基板に配置することで、さらにリード線、同軸ケーブルによる送電ロスの抑制、および、インピーダンス整合の精度の向上が可能となる。 In addition, by arranging the matching circuit 23, the detection unit 51, and the oscillator circuit 22 all on a single board, it is possible to further reduce transmission loss due to lead wires and coaxial cables, and improve the accuracy of impedance matching.

 なお、例えば発振回路22と整合回路23とが別々の基板に配置されてリード線または同軸ケーブルで電気的に接続されてもよい。この場合、例えば空きスペースの大きな機械室10に発振回路22を設置するなど冷蔵庫内のスペースを有効活用して、これらの要素を合理的に配置する。ただし、同軸ケーブルを含めたインピーダンス整合のために、発振回路22と検波部51とを1つの基板上に配置することが望ましい。 For example, the oscillator circuit 22 and the matching circuit 23 may be arranged on separate boards and electrically connected by lead wires or a coaxial cable. In this case, these elements are arranged rationally by making effective use of the space inside the refrigerator, for example by installing the oscillator circuit 22 in the machine room 10 which has a large amount of free space. However, for impedance matching including the coaxial cable, it is preferable to arrange the oscillator circuit 22 and the detection unit 51 on a single board.

 [1-4.誘電加熱機構のシステムの構造]
 本実施の形態に係る誘電加熱機構において、第一電極24と第二電極25とが所定間隔(図8の電極間隔H参照)を隔てて略平行に対向する。これにより、冷凍/解凍室6の貯蔵空間における電界が均一化される。本誘電加熱機構において、以下に説明するように電極間隔Hが保持される。
[1-4. System structure of dielectric heating mechanism]
In the dielectric heating mechanism according to this embodiment, the first electrode 24 and the second electrode 25 face each other substantially parallel to each other with a predetermined gap (see electrode gap H in FIG. 8 ). This makes the electric field uniform in the storage space of the freezing/thawing chamber 6. In this dielectric heating mechanism, the electrode gap H is maintained as described below.

 図8は、冷凍/解凍室6の背面側の電極保持領域30を示す。図8は、電極保持領域30を冷凍/解凍室6の背面側から見た概略図である。従って、図8における左側、右側は、それぞれ正面側から見た場合の冷蔵庫1の右側、左側に相当する。 Figure 8 shows the electrode holding area 30 on the rear side of the freezing/thawing compartment 6. Figure 8 is a schematic diagram of the electrode holding area 30 as viewed from the rear side of the freezing/thawing compartment 6. Therefore, the left and right sides in Figure 8 correspond to the right and left sides, respectively, of the refrigerator 1 when viewed from the front side.

 図8に示すように、冷凍/解凍室6の上部(天面近傍)に第一電極24が配置され、冷凍/解凍室6の下部(底面近傍)に第二電極25が配置される。 As shown in FIG. 8, a first electrode 24 is disposed at the top of the freezing/thawing chamber 6 (near the top surface), and a second electrode 25 is disposed at the bottom of the freezing/thawing chamber 6 (near the bottom surface).

 第一電極24は、正極端子24a、正極端子24b、正極端子24cを有する。正極端子24a~24cは、第一電極24の背面側端部の中央付近に左右方向に並べて配置される。正極端子24a~24cの各々は、第一電極24の背面側端部から突出し、上方または下方に直角に折れ曲がった形状を有する。 The first electrode 24 has positive electrode terminal 24a, positive electrode terminal 24b, and positive electrode terminal 24c. The positive electrode terminals 24a to 24c are arranged side by side in the left-right direction near the center of the rear end of the first electrode 24. Each of the positive electrode terminals 24a to 24c protrudes from the rear end of the first electrode 24 and has a shape that is bent upward or downward at a right angle.

 同様に、第二電極25は、陰極端子25a、陰極端子25b、陰極端子25cを有する。陰極端子25a~25cは、第二電極25の背面側端部の中央付近に左右方向に並べて配置される。陰極端子25a~25cの各々は、第二電極25の背面側端部から突出し、上方または下方に直角に折れ曲がった形状を有する。 Similarly, the second electrode 25 has cathode terminal 25a, cathode terminal 25b, and cathode terminal 25c. Cathode terminals 25a to 25c are arranged side by side in the left-right direction near the center of the rear end of the second electrode 25. Each of cathode terminals 25a to 25c protrudes from the rear end of the second electrode 25 and has a shape that is bent upward or downward at a right angle.

 第一電極24および第二電極25は、それぞれ電極保持基板52の上部、下部に固定される。整合回路23と検波部51は、電極保持基板52上に配置される。従って、電極保持基板52により、第一電極24と第二電極25とは、所定間隔(図8の電極間隔H参照)を隔てて保持される。 The first electrode 24 and the second electrode 25 are fixed to the upper and lower parts, respectively, of the electrode holding substrate 52. The matching circuit 23 and the detection unit 51 are disposed on the electrode holding substrate 52. Therefore, the first electrode 24 and the second electrode 25 are held at a predetermined distance (see electrode distance H in Figure 8) by the electrode holding substrate 52.

 電極保持基板52には整合回路23などが配置されるため、銅箔配線パターンによって電極保持基板52の剛性が向上する。このため、電極保持基板52は、第一電極24と第二電極25とを所定間隔(図8の電極間隔H参照)を隔てて片持ち支持することが可能である。前述のように、電極保持基板52に、さらに発振回路22などが配置されてもよい。 Since the matching circuit 23 and the like are arranged on the electrode holding substrate 52, the rigidity of the electrode holding substrate 52 is improved by the copper foil wiring pattern. Therefore, the electrode holding substrate 52 can cantilever-support the first electrode 24 and the second electrode 25 at a predetermined interval (see electrode interval H in FIG. 8). As described above, the oscillator circuit 22 and the like may also be arranged on the electrode holding substrate 52.

 第一電極24の正極端子24a~24cは、整合回路23の正極側の接続端子(不図示)に接続される。第二電極25の陰極端子25a~25cは、整合回路23の陰極側の接続端子(不図示)に接続される。正極端子24a~24cおよび陰極端子25a~25cと、整合回路23の接続端子とは、大電流が流れても信頼性を確保できるように、所定接触面積を有する面接触により接続される。 The positive electrode terminals 24a to 24c of the first electrode 24 are connected to a connection terminal (not shown) on the positive side of the matching circuit 23. The cathode terminals 25a to 25c of the second electrode 25 are connected to a connection terminal (not shown) on the cathode side of the matching circuit 23. The positive electrode terminals 24a to 24c and the cathode terminals 25a to 25c are connected to the connection terminals of the matching circuit 23 by surface contact with a specified contact area to ensure reliability even when a large current flows.

 本実施の形態において、確実な面接触による接続を確保するために、平板状の端子同士がネジ止めにより接続される。端子間の接続は、確実な接続が可能であれば、ネジ止めによる接続に限定されない。ただし、前述の廃熱を利用した結露、霜付きの防止のためにも、熱伝導性に優れた端子間接続が望ましい。 In this embodiment, in order to ensure a reliable connection through surface contact, the flat terminals are connected to each other by screwing. The connection between the terminals is not limited to a connection by screwing, so long as a reliable connection is possible. However, in order to prevent condensation and frosting by utilizing the waste heat mentioned above, it is desirable to have a connection between the terminals with excellent thermal conductivity.

 上記のように、冷凍/解凍室6の後方に、電極保持機構である電極保持基板52が配置される。電極保持基板52により、第一電極24と第二電極25とが略平行に対向して配置される。 As described above, the electrode holding substrate 52, which is an electrode holding mechanism, is disposed behind the freezing/thawing chamber 6. The electrode holding substrate 52 positions the first electrode 24 and the second electrode 25 substantially parallel to each other.

 本実施の形態において、冷凍/解凍室6は高周波加熱モジュール53(例えば、図4参照)を備える。高周波加熱モジュール53は、第一電極24と、第一電極24に平行な第二電極25と、第一電極24および第二電極25を保持する電極保持基板52とを一体化したモジュールである。これにより、容易に第一電極24と第二電極25とを略平行に保持することができる。 In this embodiment, the freezing/thawing chamber 6 is equipped with a high-frequency heating module 53 (see, for example, FIG. 4). The high-frequency heating module 53 is a module that integrates a first electrode 24, a second electrode 25 that is parallel to the first electrode 24, and an electrode holding substrate 52 that holds the first electrode 24 and the second electrode 25. This makes it easy to hold the first electrode 24 and the second electrode 25 approximately parallel.

 [1-5.誘電加熱機構における異常検知]
 誘電加熱機構における異常は、温度異常、スパーク、および回路故障を含む。温度異常とは、動作状況および周囲環境によって発振回路22および整合回路23の温度が異常に上昇することを指す。整合回路23に入力された高周波電力は、発振電極である第一電極24および対向電極である第二電極25の間において高周波電界に変換される。この高周波電界により、保存物は誘電加熱される。
[1-5. Anomaly detection in dielectric heating mechanism]
Anomalies in the dielectric heating mechanism include temperature anomalies, sparks, and circuit failures. Temperature anomalies refer to an abnormal rise in temperature of the oscillation circuit 22 and the matching circuit 23 due to the operating conditions and the surrounding environment. The high-frequency power input to the matching circuit 23 is converted into a high-frequency electric field between the first electrode 24, which is an oscillation electrode, and the second electrode 25, which is an opposing electrode. The stored object is dielectrically heated by this high-frequency electric field.

 第一電極24に入力された入射波電力の一部は、保存物に作用することなく反射して反射波電力となる。この反射波電力は、整合回路23に含まれるコンデンサの等価直列抵抗、および、整合回路23に含まれるインダクタの抵抗成分において熱として消費され、整合回路23の温度を上昇させる。なお、本実施の形態では、整合回路23は整合部に相当する。 A portion of the incident wave power input to the first electrode 24 is reflected without acting on the stored object, becoming reflected wave power. This reflected wave power is consumed as heat in the equivalent series resistance of the capacitor included in the matching circuit 23 and in the resistance component of the inductor included in the matching circuit 23, raising the temperature of the matching circuit 23. In this embodiment, the matching circuit 23 corresponds to the matching section.

 整合回路23の発熱と、周囲温度を上昇させる外部要因とが併発することにより、整合回路23に含まれる部品の温度は、その動作温度範囲内から逸脱する可能性がある。周囲温度を上昇させる外部要因とは、冷凍/解凍室6の開閉および霜取りなどである。 The temperature of the components included in the matching circuit 23 may deviate from its operating temperature range due to the combination of heat generation from the matching circuit 23 and external factors that increase the ambient temperature. External factors that increase the ambient temperature include opening and closing the freezer/thaw chamber 6 and defrosting.

 そのため、本実施の形態では、温度センサ49が整合回路23に配置される。温度センサ49により検知された整合回路23の温度が所定の閾値を超えた場合に、制御部50は、発振回路22に高周波出力を停止させることで、整合回路23を安全な温度範囲で動作させる。 For this reason, in this embodiment, a temperature sensor 49 is disposed in the matching circuit 23. When the temperature of the matching circuit 23 detected by the temperature sensor 49 exceeds a predetermined threshold, the control unit 50 causes the oscillator circuit 22 to stop high-frequency output, thereby allowing the matching circuit 23 to operate within a safe temperature range.

 温度センサは実際に発熱する要素から離れた位置に配置されるため、温度センサの出力信号において十分な応答速度が得られない場合がある。そこで、検波部51からの情報に基づいて得られる反射率から、整合回路23に含まれたコンデンサ、インダクタの温度特性を測定し、温度センサの出力信号における応答速度を補正してもよい。 Since the temperature sensor is placed away from the actual heat generating element, the output signal from the temperature sensor may not have a sufficient response speed. Therefore, the temperature characteristics of the capacitors and inductors included in the matching circuit 23 may be measured from the reflectance obtained based on the information from the detection unit 51, and the response speed of the output signal from the temperature sensor may be corrected.

 誘電加熱機構は、発振回路22と、整合回路23と、検波部51と、制御部50と、を備える。発振回路22は、電極(第一電極24、第二電極25)に高周波電力を供給する。整合回路23は、電極のインピーダンス整合を行う。 The dielectric heating mechanism includes an oscillator circuit 22, a matching circuit 23, a detector 51, and a controller 50. The oscillator circuit 22 supplies high-frequency power to the electrodes (first electrode 24, second electrode 25). The matching circuit 23 performs impedance matching of the electrodes.

 検波部51は、発振回路22と整合回路23との間に接続されて、整合回路23から電極に出力される入射波電力と、発振回路22に戻る反射波電力とを測定する。制御部50は、入射波電力と反射波電力とに基づいて発振回路22と整合回路23とを制御するとともに、入射波電力または反射波電力の異常を検知する。すなわち、制御部50は異常検知手段として機能する。 The detection unit 51 is connected between the oscillation circuit 22 and the matching circuit 23, and measures the incident wave power output from the matching circuit 23 to the electrode and the reflected wave power returning to the oscillation circuit 22. The control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power. In other words, the control unit 50 functions as an abnormality detection means.

 スパークとは、第一電極24または第二電極25と電磁波シールド26との間、第一電極24または第二電極25と保存物との間などに発生する瞬間的な短絡状態を指す。制御部50は、検波部51から得られる情報に基づいてスパーク検知を行い、スパークを検知した場合、速やかに発振回路22を停止させる。 A spark refers to a momentary short circuit state that occurs between the first electrode 24 or the second electrode 25 and the electromagnetic shield 26, between the first electrode 24 or the second electrode 25 and a stored object, etc. The control unit 50 detects sparks based on information obtained from the detection unit 51, and if a spark is detected, it immediately stops the oscillation circuit 22.

 検波部51は、入力される高周波電力に応じた大きさの電圧を出力するセンサである。本実施の形態において、30MHz~300MHzのVHF(Very High Frequency)帯を発振回路22の基本波として用いる。このため、検波部51も、VHF帯の高周波電力を検知するように設計される。 The detection unit 51 is a sensor that outputs a voltage whose magnitude corresponds to the input high-frequency power. In this embodiment, the VHF (Very High Frequency) band of 30 MHz to 300 MHz is used as the fundamental wave of the oscillator circuit 22. For this reason, the detection unit 51 is also designed to detect high-frequency power in the VHF band.

 一方、検波部51は、スパークに含まれる数MHz~数百MHzの高周波ノイズに対しても感度を有する。そのため、スパークの高周波ノイズが同軸ケーブル56(図19Aおよび図19Bを参照して後述するケーブル56aおよびケーブル56b)などを介して検波部51に到達した場合、検波部51は、発振回路22の基本波に応じた出力電圧と、高周波ノイズに応じた出力電圧とを合算して出力する。 On the other hand, the detection unit 51 is also sensitive to high-frequency noise of several to several hundred MHz contained in the spark. Therefore, when high-frequency noise from the spark reaches the detection unit 51 via a coaxial cable 56 (cables 56a and 56b, described below with reference to Figures 19A and 19B), the detection unit 51 outputs the sum of the output voltage corresponding to the fundamental wave of the oscillator circuit 22 and the output voltage corresponding to the high-frequency noise.

 高周波ノイズの電力総和は、単一周波数を含む発振回路22の基本波に対して非常に大きい。このため、スパーク発生時には、検波部51の出力電圧が、正常動作時ではあり得ない値まで上昇する。 The sum of the power of high-frequency noise is very large compared to the fundamental wave of the oscillator circuit 22, which contains a single frequency. For this reason, when a spark occurs, the output voltage of the detector 51 rises to a value that would not be possible under normal operation.

 スパークによる検波部51の電圧上昇は、他の回路異常と異なり、検波部51の入射側でも発生する。制御部50は、入射波電力の情報または入射波電力および反射波電力の情報を用いることで、スパークの発生をより確実に検知することが可能である。 Unlike other circuit abnormalities, the voltage rise in the detection unit 51 due to a spark also occurs on the incident side of the detection unit 51. The control unit 50 can more reliably detect the occurrence of a spark by using information on the incident wave power or information on the incident wave power and reflected wave power.

 検波部51は、通常時でもノイズに曝されているため、スパークによらずに偶発的に異常電圧を出力する場合がある。この異常電圧が所定の閾値を超えた時点で、発振回路22が高周波電圧の出力を停止し、誘電加熱機構の動作を停止させると、頻繁に異常停止が発生する。この場合、使用者の手間が増大するだけでなく、保存物の品質を大きく損なう可能性がある。そのため、スパークの発生をより確実に検知する必要がある。 The detection unit 51 is exposed to noise even under normal circumstances, and may accidentally output an abnormal voltage without the occurrence of a spark. When this abnormal voltage exceeds a predetermined threshold, the oscillator circuit 22 stops outputting the high-frequency voltage and stops the operation of the dielectric heating mechanism, causing frequent abnormal stops. In this case, not only does it increase the burden on the user, but it can also significantly impair the quality of the stored items. For this reason, it is necessary to detect the occurrence of sparks more reliably.

 図20A、図20Bは、入射波電力または反射波電力のA/D変換値の遷移を示す。このA/D変換値は、検波部51から出力されるアナログ信号を、例えば検波部51の出力部に接続されたA/D変換器により変換したデジタル値である。制御部50は、異常検知の時点の直前数回のサンプリングで得られたA/D変換値を参照し、これらの値のうちの所定の閾値を超えた値の個数に基づいてスパーク検知を行う。 Figures 20A and 20B show the transition of the A/D converted value of the incident wave power or the reflected wave power. This A/D converted value is a digital value obtained by converting the analog signal output from the detection unit 51, for example, by an A/D converter connected to the output unit of the detection unit 51. The control unit 50 refers to the A/D converted values obtained from the several samplings immediately prior to the time of abnormality detection, and performs spark detection based on the number of these values that exceed a predetermined threshold value.

 制御部50は、図20Aに示すように、上記個数が1の場合はスパーク発生とは判断せず、図20Bに示すように、上記個数値が2以上の場合はスパーク発生と判断する。 As shown in FIG. 20A, the control unit 50 does not determine that a spark has occurred if the number is 1, and as shown in FIG. 20B, it determines that a spark has occurred if the number is 2 or more.

 スパーク発生と判断するための上記閾値は、2以上であれば、ノイズ発生の状況に合わせて設計者が自由に設定することができる。これにより、偶発的なノイズとスパークによるノイズとを識別し、より確実にスパーク検知を行うことができる。 The above threshold for determining whether a spark has occurred can be freely set by the designer according to the circumstances of the noise occurrence, so long as it is 2 or more. This makes it possible to distinguish between accidental noise and noise caused by sparks, and to perform spark detection more reliably.

 スパーク発生時の瞬間的な短絡により負荷インピーダンスが変動し、それに応じて発振回路22への入力電流が大きく変動する。これを利用して、図20Cに示すように、制御部50は、入射波電力または入射波電力および反射波電力がそれぞれの所定の閾値を超え、かつ、電流検知部57で検知された発振回路22に供給される電流値が所定の別の閾値を超えた場合を、スパーク検知としてもよい。これにより、スパーク検知の精度を向上させることができる。 The load impedance fluctuates due to the momentary short circuit that occurs when a spark occurs, and the input current to the oscillator circuit 22 fluctuates significantly accordingly. Taking advantage of this, as shown in FIG. 20C, the control unit 50 may detect a spark when the incident wave power or the incident wave power and the reflected wave power exceed their respective predetermined thresholds, and the current value supplied to the oscillator circuit 22 detected by the current detection unit 57 exceeds another predetermined threshold. This can improve the accuracy of spark detection.

 回路故障とは、第一電極24または第二電極25と電磁波シールド26との間の恒久的な短絡状態、整合回路23での回路短絡、整合回路23におけるインピーダンス調整手段であるマニピュレータの故障、および同軸ケーブル56(後述する図19A、図19B参照)などの高周波伝送線路の短絡または断線を指す。 A circuit fault refers to a permanent short circuit between the first electrode 24 or the second electrode 25 and the electromagnetic shield 26, a short circuit in the matching circuit 23, a fault in the manipulator which is the impedance adjustment means in the matching circuit 23, and a short circuit or break in a high-frequency transmission line such as the coaxial cable 56 (see Figures 19A and 19B described below).

 いずれの状態においても、負荷インピーダンスは正常な状態のものとは大きく異なる。このため、整合回路23によるインピーダンス整合が困難となり、反射率が増大する。その結果生じる強い温度ストレスが、発振回路22の故障の原因となる可能性がある。 In either state, the load impedance is significantly different from that in the normal state. This makes it difficult for the matching circuit 23 to match the impedance, and the reflectance increases. The resulting strong temperature stress may cause the oscillator circuit 22 to fail.

 短絡による回路故障の場合、短絡電流により局所的に発熱が生じる恐れがある。以上の理由から、回路故障を検知して発振回路22を停止させ、使用者に修理を促すように通知する必要がある。 In the case of a circuit failure due to a short circuit, there is a risk of localized heat generation due to the short circuit current. For the above reasons, it is necessary to detect the circuit failure, stop the oscillator circuit 22, and notify the user to request repairs.

 高周波関連の回路における短絡および断線が発生した場合、整合回路23および保存物の状態に関わらず、制御部50は、電極間および整合回路23のインピーダンスを故障モードのインピーダンスに固定する。制御部50は、直前に整合回路23を制御していない場合に、急激に反射率が悪化したことを検知することで、回路故障を即座に検知することができる。 If a short circuit or break occurs in a high-frequency-related circuit, the control unit 50 fixes the impedance between the electrodes and the matching circuit 23 to the failure mode impedance, regardless of the state of the matching circuit 23 and the stored object. The control unit 50 can immediately detect a circuit failure by detecting a sudden deterioration in reflectivity when the matching circuit 23 has not been controlled immediately before.

 ただし、通常動作であっても、反射率は0%から100%のすべての値を取り得るため、閾値による反射率の判定は困難である。解凍動作中は常に反射率が変動するため、時間的変化率による反射率の判定も困難である。 However, even during normal operation, reflectance can take any value from 0% to 100%, making it difficult to determine the reflectance using a threshold value. During the defrosting operation, reflectance is constantly changing, making it difficult to determine the reflectance using the rate of change over time.

 図21のグラフ(a)は、整合回路23の制御による反射率の変化がない期間の回路故障を検知した時の反射率の推移を示す。図21のグラフ(a)において、太い実線は、検波部51から得られたA/D変換値に基づいて計算された反射率を示す。1点鎖線は、サンプリングで得られた直前数回分のA/D変換値に基づいて計算された反射率の平均値を示す。二本の点線は、反射率の平均値を中心とした反射率の正常範囲の上限と下限とを示す。 Graph (a) in Figure 21 shows the transition of reflectance when a circuit failure is detected during a period in which there is no change in reflectance due to control by the matching circuit 23. In graph (a) in Figure 21, the thick solid line shows the reflectance calculated based on the A/D converted value obtained from the detection unit 51. The dashed dotted line shows the average value of the reflectance calculated based on the A/D converted values obtained by sampling the most recent few times. The two dotted lines show the upper and lower limits of the normal range of reflectance centered on the average reflectance.

 図21のグラフ(b)は、回路故障の検知タイミングを示す。図21のグラフ(b)の立ち上がりが異常検知の時点を示す。回路異常が発生しない場合、最新の反射率は直前数回の反射率と同程度の値を示すため、反射率は正常範囲内となる。 Graph (b) in Figure 21 shows the timing of detection of a circuit fault. The rising edge of graph (b) in Figure 21 indicates the time when an abnormality is detected. If no circuit abnormality occurs, the most recent reflectance shows a value similar to the previous few reflectances, so the reflectance falls within the normal range.

 回路異常が発生した場合、反射率は急激に増大して、正常範囲から逸脱する。制御部50は、整合回路23によるインピーダンス調整の実行直後ではなく、かつ反射率が正常範囲を逸脱した時点を検知することで、回路故障を検知する。 If a circuit abnormality occurs, the reflectance increases suddenly and deviates from the normal range. The control unit 50 detects a circuit failure by detecting the point in time when the reflectance deviates from the normal range, not immediately after the impedance adjustment is performed by the matching circuit 23.

 整合回路23のマニピュレータの故障、または、既に回路故障が発生している場合、制御部50からの制御信号に対してインピーダンスは変動しない。このため、反射率はほとんど変化しない。図22は、整合回路23におけるインピーダンス調整が直前に行われた場合の反射率の推移を示す。 If the manipulator of the matching circuit 23 fails, or if a circuit failure has already occurred, the impedance does not fluctuate in response to the control signal from the control unit 50. Therefore, the reflectance hardly changes. Figure 22 shows the change in reflectance when the impedance adjustment in the matching circuit 23 was performed immediately before.

 図22のグラフ(a)は、整合回路23への制御信号の切り替えタイミングを示す。図22のグラフ(b)は、整合回路23への制御信号入力からの反射率の推移を示す。 Graph (a) in FIG. 22 shows the switching timing of the control signal to the matching circuit 23. Graph (b) in FIG. 22 shows the change in reflectance from the control signal input to the matching circuit 23.

 整合回路23が制御信号を受信してから、実際にインピーダンス調整を行い、反射率が変化し終えるまでの時間は毎回ほぼ一定である。そこで、制御部50は、整合回路23への制御信号の入力から、所定の反射率変位取得時間Rtが経過する間の反射率の変位、すなわち反射率の最大値と最小値との差をΔΓとして記録する。 The time from when the matching circuit 23 receives the control signal to when it actually performs impedance adjustment and the reflectance finishes changing is almost constant each time. Therefore, the control unit 50 records the change in reflectance during the predetermined reflectance change acquisition time Rt from the input of the control signal to the matching circuit 23, that is, the difference between the maximum and minimum reflectance values, as ΔΓ.

 制御部50は、反射率変位取得時間Rtの経過後、反射率の変位ΔΓが所定の閾値以下であれば、整合回路23におけるインピーダンスの調整があったにも関わらず反射率が変化しなかったとして、異常が発生したと判定する。図22に示すように、制御部50は、整合回路23におけるインピーダンス調整の直後における反射率の変位ΔΓの閾値との比較に基づく判定により、回路故障を検知する。 If the reflectance change ΔΓ is equal to or less than a predetermined threshold value after the reflectance change acquisition time Rt has elapsed, the control unit 50 determines that an abnormality has occurred, since the reflectance has not changed despite the impedance adjustment in the matching circuit 23. As shown in FIG. 22, the control unit 50 detects a circuit failure by making a determination based on a comparison of the reflectance change ΔΓ immediately after the impedance adjustment in the matching circuit 23 with the threshold value.

 制御部50は、スパーク、回路故障、および温度異常を検知し、誘電加熱機構を安全に停止させ、かつ使用者に使用条件の改善、および修理を促すために、発生した異常種を判別する必要がある。 The control unit 50 needs to detect sparks, circuit failures, and temperature abnormalities, safely shut down the dielectric heating mechanism, and identify the type of abnormality that has occurred in order to prompt the user to improve operating conditions and perform repairs.

 図23は、異常判別のフローを示す。図23に示すように、まず、制御部50は、整合回路23の温度が所定の閾値以下であるか否かを判定する(ステップS201)。制御部50は、整合回路23の温度が閾値より高い場合(ステップS201でNo)、整合回路23の異常温度の検知と判定する(ステップS202)。制御部50は、整合回路23の温度が閾値以下の場合(ステップS201でYes)、その温度は正常範囲内であると判定し、処理をステップS203に移行させる。 FIG. 23 shows the flow of abnormality determination. As shown in FIG. 23, first, the control unit 50 determines whether the temperature of the matching circuit 23 is equal to or lower than a predetermined threshold value (step S201). If the temperature of the matching circuit 23 is higher than the threshold value (No in step S201), the control unit 50 determines that an abnormal temperature of the matching circuit 23 has been detected (step S202). If the temperature of the matching circuit 23 is equal to or lower than the threshold value (Yes in step S201), the control unit 50 determines that the temperature is within the normal range and moves the process to step S203.

 ステップS203において、スパーク検知の判定のために、制御部50は、異常検知の時点までの所定期間に得られる入射波電力の値のうちの所定の閾値を超えた値の個数を計算する(図20B参照)。または、制御部50は、異常検知の時点までの所定期間に得られる入射波電力および反射波電力の両方の値のうちの所定の別の閾値を超えた値の個数を計算してもよい。 In step S203, to determine whether a spark has been detected, the control unit 50 calculates the number of values of incident wave power obtained during a predetermined period of time until the time of abnormality detection that exceed a predetermined threshold (see FIG. 20B). Alternatively, the control unit 50 may calculate the number of values of both incident wave power and reflected wave power obtained during a predetermined period of time until the time of abnormality detection that exceed another predetermined threshold.

 具体的には、制御部50は、異常検知のタイミングまでの所定回数のサンプリングにより得られた、入射波電力のA/D変換値、または入射波電力および反射波電力の両方のA/D変換値に基づいてこの計算を行う。 Specifically, the control unit 50 performs this calculation based on the A/D conversion value of the incident wave power, or the A/D conversion values of both the incident wave power and the reflected wave power, obtained by sampling a predetermined number of times up to the timing of abnormality detection.

 制御部50は、これらの値が閾値を所定回数(例えば2回)以上超えなかった場合(ステップS203でNo)、スパーク検知と判定(ステップS204)する。 If these values do not exceed the threshold value a predetermined number of times (e.g., twice) (No in step S203), the control unit 50 determines that a spark has been detected (step S204).

 これらの値が閾値を所定回数(例えば2回)以上超えた場合(ステップS203でYes)、制御部50は、整合回路23におけるインピーダンス調整の直後か否かを判定する(ステップS205)。 If these values exceed the threshold value a predetermined number of times (e.g., twice) or more (Yes in step S203), the control unit 50 determines whether or not it is immediately after impedance adjustment in the matching circuit 23 (step S205).

 制御部50は、インピーダンス調整の実行から所定時間内であれば(ステップS205でYes)、その所定時間内の反射率の最大値と最小値とを記録し(ステップS206)、反射率の変位ΔΓを計算する(ステップS210)。制御部50は、反射率の変位ΔΓが所定の閾値以下であれば(ステップS207でNo)、整合回路23の故障と判定する(ステップS209)。 If it is within a predetermined time since the impedance adjustment was performed (Yes in step S205), the control unit 50 records the maximum and minimum reflectance values within the predetermined time (step S206) and calculates the reflectance variation ΔΓ (step S210). If the reflectance variation ΔΓ is equal to or less than a predetermined threshold (No in step S207), the control unit 50 determines that the matching circuit 23 is faulty (step S209).

 一方、整合回路23におけるインピーダンス調整の実行から所定時間経過後の場合(ステップS205でNo)、ステップS211において、制御部50は、入射波電力および反射波電力の直前数回のA/D変換値を参照し、直前数回の反射率の平均値を計算する(図22参照)。 On the other hand, if a predetermined time has elapsed since impedance adjustment was performed in the matching circuit 23 (No in step S205), in step S211, the control unit 50 refers to the A/D converted values of the incident wave power and the reflected wave power for the last few times and calculates the average value of the reflectivity for the last few times (see Figure 22).

 ステップS212において、制御部50は、異常検知の時点の反射率の値と、異常検知の実行までの過去数回の反射率の平均値との差を計算する。その差が所定の閾値を超えた場合(ステップS208でNo)、制御部50は整合回路23の故障の検知と判定する(ステップS209)。 In step S212, the control unit 50 calculates the difference between the reflectance value at the time of the abnormality detection and the average value of the past several reflectance values before the abnormality detection was performed. If the difference exceeds a predetermined threshold value (No in step S208), the control unit 50 determines that a failure of the matching circuit 23 has been detected (step S209).

 本実施の形態では、上記のように、整合回路23におけるインピーダンス調整から所定時間内の場合と、インピーダンス調整から所定時間経過後とで検知方法が異なる。 In this embodiment, as described above, the detection method is different depending on whether it is within a predetermined time after the impedance adjustment in the matching circuit 23 or after a predetermined time has elapsed since the impedance adjustment.

 いずれかの異常を検知した場合、発振回路22の高周波出力を一時停止し、異常の種類に基づいて自動復帰、システム停止、または使用者へ故障内容の明示を行う。なお、温度異常、スパーク検知、回路故障検知の順に判別するのが望ましいが、別の順序での判別を行ってもよい。 If any abnormality is detected, the high frequency output of the oscillator circuit 22 is temporarily stopped, and depending on the type of abnormality, the system will automatically recover, the system will be stopped, or the details of the failure will be displayed to the user. Note that it is preferable to judge in the following order: temperature abnormality, spark detection, and circuit failure detection, but it is also possible to judge in a different order.

 [1-6.冷凍/解凍室の構造]
 前述のように、冷蔵庫1の本体2は、鋼板により形成された外箱3と、樹脂製の内箱4と、断熱材40とにより構成された断熱箱体である。断熱材40は、例えば、硬質発泡ウレタンであり、外箱3と内箱4との間の空間に充填発泡される。
[1-6. Structure of the freezing/thawing compartment]
As described above, the main body 2 of the refrigerator 1 is an insulated box body composed of the outer box 3 formed of a steel plate, the inner box 4 made of resin, and the insulating material 40. The insulating material 40 is, for example, rigid urethane foam, and is foamed and filled in the space between the outer box 3 and the inner box 4.

 図2、図3に示すように、冷凍/解凍室6は、断熱材40の内側に配置された内面部材32aを外枠として有する。冷凍/解凍室6の周囲には、電磁波シールド26が配置される。電磁波シールド26は、天面側電磁波シールド26aと、背面側電磁波シールド26bと、底面側電磁波シールド26cと、扉側電磁波シールド26dとを含み、冷凍/解凍室6を取り囲んで電磁波の外部への漏洩を防止する。 As shown in Figures 2 and 3, the freezing/thawing chamber 6 has an inner surface member 32a arranged inside the insulating material 40 as an outer frame. An electromagnetic wave shield 26 is arranged around the freezing/thawing chamber 6. The electromagnetic wave shield 26 includes a top-side electromagnetic wave shield 26a, a back-side electromagnetic wave shield 26b, a bottom-side electromagnetic wave shield 26c, and a door-side electromagnetic wave shield 26d, and surrounds the freezing/thawing chamber 6 to prevent electromagnetic waves from leaking to the outside.

 内面部材32aは、電極保持領域30と冷凍/解凍室6とを区画する。背面側電磁波シールド26bは、内面部材32aの背面側に配置される。背面側電磁波シールド26bは、冷凍/解凍室6の内部と、整合回路23などを含む電極保持基板52とを区画する。これにより、インピーダンスおよび電界に関して、冷凍/解凍室6と電極保持基板52とが相互に影響を与えることを防止することができる。 The inner surface member 32a separates the electrode holding area 30 from the freezing/thawing chamber 6. The rear electromagnetic shield 26b is disposed on the rear side of the inner surface member 32a. The rear electromagnetic shield 26b separates the interior of the freezing/thawing chamber 6 from the electrode holding substrate 52, which includes the matching circuit 23 and the like. This makes it possible to prevent the freezing/thawing chamber 6 and the electrode holding substrate 52 from affecting each other in terms of impedance and electric field.

 内面部材32aで取り囲まれた空間の上部および下部に、それぞれ平板状の内面部材32bおよび内面部材32cが配置される。内面部材32bの上面には第一電極24が配置され、内面部材32cの下面には第二電極25が配置される。  Plate-shaped inner surface members 32b and 32c are arranged at the top and bottom of the space surrounded by inner surface member 32a, respectively. A first electrode 24 is arranged on the top surface of inner surface member 32b, and a second electrode 25 is arranged on the bottom surface of inner surface member 32c.

 内面部材32bと内面部材32cとは、所定間隔(図2、図3の電極間隔H参照)を隔てて保持される。すなわち、第一電極24と第二電極25とは、電極保持基板52と内面部材32とによって略平行な状態に保持される。 The inner surface members 32b and 32c are held at a predetermined distance (see electrode spacing H in Figures 2 and 3). In other words, the first electrode 24 and the second electrode 25 are held in a substantially parallel state by the electrode holding substrate 52 and the inner surface member 32.

 充填発泡された断熱材40の発泡のばらつきにより、冷凍/解凍室6の上面と底面とが平行でない場合がある。しかし、前述の構成によって、第一電極24と第二電極25とは、外箱3に影響されることなく略平行な状態に保持される。 Due to variations in the foaming of the foamed insulation 40, the top and bottom surfaces of the freezing/thawing chamber 6 may not be parallel. However, with the above-described configuration, the first electrode 24 and the second electrode 25 are kept approximately parallel without being affected by the outer box 3.

 図4は、冷蔵庫1の本体2に冷凍/解凍室6を組み込む様子を示す縦断面図である。図4は、冷蔵庫1を右側から見た図である。従って、図4における左側、右側は、それぞれ冷蔵庫1の正面側、背面側に相当する。 FIG. 4 is a vertical cross-sectional view showing how the freezing/thawing compartment 6 is installed in the main body 2 of the refrigerator 1. FIG. 4 is a view of the refrigerator 1 as seen from the right side. Therefore, the left and right sides in FIG. 4 correspond to the front and rear sides of the refrigerator 1, respectively.

 製造工程までに、高周波加熱モジュール53は予め組み立てられる。図4に示すように、製造工程において、まず、冷蔵庫1の外箱3に、高周波加熱モジュール53が差し込まれる。次に、扉29、扉側電磁波シールド26d、ガスケット36、収納ケース31を含む扉ユニットが高周波加熱モジュール53に差し込まれる。これで、冷蔵庫1が完成する。 The high-frequency heating module 53 is pre-assembled before the manufacturing process. As shown in FIG. 4, in the manufacturing process, first, the high-frequency heating module 53 is inserted into the outer box 3 of the refrigerator 1. Next, the door unit including the door 29, the door-side electromagnetic shield 26d, the gasket 36, and the storage case 31 is inserted into the high-frequency heating module 53. This completes the refrigerator 1.

 本実施の形態は、図5、図6、図7に示すような構成でもよい。図7は、図4と同様に、冷蔵庫1の本体2に冷凍/解凍室6を組み込む様子を示す縦断面図である。従って、図7における左側、右側は図4と同じである。図5~図7において、外箱3と、内箱4と、断熱材40と、内面部材32と、電磁波シールド26とは図2、図3と同様である。 This embodiment may also have the configurations shown in Figures 5, 6, and 7. Like Figure 4, Figure 7 is a vertical cross-sectional view showing how the freezing/thawing compartment 6 is incorporated into the main body 2 of the refrigerator 1. Therefore, the left and right sides in Figure 7 are the same as those in Figure 4. In Figures 5 to 7, the outer box 3, inner box 4, insulating material 40, inner surface member 32, and electromagnetic wave shield 26 are the same as those in Figures 2 and 3.

 図5~図7に示すように、内面部材32aで取り囲まれた空間の上部および下部に、それぞれ平板状の内面部材32bおよび内面部材32cが水平に配置される。内面部材32bの上面には第一電極24が配置され、内面部材32cの下面には第二電極25が配置される。 As shown in Figures 5 to 7, flat inner surface members 32b and 32c are arranged horizontally at the top and bottom of the space surrounded by inner surface member 32a. A first electrode 24 is arranged on the top surface of inner surface member 32b, and a second electrode 25 is arranged on the bottom surface of inner surface member 32c.

 内面部材32bおよび内面部材32cの正面側は、支柱54によって固定される。内面部材32bおよび内面部材32cの背面側は、電極保持基板52および内面部材32cによって固定される。これにより、第一電極24と第二電極25とは略平行状態に保持される。 The front sides of the inner surface members 32b and 32c are fixed by the support 54. The back sides of the inner surface members 32b and 32c are fixed by the electrode holding substrate 52 and the inner surface member 32c. This keeps the first electrode 24 and the second electrode 25 in a substantially parallel state.

 内面部材32bと内面部材32cとは、所定間隔(図5~図7の電極間隔H参照)を隔てて保持されるため、第一電極24と第二電極25とは、電極保持基板52と支柱54と内面部材32とによって略平行な状態に保持される。 The inner surface members 32b and 32c are held at a predetermined distance (see electrode spacing H in Figures 5 to 7), so that the first electrode 24 and second electrode 25 are held in a substantially parallel state by the electrode holding substrate 52, the support 54, and the inner surface member 32.

 内面部材32は、冷凍室8でも結露しにくい一般的な工業セラミック材の熱伝導率(10W/(m・k))以下の材料からなることが望ましい。本実施の形態では、内面部材32は、ポリプロピレン(Polypropylene)、ABS(Acrylonitrile-Butadiene-Syrene)、ポリカーボネート(Polycarbonate)などの樹脂で構成される。 The inner surface member 32 is preferably made of a material with a thermal conductivity equal to or less than 10 W/(m·k) of common industrial ceramic materials that is unlikely to cause condensation even in the freezer compartment 8. In this embodiment, the inner surface member 32 is made of a resin such as polypropylene, ABS (Acrylonitrile-Butadiene-Syrene), or polycarbonate.

 熱容量の抑制のため、電磁波シールド26は、内面部材32より薄く構成される。これにより、電磁波シールド26および電磁波シールド26に接する内面部材32における結露を防止することができる。 To reduce heat capacity, the electromagnetic wave shield 26 is configured to be thinner than the inner surface member 32. This makes it possible to prevent condensation on the electromagnetic wave shield 26 and the inner surface member 32 that contacts the electromagnetic wave shield 26.

 このように、本実施の形態によれば、電極保持機構により、第一電極24と第二電極25とを、所定の間隔(例えば図5の電極間隔H参照)を隔てて略平行に配置することができる。従って、冷凍/解凍室6の誘電加熱機構において、電極面における高周波電界の偏りが抑制されて高周波電界の均一化が図られる。その結果、保存物(冷凍品)をより均一に加熱することができる。 In this way, according to this embodiment, the electrode holding mechanism allows the first electrode 24 and the second electrode 25 to be arranged approximately parallel to each other with a predetermined distance between them (see, for example, electrode distance H in FIG. 5). Therefore, in the dielectric heating mechanism of the freezing/thawing chamber 6, bias in the high-frequency electric field on the electrode surface is suppressed, and the high-frequency electric field is made uniform. As a result, the stored items (frozen products) can be heated more uniformly.

 本実施の形態によれば、予め組み立てられたユニットである高周波加熱モジュール53を外箱3に差し込むことで冷蔵庫1を完成させる。すなわち、簡易な製造工程により冷蔵庫1を製造することができる。 According to this embodiment, the refrigerator 1 is completed by inserting the high-frequency heating module 53, which is a pre-assembled unit, into the outer box 3. In other words, the refrigerator 1 can be manufactured through a simple manufacturing process.

 [1-7.電磁波シールド機構]
 上記のように、本実施の形態に係る冷蔵庫1は、冷凍/解凍室6において、第一電極24と第二電極25との間に保存物(誘電体)を配置して誘電加熱することが可能である。このため、冷凍/解凍室6の外部に電磁波が漏洩することを防止するために、本実施の形態に係る冷蔵庫1は、冷凍/解凍室6を取り囲む電磁波シールド機構を備える。
[1-7. Electromagnetic wave shielding mechanism]
As described above, in the refrigerator 1 according to this embodiment, it is possible to dielectrically heat a stored object (dielectric) by placing it between the first electrode 24 and the second electrode 25 in the freezing/thawing compartment 6. Therefore, in order to prevent electromagnetic waves from leaking outside the freezing/thawing compartment 6, the refrigerator 1 according to this embodiment is provided with an electromagnetic wave shielding mechanism that surrounds the freezing/thawing compartment 6.

 図2、図3、図5に示すように、冷凍/解凍室6の天面の上方に天面側電磁波シールド26aが配置される。天面側電磁波シールド26aは、冷凍/解凍室6の天面を構成する内面部材32aの上面に配置されて、冷凍/解凍室6の天面を覆うように配置される。天面側電磁波シールド26aは、複数の開口を有する。これにより、天面側電磁波シールド26aの第一電極24に対向する部分の面積が小さくなる。 As shown in Figures 2, 3, and 5, a top-side electromagnetic wave shield 26a is disposed above the top surface of the freezing/thawing chamber 6. The top-side electromagnetic wave shield 26a is disposed on the upper surface of the inner surface member 32a that constitutes the top surface of the freezing/thawing chamber 6, and is disposed so as to cover the top surface of the freezing/thawing chamber 6. The top-side electromagnetic wave shield 26a has multiple openings. This reduces the area of the portion of the top-side electromagnetic wave shield 26a that faces the first electrode 24.

 これらの開口は、冷蔵庫1の前後方向が長手方向であるスリット形状を有する。これにより、正極端子24a~24cから前方に向かう磁界(または電流)がスムーズに天面側電磁波シールド26a上を通過する。これにより、周囲に拡散される漏洩磁界が抑制される。発明者らは、このことを電磁波シミュレーションによって解析した。 These openings have a slit shape with the longitudinal direction being the front-to-rear direction of the refrigerator 1. This allows the magnetic field (or current) flowing forward from the positive terminals 24a-24c to pass smoothly over the top-side electromagnetic shield 26a. This suppresses leakage magnetic fields from diffusing to the surrounding area. The inventors analyzed this through electromagnetic wave simulations.

 このような構成により、天面側電磁波シールド26aと第一電極24との間における不要な電界の発生が抑制される。天面側電磁波シールド26aは、多数の開口を有するメッシュ構造でもよい。 This configuration suppresses the generation of unnecessary electric fields between the top-side electromagnetic wave shield 26a and the first electrode 24. The top-side electromagnetic wave shield 26a may have a mesh structure with many openings.

 天面側電磁波シールド26aは、冷凍/解凍室6の上方に位置する冷蔵室5の内部に配置されてもよい。しかし、冷蔵室5にパーシャル室およびチルド室が配置されることが多いため、パーシャル室およびチルド室の天面を電磁波シールドとして利用してもよい。 The top electromagnetic wave shield 26a may be placed inside the refrigerator compartment 5 located above the freezer/thaw compartment 6. However, since a partial compartment and a chilled compartment are often placed in the refrigerator compartment 5, the top surfaces of the partial compartment and the chilled compartment may also be used as the electromagnetic wave shield.

 背面側電磁波シールド26bは、冷凍/解凍室6の背面側に配置された電極保持領域30を覆うように配置される。背面側電磁波シールド26bは、第一電極24と第二電極25との間に発生する電界および整合回路23で発生した高周波ノイズが冷却ファン14およびダンパ12aの制御に影響することを防止する。なお、冷凍/解凍室6の側面側にも電磁波シールド(図示なし)が配置される。 The rear electromagnetic shield 26b is arranged to cover the electrode holding area 30 arranged on the rear side of the freezing/thawing chamber 6. The rear electromagnetic shield 26b prevents the electric field generated between the first electrode 24 and the second electrode 25 and the high-frequency noise generated in the matching circuit 23 from affecting the control of the cooling fan 14 and the damper 12a. An electromagnetic shield (not shown) is also arranged on the side of the freezing/thawing chamber 6.

 次に、扉29に配置された扉側電磁波シールド26dについて説明する。扉29は、冷蔵庫1の本体に取り付けられて、冷凍/解凍室6の正面開口を開閉可能に覆う。このため、扉側電磁波シールド26dを冷蔵庫1の本体の接地部分に有線路で接続する構成では、扉29の開閉により有線路の伸び縮みが繰り返される。すなわち、このように構成は、有線路における金属疲労による断線の要因となるため、好ましくない。 Next, the door-side electromagnetic shield 26d arranged on the door 29 will be described. The door 29 is attached to the body of the refrigerator 1 and covers the front opening of the freezing/thawing compartment 6 in an openable and closable manner. For this reason, in a configuration in which the door-side electromagnetic shield 26d is connected to the grounded part of the body of the refrigerator 1 by a wired path, the wired path repeatedly expands and contracts as the door 29 is opened and closed. In other words, such a configuration is not preferable because it can cause metal fatigue in the wired path to break.

 一般的に、電磁波の漏洩を防ぐには、扉29を閉じたときの扉側電磁波シールド26dとクロスレール21(図1参照)との間隔を、電磁波の波長λの1/4より狭くすることが必要である。クロスレール21とは、外箱3に接続されて接地された本体側の電磁波シールドである。本実施の形態では、さらにこの間隔を小さく(例えば、30mm以内)する。 Generally, to prevent leakage of electromagnetic waves, it is necessary to make the gap between the door-side electromagnetic shield 26d and the cross rail 21 (see Figure 1) narrower than 1/4 of the wavelength λ of the electromagnetic waves when the door 29 is closed. The cross rail 21 is the electromagnetic shield on the main body side that is connected to the outer box 3 and grounded. In this embodiment, this gap is made even smaller (for example, within 30 mm).

 扉29を閉じると、扉側電磁波シールド26dが、接地されたクロスレール21に近接する。この構成により、有線路による接地と同等の効果が得られる。扉側電磁波シールド26dの端部を冷蔵庫1の本体側に屈曲した形状とすることにより、扉側電磁波シールド26dをクロスレール21に容易に近接させることができる。 When the door 29 is closed, the door-side electromagnetic shield 26d comes close to the grounded cross rail 21. This configuration provides the same effect as grounding by wired path. By making the end of the door-side electromagnetic shield 26d bent toward the main body of the refrigerator 1, the door-side electromagnetic shield 26d can be easily brought close to the cross rail 21.

 扉側電磁波シールド26dを、クロスレール21以外の部材、例えば天面側電磁波シールド26a、底面側電磁波シールド26cにも近接させてもよい。 The door-side electromagnetic shield 26d may be placed close to components other than the cross rail 21, such as the top-side electromagnetic shield 26a and the bottom-side electromagnetic shield 26c.

 次に、電磁波シールドおよびその他の回路とのグランドとの接続について説明する。 Next, we will explain the connection to the electromagnetic shield and ground to other circuits.

 図10は、誘電加熱機構におけるAC/DCコンバータの概略回路図である。この回路において、交流商用電源ACVからの交流電圧は、ブリッジダイオードBD1と整流コンデンサC0とにより整流されて直流電圧に変換される。この直流電圧はDC/DCコンバータに入力される。 Figure 10 is a schematic circuit diagram of the AC/DC converter in the dielectric heating mechanism. In this circuit, the AC voltage from the AC commercial power source ACV is rectified by the bridge diode BD1 and rectifier capacitor C0 and converted into a DC voltage. This DC voltage is input to the DC/DC converter.

 図10に示すDC/DCコンバータは、フライバック式のスイッチング電源回路である。しかし、本開示はこれに限るものではなく、フォワード式、プッシュプル式、ハーフブリッジ式など、トランスを使用するスイッチング電源であればよい。図10では主要な回路部品のみを記載し、ノイズフィルタ、電源制御回路、保護回路は省略する。 The DC/DC converter shown in FIG. 10 is a flyback type switching power supply circuit. However, the present disclosure is not limited to this, and any switching power supply that uses a transformer, such as a forward type, push-pull type, or half-bridge type, may be used. FIG. 10 shows only the main circuit components, and omits the noise filter, power supply control circuit, and protection circuit.

 図10に示すように、交流商用電源ACVからの交流電圧は、ブリッジダイオードBD1および整流コンデンサC0によって整流・平滑化されて直流電圧に変換される。この直流電圧を1次側直流電源DCV0(または第一電源部)と称する。1次側直流電源DCV0のゼロボルト基準電位を1次側グランドGND0(または第一グランド)と称する。 As shown in Figure 10, the AC voltage from the AC commercial power supply ACV is rectified and smoothed by bridge diode BD1 and rectifier capacitor C0 and converted into a DC voltage. This DC voltage is called the primary DC power supply DCV0 (or first power supply unit). The zero volt reference potential of the primary DC power supply DCV0 is called the primary ground GND0 (or first ground).

 1次側直流電源DCV0は、スイッチングトランスT1の1次側巻線P1に印加される。スイッチングトランスT1は、電界効果トランジスタQ1によって数10kHzのスイッチング周波数で動作する。 The primary DC power supply DCV0 is applied to the primary winding P1 of the switching transformer T1. The switching transformer T1 operates at a switching frequency of several tens of kHz using the field effect transistor Q1.

 1次側巻線P1に蓄積された電力は、電気的に絶縁された2次側巻線S1に電磁誘導作用によって伝達され、2次側整流ダイオードD1と2次側整流コンデンサC1とによって整流される。これにより、2次側直流電源DCV1(第二電源部)が出力される。 The power stored in the primary winding P1 is transferred to the electrically insulated secondary winding S1 by electromagnetic induction, and is rectified by the secondary rectifier diode D1 and secondary rectifier capacitor C1. This outputs the secondary DC power supply DCV1 (second power supply unit).

 2次側巻線S2は、その両端の間に配置された出力部を有する。2次側巻線S2の出力電圧は2次側整流ダイオードD2と2次側整流コンデンサC2とによって整流される。これにより、2次側直流電源DCV1より低い電圧の2次側直流電源DCV2(第二電源部)が出力される。2次側直流電源DCV1、DCV2のゼロボルト基準電位を2次側グランドGND1(または第二グランド)と称する。 The secondary winding S2 has an output section disposed between its two ends. The output voltage of the secondary winding S2 is rectified by the secondary rectifier diode D2 and the secondary rectifier capacitor C2. This outputs a secondary DC power supply DCV2 (second power supply section) with a lower voltage than the secondary DC power supply DCV1. The zero volt reference potential of the secondary DC power supplies DCV1 and DCV2 is called the secondary ground GND1 (or second ground).

 1次側直流電源DCV0は、スイッチングトランスT1以外に、スイッチングトランスT2の1次側巻線P2にも印加される。スイッチングトランスT2は、電界効果トランジスタQ2によって数10kHzのスイッチング周波数で動作する。 The primary DC power supply DCV0 is applied to the primary winding P2 of the switching transformer T2 as well as to the switching transformer T1. The switching transformer T2 operates at a switching frequency of several tens of kHz using the field effect transistor Q2.

 1次側巻線P2に蓄積された電力は、電気的に絶縁された2次側巻線S3に電磁誘導作用によって伝達され、2次側整流ダイオードD3と2次側整流コンデンサC3とによって整流される。これにより、2次側直流電源DCV3(第三電源部)が出力される。2次側直流電源DCV3のゼロボルト基準電位を2次側グランドGND2(または第三グランド)と称する。 The power stored in the primary winding P2 is transferred to the electrically insulated secondary winding S3 by electromagnetic induction and is rectified by the secondary rectifier diode D3 and secondary rectifier capacitor C3. This outputs a secondary DC power supply DCV3 (third power supply unit). The zero volt reference potential of the secondary DC power supply DCV3 is called the secondary ground GND2 (or third ground).

 スイッチングトランスT1において、1次側巻線P1と2次側巻線S1との絶縁は、日本の電気用品安全法、またはIEC(International Electrotechnical Commission)規格で定められた基礎絶縁以上の性能を有する。スイッチングトランスT2における1次側巻線P2と2次側巻線S3との絶縁に関しても同様である。 In the switching transformer T1, the insulation between the primary winding P1 and the secondary winding S1 has a performance equal to or higher than the basic insulation specified in the Electrical Appliance and Material Safety Act of Japan or the IEC (International Electrotechnical Commission) standards. The same applies to the insulation between the primary winding P2 and the secondary winding S3 in the switching transformer T2.

 発振回路22において、発振源22aは、水晶発振などを用いてISMバンド(Industrial Scientific and Medical Band)に割り当てられた40.68MHzの周波数を有する微電力を出力する。この微電力は、第一アンプ回路22bにより増幅され、さらに第二アンプ回路22cにより増幅される。これらのアンプ回路により増幅された電力は整合回路23に出力される。なお、発振源22aの出力周波数は40.68MHzに限定されるものではない。 In the oscillator circuit 22, the oscillator source 22a outputs micropower having a frequency of 40.68 MHz, which is assigned to the ISM band (Industrial Scientific and Medical Band), using a crystal oscillator or the like. This micropower is amplified by the first amplifier circuit 22b, and further amplified by the second amplifier circuit 22c. The power amplified by these amplifier circuits is output to the matching circuit 23. Note that the output frequency of the oscillator source 22a is not limited to 40.68 MHz.

 本実施の形態では、2次側直流電源DCV1は、発振回路22の第二アンプ回路22cに供給される。2次側直流電源DCV2は、発振回路22の発振源22aと第一アンプ回路22bと検波部51と整合回路23とに供給される。2次側直流電源DCV3は制御部50に供給される。 In this embodiment, the secondary side DC power supply DCV1 is supplied to the second amplifier circuit 22c of the oscillator circuit 22. The secondary side DC power supply DCV2 is supplied to the oscillation source 22a, the first amplifier circuit 22b, the detector 51, and the matching circuit 23 of the oscillator circuit 22. The secondary side DC power supply DCV3 is supplied to the controller 50.

 これにより、2次側グランドGND1をゼロボルト基準電位とする回路系は、発振回路22、検波部51、整合回路23、第二電極25を含む。2次側グランドGND2をゼロボルト基準電位とする回路系は制御部50を含む。制御部50は、2次側直流電源DCV2と2次側グランドGND1とに接続されてもよい。 As a result, the circuit system in which the secondary ground GND1 is the zero volt reference potential includes the oscillator circuit 22, the detector 51, the matching circuit 23, and the second electrode 25. The circuit system in which the secondary ground GND2 is the zero volt reference potential includes the control unit 50. The control unit 50 may be connected to the secondary DC power supply DCV2 and the secondary ground GND1.

 第二電極25は、2次側グランドGND1と同電位を有する。電磁波シールド26は、第二電極25と絶縁される、または、第二電極25からある程度離れて接続されることが望ましい。これにより、電磁波シールドに印加される電界および磁界が低減され、電界および磁界の外部への漏洩が抑制される。すなわち、電磁波シールドの効果が向上する。 The second electrode 25 has the same potential as the secondary ground GND1. It is desirable that the electromagnetic shield 26 is insulated from the second electrode 25 or is connected at a certain distance from the second electrode 25. This reduces the electric field and magnetic field applied to the electromagnetic shield, and suppresses leakage of the electric field and magnetic field to the outside. In other words, the effectiveness of the electromagnetic shield is improved.

 電磁波シールドの効果を向上させる方法について説明する。  Explains how to improve the effectiveness of electromagnetic shielding.

 1つ目の方法は、電磁波シールド26を1次側グランドGND0、2次側グランドGND1、2次側グランドGND2のいずれにも接続しないことである。この方法は、電磁波シールドの総面積または総体積が所定値以上の場合に特に有効である。この方法によれば、高周波ノイズがグランドラインを通って外部に漏洩するなどのノイズによる悪影響が少ない。 The first method is to not connect the electromagnetic shield 26 to any of the primary ground GND0, secondary ground GND1, or secondary ground GND2. This method is particularly effective when the total area or volume of the electromagnetic shield is equal to or greater than a predetermined value. This method reduces the adverse effects of noise, such as high-frequency noise leaking to the outside through the ground line.

 2つ目の方法は、電磁波シールド26を1次側グランドGND0に接続することである。1次側グランドGND0は、通常、金属製の外箱3に接続され、接地面積が広い。従って、1次側グランドGND0のゼロボルト基準電位は最も安定する。この方法によれば、電磁波シールド26の効果の向上だけでなくノイズによる誤動作も少ない。 The second method is to connect the electromagnetic shield 26 to the primary ground GND0. The primary ground GND0 is usually connected to the metal outer casing 3 and has a large ground surface area. Therefore, the zero volt reference potential of the primary ground GND0 is the most stable. This method not only improves the effectiveness of the electromagnetic shield 26, but also reduces malfunctions due to noise.

 3つ目の方法は、電磁波シールド26を2次側グランドGND2に接続することである。この方法によれば、第二電極25と電磁波シールド26とがスイッチングトランスT1、T2の2段階で絶縁される。このため、第一電極24から電磁波シールド26に高周波ノイズが漏洩しにくくなり、第一電極24と第二電極25との間に発生する電界が安定する。 The third method is to connect the electromagnetic shield 26 to the secondary ground GND2. With this method, the second electrode 25 and the electromagnetic shield 26 are insulated in two stages by the switching transformers T1 and T2. This makes it difficult for high-frequency noise to leak from the first electrode 24 to the electromagnetic shield 26, and stabilizes the electric field generated between the first electrode 24 and the second electrode 25.

 4つ目の方法は、2次側グランドGND1を、第二電極25からある程度離れた場所(少なくとも電磁波シールド26の外側)で接続することである。この方法によれば、ある程度のシールド効果が得られるとともに、第一電極24から電磁波シールド26に高周波ノイズが漏洩しにくくなる。従って、第一電極24と第二電極25との間に発生する電界が安定する。 The fourth method is to connect the secondary ground GND1 at a location some distance away from the second electrode 25 (at least outside the electromagnetic shield 26). This method provides a certain degree of shielding effect and makes it difficult for high-frequency noise to leak from the first electrode 24 to the electromagnetic shield 26. Therefore, the electric field generated between the first electrode 24 and the second electrode 25 is stable.

 以上のシールド効果を向上させる方法において、システムの構造および配線によって効果が異なることがある。従って、第一電極24と第二電極25との間における電界発生の効率、および電磁波シールドの効果を考慮して、これらの方法から最適なものを選定する必要がある。 The effectiveness of the above methods for improving the shielding effect may vary depending on the system structure and wiring. Therefore, it is necessary to select the most suitable method from these methods, taking into consideration the efficiency of electric field generation between the first electrode 24 and the second electrode 25 and the effectiveness of the electromagnetic wave shielding.

 本実施の形態に係る冷蔵庫1において、鋼板で構成された外箱3が電磁波シールドとして機能する。これにより、冷蔵庫1の内部の電磁波が外部に漏洩することが防止される。 In the refrigerator 1 according to this embodiment, the outer box 3 made of steel plate functions as an electromagnetic wave shield. This prevents electromagnetic waves inside the refrigerator 1 from leaking to the outside.

 上記の電磁波シールドの構成において、システム内で発生したノーマルモードノイズ、および、2次側グランドGND1または2次側グランドGND2に伝導したコモンモードノイズによる誤動作・電波漏洩が問題となることがある。特に、コモンモードノイズが、発振回路22で生成された高周波出力を伝導するケーブルに重畳し、ケーブル表面から放射されることが多い。 In the above electromagnetic shielding configuration, malfunctions and radio wave leakage can become a problem due to normal mode noise generated within the system and common mode noise conducted to the secondary ground GND1 or secondary ground GND2. In particular, common mode noise is often superimposed on the cable that conducts the high-frequency output generated by the oscillator circuit 22 and radiated from the surface of the cable.

 このため、通常、高周波出力を伝導するケーブルには同軸ケーブルを使用する。しかし、コモンモードノイズは、同軸ケーブル内で本来はシールドの役割を担う外部導体の外側に伝導することもある。 For this reason, coaxial cables are usually used for transmitting high-frequency output. However, common mode noise can also be transmitted to the outside of the outer conductor, which is supposed to act as a shield within a coaxial cable.

 図19Aおよび図19Bは、コモンモードノイズによる誤動作、電波漏洩を防止するための具体的構成を示す。図19Aにおいて、整合回路23などを含む電極保持基板52は、検波部51を含む発振回路22(図19Aには不図示)から離れた場所に配置される。同軸ケーブル56aは、電極保持基板52と検波部51とを電気的に接続する。冷蔵庫1の外箱3の外殻は金属材料で構成され、同軸ケーブル56aは外箱3の内側に配線される。 FIGS. 19A and 19B show a specific configuration for preventing malfunction and radio wave leakage due to common mode noise. In FIG. 19A, electrode holding substrate 52 including matching circuit 23 and the like is placed away from oscillator circuit 22 (not shown in FIG. 19A) including detection section 51. Coaxial cable 56a electrically connects electrode holding substrate 52 and detection section 51. The outer shell of outer box 3 of refrigerator 1 is made of a metal material, and coaxial cable 56a is wired inside outer box 3.

 この構成により、同軸ケーブル56aに伝導したコモンモードノイズにより生じる電波が外部に漏洩することが抑制される。なお、以下に示す複数種類の同軸ケーブルを総称して同軸ケーブル56という。本実施の形態において、同軸ケーブル56は接続電線に相当する。 This configuration prevents radio waves generated by common mode noise conducted to the coaxial cable 56a from leaking to the outside. Note that the multiple types of coaxial cables shown below are collectively referred to as coaxial cables 56. In this embodiment, the coaxial cables 56 correspond to the connecting wires.

 図19Aに示すように、同軸ケーブル56aは、外箱3の内側に、少なくとも1箇所で接触するように配線される。外箱3は表面積が広く、1次側グランドGND0(図10参照)の電位とほぼ同等の基準電位である。このため、同軸ケーブル56aに伝導したコモンモードノイズを1次側グランドGND0に逃すことができる。 As shown in FIG. 19A, the coaxial cable 56a is wired so that it contacts the inside of the outer box 3 at at least one point. The outer box 3 has a large surface area and a reference potential that is approximately equal to the potential of the primary ground GND0 (see FIG. 10). Therefore, common mode noise conducted to the coaxial cable 56a can escape to the primary ground GND0.

 図19Bに示すように、同軸ケーブル56bは外箱3の内側に配線される一方、同軸ケーブル56bは外箱3の内側に接触しないよう配線される。 As shown in FIG. 19B, the coaxial cable 56b is wired inside the outer box 3, while the coaxial cable 56b is wired so as not to come into contact with the inside of the outer box 3.

 誤動作および電波漏洩を抑制するために、同軸ケーブル56および外箱3を伝導するコモンモードノイズの経路に応じて、図19Aの構成および図19Bの構成のいずれかを選択する。同軸ケーブル56と外箱3との位置関係が確実に図19Aの構成または図19Bの構成となるように設計する必要がある。量産過程でどちらになるか不明な設計は望ましくない。 In order to prevent malfunctions and radio wave leakage, either the configuration in FIG. 19A or the configuration in FIG. 19B is selected depending on the path of the common mode noise that is conducted through the coaxial cable 56 and the outer casing 3. It is necessary to design so that the positional relationship between the coaxial cable 56 and the outer casing 3 is reliably the configuration in FIG. 19A or the configuration in FIG. 19B. It is not desirable to have a design where it is unclear which will be the case during mass production.

 [1-8.第一電極および第二電極の構成と当該構成による解凍性能]
 図11は、冷凍/解凍室6の第一電極24と第二電極25とを上方から見た平面図である。図11における左側、右側、上側、下側は、それぞれ冷蔵庫1の左側、右側、背面側、正面側に相当する。
[1-8. Configuration of the first electrode and the second electrode and thawing performance according to said configuration]
Fig. 11 is a plan view of the first electrode 24 and the second electrode 25 of the freezing/thawing compartment 6 as viewed from above. The left side, right side, upper side, and lower side in Fig. 11 correspond to the left side, right side, rear side, and front side of the refrigerator 1, respectively.

 図11に示すように、第一電極24のサイズは第二電極25より小さい。第一電極24は電極孔41を有し、第二電極25は電極孔42を有する。電極孔41、42は、それぞれ第一電極孔、第二電極孔に相当する。 As shown in FIG. 11, the size of the first electrode 24 is smaller than that of the second electrode 25. The first electrode 24 has an electrode hole 41, and the second electrode 25 has an electrode hole 42. The electrode holes 41 and 42 correspond to the first electrode hole and the second electrode hole, respectively.

 電極孔41、42の各々は細長いスリット形状の複数の貫通孔を有する。電極孔41、42において、複数の貫通孔の各々は、貫通孔の長手方向が冷蔵庫1の前後方向に沿うように配置される。また、複数の貫通孔は、貫通孔の短手方向、すなわち冷蔵庫1の左右方向に配列される。電極孔41の複数の貫通孔は、電極孔41の複数の貫通孔と同じサイズおよびピッチを有する。 Each of the electrode holes 41, 42 has a plurality of through holes in the shape of elongated slits. In the electrode holes 41, 42, each of the plurality of through holes is arranged so that the longitudinal direction of the through hole is along the front-rear direction of the refrigerator 1. The plurality of through holes are also arranged in the short direction of the through hole, i.e., in the left-right direction of the refrigerator 1. The plurality of through holes in the electrode hole 41 have the same size and pitch as the plurality of through holes in the electrode hole 41.

 このような電極の形状により、第一電極24の正極端子24a~24c(図8参照)が配置された冷凍/解凍室6内の背面側から入力された高周波電流が前方に向かって流れやすくなる。その結果、第一電極24と第二電極25との間に発生する電界が強くなる。 This electrode shape makes it easier for high-frequency current input from the rear side of the freezing/thawing chamber 6, where the positive terminals 24a-24c (see FIG. 8) of the first electrode 24 are located, to flow forward. As a result, the electric field generated between the first electrode 24 and the second electrode 25 becomes stronger.

 電極孔41の貫通孔は、上から見て電極孔42の貫通孔と完全に重なるのではなく、貫通孔の短手方向(左右方向)にその幅の約半分ほどずらして配置される。 The through hole of electrode hole 41 does not completely overlap with the through hole of electrode hole 42 when viewed from above, but is positioned so that it is shifted by about half the width in the short direction (left and right direction) of the through holes.

 本実施の形態よれば、第一電極24の電極面に複数の貫通孔を有する電極孔41が形成されるため、第一電極24の電極面において電界が強く形成される領域が均一に分散される。すなわち、電極孔41における開口部分の縁部が、第一電極24の電極面において電界が集中する電界集中領域となる。その結果、保存物に対して均一な誘電加熱を行うことができる。 In this embodiment, electrode holes 41 having multiple through holes are formed on the electrode surface of the first electrode 24, so that the area where a strong electric field is formed on the electrode surface of the first electrode 24 is uniformly distributed. In other words, the edge of the opening in the electrode hole 41 becomes an electric field concentration area where the electric field is concentrated on the electrode surface of the first electrode 24. As a result, uniform dielectric heating can be performed on the stored item.

 図11に示す電極孔41,42の形状および配置は例示である。電極孔41、42の形状および配置は、冷蔵庫の仕様、構成、効率、製造コストなどに応じて適宜設計される。例えば、電極孔41、42の貫通孔の形状は真円でもよい。この場合、上記と同様、電極孔41の貫通孔は、上方から見て電極孔42の貫通孔と完全に重なるのではなく、いずれかの方向にその直径の約半分ほどずらして配置されることが望ましい。 The shape and arrangement of electrode holes 41, 42 shown in FIG. 11 are examples. The shape and arrangement of electrode holes 41, 42 are designed as appropriate depending on the specifications, configuration, efficiency, manufacturing costs, etc. of the refrigerator. For example, the shape of the through holes of electrode holes 41, 42 may be a perfect circle. In this case, similar to the above, it is desirable that the through hole of electrode hole 41 does not completely overlap with the through hole of electrode hole 42 when viewed from above, but is shifted in either direction by about half the diameter.

 本開示に係る第一電極24は、上記構成に限定されるものではなく、例えば、少なくとも1つの開口部分を有すればよい。その開口部分の縁部が、第一電極24の電極面において電界が集中する電界集中領域となる。すなわち、本開示に係る第一電極24は、その電極面において電界集中領域が分散するように構成されればよい。 The first electrode 24 according to the present disclosure is not limited to the above configuration, and may, for example, have at least one opening. The edge of the opening becomes an electric field concentration region where the electric field is concentrated on the electrode surface of the first electrode 24. In other words, the first electrode 24 according to the present disclosure may be configured so that the electric field concentration region is dispersed on the electrode surface.

 また、本開示に係る第二電極25は、上記構成に限定されるものではなく、2つの電極間に所望の電界を形成するための開口を有すればよい。 Furthermore, the second electrode 25 according to the present disclosure is not limited to the above configuration, but may have an opening for forming a desired electric field between the two electrodes.

 電極保持基板52は、第一電極24と第二電極25とを、所定間隔(例えば図8の電極間隔H参照)を隔てて確実に保持するように構成される。その所定間隔(図8などの電極間隔H参照)は、第一電極24の長辺の寸法(図11の寸法D)より短い。電極間隔Hは、第一電極24が円形の場合はその直径より短いことが望ましく、楕円形の場合は、その長径より短いことが望ましい。 The electrode holding substrate 52 is configured to reliably hold the first electrode 24 and the second electrode 25 at a predetermined distance (see, for example, electrode spacing H in FIG. 8). The predetermined distance (see, for example, electrode spacing H in FIG. 8) is shorter than the dimension of the long side of the first electrode 24 (dimension D in FIG. 11). If the first electrode 24 is circular, it is desirable that the electrode spacing H be shorter than its diameter, and if it is elliptical, it is desirable that the electrode spacing H be shorter than its major axis.

 図12は、電極間隔H(例えば図8参照)と、両電極間の電界強度との関係を示す。図12に示すように、電極間隔Hが広がるほど電界強度が弱くなる傾向がある。 Figure 12 shows the relationship between the electrode spacing H (see, for example, Figure 8) and the electric field strength between the two electrodes. As shown in Figure 12, the wider the electrode spacing H, the weaker the electric field strength tends to be.

 特に、電極間隔HがH1(100mm)を超えると、著しく電界強度が低下する。さらに、電極間隔HがH2(125mm)を超えると、加熱が不可能なレベルまで電界強度が低下する。従って、電極間隔Hは、125mm以下である必要があり、100mm以下であることが望ましい。 In particular, if the electrode spacing H exceeds H1 (100 mm), the electric field strength drops significantly. Furthermore, if the electrode spacing H exceeds H2 (125 mm), the electric field strength drops to a level where heating is impossible. Therefore, the electrode spacing H must be 125 mm or less, and it is preferable that it is 100 mm or less.

 発明者らは、本実施の形態の電極構成を有する冷凍/解凍室6と、比較例の電極構成を有する冷凍/解凍室6とを用いて、電極間の電界発生のシミュレーションを行った。比較例の電極構成は、第一電極24または第二電極25が電極孔を有しない電極構成である。 The inventors performed a simulation of the generation of an electric field between electrodes using a freezing/thawing chamber 6 having the electrode configuration of this embodiment and a freezing/thawing chamber 6 having an electrode configuration of a comparative example. The electrode configuration of the comparative example is an electrode configuration in which the first electrode 24 or the second electrode 25 does not have an electrode hole.

 図13Aは、比較例の電極構成を有する冷凍/解凍室6でシミュレーションを行った結果を示す。図13Bは、本実施の形態の電極構成を有する冷凍/解凍室6でシミュレーションを行った結果を示す。図13Aおよび図13Bにおいて、色の濃い部分は電界が集中する領域である。これらの結果から、図13Bに示す場合、図13Aに示す場合より、電極の全体において電界集中が緩和されて、電界の均一化が図られることが理解できる。 Figure 13A shows the results of a simulation performed on a freezing/thawing chamber 6 having an electrode configuration of a comparative example. Figure 13B shows the results of a simulation performed on a freezing/thawing chamber 6 having an electrode configuration of this embodiment. In Figures 13A and 13B, the darker areas are areas where the electric field is concentrated. From these results, it can be seen that in the case shown in Figure 13B, electric field concentration is alleviated over the entire electrode compared to the case shown in Figure 13A, and the electric field is made more uniform.

 本実施の形態では、図11に示すように、電極孔41の上下方向に沿った中心軸が、電極孔42の上下方向に沿った中心軸と一致しないように、第一電極24と第二電極25とが配置される。電極孔41の上下方向とは、平板状の第一電極24の法線に沿った方向であり、電極孔42の上下方向とは、平板状の第二電極25の法線に沿った方向である。この構成により、電極の全体において電界集中が緩和される。 In this embodiment, as shown in FIG. 11, the first electrode 24 and the second electrode 25 are arranged so that the central axis of the electrode hole 41 along the vertical direction does not coincide with the central axis of the electrode hole 42 along the vertical direction. The vertical direction of the electrode hole 41 is the direction along the normal to the flat plate-like first electrode 24, and the vertical direction of the electrode hole 42 is the direction along the normal to the flat plate-like second electrode 25. With this configuration, electric field concentration is alleviated throughout the electrodes.

 なお、電極孔41の上下方向に沿った中心軸が、電極孔42の上下方向に沿った中心軸と一致するように、第一電極24と第二電極25とが配置された電極構成では、電極孔を有しない第二電極25を備えた電極構成に比べて、全体的に電界の集中が緩和される。特に四隅において電界集中の緩和が顕著である。 In addition, in an electrode configuration in which the first electrode 24 and the second electrode 25 are arranged so that the central axis of the electrode hole 41 along the vertical direction coincides with the central axis of the electrode hole 42 along the vertical direction, the concentration of the electric field is generally alleviated compared to an electrode configuration including a second electrode 25 that does not have an electrode hole. The alleviation of the electric field concentration is particularly noticeable at the four corners.

 本実施の形態において、冷凍/解凍室6は、図3、図4に示すように、扉29の背面に固定された収納ケース31を有する。収納ケース31は、扉29の開閉に伴って冷凍/解凍室6の内部を前後に移動する。 In this embodiment, the freezing/thawing chamber 6 has a storage case 31 fixed to the back of the door 29, as shown in Figures 3 and 4. The storage case 31 moves back and forth inside the freezing/thawing chamber 6 as the door 29 is opened and closed.

 収納ケース31が冷凍/解凍室6の内部をスムーズに移動できるように、冷凍/解凍室6は、その両側面に配置されたレールを有する。また、冷凍/解凍室6は、収納ケース31の外側の両側面に配置されてそのレール上を摺動する摺動部材を有する。上記レールおよび摺動部材は、誘電加熱されないように、冷凍/解凍室6内の第一電極24と第二電極25とに挟まれた領域から外れた位置に配置される。 The freezing/thawing chamber 6 has rails arranged on both sides so that the storage case 31 can move smoothly inside the freezing/thawing chamber 6. The freezing/thawing chamber 6 also has sliding members arranged on both outside sides of the storage case 31 that slide on the rails. The rails and sliding members are arranged outside the area between the first electrode 24 and the second electrode 25 inside the freezing/thawing chamber 6 so as not to be dielectrically heated.

 [1-9.電界発生による加熱処理]
 本実施の形態に係る冷蔵庫1において、電界発生指令が操作部47に入力されると、冷凍/解凍室6内の第一電極24と第二電極25との間の空間に対して電界発生処理が行われる。
[1-9. Heat treatment by generating an electric field]
In the refrigerator 1 according to this embodiment, when an electric field generation command is input to the operation unit 47, an electric field generation process is performed in the space between the first electrode 24 and the second electrode 25 in the freezing/thawing compartment 6.

 本実施の形態における電界発生処理において、後述するように、制御部50は、誘電加熱機構に加えて、冷却機構および冷気導入機構を制御する。冷却機構は、圧縮機19および冷却器13などの冷凍サイクルを含む。冷気導入機構は、冷却ファン14およびダンパ12aなどを含む。 In the electric field generation process of this embodiment, as described below, the control unit 50 controls the cooling mechanism and the cold air introduction mechanism in addition to the dielectric heating mechanism. The cooling mechanism includes a refrigeration cycle such as the compressor 19 and the cooler 13. The cold air introduction mechanism includes the cooling fan 14 and the damper 12a.

 本実施の形態における電界発生処理において、第一電極24と第二電極25との間に所定の高周波電圧が印加され、電極間の高周波電界により食品が誘電加熱される。誘電加熱中、制御部50は、ダンパ12aの開閉制御を行って、連続的または間欠的に冷気を導入する。 In the electric field generation process of this embodiment, a predetermined high-frequency voltage is applied between the first electrode 24 and the second electrode 25, and the food is dielectrically heated by the high-frequency electric field between the electrodes. During dielectric heating, the control unit 50 controls the opening and closing of the damper 12a to introduce cold air continuously or intermittently.

 図14は、電界発生処理における誘電加熱機構(発振回路22)および冷気導入機構(ダンパ12a)への制御信号(波形(a)、(b))、食品および冷凍/解凍室6の温度[℃](波形(c))、ならびに冷凍/解凍室6の湿度[%RH](波形(d))を示す。 Figure 14 shows the control signals (waveforms (a) and (b)) to the dielectric heating mechanism (oscillator circuit 22) and the cold air introduction mechanism (damper 12a) during the electric field generation process, the temperature [°C] of the food and the freezing/thawing chamber 6 (waveform (c)), and the humidity [% RH] of the freezing/thawing chamber 6 (waveform (d)).

 電界発生処理のための周波数の特性として、VHF波を用いた構成は、マイクロ波を用いた構成よりも「部分煮え」が起こりにくい。さらにより均一な解凍のために、本実施の形態に係る冷蔵庫1は、電極保持基板52を備える。これにより、平板状の第一電極24と第二電極25とが、所定間隔(図8の電極間隔H参照)を隔てて略平行に保持される。 As a characteristic of the frequency used for the electric field generation process, a configuration using VHF waves is less likely to cause "partial cooking" than a configuration using microwaves. Furthermore, to achieve more uniform thawing, the refrigerator 1 according to this embodiment is equipped with an electrode holding substrate 52. This holds the flat plate-shaped first electrode 24 and second electrode 25 approximately parallel and at a predetermined distance (see electrode distance H in Figure 8).

 図14に示すように、電界発生指令が入力されると(図14のtm1)、発振回路22がオンされ(図14の波形(a))、例えば40.68MHzの高周波電圧が第一電極24と第二電極25との間に印加される。これにより、解凍処理が開始される。このとき、ダンパ12aは開成されているため、冷凍/解凍室6の温度は冷凍温度t1(例えば-20℃)に維持される。 As shown in FIG. 14, when an electric field generation command is input (tm1 in FIG. 14), the oscillator circuit 22 is turned on (waveform (a) in FIG. 14), and a high-frequency voltage of, for example, 40.68 MHz is applied between the first electrode 24 and the second electrode 25. This starts the thawing process. At this time, the damper 12a is open, so the temperature of the freezing/thawing chamber 6 is maintained at the freezing temperature t1 (for example, -20°C).

 解凍開始から所定期間経過後(図14のtm2)にダンパ12aが閉成される。ダンパ12aが閉成されると、冷凍/解凍室6の温度が上昇し始める。本実施の形態に係る電界発生処理において、誘電加熱とともにダンパ12aの開閉制御が行われる。これにより、冷凍品の表面温度の上昇を抑制して、いわゆる「部分煮え」が生じないように解凍を行う。 The damper 12a is closed after a predetermined period of time has elapsed since the start of thawing (tm2 in FIG. 14). When the damper 12a is closed, the temperature in the freezing/thawing chamber 6 begins to rise. In the electric field generation process according to this embodiment, the damper 12a is controlled to open and close in conjunction with dielectric heating. This suppresses the rise in the surface temperature of the frozen product, and thawing is performed without causing so-called "partial cooking."

 制御部50は、反射率に基づいてダンパ12aの開閉制御を行う。制御部50は、反射率が大きくなって予め設定された閾値に達すると、ダンパ12aを開成して冷凍/解凍室6の温度を低下させる(図14のtm3)。 The control unit 50 controls the opening and closing of the damper 12a based on the reflectance. When the reflectance increases and reaches a preset threshold, the control unit 50 opens the damper 12a to lower the temperature in the freezing/thawing chamber 6 (tm3 in FIG. 14).

 このように、ダンパ12aの開閉制御により、冷凍/解凍室6に間欠的に冷気が導入されるため(図14の波形(b))、冷凍/解凍室6の貯蔵空間の保存物は、所望の冷凍状態に維持されながら誘電加熱されて、保存物の温度は目標温度t2に到達する(図14の波形(c))。制御部50は、反射率に基づいて所望の解凍状態を検知すると、電界発生処理を終了する。 In this way, by controlling the opening and closing of damper 12a, cold air is intermittently introduced into freezing/thawing chamber 6 (waveform (b) in FIG. 14), so that the stored items in the storage space of freezing/thawing chamber 6 are dielectrically heated while being maintained in the desired frozen state, and the temperature of the stored items reaches target temperature t2 (waveform (c) in FIG. 14). When control unit 50 detects the desired thawed state based on the reflectance, it ends the electric field generation process.

 誘電加熱により保存物の融解が進むと、保存物中の融解した水分子が増加して、保存物の誘電率が変化する。このため、インピーダンスの整合状態がずれ、反射率が大きくなる。反射率が予め設定した閾値に達すると、制御部50は、整合回路23にインピーダンス整合を実行させて、反射率を低下させる。 As the melting of the stored material progresses due to dielectric heating, the amount of melted water molecules in the stored material increases, causing a change in the dielectric constant of the stored material. This causes the impedance matching state to shift, and the reflectance to increase. When the reflectance reaches a preset threshold, the control unit 50 causes the matching circuit 23 to perform impedance matching to reduce the reflectance.

 本実施の形態の電界発生処理において、制御部50は、整合回路23によるインピーダンス整合を実行した後の反射率が解凍完了検知のための閾値を越えたときに解凍完了を検知する。解凍完了検知のための閾値は、保存物の融解が所望の解凍状態に到達したことを検知するために予め設定されたものである。 In the electric field generation process of this embodiment, the control unit 50 detects the completion of thawing when the reflectance after performing impedance matching by the matching circuit 23 exceeds a threshold value for detecting the completion of thawing. The threshold value for detecting the completion of thawing is preset to detect when the melting of the stored item has reached the desired thawed state.

 ここで、保存物の融解が所望の解凍状態とは、使用者が保存物を片手で切ることが可能であり、かつ、保存物からのドリップがごく少量の状態をいう。 Here, the desired thawed state of the stored item means that the user can cut the stored item with one hand and there is only a small amount of dripping from the stored item.

 前述のように、ダンパ12aの開閉制御により、風路12および冷気導入孔20を介して相対的に湿度の低い冷気が間欠的に冷凍/解凍室6に供給される。このため、常にダンパ12aを閉成する場合と異なり、冷凍/解凍室6の湿度は100%になることがない(図14の波形(d))。その結果、冷凍/解凍室6における結露の発生が防止される。 As described above, by controlling the opening and closing of the damper 12a, relatively low-humidity cold air is intermittently supplied to the freezing/thawing chamber 6 via the air passage 12 and the cold air inlet 20. Therefore, unlike when the damper 12a is always closed, the humidity in the freezing/thawing chamber 6 never reaches 100% (waveform (d) in Figure 14). As a result, condensation is prevented from occurring in the freezing/thawing chamber 6.

 [1-10.電界発生による保存処理]
 図15は、冷凍/解凍室6において食品を任意の状態とするため、冷却および電界発生処理の制御を示すフローチャートである。
[1-10. Preservation treatment by generating an electric field]
FIG. 15 is a flow chart showing the control of the cooling and electric field generation process for bringing food into a desired state in the freezing/thawing compartment 6.

 前述のように、電界発生処理においてインピーダンス整合の実行後に反射率が解凍完了検知のための閾値を越えると、制御部50は、図15に示す電界発生処理後の制御を行う。例えば、保存物は、解凍処理の完了後に所望の解凍状態に維持される。 As described above, when the reflectance exceeds the threshold for detecting the completion of thawing after performing impedance matching in the electric field generation process, the control unit 50 performs the control after the electric field generation process shown in FIG. 15. For example, the stored item is maintained in the desired thawed state after the thawing process is completed.

 このための制御の一つの方法は、冷凍/解凍室6の温度を、いわゆる微凍結温度帯、例えば約-1℃~-3℃に調整することである。他の方法は、冷凍/解凍室6の温度を冷凍温度帯、例えば-18℃~-20℃に調整することである。 One method of control for this purpose is to adjust the temperature of the freezing/thawing chamber 6 to the so-called slightly freezing temperature range, for example, about -1°C to -3°C. Another method is to adjust the temperature of the freezing/thawing chamber 6 to the freezing temperature range, for example, -18°C to -20°C.

 さらに、冷凍/解凍室6の温度を周期的に変動させてもよい。冷凍/解凍室6の温度を、例えば、-12℃~-5℃に周期的に変動させることで、食品の組成に作用させることができる。上記制御方法において、低出力の高周波電界を連続的に印加したり、断続的に高周波を印加したりすることで、冷却と加熱とを行って保存物をそれぞれの所望の温度帯に維持する。 Furthermore, the temperature of the freezing/thawing chamber 6 may be periodically changed. By periodically changing the temperature of the freezing/thawing chamber 6, for example, from -12°C to -5°C, the composition of the food can be affected. In the above control method, a low-output high-frequency electric field is continuously applied, or a high-frequency electric field is intermittently applied, to cool and heat the stored items and maintain them at the desired temperature ranges.

 図15に示すように、ステップS101において、保存処理の開始後に、制御部50は、冷凍/解凍室6の保存物の有無を反射率に基づいて検知する(ステップS101)。 As shown in FIG. 15, in step S101, after the start of the preservation process, the control unit 50 detects the presence or absence of a stored item in the freezing/thawing chamber 6 based on the reflectance (step S101).

 具体的には、制御部50は、整合回路23を断続的に動作させるとともに、発振回路22に低出力の電磁波を断続的に出力させる。制御部50は、反射率と予め設定された保存物の有無の検知のための閾値とを比較して、冷凍/解凍室6の保存物の有無を判断する。 Specifically, the control unit 50 causes the matching circuit 23 to operate intermittently and causes the oscillator circuit 22 to output low-power electromagnetic waves intermittently. The control unit 50 compares the reflectance with a preset threshold value for detecting the presence or absence of stored items to determine the presence or absence of stored items in the freezing/thawing chamber 6.

 制御部50は、冷凍/解凍室6に保存物が存在しないことを検知した場合(ステップS101でNoの場合)、処理をステップS105に移行させる。ステップS105において、制御部50は、冷凍/解凍室6の温度を冷凍温度帯、例えば-18℃~-20℃に調整する。以下、ステップS105の処理を凍結処理という。 If the control unit 50 detects that no stored item is present in the freezing/thawing chamber 6 (No in step S101), the control unit 50 transitions the process to step S105. In step S105, the control unit 50 adjusts the temperature of the freezing/thawing chamber 6 to a freezing temperature range, for example, -18°C to -20°C. Hereinafter, the process of step S105 is referred to as the freezing process.

 制御部50は、冷凍/解凍室6に保存物が存在することを検知した場合(ステップS101でYes)、ステップS102において、その保存物が解凍後の非凍結品を含むか否かを、反射率の変化に基づいて判断する。 If the control unit 50 detects that a stored item is present in the freezing/thawing chamber 6 (Yes in step S101), in step S102, it determines whether the stored item includes a non-frozen item after thawing based on the change in reflectance.

 保存物に対する電界発生処理が完了しても、使用者が保存物を冷凍/解凍室6からすぐに取り出さない場合がある。その場合、制御部50は、冷凍/解凍室6の保存物を所望の解凍状態に維持可能な微凍結温度帯を所定時間維持するように冷却機構を制御する。この所定時間を越えて保存物が収納される場合、保存物における鮮度を維持するために、制御部50は、冷凍/解凍室6の温度を凍結温度帯に移行させる。 Even when the electric field generation process for the stored item is complete, there are cases where the user does not immediately remove the stored item from the freezing/thawing chamber 6. In such cases, the control unit 50 controls the cooling mechanism to maintain the slightly freezing temperature range in the freezing/thawing chamber 6, which allows the stored item to be kept in the desired thawed state, for a predetermined time. If the stored item is stored beyond this predetermined time, the control unit 50 shifts the temperature of the freezing/thawing chamber 6 to the freezing temperature range in order to maintain the freshness of the stored item.

 ステップS102において、制御部50は、解凍状態の保存物が収納されたまま解凍完了後の時間が所定時間を越えたと判断した場合(ステップS102)にも、処理をステップS105に移行させて、凍結処理を行う。 In step S102, if the control unit 50 determines that the time since the completion of thawing has exceeded the predetermined time while the thawed stored item is still stored (step S102), it also shifts the process to step S105 and performs the freezing process.

 ステップS102において、制御部50は、冷凍/解凍室6に解凍後の非凍結品が収納されていないと判断すると(ステップS102でNoの場合)、処理をステップS103に移行させる。 In step S102, if the control unit 50 determines that no thawed non-frozen items are stored in the freezing/thawing compartment 6 (No in step S102), it transitions the process to step S103.

 ステップS103において、制御部50は、食品温度が目標温度を超えているか否かを判断する。食品温度が目標温度を超えている場合(ステップS103でYes)、制御部50は処理をステップS105に移行させて、凍結処理を行う。そうでない場合(ステップS103でNo)、制御部50は処理をステップS104に移行させて、電界発生により食材の温度を上昇させる。 In step S103, the control unit 50 determines whether the food temperature exceeds the target temperature. If the food temperature exceeds the target temperature (Yes in step S103), the control unit 50 shifts the process to step S105 and performs the freezing process. If not (No in step S103), the control unit 50 shifts the process to step S104 and raises the temperature of the food by generating an electric field.

 以下、本制御の具体的な一例について説明する。本実施の形態に係る冷蔵庫1は、凍結処理において、保存物(食品)を所望の状態で冷凍保存するように誘電加熱を行う。 Below, a specific example of this control is described. In the freezing process, the refrigerator 1 according to this embodiment performs dielectric heating so that the stored items (food) are frozen and stored in a desired state.

 一般的に、食品を冷凍した場合、冷凍/解凍室6の内部の水分および食品内部の水分により、食品包材の内面に着霜現象が起こる。着霜現象が食品表面に起こると、食品に冷凍焼けが生じる。冷凍焼けとは、冷凍により食品が乾燥してその食感がパサパサになり、食品として新鮮で美味しい状態ではなくなる現象である。 Generally, when food is frozen, moisture inside the freezing/thawing chamber 6 and moisture inside the food cause frost to form on the inside of the food packaging. When frost forms on the surface of the food, the food suffers from freezer burn. Freezer burn is a phenomenon in which food becomes dry and flaky due to freezing, making it no longer fresh and tasty.

 冷凍焼けを防止するために、本実施の形態に係る冷蔵庫1は、冷却と誘電加熱とを同時に行う。 To prevent freezer burn, the refrigerator 1 according to this embodiment performs cooling and dielectric heating simultaneously.

 図16A、図16Bは、冷却動作中の各要素の状態を示す波形図である。図16Aは、従来の冷蔵庫における冷却動作を示す波形図である。図16Bは、本実施の形態に係る冷蔵庫1における冷却動作を示す波形図である。 FIGS. 16A and 16B are waveform diagrams showing the state of each element during cooling operation. FIG. 16A is a waveform diagram showing the cooling operation in a conventional refrigerator. FIG. 16B is a waveform diagram showing the cooling operation in refrigerator 1 according to the present embodiment.

 図16Aにおいて、波形(1)は、冷却動作のON/OFFを示す。冷却動作のON/OFFとは、例えばダンパ12aの開閉、圧縮機19のON/OFFなどに相当する。すなわち、冷却動作が「ON」されると、冷気が冷凍室8に導入される。冷却動作が「OFF」されると、ダンパ12aが閉成されて、冷凍室8への冷気の導入が遮断される。 In FIG. 16A, waveform (1) indicates the ON/OFF of the cooling operation. The ON/OFF of the cooling operation corresponds to, for example, opening and closing of damper 12a, or turning compressor 19 ON/OFF. That is, when the cooling operation is "ON", cold air is introduced into freezer compartment 8. When the cooling operation is "OFF", damper 12a is closed, blocking the introduction of cold air into freezer compartment 8.

 従って、図16Aの波形(2)に示すように、冷凍室8内の食品の温度は、予め設定した冷凍温度t1(例えば、-20℃)を中心として大きく変動する。その結果、従来の冷却動作では、冷凍室8内の食品表面において水分の蒸発と着霜とが繰り返されるなど、好ましい食品の冷凍状態でない場合が発生する。 Therefore, as shown in waveform (2) of Figure 16A, the temperature of the food in freezer compartment 8 fluctuates greatly around a preset freezing temperature t1 (e.g., -20°C). As a result, with conventional cooling operations, the food may not be frozen in the desired state, with water evaporating and frosting occurring repeatedly on the surface of the food in freezer compartment 8.

 一方、図16Bに示す冷蔵庫1の冷却動作において、従来の冷却動作と異なって食品に対して冷却と誘電加熱とを同時に行う。図16Bの波形(1)は、ダンパ12aの開閉を示す。 On the other hand, in the cooling operation of refrigerator 1 shown in FIG. 16B, unlike conventional cooling operations, food is cooled and dielectrically heated at the same time. Waveform (1) in FIG. 16B shows the opening and closing of damper 12a.

 図16Bにおいて、「ON」は、ダンパ12aの開成を示す。この状態において、冷気が、風路12と冷気導入孔20とを介して冷凍/解凍室6に導入される。「OFF」は、ダンパ12aの閉成を示す。この状態において、冷凍/解凍室6への冷気の導入が遮断される。本実施の形態の冷却動作において、冷気導入は、誘電加熱と同時に行われる。従って、冷却能力の低下を防止するため、冷気の導入時間が従来例より長く設定される。 In FIG. 16B, "ON" indicates that the damper 12a is open. In this state, cold air is introduced into the freezing/thawing chamber 6 through the air passage 12 and the cold air introduction hole 20. "OFF" indicates that the damper 12a is closed. In this state, the introduction of cold air into the freezing/thawing chamber 6 is blocked. In the cooling operation of this embodiment, the introduction of cold air is performed simultaneously with dielectric heating. Therefore, to prevent a decrease in cooling capacity, the time for introducing cold air is set longer than in the conventional example.

 図16Bの波形(2)は、発振回路22の動作状態を示す。図16Bの波形(2)に示すように、制御部50は、ダンパ12aの開成時に発振回路22をONして誘電加熱を行う。 The waveform (2) in FIG. 16B shows the operating state of the oscillator circuit 22. As shown in the waveform (2) in FIG. 16B, the control unit 50 turns on the oscillator circuit 22 when the damper 12a is open to perform dielectric heating.

 本実施の形態における冷却動作において、解凍動作より低出力で誘電加熱が行われる。制御部50は、発振回路22への供給電力を制御したり、発振回路22の出力をPWM制御(間欠制御)したりすることにより、出力電力を調節する。 In the cooling operation of this embodiment, dielectric heating is performed at a lower output than in the thawing operation. The control unit 50 adjusts the output power by controlling the power supplied to the oscillation circuit 22 and by PWM control (intermittent control) of the output of the oscillation circuit 22.

 その結果、図16Bの波形(3)に示すように、冷凍/解凍室6内の食品温度は、予め設定した冷凍温度t1(例えば、-20℃)に維持される。すなわち、食品温度の変動が抑制される。 As a result, as shown by waveform (3) in FIG. 16B, the temperature of the food in the freezing/thawing chamber 6 is maintained at the preset freezing temperature t1 (e.g., -20°C). In other words, fluctuations in the food temperature are suppressed.

 このような実験の結果、食品温度の変動が約0.1K以下であれば、着霜の発生を無くすことができた。すなわち、食品温度の変動を抑制することにより、着霜の発生を抑制することができる。 The results of these experiments showed that if the fluctuation in food temperature was less than about 0.1 K, the occurrence of frost could be prevented. In other words, by suppressing the fluctuation in food temperature, the occurrence of frost could be suppressed.

 また、解凍時と同じ周波数、かつ、解凍時より低出力電力での誘電加熱により、食品内部における氷結晶の伸長を抑制することができる。誘電加熱を行うと、食品内に生じた氷結晶の先端部に電界が集まり易い。このため、冷凍/解凍室6内の温度が最大氷結晶生成帯以下であっても、氷結晶は緩やかにしか伸長しない。 Furthermore, by applying dielectric heating at the same frequency as thawing but with a lower output power than thawing, it is possible to suppress the extension of ice crystals inside the food. When dielectric heating is performed, an electric field tends to concentrate at the tips of the ice crystals that have formed inside the food. For this reason, even if the temperature inside the freezing/thawing chamber 6 is below the maximum ice crystal formation zone, the ice crystals will only extend slowly.

 上記のように、本実施の形態に係る冷蔵庫1は、冷凍保存中の冷却動作において誘電加熱を行うことで、保存物である冷凍品を所望の状態で冷凍保存することができる。 As described above, the refrigerator 1 according to this embodiment performs dielectric heating during the cooling operation during frozen storage, allowing the frozen items to be frozen and stored in a desired state.

 [1-11.電界発生による凍結処理]
 本実施の形態に係る冷蔵庫1は、操作部47を介して入力された使用者の指令に基づいて冷凍/解凍室6に新たに投入された非凍結食品に対して凍結処理を行う。図17は、凍結処理である急冷動作における各要素の状態を示す波形図である。
[1-11. Freezing treatment by generating an electric field]
The refrigerator 1 according to this embodiment performs a freezing process on non-frozen food newly placed in the freezing/thawing compartment 6 based on a user's command inputted via the operation unit 47. Fig. 17 is a waveform diagram showing the state of each element during the rapid cooling operation which is the freezing process.

 図17の波形(a)は、冷凍/解凍室6に保存物(食品)が存在するか否かを示す。制御部50は、冷凍/解凍室6に保存物が存在するか否かを、反射率に基づいて判断する。 The waveform (a) in FIG. 17 indicates whether or not a stored item (food) is present in the freezing/thawing chamber 6. The control unit 50 determines whether or not a stored item is present in the freezing/thawing chamber 6 based on the reflectance.

 図17の波形(b)は、制御部50が整合回路23および検波部51からの情報を断続的に取得することを示す。図17の波形(c)は、反射率の推移の一例を示す。制御部50は、反射率が第1閾値R1[%]以下となった場合、保存物が冷凍/解凍室6に投入されたと判断する。 Waveform (b) in FIG. 17 shows that the control unit 50 intermittently acquires information from the matching circuit 23 and the detection unit 51. Waveform (c) in FIG. 17 shows an example of the transition of the reflectance. When the reflectance falls below the first threshold value R1 [%], the control unit 50 determines that a stored item has been placed in the freezing/thawing chamber 6.

 冷凍/解凍室6に収納された食品に対する急冷動作において、制御部50は、冷却機構の圧縮機19および冷却ファン14の回転数を上昇させて冷却能力を高めた強制連続運転を行う。図17の波形(d)に示すように、制御部50は、冷凍/解凍室6に通じる風路12のダンパ12aを強制的に開成して冷気を導入する。 When rapidly cooling food stored in the freezing/thawing compartment 6, the control unit 50 increases the rotation speed of the compressor 19 and cooling fan 14 of the cooling mechanism to perform forced continuous operation with increased cooling capacity. As shown in waveform (d) of Figure 17, the control unit 50 forcibly opens the damper 12a of the air passage 12 leading to the freezing/thawing compartment 6 to introduce cold air.

 急冷動作において、食品温度が最大氷結晶生成帯(約-1℃~約-5℃)にあるときの氷結晶の伸長を抑制するために、誘電加熱が行われる。このときの誘電加熱は、解凍時より出力を(例えば、数十W以下に)低下させるため、断続的に行われる(図17の波形(e)における期間h)。 During the rapid cooling operation, dielectric heating is performed to suppress the growth of ice crystals when the food temperature is in the maximum ice crystal formation zone (approximately -1°C to approximately -5°C). Dielectric heating at this time is performed intermittently (period h in waveform (e) in Figure 17) in order to reduce the output (for example, to several tens of watts or less) from that during thawing.

 誘電加熱を開始するために、制御部50は、食品が潜熱領域を通過する際に反射率の変化が増大することを検知することにより、食品温度が最大氷結晶生成帯に入ったことを検知する。本実施の形態において、検知された反射率が予め設定された第2閾値R2[%]に入ったとき、誘電加熱が開始される(図17の波形(e)参照)。 To start dielectric heating, the control unit 50 detects that the food temperature has entered the maximum ice crystal formation zone by detecting an increasing change in reflectance as the food passes through the latent heat zone. In this embodiment, dielectric heating is started when the detected reflectance enters a preset second threshold value R2 [%] (see waveform (e) in Figure 17).

 制御部50は、反射率が第2閾値R2[%]から第3閾値R3[%]までの領域にある場合、当該食品の温度が最大氷結晶生成帯にある判断して、誘電加熱を継続する。反射率が第3閾値R3[%]に入ってから所定時間pr1(図17の波形図(c)参照)が経過した場合、当該食品の温度が最大氷結晶生成帯を通過したと判断して、誘電加熱を停止する。 If the reflectance is in the range between the second threshold value R2 [%] and the third threshold value R3 [%], the control unit 50 determines that the temperature of the food is in the maximum ice crystal formation zone and continues dielectric heating. If a predetermined time pr1 (see waveform diagram (c) in Figure 17) has passed since the reflectance entered the third threshold value R3 [%], it determines that the temperature of the food has passed the maximum ice crystal formation zone and stops dielectric heating.

 上記のように、制御部50は、誘電加熱を停止するとともに急冷動作を終了して、通常の冷却動作に行う。このように、急冷動作を行う場合にも誘電加熱を所望の期間行うことにより、食品を好ましい冷凍状態に維持することができる。 As described above, the control unit 50 stops the dielectric heating, terminates the rapid cooling operation, and performs the normal cooling operation. In this way, even when performing the rapid cooling operation, the food can be maintained in a desired frozen state by performing dielectric heating for the desired period of time.

 [1-12.ドアスイッチによる安全制御]
 前述のように、本実施の形態に係る冷蔵庫1は、電磁波の外部への漏洩を防止するために、冷凍/解凍室6を取り囲む電磁波シールド26を備える。さらに、鋼板自体が電磁波シールドとして機能するため、閉じた扉29により電磁波の外部漏洩が防止される。
[1-12. Safety control using door switches]
As described above, in order to prevent electromagnetic waves from leaking to the outside, refrigerator 1 according to this embodiment includes electromagnetic wave shield 26 surrounding freezing/thawing compartment 6. Furthermore, since the steel plate itself functions as an electromagnetic wave shield, external leakage of electromagnetic waves is prevented by closing door 29.

 しかし、扉29を開けると、冷凍/解凍室6の開口部から電磁波が漏洩する可能性がある。そのため、安全性に対する対策が必要である。 However, when the door 29 is opened, there is a possibility that electromagnetic waves may leak from the opening of the freezing/thawing chamber 6. Therefore, safety measures are necessary.

 本実施の形態に係る冷蔵庫1は、扉29の開放を検知する扉開閉検知部55a(図9参照)を備える。扉開閉検知部55aが、扉29の開放を検知した場合、制御部50は、発振回路22を停止させて第一電極24への電力供給を停止する。 The refrigerator 1 according to this embodiment includes a door open/close detector 55a (see FIG. 9) that detects the opening of the door 29. When the door open/close detector 55a detects that the door 29 is open, the controller 50 stops the oscillator circuit 22 and stops the power supply to the first electrode 24.

 なお、冷蔵庫1は、冷凍/解凍室6の扉29以外に、冷蔵室5、製氷室7、冷凍室8、野菜室9のそれぞれの正面開口を覆う複数の扉を備える。また、冷蔵庫1は、扉開閉検知部55b、扉開閉検知部55c、扉開閉検知部55d、扉開閉検知部55eを備える。扉開閉検知部55b、55c、55d、55eは、それぞれ冷蔵室5、製氷室7、冷凍室8、野菜室9の扉の開放を検知する。 In addition to door 29 of freezer/thaw compartment 6, refrigerator 1 has multiple doors that cover the front openings of refrigerator compartment 5, ice-making compartment 7, freezer compartment 8, and vegetable compartment 9. Refrigerator 1 also has door opening/closing detector 55b, door opening/closing detector 55c, door opening/closing detector 55d, and door opening/closing detector 55e. Door opening/closing detectors 55b, 55c, 55d, and 55e detect the opening of the doors of refrigerator compartment 5, ice-making compartment 7, freezer compartment 8, and vegetable compartment 9, respectively.

 電磁波シールド26が十分に機能していれば、規定以上の電磁波の外部漏洩は生じない。従って、扉開閉検知部55b~55eのいずれかが冷凍/解凍室6以外の貯蔵室の扉の開放を検知しても、制御部50は、発振回路22の動作を継続する。 If the electromagnetic wave shield 26 is functioning adequately, no electromagnetic waves will leak out beyond the specified limit. Therefore, even if any of the door opening/closing detectors 55b-55e detects the opening of a door to a storage compartment other than the freezer/thaw compartment 6, the controller 50 will continue to operate the oscillator circuit 22.

 しかし、設計上の問題により電磁波シールド26で冷凍/解凍室6を十分に取り囲めない場合、電磁波の外部漏洩を防止するための対策が必要である。 However, if design issues mean that the electromagnetic wave shield 26 cannot fully surround the freezing/thawing chamber 6, measures are required to prevent electromagnetic waves from leaking out.

 冷凍/解凍室6の天面に電磁波シールド26を配置できない場合、冷凍/解凍室6の上方の貯蔵室(本実施の形態では冷蔵室5(図1参照))の扉が開放された場合、制御部50は発振回路22を停止させる。 If it is not possible to place the electromagnetic wave shield 26 on the top surface of the freezing/thawing chamber 6, when the door of the storage chamber above the freezing/thawing chamber 6 (in this embodiment, the refrigerator chamber 5 (see Figure 1)) is opened, the control unit 50 stops the oscillation circuit 22.

 冷凍/解凍室6の底面に電磁波シールド26を配置できない場合、冷凍/解凍室6の下方の貯蔵室(本実施の形態では冷凍室8、野菜室9(図1参照))の扉が開放された場合、制御部50は発振回路22を停止させる。 If it is not possible to place the electromagnetic wave shield 26 on the bottom surface of the freezing/thawing chamber 6, when the door of the storage chamber below the freezing/thawing chamber 6 (in this embodiment, the freezing chamber 8 and the vegetable chamber 9 (see Figure 1)) is opened, the control unit 50 stops the oscillation circuit 22.

 冷凍/解凍室6の側面に電磁波シールド26を配置できない場合、冷凍/解凍室6の側方の貯蔵室(本実施の形態では製氷室7(図1参照))の扉が開放された場合、制御部50は発振回路22を停止させる。 If the electromagnetic wave shield 26 cannot be placed on the side of the freezing/thawing chamber 6, when the door of the storage chamber (in this embodiment, the ice-making chamber 7 (see FIG. 1)) on the side of the freezing/thawing chamber 6 is opened, the control unit 50 stops the oscillation circuit 22.

 このように、制御部50は、電磁波シールド26を配置できない側の貯蔵室の扉が開放されると、発振回路22を停止させて電磁波の漏洩を防止する。 In this way, when the door to the storage compartment on the side where the electromagnetic wave shield 26 cannot be placed is opened, the control unit 50 stops the oscillator circuit 22 to prevent leakage of electromagnetic waves.

 以下、発振回路22を停止させるための方法について説明する。 The following describes how to stop the oscillator circuit 22.

 図18Aは、扉開閉検知部55aによって、電源部48から発振回路22への電源供給を遮断する構成を示す。図18Aに示すように、扉開閉検知部55aは、扉29を閉じると導通し、扉29が開くと遮断するスイッチ機構である。扉開閉検知部55aは、扉29が開くと発振回路22への電源供給を遮断して、確実に発振回路22の動作を停止させる。 FIG. 18A shows a configuration in which the door open/close detector 55a cuts off the power supply from the power supply 48 to the oscillator circuit 22. As shown in FIG. 18A, the door open/close detector 55a is a switch mechanism that is conductive when the door 29 is closed and cuts off the power when the door 29 is opened. When the door 29 is opened, the door open/close detector 55a cuts off the power supply to the oscillator circuit 22, reliably stopping the operation of the oscillator circuit 22.

 図18Bは、扉開閉検知部55aによって、電源部48を制御する電源制御部48aの動作を停止させる構成を示す。図18Bに示すように、扉開閉検知部55aは、図18Aと同様のスイッチ機構である。扉開閉検知部55aは、扉29が開くと電源制御部48aへの電源供給を遮断することで電源部48から発振回路22への電源供給を遮断して、確実に発振回路22の動作を停止させる。 FIG. 18B shows a configuration in which a door open/close detector 55a stops the operation of the power supply controller 48a, which controls the power supply 48. As shown in FIG. 18B, the door open/close detector 55a is a switch mechanism similar to that in FIG. 18A. When the door 29 is opened, the door open/close detector 55a cuts off the power supply to the power supply controller 48a, thereby cutting off the power supply from the power supply 48 to the oscillation circuit 22, and reliably stops the operation of the oscillation circuit 22.

 図18Bに示す構成では、電源制御部48a内の回路への電源供給を遮断することによって発振回路22の動作を停止させるが、本開示はこれに限定されない。 In the configuration shown in FIG. 18B, the operation of the oscillator circuit 22 is stopped by cutting off the power supply to the circuitry within the power supply control unit 48a, but the present disclosure is not limited to this.

 例えば、電源制御部48aが、過電流を検知する過電流保護回路を備えてもよい。この場合、過電流保護回路が過電流の発生を検知すると、電源制御部48aは電源供給を停止する。電源部48が、過電流の発生を過負荷状態と認識して、電源供給を停止してもよい。 For example, the power supply control unit 48a may include an overcurrent protection circuit that detects an overcurrent. In this case, when the overcurrent protection circuit detects the occurrence of an overcurrent, the power supply control unit 48a stops the power supply. The power supply unit 48 may recognize the occurrence of an overcurrent as an overload state and stop the power supply.

 図18Cは、扉開閉検知部55aと磁気センサ55fとによって扉29の開閉を判別する構成を示す。図18Cに示すように、扉開閉検知部55aは、磁気センサ55fと制御部50との間に配置される。 FIG. 18C shows a configuration for determining whether the door 29 is open or closed using a door open/close detector 55a and a magnetic sensor 55f. As shown in FIG. 18C, the door open/close detector 55a is disposed between the magnetic sensor 55f and the controller 50.

 扉開閉検知部55aは、扉29を閉じると導通し、扉29を開けると遮断する。磁気センサ55fは、制御部50に扉29の開閉を表す信号を送信する。制御部50は、磁気センサ55fからの信号に応じて電源制御部48aの動作の可否を表す信号を電源制御部48aに送信する。 The door open/close detection unit 55a is conductive when the door 29 is closed and is cut off when the door 29 is opened. The magnetic sensor 55f sends a signal indicating whether the door 29 is open or closed to the control unit 50. The control unit 50 sends a signal indicating whether the power supply control unit 48a is operating or not to the power supply control unit 48a in response to the signal from the magnetic sensor 55f.

 図18Cに示す構成によれば、扉29を開けると、電源制御部48aは磁気センサ55fからの信号を受信できなくなる。これにより、発振回路22への電源供給が停止される。 In the configuration shown in FIG. 18C, when the door 29 is opened, the power supply control unit 48a is no longer able to receive a signal from the magnetic sensor 55f. This stops the power supply to the oscillation circuit 22.

 図18A~図18Cに示す構成では、電源供給、および制御信号の導通/遮断がハードウェアで実現される。このため、高周波ノイズおよび外部からのノイズに対する耐性が強く、誤動作が発生しにくい。 In the configuration shown in Figures 18A to 18C, power supply and control signal conduction/cutoff are achieved by hardware. This provides high resistance to high frequency noise and external noise, and makes malfunctions less likely to occur.

 なお、図18Bおよび図18Cに示す構成では、扉開閉検知部55aは、扉29を閉じると導通し、扉29を開けると遮断する。しかし、扉29を閉じると遮断し、扉29を開けると導通する回路を使用してもよい。その場合、電源制御部48aを停止させるための論理を逆転させる。 In the configuration shown in Figures 18B and 18C, the door open/close detection unit 55a is conductive when the door 29 is closed and is cut off when the door 29 is opened. However, a circuit that is cut off when the door 29 is closed and is conductive when the door 29 is opened may be used. In that case, the logic for stopping the power supply control unit 48a is reversed.

 本実施の形態に係る冷蔵庫1は、冷凍機能と解凍機能とを有する冷凍/解凍室6を備える。しかし、本開示によれば、解凍機能のみを有する解凍室を備える構成においても、同様の効果が得られる。 The refrigerator 1 according to this embodiment includes a freezing/thawing compartment 6 that has both a freezing function and a thawing function. However, according to the present disclosure, the same effect can be obtained even in a configuration that includes a thawing compartment that only has a thawing function.

 [2-1.効果など]
 以上のように、本開示の一態様に係る冷蔵庫1は、保存物を加熱可能な貯蔵室(冷凍/解凍6)と、高周波電力を発生させ、高周波電力を貯蔵室に供給して貯蔵室の内部に電界を発生させる誘電加熱機構を備える。
[2-1. Effects, etc.]
As described above, the refrigerator 1 according to one embodiment of the present disclosure includes a storage compartment (freeze/thaw 6) capable of heating stored items, and a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment.

 誘電加熱機構は、電極(第一電極24、第二電極25)に高周波電力を供給する発振回路22と、電極のインピーダンスを整合させる整合回路23と、発振回路22と整合回路23との間に接続されて、整合回路23から電極に出力される入射波電力と、発振回路22に戻る反射波電力とを測定する検波部51と、制御部50と、を備える。 The dielectric heating mechanism includes an oscillator circuit 22 that supplies high-frequency power to the electrodes (first electrode 24, second electrode 25), a matching circuit 23 that matches the impedance of the electrodes, a detector 51 that is connected between the oscillator circuit 22 and the matching circuit 23 and measures the incident wave power output from the matching circuit 23 to the electrodes and the reflected wave power returning to the oscillator circuit 22, and a controller 50.

 制御部50は、入射波電力と反射波電力とに基づいて発振回路22と整合回路23とを制御するとともに、入射波電力または反射波電力の異常を検知する。すなわち、制御部50は異常検知手段として機能する。本態様によれば、誘電加熱機構を備えた冷蔵庫において、より精度よく誘電加熱機構の異常を検知することで、適切に加熱を停止することができる。 The control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and detects abnormalities in the incident wave power or the reflected wave power. In other words, the control unit 50 functions as an abnormality detection means. According to this aspect, in a refrigerator equipped with a dielectric heating mechanism, it is possible to more accurately detect abnormalities in the dielectric heating mechanism, thereby appropriately stopping heating.

 本開示の他の態様に係る冷蔵庫1は、保存物を加熱可能な貯蔵室(冷凍/解凍6)と、高周波電力を発生させ、高周波電力を貯蔵室に供給して貯蔵室の内部に電界を発生させる誘電加熱機構と、誘電加熱機構を冷却する冷却機構58と、を備える。 A refrigerator 1 according to another aspect of the present disclosure includes a storage compartment (freeze/thaw 6) capable of heating stored items, a dielectric heating mechanism that generates high-frequency power and supplies the high-frequency power to the storage compartment to generate an electric field inside the storage compartment, and a cooling mechanism 58 that cools the dielectric heating mechanism.

 誘電加熱機構は、電極(第一電極24、第二電極25)に高周波電力を供給する発振回路22と、電極のインピーダンスを整合させる整合回路23と、発振回路22と整合回路23との間に接続されて、整合回路23から電極に出力される入射波電力と、発振回路22に戻る反射波電力とを測定する検波部51と、制御部50と、を備える。 The dielectric heating mechanism includes an oscillator circuit 22 that supplies high-frequency power to the electrodes (first electrode 24, second electrode 25), a matching circuit 23 that matches the impedance of the electrodes, a detector 51 that is connected between the oscillator circuit 22 and the matching circuit 23 and measures the incident wave power output from the matching circuit 23 to the electrodes and the reflected wave power returning to the oscillator circuit 22, and a controller 50.

 制御部50は、入射波電力と反射波電力とに基づいて発振回路22と整合回路23とを制御するとともに、入射波電力または反射波電力の異常を回避するために異常回避手段である冷却機構58を制御する。本態様によれば、異常と判定される前に冷却機構58を運転させることで、異常回避することができる。 The control unit 50 controls the oscillation circuit 22 and the matching circuit 23 based on the incident wave power and the reflected wave power, and also controls the cooling mechanism 58, which is an anomaly avoidance means, to avoid anomalies in the incident wave power or the reflected wave power. According to this embodiment, an anomaly can be avoided by operating the cooling mechanism 58 before an anomaly is determined.

 本開示は、各種冷蔵庫に適用可能である。 This disclosure is applicable to various refrigerators.

 1 冷蔵庫
 2 本体
 3 外箱
 4 内箱
 5 冷蔵室
 6 冷凍/解凍室
 7 製氷室
 8 冷凍室
 9 野菜室
 10 機械室
 11 冷却室
 12 風路
 12a ダンパ
 13 冷却器
 14 冷却ファン
 15 除霜ヒータ
 16 ドレンパン
 17 ドレンチューブ
 18 蒸発皿
 19 圧縮機
 20 冷気導入孔
 21 クロスレール
 22 発振回路
 22a 発振源
 22b 第一アンプ回路
 22c 第二アンプ回路
 23 整合回路
 24 第一電極
 24a、24b、24c 正極端子
 25 第二電極
 25a、25b、25c 陰極端子
 26 電磁波シールド
 26a 天面側電磁波シールド
 26b 背面側電磁波シールド
 26c 底面側電磁波シールド
 26d 扉側電磁波シールド
 29 扉
 30 電極保持領域
 31 収納ケース
 32、32a、32b、32c 内面部材
 36 ガスケット
 40 断熱材
 41 電極孔
 42 電極孔
 47 操作部
 48 電源部
 48a 電源制御部
 49 温度センサ
 50 制御部
 51 検波部
 52 電極保持基板
 53 高周波加熱モジュール
 54 支柱
 55a、55b、55c、55d、55e 扉開閉検知部
 55f 磁気センサ
 56、56a、56b 同軸ケーブル
 57 電流検知部
 58 冷却機構
REFRIGERATION CIRCUIT 2 BODY 3 OUTER BOX 4 INNER BOX 5 REFRIGERATOR COMPARTMENT 6 FREEZER/THAW COMPARTMENT 7 ICE COMPARTMENT 8 FREEZER COMPARTMENT 9 VEGETABLE COMPARTMENT 10 MACHINE COMPARTMENT 11 COOLING COMPARTMENT 12 AIR GUIDE 12a DAMPER 13 COOLER 14 COOLING FAN 15 DEFROST HEATER 16 DRAIN PAN 17 DRAIN TUBE 18 EVAPORATION DISH 19 COMPRESSOR 20 COOL AIR INTRODUCTION HOLE 21 CROSSRAIL 22 OSCILLATOR CIRCUIT 22a OSCILLATOR SOURCE 22b FIRST AMPLIFIER CIRCUIT 22c SECOND AMPLIFIER CIRCUIT 23 MATCHING CIRCUIT 24 FIRST ELECTRODE 24a, 24b, 24c POSITIVE ELECTRODE TERMINAL 25 SECOND ELECTRODE 25a, 25b, 25c CATHODE TERMINAL 26 ELECTROMAGNETIC WAVE SHIELD 26a TOP SIDE ELECTROMAGNETIC WAVE SHIELD 26b REAR SIDE ELECTROMAGNETIC WAVE SHIELD 26c Bottom side electromagnetic wave shield 26d Door side electromagnetic wave shield 29 Door 30 Electrode holding area 31 Storage case 32, 32a, 32b, 32c Inner surface member 36 Gasket 40 Insulating material 41 Electrode hole 42 Electrode hole 47 Operation unit 48 Power supply unit 48a Power supply control unit 49 Temperature sensor 50 Control unit 51 Detection unit 52 Electrode holding substrate 53 High frequency heating module 54 Support 55a, 55b, 55c, 55d, 55e Door opening/closing detection unit 55f Magnetic sensor 56, 56a, 56b Coaxial cable 57 Current detection unit 58 Cooling mechanism

Claims (12)

 保存物を加熱可能な貯蔵室と、
 高周波電力を発生させ、前記高周波電力を前記貯蔵室に供給して前記貯蔵室の内部に電界を発生させるように構成された誘電加熱機構と、を備えた冷蔵庫であって、
 前記誘電加熱機構は、
  前記貯蔵室に配置された電極と、
  前記電極に前記高周波電力を供給するように構成された発振回路と、
  前記電極のインピーダンスを整合させるように構成された整合回路と、
  前記発振回路と前記整合回路との間に接続されて、前記整合回路から前記電極に出力される入射波電力と、前記発振回路に戻る反射波電力とを測定するように構成された検波部と、
  前記入射波電力と前記反射波電力とに基づいて前記発振回路と前記整合回路とを制御するとともに、前記入射波電力または前記反射波電力の異常を検知するように構成された制御部と、を備えた、冷蔵庫。
A storage chamber capable of heating stored items;
A dielectric heating mechanism configured to generate high-frequency power and supply the high-frequency power to the storage chamber to generate an electric field inside the storage chamber,
The dielectric heating mechanism includes:
an electrode disposed in the storage chamber;
an oscillator circuit configured to supply the high frequency power to the electrode;
a matching circuit configured to match the impedance of the electrode;
A detection unit connected between the oscillation circuit and the matching circuit and configured to measure an incident wave power output from the matching circuit to the electrode and a reflected wave power returning to the oscillation circuit;
a control unit configured to control the oscillation circuit and the matching circuit based on the incident wave power and the reflected wave power, and to detect an abnormality in the incident wave power or the reflected wave power.
 保存物を加熱可能な貯蔵室と、
 高周波電力を発生させ、前記高周波電力を前記貯蔵室に供給して前記貯蔵室の内部に電界を発生させるように構成された誘電加熱機構と、
 前記誘電加熱機構を冷却するように構成された冷却機構と、を備えた冷蔵庫であって、
 前記誘電加熱機構は、
  前記貯蔵室に配置された電極と、
  前記電極に前記高周波電力を供給するように構成された発振回路と、
  前記電極のインピーダンスを整合させるように構成された整合回路と、
  前記発振回路と前記整合回路との間に接続されて、前記整合回路から前記電極に出力される入射波電力と、前記発振回路に戻る反射波電力とを測定するように構成された検波部と、
  前記入射波電力と前記反射波電力とに基づいて前記発振回路と前記整合回路とを制御するとともに、前記入射波電力または前記反射波電力の異常を回避するために前記冷却機構を制御するように構成された制御部と、を備えた、請求項1に記載の冷蔵庫。
A storage chamber capable of heating stored items;
a dielectric heating mechanism configured to generate high frequency power and supply the high frequency power to the storage chamber to generate an electric field inside the storage chamber;
A cooling mechanism configured to cool the dielectric heating mechanism,
The dielectric heating mechanism includes:
an electrode disposed in the storage chamber;
an oscillator circuit configured to supply the high frequency power to the electrode;
a matching circuit configured to match the impedance of the electrode;
A detection unit connected between the oscillation circuit and the matching circuit and configured to measure an incident wave power output from the matching circuit to the electrode and a reflected wave power returning to the oscillation circuit;
The refrigerator according to claim 1, further comprising: a control unit configured to control the oscillation circuit and the matching circuit based on the incident wave power and the reflected wave power, and to control the cooling mechanism to avoid an abnormality in the incident wave power or the reflected wave power.
 前記制御部は、所定期間に得られる前記入射波電力の値、または前記入射波電力および前記反射波電力の値において、それぞれの所定の閾値を超えた値の個数に基づいて、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred based on the number of values of the incident wave power, or the incident wave power and the reflected wave power, that exceed their respective predetermined thresholds obtained during a predetermined period of time.  前記制御部は、前記入射波電力、または前記入射波電力および前記反射波電力がそれぞれの所定の閾値を超え、かつ前記発振回路に供給される電流が所定の別の閾値を超えた場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred when the incident wave power, or the incident wave power and the reflected wave power, exceed their respective predetermined thresholds, and the current supplied to the oscillation circuit exceeds another predetermined threshold.  前記制御部は、前記入射波電力および前記反射波電力の、異常検知の時点の値と、前記異常検知の時点までの値との差が所定の閾値を超えた場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred when the difference between the values of the incident wave power and the reflected wave power at the time of abnormality detection and the values up to the time of abnormality detection exceeds a predetermined threshold value.  前記制御部は、前記整合回路におけるインピーダンス調整から所定時間内の前記反射波電力、または前記入射波電力に対する前記反射波電力の割合である反射率の変位が所定の閾値を超えない場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred when the change in the reflected wave power within a predetermined time from the impedance adjustment in the matching circuit, or the change in the reflectance, which is the ratio of the reflected wave power to the incident wave power, does not exceed a predetermined threshold value.  前記制御部は、前記整合回路におけるインピーダンス調整から所定時間経過後における前記反射波電力、または前記入射波電力に対する前記反射波電力の割合である反射率の変位が所定の閾値を超える場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred when the change in the reflected wave power or the reflectance, which is the ratio of the reflected wave power to the incident wave power, exceeds a predetermined threshold value after a predetermined time has elapsed since the impedance adjustment in the matching circuit.  前記制御部は、前記入射波電力、または前記入射波電力および前記反射波電力の値がそれぞれの所定の閾値を超え、かつ前記発振回路に供給される電流の値が所定の別の閾値を超えた場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the control unit is configured to determine that an abnormality has occurred when the value of the incident wave power, or the value of the incident wave power and the reflected wave power, exceeds a respective predetermined threshold value, and the value of the current supplied to the oscillation circuit exceeds another predetermined threshold value.  前記整合回路に配置された温度センサをさらに備え、
 前記制御部は、前記温度センサにより検知された温度が所定の閾値を超えた場合に、異常が発生したと判定するように構成される、請求項1に記載の冷蔵庫。
a temperature sensor disposed in the matching circuit;
The refrigerator according to claim 1 , wherein the control unit is configured to determine that an abnormality has occurred when the temperature detected by the temperature sensor exceeds a predetermined threshold value.
 前記整合回路に配置された温度センサをさらに備え、
 前記制御部は、前記温度センサにより検知された温度と、前記入射波電力に対する前記反射波電力の割合である反射率の時間変化とに基づいて、異常判定を行うように構成される、請求項1に記載の冷蔵庫。
a temperature sensor disposed in the matching circuit;
The refrigerator according to claim 1, wherein the control unit is configured to determine an abnormality based on the temperature detected by the temperature sensor and a time change in reflectance, which is a ratio of the reflected wave power to the incident wave power.
 前記制御部は、前記発振回路に供給される電流値に応じて前記冷却機構を制御するように構成される、請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the control unit is configured to control the cooling mechanism according to the current value supplied to the oscillation circuit.  前記制御部は、前記入射波電力および前記反射波電力と、前記発振回路に供給される電流値とに応じて前記冷却機構を制御するように構成される、請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the control unit is configured to control the cooling mechanism according to the incident wave power, the reflected wave power, and a current value supplied to the oscillation circuit.
PCT/JP2024/022593 2023-06-23 2024-06-21 Refrigerator WO2024262611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-103085 2023-06-23
JP2023103085 2023-06-23

Publications (1)

Publication Number Publication Date
WO2024262611A1 true WO2024262611A1 (en) 2024-12-26

Family

ID=93935845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022593 WO2024262611A1 (en) 2023-06-23 2024-06-21 Refrigerator

Country Status (1)

Country Link
WO (1) WO2024262611A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121754A (en) * 1980-02-29 1981-09-24 Toyoda Gosei Co Ltd Microwave vulcanization device
JPS63257314A (en) * 1987-04-15 1988-10-25 Nec Corp High frequency power amplifier
JP2001218632A (en) * 2000-02-09 2001-08-14 Showa Aircraft Ind Co Ltd Service cart control box
WO2009011314A1 (en) * 2007-07-18 2009-01-22 Olympus Corporation Analyzing apparatus and its abnormality eliminating method
JP2021060173A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121754A (en) * 1980-02-29 1981-09-24 Toyoda Gosei Co Ltd Microwave vulcanization device
JPS63257314A (en) * 1987-04-15 1988-10-25 Nec Corp High frequency power amplifier
JP2001218632A (en) * 2000-02-09 2001-08-14 Showa Aircraft Ind Co Ltd Service cart control box
WO2009011314A1 (en) * 2007-07-18 2009-01-22 Olympus Corporation Analyzing apparatus and its abnormality eliminating method
JP2021060173A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP7526965B2 (en) Heating device and refrigerator equipped with heating device
JP7660272B2 (en) refrigerator
AU2020214406B2 (en) Heating device and refrigerator having same
CN112648775B (en) Refrigerator with a door
US11933537B2 (en) Refrigerator
JP7634213B2 (en) refrigerator
CN213811288U (en) Refrigerator with a door
JP7199052B2 (en) refrigerator
JP7515045B2 (en) refrigerator
WO2024262611A1 (en) Refrigerator
JP7308427B2 (en) refrigerator
WO2024262612A1 (en) Refrigerator
WO2024262613A1 (en) Refrigerator
JP2023161105A (en) refrigerator
WO2023210356A1 (en) Refrigerator
EP3910272B1 (en) Heating apparatus and refrigerator
RU2777607C1 (en) Refrigerating and freezing device
RU2773955C1 (en) Heating device and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24826012

Country of ref document: EP

Kind code of ref document: A1