[go: up one dir, main page]

WO2024262555A1 - Gas diffusion layer and manufacturing method thereof, roll-shaped object of gas diffusion layer, and solid polymer fuel cell - Google Patents

Gas diffusion layer and manufacturing method thereof, roll-shaped object of gas diffusion layer, and solid polymer fuel cell Download PDF

Info

Publication number
WO2024262555A1
WO2024262555A1 PCT/JP2024/022294 JP2024022294W WO2024262555A1 WO 2024262555 A1 WO2024262555 A1 WO 2024262555A1 JP 2024022294 W JP2024022294 W JP 2024022294W WO 2024262555 A1 WO2024262555 A1 WO 2024262555A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
carbon
diffusion layer
carbon powder
electrode substrate
Prior art date
Application number
PCT/JP2024/022294
Other languages
French (fr)
Japanese (ja)
Inventor
耕志 原田
啓佑 和田
和宏 隅岡
究 太田
加奈 井上
博己 濱本
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024262555A1 publication Critical patent/WO2024262555A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas diffusion layer and a method for producing the same, a roll of a gas diffusion layer, and a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is a device that generates electromotive force by electrochemically reacting a fuel gas such as hydrogen with an oxidizing gas such as oxygen.
  • a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons).
  • two sets of gas diffusion electrodes each of which has a catalyst layer mainly composed of carbon powder carrying a precious metal catalyst and a gas diffusion layer substrate, are bonded to both sides of the polymer electrolyte membrane from the inside.
  • Such an assembly consisting of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane electrode assembly (MEA). Separators are installed on both sides of the MEA, each of which has gas flow paths for supplying fuel gas or oxidizing gas and discharging generated gas and excess gas.
  • the gas diffusion layer substrate is required to have the following three main functions:
  • the first function is to supply a fuel gas or an oxidizing gas uniformly to the precious metal catalyst in the catalyst layer from gas flow paths formed in a separator disposed on the outer side of the gas diffusion electrode substrate.
  • the second function is to discharge water produced by the reaction in the catalyst layer.
  • the third function is to conduct electrons required for the reaction in the catalyst layer or electrons generated by the reaction in the catalyst layer to the separator.
  • a gas diffusion layer substrate that satisfies these functions, a substrate having a porous structure made of a carbonaceous material is usually used. Specifically, a porous electrode substrate using carbon fibers such as carbon paper, carbon fiber cloth, and carbon fiber felt is generally used. These porous electrode substrates not only exhibit high electrical conductivity due to the carbon fibers, but also have high permeability to liquids such as fuel gas and generated water because they are porous materials, making them suitable materials for use as gas diffusion layer substrates.
  • Patent Document 1 proposes a gas diffusion layer in which a coating layer is formed on the surface of a porous electrode substrate by applying a paste composition containing conductive carbon particles, pitch fluoride, and a fluorine-based solvent to the surface of the porous electrode substrate, followed by drying and sintering.
  • Patent Document 2 proposes a gas diffusion layer in which fine cracks are intentionally provided in advance in the coating layer, so that the structure of the coating layer is less likely to change before and after winding.
  • Patent Document 3 proposes a gas diffusion layer having a coating layer containing carbon powder and a water repellent agent.
  • a coating layer having cracks is likely to have poor adhesion to a porous electrode substrate, and therefore there is a demand for a gas diffusion layer having a coating layer in which the occurrence of cracks is suppressed.
  • An object of the present invention is to provide a gas diffusion layer in which the occurrence of cracks in a coating layer is suppressed, a method for producing the same, a roll of a gas diffusion layer, and a polymer electrolyte fuel cell.
  • the coating layer is a gas diffusion layer comprising carbon powder A having an average particle size of 5 to 800 nm and carbon powder B having an average particle size of 1 to 50 ⁇ m.
  • a mass ratio of the carbon powder A to the carbon powder B is 0.5 or more or 1.0 or more and 9.0 or less, 4.0 or less, 2.0 or less, 1.8 or less, or 1.2 or less.
  • a gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate,
  • the coating layer is a gas diffusion layer comprising at least one carbon powder C selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and pyrolytic graphite.
  • the gas diffusion layer according to any one of [1] to [4] above, wherein the coating layer contains a water repellent.
  • a roll of a gas diffusion layer comprising the gas diffusion layer according to any one of [1] to [18] above, provided on the coating layer thereof with a protective layer, and wound into a roll.
  • a polymer electrolyte fuel cell comprising the gas diffusion layer according to any one of [1] to [18].
  • a method for producing a gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate comprising the steps of: A method for producing a gas diffusion layer, comprising: applying a coating liquid, which is a mixture of carbon powder B having an average particle diameter of 1 to 50 ⁇ m and carbon powder A having an average particle diameter of 5 to 800 nm, to at least one surface of the porous electrode substrate. [22] The method for producing a gas diffusion layer according to [14], wherein the aspect ratio of the carbon powder B is 2 to 40. [23] The method for producing a gas diffusion layer according to [21] or [22], wherein the carbon powder B is pyrolytic graphite.
  • the present invention provides a gas diffusion layer in which the occurrence of cracks in the coating layer is suppressed, a method for producing the same, a roll of the gas diffusion layer, and a polymer electrolyte fuel cell.
  • FIG. 1 is a cross-sectional view showing an example of a gas diffusion layer of the present invention.
  • FIG. 2 is a perspective view showing an example of a roll of the gas diffusion layer of the present invention.
  • 3 is a cross-sectional view taken along line A-A' of the roll of gas diffusion layer shown in FIG. 2.
  • FIG. 1 is an exploded perspective view showing an example of the configuration of a polymer electrolyte fuel cell according to the present invention.
  • 1A to 1F are scanning electron microscope photographs of the surfaces of the coating layers of the gas diffusion layers obtained in the Examples and Comparative Examples, where (a) is the observation result of Example 1, (b) is the observation result of Example 2, (c) is the observation result of Example 3, (d) is the observation result of Example 4, (e) is the observation result of Example 5, and (f) is the observation result of Comparative Example 1.
  • 1 is a graph showing the measurement results of the peel strength of the gas diffusion layers obtained in Example 2 and Comparative Example 1.
  • a numerical range expressed by "to” means a numerical range including the numerical values before and after "to” as the lower and upper limits.
  • a to B is equivalent to A or more and B or less.
  • characteristic parts may be shown enlarged in order to make the features easier to understand, and the dimensional ratios of each component may differ from the actual ones.
  • FIG. 1 shows an example of the gas diffusion layer of the present invention.
  • the gas diffusion layer 10 of this embodiment has a porous electrode substrate 11 and a coating layer 12 formed on one surface of the porous electrode substrate 11 .
  • porous electrode substrate any conductive porous material such as conductive paper, cloth, nonwoven fabric, etc., made from a conductive filler such as carbon powder, carbon fiber, metal fiber, resin, etc., can be used.
  • the porous electrode substrate contains carbon fiber.
  • a porous electrode substrate in which carbon fibers are bound by carbon is preferable.
  • the porous electrode substrate in which carbon fibers are bound by carbon is also particularly referred to as a "porous carbon electrode substrate".
  • the average fiber diameter of the carbon fibers is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 4 ⁇ m or more. If the average fiber diameter of the carbon fibers is equal to or more than the lower limit, the distance between the fibers in the porous electrode substrate tends to be wider, and the gas permeability tends to be higher.
  • the average fiber diameter of the carbon fibers is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 8 ⁇ m or less. If the average fiber diameter of the carbon fibers is equal to or less than the upper limit, the porous electrode substrate can be provided with appropriate flexibility.
  • the lower limit and the upper limit of the average fiber diameter of the carbon fibers can be arbitrarily combined, and for example, 2 to 30 ⁇ m are preferable, 3 to 20 ⁇ m are more preferable, and 4 to 8 ⁇ m are even more preferable.
  • the average fiber diameter of carbon fibers is determined by taking a photograph of the cross section of carbon fibers at 50 times or more magnification using a microscope such as a scanning electron microscope, randomly selecting 50 single fibers, measuring the diameters, and averaging the diameters. When the cross section of a carbon fiber has a long diameter and a short diameter, the long diameter is regarded as the fiber diameter of the fiber.
  • the average fiber length of the carbon fibers is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more. If the average fiber length of the carbon fibers is equal to or more than the lower limit, the porous electrode substrate can have sufficient strength.
  • the average fiber length of the carbon fibers is preferably 30 mm or less, more preferably 12 mm or less, and even more preferably 9 mm or less. If the average fiber length of the carbon fibers is equal to or less than the upper limit, a porous electrode substrate with less dispersion spots can be obtained.
  • the lower limit and the upper limit of the average fiber length of the carbon fibers can be arbitrarily combined, and for example, 2 to 30 mm are preferable, 2 to 12 mm are more preferable, and 3 to 9 mm are even more preferable.
  • the average fiber length of the carbon fibers is determined by, for example, photographing the carbon fibers at 50 times or more magnification using a microscope such as a scanning electron microscope, randomly selecting 50 single fibers, measuring their lengths, and
  • carbon fibers examples include polyacrylonitrile (PAN)-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, and phenol-based carbon fibers.
  • PAN polyacrylonitrile
  • the carbon fibers include at least one of PAN-based carbon fibers and pitch-based carbon fibers, since fibers with a large fiber diameter are easily available.
  • the carbon functions as a binder to bind the carbon fibers together, and the uniformly dispersed carbon fibers are fixed together via the carbon.
  • Examples of carbon that bonds the carbon fibers include carbonized resins and organic fibers. The resins and organic fibers used as raw materials for carbon will be described in detail in the section on the manufacturing method of the porous electrode substrate described later.
  • the carbon content relative to the total mass of the porous electrode substrate is preferably 10 to 40 mass%, more preferably 15 to 40 mass%. If the carbon content is equal to or greater than the lower limit, the strength of the porous electrode substrate is easily ensured, and the carbon fibers are less likely to fall off. If the carbon content is equal to or less than the upper limit, sufficient voids are easily ensured, and gas and liquid permeation and diffusion are facilitated. The carbon content does not include the carbon fiber content.
  • the porous electrode substrate may further contain carbon powder, which is expected to improve electrical conductivity.
  • the content of the carbon powder is preferably 1 to 20 mass %, more preferably 1 to 15 mass %, based on the total mass of the porous electrode substrate.
  • the content of the carbon powder is equal to or more than the lower limit, a conductive path is formed by the carbon powder, and the conductivity is likely to be improved.
  • the content of the carbon powder is equal to or less than the upper limit, the porous electrode substrate is likely to be prevented from becoming brittle or difficult to bend.
  • the carbon powder will be described in detail in the section on the coating layer below.
  • the gas permeability in the thickness direction of the porous electrode substrate is preferably 100 mL/(cm 2 Pa hr) or more, more preferably 120 mL/(cm 2 Pa hr) or more, even more preferably 150 mL/(cm 2 Pa hr) or more, and particularly preferably 200 mL/(cm 2 Pa hr) or more. If the gas permeability of the porous electrode substrate is the lower limit value or more, the fuel gas and the oxidizing gas are easily diffused and the reaction efficiency is improved.
  • the gas permeability in the thickness direction of the porous electrode substrate is preferably 12000 mL/(cm 2 Pa hr) or less, more preferably 5000 mL/(cm 2 Pa hr) or less, even more preferably 2500 mL/(cm 2 Pa hr) or less, and particularly preferably 1000 mL/(cm 2 Pa hr) or less. If the gas permeability of the porous electrode substrate is equal to or less than the upper limit, the structure will not collapse and the shape can be well maintained even if liquid such as produced water passes through.
  • the lower and upper limits of the gas permeability in the thickness direction of the porous electrode substrate can be arbitrarily combined, and for example, 100 to 12000 mL/(cm 2 Pa hr) is preferable, 120 to 5000 mL/(cm 2 Pa hr) is more preferable, 150 to 2500 mL/(cm 2 Pa hr) is even more preferable, and 200 to 1000 mL/(cm 2 Pa hr) is particularly preferable.
  • the gas permeability is measured by a method in accordance with JIS P 8117:2009.
  • the thickness of the porous electrode substrate is preferably 30 ⁇ m or more, more preferably 55 ⁇ m or more, and even more preferably 100 ⁇ m or more. If the thickness of the porous electrode substrate is equal to or more than the lower limit, the gas diffusion layer can be easily transported. In addition, a coating layer can be easily formed on at least one surface of the porous electrode substrate.
  • the thickness of the porous electrode substrate is preferably 800 ⁇ m or less, more preferably 350 ⁇ m or less, and even more preferably 250 ⁇ m or less. If the thickness of the porous electrode substrate is equal to or less than the upper limit, an increase in electrical resistance can be suppressed and power generation performance can be maintained well.
  • the lower limit and the upper limit of the thickness of the porous electrode substrate can be arbitrarily combined, for example, preferably 30 to 800 ⁇ m, more preferably 55 to 350 ⁇ m, and even more preferably 100 to 250 ⁇ m.
  • the thickness of the porous electrode substrate is determined by measuring the thickness at any ten points on the porous electrode substrate and averaging these values.
  • the average pore diameter of the porous electrode substrate is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and even more preferably 10 ⁇ m or more. If the average pore diameter of the porous electrode substrate is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved.
  • the average pore diameter of the porous electrode substrate is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less. If the average pore diameter of the porous electrode substrate is equal to or less than the upper limit, the fluid is uniformly transmitted through the gas diffusion layer, and reaction spots are unlikely to occur.
  • the lower limit and the upper limit of the average pore diameter of the porous electrode substrate can be arbitrarily combined, and for example, 5 to 200 ⁇ m are preferable, 8 to 100 ⁇ m are more preferable, and 10 to 50 ⁇ m are even more preferable.
  • the porous electrode substrate is measured by mercury intrusion porosimetry, and the median diameter calculated from the obtained pore distribution is regarded as the average pore diameter.
  • the basis weight of the porous electrode substrate is preferably 50 g/m 2 or more, more preferably 55 g/m 2 or more, and even more preferably 60 g/m 2 or more. If the basis weight of the porous electrode substrate is the lower limit or more, the handling property of the porous electrode substrate tends to be good.
  • the basis weight of the porous electrode substrate is preferably 300 g/m 2 or less, more preferably 270 g/m 2 or less, and even more preferably 250 g/m 2 or less. If the basis weight of the porous electrode substrate is the upper limit or less, the conductivity of the porous electrode substrate is easily ensured.
  • the lower limit and the upper limit of the basis weight of the porous electrode substrate can be arbitrarily combined, for example, 50 to 300 g/m 2 are preferable, 55 to 270 g/m 2 are more preferable, and 60 to 250 g/m 2 are even more preferable.
  • porous electrode substrate An example of a method for producing a porous electrode substrate will be described below. Note that the method for producing a porous electrode substrate shown below is an example of a method for producing a porous carbon electrode substrate.
  • the porous electrode substrate can be obtained, for example, by subjecting a carbon fiber sheet described below to a carbonization treatment.
  • Carbon fiber sheet From the viewpoint of improving the strength of the carbon fiber sheet, a sheet in which carbon fibers are bonded together with at least one of a resin and an organic fiber is preferred as the carbon fiber sheet.
  • the carbon fiber sheet can be obtained, for example, by forming a dispersion of carbon fibers or carbon fibers and organic fibers in a dispersion medium into a paper sheet, and adding a resin as necessary.
  • the carbon fiber sheet may be subjected to a heat and pressure treatment before the carbonization treatment.
  • the thickness of the carbon fiber sheet is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, even more preferably 170 ⁇ m or more, and particularly preferably 200 ⁇ m or more. If the thickness of the carbon fiber sheet is the lower limit or more, a porous electrode substrate having excellent gas permeability is easily obtained.
  • the thickness of the carbon fiber sheet is preferably 5000 ⁇ m or less, more preferably 4000 ⁇ m or less, even more preferably 3000 ⁇ m or less, and particularly preferably 2000 ⁇ m or less. If the thickness of the carbon fiber sheet is the upper limit or less, a porous electrode substrate having high conductivity is easily obtained.
  • the lower limit and the upper limit of the thickness of the carbon fiber sheet can be arbitrarily combined, for example, 100 to 5000 ⁇ m are preferable, 150 to 4000 ⁇ m are more preferable, 170 to 3000 ⁇ m are more preferable, and 200 to 2000 ⁇ m are particularly preferable.
  • the thickness of the carbon fiber sheet is determined by measuring the thickness at any 10 points on the carbon fiber sheet and averaging the measured values.
  • the above-mentioned preferable thickness means the thickness of the carbon fiber sheet after the heating and pressurizing treatment.
  • the basis weight of the carbon fiber sheet is preferably 20 g/m 2 or more, more preferably 40 g/m 2 or more, and even more preferably 60 g/m 2 or more. If the basis weight of the carbon fiber sheet is the lower limit or more, a porous electrode base material with good handleability is easily obtained.
  • the basis weight of the carbon fiber sheet is preferably 500 g/m 2 or less, more preferably 400 g/m 2 or less, and even more preferably 300 g/m 2 or less. If the basis weight of the carbon fiber sheet is the upper limit or less, a porous electrode base material with excellent conductivity is easily obtained.
  • the lower limit and the upper limit of the basis weight of the carbon fiber sheet can be arbitrarily combined, for example, 20 to 500 g/m 2 are preferable, 40 to 400 g/m 2 are more preferable, and 60 to 300 g/m 2 are even more preferable.
  • the carbon fibers used in the carbon fiber sheet are as explained above in the section on the porous electrode substrate.
  • the resin used in the carbon fiber sheet is preferably a thermosetting resin such as a phenol resin or a furan resin, but is not limited thereto.
  • the phenolic resin include a resol type phenolic resin and a novolac type phenolic resin.
  • a water-dispersible phenolic resin or a water-soluble phenolic resin may be used as the phenolic resin.
  • organic fibers used for the carbon fiber sheet for example, carbon fiber precursor fibers, which are fibers that have a relatively large residual mass after carbonization, and fibrillar fibers, which are fibers that can bind carbon fibers in a mesh-like form, are preferable.
  • PVA polyvinyl alcohol
  • a heat-sealable polyester or polyolefin organic polymer binder may be used, but those that do not remain after the carbonization process or that are not mesh-like are not included in the "organic fiber”.
  • the polymer constituting the carbon fiber precursor fiber a polymer with a residual mass of 20% by mass or more after carbonization treatment is preferred.
  • examples of such polymers include acrylic polymers, cellulose polymers, and phenolic polymers.
  • acrylic polymer containing 50% by mass or more of acrylonitrile units considering that it has excellent spinnability, can bond carbon fibers together from low to high temperatures, has a large residual mass at the time of carbonization, and further, has fiber elasticity and fiber strength during the intertwining treatment described below.
  • acrylic fibers are preferred, and acrylic fibers containing 50% by mass or more of acrylonitrile units are more preferred.
  • the average fiber length of the carbon fiber precursor fiber is preferably 2 to 30 mm, since good dispersibility can be obtained.
  • the average fiber diameter of the carbon fiber precursor fiber is preferably 1 to 5 ⁇ m.
  • the average fiber diameter of the carbon fiber precursor fiber is equal to or greater than the lower limit, the fiber has excellent spinnability.
  • the average fiber diameter of the carbon fiber precursor fiber is equal to or less than the upper limit, breakage due to shrinkage during heating and pressurizing treatment or carbonization treatment can be easily suppressed.
  • the cross-sectional shape of the carbon fiber precursor fiber is not particularly limited, but a highly circular fiber is preferred because it provides high mechanical strength after carbonization and can reduce production costs.
  • Fibrillar fibers refer to the entire fibers formed by partially branching small fibers (fibrils) that are components of fibers such as filaments and staples.
  • the fibers that are the source of branching of fibrillar fibers are also referred to as "trunks," and the branched small fibers are also referred to as "fibril portions.”
  • the fibril fibers when dispersed together with the carbon fibers, serve to prevent the carbon fibers from rebundling and to make the carbon fiber sheet self-supporting after heating and pressing.
  • fibrillated fibers include natural fibers such as wood pulp; and synthetic pulps such as fibrillated polyethylene fibers, acrylic fibers, and aramid fibers.
  • fibril fiber fibril refined cellulose fiber obtained by beating Lyocell or Tencel, or fine cellulose may be used. These have a lower metal content than natural cellulose fibers, and are preferable from the viewpoint of preventing inhibition of proton conduction in fuel cells and deterioration of fluorine-based electrolyte membranes.
  • the average fiber length of the fibril fiber trunk is preferably 0.5 to 20 mm. When the average fiber length of the fibril fiber trunk is equal to or greater than the lower limit, the mechanical strength of the carbon fiber sheet is easily ensured. When the average fiber length of the fibril fiber trunk is equal to or less than the upper limit, good dispersibility is easily obtained.
  • the average fiber diameter of the fibrillar fiber trunk is preferably 1 to 50 ⁇ m. When the average fiber diameter of the fibrillar fiber trunk is equal to or greater than the lower limit, good dispersibility is obtained. When the average fiber diameter of the fibrillar fiber trunk is equal to or less than the upper limit, breakage due to shrinkage during heat treatment is easily suppressed.
  • the average fiber diameter of the fibril part of the fibril fiber is preferably 0.01 to 30 ⁇ m.
  • the average fiber diameter of the fibril part of the fibril fiber is equal to or greater than the lower limit, the dehydration of the carbon fiber sheet during heating and pressurization and the gas permeability of the porous electrode substrate are easily ensured.
  • the average fiber diameter of the fibril part of the fibril fiber is equal to or less than the upper limit, the dispersibility is improved.
  • the method for producing a porous electrode substrate of the present embodiment includes the following steps (i) to (iv).
  • the production of the porous electrode substrate is preferably carried out by a continuous method, but is not limited thereto, and may be carried out by a batch method.
  • the dispersion medium include water; and organic solvents such as methanol, ethanol, ethylene glycol, and propylene glycol. These dispersion media may be used alone or in combination of two or more. Among them, from the viewpoint of productivity, it is preferable to use water as the dispersion medium.
  • the water may be deionized water.
  • An organic polymer binder (such as polyvinyl alcohol) that is burned off during carbonization may be added to the dispersion before papermaking.
  • the organic polymer binder may be in the form of a solid such as fibers or particles, or in the form of a liquid.
  • the precursor sheet obtained by papermaking it is preferable to subject the precursor sheet obtained by papermaking to an entanglement treatment, thereby obtaining a precursor sheet having a three-dimensional entangled structure of the carbon fibers and the organic fibers and thus having a higher strength.
  • the entanglement method is not particularly limited, and examples thereof include mechanical entanglement methods such as needle punching, high-pressure liquid injection methods such as water jet punching, and high-pressure gas injection methods such as steam jet punching, and these may be combined.
  • the high-pressure liquid injection method is preferred because it is easy to suppress breakage of the carbon fibers due to the entanglement treatment and easy to obtain appropriate entanglement.
  • the content of the organic fibers relative to the total mass of the precursor sheet is preferably 10% by mass or more, more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less.
  • the lower and upper limits of the content of the organic fibers can be arbitrarily combined, and are, for example, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.
  • the precursor sheet is preferably dried at 90 to 120° C. before step (ii).
  • the drying method include a method of heating using a high-temperature atmospheric furnace, a far-infrared heating furnace, a hot plate, a hot roll, or the like.
  • Step (ii): Methods for adding a resin to a precursor sheet include, for example, a method in which the resin dispersion is sprayed or dropped onto the surface of the precursor sheet using a spray nozzle; a method in which the resin dispersion is caused to flow down the surface of the precursor sheet using a curtain coater; and a method in which the resin dispersion is uniformly coated onto the surface of the precursor sheet using a kiss coater.
  • the dispersion medium used in the resin dispersion is preferably water, alcohol, dimethylformamide, dimethylacetamide, or a mixture thereof. When water is used as the dispersion medium, a dispersant such as a surfactant may be used.
  • the carbon fiber sheet after the addition of the resin dispersion may be dried, for example, at 60 to 110°C, more preferably 70 to 100°C.
  • the resin in the carbon fiber sheet may be uniform in the thickness direction, or may have a concentration gradient.
  • the total amount of the resin and the organic fiber relative to 100 parts by mass of the carbon fiber in the carbon fiber sheet is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 80 parts by mass or more. If the total amount is equal to or more than the lower limit, the carbon fiber is less likely to fall off.
  • the total amount is preferably 180 parts by mass or less, more preferably 160 parts by mass or less, and even more preferably 140 parts by mass or less.
  • the total amount is equal to or less than the upper limit, sufficient voids are easily secured, and it is easy to obtain a porous electrode base material with excellent gas permeability.
  • the lower limit and the upper limit of the total amount can be arbitrarily combined, and for example, 50 to 180 parts by mass are preferable, 60 to 160 parts by mass are more preferable, and 80 to 140 parts by mass are more preferable.
  • Step (iii): Examples of methods for heating and pressurizing a carbon fiber sheet include a method in which smooth hard plates are placed on both sides of the carbon fiber sheet to heat press it; and a method using a hot roll press or a continuous belt press.
  • a release agent may be applied to the carbon fiber sheet or release paper may be sandwiched between the carbon fiber sheet and the hard plate, heated roll, or belt to prevent fibrous materials from adhering to the hard plate, roll, or belt.
  • the temperature of the heating and pressurizing treatment varies depending on the type and content of the resin and organic fiber contained in the carbon fiber sheet, but is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 150°C or higher. If the temperature of the heating and pressurizing treatment is equal to or higher than the lower limit, carbonization is likely to proceed sufficiently.
  • the temperature of the heating and pressurizing treatment is preferably 400°C or lower, more preferably 200°C or lower, and even more preferably 190°C or lower. If the temperature of the heating and pressurizing treatment is equal to or lower than the upper limit, burning of the resin and organic fiber is likely to be avoided.
  • the lower limit and upper limit of the temperature of the heating and pressurizing treatment can be arbitrarily combined, and for example, 100 to 400°C are preferable, 120 to 200°C are more preferable, and 150 to 190°C are even more preferable.
  • the pressure of the heating and pressurizing treatment is preferably 0.05 MPa or more, and more preferably 1 MPa or more. If the pressure of the heating and pressurizing treatment is equal to or more than the lower limit, the surface of the carbon fiber sheet is easily smoothed.
  • the pressure of the heating and pressurizing treatment is preferably 20 MPa or less, and more preferably 15 MPa or less.
  • the carbon fibers are less likely to be destroyed during the heating and pressurizing treatment.
  • the lower and upper limits of the pressure of the heating and pressurizing treatment can be arbitrarily combined, and for example, 0.05 to 20 MPa is preferable, and 1 to 15 MPa is more preferable.
  • the time for the heat and pressure treatment is preferably from 30 seconds to 1 hour, and more preferably from 1 to 10 minutes.
  • the carbonization treatment of the carbon fiber sheet is preferably carried out in an inert atmosphere at 1000° C. or higher, since it is easy to obtain a porous electrode substrate having sufficient electrical conductivity.
  • the temperature of the carbonization treatment is more preferably 1000 to 3000° C., further preferably 1000 to 2400° C., and particularly preferably 1000 to 2200° C.
  • the time for the carbonization treatment is preferably from 1 minute to 1 hour, and more preferably from 10 minutes to 1 hour.
  • a pre-carbonization treatment Prior to the carbonization treatment, a pre-carbonization treatment may be performed in an inert atmosphere at a temperature of 300° C. or higher and lower than 1000° C.
  • the temperature of the pre-carbonization treatment is more preferably 300 to 800°C.
  • the time for the pre-carbonization treatment is preferably 1 minute to 1 hour, and more preferably 10 minutes to 1 hour.
  • the method for producing a porous electrode substrate may not include any one or more of the above steps (i) to (iii).
  • the carbonization treatment may be performed without subjecting the carbon fiber sheet to a heating and pressurizing treatment.
  • a method in which organic fibers are used together with carbon fibers in step (i) and step (ii) is not carried out may also be used.
  • a precursor sheet may be produced by a dry method in which carbon fibers, or carbon fibers and organic fibers, are dispersed in the air and allowed to fall and accumulate.
  • porous electrode substrate As the porous electrode substrate, a porous electrode substrate from which the carbonization process has been omitted, or commercially available carbon paper or the like may be used as the porous electrode substrate.
  • a porous electrode substrate that does not require the carbonization process can reduce energy costs compared to a substrate that requires carbonization.
  • the porous electrode substrate that does not require the carbonization process include a carbon fiber web in which carbon fibers are bound with a binder filled with conductive material particles; a porous electrode substrate in which fine conductive materials such as carbon are bound with a binder such as a resin; and the like.
  • Coating layer X A coating layer containing carbon powder A having an average particle size of 5 to 800 nm and carbon powder B having an average particle size of 1 to 50 ⁇ m.
  • Coating layer Y A coating layer containing at least one carbon powder C selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and pyrolytic graphite.
  • Each of the coating layer X and the coating layer Y preferably contains a water repellent agent.
  • the coating layer X and the coating layer Y may further contain optional components other than the carbon powder A, the carbon powder B and the water repellent agent, if necessary, within a range that does not impair the effects of the present invention.
  • the portion where the coating liquid does not seep into the porous electrode substrate is defined as the coating layer. That is, in the case of coating layer X, the portion of the layer consisting only of carbon powder A and carbon powder B, a water repellent agent included as needed, and optional components is defined as coating layer X. Also, in the case of coating layer Y, the portion of the layer consisting only of carbon powder C and pyrolytic graphite, a water repellent agent included as needed, and optional components is defined as coating layer Y.
  • Coating layer X contains carbon powder A, carbon powder B, and a water repellent
  • the coating layer X is formed by binding the carbon powder A and the carbon powder B with the water repellent acting as a binder.
  • the carbon powder A and the carbon powder B are incorporated into the network formed by the water repellent, forming a fine mesh structure.
  • the coating layer X contains a fibrous water repellent, which not only strengthens the mesh structure and improves the strength of the coating layer X, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer X and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer X.
  • a fibrous water repellent which not only strengthens the mesh structure and improves the strength of the coating layer X, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer X and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer X.
  • Carbon powder A examples include carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, amorphous carbon, and graphite other than pyrolytic graphite (hereinafter, also referred to as "other graphite").
  • Carbon powder A is preferably carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, or amorphous carbon, more preferably carbon black, milled fiber, or other graphite, and even more preferably carbon black.
  • the carbon powder A may be used alone or in combination of two or more kinds.
  • Carbon black has a significantly larger number of particles per unit mass than graphite powder, and at a certain critical concentration or higher, the agglomerates are linked together in a three-dimensional network to form macroscopic conductive paths.
  • Examples of carbon black include acetylene black, ketjen black, furnace black, channel black, lamp black, and thermal black.
  • Commercially available acetylene black products include, for example, Denka Black (registered trademark) manufactured by Denka Co., Ltd.
  • Commercially available ketjen black products include, for example, Ketjen Black EC manufactured by Lion Corporation
  • Commercially available furnace black products include, for example, Vulcan XC72 manufactured by CABOT Corporation.
  • the milled fiber one produced by crushing virgin carbon fiber may be used, or one produced from recycled products such as carbon fiber reinforced thermosetting resin molded products, carbon fiber reinforced thermoplastic resin molded products, and prepregs may be used.
  • the carbon fiber used as the raw material for the milled fiber may be a PAN-based carbon fiber, a pitch-based carbon fiber, or a rayon-based carbon fiber.
  • Other graphites consist of highly crystalline graphite structures, with the average primary particle size generally ranging from a few micrometers to a few hundred micrometers.
  • Examples of other graphite include spherical graphite, flake graphite, lump graphite, amorphous graphite, artificial graphite, expanded graphite, etc.
  • spherical graphite and flake graphite are preferred from the viewpoint of electrical conductivity.
  • the average particle diameter of the carbon powder A is 5 to 800 nm.
  • the average particle diameter of the carbon powder is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 30 nm or more, and is preferably 800 nm or less, more preferably 500 nm or less, and particularly preferably 100 nm or less.
  • the lower limit and upper limit of the average particle diameter of the carbon powder A can be arbitrarily combined, and for example, is preferably 10 to 800 nm, more preferably 15 to 500 nm, and even more preferably 30 to 100 nm.
  • the average particle size of the carbon powder A was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described below.
  • Carbon powder B examples of the carbon powder B include pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon.
  • pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon are preferred, and pyrolytic graphite is more preferred.
  • the carbon powder B may be used alone or in combination of two or more kinds.
  • the average particle diameter of the carbon powder B is 1 to 50 ⁇ m. When the average particle diameter of the carbon powder B is equal to or greater than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. When the average particle diameter of the carbon powder B is equal to or less than the upper limit, a uniform coating liquid can be easily obtained.
  • the average particle diameter of the carbon powder B is preferably 3 ⁇ m, more preferably 5 ⁇ m or more, and is preferably 35 ⁇ m or less, and more preferably 11 ⁇ m or less.
  • the lower and upper limits of the average particle diameter of the carbon powder B can be arbitrarily combined, and for example, 3 to 35 ⁇ m is preferable, and 5 to 11 ⁇ m is more preferable.
  • the average particle size of the carbon powder B was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described later.
  • the aspect ratio of carbon powder B which is the ratio of the average particle diameter ( ⁇ m) of carbon powder B to the average thickness ( ⁇ m) of carbon powder B, is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. If the aspect ratio of carbon powder B is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained.
  • the aspect ratio of carbon powder B is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less. If the aspect ratio of carbon powder B is equal to or less than the upper limit, the viscosity increase during mixing is small, and a uniform coating liquid can be easily obtained.
  • the lower limit and upper limit of the aspect ratio of carbon powder B can be arbitrarily combined, and for example, 2 to 40 are preferable, 3 to 20 are more preferable, and 4 to 10 are even more preferable.
  • the average thickness of the carbon powder B is obtained by photographing the carbon powder B at a magnification of 1000 times or more using a microscope such as a scanning electron microscope or a transmission electron microscope, randomly selecting 10 different carbon powder B particles, measuring their thicknesses, and calculating the average value. For those with catalog values, the catalog values may be used as the average particle size or average thickness of the carbon powder B as a simple measured value.
  • the content of carbon powder B is preferably 9% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total mass of coating layer X. If the content of carbon powder B is equal to or more than the lower limit, a sufficient effect of improving conductivity can be obtained.
  • the content of carbon powder B is preferably 50% by mass or less, more preferably 50% by mass or less, and even more preferably 45% by mass or less. If the content of carbon powder B is equal to or less than the upper limit, an excessive increase in viscosity can be suppressed, and sufficient coatability can be obtained.
  • the lower limit and upper limit of the content of carbon powder B can be arbitrarily combined, and for example, 9 to 50% by mass is preferable, 15 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.
  • the mass ratio represented by carbon powder A/carbon powder B which represents the mass ratio of the content of carbon powder A to the content of carbon powder B, i.e., the carbon powder A/carbon powder B ratio, is preferably 0.5 or more, and more preferably 1.0 or more. If the carbon powder A/carbon powder B ratio is equal to or greater than the lower limit, the contact area between carbon powder A and carbon powder B is large, and a sufficient effect of improving conductivity can be obtained.
  • the carbon powder A/carbon powder B ratio is preferably 9.0 or less, more preferably 4.0 or less, even more preferably 2.0 or less, particularly preferably 1.8 or less, and most preferably 1.2 or less.
  • the carbon powder A/carbon powder B ratio is equal to or less than the upper limit, the amount of carbon powder around each pyrolytic graphite particle is not excessive, so that a sufficient amount of water repellent, which is a binder, is present, and sufficient coating strength can be obtained.
  • the lower and upper limits of the carbon powder A/carbon powder B ratio can be arbitrarily combined, and for example, 0.5 to 9.0 is preferable, 1.0 to 4.0 is preferable, 1.0 to 2.0 is preferable, 1.0 to 1.8 is more preferable, and 1.0 to 1.2 is even more preferable.
  • water repellent examples include fluororesins, silicone resins, etc. Among these, fluororesins are preferred from the viewpoint of particularly excellent water repellency. These water repellents may be used alone or in combination of two or more. The water repellent can be used by dispersing it in a solvent such as water.
  • fluororesins examples include tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer, etc.
  • PTFE polytetrafluoroethylene
  • PTFE produced by emulsion polymerization is particularly preferred in order to turn the water repellent into fibers, and dispersion-type PTFE is even more preferred.
  • the content of the water repellent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on the total mass of the coating layer X. If the content of the water repellent is equal to or more than the lower limit, sufficient water repellency is obtained. If the content of the water repellent is equal to or less than the upper limit, a sufficient effect of improving electrical conductivity is obtained.
  • the lower and upper limits of the oil content of the water repellent can be arbitrarily combined, for example, 10 to 40% by mass is preferable, 15 to 35% by mass is more preferable, and 20 to 30% by mass is even more preferable.
  • optional ingredients examples include surfactants, water-soluble polymers, thickeners, reinforcing agents, stabilizers, fillers, and crosslinking agents. These optional components may be used alone or in combination of two or more.
  • the thickness of the coating layer X is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more. If the thickness of the coating layer X is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved. In addition, when the porous electrode substrate contains carbon fibers, the carbon fibers can be prevented from breaking through the coating layer and reaching the catalyst layer or the polymer electrolyte membrane.
  • the thickness of the coating layer X is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less.
  • the thickness of the coating layer X is equal to or less than the upper limit, the increase in electronic resistance due to the coating layer X can be prevented, and the power generation performance can be maintained well.
  • the lower limit and the upper limit of the thickness of the coating layer X can be arbitrarily combined, and for example, 3 to 100 ⁇ m are preferable, 5 to 50 ⁇ m are more preferable, and 10 to 40 ⁇ m are more preferable.
  • the thickness of the coating layer X is determined by measuring the thickness at any ten points on the coating layer and averaging these values.
  • the surface roughness of the coating layer X is preferably 3.0 ⁇ m or less, more preferably 2.9 ⁇ m or less, and even more preferably 2.8 ⁇ m or less. If the surface roughness of the coating layer X is equal to or less than the upper limit, the contact resistance with the catalyst layer can be reduced.
  • the surface roughness of the coating layer X is preferably 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more, and even more preferably 2.0 ⁇ m or more. If the surface roughness of the coating layer X is equal to or more than the lower limit, the adhesion with the catalyst layer can be improved.
  • the lower limit and the upper limit of the surface roughness of the coating layer X can be arbitrarily combined, and for example, 1.0 to 3.0 ⁇ m are preferable, 1.5 to 2.9 ⁇ m are more preferable, and 2.0 to 2.8 ⁇ m are more preferable.
  • the surface roughness of the coating layer is the surface roughness Ra measured by the method described below on the surface of the coating layer opposite to the porous electrode substrate.
  • the coating layer Y contains pyrolytic graphite, carbon powder C, and a water repellent
  • the coating layer Y containing pyrolytic graphite, carbon powder C, and a water repellent is one in which the pyrolytic graphite and carbon powder C are bound together by the water repellent, which acts as a binder.
  • the pyrolytic graphite and carbon powder are incorporated into a network formed by the water repellent, and the coating layer Y has a fine mesh structure.
  • the coating layer Y preferably contains a fibrous water repellent, which not only strengthens the mesh structure and improves the strength of the coating layer Y, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer Y and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer Y.
  • a fibrous water repellent which not only strengthens the mesh structure and improves the strength of the coating layer Y, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer Y and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer Y.
  • Pyrolytic graphite can be obtained by graphitizing powdered coke through heat treatment at 2500° C. or higher. It is believed that the use of pyrolytic graphite in the gas diffusion layer can suppress the occurrence of cracks on the surface of the coating layer by reducing the volumetric shrinkage rate when the ink dries, without reducing the electrical conductivity.
  • the heat treatment temperature is preferably 2500 to 3500°C.
  • the heat treatment is preferably carried out in an inert gas. Pyrolytic graphite obtained by such heat treatment contains few impurities and the graphite itself has high thermal conductivity.
  • the aspect ratio of pyrolytic graphite which is the ratio of the average particle size ( ⁇ m) of pyrolytic graphite to the average thickness ( ⁇ m) of pyrolytic graphite, is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. If the aspect ratio of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained.
  • the aspect ratio of pyrolytic graphite is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less. If the aspect ratio of pyrolytic graphite is equal to or less than the upper limit, the viscosity increase during mixing is small, and a uniform coating liquid can be easily obtained.
  • the lower limit and upper limit of the aspect ratio of pyrolytic graphite can be arbitrarily combined, and for example, 2 to 40 are preferable, 3 to 20 are more preferable, and 4 to 10 are even more preferable.
  • the average particle size of the pyrolytic graphite was measured using a laser diffraction particle size distribution analyzer, and was calculated as the 50% cumulative diameter in volume terms.
  • the average thickness of pyrolytic graphite was determined by photographing the graphite at a magnification of 1000 times or more using a microscope such as a scanning electron microscope or a transmission electron microscope, randomly selecting 10 different pieces of pyrolytic graphite, measuring their thicknesses, and calculating the average value.
  • the average particle size of pyrolytic graphite is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and even more preferably 5 ⁇ m or more. If the average particle size of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained.
  • the average particle size of pyrolytic graphite is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less, and even more preferably 11 ⁇ m or less. If the average particle size of pyrolytic graphite is equal to or less than the upper limit, a uniform coating liquid can be easily obtained.
  • the lower limit and upper limit of the average particle size of pyrolytic graphite can be arbitrarily combined, for example, 3 to 50 ⁇ m is preferable, 4 to 35 ⁇ m is more preferable, and 5 to 11 ⁇ m is even more preferable.
  • the content of pyrolytic graphite is preferably 9% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total mass of the coating layer Y. If the content of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained.
  • the content of pyrolytic graphite is preferably 50% by mass or less, and more preferably 45% by mass or less. If the content of pyrolytic graphite is equal to or less than the upper limit, an excessive increase in viscosity can be suppressed, and sufficient coatability can be obtained.
  • the lower limit and upper limit of the content of pyrolytic graphite can be arbitrarily combined, and for example, 9 to 50% by mass is preferable, 15 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.
  • Carbon powder C examples include carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, amorphous carbon, and graphite other than pyrolytic graphite.
  • Carbon powder C is preferably carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, or amorphous carbon, more preferably carbon black, milled fiber, or other graphite, and further preferably carbon black.
  • the carbon powder C may be used alone or in combination of two or more kinds. Carbon black, milled fiber and other graphites are as described in Carbon Powder A.
  • the average particle diameter of the carbon powder C is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 15 nm or more, and particularly preferably 30 nm or more. If the average particle diameter of the carbon powder C is equal to or more than the lower limit, the pores of the porous electrode substrate can be prevented from being filled with small diameter particles of the carbon powder C, and sufficient gas permeability can be obtained.
  • the average particle diameter of the carbon powder C is preferably 800 nm or less, more preferably 500 nm or less, and even more preferably 100 nm or less. If the average particle diameter of the carbon powder C is equal to or less than the upper limit, a uniform coating liquid can be easily obtained.
  • the lower limit and the upper limit of the average particle diameter of the carbon powder C can be arbitrarily combined, and for example, 5 to 800 nm are preferable, 10 to 800 nm are more preferable, 15 to 500 nm are more preferable, and 30 to 100 nm are particularly preferable.
  • the average particle size of the carbon powder C was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described later.
  • the mass ratio of the carbon powder C content to the pyrolytic graphite content i.e., the carbon powder/pyrolytic graphite ratio
  • the carbon powder/pyrolytic graphite ratio is preferably 9.0 or less, more preferably 4.0 or less, even more preferably 2.0 or less, particularly preferably 1.8 or less, and most preferably 1.2 or less.
  • the carbon powder/pyrolytic graphite ratio is equal to or less than the upper limit, the amount of carbon powder around each pyrolytic graphite particle is not excessive, so that a sufficient amount of binder water repellent is present, and sufficient coating strength can be obtained.
  • the lower and upper limits of the carbon powder/pyrolytic graphite ratio can be arbitrarily combined, and for example, 0.5 to 9.0 is preferable, 1.0 to 4.0 is more preferable, 1.0 to 2.0 is even more preferable, 1.0 to 1.8 is particularly preferable, and 1.0 to 1.2 is most preferable.
  • the water repellent is as described in the coating layer X, and the preferred embodiments are also the same.
  • a fluororesin is preferable from the viewpoint of being particularly excellent in water repellency.
  • the content of the water repellent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on the total mass of the coating layer Y. If the content of the water repellent is equal to or more than the lower limit, sufficient water repellency is obtained. If the content of the water repellent is equal to or less than 40% by mass, more preferably 35% by mass or less, and even more preferably 30% by mass or less, based on the total mass of the coating layer Y. If the content of the water repellent is equal to or less than the upper limit, sufficient conductivity improvement effect is obtained.
  • the lower limit and upper limit of the content of the water repellent can be arbitrarily combined, for example, 10 to 40% by mass is preferable, 15 to 35% by mass is more preferable, and 20 to 30% by mass is even more preferable.
  • the thickness of the coating layer Y is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more. If the thickness of the coating layer Y is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved. In addition, when the porous electrode substrate contains carbon fibers, the carbon fibers can be prevented from breaking through the coating layer and reaching the catalyst layer or the polymer electrolyte membrane.
  • the thickness of the coating layer Y is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less.
  • the thickness of the coating layer Y is equal to or less than the upper limit, the increase in electronic resistance due to the coating layer can be suppressed, and the power generation performance can be maintained well.
  • the lower limit and the upper limit of the thickness of the coating layer Y can be arbitrarily combined, and for example, 3 to 100 ⁇ m are preferable, 5 to 50 ⁇ m are more preferable, and 10 to 40 ⁇ m are more preferable.
  • the thickness of the coating layer Y is determined by measuring the thickness at any ten points on the coating layer and averaging these values.
  • the surface roughness of the coating layer Y is preferably 3.0 ⁇ m or less, more preferably 2.9 ⁇ m or less, and even more preferably 2.8 ⁇ m or less. If the surface roughness of the coating layer Y is equal to or less than the upper limit, the contact resistance with the catalyst layer can be reduced.
  • the surface roughness of the coating layer Y is preferably 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more, and even more preferably 2.0 ⁇ m or more. If the surface roughness of the coating layer Y is equal to or more than the lower limit, the adhesion with the catalyst layer can be improved.
  • the lower limit and upper limit of the surface roughness of the coating layer Y can be arbitrarily combined, for example, 1.0 to 3.0 ⁇ m are preferable, 1.5 to 2.9 ⁇ m are more preferable, and 2.0 to 2.8 ⁇ m are even more preferable.
  • (Other forms) 1 is formed on one surface of the porous electrode substrate 11, the coating layer may be formed on both surfaces of the porous electrode substrate.
  • the coating layer is formed on only one surface of the porous electrode substrate.
  • the thickness of the gas diffusion layer is preferably 55 ⁇ m or more, more preferably 100 ⁇ m or more, and is preferably 350 ⁇ m or less, more preferably 250 ⁇ m or less. If the thickness of the gas diffusion layer is equal to or greater than the lower limit, handling is possible. If the thickness of the gas diffusion layer is equal to or less than the upper limit, good electrical conductivity is obtained.
  • the lower limit and upper limit of the thickness of the gas diffusion layer can be arbitrarily combined, and for example, 55 to 350 ⁇ m are preferable, and 100 to 250 ⁇ m are more preferable.
  • the thickness of the gas diffusion layer is determined by measuring the thickness at any ten points on the gas diffusion layer and averaging the measured values.
  • the method for producing a gas diffusion layer of the present embodiment includes the following steps (1) to (3) when the coating layer is coating layer X, for example.
  • Step (1) A step of applying a coating liquid containing carbon powder A, carbon powder B, a solvent, and, if necessary, a water repellent and optional components onto at least one surface of a porous electrode substrate to form a coating film on at least one surface of the porous electrode substrate.
  • Step (2) A step of drying the porous electrode substrate on which the coating film has been formed in an environment of 50°C to 300°C to remove the solvent in the coating film and form a coating layer on at least one surface of the porous electrode substrate.
  • Step (3) A step of heating the porous electrode substrate on which the coating layer has been formed to a temperature greater than 300° C. and equal to or less than 400° C. to sinter the water repellent agent, thereby obtaining a gas diffusion layer.
  • the coating layer is coating layer Y
  • a coating liquid containing pyrolytic graphite, carbon powder C, a solvent, and, if necessary, a water repellent and optional components is used in the step (1).
  • the coating liquid is obtained by mixing carbon powder A, carbon powder B, and a solvent, or pyrolytic graphite, carbon powder C, and a solvent, and optionally a water repellent and optional components, using a stirrer, etc.
  • a water repellent for example, dispersion A containing carbon powder A, carbon powder B, and a solvent, or pyrolytic graphite, carbon powder C, and a solvent, and optionally an optional component, and dispersion B containing a water repellent, a solvent, and optionally an optional component are each prepared, and dispersion A and dispersion B are mixed using a stirrer, etc. to prepare the coating liquid.
  • the solvent examples include water, organic solvents such as lower alcohols and acetone, mixed solvents of water and organic solvents, etc. From the viewpoints of cost and environmental load, water is preferred as the solvent. From the viewpoint of increasing the wettability and improving the dispersibility of the carbon powder A, the carbon powder B, the pyrolytic graphite, and the carbon powder C, it is preferable that the dispersion liquid A contains at least one of an organic solvent and a surfactant.
  • the water repellent is preferably dispersed in water using a surfactant since the water repellent is difficult to disperse in water as it is.
  • a dispersion in which a water repellent agent has been dispersed in advance may be used as the dispersion liquid B.
  • the content of carbon powder A in dispersion A used in the coating liquid for forming coating layer X is preferably 5 to 30 mass %, more preferably 5 to 10 mass %, based on the total mass of dispersion A.
  • the content of the carbon powder B is preferably from 5 to 30% by mass, and more preferably from 5 to 10% by mass, based on the total mass of the dispersion A.
  • the content of the water repellent in the dispersion B used in the coating liquid for forming the coating layer X is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the dispersion B.
  • the content of pyrolytic graphite in dispersion A used in the coating liquid for forming coating layer Y is preferably 5 to 30 mass %, more preferably 5 to 10 mass %, based on the total mass of dispersion A.
  • the content of the carbon powder C is preferably from 5 to 30% by mass, and more preferably from 5 to 10% by mass, based on the total mass of the dispersion liquid A.
  • the content of the water repellent in the dispersion B used in the coating liquid for forming the coating layer Y is preferably 1 to 20 mass % relative to the total mass of the dispersion B, and more preferably 1 to 10 mass %.
  • the stirrer used in preparing the coating liquid is not particularly limited, and examples thereof include a disper, a homogenizer, a sand mill, a jet mill, a ball mill, a bead mill, etc. Among these, a disper and a homogenizer are preferred from the viewpoints of easy operation and shortening the processing time.
  • a disper and a homogenizer are preferred from the viewpoints of easy operation and shortening the processing time.
  • the viscosity of the coating liquid at 25°C is preferably 100 to 10,0000 mPa ⁇ s. If the viscosity of the coating liquid is equal to or greater than the lower limit, the coating liquid is less likely to penetrate excessively into the porous electrode substrate, and the thickness of the coating layer can be easily maintained. If the viscosity of the coating liquid is equal to or less than the upper limit, the preparation time of the coating liquid can be shortened, and good productivity can be maintained.
  • the coating liquid can be applied to the surface of the porous electrode substrate by a conventional method, such as a bar coating method, a blade method, a screen printing method, a spray method, a curtain coating method, a roll coating method, etc.
  • a uniform coating film can be formed on the porous electrode substrate.
  • the thickness of the coating film is preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more. If the thickness of the coating film is equal to or more than the lower limit, a coating film having a uniform thickness can be easily obtained.
  • the thickness of the coating film is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less.
  • the thickness of the coating film is equal to or less than the upper limit, the occurrence of cracks in the coating layer can be further suppressed.
  • the lower limit and the upper limit of the thickness of the coating film can be arbitrarily combined, and for example, 40 to 2000 ⁇ m are preferable, and 50 to 1000 ⁇ m are more preferable.
  • the coating speed of the coating liquid is preferably 1 to 20 m/min from the viewpoint of productivity.
  • the porous electrode substrate may be subjected to a water-repellent treatment as necessary to impart water repellency to the porous electrode substrate.
  • a water-repellent treatment a dispersion liquid in which particles of a water-repellent agent such as silicone resin or fluororesin are dispersed in a solvent, for example, the above-mentioned dispersion liquid B, can be used.
  • Step (2) For drying the coating film, for example, a plate heater, a heating roll, a hot air dryer, an IR heater, or the like can be used.
  • the atmospheric temperature (drying temperature) when drying the coating film is preferably 50°C or higher, more preferably 100°C or higher, and even more preferably 150°C or higher. If the drying temperature is equal to or higher than the lower limit, the drying speed of the coating film is increased. In addition, a uniform coating layer can be easily formed.
  • the drying temperature is preferably 300°C or lower, more preferably 300°C or lower, and even more preferably 300°C or lower.
  • the drying temperature is equal to or lower than the upper limit, the evaporation rate of the solvent does not become too fast, and the occurrence of cracks can be further suppressed.
  • the lower limit and upper limit of the drying temperature can be arbitrarily combined, and for example, 50 to 300°C are preferable, 100 to 300°C are more preferable, and 150 to 300°C are even more preferable.
  • the drying time for the coating film is preferably 30 seconds to 20 minutes, and more preferably 30 seconds to 10 minutes, in consideration of productivity.
  • Step (3) In the manufacturing method of the gas diffusion layer of this embodiment, the dried "porous electrode substrate with a coating layer formed thereon" is sintered in an environment of more than 300° C. and not more than 400° C. to manufacture the gas diffusion layer.
  • step (3) i.e., the sintering step
  • the water repellent contained in the coating film is heated to near its melting point to melt the water repellent particles and control their shape, thereby controlling the pore structure of the coating layer and strengthening the binding between carbon powder A and carbon powder B or between pyrolytic graphite and carbon powder C. Therefore, the sintering temperature is preferably higher than 300° C.
  • the sintering time is preferably 1 to 90 minutes, more preferably 1 to 60 minutes, and even more preferably 10 to 30 minutes. If the coating film contains a surfactant, the surfactant will be burned off during the sintering process.
  • the gas diffusion layer of the present embodiment described above includes a coating layer containing carbon powder A and carbon powder B, or pyrolytic graphite and carbon powder C, and the coating layer is suppressed from generating cracks.
  • the reason why the coating layer is suppressed from generating cracks is not clear, but is thought to be as follows.
  • One of the causes of cracks occurring in the coating layer is the aggregation of carbon powder when the coating film provided on the porous electrode substrate is dried to form the coating layer, and it is believed that cracks occur starting from the carbon powder aggregates. Carbon powder with a small particle size is particularly prone to aggregation.
  • pyrolytic graphite Since pyrolytic graphite has few impurities and a relatively large particle size compared to carbon powder, it is believed that the combination of carbon powder and pyrolytic graphite can suppress the aggregation of carbon powder and the occurrence of cracks. In addition, since pyrolytic graphite contains few impurities, the combined use of carbon powder and pyrolytic graphite increases thermal conductivity and improves power generation performance. Similarly, it is believed that the combined use of carbon powder A and carbon powder B suppresses the aggregation of carbon powder A, inhibits the occurrence of cracks, increases thermal conductivity, and improves power generation performance.
  • the gas diffusion layer is preferably in the form of a roll.
  • An example of the roll-shaped gas diffusion layer will now be described.
  • [Roll-shaped gas diffusion layer] 2 and 3 show an example of a roll-shaped product of the gas diffusion layer of the present invention (hereinafter, simply referred to as a "roll-shaped product").
  • the gas diffusion layer roll 20 of this embodiment is a rolled body in which a laminate 22 (hereinafter, also referred to as a "gas diffusion layer with protective layer”) having a protective layer 23 provided on the coating layer 12 of the gas diffusion layer 10 is wound around a cylindrical core material 21 in a roll shape.
  • the laminate 22 is wound around the core material 21 so that the protective layer 23 is on the inside, but the laminate 22 may also be wound around the core material 21 so that the protective layer 23 is on the outside.
  • the core material is preferably a hollow core material that is lightweight and easy to hold in an unwinding/winding device.
  • the core material may be paper or resin.
  • a resin core material is preferable. Examples of resins include polyethylene, ABS resin, polystyrene, polypropylene, polyvinyl chloride, and polyethylene terephthalate. From the viewpoints of recycling the core material and being inexpensive, a paper core material is preferred. Even if the core material is made of paper, the use of a core material with a resin-coated surface can minimize the amount of dust generated during installation in the device.
  • the outer diameter of the core material is preferably 82.4 to 172.4 mm. If the outer diameter of the core material is equal to or greater than the lower limit, the structure of the gas diffusion layer is less likely to change before and after winding. If the outer diameter of the core material is equal to or less than the upper limit, the winding diameter does not become too large, and a decrease in productivity and an increase in temperature during transportation can be suppressed.
  • the inner diameter of the core material is preferably 76.2 to 152.4 mm.
  • the thickness of the core material is preferably 4 to 15 mm. If the thickness of the core material is equal to or greater than the lower limit, the core material has excellent durability even when used repeatedly. If the thickness of the core material is equal to or less than the upper limit, the weight of the roll of the gas diffusion layer can be prevented from increasing excessively.
  • the core material may be removed after the gas diffusion layer is wound into a roll.
  • the protective layer is a sheet for protecting the coating layer of the gas diffusion layer, and by providing the protective layer, it is possible to prevent foreign matter such as carbon fibers and carbides that have fallen off from the porous electrode substrate from adhering to the coating layer.
  • the protective layer may be any layer that does not adhere to the coating layer, and examples of the protective layer include paper and resin films. As the paper, dust-free paper that generates little dust is preferable.
  • the resin film is preferably one that is less deformed when pressed against the carbon fiber in order to protect the coating layer. Examples of the material for the resin film include polyethylene, ABS resin, polystyrene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polytetrafluoroethylene.
  • the thickness of the protective layer is preferably 5 to 100 ⁇ m.
  • the thickness of the protective layer is equal to or more than the lower limit, damage to the coating layer caused by the carbon fibers piercing the protective layer can be further suppressed.
  • the thickness of the protective layer is equal to or less than the upper limit, the winding diameter of the roll of the gas diffusion layer does not become too large, and a decrease in productivity and an increase in transportation costs can be suppressed.
  • the width of the protective layer is equal to or greater than the width of the gas diffusion layer, with the difference being 200 mm or less. If the width of the protective layer is equal to or greater than the width of the gas diffusion layer, the effect of the protective layer can be sufficiently obtained.
  • the edge portion of the protective layer it is possible to prevent the edge portion of the protective layer from damaging the coating layer. If the width of the protective layer is greater than that of the gas diffusion layer, with the difference being 200 mm or less, it is possible to prevent an increase in the cost of the protective layer. In addition, it is possible to maintain a good balance during winding, and the winding shape is likely to be stable.
  • FIG. 4 shows an example of a polymer electrolyte fuel cell according to the present invention.
  • the polymer electrolyte fuel cell 100 of this embodiment includes a membrane electrode assembly (MEA) 30 and a pair of separators 40A, 40B.
  • the membrane-electrode assembly 30 is sandwiched between a pair of separators 40A and 40B.
  • the polymer electrolyte fuel cell 100 may be configured from one cell, or It may be an aggregate of a plurality of cells.
  • the membrane-electrode assembly 30 is composed of a polymer electrolyte membrane 31 and a pair of gas diffusion electrodes 32A, 32B.
  • the polymer electrolyte membrane 31 is sandwiched between a pair of gas diffusion electrodes 32A and 32B.
  • the polymer electrolyte membrane 31 contains a polymer electrolyte.
  • the polymer electrolyte include a fluorine-based polymer electrolyte and a hydrocarbon-based polymer electrolyte.
  • An example of the fluorine-based polymer electrolyte is a polymer electrolyte having a tetrafluoroethylene skeleton.
  • the hydrocarbon-based polymer electrolyte include sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether sulfone, sulfonated polysulfide, and sulfonated polyphenylene.
  • the gas diffusion electrode 32A includes a catalyst layer 321A and a gas diffusion layer 10.
  • the gas diffusion electrode 32A is an electrode on the oxygen electrode side, and oxygen is supplied to the gas diffusion electrode 32A.
  • the gas diffusion electrode 32A is also called the "oxygen electrode”
  • the catalyst layer 321A is also called the “oxygen electrode catalyst layer”.
  • the gas diffusion layer 10 provided on the gas diffusion electrode 32A is also called the "oxygen electrode gas diffusion layer”.
  • the gas diffusion electrode 32B includes a catalyst layer 321B and a gas diffusion layer 10.
  • the gas diffusion electrode 32B is an electrode on the fuel electrode side, and hydrogen is supplied to the gas diffusion electrode 32B.
  • the gas diffusion electrode 32B is also called the "fuel electrode”
  • the catalyst layer 321B is also called the "fuel electrode catalyst layer”.
  • the gas diffusion layer 10 provided on the gas diffusion electrode 32B is also called the "fuel electrode gas diffusion layer”.
  • the catalyst layer 321A is a layer containing a catalyst and a binder, and is a reaction field where the reduction reaction of oxygen occurs.
  • the catalyst layer 321B is a layer containing a catalyst and a binder, and is a reaction field where the oxidation reaction of hydrogen occurs.
  • the catalyst include a catalyst support in which Pt (platinum), Ru (ruthenium) or the like is supported on a support such as carbon; a carbon alloy catalyst, and the like.
  • the binder is preferably a polymer compound having ion exchange ability, and specific examples thereof include fluorine-based ion exchange resins and hydrocarbon-based ion exchange resins.
  • the thickness of each of the catalyst layers 321A and 321B is preferably 2 to 15 ⁇ m. If the thickness of the catalyst layer is within the above range, power generation can be performed efficiently.
  • the gas diffusion layers 10 provided on the gas diffusion electrodes 32A and 32B are the gas diffusion layers of the present invention described above, and a description thereof will be omitted.
  • the gas diffusion layer 10 is disposed so that the surface on the coating layer side faces the catalyst layer 321A or 321B.
  • a plurality of groove-like gas flow paths 41A are formed on the opposing surface facing the gas diffusion electrode 32A.
  • a plurality of groove-like cooling water flow paths may be formed on the surface of the separator 40A opposite to the opposing surface.
  • a plurality of groove-like gas flow paths 41B are formed on the opposing surface facing the gas diffusion electrode 32B.
  • a plurality of groove-like cooling water flow paths may be formed on the surface of the separator 40B opposite to the opposing surface.
  • each of the separators 40A and 40B is made of a material that is conductive and gas impermeable. Examples of such materials include carbon.
  • a catalyst layer is first formed on the coating layer of the gas diffusion layer described above to obtain a gas diffusion electrode.
  • a catalyst ink containing a catalyst, a binder, a solvent, etc. is applied onto the coating layer of the gas diffusion layer to obtain a coating film of the catalyst layer.
  • the method for applying the catalyst ink is not particularly limited, but examples thereof include a bar coating method, a blade method, a screen printing method, a spray method, a curtain coating method, a roll coating method, etc.
  • a uniform coating film of the catalyst layer can be formed on the coating layer of the gas diffusion layer.
  • the formed coating film of the catalyst layer is dried by a common method, and a gas diffusion electrode in which the catalyst layer is formed on the coating layer of the gas diffusion layer can be produced.
  • the polymer electrolyte membrane is sandwiched between a pair of gas diffusion electrodes to obtain a membrane-electrode assembly.
  • the resulting membrane-electrode assembly is sandwiched between a pair of separators to obtain a single cell.
  • the obtained single cell may be used as a polymer electrolyte fuel cell, or a plurality of single cells may be stacked and used as a polymer electrolyte fuel cell.
  • the surface roughness Ra of the coating layer of the gas diffusion layer was measured using a surface roughness measuring device (manufactured by Mitutoyo Corporation, product name "Surfcom 1400D-LCD”) with a cutoff value of 0.8 mm, a measurement section of 4 mm, a range of 320 ⁇ m, and five measurement sections.
  • a surface roughness measuring device manufactured by Mitutoyo Corporation, product name "Surfcom 1400D-LCD
  • the average particle diameters of the carbon powders A to C were calculated from the obtained SEM images by the following analytical method.
  • Method of calculating average particle size of carbon powders A and C The SEM image, taken at a magnification of 50,000 times so that only carbon powder A or C was present within the observation field, was converted to a 32-bit image using the image analysis software "ImageJ". The length and value of the scale bar of the SEM image were read using the same software. After reflecting the length per pixel in the observed image, the area in which the scale information and observation conditions were written was deleted. After subtracting the average brightness value from the obtained image data area, the outside of the image data area was interpolated with 0 so that the vertical and horizontal sizes of the image size were each a power of 2.
  • the obtained image was converted into a two-dimensional autocorrelation function, and further normalized so that the maximum value was 1 by dividing the two-dimensional autocorrelation function by the maximum value of the two-dimensional autocorrelation function.
  • the distance at which the autocorrelation function value closest to the origin attenuates to 0.5 was defined as r*
  • Example 1 ⁇ Production of Porous Electrode Substrate>
  • the carbon fibers PAN-based carbon fibers having an average fiber diameter of 7 ⁇ m and an average fiber length of 3 mm were used.
  • the carbon fiber precursor fiber an acrylic fiber (manufactured by Mitsubishi Chemical Corporation, product name "D122") having an average fiber diameter of 4 ⁇ m and an average fiber length of 3 mm was used.
  • the fibrillated fiber an easily splittable acrylic sea-island composite fiber (manufactured by Mitsubishi Chemical Corporation, product name "Bonnell MVP-C651", average fiber length: 3 mm) consisting of an acrylic polymer that can be fibrillated by beating and diacetate (cellulose acetate) was used.
  • a porous electrode substrate was produced as follows.
  • SA Disintegrated slurry fiber
  • SB disintegrated slurry fiber
  • SB' disintegrated slurry fiber
  • dilution water dilution water
  • a treatment device was used that consisted of a net drive unit, a sheet-like material conveying device consisting of a net made of a plastic net plain weave mesh of width 60 cm x length 585 cm connected in a belt shape and continuously rotated, a slurry supply unit of width 48 cm and a reduced pressure dehydration device arranged below the net.
  • a pressurized water jet treatment device equipped with the following three water jet nozzles was arranged downstream of the treatment device.
  • Nozzle 1 hole diameter ⁇ 0.15 mm ⁇ 50 holes, width direction hole pitch 1 mm (1001 holes/width 1 m), arranged in one row, nozzle effective width 500 mm.
  • Nozzle 2 hole diameter ⁇ 0.15 mm ⁇ 50, one hole per width direction hole pitch 1 mm (1001 holes/width 1 m), arranged in one row, nozzle effective width 500 mm.
  • Nozzle 3 hole diameter ⁇ 0.15 mm ⁇ 100, 2 holes with a widthwise hole pitch of 1.5 mm arranged in 3 rows, row pitch 5 mm, nozzle effective width 500 mm.
  • the pressurized water jet pressure was set to 1 MPa (nozzle 1), 2 MPa (nozzle 2), and 1 MPa (nozzle 3), and the slurry in which the fibers were dispersed was fed from the slurry supply unit, and after reduced pressure dehydration, the slurry was passed through nozzles 1, 2, and 3 in this order to carry out an entanglement treatment, thereby obtaining a precursor sheet having a three-dimensional entangled structure.
  • the precursor sheet was dried at 150° C. for 3 minutes using a pin tenter tester (manufactured by Tsujii Senki Kogyo Co., Ltd., product name "PT-2A-400") to obtain a precursor sheet.
  • the carbon fibers, carbon fiber precursor fibers, and fibrillar fibers were well dispersed in the precursor sheet, and the handleability was also good.
  • the obtained carbon fiber sheet was carbonized in a carbonization furnace under conditions of a nitrogen gas atmosphere at 2000° C. to obtain a porous electrode substrate.
  • the resulting porous electrode substrate was smooth and free from warping or undulation.
  • the resulting porous electrode substrate had a thickness of 155 ⁇ m, a gas permeability of 950 mL/(cm 2 ⁇ Pa ⁇ hr), an average pore size of 35 ⁇ m, and a basis weight of 57 g/m 2 .
  • Water-repellent treatment A water-repellent treatment liquid was prepared by mixing a PTFE dispersion (manufactured by Mitsui-Chemours Fluoroproducts Co., Ltd., product name "31-JR"), polyoxyethylene (10) octylphenyl ether as a surfactant, and distilled water. Specifically, the PTFE dispersion and the surfactant were mixed so that the solid content concentration in the water-repellent treatment liquid was 1 mass % for PTFE and 2 mass % for the surfactant, and distilled water was further added and the mixture was stirred at 1000 rpm for 10 minutes using a disper to prepare the water-repellent treatment liquid.
  • a PTFE dispersion manufactured by Mitsui-Chemours Fluoroproducts Co., Ltd., product name "31-JR”
  • polyoxyethylene (10) octylphenyl ether as a surfactant
  • distilled water distilled water
  • the porous electrode substrate was immersed in the water-repellent treatment liquid to be impregnated.
  • the impregnated porous electrode substrate was passed through two pairs of nip rolls to remove excess water-repellent treatment liquid, and then dried in a drying furnace to obtain a water-repellent treated porous electrode substrate.
  • pyrolytic graphite and carbon powder were mixed so that the pyrolytic graphite was 14 parts by mass per 100 parts by mass of carbon powder, ion-exchanged water was further added, and the mixture was stirred at 10,000 rpm for 1 minute while cooling using a stirrer (manufactured by Primix Corporation, product name "Homomixer MARK-II") to prepare dispersion liquid A.
  • a stirrer manufactured by Primix Corporation, product name "Homomixer MARK-II
  • a coating liquid was prepared by adding a polytetrafluoroethylene (PTFE) dispersion as dispersion B to the obtained dispersion A.
  • PTFE polytetrafluoroethylene
  • dispersion A and dispersion B were mixed so that the amount of PTFE was 42 parts by mass per 100 parts by mass of carbon powder, and the mixture was stirred at 5000 rpm for 15 minutes with a disperser while maintaining the liquid temperature at 30° C., to obtain a coating liquid.
  • the solid content of the obtained coating liquid was 10.8% by mass.
  • the “solid content” refers to the total content of all components contained in the coating liquid, excluding the solvent, calculated as pure content.
  • the composition of the coating liquid is shown in Table 1.
  • the coating liquid was applied to one surface of the water-repellent treated porous electrode substrate by bar coating at a coating speed of 3.3 m/min so that the coating film had a thickness of 198 ⁇ m, forming a coating film on the surface of the porous electrode substrate.
  • the porous electrode substrate was dried for 5 minutes using a hot air drying oven set at 150°C, and then sintered for 30 minutes at 360°C in a sintering oven to obtain a gas diffusion layer in which a coating layer having a thickness of 34 ⁇ m was formed on one side of the porous electrode substrate.
  • Example 2 Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 27 parts by mass per 100 parts by mass of the carbon powder.
  • a coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used.
  • a gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(b).
  • the composition of the coating solution is shown in Table 1.
  • the peel strength of the resulting gas diffusion layer was measured.
  • the results are shown in Figure 6.
  • the surface roughness Ra of the coating was measured. The results are shown in Table 2.
  • Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 54 parts by mass per 100 parts by mass of the carbon powder.
  • a coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used.
  • a gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(c).
  • the composition of the coating solution is also shown in Table 1.
  • Dispersion A was prepared in the same manner as in Example 1, except that pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 81 parts by mass per 100 parts by mass of carbon powder.
  • a coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used.
  • a gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(d).
  • the composition of the coating solution is also shown in Table 1.
  • Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 108 parts by mass per 100 parts by mass of the carbon powder.
  • a coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used.
  • a gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(e).
  • the composition of the coating solution is also shown in Table 1.
  • Dispersion A was prepared in the same manner as in Example 1, except that no pyrolytic graphite was used.
  • a coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used.
  • a gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(f).
  • the composition of the coating solution is also shown in Table 1.
  • the peel strength of the resulting gas diffusion layer was measured.
  • the results are shown in Figure 6.
  • the surface roughness Ra of the coating was measured. The results are shown in Table 2.
  • the gas diffusion layers obtained in the Examples had less cracking in the coating layer than the gas diffusion layer obtained in Comparative Example 1.
  • the gas diffusion layer obtained in Example 2 had a higher peel strength than the gas diffusion layer obtained in Comparative Example 1, and was excellent in adhesion of the coating layer to the porous electrode substrate.
  • the gas diffusion layer obtained in Example 2 had a smoother surface of the coating layer than the gas diffusion layer obtained in Comparative Example 1.

Landscapes

  • Inert Electrodes (AREA)

Abstract

The present invention provides a gas diffusion layer in which the occurrence of a crack in a coating layer is suppressed and a manufacturing method thereof, a roll-shaped object of the gas diffusion layer, and a solid polymer fuel cell. The gas diffusion layer has a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate, wherein the coating layer contains carbon powder A having an average particle diameter of 5 to 800 nm and carbon powder B having an average particle diameter of 1 to 50 μm.

Description

ガス拡散層及びその製造方法、ガス拡散層のロール状物、固体高分子形燃料電池Gas diffusion layer and its manufacturing method, roll of gas diffusion layer, and polymer electrolyte fuel cell

 本発明は、ガス拡散層及びその製造方法、ガス拡散層のロール状物、固体高分子形燃料電池に関する。
 本願は、2023年6月19日に、日本に出願された特願2023-100085号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a gas diffusion layer and a method for producing the same, a roll of a gas diffusion layer, and a polymer electrolyte fuel cell.
This application claims priority based on Japanese Patent Application No. 2023-100085, filed on June 19, 2023, the contents of which are incorporated herein by reference.

 固体高分子形燃料電池は、水素等の燃料ガスと酸素等の酸化ガスとを電気化学的に反応させることにより起電力を得る装置である。固体高分子形燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、高分子電解質膜の両面には、内側から貴金属系触媒を担持したカーボン粉末を主成分とする触媒層と、ガス拡散層基材とを有する2組のガス拡散電極が接合されている。
 このような高分子電解質膜と2組のガス拡散電極からなる接合体は膜-電極接合体(MEA: Membrane Electrode Assembly)と呼ばれている。また、MEAの両外側には、燃料ガス又は酸化ガスを供給し、かつ生成ガス及び過剰ガスを排出することを目的とするガス流路を形成したセパレータが設置されている。
A polymer electrolyte fuel cell is a device that generates electromotive force by electrochemically reacting a fuel gas such as hydrogen with an oxidizing gas such as oxygen. A polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). In addition, two sets of gas diffusion electrodes, each of which has a catalyst layer mainly composed of carbon powder carrying a precious metal catalyst and a gas diffusion layer substrate, are bonded to both sides of the polymer electrolyte membrane from the inside.
Such an assembly consisting of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane electrode assembly (MEA). Separators are installed on both sides of the MEA, each of which has gas flow paths for supplying fuel gas or oxidizing gas and discharging generated gas and excess gas.

 ガス拡散層基材には、主に次の3つの機能が要求される。
 第1の機能は、ガス拡散電極基材の外側に配置されたセパレータに形成されたガス流路から触媒層中の貴金属系触媒に均一に燃料ガス又は酸化ガスを供給する機能である。
 第2の機能は、触媒層での反応により生成した水を排出する機能である。
 第3の機能は、触媒層での反応に必要な電子又は触媒層での反応により生成される電子をセパレータへ導電する機能である。
 これらの機能を充足するガス拡散層基材としては、通常、炭素質材料からなる多孔質構造を有する基材が使用される。具体的には、カーボンペーパー、炭素繊維クロス、炭素繊維フェルト等の炭素繊維を用いた多孔質電極基材が一般的に用いられる。これらの多孔質電極基材は炭素繊維によって高い導電性を示すだけでなく、多孔質材料であるため、燃料ガス及び生成水等の液体の透過性が高く、ガス拡散層基材として好適な材料である。
The gas diffusion layer substrate is required to have the following three main functions:
The first function is to supply a fuel gas or an oxidizing gas uniformly to the precious metal catalyst in the catalyst layer from gas flow paths formed in a separator disposed on the outer side of the gas diffusion electrode substrate.
The second function is to discharge water produced by the reaction in the catalyst layer.
The third function is to conduct electrons required for the reaction in the catalyst layer or electrons generated by the reaction in the catalyst layer to the separator.
As a gas diffusion layer substrate that satisfies these functions, a substrate having a porous structure made of a carbonaceous material is usually used. Specifically, a porous electrode substrate using carbon fibers such as carbon paper, carbon fiber cloth, and carbon fiber felt is generally used. These porous electrode substrates not only exhibit high electrical conductivity due to the carbon fibers, but also have high permeability to liquids such as fuel gas and generated water because they are porous materials, making them suitable materials for use as gas diffusion layer substrates.

 ガス拡散層基材と触媒層との接触抵抗を下げ、発電時に発生する生成水を効率よく排出することを目的として、カーボン微粒子及び撥水剤を含むコーティング層をガス拡散層基材の触媒層側の表面に設けることがある。
 例えば、特許文献1には、多孔質電極基材の表面に、導電性炭素粒子、フッ化ピッチ及びフッ素系溶剤を含有するペースト組成物を塗布し、乾燥及び焼結することで、多孔質電極基材の表面にコーティング層が形成されたガス拡散層が提案されている。
 また、特許文献2には、意図的にコーティング層に微細なクラックを予め設けることで、巻き取り前後においてコーティング層の構造に変化が生じにくいガス拡散層が提案されている。
 さらに、特許文献3には、カーボン粉と撥水剤を含むコーティング層を備えたガス拡散層が提案されている。
In order to reduce the contact resistance between the gas diffusion layer substrate and the catalyst layer and to efficiently discharge water generated during power generation, a coating layer containing carbon fine particles and a water repellent agent may be provided on the surface of the gas diffusion layer substrate facing the catalyst layer.
For example, Patent Document 1 proposes a gas diffusion layer in which a coating layer is formed on the surface of a porous electrode substrate by applying a paste composition containing conductive carbon particles, pitch fluoride, and a fluorine-based solvent to the surface of the porous electrode substrate, followed by drying and sintering.
Furthermore, Patent Document 2 proposes a gas diffusion layer in which fine cracks are intentionally provided in advance in the coating layer, so that the structure of the coating layer is less likely to change before and after winding.
Furthermore, Patent Document 3 proposes a gas diffusion layer having a coating layer containing carbon powder and a water repellent agent.

特開2010-129451号公報JP 2010-129451 A 特開2016-12558号公報JP 2016-12558 A 国際公開第2018/016626号International Publication No. 2018/016626

 クラックを有するコーティング層は、多孔質電極基材との接着性が低くなりやすい。そのため、クラックの発生が抑制されたコーティング層を有するガス拡散層が求められる。
 本発明の目的の一つは、コーティング層におけるクラックの発生が抑制されたガス拡散層及びその製造方法、ガス拡散層のロール状物、固体高分子形燃料電池を提供することにある。
A coating layer having cracks is likely to have poor adhesion to a porous electrode substrate, and therefore there is a demand for a gas diffusion layer having a coating layer in which the occurrence of cracks is suppressed.
An object of the present invention is to provide a gas diffusion layer in which the occurrence of cracks in a coating layer is suppressed, a method for producing the same, a roll of a gas diffusion layer, and a polymer electrolyte fuel cell.

 本発明は、下記の態様を有する。
[1] 多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、平均粒子径が5~800nmであるカーボン粉Aと、平均粒子径が1~50μmであるカーボン粉Bとを含む、ガス拡散層。
[2] 前記カーボン粉A/前記カーボン粉Bの質量比が、0.5以上または1.0以上であり、かつ9.0以下、4.0以下、2.0以下、1.8以下または1.2以下である、前記[1]のガス拡散層。
[3] 前記カーボン粉Aがカーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種であり、前記カーボン粉Bが熱分解黒鉛、ミルドファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種である、前記[1]または[2]のガス拡散層。
[4] 多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種のカーボン粉Cと、熱分解黒鉛とを含む、ガス拡散層。
[5] 前記コーティング層に撥水剤を含む、前記[1]~[4]のいずれかのガス拡散層。
[6] 前記熱分解黒鉛のアスペクト比が2~40である、前記[3]または[4]のガス拡散層。
[7] 前記カーボン粉C/前記熱分解黒鉛で表される質量比が、0.5以上または1.0以上であり、かつ9.0以下、4.0以下、2.0以下、1.8以下または1.2以下である、前記[4]または[6]のガス拡散層。
[8] 厚みが160~350μmである、前記[1]~[7]のいずれかのガス拡散層。
[9] 多孔質電極基材の平均細孔径が5~200μmである、前記[1]~[8]のいずれかのガス拡散層。
[10] 前記コーティング層の表面粗さが3.0μm以下である、前記[1]~[9]のいずれかのガス拡散層。
[11] 前記多孔質電極基材が炭素繊維を含む、前記[1]~[10]のいずれかのガス拡散層。
[12] 前記熱分解黒鉛の平均粒子径が3~50μmである、前記[4]のガス拡散層。
[13] 前記カーボン粉Cの平均粒子径が30~100nmである、前記[4]のガス拡散層。
[14] 炭素繊維が炭素により結着された基材と、前記基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、熱分解黒鉛と、カーボンブラックと、フッ素樹脂とを含む、ガス拡散層。
[15] 前記熱分解黒鉛のアスペクト比が2~40である、前記[14]のガス拡散層。
[16] 前記カーボンブラック/前記熱分解黒鉛で表される質量比が、0.5以上または1.0以上であり、かつ9.0以下、4.0以下、2.0以下、1.8以下または1.2以下である、前記[14]又は[15]のガス拡散層。
[17] 前記熱分解黒鉛の平均粒子径が3~50μmである、前記[14]~[16]のいずれかのガス拡散層。
[18] 前記カーボンブラックの平均粒子径が30~100nmである、前記[14]~[17]のいずれかのガス拡散層。
[19] 前記[1]~[18]のいずれかのガス拡散層の前記コーティング層上に保護層を設け、ロール状に巻き回した、ガス拡散層のロール状物。
[20] 前記[1]~[18]のいずれかのガス拡散層を備えた、固体高分子形燃料電池。
[21] 多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層の製造方法であって、
 前記多孔質電極基材の少なくとも一方の面に、平均粒子径が1~50μmであるカーボン粉Bと平均粒子径が5~800nmであるカーボン粉Aとを混合したコーティング液を塗布することを含む、ガス拡散層の製造方法。
[22] 前記カーボン粉Bのアスペクト比が2~40である、前記[14]のガス拡散層の製造方法。
[23] 前記カーボン粉Bが熱分解黒鉛である、[21]または[22]に記載のガス拡散層の製造方法。
[24] 前記カーボン粉A/前記カーボン粉Bで表される質量比が、0.5以上または1.0以上であり、かつ9.0以下、4.0以下、2.0以下、1.8以下または1.2以下である、前記[21]~[23]のいずれかのガス拡散層の製造方法。
The present invention has the following aspects.
[1] A gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate,
The coating layer is a gas diffusion layer comprising carbon powder A having an average particle size of 5 to 800 nm and carbon powder B having an average particle size of 1 to 50 μm.
[2] The gas diffusion layer according to [1], wherein a mass ratio of the carbon powder A to the carbon powder B is 0.5 or more or 1.0 or more and 9.0 or less, 4.0 or less, 2.0 or less, 1.8 or less, or 1.2 or less.
[3] The gas diffusion layer according to [1] or [2], wherein the carbon powder A is at least one selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and the carbon powder B is at least one selected from the group consisting of pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon.
[4] A gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate,
The coating layer is a gas diffusion layer comprising at least one carbon powder C selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and pyrolytic graphite.
[5] The gas diffusion layer according to any one of [1] to [4] above, wherein the coating layer contains a water repellent.
[6] The gas diffusion layer according to [3] or [4], wherein the aspect ratio of the pyrolytic graphite is 2 to 40.
[7] The gas diffusion layer according to [4] or [6], wherein a mass ratio represented by the carbon powder C/the pyrolytic graphite is 0.5 or more or 1.0 or more, and 9.0 or less, 4.0 or less, 2.0 or less, 1.8 or less, or 1.2 or less.
[8] The gas diffusion layer according to any one of [1] to [7] above, having a thickness of 160 to 350 μm.
[9] The gas diffusion layer according to any one of the above [1] to [8], wherein the average pore size of the porous electrode substrate is 5 to 200 μm.
[10] The gas diffusion layer according to any one of [1] to [9], wherein the coating layer has a surface roughness of 3.0 μm or less.
[11] The gas diffusion layer according to any one of [1] to [10] above, wherein the porous electrode substrate contains carbon fibers.
[12] The gas diffusion layer according to [4], wherein the average particle size of the pyrolytic graphite is 3 to 50 μm.
[13] The gas diffusion layer according to [4], wherein the carbon powder C has an average particle size of 30 to 100 nm.
[14] A gas diffusion layer having a substrate in which carbon fibers are bonded by carbon and a coating layer formed on at least one surface of the substrate,
The gas diffusion layer, wherein the coating layer contains pyrolytic graphite, carbon black, and a fluororesin.
[15] The gas diffusion layer according to [14], wherein the aspect ratio of the pyrolytic graphite is 2 to 40.
[16] The gas diffusion layer according to [14] or [15], wherein a mass ratio of the carbon black to the pyrolytic graphite is 0.5 or more or 1.0 or more, and 9.0 or less, 4.0 or less, 2.0 or less, 1.8 or less, or 1.2 or less.
[17] The gas diffusion layer according to any one of the above [14] to [16], wherein the average particle size of the pyrolytic graphite is 3 to 50 μm.
[18] The gas diffusion layer according to any one of the above [14] to [17], wherein the carbon black has an average particle size of 30 to 100 nm.
[19] A roll of a gas diffusion layer, comprising the gas diffusion layer according to any one of [1] to [18] above, provided on the coating layer thereof with a protective layer, and wound into a roll.
[20] A polymer electrolyte fuel cell comprising the gas diffusion layer according to any one of [1] to [18].
[21] A method for producing a gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate, comprising the steps of:
A method for producing a gas diffusion layer, comprising: applying a coating liquid, which is a mixture of carbon powder B having an average particle diameter of 1 to 50 μm and carbon powder A having an average particle diameter of 5 to 800 nm, to at least one surface of the porous electrode substrate.
[22] The method for producing a gas diffusion layer according to [14], wherein the aspect ratio of the carbon powder B is 2 to 40.
[23] The method for producing a gas diffusion layer according to [21] or [22], wherein the carbon powder B is pyrolytic graphite.
[24] The method for producing a gas diffusion layer according to any of [21] to [23] above, wherein a mass ratio represented by the carbon powder A/the carbon powder B is 0.5 or more or 1.0 or more, and 9.0 or less, 4.0 or less, 2.0 or less, 1.8 or less, or 1.2 or less.

 本発明によれば、コーティング層におけるクラックの発生が抑制されたガス拡散層及びその製造方法、ガス拡散層のロール状物、固体高分子形燃料電池を提供することができる。 The present invention provides a gas diffusion layer in which the occurrence of cracks in the coating layer is suppressed, a method for producing the same, a roll of the gas diffusion layer, and a polymer electrolyte fuel cell.

本発明のガス拡散層の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a gas diffusion layer of the present invention. 本発明のガス拡散層のロール状物の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a roll of the gas diffusion layer of the present invention. 図2に示すガス拡散層のロール状物のA-A’線に沿う断面図である。3 is a cross-sectional view taken along line A-A' of the roll of gas diffusion layer shown in FIG. 2. [0023] FIG. 本発明の固体高分子形燃料電池の構成の一例を示す分解斜視図である。1 is an exploded perspective view showing an example of the configuration of a polymer electrolyte fuel cell according to the present invention. 実施例及び比較例で得られたガス拡散層のコーティング層の表面を観察した走査型電子顕微鏡写真であり、(a)は実施例1の観察結果であり、(b)は実施例2の観察結果であり、(c)は実施例3の観察結果であり、(d)は実施例4の観察結果であり、(e)は実施例5の観察結果であり、(f)は比較例1の観察結果である。1A to 1F are scanning electron microscope photographs of the surfaces of the coating layers of the gas diffusion layers obtained in the Examples and Comparative Examples, where (a) is the observation result of Example 1, (b) is the observation result of Example 2, (c) is the observation result of Example 3, (d) is the observation result of Example 4, (e) is the observation result of Example 5, and (f) is the observation result of Comparative Example 1. 実施例2及び比較例1で得られたガス拡散層の剥離強度の測定結果を示すグラフである。1 is a graph showing the measurement results of the peel strength of the gas diffusion layers obtained in Example 2 and Comparative Example 1.

 以下では本発明を実施するための形態を詳細に説明するが、本発明は後述する実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限り種々の変形が可能である。
 なお、本明細書及び特許請求の範囲において、「~」で表される数値範囲は、~の前後の数値を下限値及び上限値として含む数値範囲を意味する。例えばA~BはA以上B以下と同義である。
 また、以下の説明で用いる各図面は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なる場合がある。
The following describes in detail the forms for implementing the present invention, but the present invention is not limited to the embodiments described below, and various modifications are possible without departing from the gist of the present invention.
In this specification and claims, a numerical range expressed by "to" means a numerical range including the numerical values before and after "to" as the lower and upper limits. For example, A to B is equivalent to A or more and B or less.
In addition, in the drawings used in the following description, for convenience, characteristic parts may be shown enlarged in order to make the features easier to understand, and the dimensional ratios of each component may differ from the actual ones.

[ガス拡散層]
 図1に、本発明のガス拡散層の一例を示す。
 本実施形態のガス拡散層10は、多孔質電極基材11と、多孔質電極基材11の一方の面に形成されたコーティング層12とを有する。
[Gas diffusion layer]
FIG. 1 shows an example of the gas diffusion layer of the present invention.
The gas diffusion layer 10 of this embodiment has a porous electrode substrate 11 and a coating layer 12 formed on one surface of the porous electrode substrate 11 .

<多孔質電極基材>
 多孔質電極基材としては、導電性フィラーである炭素粉、炭素繊維、金属繊維、樹脂等を原料とした導電性ペーパー、クロス、不織布等のあらゆる導電性多孔質材料を用いることができる。特に、多孔質電極基材は、炭素繊維を含むことが好ましい。
 炭素繊維を含む多孔質電極基材としては、炭素繊維が炭素により結着された多孔質電極基材が好ましい。以下、炭素繊維が炭素により結着された多孔質電極基材を特に「多孔質炭素電極基材」ともいう。
<Porous electrode substrate>
As the porous electrode substrate, any conductive porous material such as conductive paper, cloth, nonwoven fabric, etc., made from a conductive filler such as carbon powder, carbon fiber, metal fiber, resin, etc., can be used. In particular, it is preferable that the porous electrode substrate contains carbon fiber.
As the porous electrode substrate containing carbon fibers, a porous electrode substrate in which carbon fibers are bound by carbon is preferable. Hereinafter, the porous electrode substrate in which carbon fibers are bound by carbon is also particularly referred to as a "porous carbon electrode substrate".

(炭素繊維)
 炭素繊維の平均繊維径は、2μm以上が好ましく、3μm以上がより好ましく、4μm以上がさらに好ましい。炭素繊維の平均繊維径が前記下限値以上であれば、多孔質電極基材における繊維間の距離がより広くなり、ガス透過度がより高くなる傾向がある。炭素繊維の平均繊維径は、30μm以下が好ましく、20μm以下がより好ましく、8μm以下がさらに好ましい。炭素繊維の平均繊維径が前記上限値以下であれば、多孔質電極基材に適度に柔軟性を持たせることができる。前記炭素繊維の平均繊維径の下限と上限は任意に組み合わせることができ、例えば2~30μmが好ましく、3~20μmがより好ましく、4~8μmがさらに好ましい。
 炭素繊維の平均繊維径は、例えば走査型電子顕微鏡等の顕微鏡で炭素繊維断面を50倍以上に拡大して写真撮影を行い、無作為に50本の単繊維を選んで直径を計測し、それらを平均して求める。なお、炭素繊維断面に長径と短径がある場合には、長径をその繊維の繊維径とする。
(Carbon fiber)
The average fiber diameter of the carbon fibers is preferably 2 μm or more, more preferably 3 μm or more, and even more preferably 4 μm or more. If the average fiber diameter of the carbon fibers is equal to or more than the lower limit, the distance between the fibers in the porous electrode substrate tends to be wider, and the gas permeability tends to be higher. The average fiber diameter of the carbon fibers is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 8 μm or less. If the average fiber diameter of the carbon fibers is equal to or less than the upper limit, the porous electrode substrate can be provided with appropriate flexibility. The lower limit and the upper limit of the average fiber diameter of the carbon fibers can be arbitrarily combined, and for example, 2 to 30 μm are preferable, 3 to 20 μm are more preferable, and 4 to 8 μm are even more preferable.
The average fiber diameter of carbon fibers is determined by taking a photograph of the cross section of carbon fibers at 50 times or more magnification using a microscope such as a scanning electron microscope, randomly selecting 50 single fibers, measuring the diameters, and averaging the diameters. When the cross section of a carbon fiber has a long diameter and a short diameter, the long diameter is regarded as the fiber diameter of the fiber.

 炭素繊維の平均繊維長は、2μm以上が好ましく、3μm以上がより好ましい。炭素繊維の平均繊維長が前記下限値以上であれば、多孔質電極基材に十分な強度を持たせることができる。炭素繊維の平均繊維長は、30mm以下が好ましく、12mm以下がより好ましく、9mm以下がさらに好ましい。炭素繊維の平均繊維長が前記上限値以下であれば、分散斑の少ない多孔質電極基材を得ることができる。前記炭素繊維の平均繊維長の下限と上限は任意に組み合わせることができ、例えば2~30mmが好ましく、2~12mmがより好ましく、3~9mmがさらに好ましい。
 炭素繊維の平均繊維長は、例えば走査型電子顕微鏡等の顕微鏡で炭素繊維を50倍以上に拡大して写真撮影を行い、無作為に50本の単繊維を選んで長さを計測し、それらを平均して求める。
The average fiber length of the carbon fibers is preferably 2 μm or more, more preferably 3 μm or more. If the average fiber length of the carbon fibers is equal to or more than the lower limit, the porous electrode substrate can have sufficient strength. The average fiber length of the carbon fibers is preferably 30 mm or less, more preferably 12 mm or less, and even more preferably 9 mm or less. If the average fiber length of the carbon fibers is equal to or less than the upper limit, a porous electrode substrate with less dispersion spots can be obtained. The lower limit and the upper limit of the average fiber length of the carbon fibers can be arbitrarily combined, and for example, 2 to 30 mm are preferable, 2 to 12 mm are more preferable, and 3 to 9 mm are even more preferable.
The average fiber length of the carbon fibers is determined by, for example, photographing the carbon fibers at 50 times or more magnification using a microscope such as a scanning electron microscope, randomly selecting 50 single fibers, measuring their lengths, and averaging the lengths.

 炭素繊維としては、例えばポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維等が挙げられる。これらの中でも、繊維径が太い繊維の入手が容易なことから、炭素繊維はPAN系炭素繊維及びピッチ系炭素繊維の少なくとも一方を含むことが好ましい。 Examples of carbon fibers include polyacrylonitrile (PAN)-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, and phenol-based carbon fibers. Among these, it is preferable that the carbon fibers include at least one of PAN-based carbon fibers and pitch-based carbon fibers, since fibers with a large fiber diameter are easily available.

(炭素)
 炭素は、炭素繊維同士を結着するためのバインダとして機能する。一様に分散した複数の炭素繊維同士が炭素を介して固定される。
 炭素繊維を結着する炭素としては、例えば樹脂や有機繊維の炭化物が挙げられる。炭素の原料として用いる樹脂及び有機繊維については、後述の多孔質電極基材の製造方法の項で詳述する。
(carbon)
The carbon functions as a binder to bind the carbon fibers together, and the uniformly dispersed carbon fibers are fixed together via the carbon.
Examples of carbon that bonds the carbon fibers include carbonized resins and organic fibers. The resins and organic fibers used as raw materials for carbon will be described in detail in the section on the manufacturing method of the porous electrode substrate described later.

 多孔質電極基材の総質量に対する炭素の含有量は、10~40質量%が好ましく、15~40質量%がより好ましい。炭素の含有量が前記下限値以上であれば、多孔質電極基材の強度を確保しやすく、炭素繊維が脱落しにくくなる。炭素の含有量が前記上限値以下であれば、十分な空隙が確保されやすく、気体や液体の透過及び拡散が容易になる。
 なお、炭素の含有量は炭素繊維の含有量を含まない。
The carbon content relative to the total mass of the porous electrode substrate is preferably 10 to 40 mass%, more preferably 15 to 40 mass%. If the carbon content is equal to or greater than the lower limit, the strength of the porous electrode substrate is easily ensured, and the carbon fibers are less likely to fall off. If the carbon content is equal to or less than the upper limit, sufficient voids are easily ensured, and gas and liquid permeation and diffusion are facilitated.
The carbon content does not include the carbon fiber content.

(他の成分)
 多孔質電極基材は、カーボン粉をさらに含んでもよい。多孔質電極基材がカーボン粉をさらに含むことにより、導電性の向上が期待できる。
 多孔質電極基材がカーボン粉を含む場合、カーボン粉の含有量は、多孔質電極基材の総質量に対して、1~20質量%が好ましく、1~15質量%がより好ましい。カーボン粉の含有量が前記下限値以上であれば、カーボン粉による導電経路が形成され、導電性が向上しやすい。カーボン粉の含有量が前記上限値以下であれば、多孔質電極基材が脆くなったり曲げにくくなったりすることを抑制しやすい。
 カーボン粉については、後述のコーティング層の項で詳述する。
(Other ingredients)
The porous electrode substrate may further contain carbon powder, which is expected to improve electrical conductivity.
When the porous electrode substrate contains carbon powder, the content of the carbon powder is preferably 1 to 20 mass %, more preferably 1 to 15 mass %, based on the total mass of the porous electrode substrate. When the content of the carbon powder is equal to or more than the lower limit, a conductive path is formed by the carbon powder, and the conductivity is likely to be improved. When the content of the carbon powder is equal to or less than the upper limit, the porous electrode substrate is likely to be prevented from becoming brittle or difficult to bend.
The carbon powder will be described in detail in the section on the coating layer below.

(多孔質電極基材の物性)
 多孔質電極基材の厚み方向のガス透過度は、100mL/(cm・Pa・hr)以上が好ましく、120mL/(cm・Pa・hr)以上がより好ましく、150mL/(cm・Pa・hr)以上がさらに好ましく、200mL/(cm・Pa・hr)以上が特に好ましい。多孔質電極基材のガス透過度が前記下限値以上であれば、燃料ガスや酸化ガスが拡散しやすく反応効率が向上する。多孔質電極基材の厚み方向のガス透過度は、12000mL/(cm・Pa・hr)以下が好ましく、5000mL/(cm・Pa・hr)以下がより好ましく、2500mL/(cm・Pa・hr)以下がさらに好ましく、1000mL/(cm・Pa・hr)以下が特に好ましい。多孔質電極基材のガス透過度が前記上限値以下であれば、生成水等の液体が通過しても構造が崩れることなく形態を良好に保持できる。前記多孔質電極基材の厚み方向のガス透過度の下限と上限は任意に組み合わせることができ、例えば100~12000mL/(cm・Pa・hr)が好ましく、120~5000mL/(cm・Pa・hr)がより好ましく、150~2500mL/(cm・Pa・hr)がさらに好ましく、200~1000mL/(cm・Pa・hr)が特に好ましい。
 ガス透過度は、JIS P 8117:2009に準拠した方法によって測定される。
(Physical properties of porous electrode substrate)
The gas permeability in the thickness direction of the porous electrode substrate is preferably 100 mL/(cm 2 Pa hr) or more, more preferably 120 mL/(cm 2 Pa hr) or more, even more preferably 150 mL/(cm 2 Pa hr) or more, and particularly preferably 200 mL/(cm 2 Pa hr) or more. If the gas permeability of the porous electrode substrate is the lower limit value or more, the fuel gas and the oxidizing gas are easily diffused and the reaction efficiency is improved. The gas permeability in the thickness direction of the porous electrode substrate is preferably 12000 mL/(cm 2 Pa hr) or less, more preferably 5000 mL/(cm 2 Pa hr) or less, even more preferably 2500 mL/(cm 2 Pa hr) or less, and particularly preferably 1000 mL/(cm 2 Pa hr) or less. If the gas permeability of the porous electrode substrate is equal to or less than the upper limit, the structure will not collapse and the shape can be well maintained even if liquid such as produced water passes through. The lower and upper limits of the gas permeability in the thickness direction of the porous electrode substrate can be arbitrarily combined, and for example, 100 to 12000 mL/(cm 2 Pa hr) is preferable, 120 to 5000 mL/(cm 2 Pa hr) is more preferable, 150 to 2500 mL/(cm 2 Pa hr) is even more preferable, and 200 to 1000 mL/(cm 2 Pa hr) is particularly preferable.
The gas permeability is measured by a method in accordance with JIS P 8117:2009.

 多孔質電極基材の厚みは、30μm以上が好ましく、55μm以上がより好ましく、100μm以上がさらに好ましい。多孔質電極基材の厚みが前記下限値以上であれば、ガス拡散層の搬送が容易となる。加えて、多孔質電極基材の少なくとも一方の面にコーティング層を容易に形成できる。多孔質電極基材の厚みは、800μm以下が好ましく、350μm以下がより好ましく、250μm以下がさらに好ましい。多孔質電極基材の厚みが前記上限値以下であれば、電気抵抗の上昇を抑制でき、発電性能を良好に維持できる。前記多孔質電極基材の厚みの下限と上限は任意に組み合わせることができ、例えば30~800μmが好ましく、55~350μmがより好ましく、100~250μmがさらに好ましい。
 なお、多孔質電極基材の厚みは、多孔質電極基材における任意の10箇所の厚みを測定し、それらを平均した値である。
The thickness of the porous electrode substrate is preferably 30 μm or more, more preferably 55 μm or more, and even more preferably 100 μm or more. If the thickness of the porous electrode substrate is equal to or more than the lower limit, the gas diffusion layer can be easily transported. In addition, a coating layer can be easily formed on at least one surface of the porous electrode substrate. The thickness of the porous electrode substrate is preferably 800 μm or less, more preferably 350 μm or less, and even more preferably 250 μm or less. If the thickness of the porous electrode substrate is equal to or less than the upper limit, an increase in electrical resistance can be suppressed and power generation performance can be maintained well. The lower limit and the upper limit of the thickness of the porous electrode substrate can be arbitrarily combined, for example, preferably 30 to 800 μm, more preferably 55 to 350 μm, and even more preferably 100 to 250 μm.
The thickness of the porous electrode substrate is determined by measuring the thickness at any ten points on the porous electrode substrate and averaging these values.

 多孔質電極基材の平均細孔径は、5μm以上が好ましく、8μm以上がより好ましく、10μm以上がさらに好ましい。多孔質電極基材の平均細孔径が前記下限値以上であれば、燃料ガスや酸化ガスが拡散しやすく反応効率が向上する。多孔質電極基材の平均細孔径は、200μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましい。多孔質電極基材の平均細孔径が前記上限値以下であれば、ガス拡散層を均一に流体が透過するため反応斑が生じにくい。前記多孔質電極基材の平均細孔径の下限と上限は任意に組み合わせることができ、例えば5~200μmが好ましく、8~100μmがより好ましく、10~50μmがさらに好ましい。
 なお、多孔質電極基材を水銀圧入法により測定し、得られた細孔分布から算出したメジアン径を平均細孔径とする。
The average pore diameter of the porous electrode substrate is preferably 5 μm or more, more preferably 8 μm or more, and even more preferably 10 μm or more. If the average pore diameter of the porous electrode substrate is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved. The average pore diameter of the porous electrode substrate is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less. If the average pore diameter of the porous electrode substrate is equal to or less than the upper limit, the fluid is uniformly transmitted through the gas diffusion layer, and reaction spots are unlikely to occur. The lower limit and the upper limit of the average pore diameter of the porous electrode substrate can be arbitrarily combined, and for example, 5 to 200 μm are preferable, 8 to 100 μm are more preferable, and 10 to 50 μm are even more preferable.
The porous electrode substrate is measured by mercury intrusion porosimetry, and the median diameter calculated from the obtained pore distribution is regarded as the average pore diameter.

 多孔質電極基材の目付は、50g/m以上が好ましく、55g/m以上がより好ましく、60g/m以上がさらに好ましい。多孔質電極基材の目付が前記下限値以上であれば、多孔質電極基材のハンドリング性が良好になる傾向がある。多孔質電極基材の目付は、300g/m以下が好ましく、270g/m以下がより好ましく、250g/m以下がさらに好ましい。多孔質電極基材の目付が前記上限値以下であれば、多孔質電極基材の導電性を確保しやすい。前記多孔質電極基材の目付の下限と上限は任意に組み合わせることができ、例えば50~300g/mが好ましく、55~270g/mがより好ましく、60~250g/mがさらに好ましい。 The basis weight of the porous electrode substrate is preferably 50 g/m 2 or more, more preferably 55 g/m 2 or more, and even more preferably 60 g/m 2 or more. If the basis weight of the porous electrode substrate is the lower limit or more, the handling property of the porous electrode substrate tends to be good. The basis weight of the porous electrode substrate is preferably 300 g/m 2 or less, more preferably 270 g/m 2 or less, and even more preferably 250 g/m 2 or less. If the basis weight of the porous electrode substrate is the upper limit or less, the conductivity of the porous electrode substrate is easily ensured. The lower limit and the upper limit of the basis weight of the porous electrode substrate can be arbitrarily combined, for example, 50 to 300 g/m 2 are preferable, 55 to 270 g/m 2 are more preferable, and 60 to 250 g/m 2 are even more preferable.

(多孔質電極基材の製造方法)
 以下、多孔質電極基材の製造方法の一例について説明する。なお、以下に示す多孔質電極基材の製造方法は、多孔質炭素電極基材の製造方法の一例である。
 多孔質電極基材は、例えば以下に示す炭素繊維シートを炭素化処理することで得られる。
(Method of manufacturing porous electrode substrate)
An example of a method for producing a porous electrode substrate will be described below. Note that the method for producing a porous electrode substrate shown below is an example of a method for producing a porous carbon electrode substrate.
The porous electrode substrate can be obtained, for example, by subjecting a carbon fiber sheet described below to a carbonization treatment.

《炭素繊維シート》
 炭素繊維シートとしては、炭素繊維シートの強度が向上する観点から、炭素繊維同士が樹脂及び有機繊維の少なくとも一方により接合されたシートが好ましい。
 炭素繊維シートは、例えば炭素繊維、又は炭素繊維と有機繊維を分散媒中に分散させた分散液を抄造し、必要に応じて樹脂を添加することによって得られる。
 炭素繊維シートは、炭素化処理の前に加熱加圧処理してもよい。
Carbon fiber sheet
From the viewpoint of improving the strength of the carbon fiber sheet, a sheet in which carbon fibers are bonded together with at least one of a resin and an organic fiber is preferred as the carbon fiber sheet.
The carbon fiber sheet can be obtained, for example, by forming a dispersion of carbon fibers or carbon fibers and organic fibers in a dispersion medium into a paper sheet, and adding a resin as necessary.
The carbon fiber sheet may be subjected to a heat and pressure treatment before the carbonization treatment.

 炭素繊維シートの厚みは、100μm以上が好ましく、150μm以上がより好ましく、170μm以上がさらに好ましく、200μm以上が特に好ましい。炭素繊維シートの厚みが前記下限値以上であれば、ガス透過性に優れた多孔質電極基材が得られやすい。炭素繊維シートの厚みは、5000μm以下が好ましく、4000μm以下がより好ましく、3000μm以下がさらに好ましく、2000μm以下が特に好ましい。炭素繊維シートの厚みが前記上限値以下であれば、導電性の高い多孔質電極基材が得られやすい。前記炭素繊維シートの厚みの下限と上限は任意に組み合わせることができ、例えば100~5000μmが好ましく、150~4000μmがより好ましく、170~3000μmがさらに好ましく、200~2000μmが特に好ましい。
 なお、炭素繊維シートの厚みは、炭素繊維シートにおける任意の10箇所の厚みを測定し、それらを平均した値とする。炭素繊維シートに加熱加圧処理を行う場合、前記の好ましい厚みは、加熱加圧処理後の炭素繊維シートの厚みを意味する。
The thickness of the carbon fiber sheet is preferably 100 μm or more, more preferably 150 μm or more, even more preferably 170 μm or more, and particularly preferably 200 μm or more. If the thickness of the carbon fiber sheet is the lower limit or more, a porous electrode substrate having excellent gas permeability is easily obtained. The thickness of the carbon fiber sheet is preferably 5000 μm or less, more preferably 4000 μm or less, even more preferably 3000 μm or less, and particularly preferably 2000 μm or less. If the thickness of the carbon fiber sheet is the upper limit or less, a porous electrode substrate having high conductivity is easily obtained. The lower limit and the upper limit of the thickness of the carbon fiber sheet can be arbitrarily combined, for example, 100 to 5000 μm are preferable, 150 to 4000 μm are more preferable, 170 to 3000 μm are more preferable, and 200 to 2000 μm are particularly preferable.
The thickness of the carbon fiber sheet is determined by measuring the thickness at any 10 points on the carbon fiber sheet and averaging the measured values. When the carbon fiber sheet is subjected to a heating and pressurizing treatment, the above-mentioned preferable thickness means the thickness of the carbon fiber sheet after the heating and pressurizing treatment.

 炭素繊維シートの目付は、20g/m以上が好ましく、40g/m以上がより好ましく、60g/m以上がさらに好ましい。炭素繊維シートの目付が前記下限値以上であれば、ハンドリング性が良好な多孔質電極基材が得られやすい。炭素繊維シートの目付は、500g/m以下が好ましく、400g/m以下がより好ましく、300g/m以下がさらに好ましい。炭素繊維シートの目付が前記上限値以下であれば、導電性に優れた多孔質電極基材が得られやすい。前記炭素繊維シートの目付の下限と上限は任意に組み合わせることができ、例えば20~500g/mが好ましく、40~400g/mがより好ましく、60~300g/mがさらに好ましい。 The basis weight of the carbon fiber sheet is preferably 20 g/m 2 or more, more preferably 40 g/m 2 or more, and even more preferably 60 g/m 2 or more. If the basis weight of the carbon fiber sheet is the lower limit or more, a porous electrode base material with good handleability is easily obtained. The basis weight of the carbon fiber sheet is preferably 500 g/m 2 or less, more preferably 400 g/m 2 or less, and even more preferably 300 g/m 2 or less. If the basis weight of the carbon fiber sheet is the upper limit or less, a porous electrode base material with excellent conductivity is easily obtained. The lower limit and the upper limit of the basis weight of the carbon fiber sheet can be arbitrarily combined, for example, 20 to 500 g/m 2 are preferable, 40 to 400 g/m 2 are more preferable, and 60 to 300 g/m 2 are even more preferable.

 炭素繊維シートに用いる炭素繊維は、前述の多孔質電極基材の項で説明した通りである。
 炭素繊維シートに用いる樹脂としては、フェノール樹脂、フラン樹脂等の熱硬化性樹脂が好ましいが、限定はされない。
 フェノール樹脂としては、例えばレゾール型フェノール樹脂、ノボラック型フェノール樹脂が挙げられる。また、フェノール樹脂として、水分散性フェノール樹脂又は水溶性フェノール樹脂を用いてもよい。
The carbon fibers used in the carbon fiber sheet are as explained above in the section on the porous electrode substrate.
The resin used in the carbon fiber sheet is preferably a thermosetting resin such as a phenol resin or a furan resin, but is not limited thereto.
Examples of the phenolic resin include a resol type phenolic resin and a novolac type phenolic resin. In addition, a water-dispersible phenolic resin or a water-soluble phenolic resin may be used as the phenolic resin.

 炭素繊維シートに用いる有機繊維としては、例えば炭素化後の残存質量が比較的大きい繊維である炭素繊維前駆体繊維;網目状に炭素繊維を結着できる繊維であるフィブリル状繊維が好ましい。
 なお、炭素繊維シートを製造する際に、ポリビニルアルコール(PVA)や、熱融着するポリエステル系あるいはポリオレフィン系の有機高分子バインダ等を使用してもよいが、炭素化処理後に残存しないものや網目状でもないものは、「有機繊維」には含まれないものとする。
As the organic fibers used for the carbon fiber sheet, for example, carbon fiber precursor fibers, which are fibers that have a relatively large residual mass after carbonization, and fibrillar fibers, which are fibers that can bind carbon fibers in a mesh-like form, are preferable.
In addition, when manufacturing a carbon fiber sheet, polyvinyl alcohol (PVA) or a heat-sealable polyester or polyolefin organic polymer binder may be used, but those that do not remain after the carbonization process or that are not mesh-like are not included in the "organic fiber".

 炭素繊維前駆体繊維を構成するポリマーとしては、炭素化処理後の残存質量が20質量%以上であるポリマーが好ましい。このようなポリマーとしては、例えばアクリル系ポリマー、セルロース系ポリマー、フェノール系ポリマーが挙げられる。これらの中でも、紡糸性に優れ、低温から高温にかけて炭素繊維同士を接合させることができ、炭素化時の残存質量が大きい点、さらに、後述する交絡処理を行う際の繊維弾性、繊維強度を考慮すると、アクリロニトリル単位を50質量%以上含有するアクリル系ポリマーを用いることが好ましい。すなわち、炭素繊維前駆体繊維としては、アクリル繊維が好ましく、アクリロニトリル単位を50質量%以上含有するアクリル繊維がより好ましい。 As the polymer constituting the carbon fiber precursor fiber, a polymer with a residual mass of 20% by mass or more after carbonization treatment is preferred. Examples of such polymers include acrylic polymers, cellulose polymers, and phenolic polymers. Among these, it is preferable to use an acrylic polymer containing 50% by mass or more of acrylonitrile units, considering that it has excellent spinnability, can bond carbon fibers together from low to high temperatures, has a large residual mass at the time of carbonization, and further, has fiber elasticity and fiber strength during the intertwining treatment described below. In other words, as the carbon fiber precursor fiber, acrylic fibers are preferred, and acrylic fibers containing 50% by mass or more of acrylonitrile units are more preferred.

 炭素繊維前駆体繊維の平均繊維長は、良好な分散性が得られることから、2~30mmが好ましい。
 炭素繊維前駆体繊維の平均繊維径は、1~5μmが好ましい。炭素繊維前駆体繊維の平均繊維径が前記下限値以上であれば、紡糸性に優れる。炭素繊維前駆体繊維の平均繊維径が前記上限値以下であれば、加熱加圧処理や炭素化処理における収縮による破断を抑制しやすい。
 炭素繊維前駆体繊維の断面形状は特に限定されないが、炭素化した後の機械的強度が高く、製造コストを抑え得ることから、真円度の高いものが好ましい。
The average fiber length of the carbon fiber precursor fiber is preferably 2 to 30 mm, since good dispersibility can be obtained.
The average fiber diameter of the carbon fiber precursor fiber is preferably 1 to 5 μm. When the average fiber diameter of the carbon fiber precursor fiber is equal to or greater than the lower limit, the fiber has excellent spinnability. When the average fiber diameter of the carbon fiber precursor fiber is equal to or less than the upper limit, breakage due to shrinkage during heating and pressurizing treatment or carbonization treatment can be easily suppressed.
The cross-sectional shape of the carbon fiber precursor fiber is not particularly limited, but a highly circular fiber is preferred because it provides high mechanical strength after carbonization and can reduce production costs.

 フィブリル状繊維は、フィラメントやステープル等の繊維から、その構成要素である小繊維(フィブリル)が部分的に枝分かれした繊維全体を指す。以下、フィブリル状繊維の枝分かれの元となる繊維を「幹」とも言い、枝分かれした小繊維を「フィブリル部」とも言う。
 フィブリル状繊維は、炭素繊維と共に分散させることで炭素繊維の再集束を防止するとともに、加熱加圧後の炭素繊維シートを自立シートたらしめる役割を有する。
 フィブリル状繊維としては、例えば木材パルプ等の天然繊維;フィブリル化されたポリエチレン繊維、アクリル繊維、アラミド繊維等の合成パルプが挙げられる。
 また、フィブリル状繊維として、リヨセルあるいはテンセルを叩解処理して得られるフィブリル状精製セルロース繊維、又は微細セルロースを用いてもよい。これらは、含有金属量が天然セルロース繊維に比べて少なく、燃料電池におけるプロトン伝導阻害やフッ素系電解質膜の劣化を防ぐ観点から好ましい。
Fibrillar fibers refer to the entire fibers formed by partially branching small fibers (fibrils) that are components of fibers such as filaments and staples. Hereinafter, the fibers that are the source of branching of fibrillar fibers are also referred to as "trunks," and the branched small fibers are also referred to as "fibril portions."
The fibril fibers, when dispersed together with the carbon fibers, serve to prevent the carbon fibers from rebundling and to make the carbon fiber sheet self-supporting after heating and pressing.
Examples of fibrillated fibers include natural fibers such as wood pulp; and synthetic pulps such as fibrillated polyethylene fibers, acrylic fibers, and aramid fibers.
As the fibril fiber, fibril refined cellulose fiber obtained by beating Lyocell or Tencel, or fine cellulose may be used. These have a lower metal content than natural cellulose fibers, and are preferable from the viewpoint of preventing inhibition of proton conduction in fuel cells and deterioration of fluorine-based electrolyte membranes.

 フィブリル状繊維の幹の平均繊維長は、0.5~20mmが好ましい。フィブリル状繊維の幹の平均繊維長が前記下限値以上であれば、炭素繊維シートの機械的強度を確保しやすい。フィブリル状繊維の幹の平均繊維長が前記上限値以下であれば、良好な分散性が得られやすい。
 フィブリル状繊維の幹の平均繊維径は、1~50μmが好ましい。フィブリル状繊維の幹の平均繊維径が前記下限値以上であれば、良好な分散性が得られる。フィブリル状繊維の幹の平均繊維径が前記上限値以下であれば、熱処理時の収縮による破断を抑制しやすい。
 フィブリル状繊維のフィブリル部の平均繊維径は、0.01~30μmが好ましい。フィブリル状繊維のフィブリル部の平均繊維径が前記下限値以上であれば、炭素繊維シートの加熱加圧時の脱水性や多孔質電極基材のガス透過性を確保しやすい。フィブリル状繊維のフィブリル部の平均繊維径が前記上限値以下であれば、分散性が向上する。
The average fiber length of the fibril fiber trunk is preferably 0.5 to 20 mm. When the average fiber length of the fibril fiber trunk is equal to or greater than the lower limit, the mechanical strength of the carbon fiber sheet is easily ensured. When the average fiber length of the fibril fiber trunk is equal to or less than the upper limit, good dispersibility is easily obtained.
The average fiber diameter of the fibrillar fiber trunk is preferably 1 to 50 μm. When the average fiber diameter of the fibrillar fiber trunk is equal to or greater than the lower limit, good dispersibility is obtained. When the average fiber diameter of the fibrillar fiber trunk is equal to or less than the upper limit, breakage due to shrinkage during heat treatment is easily suppressed.
The average fiber diameter of the fibril part of the fibril fiber is preferably 0.01 to 30 μm. When the average fiber diameter of the fibril part of the fibril fiber is equal to or greater than the lower limit, the dehydration of the carbon fiber sheet during heating and pressurization and the gas permeability of the porous electrode substrate are easily ensured. When the average fiber diameter of the fibril part of the fibril fiber is equal to or less than the upper limit, the dispersibility is improved.

《製造方法の一例》
 本実施形態の多孔質電極基材の製造方法は、以下の工程(i)~工程(iv)を含む。
工程(i):炭素繊維、又は炭素繊維と有機繊維を分散媒中に分散させた分散液を抄造して前駆体シートを得る工程。
工程(ii):前記前駆体シートに樹脂を添加して炭素繊維シートを得る工程。
工程(iii):前記炭素繊維シートを加熱加圧する工程。
工程(iv):加熱加圧処理後の前記炭素繊維シートを炭素化処理して多孔質電極基材を得る工程。
 多孔質電極基材の製造は、生産性、及び多孔質電極基材の機械的強度の観点から、連続法で行うことが好ましいが、限定はされず、バッチ法で行ってもよい。
<Example of manufacturing method>
The method for producing a porous electrode substrate of the present embodiment includes the following steps (i) to (iv).
Step (i): A step of forming a precursor sheet from a dispersion in which carbon fibers or carbon fibers and organic fibers are dispersed in a dispersion medium.
Step (ii): A step of adding a resin to the precursor sheet to obtain a carbon fiber sheet.
Step (iii): A step of heating and pressurizing the carbon fiber sheet.
Step (iv): A step of carbonizing the carbon fiber sheet after the heating and pressurizing treatment to obtain a porous electrode substrate.
From the viewpoints of productivity and mechanical strength of the porous electrode substrate, the production of the porous electrode substrate is preferably carried out by a continuous method, but is not limited thereto, and may be carried out by a batch method.

工程(i):
 抄造には、繊維として炭素繊維のみを分散媒中に分散させた分散液を用いてもよく、炭素繊維と有機繊維とを分散媒中に分散させた分散液を用いてもよい。
 分散媒としては、例えば水;メタノール、エタノール、エチレングリコール、プロピレングリコール等の有機溶媒が挙げられる。これら分散媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、生産性の観点から、分散媒として水を用いることが好ましい。水は、脱イオン水であってもよい。
 分散液には、炭素化処理において焼失する有機高分子バインダ(ポリビニルアルコール等)を添加してから抄造してもよい。有機高分子バインダは、繊維や粒子のような固体状でも液体状でもよい。
Step (i):
For papermaking, a dispersion in which only carbon fibers are dispersed in a dispersion medium may be used, or a dispersion in which carbon fibers and organic fibers are dispersed in a dispersion medium may be used.
Examples of the dispersion medium include water; and organic solvents such as methanol, ethanol, ethylene glycol, and propylene glycol. These dispersion media may be used alone or in combination of two or more. Among them, from the viewpoint of productivity, it is preferable to use water as the dispersion medium. The water may be deionized water.
An organic polymer binder (such as polyvinyl alcohol) that is burned off during carbonization may be added to the dispersion before papermaking. The organic polymer binder may be in the form of a solid such as fibers or particles, or in the form of a liquid.

 有機繊維を用いる場合は、抄造して得られた前駆体シートを交絡処理することが好ましい。これにより、炭素繊維と有機繊維とが3次元に交絡した交絡構造を有する、より強度の高い前駆体シートが得られる。
 交絡処理方法としては特に限定されないが、例えばニードルパンチング法等の機械交絡法;ウォータージェットパンチング法等の高圧液体噴射法;スチームジェットパンチング法等の高圧気体噴射法が挙げられ、これらを組み合わせてもよい。なかでも、交絡処理による炭素繊維の破断を抑制しやすく、且つ適切な交絡性を得やすいことから、高圧液体噴射法が好ましい。
 有機繊維を用いる場合、前駆体シートの総質量に対する有機繊維の含有量は、10質量%以上が好ましく、15質量%以上がより好ましく、また50質量%以下が好ましく、40質量%以下がより好ましい。前記有機繊維の含有量の下限と上限は任意に組み合わせることができ、例えば10~50質量%が好ましく、15~40質量%がより好ましい。
When organic fibers are used, it is preferable to subject the precursor sheet obtained by papermaking to an entanglement treatment, thereby obtaining a precursor sheet having a three-dimensional entangled structure of the carbon fibers and the organic fibers and thus having a higher strength.
The entanglement method is not particularly limited, and examples thereof include mechanical entanglement methods such as needle punching, high-pressure liquid injection methods such as water jet punching, and high-pressure gas injection methods such as steam jet punching, and these may be combined. Among these, the high-pressure liquid injection method is preferred because it is easy to suppress breakage of the carbon fibers due to the entanglement treatment and easy to obtain appropriate entanglement.
When organic fibers are used, the content of the organic fibers relative to the total mass of the precursor sheet is preferably 10% by mass or more, more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less. The lower and upper limits of the content of the organic fibers can be arbitrarily combined, and are, for example, preferably 10 to 50% by mass, more preferably 15 to 40% by mass.

 前駆体シートは、工程(ii)の前に90~120℃で乾燥させることが好ましい。
 乾燥方法としては、例えば高温雰囲気炉、遠赤外線加熱炉、熱板、熱ロール等を用いて加熱する方法が挙げられる。
The precursor sheet is preferably dried at 90 to 120° C. before step (ii).
Examples of the drying method include a method of heating using a high-temperature atmospheric furnace, a far-infrared heating furnace, a hot plate, a hot roll, or the like.

工程(ii):
 前駆体シートに樹脂を添加する方法としては、例えばスプレーノズルを用いて前駆体シート表面に樹脂分散液を噴霧又は滴下する方法;カーテンコーターにより前駆体シート表面に樹脂分散液を流下する方法;キスコーターを用いて前駆体シート表面に樹脂分散液を均一にコートする方法等が挙げられる。
 カーボン粉を含む多孔質電極基材を製造する場合は、樹脂分散液にカーボン粉を添加することが好ましい。
 樹脂分散液に用いる分散媒としては、製造コストの観点から、水、アルコール、ジメチルホルムアミド、ジメチルアセトアミド、又はこれらの混合物が好ましい。
 分散媒として水を用いる場合には、界面活性剤等の分散剤を用いてもよい。
Step (ii):
Methods for adding a resin to a precursor sheet include, for example, a method in which the resin dispersion is sprayed or dropped onto the surface of the precursor sheet using a spray nozzle; a method in which the resin dispersion is caused to flow down the surface of the precursor sheet using a curtain coater; and a method in which the resin dispersion is uniformly coated onto the surface of the precursor sheet using a kiss coater.
When producing a porous electrode substrate containing carbon powder, it is preferable to add the carbon powder to the resin dispersion.
From the viewpoint of production costs, the dispersion medium used in the resin dispersion is preferably water, alcohol, dimethylformamide, dimethylacetamide, or a mixture thereof.
When water is used as the dispersion medium, a dispersant such as a surfactant may be used.

 樹脂分散液を添加した後の炭素繊維シートは例えば60~110℃、より好ましくは70~100℃で乾燥してもよい。
 炭素繊維シートにおける樹脂は、厚さ方向に均一であってもよく、濃度勾配があってもよい。
 炭素繊維シートにおける炭素繊維100質量部に対する樹脂及び有機繊維の合計量は、50質量部以上が好ましく、60質量部以上がより好ましく、80質量部以上がさらに好ましい。前記合計量が前記下限値以上であれば、炭素繊維が脱落しにくくなる。前記合計量は、180質量部以下が好ましく、160質量部以下がより好ましく、140質量部以下がさらに好ましい。前記合計量が前記上限値以下であれば、十分な空隙が確保されやすく、ガス透過性に優れた多孔質電極基材を得ることが容易になる。前記合計量の下限と上限は任意に組み合わせることができ、例えば50~180質量部が好ましく、60~160質量部がより好ましく、80~140質量部がさらに好ましい。
The carbon fiber sheet after the addition of the resin dispersion may be dried, for example, at 60 to 110°C, more preferably 70 to 100°C.
The resin in the carbon fiber sheet may be uniform in the thickness direction, or may have a concentration gradient.
The total amount of the resin and the organic fiber relative to 100 parts by mass of the carbon fiber in the carbon fiber sheet is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, and even more preferably 80 parts by mass or more. If the total amount is equal to or more than the lower limit, the carbon fiber is less likely to fall off. The total amount is preferably 180 parts by mass or less, more preferably 160 parts by mass or less, and even more preferably 140 parts by mass or less. If the total amount is equal to or less than the upper limit, sufficient voids are easily secured, and it is easy to obtain a porous electrode base material with excellent gas permeability. The lower limit and the upper limit of the total amount can be arbitrarily combined, and for example, 50 to 180 parts by mass are preferable, 60 to 160 parts by mass are more preferable, and 80 to 140 parts by mass are more preferable.

工程(iii):
 炭素繊維シートを加熱加圧処理する方法としては、例えば炭素繊維シートの両面に平滑な剛板を当てて熱プレスする方法;熱ロールプレス装置又は連続ベルトプレス装置を用いる方法が挙げられる。
 炭素繊維シートを加熱加圧処理する場合には、剛板やロール、ベルトに繊維状物等が付着しないように、炭素繊維シートに剥離剤を塗ったり、炭素繊維シートと剛板や熱ロール、ベルトとの間に離型紙を挟んだりしてもよい。
Step (iii):
Examples of methods for heating and pressurizing a carbon fiber sheet include a method in which smooth hard plates are placed on both sides of the carbon fiber sheet to heat press it; and a method using a hot roll press or a continuous belt press.
When subjecting a carbon fiber sheet to a heat and pressure treatment, a release agent may be applied to the carbon fiber sheet or release paper may be sandwiched between the carbon fiber sheet and the hard plate, heated roll, or belt to prevent fibrous materials from adhering to the hard plate, roll, or belt.

 加熱加圧処理の温度は、炭素繊維シートに含まれる樹脂や有機繊維の種類、含有量等により異なるが、100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましい。加熱加圧処理の温度が前記下限値以上であれば、炭素化が十分に進行しやすい。加熱加圧処理の温度は、400℃以下が好ましく、200℃以下がより好ましく、190℃以下がさらに好ましい。加熱加圧処理の温度が前記上限値以下であれば、樹脂や有機繊維の焼失を回避しやすい。前記加熱加圧処理の温度の下限と上限は任意に組み合わせることができ、例えば100~400℃が好ましく、120~200℃がより好ましく、150~190℃がさらに好ましい。
 加熱加圧処理の圧力は、0.05MPa以上が好ましく、1MPa以上がより好ましい。加熱加圧処理の圧力が前記下限値以上であれば、炭素繊維シートの表面を平滑にしやすい。前記加熱加圧処理の圧力は、20MPa以下が好ましく、15MPa以下がより好ましい。加熱加圧処理の圧力が前記上限値以下であれば、加熱加圧処理時に炭素繊維が破壊されにくい。前記加熱加圧処理の圧力の下限と上限は任意に組み合わせることができ、例えば0.05~20MPaが好ましく、1~15MPaがより好ましい。
 加熱加圧処理の時間は、30秒~1時間が好ましく、1~10分がより好ましい。
The temperature of the heating and pressurizing treatment varies depending on the type and content of the resin and organic fiber contained in the carbon fiber sheet, but is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 150°C or higher. If the temperature of the heating and pressurizing treatment is equal to or higher than the lower limit, carbonization is likely to proceed sufficiently. The temperature of the heating and pressurizing treatment is preferably 400°C or lower, more preferably 200°C or lower, and even more preferably 190°C or lower. If the temperature of the heating and pressurizing treatment is equal to or lower than the upper limit, burning of the resin and organic fiber is likely to be avoided. The lower limit and upper limit of the temperature of the heating and pressurizing treatment can be arbitrarily combined, and for example, 100 to 400°C are preferable, 120 to 200°C are more preferable, and 150 to 190°C are even more preferable.
The pressure of the heating and pressurizing treatment is preferably 0.05 MPa or more, and more preferably 1 MPa or more. If the pressure of the heating and pressurizing treatment is equal to or more than the lower limit, the surface of the carbon fiber sheet is easily smoothed. The pressure of the heating and pressurizing treatment is preferably 20 MPa or less, and more preferably 15 MPa or less. If the pressure of the heating and pressurizing treatment is equal to or less than the upper limit, the carbon fibers are less likely to be destroyed during the heating and pressurizing treatment. The lower and upper limits of the pressure of the heating and pressurizing treatment can be arbitrarily combined, and for example, 0.05 to 20 MPa is preferable, and 1 to 15 MPa is more preferable.
The time for the heat and pressure treatment is preferably from 30 seconds to 1 hour, and more preferably from 1 to 10 minutes.

工程(iv):
 炭素繊維シートを炭素化処理することにより、炭素繊維シートに含まれる樹脂や有機繊維が炭素化され、得られる多孔質電極基材において、その樹脂の炭化物や繊維状の炭化物が炭素繊維を結着する炭素となる。
Step (iv):
By carbonizing the carbon fiber sheet, the resin and organic fibers contained in the carbon fiber sheet are carbonized, and in the resulting porous electrode substrate, the carbonized resin and fibrous carbonized resin become carbon that binds the carbon fibers.

 炭素繊維シートの炭素化処理は、十分な導電性を有する多孔質電極基材を得やすいことから、不活性雰囲気下、1000℃以上で行うことが好ましい。炭素化処理の温度は、1000~3000℃がより好ましく、1000~2400℃がさらに好ましく、1000~2200℃が特に好ましい。
 炭素化処理の時間は、1分~1時間が好ましく、10分~1時間がより好ましい。
The carbonization treatment of the carbon fiber sheet is preferably carried out in an inert atmosphere at 1000° C. or higher, since it is easy to obtain a porous electrode substrate having sufficient electrical conductivity. The temperature of the carbonization treatment is more preferably 1000 to 3000° C., further preferably 1000 to 2400° C., and particularly preferably 1000 to 2200° C.
The time for the carbonization treatment is preferably from 1 minute to 1 hour, and more preferably from 10 minutes to 1 hour.

 炭素化処理を行う前に、不活性雰囲気下で300℃以上1000℃未満の前炭素化処理を行ってもよい。前炭素化処理を行うことにより、炭素化の初期段階に発生するナトリウムを多量に含む分解ガスを排出しやすくなり、炭素化炉の内壁への各種分解物の付着や堆積、あるいはその分解物による腐食や黒色のしみの発生を抑制することが容易になる。
 前炭素化処理の温度は、300~800℃がより好ましい。
 前炭素化処理の時間は、1分~1時間が好ましく、10分~1時間がより好ましい。
Prior to the carbonization treatment, a pre-carbonization treatment may be performed in an inert atmosphere at a temperature of 300° C. or higher and lower than 1000° C. By performing the pre-carbonization treatment, it becomes easier to discharge decomposition gas containing a large amount of sodium generated in the early stage of carbonization, and it becomes easier to suppress adhesion or accumulation of various decomposition products on the inner wall of the carbonization furnace, or the occurrence of corrosion or black stains due to the decomposition products.
The temperature of the pre-carbonization treatment is more preferably 300 to 800°C.
The time for the pre-carbonization treatment is preferably 1 minute to 1 hour, and more preferably 10 minutes to 1 hour.

 なお、多孔質電極基材の製造方法は、前記した工程(i)~工程(iii)のいずれか1つ以上を含まない方法であってもよい。
 例えば、炭素繊維シートに対して加熱加圧処理を行わずに炭素化処理を行う方法であってもよい。
 工程(i)で炭素繊維と共に有機繊維を用い、工程(ii)を行わない方法でもよい。
 また、工程(i)に代えて、炭素繊維、又は炭素繊維と有機繊維を空気中に分散させて降り積もらせる乾式法により前駆体シートを製造してもよい。
The method for producing a porous electrode substrate may not include any one or more of the above steps (i) to (iii).
For example, the carbonization treatment may be performed without subjecting the carbon fiber sheet to a heating and pressurizing treatment.
A method in which organic fibers are used together with carbon fibers in step (i) and step (ii) is not carried out may also be used.
Alternatively, instead of step (i), a precursor sheet may be produced by a dry method in which carbon fibers, or carbon fibers and organic fibers, are dispersed in the air and allowed to fall and accumulate.

(他の形態)
 多孔質電極基材としては、炭素化処理の工程を省略した多孔質電極基材や、市販のカーボンペーパー等を多孔質電極基材として使用してもよい。
 炭素化処理の工程を省略した多孔質電極基材は、炭素化を行う場合に比べてエネルギーコストを削減できる。炭素化処理の工程を省略した多孔質電極基材としては、例えば導電性物質粒子を充填させたバインダで炭素繊維を結着させた炭素繊維ウェブ;カーボン等の微細な導電性物質を樹脂等のバインダで結着させた多孔質電極基材等が挙げられる。
(Other forms)
As the porous electrode substrate, a porous electrode substrate from which the carbonization process has been omitted, or commercially available carbon paper or the like may be used as the porous electrode substrate.
A porous electrode substrate that does not require the carbonization process can reduce energy costs compared to a substrate that requires carbonization. Examples of the porous electrode substrate that does not require the carbonization process include a carbon fiber web in which carbon fibers are bound with a binder filled with conductive material particles; a porous electrode substrate in which fine conductive materials such as carbon are bound with a binder such as a resin; and the like.

<コーティング層>
 コーティング層としては、以下のコーティング層Xとコーティング層Yが挙げられる。
 コーティング層X:平均粒子径が5~800nmであるカーボン粉Aと、平均粒子径が1~50μmであるカーボン粉Bとを含むコーティング層。
 コーティング層Y:カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種のカーボン粉Cと、熱分解黒鉛とを含むコーティング層。
<Coating Layer>
Examples of the coating layer include the following coating layer X and coating layer Y.
Coating layer X: A coating layer containing carbon powder A having an average particle size of 5 to 800 nm and carbon powder B having an average particle size of 1 to 50 μm.
Coating layer Y: A coating layer containing at least one carbon powder C selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and pyrolytic graphite.

 コーティング層X及びコーティング層Yは、それぞれ撥水剤を含むことが好ましい。
 コーティング層X及びコーティング層Yは、本発明の効果を損なわない範囲内であれば、必要に応じて、カーボン粉A、カーボン粉B及び撥水剤以外の任意成分をさらに含んでいてもよい。
Each of the coating layer X and the coating layer Y preferably contains a water repellent agent.
The coating layer X and the coating layer Y may further contain optional components other than the carbon powder A, the carbon powder B and the water repellent agent, if necessary, within a range that does not impair the effects of the present invention.

 コーティング層を形成させる際に、後述するコーティング液の一部が多孔質電極基材へと染み込むため、コーティング層と多孔質電極基材との明確な境界線の定義は困難であるが、本発明においてはコーティング液の多孔質電極基材への染み込みが生じていない部分をコーティング層と定義する。すなわち、コーティング層Xの場合、カーボン粉A及びカーボン粉Bと、必要に応じて含まれる撥水剤、任意成分のみから構成される層の部分をコーティング層Xと定義する。また、コーティング層Yの場合、カーボン粉C及び熱分解黒鉛と、必要に応じて含まれる撥水剤、任意成分のみから構成される層の部分をコーティング層Yと定義する。 When forming the coating layer, a portion of the coating liquid described below seeps into the porous electrode substrate, making it difficult to clearly define the boundary between the coating layer and the porous electrode substrate. However, in the present invention, the portion where the coating liquid does not seep into the porous electrode substrate is defined as the coating layer. That is, in the case of coating layer X, the portion of the layer consisting only of carbon powder A and carbon powder B, a water repellent agent included as needed, and optional components is defined as coating layer X. Also, in the case of coating layer Y, the portion of the layer consisting only of carbon powder C and pyrolytic graphite, a water repellent agent included as needed, and optional components is defined as coating layer Y.

[コーティング層X]
 コーティング層Xがカーボン粉A、カーボン粉B及び撥水剤を含む場合、コーティング層Xは、カーボン粉A及びカーボン粉Bがバインダである撥水剤によって結合されたものである。言い換えれば、撥水剤によって形成されるネットワーク中にカーボン粉A及びカーボン粉Bが取り込まれ、微細な網目構造を有する。
 コーティング層Xは繊維化された撥水剤を含むことが好ましい。これにより、上記網目構造がより強固なものとなり、コーティング層Xの強度が向上するだけでなく、繊維状の撥水剤と多孔質電極基材との絡みあいが生じることで、コーティング層Xと多孔質電極基材の接着性がより向上し、コーティング層Xの剥離強度が高い固体高分子形燃料電池用のガス拡散層が得られる。
[Coating layer X]
When the coating layer X contains carbon powder A, carbon powder B, and a water repellent, the coating layer X is formed by binding the carbon powder A and the carbon powder B with the water repellent acting as a binder. In other words, the carbon powder A and the carbon powder B are incorporated into the network formed by the water repellent, forming a fine mesh structure.
It is preferable that the coating layer X contains a fibrous water repellent, which not only strengthens the mesh structure and improves the strength of the coating layer X, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer X and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer X.

(カーボン粉A)
 カーボン粉Aとしては、例えば、カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭、非晶質炭素、熱分解黒鉛以外の黒鉛(以下、「他の黒鉛」ともいう。)が挙げられる。カーボン粉Aとしては、カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭、非晶質炭素が好ましく、カーボンブラック、ミルドファイバー、他の黒鉛がより好ましく、カーボンブラックがさらに好ましい。
 これらカーボン粉Aは、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Carbon powder A)
Examples of the carbon powder A include carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, amorphous carbon, and graphite other than pyrolytic graphite (hereinafter, also referred to as "other graphite"). Carbon powder A is preferably carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, or amorphous carbon, more preferably carbon black, milled fiber, or other graphite, and even more preferably carbon black.
The carbon powder A may be used alone or in combination of two or more kinds.

 カーボンブラックは、単位質量当たりの粒子数が黒鉛粉に比べて著しく多く、ある臨界濃度以上でアグロメートが3次元ネットワーク状に連なって巨視的な導電経路を形成する。
 カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、ランプブラック、サーマルブラックが挙げられる。
 アセチレンブラックの市販品としては、例えばデンカ株式会社製の商品名「デンカブラック(登録商標)」が挙げられる。ケッチェンブラックの市販品としては、例えばライオン株式会社製の商品名「Ketjen Black EC」が挙げられる。ファーネスブラックの市販品としては、例えばCABOT社製の商品名「バルカンXC72」が挙げられる。
Carbon black has a significantly larger number of particles per unit mass than graphite powder, and at a certain critical concentration or higher, the agglomerates are linked together in a three-dimensional network to form macroscopic conductive paths.
Examples of carbon black include acetylene black, ketjen black, furnace black, channel black, lamp black, and thermal black.
Commercially available acetylene black products include, for example, Denka Black (registered trademark) manufactured by Denka Co., Ltd. Commercially available ketjen black products include, for example, Ketjen Black EC manufactured by Lion Corporation Commercially available furnace black products include, for example, Vulcan XC72 manufactured by CABOT Corporation.

 ミルドファイバーとしては、バージンの炭素繊維を粉砕して製造されたものを用いてもよいし、炭素繊維強化熱硬化性樹脂成形品、炭素繊維強化熱可塑性樹脂成形品、プリプレグ等のリサイクル品から製造されたものを用いてもよい。
 ミルドファイバーの原料となる炭素繊維は、PAN系炭素繊維でもよく、ピッチ系炭素繊維でもよく、レーヨン系炭素繊維でもよい。
As the milled fiber, one produced by crushing virgin carbon fiber may be used, or one produced from recycled products such as carbon fiber reinforced thermosetting resin molded products, carbon fiber reinforced thermoplastic resin molded products, and prepregs may be used.
The carbon fiber used as the raw material for the milled fiber may be a PAN-based carbon fiber, a pitch-based carbon fiber, or a rayon-based carbon fiber.

 他の黒鉛は、高結晶性のグラファイト構造からなり、その一次粒子の平均粒径は一般に数マイクロメートル~数百マイクロメートルである。
 他の黒鉛としては、例えば球状黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛等が挙げられる。なかでも、導電性発現の観点から、球状黒鉛、鱗片状黒鉛が好ましい。
Other graphites consist of highly crystalline graphite structures, with the average primary particle size generally ranging from a few micrometers to a few hundred micrometers.
Examples of other graphite include spherical graphite, flake graphite, lump graphite, amorphous graphite, artificial graphite, expanded graphite, etc. Among these, spherical graphite and flake graphite are preferred from the viewpoint of electrical conductivity.

 カーボン粉Aの平均粒子径は、5~800nmである。カーボン粉の平均粒子径が前記下限値以上であれば、カーボン粉Aの小径粒によって多孔質電極基材の細孔が埋まることを抑制でき、十分なガス透過性が得られる。カーボン粉Aの平均粒子径が前記上限値以下であれば、均一なコーティング液が容易に得られる。カーボン粉Aの平均粒子径は、10nm以上が好ましく、15nm以上がより好ましく、30nm以上がさらに好ましく、また800nm以下が好ましく、500nm以下がより好ましく、100nm以下が特に好ましい。前記カーボン粉Aの平均粒子径の下限と上限は任意に組み合わせることができ、例えば10~800nmが好ましく、15~500nmがより好ましく、30~100nmがさらに好ましい。
 カーボン粉Aの平均粒子径はコーティング層表層を電子顕微鏡で撮像し、後述する方法で画像解析することで求めたものである。
The average particle diameter of the carbon powder A is 5 to 800 nm. When the average particle diameter of the carbon powder is equal to or greater than the lower limit, the pores of the porous electrode substrate can be prevented from being filled with small particles of the carbon powder A, and sufficient gas permeability can be obtained. When the average particle diameter of the carbon powder A is equal to or less than the upper limit, a uniform coating liquid can be easily obtained. The average particle diameter of the carbon powder A is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 30 nm or more, and is preferably 800 nm or less, more preferably 500 nm or less, and particularly preferably 100 nm or less. The lower limit and upper limit of the average particle diameter of the carbon powder A can be arbitrarily combined, and for example, is preferably 10 to 800 nm, more preferably 15 to 500 nm, and even more preferably 30 to 100 nm.
The average particle size of the carbon powder A was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described below.

(カーボン粉B)
 カーボン粉Bとしては、例えば、熱分解黒鉛、ミルドファイバー、コークス、活性炭、非晶質炭素が挙げられる。カーボン粉Bとしては、熱分解黒鉛、ミルドファイバー、コークス、活性炭、非晶質炭素が好ましく、熱分解黒鉛がより好ましい。
 これらカーボン粉Bは、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Carbon powder B)
Examples of the carbon powder B include pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon. As the carbon powder B, pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon are preferred, and pyrolytic graphite is more preferred.
The carbon powder B may be used alone or in combination of two or more kinds.

 カーボン粉Bの平均粒子径は、1~50μmである。カーボン粉Bの平均粒子径が前記下限値以上であれば、十分な導電性向上効果が得られる。カーボン粉Bの平均粒子径が前記上限値以下であれば、均一なコーティング液が容易に得られる。カーボン粉Bの平均粒子径は、3μmが好ましく、5μm以上がより好ましく、また35μm以下が好ましく、11μm以下がより好ましい。前記カーボン粉Bの平均粒子径の下限と上限は任意に組み合わせることができ、例えば3~35μmが好ましく、5~11μmがより好ましい。
 カーボン粉Bの平均粒子径はコーティング層表層を電子顕微鏡で撮像し、後述する方法で画像解析することで求めたものである。
The average particle diameter of the carbon powder B is 1 to 50 μm. When the average particle diameter of the carbon powder B is equal to or greater than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. When the average particle diameter of the carbon powder B is equal to or less than the upper limit, a uniform coating liquid can be easily obtained. The average particle diameter of the carbon powder B is preferably 3 μm, more preferably 5 μm or more, and is preferably 35 μm or less, and more preferably 11 μm or less. The lower and upper limits of the average particle diameter of the carbon powder B can be arbitrarily combined, and for example, 3 to 35 μm is preferable, and 5 to 11 μm is more preferable.
The average particle size of the carbon powder B was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described later.

 カーボン粉Bの平均厚さ(μm)に対するカーボン粉Bの平均粒子径(μm)の比である、カーボン粉Bのアスペクト比は、2以上が好ましく、3以上がより好ましく、4以上がさらに好ましい。カーボン粉Bのアスペクト比が前記下限値以上であれば、十分な導電性向上効果が得られる。カーボン粉Bのアスペクト比は、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましい。カーボン粉Bのアスペクト比が前記上限値以下であれば、混合時の粘度上昇が少なく、均一なコーティング液が容易に得られる。前記カーボン粉Bのアスペクト比の下限と上限は任意に組み合わせることができ、例えば2~40が好ましく、3~20がより好ましく、4~10がさらに好ましい。
 カーボン粉Bの平均厚さは、走査型電子顕微鏡、透過型電子顕微鏡等の顕微鏡で、1000倍以上に拡大して写真撮影を行い、無作為に異なる10個のカーボン粉Bを選び、それらの厚さを測定し、平均値を求めたものである。
 カタログ値のあるものは、簡易な測定値としてカタログ値をカーボン粉Bの平均粒子径又は平均厚さとして採用してもよい。
The aspect ratio of carbon powder B, which is the ratio of the average particle diameter (μm) of carbon powder B to the average thickness (μm) of carbon powder B, is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. If the aspect ratio of carbon powder B is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. The aspect ratio of carbon powder B is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less. If the aspect ratio of carbon powder B is equal to or less than the upper limit, the viscosity increase during mixing is small, and a uniform coating liquid can be easily obtained. The lower limit and upper limit of the aspect ratio of carbon powder B can be arbitrarily combined, and for example, 2 to 40 are preferable, 3 to 20 are more preferable, and 4 to 10 are even more preferable.
The average thickness of the carbon powder B is obtained by photographing the carbon powder B at a magnification of 1000 times or more using a microscope such as a scanning electron microscope or a transmission electron microscope, randomly selecting 10 different carbon powder B particles, measuring their thicknesses, and calculating the average value.
For those with catalog values, the catalog values may be used as the average particle size or average thickness of the carbon powder B as a simple measured value.

 カーボン粉Bの含有量は、コーティング層Xの総質量に対して、9質量%以上が好ましく、15質量%以上がより好ましく、30質量%以上がさらに好ましい。カーボン粉Bの含有量が前記下限値以上であれば、十分な導電性向上効果が得られる。カーボン粉Bの含有量は、50質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。カーボン粉Bの含有量が前記上限値以下であれば、粘度の過度な上昇を抑制でき、十分な塗工性が得られる。前記カーボン粉Bの含有量の下限と上限は任意に組み合わせることができ、例えば9~50質量%が好ましく、15~50質量%がより好ましく、30~45質量%がさらに好ましい。 The content of carbon powder B is preferably 9% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total mass of coating layer X. If the content of carbon powder B is equal to or more than the lower limit, a sufficient effect of improving conductivity can be obtained. The content of carbon powder B is preferably 50% by mass or less, more preferably 50% by mass or less, and even more preferably 45% by mass or less. If the content of carbon powder B is equal to or less than the upper limit, an excessive increase in viscosity can be suppressed, and sufficient coatability can be obtained. The lower limit and upper limit of the content of carbon powder B can be arbitrarily combined, and for example, 9 to 50% by mass is preferable, 15 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.

 カーボン粉Bの含有量に対するカーボン粉Aの含有量の質量比を表す、カーボン粉A/カーボン粉Bで表される質量比、すなわちカーボン粉A/カーボン粉B比は、0.5以上が好ましく、1.0以上がより好ましい。カーボン粉A/カーボン粉B比が前記下限値以上であれば、カーボン粉Aとカーボン粉Bとの接触面積が大きく、十分な導電性向上効果が得られる。カーボン粉A/カーボン粉B比は、9.0以下が好ましく、4.0以下がより好ましく、2.0以下がさらに好ましく、1.8以下が特に好ましく、1.2以下が最も好ましい。カーボン粉A/カーボン粉B比が前記上限値以下であれば、個々の熱分解黒鉛粒子周辺のカーボン粉量が過剰とならないため、十分な量のバインダである撥水剤が存在し、十分なコーティング強度が得られる。前記カーボン粉A/カーボン粉B比の下限と上限は任意に組み合わせることができ、例えば0.5~9.0が好ましく、1.0~4.0が好ましく、1.0~2.0が好ましく、1.0~1.8がより好ましく、1.0~1.2がさらに好ましい。 The mass ratio represented by carbon powder A/carbon powder B, which represents the mass ratio of the content of carbon powder A to the content of carbon powder B, i.e., the carbon powder A/carbon powder B ratio, is preferably 0.5 or more, and more preferably 1.0 or more. If the carbon powder A/carbon powder B ratio is equal to or greater than the lower limit, the contact area between carbon powder A and carbon powder B is large, and a sufficient effect of improving conductivity can be obtained. The carbon powder A/carbon powder B ratio is preferably 9.0 or less, more preferably 4.0 or less, even more preferably 2.0 or less, particularly preferably 1.8 or less, and most preferably 1.2 or less. If the carbon powder A/carbon powder B ratio is equal to or less than the upper limit, the amount of carbon powder around each pyrolytic graphite particle is not excessive, so that a sufficient amount of water repellent, which is a binder, is present, and sufficient coating strength can be obtained. The lower and upper limits of the carbon powder A/carbon powder B ratio can be arbitrarily combined, and for example, 0.5 to 9.0 is preferable, 1.0 to 4.0 is preferable, 1.0 to 2.0 is preferable, 1.0 to 1.8 is more preferable, and 1.0 to 1.2 is even more preferable.

(撥水剤)
 撥水剤としては、例えばフッ素樹脂、シリコーン樹脂等が挙げられる。これらの中でも、撥水性に特に優れる観点から、フッ素樹脂が好ましい。
 これら撥水剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 撥水剤は、水等の溶媒に分散させて用いることができる。
(Water repellent)
Examples of the water repellent include fluororesins, silicone resins, etc. Among these, fluororesins are preferred from the viewpoint of particularly excellent water repellency.
These water repellents may be used alone or in combination of two or more.
The water repellent can be used by dispersing it in a solvent such as water.

 フッ素樹脂としては、例えばテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体等が挙げられる。これらの中でも、PTFEが好ましい。その中でも特に、撥水剤を繊維化させるため、乳化重合により製造されるPTFEがより好ましく、ディスパージョンタイプのPTFEがさらに好ましい。 Examples of fluororesins include tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer, etc. Among these, PTFE is preferred. Among these, PTFE produced by emulsion polymerization is particularly preferred in order to turn the water repellent into fibers, and dispersion-type PTFE is even more preferred.

 コーティング層Xが撥水剤を含有する場合、撥水剤の含有量は、コーティング層Xの総質量に対して、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。撥水剤の含有量が前記下限値以上であれば、十分な撥水性が得られる。撥水剤の含有量は、コーティング層Xの総質量に対して、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。撥水剤の含有量が前記上限値以下であれば、十分な導電性向上効果が得られる。前記撥水剤の含油量の下限と上限は任意に組み合わせることができ、例えば10~40質量%が好ましく、15~35質量%がより好ましく、20~30質量%がさらに好ましい。 When the coating layer X contains a water repellent, the content of the water repellent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on the total mass of the coating layer X. If the content of the water repellent is equal to or more than the lower limit, sufficient water repellency is obtained. If the content of the water repellent is equal to or less than the upper limit, a sufficient effect of improving electrical conductivity is obtained. The lower and upper limits of the oil content of the water repellent can be arbitrarily combined, for example, 10 to 40% by mass is preferable, 15 to 35% by mass is more preferable, and 20 to 30% by mass is even more preferable.

(任意成分)
 任意成分としては、例えば界面活性剤、水溶性高分子、増粘剤、補強剤、安定化剤、充填剤、架橋剤等が挙げられる。
 これら任意成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Optional ingredients)
Examples of the optional components include surfactants, water-soluble polymers, thickeners, reinforcing agents, stabilizers, fillers, and crosslinking agents.
These optional components may be used alone or in combination of two or more.

(コーティング層Xの物性)
 コーティング層Xの厚みは、3μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましい。コーティング層Xの厚みが前記下限値以上であれば、燃料ガスや酸化ガスが拡散しやすく反応効率が向上する。加えて、多孔質電極基材が炭素繊維を含む場合、炭素繊維がコーティング層を突き破り、触媒層や高分子電解質膜まで到達することを抑制できる。コーティング層Xの厚みは、100μm以下が好ましく、50μm以下がより好ましく、40μm以下がさらに好ましい。コーティング層Xの厚みが前記上限値以下であれば、コーティング層Xによる電子抵抗の上昇を抑制でき、発電性能を良好に維持できる。前記コーティング層Xの厚みの下限と上限は任意に組み合わせることができ、例えば3~100μmが好ましく、5~50μmがより好ましく、10~40μmがさらに好ましい。
 なお、コーティング層Xの厚みは、コーティング層における任意の10箇所の厚みを測定し、それらを平均した値である。
(Physical Properties of Coating Layer X)
The thickness of the coating layer X is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. If the thickness of the coating layer X is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved. In addition, when the porous electrode substrate contains carbon fibers, the carbon fibers can be prevented from breaking through the coating layer and reaching the catalyst layer or the polymer electrolyte membrane. The thickness of the coating layer X is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 40 μm or less. If the thickness of the coating layer X is equal to or less than the upper limit, the increase in electronic resistance due to the coating layer X can be prevented, and the power generation performance can be maintained well. The lower limit and the upper limit of the thickness of the coating layer X can be arbitrarily combined, and for example, 3 to 100 μm are preferable, 5 to 50 μm are more preferable, and 10 to 40 μm are more preferable.
The thickness of the coating layer X is determined by measuring the thickness at any ten points on the coating layer and averaging these values.

 コーティング層Xの表面粗さは、3.0μm以下が好ましく、2.9μm以下がより好ましく、2.8μm以下がさらに好ましい。コーティング層Xの表面粗さが前記上限値以下であれば、触媒層との接触抵抗を軽減できる。コーティング層Xの表面粗さは、1.0μm以上が好ましく、1.5μm以上がより好ましく、2.0μm以上がさらに好ましい。コーティング層Xの表面粗さが前記下限値以上であれば、触媒層との接着性を向上させることができる。コーティング層Xの表面粗さの下限と上限は任意に組み合わせることができ、例えば1.0~3.0μmが好ましく、1.5~2.9μmがより好ましく、2.0~2.8μmがさらに好ましい。
 なお、コーティング層の表面粗さは、コーティング層の多孔質電極基材とは反対側の表面について、後述する方法で測定される表面粗さRaである。
The surface roughness of the coating layer X is preferably 3.0 μm or less, more preferably 2.9 μm or less, and even more preferably 2.8 μm or less. If the surface roughness of the coating layer X is equal to or less than the upper limit, the contact resistance with the catalyst layer can be reduced. The surface roughness of the coating layer X is preferably 1.0 μm or more, more preferably 1.5 μm or more, and even more preferably 2.0 μm or more. If the surface roughness of the coating layer X is equal to or more than the lower limit, the adhesion with the catalyst layer can be improved. The lower limit and the upper limit of the surface roughness of the coating layer X can be arbitrarily combined, and for example, 1.0 to 3.0 μm are preferable, 1.5 to 2.9 μm are more preferable, and 2.0 to 2.8 μm are more preferable.
The surface roughness of the coating layer is the surface roughness Ra measured by the method described below on the surface of the coating layer opposite to the porous electrode substrate.

[コーティング層Y]
 コーティング層Yが熱分解黒鉛、カーボン粉C及び撥水剤を含む場合、熱分解黒鉛、カーボン粉C及び撥水剤を含むコーティング層Yは、熱分解黒鉛及びカーボン粉Cがバインダである撥水剤によって結合されたものである。言い換えれば、撥水剤によって形成されるネットワーク中に熱分解黒鉛及びカーボン粉が取り込まれ、微細な網目構造を有する。
 コーティング層Yは繊維化された撥水剤を含むことが好ましい。これにより、上記網目構造がより強固なものとなり、コーティング層Yの強度が向上するだけでなく、繊維状の撥水剤と多孔質電極基材との絡みあいが生じることで、コーティング層Yと多孔質電極基材の接着性がより向上し、コーティング層Yの剥離強度が高い固体高分子形燃料電池用のガス拡散層が得られる。
[Coating layer Y]
When the coating layer Y contains pyrolytic graphite, carbon powder C, and a water repellent, the coating layer Y containing pyrolytic graphite, carbon powder C, and a water repellent is one in which the pyrolytic graphite and carbon powder C are bound together by the water repellent, which acts as a binder. In other words, the pyrolytic graphite and carbon powder are incorporated into a network formed by the water repellent, and the coating layer Y has a fine mesh structure.
The coating layer Y preferably contains a fibrous water repellent, which not only strengthens the mesh structure and improves the strength of the coating layer Y, but also causes the fibrous water repellent to intertwine with the porous electrode substrate, thereby improving the adhesion between the coating layer Y and the porous electrode substrate, thereby providing a gas diffusion layer for a polymer electrolyte fuel cell having a high peel strength of the coating layer Y.

(熱分解黒鉛)
 熱分解黒鉛は、粉末コークスを2500℃以上で熱処理し、黒鉛化して得ることができる。熱分解黒鉛をガス拡散層に用いることで、導電性を低下させることなく、インク乾燥時の体積収縮率を小さくすることによってコーティング層表面のクラック発生を抑制する効果が得られると考えられる。
 熱処理の温度は、2500~3500℃が好ましい。
 熱処理は、不活性ガス中で行われることが好ましい。
 このような熱処理を施して得られる熱分解黒鉛は、不純物が少なく、黒鉛自体の熱伝導率も高い。
(Pyrolytic graphite)
Pyrolytic graphite can be obtained by graphitizing powdered coke through heat treatment at 2500° C. or higher. It is believed that the use of pyrolytic graphite in the gas diffusion layer can suppress the occurrence of cracks on the surface of the coating layer by reducing the volumetric shrinkage rate when the ink dries, without reducing the electrical conductivity.
The heat treatment temperature is preferably 2500 to 3500°C.
The heat treatment is preferably carried out in an inert gas.
Pyrolytic graphite obtained by such heat treatment contains few impurities and the graphite itself has high thermal conductivity.

 熱分解黒鉛の平均厚さ(μm)に対する熱分解黒鉛の平均粒子径(μm)の比である、熱分解黒鉛のアスペクト比は2以上が好ましく、3以上がより好ましく、4以上がさらに好ましい。熱分解黒鉛のアスペクト比が前記下限値以上であれば、十分な導電性向上効果が得られる。熱分解黒鉛のアスペクト比は、40以下が好ましく、20以下がより好ましく、10以下がさらに好ましい。熱分解黒鉛のアスペクト比が前記上限値以下であれば、混合時の粘度上昇が少なく、均一なコーティング液が容易に得られる。熱分解黒鉛のアスペクト比の下限と上限は任意に組み合わせることができ、例えば2~40が好ましく、3~20がより好ましく、4~10がさらに好ましい。
 熱分解黒鉛の平均粒子径は、レーザー回折式粒度分布計を用いて測定し、体積換算の50%累積径を求めたものである。
 熱分解黒鉛の平均厚さは、走査型電子顕微鏡、透過型電子顕微鏡等の顕微鏡で、1000倍以上に拡大して写真撮影を行い、無作為に異なる10個の熱分解黒鉛を選び、それらの厚さを測定し、平均値を求めたものである。
 なお、レーザー回折式粒度分布計を用いて熱分解黒鉛の平均粒子径を測定することが困難である場合は、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、1000倍以上に拡大して写真撮影を行い、無作為に異なる10個の熱分解黒鉛を選び、その長さを測定し、平均値を求めたもので、平均粒子径を代用することができる。
 また、カタログ値のあるものは、簡易な測定値としてカタログ値を熱分解黒鉛の平均粒子径又は平均厚さとして採用してもよい。
The aspect ratio of pyrolytic graphite, which is the ratio of the average particle size (μm) of pyrolytic graphite to the average thickness (μm) of pyrolytic graphite, is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. If the aspect ratio of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. The aspect ratio of pyrolytic graphite is preferably 40 or less, more preferably 20 or less, and even more preferably 10 or less. If the aspect ratio of pyrolytic graphite is equal to or less than the upper limit, the viscosity increase during mixing is small, and a uniform coating liquid can be easily obtained. The lower limit and upper limit of the aspect ratio of pyrolytic graphite can be arbitrarily combined, and for example, 2 to 40 are preferable, 3 to 20 are more preferable, and 4 to 10 are even more preferable.
The average particle size of the pyrolytic graphite was measured using a laser diffraction particle size distribution analyzer, and was calculated as the 50% cumulative diameter in volume terms.
The average thickness of pyrolytic graphite was determined by photographing the graphite at a magnification of 1000 times or more using a microscope such as a scanning electron microscope or a transmission electron microscope, randomly selecting 10 different pieces of pyrolytic graphite, measuring their thicknesses, and calculating the average value.
In addition, when it is difficult to measure the average particle size of pyrolytic graphite using a laser diffraction particle size distribution meter, photographs are taken at a magnification of 1000 times or more using a microscope such as a scanning electron microscope or a transmission electron microscope, 10 different pieces of pyrolytic graphite are randomly selected, their lengths are measured, and the average value is calculated, which can be used as a substitute for the average particle size.
In addition, when a catalog value is available, the catalog value may be adopted as the average particle size or average thickness of the pyrolytic graphite as a simple measured value.

 熱分解黒鉛の平均粒子径は、3μm以上が好ましく、4μm以上がより好ましく、5μm以上がさらに好ましい。熱分解黒鉛の平均粒子径が前記下限値以上であれば、十分な導電性向上効果が得られる。熱分解黒鉛の平均粒子径は、50μm以下が好ましく、35μm以下がより好ましく、11μm以下がさらに好ましい。熱分解黒鉛の平均粒子径が前記上限値以下であれば、均一なコーティング液が容易に得られる。前記熱分解黒鉛の平均粒子径の下限と上限は任意に組み合わせることができ、例えば3~50μmが好ましく、4~35μmがより好ましく、5~11μmがさらに好ましい。 The average particle size of pyrolytic graphite is preferably 3 μm or more, more preferably 4 μm or more, and even more preferably 5 μm or more. If the average particle size of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. The average particle size of pyrolytic graphite is preferably 50 μm or less, more preferably 35 μm or less, and even more preferably 11 μm or less. If the average particle size of pyrolytic graphite is equal to or less than the upper limit, a uniform coating liquid can be easily obtained. The lower limit and upper limit of the average particle size of pyrolytic graphite can be arbitrarily combined, for example, 3 to 50 μm is preferable, 4 to 35 μm is more preferable, and 5 to 11 μm is even more preferable.

 熱分解黒鉛の含有量は、コーティング層Yの総質量に対して、9質量%以上が好ましく、15質量%以上がより好ましく、30質量%以上がさらに好ましい。熱分解黒鉛の含有量が前記下限値以上であれば、十分な導電性向上効果が得られる。熱分解黒鉛の含有量は、50質量%以下が好ましく、45質量%以下がより好ましい。熱分解黒鉛の含有量が前記上限値以下であれば、粘度の過度な上昇を抑制でき、十分な塗工性が得られる。前記熱分解黒鉛の含有量の下限と上限は任意に組み合わせることができ、例えば9~50質量%が好ましく、15~50質量%がより好ましく、30~45質量%がさらに好ましい。 The content of pyrolytic graphite is preferably 9% by mass or more, more preferably 15% by mass or more, and even more preferably 30% by mass or more, based on the total mass of the coating layer Y. If the content of pyrolytic graphite is equal to or more than the lower limit, a sufficient effect of improving electrical conductivity can be obtained. The content of pyrolytic graphite is preferably 50% by mass or less, and more preferably 45% by mass or less. If the content of pyrolytic graphite is equal to or less than the upper limit, an excessive increase in viscosity can be suppressed, and sufficient coatability can be obtained. The lower limit and upper limit of the content of pyrolytic graphite can be arbitrarily combined, and for example, 9 to 50% by mass is preferable, 15 to 50% by mass is more preferable, and 30 to 45% by mass is even more preferable.

(カーボン粉C)
 カーボン粉Cとしては、例えばカーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭、非晶質炭素、熱分解黒鉛以外の他の黒鉛が挙げられる。カーボン粉Cとしては、カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭、非晶質炭素が好ましく、カーボンブラック、ミルドファイバー、他の黒鉛がより好ましく、カーボンブラックがさらに好ましい。
 これらカーボン粉Cは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 カーボンブラック、ミルドファイバー及び他の黒鉛については、カーボン粉Aにおいて説明したとおりである。
(Carbon powder C)
Examples of the carbon powder C include carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, amorphous carbon, and graphite other than pyrolytic graphite. Carbon powder C is preferably carbon black, milled fiber, carbon nanotubes, carbon nanofibers, coke, activated carbon, or amorphous carbon, more preferably carbon black, milled fiber, or other graphite, and further preferably carbon black.
The carbon powder C may be used alone or in combination of two or more kinds.
Carbon black, milled fiber and other graphites are as described in Carbon Powder A.

 カーボン粉Cの平均粒子径は、5nm以上が好ましく、10nm以上がより好ましく、15nm以上がさらに好ましく、30nm以上が特に好ましい。カーボン粉Cの平均粒子径が前記下限値以上であれば、カーボン粉Cの小径粒によって多孔質電極基材の細孔が埋まることを抑制でき、十分なガス透過性が得られる。カーボン粉Cの平均粒子径は、800nm以下が好ましく、500nm以下がより好ましく、100nm以下がさらに好ましい。カーボン粉Cの平均粒子径が前記上限値以下であれば、均一なコーティング液が容易に得られる。前記カーボン粉Cの平均粒子径の下限と上限は任意に組み合わせることができ、例えば5~800nmが好ましく、10~800nmがより好ましく、15~500nmがさらに好ましく、30~100nmが特に好ましい。
 カーボン粉Cの平均粒子径はコーティング層表層を電子顕微鏡で撮像し、後述する方法で画像解析することで求めたものである。
The average particle diameter of the carbon powder C is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 15 nm or more, and particularly preferably 30 nm or more. If the average particle diameter of the carbon powder C is equal to or more than the lower limit, the pores of the porous electrode substrate can be prevented from being filled with small diameter particles of the carbon powder C, and sufficient gas permeability can be obtained. The average particle diameter of the carbon powder C is preferably 800 nm or less, more preferably 500 nm or less, and even more preferably 100 nm or less. If the average particle diameter of the carbon powder C is equal to or less than the upper limit, a uniform coating liquid can be easily obtained. The lower limit and the upper limit of the average particle diameter of the carbon powder C can be arbitrarily combined, and for example, 5 to 800 nm are preferable, 10 to 800 nm are more preferable, 15 to 500 nm are more preferable, and 30 to 100 nm are particularly preferable.
The average particle size of the carbon powder C was determined by photographing the surface of the coating layer with an electron microscope and analyzing the image by the method described later.

 熱分解黒鉛の含有量に対するカーボン粉Cの含有量の質量比を表す、カーボン粉C/熱分解黒鉛で表される質量比、すなわちカーボン粉/熱分解黒鉛比は、0.5以上が好ましく、1.0以上がより好ましい。カーボン粉/熱分解黒鉛比が前記下限値以上であれば、カーボン粉と熱分解黒鉛との接触面積が大きく、十分な導電性向上効果が得られる。カーボン粉/熱分解黒鉛比は、9.0以下が好ましく、4.0以下がより好ましく、2.0以下がさらに好ましく、1.8以下が特に好ましく、1.2以下が最も好ましい。カーボン粉/熱分解黒鉛比が前記上限値以下であれば、個々の熱分解黒鉛粒子周辺のカーボン粉量が過剰とならないため、十分な量のバインダである撥水剤が存在し、十分なコーティング強度が得られる。前記カーボン粉/熱分解黒鉛比の下限と上限は任意に組み合わせることができ、例えば0.5~9.0が好ましく、1.0~4.0がより好ましく、1.0~2.0がさらに好ましく、1.0~1.8が特に好ましく、1.0~1.2が最も好ましい。 The mass ratio of the carbon powder C content to the pyrolytic graphite content, i.e., the carbon powder/pyrolytic graphite ratio, is preferably 0.5 or more, and more preferably 1.0 or more. If the carbon powder/pyrolytic graphite ratio is equal to or more than the lower limit, the contact area between the carbon powder and the pyrolytic graphite is large, and a sufficient effect of improving electrical conductivity can be obtained. The carbon powder/pyrolytic graphite ratio is preferably 9.0 or less, more preferably 4.0 or less, even more preferably 2.0 or less, particularly preferably 1.8 or less, and most preferably 1.2 or less. If the carbon powder/pyrolytic graphite ratio is equal to or less than the upper limit, the amount of carbon powder around each pyrolytic graphite particle is not excessive, so that a sufficient amount of binder water repellent is present, and sufficient coating strength can be obtained. The lower and upper limits of the carbon powder/pyrolytic graphite ratio can be arbitrarily combined, and for example, 0.5 to 9.0 is preferable, 1.0 to 4.0 is more preferable, 1.0 to 2.0 is even more preferable, 1.0 to 1.8 is particularly preferable, and 1.0 to 1.2 is most preferable.

(撥水剤)
 撥水剤としては、コーティング層Xにおいて説明したとおりであり、好ましい態様も同じである。撥水剤としては、撥水性に特に優れる観点から、フッ素樹脂が好ましい。
(Water repellent)
The water repellent is as described in the coating layer X, and the preferred embodiments are also the same. As the water repellent, a fluororesin is preferable from the viewpoint of being particularly excellent in water repellency.

 コーティング層Yが撥水剤を含む場合、撥水剤の含有量は、コーティング層Yの総質量に対して、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。撥水剤の含有量が前記下限値以上であれば、十分な撥水性が得られる。撥水剤の含有量は、コーティング層Yの総質量に対して、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。撥水剤の含有量が前記上限値以下であれば、十分な導電性向上効果が得られる。前記撥水剤の含有量の下限と上限は任意に組み合わせることができ、例えば10~40質量%が好ましく、15~35質量%がより好ましく、20~30質量%がさらに好ましい。 When the coating layer Y contains a water repellent, the content of the water repellent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more, based on the total mass of the coating layer Y. If the content of the water repellent is equal to or more than the lower limit, sufficient water repellency is obtained. If the content of the water repellent is equal to or less than 40% by mass, more preferably 35% by mass or less, and even more preferably 30% by mass or less, based on the total mass of the coating layer Y. If the content of the water repellent is equal to or less than the upper limit, sufficient conductivity improvement effect is obtained. The lower limit and upper limit of the content of the water repellent can be arbitrarily combined, for example, 10 to 40% by mass is preferable, 15 to 35% by mass is more preferable, and 20 to 30% by mass is even more preferable.

(任意成分)
 任意成分としては、コーティング層Xにおいて説明したとおりである。
(Optional ingredients)
The optional components are as explained in the coating layer X.

(コーティング層Yの物性)
 コーティング層Yの厚みは、3μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましい。コーティング層Yの厚みが前記下限値以上であれば、燃料ガスや酸化ガスが拡散しやすく反応効率が向上する。加えて、多孔質電極基材が炭素繊維を含む場合、炭素繊維がコーティング層を突き破り、触媒層や高分子電解質膜まで到達することを抑制できる。コーティング層Yの厚みは、100μm以下が好ましく、50μm以下がより好ましく、40μm以下がさらに好ましい。コーティング層Yの厚みが前記上限値以下であれば、コーティング層による電子抵抗の上昇を抑制でき、発電性能を良好に維持できる。前記コーティング層Yの厚みの下限と上限は任意に組み合わせることができ、例えば3~100μmが好ましく、5~50μmがより好ましく、10~40μmがさらに好ましい。
 なお、コーティング層Yの厚みは、コーティング層における任意の10箇所の厚みを測定し、それらを平均した値である。
(Physical Properties of Coating Layer Y)
The thickness of the coating layer Y is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. If the thickness of the coating layer Y is equal to or more than the lower limit, the fuel gas and the oxidizing gas are easily diffused, and the reaction efficiency is improved. In addition, when the porous electrode substrate contains carbon fibers, the carbon fibers can be prevented from breaking through the coating layer and reaching the catalyst layer or the polymer electrolyte membrane. The thickness of the coating layer Y is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 40 μm or less. If the thickness of the coating layer Y is equal to or less than the upper limit, the increase in electronic resistance due to the coating layer can be suppressed, and the power generation performance can be maintained well. The lower limit and the upper limit of the thickness of the coating layer Y can be arbitrarily combined, and for example, 3 to 100 μm are preferable, 5 to 50 μm are more preferable, and 10 to 40 μm are more preferable.
The thickness of the coating layer Y is determined by measuring the thickness at any ten points on the coating layer and averaging these values.

 コーティング層Yの表面粗さは、3.0μm以下が好ましく、2.9μm以下がより好ましく、2.8μm以下がさらに好ましい。コーティング層Yの表面粗さが前記上限値以下であれば、触媒層との接触抵抗を軽減できる。コーティング層Yの表面粗さは、1.0μm以上が好ましく、1.5μm以上がより好ましく、2.0μm以上がさらに好ましい。コーティング層Yの表面粗さが前記下限値以上であれば、触媒層との接着性を向上させることができる。コーティング層Yの表面粗さの下限と上限は任意に組み合わせることができ、例えば1.0~3.0μmが好ましく、1.5~2.9μmがより好ましく、2.0~2.8μmがさらに好ましい。 The surface roughness of the coating layer Y is preferably 3.0 μm or less, more preferably 2.9 μm or less, and even more preferably 2.8 μm or less. If the surface roughness of the coating layer Y is equal to or less than the upper limit, the contact resistance with the catalyst layer can be reduced. The surface roughness of the coating layer Y is preferably 1.0 μm or more, more preferably 1.5 μm or more, and even more preferably 2.0 μm or more. If the surface roughness of the coating layer Y is equal to or more than the lower limit, the adhesion with the catalyst layer can be improved. The lower limit and upper limit of the surface roughness of the coating layer Y can be arbitrarily combined, for example, 1.0 to 3.0 μm are preferable, 1.5 to 2.9 μm are more preferable, and 2.0 to 2.8 μm are even more preferable.

(他の形態)
 図1に示すコーティング層12は、多孔質電極基材11の一方の面に形成されているが、コーティング層は多孔質電極基材の両面に形成されていてもよい。ただし、生産性、ガス拡散性、排水性を考慮すると、多孔質電極基材の一方の面のみにコーティング層が形成されていることが好ましい。
 なお、多孔質電極基材の一方の面のみにコーティング層を形成する場合は、後述する固体高分子形燃料電池に用いた際に、触媒層と多孔質電極基材との間の接触抵抗を低減する観点から、固体高分子形燃料電池内の触媒層と接する側の多孔質電極基材の面上にコーティング層を設けることが好ましい。
(Other forms)
1 is formed on one surface of the porous electrode substrate 11, the coating layer may be formed on both surfaces of the porous electrode substrate. However, in consideration of productivity, gas diffusion properties, and drainage properties, it is preferable that the coating layer is formed on only one surface of the porous electrode substrate.
In addition, when a coating layer is formed on only one surface of the porous electrode substrate, it is preferable to provide the coating layer on the surface of the porous electrode substrate that comes into contact with the catalyst layer in the solid polymer fuel cell, from the viewpoint of reducing the contact resistance between the catalyst layer and the porous electrode substrate when used in the solid polymer fuel cell described below.

<ガス拡散層の物性>
 ガス拡散層の厚みは、良好な電気導電性と排水性を発現するために、55μm以上が好ましく、100μm以上がより好ましく、また350μm以下が好ましく、250μm以下がより好ましい。ガス拡散層の厚みが前記下限値以上であれば、ハンドリング可能となる。ガス拡散層の厚みが前記上限値以下であれば、良好な電気伝導性が得られる。前記ガス拡散層の厚みの下限と上限は任意に組み合わせることができ、例えば55~350μmが好ましく、100~250μmがより好ましい。
 なお、ガス拡散層の厚みは、ガス拡散層における任意の10箇所の厚みを測定し、それらを平均した値である。
<Physical properties of gas diffusion layer>
In order to achieve good electrical conductivity and drainage, the thickness of the gas diffusion layer is preferably 55 μm or more, more preferably 100 μm or more, and is preferably 350 μm or less, more preferably 250 μm or less. If the thickness of the gas diffusion layer is equal to or greater than the lower limit, handling is possible. If the thickness of the gas diffusion layer is equal to or less than the upper limit, good electrical conductivity is obtained. The lower limit and upper limit of the thickness of the gas diffusion layer can be arbitrarily combined, and for example, 55 to 350 μm are preferable, and 100 to 250 μm are more preferable.
The thickness of the gas diffusion layer is determined by measuring the thickness at any ten points on the gas diffusion layer and averaging the measured values.

<ガス拡散層の製造方法>
 以下、ガス拡散層の製造方法の一例について説明する。
 本実施形態のガス拡散層の製造方法は、例えばコーティング層がコーティング層Xである場合、以下の工程(1)~工程(3)を含む。
工程(1):多孔質電極基材の少なくとも一方の面上に、カーボン粉A、カーボン粉B及び溶媒と、必要に応じて撥水剤、任意成分とを含むコーティング液を塗布し、多孔質電極基材の少なくとも一方の面上に塗工膜を形成する工程。
工程(2):塗工膜を形成した多孔質電極基材を50℃~300℃の環境下にて乾燥し、塗工膜中の溶媒を除去し、多孔質電極基材の少なくとも一方の面上にコーティング層を形成する工程。
工程(3):コーティング層を形成した多孔質電極基材を300超400℃以下に加熱して撥水剤を焼結し、ガス拡散層を得る工程。
 コーティング層がコーティング層Yである場合は、前記工程(1)において、熱分解黒鉛、カーボン粉C及び溶媒と、必要に応じて撥水剤、任意成分とを含むコーティング液を用いる。
<Method of manufacturing gas diffusion layer>
An example of a method for producing a gas diffusion layer will be described below.
The method for producing a gas diffusion layer of the present embodiment includes the following steps (1) to (3) when the coating layer is coating layer X, for example.
Step (1): A step of applying a coating liquid containing carbon powder A, carbon powder B, a solvent, and, if necessary, a water repellent and optional components onto at least one surface of a porous electrode substrate to form a coating film on at least one surface of the porous electrode substrate.
Step (2): A step of drying the porous electrode substrate on which the coating film has been formed in an environment of 50°C to 300°C to remove the solvent in the coating film and form a coating layer on at least one surface of the porous electrode substrate.
Step (3): A step of heating the porous electrode substrate on which the coating layer has been formed to a temperature greater than 300° C. and equal to or less than 400° C. to sinter the water repellent agent, thereby obtaining a gas diffusion layer.
When the coating layer is coating layer Y, a coating liquid containing pyrolytic graphite, carbon powder C, a solvent, and, if necessary, a water repellent and optional components is used in the step (1).

(工程(1))
 コーティング液は、カーボン粉A、カーボン粉B及び溶媒、又は熱分解黒鉛、カーボン粉C及び溶媒と、必要に応じて撥水剤、任意成分とを、撹拌機等を用いて混合することで得られる。撥水剤を使用する場合、例えば、カーボン粉A、カーボン粉B及び溶媒、又は熱分解黒鉛、カーボン粉C及び溶媒と、必要に応じて任意成分とを含む分散液Aと、撥水剤及び溶媒と、必要に応じて任意成分とを含む分散液Bとをそれぞれ調製し、撹拌機等を用いて分散液Aと分散液Bを混合することでコーティング液を調製する。
 溶媒としては、水;低級アルコール、アセトン等の有機溶媒;水と有機溶媒の混合溶媒等が挙げられる。溶媒としては、コスト及び環境負荷の観点から、水が好ましい。
 カーボン粉A、カーボン粉B、熱分解黒鉛及びカーボン粉Cの濡れ性を高め、分散性を向上させる観点から、分散液Aには有機溶媒及び界面活性剤の少なくとも一方が含まれていることが好ましい。
 また、分散液Bの調製において溶媒として水を用いる場合、撥水剤は、そのままでは水には分散しにくいため、界面活性剤によって水中に撥水剤を分散させることが好ましい。
また、分散液Bとして、予め撥水剤が分散されたディスパージョン等を用いてもよい。
(Step (1))
The coating liquid is obtained by mixing carbon powder A, carbon powder B, and a solvent, or pyrolytic graphite, carbon powder C, and a solvent, and optionally a water repellent and optional components, using a stirrer, etc. When a water repellent is used, for example, dispersion A containing carbon powder A, carbon powder B, and a solvent, or pyrolytic graphite, carbon powder C, and a solvent, and optionally an optional component, and dispersion B containing a water repellent, a solvent, and optionally an optional component are each prepared, and dispersion A and dispersion B are mixed using a stirrer, etc. to prepare the coating liquid.
Examples of the solvent include water, organic solvents such as lower alcohols and acetone, mixed solvents of water and organic solvents, etc. From the viewpoints of cost and environmental load, water is preferred as the solvent.
From the viewpoint of increasing the wettability and improving the dispersibility of the carbon powder A, the carbon powder B, the pyrolytic graphite, and the carbon powder C, it is preferable that the dispersion liquid A contains at least one of an organic solvent and a surfactant.
When water is used as a solvent in preparing the dispersion B, the water repellent is preferably dispersed in water using a surfactant since the water repellent is difficult to disperse in water as it is.
Furthermore, as the dispersion liquid B, a dispersion in which a water repellent agent has been dispersed in advance may be used.

 コーティング層Xを形成するコーティング液に用いる分散液A中のカーボン粉Aの含有量は、分散液Aの総質量に対して、5~30質量%が好ましく、5~10質量%がより好ましい。
 カーボン粉Bの含有量は、分散液Aの総質量に対して、5~30質量%が好ましく、5~10質量%がより好ましい。
 コーティング層Xを形成するコーティング液に用いる分散液B中の撥水剤の含有量は、分散液Bの総質量に対して、1~20質量%が好ましく、1~10質量%がより好ましい。
The content of carbon powder A in dispersion A used in the coating liquid for forming coating layer X is preferably 5 to 30 mass %, more preferably 5 to 10 mass %, based on the total mass of dispersion A.
The content of the carbon powder B is preferably from 5 to 30% by mass, and more preferably from 5 to 10% by mass, based on the total mass of the dispersion A.
The content of the water repellent in the dispersion B used in the coating liquid for forming the coating layer X is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the dispersion B.

 コーティング層Yを形成するコーティング液に用いる分散液A中の熱分解黒鉛の含有量は、分散液Aの総質量に対して、5~30質量%が好ましく、5~10質量%がより好ましい。
 カーボン粉Cの含有量は、分散液Aの総質量に対して、5~30質量%が好ましく、5~10質量%がより好ましい。
 コーティング層Yを形成するコーティング液に用いる分散液B中の撥水剤の含有量は、分散液Bの総質量に対して、1~20質量%が好ましく、1~10質量%がより好ましい。
The content of pyrolytic graphite in dispersion A used in the coating liquid for forming coating layer Y is preferably 5 to 30 mass %, more preferably 5 to 10 mass %, based on the total mass of dispersion A.
The content of the carbon powder C is preferably from 5 to 30% by mass, and more preferably from 5 to 10% by mass, based on the total mass of the dispersion liquid A.
The content of the water repellent in the dispersion B used in the coating liquid for forming the coating layer Y is preferably 1 to 20 mass % relative to the total mass of the dispersion B, and more preferably 1 to 10 mass %.

 コーティング液の調製に用いる撹拌機としては特に限定されないが、例えばディスパー、ホモジナイザー、サンドミル、ジェットミル、ボールミル、ビーズミル等が挙げられる。これらの中でも、操作が簡便であり、また、処理時間を短縮できる観点から、ディスパー、ホモジナイザーが好ましい。
 撥水剤を繊維化するため、コーティング液の撹拌温度を30℃以上に保ち、ディスパーを用いた際の撹拌速度が5000rpm以上の条件にて、15分以上混合撹拌することが好ましい。
The stirrer used in preparing the coating liquid is not particularly limited, and examples thereof include a disper, a homogenizer, a sand mill, a jet mill, a ball mill, a bead mill, etc. Among these, a disper and a homogenizer are preferred from the viewpoints of easy operation and shortening the processing time.
In order to turn the water repellent into fibers, it is preferable to keep the stirring temperature of the coating liquid at 30° C. or higher and mix and stir for 15 minutes or more under conditions of a stirring speed of 5000 rpm or higher when using a disper.

 コーティング液の25℃における粘度は、100~10,0000mPa・sが好ましい。コーティング液の粘度が前記下限値以上であれば、コーティング液が多孔質電極基材に過度に染み込みにくく、コーティング層の厚みを容易に保持できる。コーティング液の粘度が前記上限値以下であれば、コーティング液の調製時間を短縮でき、生産性を良好に維持できる。 The viscosity of the coating liquid at 25°C is preferably 100 to 10,0000 mPa·s. If the viscosity of the coating liquid is equal to or greater than the lower limit, the coating liquid is less likely to penetrate excessively into the porous electrode substrate, and the thickness of the coating layer can be easily maintained. If the viscosity of the coating liquid is equal to or less than the upper limit, the preparation time of the coating liquid can be shortened, and good productivity can be maintained.

 多孔質電極基材の面上へのコーティング液の塗布方法としては、従来公知の方法を用いることができ、例えばバーコート法、ブレード法、スクリーン印刷法、スプレー法、カーテンコーティング法、ロールコート法等が挙げられる。これらの方法により、多孔質電極基材上に均一な塗工膜を形成することができる。
 塗工膜の厚みは、40μm以上が好ましく、50μm以上がより好ましい。塗工膜の厚みが前記下限値以上であれば、厚みの均一な塗工膜を容易に得ることができる。塗工膜の厚みは、2000μm以下が好ましく、1000μm以下がより好ましい。塗工膜の厚みが前記上限値以下であれば、コーティング層にクラックが発生することをより抑制できる。前記塗工膜の厚みの下限と上限は任意に組み合わせることができ、例えば40~2000μmが好ましく、50~1000μmがより好ましい。
 コーティング液の塗工速度は、生産性の観点から1~20m/分が好ましい。
The coating liquid can be applied to the surface of the porous electrode substrate by a conventional method, such as a bar coating method, a blade method, a screen printing method, a spray method, a curtain coating method, a roll coating method, etc. By using these methods, a uniform coating film can be formed on the porous electrode substrate.
The thickness of the coating film is preferably 40 μm or more, more preferably 50 μm or more. If the thickness of the coating film is equal to or more than the lower limit, a coating film having a uniform thickness can be easily obtained. The thickness of the coating film is preferably 2000 μm or less, more preferably 1000 μm or less. If the thickness of the coating film is equal to or less than the upper limit, the occurrence of cracks in the coating layer can be further suppressed. The lower limit and the upper limit of the thickness of the coating film can be arbitrarily combined, and for example, 40 to 2000 μm are preferable, and 50 to 1000 μm are more preferable.
The coating speed of the coating liquid is preferably 1 to 20 m/min from the viewpoint of productivity.

 工程(1)に先立ち、必要に応じて多孔質電極基材に撥水処理を施し、多孔質電極基材に撥水性を付与してもよい。
 撥水処理には、シリコーン樹脂、フッ素樹脂等の撥水剤の粒子を溶媒中に分散させた分散液、例えば上述した分散液Bを用いることができる。
Prior to step (1), the porous electrode substrate may be subjected to a water-repellent treatment as necessary to impart water repellency to the porous electrode substrate.
For the water-repellent treatment, a dispersion liquid in which particles of a water-repellent agent such as silicone resin or fluororesin are dispersed in a solvent, for example, the above-mentioned dispersion liquid B, can be used.

(工程(2))
 塗工膜の乾燥には例えばプレートヒーター、加熱ロール、熱風乾燥機、IRヒーター等を用いることができる。
 塗工膜を乾燥させる際の雰囲気温度(乾燥温度)としては、50℃以上が好ましく、100℃以上がより好ましく、150℃以上がさらに好ましい。乾燥温度が前記下限値以上であれば、塗工膜の乾燥速度が速まる。加えて、均一なコーティング層を容易に形成することができる。乾燥温度は、300℃以下が好ましく、300℃以下がより好ましく、300℃以下がさらに好ましい。乾燥温度が前記上限値以下であれば、溶媒の蒸発速度が速くなり過ぎず、クラックの発生をより抑制できる。前記乾燥温度の下限と上限は任意に組み合わせることができ、例えば50~300℃が好ましく、100~300℃がより好ましく、150~300℃がさらに好ましい。
 塗工膜の乾燥時間は、生産性を考慮すると30秒~20分が好ましく、30秒~10分がより好ましい。
(Step (2))
For drying the coating film, for example, a plate heater, a heating roll, a hot air dryer, an IR heater, or the like can be used.
The atmospheric temperature (drying temperature) when drying the coating film is preferably 50°C or higher, more preferably 100°C or higher, and even more preferably 150°C or higher. If the drying temperature is equal to or higher than the lower limit, the drying speed of the coating film is increased. In addition, a uniform coating layer can be easily formed. The drying temperature is preferably 300°C or lower, more preferably 300°C or lower, and even more preferably 300°C or lower. If the drying temperature is equal to or lower than the upper limit, the evaporation rate of the solvent does not become too fast, and the occurrence of cracks can be further suppressed. The lower limit and upper limit of the drying temperature can be arbitrarily combined, and for example, 50 to 300°C are preferable, 100 to 300°C are more preferable, and 150 to 300°C are even more preferable.
The drying time for the coating film is preferably 30 seconds to 20 minutes, and more preferably 30 seconds to 10 minutes, in consideration of productivity.

(工程(3))
 本実施形態のガス拡散層の製造方法では、乾燥後の「コーティング層を形成した多孔質電極基材」を300℃超400℃以下の環境下において焼結させることでガス拡散層を製造する。
 工程(3)、すなわち焼結工程においては、塗工膜中に含まれる撥水剤を融点付近まで加熱することによって、撥水剤粒子を溶融させてその形状をコントロールし、コーティング層の細孔構造制御と、カーボン粉A及びカーボン粉Bのバインディング又は熱分解黒鉛及びカーボン粉Cのバインディングを強固にする。したがって、焼結温度としては、300℃超450℃以下が好ましく、320~420℃がより好ましく、340~400℃がさらに好ましい。また焼結時間としては1~90分が好ましく、1~60分がより好ましく、10~30分がさらに好ましい。
 なお、塗工膜中に界面活性剤が含まれている場合、焼結工程により界面活性剤が焼失する。
(Step (3))
In the manufacturing method of the gas diffusion layer of this embodiment, the dried "porous electrode substrate with a coating layer formed thereon" is sintered in an environment of more than 300° C. and not more than 400° C. to manufacture the gas diffusion layer.
In step (3), i.e., the sintering step, the water repellent contained in the coating film is heated to near its melting point to melt the water repellent particles and control their shape, thereby controlling the pore structure of the coating layer and strengthening the binding between carbon powder A and carbon powder B or between pyrolytic graphite and carbon powder C. Therefore, the sintering temperature is preferably higher than 300° C. and not higher than 450° C., more preferably 320 to 420° C., and even more preferably 340 to 400° C. The sintering time is preferably 1 to 90 minutes, more preferably 1 to 60 minutes, and even more preferably 10 to 30 minutes.
If the coating film contains a surfactant, the surfactant will be burned off during the sintering process.

<作用効果>
 以上説明した本実施形態のガス拡散層は、カーボン粉A及びカーボン粉B、又は、熱分解黒鉛及びカーボン粉Cを含むコーティング層を備えており、前記コーティング層はクラックの発生が抑制されている。コーティング層におけるクラックの発生が抑制される理由は定かではないが、以下のように考えられる。
 コーティング層にクラックが発生する原因の1つは、多孔質電極基材上に設けられた塗工膜を乾燥し、コーティング層を形成する際にカーボン粉が凝集することであり、カーボン粉の凝集物を起点としてクラックが発生するものと考えられる。特に粒子径の小さいカーボン粉は、凝集しやすい。熱分解黒鉛は不純物が少なく、また、カーボン粉に比べて粒子径が比較的大きいため、カーボン粉と熱分解黒鉛とを併用すると、カーボン粉の凝集が抑制され、クラックの発生を抑制できるものと考えられる。
 加えて、熱分解黒鉛は不純物が少ないため、カーボン粉と熱分解黒鉛とを併用することで、熱伝導性が高まり、発電性能が向上する。
 同様に、カーボン粉Aとカーボン粉Bとを併用すると、カーボン粉Aの凝集が抑制され、クラックの発生を抑制でき、熱伝導性が高まり、発電性能が向上するものと考えられる。
<Action and effect>
The gas diffusion layer of the present embodiment described above includes a coating layer containing carbon powder A and carbon powder B, or pyrolytic graphite and carbon powder C, and the coating layer is suppressed from generating cracks. The reason why the coating layer is suppressed from generating cracks is not clear, but is thought to be as follows.
One of the causes of cracks occurring in the coating layer is the aggregation of carbon powder when the coating film provided on the porous electrode substrate is dried to form the coating layer, and it is believed that cracks occur starting from the carbon powder aggregates. Carbon powder with a small particle size is particularly prone to aggregation. Since pyrolytic graphite has few impurities and a relatively large particle size compared to carbon powder, it is believed that the combination of carbon powder and pyrolytic graphite can suppress the aggregation of carbon powder and the occurrence of cracks.
In addition, since pyrolytic graphite contains few impurities, the combined use of carbon powder and pyrolytic graphite increases thermal conductivity and improves power generation performance.
Similarly, it is believed that the combined use of carbon powder A and carbon powder B suppresses the aggregation of carbon powder A, inhibits the occurrence of cracks, increases thermal conductivity, and improves power generation performance.

 ガス拡散層の生産性及び加工性を鑑みると、ガス拡散層はロール状物であることが好ましい。
 以下、ガス拡散層のロール状物の一例について説明する。
In consideration of the productivity and processability of the gas diffusion layer, the gas diffusion layer is preferably in the form of a roll.
An example of the roll-shaped gas diffusion layer will now be described.

[ガス拡散層のロール状物]
 図2、3に、本発明のガス拡散層のロール状物(以下、単に「ロール状物」ともいう。)の一例を示す。
 本実施形態のガス拡散層のロール状物20は、ガス拡散層10のコーティング層12上に保護層23が設けられた積層体(以下、「保護層付きガス拡散層」ともいう。)22が、円筒状の芯材21にロール状に巻き回された巻回体である。
 本実施形態のガス拡散層のロール状物20は、保護層23が内側となるように積層体22が芯材21に巻き回されているが、保護層23が外側となるように積層体22が芯材21に巻き回されていてもよい。
[Roll-shaped gas diffusion layer]
2 and 3 show an example of a roll-shaped product of the gas diffusion layer of the present invention (hereinafter, simply referred to as a "roll-shaped product").
The gas diffusion layer roll 20 of this embodiment is a rolled body in which a laminate 22 (hereinafter, also referred to as a "gas diffusion layer with protective layer") having a protective layer 23 provided on the coating layer 12 of the gas diffusion layer 10 is wound around a cylindrical core material 21 in a roll shape.
In the gas diffusion layer roll 20 of this embodiment, the laminate 22 is wound around the core material 21 so that the protective layer 23 is on the inside, but the laminate 22 may also be wound around the core material 21 so that the protective layer 23 is on the outside.

<芯材>
 芯材は、軽量で、巻出し・巻き取り装置に保持しやすい中空形状の芯材が好ましい。
 芯材の材質としては、紙、樹脂が挙げられる。
 芯材の装置へ取り付ける際に発生する粉じんを減らす観点では、樹脂製の芯材が好ましい。樹脂としては、例えばポリエチレン、ABS樹脂、ポリスチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタラートが挙げられる。
 芯材をリサイクルする観点、及び安価である観点では、紙製の芯材が好ましい。また、紙製の芯材であっても、表面に樹脂加工を施した芯材を用いることで、装置への取り付け時に発生する粉じんを極力減らすことができる。
<Core material>
The core material is preferably a hollow core material that is lightweight and easy to hold in an unwinding/winding device.
The core material may be paper or resin.
From the viewpoint of reducing dust generated when the core material is attached to the device, a resin core material is preferable. Examples of resins include polyethylene, ABS resin, polystyrene, polypropylene, polyvinyl chloride, and polyethylene terephthalate.
From the viewpoints of recycling the core material and being inexpensive, a paper core material is preferred. Even if the core material is made of paper, the use of a core material with a resin-coated surface can minimize the amount of dust generated during installation in the device.

 芯材の外径は82.4~172.4mmが好ましい。芯材の外径が前記下限値以上であれば、ガス拡散層の巻き取り前後での構造変化が生じにくくなる。芯材の外径が前記上限値以下であれば、巻き取り径が大きくなりすぎず、生産性の低下及び輸送時の上昇を抑制できる。
 芯材が中空形状である場合は、芯材の内径は76.2~152.4mmが好ましい。また、芯材の厚みは4~15mmが好ましい。芯材の厚みが前記下限値以上であれば、繰り返し使用しても耐久性に優れる。芯材の厚みが前記上限値以下であれば、ガス拡散層のロール状物の重量が過剰に増えることを抑制できる。
 なお、芯材はガス拡散層をロール状に巻き取ったあとに抜き取ってもよい。
The outer diameter of the core material is preferably 82.4 to 172.4 mm. If the outer diameter of the core material is equal to or greater than the lower limit, the structure of the gas diffusion layer is less likely to change before and after winding. If the outer diameter of the core material is equal to or less than the upper limit, the winding diameter does not become too large, and a decrease in productivity and an increase in temperature during transportation can be suppressed.
When the core material is hollow, the inner diameter of the core material is preferably 76.2 to 152.4 mm. The thickness of the core material is preferably 4 to 15 mm. If the thickness of the core material is equal to or greater than the lower limit, the core material has excellent durability even when used repeatedly. If the thickness of the core material is equal to or less than the upper limit, the weight of the roll of the gas diffusion layer can be prevented from increasing excessively.
The core material may be removed after the gas diffusion layer is wound into a roll.

<保護層>
 保護層は、ガス拡散層のコーティング層を保護するためのシートである。また、保護層を設けることで、コーティング層に多孔質電極基材から脱落した炭素繊維や炭化物等の異物が付着することを防止できる。
 保護層としては、コーティング層と接着しないものであればよいが、例えば紙、樹脂フィルムが挙げられる。
 紙としては、発塵の少ない無塵紙が好ましい。
 樹脂フィルムとしては、コーティング層を保護するため炭素繊維が押し付けられた際に変形の少ない樹脂フィルムが好ましい。樹脂フィルムの材質としては、例えばポリエチレン、ABS樹脂、ポリスチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタラート、ポリテトラフルオロエチレンが挙げられる。
<Protective Layer>
The protective layer is a sheet for protecting the coating layer of the gas diffusion layer, and by providing the protective layer, it is possible to prevent foreign matter such as carbon fibers and carbides that have fallen off from the porous electrode substrate from adhering to the coating layer.
The protective layer may be any layer that does not adhere to the coating layer, and examples of the protective layer include paper and resin films.
As the paper, dust-free paper that generates little dust is preferable.
The resin film is preferably one that is less deformed when pressed against the carbon fiber in order to protect the coating layer. Examples of the material for the resin film include polyethylene, ABS resin, polystyrene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polytetrafluoroethylene.

 保護層の厚みは、5~100μmが好ましい。保護層の厚みが前記下限値以上であれば、炭素繊維の保護層への突き刺さりによるコーティング層へダメージをより抑制できる。
保護層の厚みが前記上限値以下であれば、ガス拡散層のロール状物の巻き径が大きくなりすぎず、生産性の低下及び輸送コストの上昇を抑制できる。
 保護層の幅は、ガス拡散層の幅と同一以上であり、その差は200mm以下であることが好ましい。保護層の幅がガス拡散層の幅と同一以上であれば、保護層の効果を十分に得られる。また、保護層のエッジ部分がコーティング層を傷つけることを抑制できる。保護層の幅が、ガス拡散層よりも大きく、その差が200mm以下であれば、保護層のコストの上昇を抑制できる。また、巻き取り時のバランスを良好に維持でき、巻形態が安定しやすい。
The thickness of the protective layer is preferably 5 to 100 μm. When the thickness of the protective layer is equal to or more than the lower limit, damage to the coating layer caused by the carbon fibers piercing the protective layer can be further suppressed.
When the thickness of the protective layer is equal to or less than the upper limit, the winding diameter of the roll of the gas diffusion layer does not become too large, and a decrease in productivity and an increase in transportation costs can be suppressed.
It is preferable that the width of the protective layer is equal to or greater than the width of the gas diffusion layer, with the difference being 200 mm or less. If the width of the protective layer is equal to or greater than the width of the gas diffusion layer, the effect of the protective layer can be sufficiently obtained. In addition, it is possible to prevent the edge portion of the protective layer from damaging the coating layer. If the width of the protective layer is greater than that of the gas diffusion layer, with the difference being 200 mm or less, it is possible to prevent an increase in the cost of the protective layer. In addition, it is possible to maintain a good balance during winding, and the winding shape is likely to be stable.

[固体高分子形燃料電池]
 図4に、本発明の固体高分子形燃料電池の一例を示す。
 本実施形態の固体高分子形燃料電池100は、膜-電極接合体(MEA)30と、一対のセパレータ40A,40Bとを備える。
 膜-電極接合体30は、一対のセパレータ40A,40Bで挟まれている。
 膜-電極接合体30及び一対のセパレータ40A,40Bを1つのセル(単セル)としたときに、固体高分子形燃料電池100は、1つのセルで構成されたものであってもよいし、複数のセルの集合体であってもよい。
[Polymer electrolyte fuel cell]
FIG. 4 shows an example of a polymer electrolyte fuel cell according to the present invention.
The polymer electrolyte fuel cell 100 of this embodiment includes a membrane electrode assembly (MEA) 30 and a pair of separators 40A, 40B.
The membrane-electrode assembly 30 is sandwiched between a pair of separators 40A and 40B.
When the membrane-electrode assembly 30 and the pair of separators 40A, 40B are formed into one cell (single cell), the polymer electrolyte fuel cell 100 may be configured from one cell, or It may be an aggregate of a plurality of cells.

<膜-電極接合体>
 膜-電極接合体30は、高分子電解質膜31と、一対のガス拡散電極32A,32Bとで構成されている。
 高分子電解質膜31は、一対のガス拡散電極32A,32Bで挟まれている。
<Membrane-electrode assembly>
The membrane-electrode assembly 30 is composed of a polymer electrolyte membrane 31 and a pair of gas diffusion electrodes 32A, 32B.
The polymer electrolyte membrane 31 is sandwiched between a pair of gas diffusion electrodes 32A and 32B.

(高分子電解質膜)
 高分子電解質膜31は、高分子電解質を含む。
 高分子電解質としては、例えばフッ素系高分子電解質、炭化水素系高分子電解質が挙げられる。
 フッ素系高分子電解質としては、例えばテトラフルオロエチレン骨格を有する高分子電解質が挙げられる。
 炭化水素系高分子電解質としては、例えばスルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンが挙げられる。
(Polymer electrolyte membrane)
The polymer electrolyte membrane 31 contains a polymer electrolyte.
Examples of the polymer electrolyte include a fluorine-based polymer electrolyte and a hydrocarbon-based polymer electrolyte.
An example of the fluorine-based polymer electrolyte is a polymer electrolyte having a tetrafluoroethylene skeleton.
Examples of the hydrocarbon-based polymer electrolyte include sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether sulfone, sulfonated polysulfide, and sulfonated polyphenylene.

(ガス拡散電極)
 ガス拡散電極32Aは、触媒層321Aと、ガス拡散層10とを備える。
 ガス拡散電極32Aは酸素極側の電極であり、ガス拡散電極32Aには、酸素が供給される。なお、ガス拡散電極32Aを「酸素極」ともいい、触媒層321Aを「酸素極触媒層」ともいう。また、ガス拡散電極32Aに備わるガス拡散層10を「酸素極ガス拡散層」ともいう。
(Gas diffusion electrode)
The gas diffusion electrode 32A includes a catalyst layer 321A and a gas diffusion layer 10.
The gas diffusion electrode 32A is an electrode on the oxygen electrode side, and oxygen is supplied to the gas diffusion electrode 32A. The gas diffusion electrode 32A is also called the "oxygen electrode", and the catalyst layer 321A is also called the "oxygen electrode catalyst layer". The gas diffusion layer 10 provided on the gas diffusion electrode 32A is also called the "oxygen electrode gas diffusion layer".

 ガス拡散電極32Bは、触媒層321Bと、ガス拡散層10とを備える。
 ガス拡散電極32Bは燃料極側の電極であり、ガス拡散電極32Bには、水素が供給される。なお、ガス拡散電極32Bを「燃料極」ともいい、触媒層321Bを「燃料極触媒層」ともいう。また、ガス拡散電極32Bに備わるガス拡散層10を「燃料極ガス拡散層」ともいう。
The gas diffusion electrode 32B includes a catalyst layer 321B and a gas diffusion layer 10.
The gas diffusion electrode 32B is an electrode on the fuel electrode side, and hydrogen is supplied to the gas diffusion electrode 32B. The gas diffusion electrode 32B is also called the "fuel electrode", and the catalyst layer 321B is also called the "fuel electrode catalyst layer". The gas diffusion layer 10 provided on the gas diffusion electrode 32B is also called the "fuel electrode gas diffusion layer".

 触媒層321Aは、触媒とバインダを含む層であり、酸素の還元反応が起こる反応場である。
 触媒層321Bは、触媒とバインダを含む層であり、水素の酸化反応が起こる反応場である。
 触媒としては、カーボン等の担体に、Pt(白金)、Ru(ルテニウム)などを担持させた触媒担持体;カーボンアロイ触媒等が挙げられる。
 バインダとしては、イオン交換能を有する高分子化合物が好ましく、具体的には、フッ素系イオン交換樹脂、炭化水素系イオン交換樹脂等が挙げられる。
 触媒層321A,321Bの厚みは、それぞれ2~15μmが好ましい。触媒層の厚みが前記範囲内であれば、効率よく発電可能となる。
The catalyst layer 321A is a layer containing a catalyst and a binder, and is a reaction field where the reduction reaction of oxygen occurs.
The catalyst layer 321B is a layer containing a catalyst and a binder, and is a reaction field where the oxidation reaction of hydrogen occurs.
Examples of the catalyst include a catalyst support in which Pt (platinum), Ru (ruthenium) or the like is supported on a support such as carbon; a carbon alloy catalyst, and the like.
The binder is preferably a polymer compound having ion exchange ability, and specific examples thereof include fluorine-based ion exchange resins and hydrocarbon-based ion exchange resins.
The thickness of each of the catalyst layers 321A and 321B is preferably 2 to 15 μm. If the thickness of the catalyst layer is within the above range, power generation can be performed efficiently.

 ガス拡散電極32A,32Bに備わるガス拡散層10は、上述した本発明のガス拡散層であり、その説明を省略する。
 なお、ガス拡散層10は、コーティング層側の表面が、触媒層321A又は触媒層321B側となるように配置されている。
The gas diffusion layers 10 provided on the gas diffusion electrodes 32A and 32B are the gas diffusion layers of the present invention described above, and a description thereof will be omitted.
The gas diffusion layer 10 is disposed so that the surface on the coating layer side faces the catalyst layer 321A or 321B.

<セパレータ>
 セパレータ40Aの対向する一対の表面のうち、ガス拡散電極32Aと対向する対向面には、複数の溝状のガス流路41Aが形成されている。セパレータ40Aの前記対向面とは反対側の表面には、複数の溝状の冷却水流路(図示略)が形成されていてもよい。
 セパレータ40Bの対向する一対の表面のうち、ガス拡散電極32Bと対向する対向面には、複数の溝状のガス流路41Bが形成されている。セパレータ40Bの前記対向面とは反対側の表面には、複数の溝状の冷却水流路(図示略)が形成されていてもよい。
<Separator>
Of the pair of opposing surfaces of the separator 40A, a plurality of groove-like gas flow paths 41A are formed on the opposing surface facing the gas diffusion electrode 32A. A plurality of groove-like cooling water flow paths (not shown) may be formed on the surface of the separator 40A opposite to the opposing surface.
Of the pair of opposing surfaces of the separator 40B, a plurality of groove-like gas flow paths 41B are formed on the opposing surface facing the gas diffusion electrode 32B. A plurality of groove-like cooling water flow paths (not shown) may be formed on the surface of the separator 40B opposite to the opposing surface.

 セパレータ40A,40Bはそれぞれ、導電性を有し、かつ、ガス不透過性を有する材料によって形成されていることが好ましい。このような材料としては、カーボン等が挙げられる。 It is preferable that each of the separators 40A and 40B is made of a material that is conductive and gas impermeable. Examples of such materials include carbon.

<固体高分子形燃料電池の製造方法>
 以下に固体高分子形燃料電池の製造方法の一例について説明する。
 本実施形態の固体高分子形燃料電池の製造方法では、まず、上述したガス拡散層のコーティング層上に触媒層を形成して、ガス拡散電極を得る。具体的には、ガス拡散層のコーティング層上に、触媒、バインダ及び溶媒等を含む触媒インキを塗工して、触媒層の塗工膜を得る。
 触媒インキの塗工方法としては特に限定されないが、例えばバーコート法、ブレード法、スクリーン印刷法、スプレー法、カーテンコーティング法、ロールコート法等が挙げられる。これらの方法により、ガス拡散層のコーティング層上に均一な触媒層の塗工膜を形成することができる。
 形成した触媒層の塗工膜は一般的な方法で乾燥され、ガス拡散層のコーティング層上に触媒層が形成されたガス拡散電極を製造することができる。
<Method of Manufacturing Polymer Electrolyte Fuel Cell>
An example of a method for producing a polymer electrolyte fuel cell will be described below.
In the method for producing a polymer electrolyte fuel cell according to the present embodiment, a catalyst layer is first formed on the coating layer of the gas diffusion layer described above to obtain a gas diffusion electrode. Specifically, a catalyst ink containing a catalyst, a binder, a solvent, etc. is applied onto the coating layer of the gas diffusion layer to obtain a coating film of the catalyst layer.
The method for applying the catalyst ink is not particularly limited, but examples thereof include a bar coating method, a blade method, a screen printing method, a spray method, a curtain coating method, a roll coating method, etc. By using these methods, a uniform coating film of the catalyst layer can be formed on the coating layer of the gas diffusion layer.
The formed coating film of the catalyst layer is dried by a common method, and a gas diffusion electrode in which the catalyst layer is formed on the coating layer of the gas diffusion layer can be produced.

 次いで、高分子電解質膜を一対のガス拡散電極で挟み、膜-電極接合体を得る。
 得られた膜-電極接合体を一対のセパレータで挟み、単セルを得る。
 得られた単セルを固体高分子形燃料電池として用いてもよいし、複数の単セルを積層して固体高分子形燃料電池として用いてもよい。
Next, the polymer electrolyte membrane is sandwiched between a pair of gas diffusion electrodes to obtain a membrane-electrode assembly.
The resulting membrane-electrode assembly is sandwiched between a pair of separators to obtain a single cell.
The obtained single cell may be used as a polymer electrolyte fuel cell, or a plurality of single cells may be stacked and used as a polymer electrolyte fuel cell.

 以下では実施例によって本発明をより具体的に説明する。しかし、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない限り種々の変形が可能である。 The present invention will be explained in more detail below using examples. However, the present invention is not limited to the examples described below, and various modifications are possible without departing from the gist of the present invention.

[測定方法]
<剥離強度の測定>
 ガス拡散層から幅15mmの試験片を切り出し、引張り試験機(株式会社島津製作所製、製品名「小型卓上試験機EZ」)を用い、23℃、65%RHの雰囲気中、引張速度250mm/分の条件にて180度剥離により、試験片の端部から多孔質電極基材とコーティング層との界面を剥離して剥離強度を測定した。
[Measurement method]
<Measurement of Peel Strength>
A test piece having a width of 15 mm was cut out from the gas diffusion layer, and the interface between the porous electrode substrate and the coating layer was peeled off from an end of the test piece by 180-degree peeling at a tensile speed of 250 mm/min in an atmosphere of 23°C and 65% RH using a tensile testing machine (manufactured by Shimadzu Corporation, product name "Small Tabletop Tester EZ") to measure the peel strength.

<表面粗さRaの測定>
 表面粗さ測定器(株式会社ミツトヨ製、製品名「サーフコム1400D-LCD」)を用い、カットオフ値0.8mm、測定区間4mm、レンジ:320μm、測定区間5か所の設定で、ガス拡散層のコーティング層の表面粗さRaを測定した。
<Measurement of surface roughness Ra>
The surface roughness Ra of the coating layer of the gas diffusion layer was measured using a surface roughness measuring device (manufactured by Mitutoyo Corporation, product name "Surfcom 1400D-LCD") with a cutoff value of 0.8 mm, a measurement section of 4 mm, a range of 320 μm, and five measurement sections.

<カーボン粉A~Cの平均粒子径算出>
 カーボン粉A、BおよびCの平均粒子径を評価するために、オスミウムコートしたコーティング層の表層を電解放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM、型番:「JSM-7610F」、日本電子株式会社製)を用いて撮像することにより、上記コーティング層表面の二次電子像(SEM像)を得た。
撮像条件は、下記の通りである。
加速電圧=1kV
WD:3mm
検出器:SE検出器
蒸着条件:オスミウムコート
(オスミウム蒸着条件)
装置:メイワフォーシス社製 オスミウムコーター Tennant20型
蒸着条件:Autoモード
蒸着厚:3nm
<Calculation of average particle size of carbon powders A to C>
In order to evaluate the average particle diameters of the carbon powders A, B, and C, the surface of the osmium-coated coating layer was imaged using a field emission scanning electron microscope (FE-SEM, model number: "JSM-7610F", manufactured by JEOL Ltd.) to obtain a secondary electron image (SEM image) of the surface of the coating layer.
The imaging conditions are as follows.
Acceleration voltage = 1 kV
Working distance: 3 mm
Detector: SE detector Deposition conditions: Osmium coat (Osmium deposition conditions)
Equipment: Meiwafosis Osmium Coater Tennant 20 type Deposition conditions: Auto mode Deposition thickness: 3 nm

 得られたSEM像から以下に示す解析方法によって、カーボン粉A~Cの平均粒子径を算出した。
(カーボン粉AおよびCの平均粒子径算出方法)
 観察倍率50,000倍で観察視野内にカーボン粉AまたはCのみが存在するように撮像したSEM像を画像解析ソフト「ImageJ」を用いて32-bit画像に変換した。同ソフトを用いてSEM像のスケールバーの長さと数値を読み取った。
 観察画像に1ピクセルあたりの長さを反映させた後、スケール情報や観察条件が記載された領域を削除した。得られた画像データ領域からその平均輝度値を差し引いた後、画像サイズの縦横サイズがそれぞれ2の累乗となるように画像データ領域外を0で補間した。得られた画像を二次元自己相関関数に変換し、さらに二次元自己相関関数の最大値で二次元自己相関関数を除すことで最大値が1となるように規格化した。二次元自己相関関数の原点を中心として円環平均を行い、一次元自己相関関数を得た後、原点に最も近い自己相関関数値が0.5に減衰する距離をr*とし、下記式を用いてカーボン粉AまたはCの粒子径を算出した。撮影した13点の像について粒子径を算出し、平均値を平均粒子径とした。
(カーボン粉AまたはCの粒子径)=3×r*
The average particle diameters of the carbon powders A to C were calculated from the obtained SEM images by the following analytical method.
(Method of calculating average particle size of carbon powders A and C)
The SEM image, taken at a magnification of 50,000 times so that only carbon powder A or C was present within the observation field, was converted to a 32-bit image using the image analysis software "ImageJ". The length and value of the scale bar of the SEM image were read using the same software.
After reflecting the length per pixel in the observed image, the area in which the scale information and observation conditions were written was deleted. After subtracting the average brightness value from the obtained image data area, the outside of the image data area was interpolated with 0 so that the vertical and horizontal sizes of the image size were each a power of 2. The obtained image was converted into a two-dimensional autocorrelation function, and further normalized so that the maximum value was 1 by dividing the two-dimensional autocorrelation function by the maximum value of the two-dimensional autocorrelation function. After performing a circular average with the origin of the two-dimensional autocorrelation function as the center to obtain a one-dimensional autocorrelation function, the distance at which the autocorrelation function value closest to the origin attenuates to 0.5 was defined as r*, and the particle diameter of carbon powder A or C was calculated using the following formula. The particle diameter was calculated for the 13 images taken, and the average value was defined as the average particle diameter.
(Particle diameter of carbon powder A or C) = 3 x r *

(カーボン粉Bの粒子径解析方法)
 観察倍率10,000倍で撮像したコーティング層表層のカーボン粉BのSEM像に対し画像解析ソフト「ImageJ」を用いて8-bit画像に変換した。同ソフトを用いてSEM像のスケールバーの長さと数値を読み取った。
 観察画像に1ピクセルあたりの長さを反映させた後、カーボン粉の輪郭上の任意の2点間での最長距離を計測することでカーボン粉Bのフェレ径を算出し、これをカーボン粉Bの粒子径とした。撮影した13点の像について粒子径を算出し、平均値を平均粒子径とした。
(Method of Analyzing Particle Size of Carbon Powder B)
The SEM image of the carbon powder B on the surface of the coating layer taken at a magnification of 10,000 times was converted into an 8-bit image using the image analysis software "ImageJ". The length and value of the scale bar of the SEM image were read using the same software.
After reflecting the length per pixel in the observed image, the longest distance between any two points on the contour of the carbon powder was measured to calculate the Feret's diameter of the carbon powder B, which was taken as the particle diameter of the carbon powder B. The particle diameters were calculated for the 13 captured images, and the average value was taken as the average particle diameter.

[実施例1]
<多孔質電極基材の製造>
 炭素繊維として、平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維を用いた。
 炭素繊維前駆体繊維として、平均繊維径が4μm、平均繊維長が3mmのアクリル繊維(三菱ケミカル株式会社製、商品名「D122」)を用いた。
 フィブリル状繊維として、叩解によってフィブリル化するアクリル系ポリマーとジアセテート(酢酸セルロース)とからなる易割繊性アクリル系海島複合繊維(三菱ケミカル株式会社製、商品名「ボンネルM.V.P.-C651」、平均繊維長:3mm)を用いた。
 以下のようにして、多孔質電極基材を製造した。
[Example 1]
<Production of Porous Electrode Substrate>
As the carbon fibers, PAN-based carbon fibers having an average fiber diameter of 7 μm and an average fiber length of 3 mm were used.
As the carbon fiber precursor fiber, an acrylic fiber (manufactured by Mitsubishi Chemical Corporation, product name "D122") having an average fiber diameter of 4 μm and an average fiber length of 3 mm was used.
As the fibrillated fiber, an easily splittable acrylic sea-island composite fiber (manufactured by Mitsubishi Chemical Corporation, product name "Bonnell MVP-C651", average fiber length: 3 mm) consisting of an acrylic polymer that can be fibrillated by beating and diacetate (cellulose acetate) was used.
A porous electrode substrate was produced as follows.

(1)繊維の離解
 炭素繊維を、繊維濃度が1質量%(10g/L)になるように水中へ分散して、ミキサーを通して離解処理し、離解スラリー繊維(SA)を調製した。
 炭素繊維前駆体繊維を、繊維濃度が1質量%(10g/L)になるように水中へ分散して、ミキサーを通して離解処理し、離解スラリー繊維(Sb)を調製した。
 易割繊性アクリル系海島複合繊維を、繊維濃度が1質量%(10g/L)になるように水中へ分散させミキサーを通して叩解・離解処理し、離解スラリー繊維(Sb’)を調製した。
(1) Disintegration of Fibers Carbon fibers were dispersed in water to a fiber concentration of 1 mass % (10 g/L) and disintegrated through a mixer to prepare disintegrated slurry fibers (SA).
The carbon fiber precursor fibers were dispersed in water so that the fiber concentration was 1 mass % (10 g/L), and the dispersion was defibrated through a mixer to prepare defibrated slurry fibers (Sb).
Splittable acrylic sea-island composite fibers were dispersed in water to a fiber concentration of 1 mass % (10 g/L), and beaten and defibrated in a mixer to prepare defibrated slurry fibers (Sb').

(2)前駆体シートの製造
 炭素繊維と炭素繊維前駆体繊維及びフィブリル状繊維とが、質量比70:10:20で、かつスラリー中の繊維の濃度が、1.44g/Lとなるように離解スラリー繊維(SA)、離解スラリー繊維(Sb)、離解スラリー繊維(Sb’)、希釈水を計量し、分散させた。抄紙には、ネット駆動部及び幅60cm×長さ585cmのプラスチックネット製平織メッシュをベルト状につなぎあわせて連続的に回転させるネットよりなるシート状物搬送装置、スラリー供給部幅が48cm、ネット下部に配置した減圧脱水装置からなる処理装置を用いた。処理装置の下流に下記の3本のウォータージェットノズルを備えた加圧水流噴射処理装置を配置した。
 ノズル1:孔径φ0.15mm×50 1孔幅方向孔間ピッチ1mm(1001孔/幅1m)1列配置、ノズル有効幅500mm。
 ノズル2:孔径φ0.15mm×50 1孔幅方向孔間ピッチ1mm(1001孔/幅1m)1列配置、ノズル有効幅500mm。
 ノズル3:孔径φ0.15mm×100 2孔幅方向孔間ピッチ1.5mm3列配置、列間ピッチ5mm、ノズル有効幅500mm。
 加圧水流噴射圧力を1MPaノズル1、圧力2MPa(ノズル2)、圧力1MPa(ノズル3)として、繊維の分散したスラリーをスラリー供給部より投入し、減圧脱水を経た後、ノズル1、ノズル2、ノズル3の順で通過させて交絡処理を加え3次元交絡構造を持つ前駆体シートを得た。前駆体シートを、ピンテンター試験機(辻井染機工業株式会社製、製品名「PT-2A-400」)により150℃で3分間、乾燥させて前駆体シートを得た。
 なお、前駆体シートにおける炭素繊維、炭素繊維前駆体繊維及びフィブリル状繊維の分散状態は、良好でさらにハンドリング性は良好であった。
(2) Production of precursor sheet Disintegrated slurry fiber (SA), disintegrated slurry fiber (Sb), disintegrated slurry fiber (Sb') and dilution water were weighed and dispersed so that the carbon fiber, carbon fiber precursor fiber and fibril fiber were in a mass ratio of 70:10:20 and the fiber concentration in the slurry was 1.44 g/L. For papermaking, a treatment device was used that consisted of a net drive unit, a sheet-like material conveying device consisting of a net made of a plastic net plain weave mesh of width 60 cm x length 585 cm connected in a belt shape and continuously rotated, a slurry supply unit of width 48 cm and a reduced pressure dehydration device arranged below the net. A pressurized water jet treatment device equipped with the following three water jet nozzles was arranged downstream of the treatment device.
Nozzle 1: hole diameter φ0.15 mm×50 holes, width direction hole pitch 1 mm (1001 holes/width 1 m), arranged in one row, nozzle effective width 500 mm.
Nozzle 2: hole diameter φ0.15 mm×50, one hole per width direction hole pitch 1 mm (1001 holes/width 1 m), arranged in one row, nozzle effective width 500 mm.
Nozzle 3: hole diameter φ0.15 mm×100, 2 holes with a widthwise hole pitch of 1.5 mm arranged in 3 rows, row pitch 5 mm, nozzle effective width 500 mm.
The pressurized water jet pressure was set to 1 MPa (nozzle 1), 2 MPa (nozzle 2), and 1 MPa (nozzle 3), and the slurry in which the fibers were dispersed was fed from the slurry supply unit, and after reduced pressure dehydration, the slurry was passed through nozzles 1, 2, and 3 in this order to carry out an entanglement treatment, thereby obtaining a precursor sheet having a three-dimensional entangled structure. The precursor sheet was dried at 150° C. for 3 minutes using a pin tenter tester (manufactured by Tsujii Senki Kogyo Co., Ltd., product name "PT-2A-400") to obtain a precursor sheet.
The carbon fibers, carbon fiber precursor fibers, and fibrillar fibers were well dispersed in the precursor sheet, and the handleability was also good.

(3)樹脂含浸・乾燥と、加圧加熱成形
 得られた前駆体シートにフェノール樹脂ディスパージョンを含浸させ、熱風乾燥機を用いて雰囲気温度100℃にて乾燥させた。
 次いで、この前駆体シートの両面を、シリコーン系離型剤をコートした紙で挟み込むように配置し、ダブルベルトプレス装置にて190℃、ベルト速度0.2m/分にてプレス成形を行い、炭素繊維シートを得た。
(3) Resin Impregnation/Drying and Pressurized Heat Molding The obtained precursor sheet was impregnated with a phenolic resin dispersion and dried at an atmospheric temperature of 100° C. using a hot air dryer.
Next, both sides of this precursor sheet were sandwiched between papers coated with a silicone-based release agent, and press molding was performed in a double belt press at 190° C. and a belt speed of 0.2 m/min to obtain a carbon fiber sheet.

(4)炭素化処理
 得られた炭素繊維シートを炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で炭素化処理して多孔質電極基材を得た。
 得られた多孔質電極基材は反りやうねりが生じておらず平滑であった。得られた多孔質電極基材の厚みは155μmであり、ガス透過度は950mL/(cm・Pa・hr)であり、平均細孔径は35μmであり、目付は57g/mであった。
(4) Carbonization Treatment The obtained carbon fiber sheet was carbonized in a carbonization furnace under conditions of a nitrogen gas atmosphere at 2000° C. to obtain a porous electrode substrate.
The resulting porous electrode substrate was smooth and free from warping or undulation. The resulting porous electrode substrate had a thickness of 155 μm, a gas permeability of 950 mL/(cm 2 ·Pa·hr), an average pore size of 35 μm, and a basis weight of 57 g/m 2 .

(5)撥水処理
 PTFEディスパージョン(三井・ケマーズ フロロプロダクツ株式会社製、商品名「31-JR」)と、界面活性剤としてポリオキシエチレン(10)オクチルフェニルエーテルと、蒸留水とを混合し、撥水処理液を調製した。具体的には、撥水処理液における固形分濃度が、PTFEが1質量%、界面活性剤が2質量%となるようにPTFEディスパージョンと界面活性剤とを混合し、さらに蒸留水を添加し、ディスパーを用いて1000rpm、10分間撹拌することによって、撥水処理液を調製した。
 多孔質電極基材を上記の撥水処理液に浸漬することによって含浸させた。含浸後の多孔質電極基材を2対のニップロールを通過させることで余分な撥水処理液を取り除いた後、乾燥炉にて乾燥処理することで、撥水処理が施された多孔質電極基材を得た。
(5) Water-repellent treatment A water-repellent treatment liquid was prepared by mixing a PTFE dispersion (manufactured by Mitsui-Chemours Fluoroproducts Co., Ltd., product name "31-JR"), polyoxyethylene (10) octylphenyl ether as a surfactant, and distilled water. Specifically, the PTFE dispersion and the surfactant were mixed so that the solid content concentration in the water-repellent treatment liquid was 1 mass % for PTFE and 2 mass % for the surfactant, and distilled water was further added and the mixture was stirred at 1000 rpm for 10 minutes using a disper to prepare the water-repellent treatment liquid.
The porous electrode substrate was immersed in the water-repellent treatment liquid to be impregnated. The impregnated porous electrode substrate was passed through two pairs of nip rolls to remove excess water-repellent treatment liquid, and then dried in a drying furnace to obtain a water-repellent treated porous electrode substrate.

<コーティング液の調製>
 熱分解黒鉛(伊藤黒鉛工業株式会社製、商品名「PC-H」、平均粒子径7.68μm)と、カーボン粉としてアセチレンブラック(デンカ株式会社製、商品名「デンカブラック(登録商標)」、平均粒子径35nm)と、イオン交換水とを混合し、分散液Aを調製した。具体的には、カーボン粉100質量部に対して、熱分解黒鉛が14質量部となるように熱分解黒鉛とカーボン粉とを混合し、さらにイオン交換水を添加し、撹拌機(プライミクス株式会社製、製品名「ホモミクサーMARK-II」)を用いて、冷却しながら10000rpmで1分間撹拌し、分散液Aを調製した。なお、熱分解黒鉛に対し下記の走査型電子顕微鏡(SEM)を用いて5点の粒子を確認し、アスペクト比を算出したところ、5であった。
 得られた分散液Aに、分散液Bとしてポリテトラフルオロエチレン(PTFE)ディスパージョンを添加し、コーティング液を調製した。具体的には、カーボン粉100質量部に対して、PTFEが42質量部となるように分散液Aと分散液Bとを混合し、液温を30℃に維持しつつ、ディスパーによって5000rpmで15分間の撹拌を行い、コーティング液を得た。
 得られたコーティング液の総質量に対する固形分の含有量は、10.8質量%であった。ここで、「固形分の含有量」とは、コーティング液に含まれる、溶媒を除いた全成分の純分換算での合計含有量のことである。コーティング液の組成を表1に示す。
<Preparation of Coating Solution>
Pyrolytic graphite (manufactured by Ito Graphite Industries Co., Ltd., product name "PC-H", average particle size 7.68 μm), acetylene black as carbon powder (manufactured by Denka Co., Ltd., product name "Denka Black (registered trademark)", average particle size 35 nm), and ion-exchanged water were mixed to prepare dispersion liquid A. Specifically, pyrolytic graphite and carbon powder were mixed so that the pyrolytic graphite was 14 parts by mass per 100 parts by mass of carbon powder, ion-exchanged water was further added, and the mixture was stirred at 10,000 rpm for 1 minute while cooling using a stirrer (manufactured by Primix Corporation, product name "Homomixer MARK-II") to prepare dispersion liquid A. Note that, when the particles of the pyrolytic graphite were confirmed at five points using the following scanning electron microscope (SEM) and the aspect ratio was calculated to be 5.
A coating liquid was prepared by adding a polytetrafluoroethylene (PTFE) dispersion as dispersion B to the obtained dispersion A. Specifically, dispersion A and dispersion B were mixed so that the amount of PTFE was 42 parts by mass per 100 parts by mass of carbon powder, and the mixture was stirred at 5000 rpm for 15 minutes with a disperser while maintaining the liquid temperature at 30° C., to obtain a coating liquid.
The solid content of the obtained coating liquid was 10.8% by mass. Here, the "solid content" refers to the total content of all components contained in the coating liquid, excluding the solvent, calculated as pure content. The composition of the coating liquid is shown in Table 1.

<ガス拡散層の製造>
 撥水処理が施された多孔質電極基材の一方の面に、コーティング液を塗工膜の厚みが198μmとなるように、塗工速度3.3m/分の条件でバーコートにより塗工し、多孔質電極基材の面上に塗工膜を形成した。
 次いで、150℃に設定した熱風乾燥炉を用いて5分間乾燥させた後、焼結炉にて360℃30分間焼結処理を行って、多孔質電極基材の一方の面に厚みが34μmのコーティング層が形成されたガス拡散層を得た。
 得られたガス拡散層のコーティング層の表面の任意の3箇所について、走査型電子顕微鏡(日本電子株式会社製、製品名「JSM-6390」)を用いて、倍率200倍で観察した。結果を図5(a)に示す。
<Manufacture of gas diffusion layer>
The coating liquid was applied to one surface of the water-repellent treated porous electrode substrate by bar coating at a coating speed of 3.3 m/min so that the coating film had a thickness of 198 μm, forming a coating film on the surface of the porous electrode substrate.
Next, the porous electrode substrate was dried for 5 minutes using a hot air drying oven set at 150°C, and then sintered for 30 minutes at 360°C in a sintering oven to obtain a gas diffusion layer in which a coating layer having a thickness of 34 µm was formed on one side of the porous electrode substrate.
Three randomly selected points on the surface of the coating layer of the resulting gas diffusion layer were observed at a magnification of 200 times using a scanning electron microscope (manufactured by JEOL Ltd., product name "JSM-6390") The results are shown in Figure 5(a).

[実施例2]
 カーボン粉100質量部に対して、熱分解黒鉛が27質量部となるように熱分解黒鉛とカーボン粉とを混合した以外は、実施例1と同様にして分散液Aを調製した。
 得られた分散液Aを用いた以外は、実施例1と同様にしてコーティング液を調製し、このコーティング液を用いてガス拡散層を製造し、コーティング層の表面の任意の3箇所について走査型電子顕微鏡を用いて観察した。結果を図5(b)に示す。また、コーティング液の組成を表1に示す。
 また、得られたガス拡散層について、剥離強度を測定した。結果を図6に示す。さらに、コーティングの表面粗さRaを測定した。結果を表2に示す。
[Example 2]
Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 27 parts by mass per 100 parts by mass of the carbon powder.
A coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used. A gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(b). The composition of the coating solution is shown in Table 1.
The peel strength of the resulting gas diffusion layer was measured. The results are shown in Figure 6. Furthermore, the surface roughness Ra of the coating was measured. The results are shown in Table 2.

[実施例3]
 カーボン粉100質量部に対して、熱分解黒鉛が54質量部となるように熱分解黒鉛とカーボン粉とを混合した以外は、実施例1と同様にして分散液Aを調製した。
 得られた分散液Aを用いた以外は、実施例1と同様にしてコーティング液を調製し、このコーティング液を用いてガス拡散層を製造し、コーティング層の表面の任意の3箇所について走査型電子顕微鏡を用いて観察した。結果を図5(c)に示す。また、コーティング液の組成を表1に示す。
[Example 3]
Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 54 parts by mass per 100 parts by mass of the carbon powder.
A coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used. A gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(c). The composition of the coating solution is also shown in Table 1.

[実施例4]
 カーボン粉100質量部に対して、熱分解黒鉛が81質量部となるように熱分解黒鉛とカーボン粉とを混合した以外は、実施例1と同様にして分散液Aを調製した。
 得られた分散液Aを用いた以外は、実施例1と同様にしてコーティング液を調製し、このコーティング液を用いてガス拡散層を製造し、コーティング層の表面の任意の3箇所について走査型電子顕微鏡を用いて観察した。結果を図5(d)に示す。また、コーティング液の組成を表1に示す。
[Example 4]
Dispersion A was prepared in the same manner as in Example 1, except that pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 81 parts by mass per 100 parts by mass of carbon powder.
A coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used. A gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(d). The composition of the coating solution is also shown in Table 1.

[実施例5]
 カーボン粉100質量部に対して、熱分解黒鉛が108質量部となるように熱分解黒鉛とカーボン粉とを混合した以外は、実施例1と同様にして分散液Aを調製した。
 得られた分散液Aを用いた以外は、実施例1と同様にしてコーティング液を調製し、このコーティング液を用いてガス拡散層を製造し、コーティング層の表面の任意の3箇所について走査型電子顕微鏡を用いて観察した。結果を図5(e)に示す。また、コーティング液の組成を表1に示す。
[Example 5]
Dispersion A was prepared in the same manner as in Example 1, except that the pyrolytic graphite and carbon powder were mixed so that the amount of pyrolytic graphite was 108 parts by mass per 100 parts by mass of the carbon powder.
A coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used. A gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(e). The composition of the coating solution is also shown in Table 1.

[比較例1]
 熱分解黒鉛を用いなかった以外は、実施例1と同様にして分散液Aを調製した。
 得られた分散液Aを用いた以外は、実施例1と同様にしてコーティング液を調製し、このコーティング液を用いてガス拡散層を製造し、コーティング層の表面の任意の3箇所について走査型電子顕微鏡を用いて観察した。結果を図5(f)に示す。また、コーティング液の組成を表1に示す。
 また、得られたガス拡散層について、剥離強度を測定した。結果を図6に示す。さらに、コーティングの表面粗さRaを測定した。結果を表2に示す。
[Comparative Example 1]
Dispersion A was prepared in the same manner as in Example 1, except that no pyrolytic graphite was used.
A coating solution was prepared in the same manner as in Example 1, except that the obtained dispersion A was used. A gas diffusion layer was manufactured using this coating solution, and three arbitrary points on the surface of the coating layer were observed using a scanning electron microscope. The results are shown in Figure 5(f). The composition of the coating solution is also shown in Table 1.
The peel strength of the resulting gas diffusion layer was measured. The results are shown in Figure 6. Furthermore, the surface roughness Ra of the coating was measured. The results are shown in Table 2.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 図5から明らかなように、各実施例で得られたガス拡散層は、比較例1で得られたガス拡散層に比べて、コーティング層におけるクラックの発生が抑制されていた。
 また、図6から明らかなように、実施例2で得られたガス拡散層は、比較例1で得られたガス拡散層に比べて剥離強度が高く、コーティング層の多孔質電極基材に対する接着性に優れていた。
 さらに、表2から明らかなように、実施例2で得られたガス拡散層は、比較例1で得られたガス拡散層に比べて、コーティング層の表面が平滑であった。
 これらの結果より、熱分解黒鉛とカーボン粉とを併用してコーティング層を形成することで、クラックの発生を抑制でき、剥離強度及び表面平滑性を改善できることが示された。
As is clear from FIG. 5, the gas diffusion layers obtained in the Examples had less cracking in the coating layer than the gas diffusion layer obtained in Comparative Example 1.
As is apparent from FIG. 6, the gas diffusion layer obtained in Example 2 had a higher peel strength than the gas diffusion layer obtained in Comparative Example 1, and was excellent in adhesion of the coating layer to the porous electrode substrate.
Furthermore, as is clear from Table 2, the gas diffusion layer obtained in Example 2 had a smoother surface of the coating layer than the gas diffusion layer obtained in Comparative Example 1.
These results show that by forming a coating layer using a combination of pyrolytic graphite and carbon powder, the occurrence of cracks can be suppressed and the peel strength and surface smoothness can be improved.

 10 ガス拡散層
 11 多孔質電極基材
 12 コーティング層
 20 ガス拡散層のロール状物
 21 芯材
 22 積層体
 23 保護層
 30 膜-電極接合体
 31 高分子電解質膜
 32A ガス拡散電極
 32B ガス拡散電極
 321A 触媒層
 321B 触媒層
 40A セパレータ
 40B セパレータ
 41A ガス流路
 41B ガス流路
 100 固体高分子形燃料電池
REFERENCE SIGNS LIST 10 Gas diffusion layer 11 Porous electrode substrate 12 Coating layer 20 Roll of gas diffusion layer 21 Core material 22 Laminate 23 Protective layer 30 Membrane-electrode assembly 31 Polymer electrolyte membrane 32A Gas diffusion electrode 32B Gas diffusion electrode 321A Catalyst layer 321B Catalyst layer 40A Separator 40B Separator 41A Gas flow path 41B Gas flow path 100 Solid polymer electrolyte fuel cell

Claims (24)

 多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、平均粒子径が5~800nmであるカーボン粉Aと、平均粒子径が1~50μmであるカーボン粉Bとを含む、ガス拡散層。
A gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate,
The coating layer is a gas diffusion layer comprising carbon powder A having an average particle size of 5 to 800 nm and carbon powder B having an average particle size of 1 to 50 μm.
 前記カーボン粉A/前記カーボン粉Bの質量比が0.5~9である、請求項1に記載のガス拡散層。 The gas diffusion layer according to claim 1, wherein the mass ratio of the carbon powder A to the carbon powder B is 0.5 to 9.  前記カーボン粉Aがカーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種であり、前記カーボン粉Bが熱分解黒鉛、ミルドファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種である、請求項1または2に記載のガス拡散層。 The gas diffusion layer according to claim 1 or 2, wherein the carbon powder A is at least one selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and the carbon powder B is at least one selected from the group consisting of pyrolytic graphite, milled fiber, coke, activated carbon, and amorphous carbon.  多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、カーボンブラック、ミルドファイバー、カーボンナノチューブ、カーボンナノファイバー、コークス、活性炭及び非晶質炭素からなる群より選ばれる少なくとも1種のカーボン粉Cと、熱分解黒鉛とを含む、ガス拡散層。
A gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate,
The coating layer is a gas diffusion layer comprising at least one carbon powder C selected from the group consisting of carbon black, milled fiber, carbon nanotube, carbon nanofiber, coke, activated carbon, and amorphous carbon, and pyrolytic graphite.
 前記コーティング層に撥水剤を含む、請求項1~4のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 4, wherein the coating layer contains a water repellent.  前記熱分解黒鉛のアスペクト比が2~40である、請求項3または4に記載のガス拡散層。 The gas diffusion layer according to claim 3 or 4, wherein the aspect ratio of the pyrolytic graphite is 2 to 40.  前記カーボン粉C/前記熱分解黒鉛で表される質量比が0.5~9である、請求項4または6に記載のガス拡散層。 The gas diffusion layer according to claim 4 or 6, wherein the mass ratio of the carbon powder C to the pyrolytic graphite is 0.5 to 9.  厚みが160~350μmである、請求項1~7のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 7, having a thickness of 160 to 350 μm.  多孔質電極基材の平均細孔径が5~200μmである、請求項1~8のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 8, wherein the average pore diameter of the porous electrode substrate is 5 to 200 μm.  前記コーティング層の表面粗さが3.0μm以下である、請求項1~9のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 9, wherein the surface roughness of the coating layer is 3.0 μm or less.  前記多孔質電極基材が炭素繊維を含む、請求項1~10のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 10, wherein the porous electrode substrate contains carbon fibers.  前記熱分解黒鉛の平均粒子径が3~50μmである、請求項4に記載のガス拡散層。 The gas diffusion layer according to claim 4, wherein the average particle size of the pyrolytic graphite is 3 to 50 μm.  前記カーボン粉Cの平均粒子径が30~100nmである、請求項4に記載のガス拡散層。 The gas diffusion layer according to claim 4, wherein the carbon powder C has an average particle size of 30 to 100 nm.  炭素繊維が炭素により結着された基材と、前記基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層であって、
 前記コーティング層は、熱分解黒鉛と、カーボンブラックと、フッ素樹脂とを含む、ガス拡散層。
A gas diffusion layer having a substrate in which carbon fibers are bonded with carbon and a coating layer formed on at least one surface of the substrate,
The gas diffusion layer, wherein the coating layer contains pyrolytic graphite, carbon black, and a fluororesin.
 前記熱分解黒鉛のアスペクト比が2~40である、請求項14に記載のガス拡散層。 The gas diffusion layer according to claim 14, wherein the aspect ratio of the pyrolytic graphite is 2 to 40.  前記カーボンブラック/前記熱分解黒鉛で表される質量比が0.5~9である、請求項14または15に記載のガス拡散層。 The gas diffusion layer according to claim 14 or 15, wherein the mass ratio of the carbon black to the pyrolytic graphite is 0.5 to 9.  前記熱分解黒鉛の平均粒子径が3~50μmである、請求項14~16のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 14 to 16, wherein the average particle size of the pyrolytic graphite is 3 to 50 μm.  前記カーボンブラックの平均粒子径が30~100nmである、請求項14~17のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 14 to 17, wherein the carbon black has an average particle size of 30 to 100 nm.  請求項1~18のいずれか一項に記載のガス拡散層の前記コーティング層上に保護層を設け、ロール状に巻き回した、ガス拡散層のロール状物。 A roll of a gas diffusion layer comprising a protective layer provided on the coating layer of the gas diffusion layer according to any one of claims 1 to 18 and wound into a roll.  請求項1~18のいずれか一項に記載のガス拡散層を備えた、固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising a gas diffusion layer according to any one of claims 1 to 18.  多孔質電極基材と、前記多孔質電極基材の少なくとも一方の面に形成されたコーティング層とを有するガス拡散層の製造方法であって、
 前記多孔質電極基材の少なくとも一方の面に、平均粒子径が3~50μmであるカーボン粉Bと平均粒子径が5~4000nmであるカーボン粉Aとを混合したコーティング液を塗布することを含む、ガス拡散層の製造方法。
A method for producing a gas diffusion layer having a porous electrode substrate and a coating layer formed on at least one surface of the porous electrode substrate, comprising the steps of:
A method for producing a gas diffusion layer, comprising: applying a coating liquid, which is a mixture of carbon powder B having an average particle diameter of 3 to 50 μm and carbon powder A having an average particle diameter of 5 to 4,000 nm, to at least one surface of the porous electrode substrate.
 前記カーボン粉Bのアスペクト比が2~40である、請求項21に記載のガス拡散層の製造方法。 The method for manufacturing a gas diffusion layer according to claim 21, wherein the aspect ratio of the carbon powder B is 2 to 40.  前記カーボン粉Bが熱分解黒鉛である、請求項21または22に記載のガス拡散層の製造方法。 The method for manufacturing a gas diffusion layer according to claim 21 or 22, wherein the carbon powder B is pyrolytic graphite.  前記カーボン粉A/前記カーボン粉Bで表される質量比が0.5~9である、請求項21~23のいずれか一項に記載のガス拡散層の製造方法。 The method for manufacturing a gas diffusion layer according to any one of claims 21 to 23, wherein the mass ratio represented by the carbon powder A/the carbon powder B is 0.5 to 9.
PCT/JP2024/022294 2023-06-19 2024-06-19 Gas diffusion layer and manufacturing method thereof, roll-shaped object of gas diffusion layer, and solid polymer fuel cell WO2024262555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-100085 2023-06-19
JP2023100085 2023-06-19

Publications (1)

Publication Number Publication Date
WO2024262555A1 true WO2024262555A1 (en) 2024-12-26

Family

ID=93935466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022294 WO2024262555A1 (en) 2023-06-19 2024-06-19 Gas diffusion layer and manufacturing method thereof, roll-shaped object of gas diffusion layer, and solid polymer fuel cell

Country Status (1)

Country Link
WO (1) WO2024262555A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065349A1 (en) * 2009-11-24 2011-06-03 三菱レイヨン株式会社 Porous electrode base material and process for production thereof
JP2012018824A (en) * 2010-07-08 2012-01-26 Mitsubishi Rayon Co Ltd Porous electrode base material and method for manufacturing the same
JP2012033269A (en) * 2010-07-08 2012-02-16 Mitsubishi Rayon Co Ltd Porous electrode base material and manufacturing method for the same
JP2016152094A (en) * 2015-02-17 2016-08-22 三菱レイヨン株式会社 Porous carbon electrode and method for manufacturing the same
JP2016195060A (en) * 2015-04-01 2016-11-17 三菱レイヨン株式会社 Gas diffusion layer and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065349A1 (en) * 2009-11-24 2011-06-03 三菱レイヨン株式会社 Porous electrode base material and process for production thereof
JP2012018824A (en) * 2010-07-08 2012-01-26 Mitsubishi Rayon Co Ltd Porous electrode base material and method for manufacturing the same
JP2012033269A (en) * 2010-07-08 2012-02-16 Mitsubishi Rayon Co Ltd Porous electrode base material and manufacturing method for the same
JP2016152094A (en) * 2015-02-17 2016-08-22 三菱レイヨン株式会社 Porous carbon electrode and method for manufacturing the same
JP2016195060A (en) * 2015-04-01 2016-11-17 三菱レイヨン株式会社 Gas diffusion layer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5621949B1 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP6206186B2 (en) Gas diffusion electrode base material for fuel cells
US9716278B2 (en) Porous electrode base material, method for manufacturing same, and precursor sheet
TWI648162B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
JP6330282B2 (en) Gas diffusion electrode substrate for fuel cell and manufacturing method thereof
CN106030879A (en) Gas Diffusion Electrode Substrates
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP7031778B2 (en) Gas diffusion layer and gas diffusion electrode for polymer electrolyte fuel cells and their manufacturing method
JP6750192B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP6596886B2 (en) Method for producing gas diffusion layer
JP6265028B2 (en) Porous carbon electrode
JP6497179B2 (en) Gas diffusion layer and gas diffusion layer roll
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
WO2024262555A1 (en) Gas diffusion layer and manufacturing method thereof, roll-shaped object of gas diffusion layer, and solid polymer fuel cell
JP6291818B2 (en) Porous carbon electrode and manufacturing method thereof
JP2016195060A (en) Gas diffusion layer and manufacturing method thereof
JP6212966B2 (en) Porous carbon electrode
JP2018156873A (en) Gas diffusion layer and gas diffusion electrode for solid polymer type fuel cell and manufacturing method of the same
JP5430513B2 (en) Porous electrode substrate and method for producing the same
JP2016152094A (en) Porous carbon electrode and method for manufacturing the same
JP2016012557A (en) Gas diffusion layer and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24825956

Country of ref document: EP

Kind code of ref document: A1