[go: up one dir, main page]

WO2024262414A1 - Guide light beaming device - Google Patents

Guide light beaming device Download PDF

Info

Publication number
WO2024262414A1
WO2024262414A1 PCT/JP2024/021561 JP2024021561W WO2024262414A1 WO 2024262414 A1 WO2024262414 A1 WO 2024262414A1 JP 2024021561 W JP2024021561 W JP 2024021561W WO 2024262414 A1 WO2024262414 A1 WO 2024262414A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide light
guide
light irradiation
regions
Prior art date
Application number
PCT/JP2024/021561
Other languages
French (fr)
Japanese (ja)
Inventor
太一 湯浅
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023103135A external-priority patent/JP2025002787A/en
Priority claimed from JP2023104232A external-priority patent/JP2025004506A/en
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2024262414A1 publication Critical patent/WO2024262414A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a guide light irradiation device that emits guide light to guide survey workers.
  • a guide light irradiation device that emits guide light to guide construction workers during construction work is known.
  • the guide light is a different color on the left and right sides of the sighting axis, and is irradiated towards the staking point.
  • the staking worker visually checks the guide light and distinguishes the color to determine the direction to move in, and is guided to the staking point by moving to the boundary between the left and right colors.
  • guide light irradiation devices have light sources arranged opposite each other, and a right-angle mirror.
  • the two light sources emit light of different colors, and the light is incident on two perpendicular reflecting surfaces of the right-angle mirror.
  • the two colors of light reflected by the reflecting surfaces are emitted as guide light with a boundary.
  • An example of a guide device is shown in Patent Document 1.
  • Conventional guide light irradiation devices require two light sources of different colors and a right-angle mirror, and because they have a large number of parts and the light sources are placed opposite each other, they take up a large amount of space. Furthermore, the task of aligning the two light sources and the right-angle mirror is complicated.
  • the present invention provides a guide light irradiation device that has a small number of parts and can be easily manufactured.
  • the present invention relates to a guide light irradiation device that irradiates guide light to indicate directions to surveying workers, the optical system of the guide light irradiation device including an irradiation lens, a spectral plate, and a light source, the light source being a broadband light source that emits light in a broadband, a coloring element being provided on the spectral plate, the coloring element having at least two regions with different spectral characteristics, one of the spectral plate and the light source being positioned at or near the focal position of the irradiation lens, and the other being positioned at or near the focal position of the irradiation lens, the light emitted from the broadband light source being colored by the region, and the guide light irradiating device being configured to be irradiated from the irradiation lens as guide light including at least two colors of light.
  • the present invention also relates to a guide light irradiation device in which the guide light irradiation optical system includes a plurality of light sources, the optical axes of the plurality of light sources are arranged in the same vertical or horizontal plane, the irradiation lens is provided on each of the optical axes corresponding to the light source, the spectroscopic plate is provided between the irradiation lens and the light source, the boundary of the region is included in the plane, and the light emitted from the plurality of light sources is colored by the region, irradiated by the irradiation lens, and collected to be irradiated as guide light including at least two colors of light.
  • the guide light irradiation optical system includes a plurality of light sources, the optical axes of the plurality of light sources are arranged in the same vertical or horizontal plane, the irradiation lens is provided on each of the optical axes corresponding to the light source, the spectroscopic plate is provided between the irradiation lens
  • the present invention also relates to a guide light irradiation device in which the light source is a white LED that emits visible white light.
  • the present invention also relates to a guide light irradiation device in which the light source is an LED that emits invisible near-infrared light.
  • the present invention also relates to a guide light irradiation device in which the spectral plate has the color-developing elements formed on a transparent substrate.
  • the present invention also relates to a guide light irradiation device in which the spectral plate has the color-developing elements formed on the reflecting surface of a reflector.
  • the present invention also relates to a guide light irradiation device in which the spectroscopic plate has a blinking means, making it possible to blink at least one of the regions.
  • the present invention also relates to a guide light irradiation device in which the spectral plate includes a liquid crystal plate having optical transparency, and the liquid crystal plate is a coloring element that forms at least two regions with different spectral characteristics.
  • the present invention also relates to a guide light irradiation device in which the liquid crystal plate is configured to be able to blink at least one of the regions.
  • the present invention also relates to a guide light irradiation device in which the color-developing element is divided into multiple parts vertically or horizontally and has multiple regions.
  • the present invention also relates to a guide light irradiation device in which the color-developing element is further divided into two parts, left and right or top and bottom, and has multiple regions.
  • the present invention also relates to a guide light irradiation device in which the color-producing element is divided into two parts, an upper part and an lower part, each part having a plurality of regions, and the blinking means is configured to blink one of the upper and lower parts.
  • the present invention also relates to a guide light irradiation device in which the color-producing elements have a gradation in which the color changes gradually from one end to the other.
  • the present invention also relates to a guide light irradiation device in which the transparent substrate is rectangular in shape, the region is divided into two along the short side, and color-producing elements with different spectral transmittances are provided in the divided portion to form two regions, a boundary extending in the longitudinal direction of the transparent substrate is formed by the two regions, a plurality of the light sources are provided within a plane including the boundary, and the optical axes of the light sources are inclined at a predetermined angle to each other.
  • the present invention also relates to a guide light irradiation device in which the irradiation lens is an anamorphic lens.
  • the present invention also relates to a guide light irradiation device in which the spectral plate has a rectangular shape that transmits light from the multiple light sources, the region is divided into two along the short side, and color-producing elements with different spectral characteristics are provided in the divided portion to form two regions, and the two regions form a boundary that extends in the longitudinal direction of the transparent substrate, and the boundary is configured to be included within the plane.
  • the present invention also relates to a guide light irradiation device in which the spectroscopic plate is made up of small spectroscopic plates arranged on the optical axes of a plurality of the light sources in correspondence with the light sources, at least two regions are formed on the small spectroscopic plates, and coloring elements having different spectral transmittances are provided in each region, and the boundaries of the regions are included in the plane.
  • the present invention also relates to a guide light irradiation device in which the optical axes of the light sources are inclined at a predetermined angle in the direction in which the light irradiating the light expands.
  • the present invention also relates to a guide light irradiation device in which a guide light irradiation unit is constituted by the irradiation lens, the small spectrometer, and the light source, which are arranged on the optical axis of the light source, and the guide light irradiation optical system is composed of a plurality of guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, and the optical axes of the other guide light irradiation units are inclined at a predetermined angle with respect to the reference optical axis in the direction in which the irradiated light expands.
  • the present invention also relates to a guide light irradiation device in which a guide light irradiation unit is formed by the irradiation lens, the small light plate, and the light source, which are arranged on the optical axis of the light source, and the guide light irradiation optical system is composed of five guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, two guide light irradiation units are provided in a vertical plane including the reference optical axis, symmetrically from top to bottom with respect to the reference optical axis, and two guide light irradiation units are provided in a horizontal plane including the reference optical axis, symmetrically from left to right with respect to the reference optical axis, a guide light is formed by a collection of light emitted from the five guide light irradiation units, each of the small light plates is divided into regions so that the guide light has a boundary included in the vertical plane and a boundary included in
  • the present invention also relates to a guide light irradiation device in which the spectroscopic plate has a blinking means, making it possible to blink at least one of the regions.
  • a guide light irradiation device that irradiates guide light to indicate directions to surveying workers
  • the optical system of the guide light irradiation device includes an irradiation lens, a spectral plate, and a light source
  • the light source is a broadband light source that emits light in a broadband
  • a coloring element is provided on the spectral plate, and the coloring element has at least two regions with different spectral characteristics
  • one of the spectral plate and the light source is configured to be located at or near the focal position of the irradiation lens, and the other is configured to be located near or at the focal position of the irradiation lens
  • the light emitted from the broadband light source is colored by the region, and is configured to be irradiated from the irradiation lens as guide light containing at least two colors of light, so that the optical system has a simple configuration, has a small number of parts, and can be easily manufactured.
  • FIG. 1 is an explanatory diagram showing an outline of a guide light emitting device according to a first embodiment.
  • FIG. 2A is an explanatory diagram showing a main part of a guide light emitting optical system of the guide light emitting device
  • FIG. 2B is a diagram showing a cross section of a light beam of the guide light.
  • FIG. 3 is an explanatory diagram of color-developing elements.
  • FIG. 4 is a graph showing the spectral characteristics of the light source, the transmittance characteristics of the dichroic film, and the spectral characteristics of light after passing through the dichroic film in this embodiment.
  • FIG. 5 is an explanatory diagram showing a first modification of the coloring element.
  • FIG. 6 is an explanatory diagram showing a second modification of the coloring element.
  • FIG. 5 is an explanatory diagram showing a first modification of the coloring element.
  • FIG. 7 is an explanatory diagram showing a third modification of the coloring element.
  • FIG. 8 is an explanatory diagram showing a fourth modification of the coloring element.
  • FIG. 9 is an explanatory diagram showing a fifth modification of the coloring element.
  • FIG. 10A is a schematic diagram of a guide light irradiating optical system according to the second embodiment, and FIG. 10B is a diagram showing a cross section of a light beam of guide light in the second embodiment.
  • FIG. 11A is a schematic diagram of a guide light irradiating optical system according to the third embodiment, and FIG. 11B is a diagram showing a cross section of a light beam of guide light in the third embodiment.
  • FIG. 12A is a schematic diagram of a guide light irradiating optical system according to the fourth embodiment
  • FIG. 12B is a diagram showing a cross section of a light beam of guide light in the fourth embodiment
  • FIG. 13 is an explanatory diagram of the coloring elements in the fourth embodiment
  • FIG. 14 is an explanatory diagram showing an outline of a guide light emitting device according to the fifth embodiment.
  • FIG. 15A is an explanatory diagram showing an irradiation state of the guide light at a short distance
  • FIG. 15B is an explanatory diagram showing an irradiation state of the guide light at a long distance.
  • FIG. 16A is a schematic diagram of a guide light emitting optical system in the fifth embodiment
  • FIG. 16B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system.
  • FIG. 17 is an explanatory diagram of the spectroscopic plate in the fifth embodiment.
  • FIG. 18 is an explanatory diagram of the basic configuration of the guide light irradiating optical system.
  • FIG. 19A is a schematic diagram of a guide light emitting optical system according to the sixth embodiment, and FIG. 19B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system.
  • FIG. 20A is a schematic diagram of a guide light emitting optical system according to the seventh embodiment, and FIG. 20B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system.
  • FIG. 21 is an explanatory diagram of a coloring element having a gradation of color or brightness.
  • FIG. 22 is a schematic diagram of a guide light irradiating optical system according to the eighth embodiment.
  • FIG. 23 is a view taken along the arrow A in FIG.
  • FIG. 24 is a view taken along the arrow B in FIG.
  • FIG. 25 is a diagram showing a cross section of a light beam of guide light in the guide light irradiating optical system of the eighth embodiment.
  • FIG. 1 is an explanatory diagram showing an overview of the guide light emitting device 1 according to this embodiment, and shows the guide light emitting device 1 attached to the top surface of a total station 2.
  • the optical axis of the guide light emitting device 1 is set parallel to the collimation optical axis of the total station 2.
  • Figure 1 indicates a pole on which a prism 4 is mounted.
  • Figure 1 shows the state in which the pole 3 is installed at a survey point 5.
  • the total station 2 is installed at a known point, and the sighting direction is set to the survey point 5.
  • Fig. 2(A) is a schematic diagram showing the main parts of the optical system of the guide light irradiation device 1.
  • Fig. 2(A) shows a plan view of the optical system, with the upper side in the figure representing the right, the lower side representing the left, and the left side representing the front.
  • Fig. 2(B) shows a cross section of the light beam of the guide light.
  • 11 denotes a guide light irradiation optical system
  • 12 denotes an irradiation lens
  • a light source 14 is provided at the focal position on the optical axis 13 of the irradiation lens 12
  • a spectrometer 15 is provided in front of the light source 14.
  • the light source 14 is a broadband light source that emits light having a wide band of wavelengths, for example an LED that emits visible white light.
  • a coloring element is included as the area discrimination element, and areas of different colors are formed in the guide light.
  • the spectral plate 15 has color elements 17 (17a, 17b) formed on the surface of a transparent substrate 16 (see FIG. 3), and the color elements 17 have optical characteristics in which the regions 17a, 17b on the left and right of a boundary 17e passing through the optical axis 13 have different spectral transmittances.
  • a dichroic film is used as the color elements 17.
  • the color-developing element 17 is formed on the surface of the spectroscopic plate 15 facing the projection lens 12, but it may be formed on the surface of the spectroscopic plate 15 facing the light source 14. Also, the spectroscopic plate 15 is provided near the focal position of the projection lens 12. The light source 14 is provided at the focal position of the projection lens 12. It is also possible to set the spectroscopic plate 15 at the focal position of the projection lens 12 and provide the light source 14 near the focal position.
  • the color-producing element 17 is a dichroic film, and for example, the spectral transmission wavelength of the left region 17a is 400 nm to 500 nm (blue), and the spectral transmission wavelength of the right region 17b is 650 nm to 750 nm (red).
  • Figure 4 shows an example of the relationship between the spectral characteristics of the LED, the transmittance characteristics of the dichroic film in region 17a, and the spectral characteristics of the LED after passing through the dichroic film.
  • curve A shows the wavelength characteristics of the light source 14
  • curve B shows the transmittance characteristics of the dichroic film in region 17a
  • curve C shows the wavelength characteristics of the transmitted light in region 17a.
  • the transmittance characteristics of the dichroic film in region 17a are such that it transmits wavelengths between 400 nm and 500 nm, so the light that passes through region 17a is blue light. Although not shown, if the transmittance characteristics of the dichroic film in region 17b are 650 nm to 750 nm, the light that passes through region 17b is red light.
  • the white light emitted from the light source 14 passes through the spectrometer 15, and is emitted as guide light 18, with blue light 18a on the left and red light 18b on the right, and the boundary 18e indicating the position of the optical axis (see FIG. 2B). It then passes through the projection lens 12 and is irradiated toward the measurement point as guide light 18, which is an approximately parallel beam (a beam with a predetermined spread angle).
  • the surveyor When guiding a surveyor during surveying work, if the surveyor recognizes the guide light 18 as red, it can be determined that he or she is to the right of the surveying point, and the worker will be guided to the surveying point by moving to the left.
  • the guide light will be two colors, blue light and white light.
  • the color-producing element 17 is divided into left and right regions 17a and 17b, but in cases where the measurement point is set in a location with a difference in elevation, or where it is necessary to guide the measurement to a specific height standard, the color-producing element 17 may be divided into upper and lower regions.
  • the color-producing element 17 is divided into a total of four parts, vertically and horizontally. Dichroic films with different spectral transmittances are formed for the four divided areas 21a, 21b, 21c, and 21d.
  • the guide light transmitted through the color-producing element 17 forms areas of four different colors, and further forms vertical and horizontal boundaries at the boundaries of each area. Furthermore, the intersection of the vertical and horizontal boundaries coincides with the optical axis 13 of the guide light 18.
  • the surveyor When the surveyor recognizes the guide light, he can determine which area he is in by the color, and can also use the color recognition to determine in which direction he needs to move to reach the position of the optical axis 13.
  • the four divided regions 21a, 21b, 21c, and 21d are formed, making it possible to provide guidance in both the horizontal and vertical directions.
  • the color-producing element 17 may be configured so that the guide light is made up of two colors and the diagonally opposite areas are the same color.
  • FIG. 6 shows a second modification of the color element 17.
  • the color-producing element 17 is divided horizontally into four to form four rectangular regions 22a, 22b, 22c, and 22d, and the spectral transmittance of the dichroic film formed in each region is made different. Regions of different colors are formed in the horizontal direction of the guide light, and the surveyor can intuitively determine in which direction and how far he or she should move by recognizing the color.
  • the number of divisions is not limited to four, but may be three, five or more.
  • Figure 7 shows a third modified example.
  • the third modified example is further divided into two levels, upper and lower, to form eight regions. It is also possible to color the regions in the reverse order of coloring the upper level and the lower level.
  • the surveyor can intuitively determine in which direction and how far he or she should move by recognizing the color, and can also confirm the up/down position and the position of the optical axis 13.
  • the coloring elements 17 are formed so that they do not form distinct areas, but rather form a gradation in which the color changes gradually in the horizontal direction.
  • gradation can be achieved by, for example, giving a gradient to the thickness of the dichroic film.
  • the guide light 18 has a color gradation, allowing surveyors to intuitively determine in which direction and how far they should move by recognizing the color.
  • the color-producing element 17 is divided into two, top and bottom, and a gradation in which the color gradually changes horizontally is formed in each of the top and bottom regions. Also, by reversing the color change of the top and bottom gradations, the worker can recognize his/her position in the vertical direction and intuitively judge in which direction and how far he/she should move in each of the top and bottom regions.
  • the color-producing element 17 is not limited to a dichroic film, and various modifications are possible.
  • it may be an absorbing film that absorbs specific wavelengths, colored glass of a different color may be used, or a phosphor may be applied to change the wavelength, an EW element may be used, or a combination of a dichroic film and a phosphor may be used.
  • the color-producing element 17 may be a transmissive liquid crystal display.
  • a transmissive organic EL display a transmissive organic EL display, a transmissive inorganic EL display, a transmissive liquid crystal display, etc.
  • At least one area may be made to blink. If a transmissive liquid crystal display is used as the blinking means, the area in which the liquid crystal display driver is formed may be configured to blink.
  • a mechanical light-shielding shutter may be provided on the spectrometer as a blinking means, and the area may be blinked at periodic light-shielding intervals to improve the identification of the area.
  • the blinking means can be used to distinguish between groups of areas. For example, in the coloring of the areas shown in FIG. 7, if the upper section is configured to blink, the upper and lower sections can be distinguished by the blinking, and the operator can determine whether the area is included in the upper section or the lower section.
  • the light source 14 and the spectrometer 15 are both provided at or near the focal position of the irradiation lens 12, so the positional relationship between the light source 14 and the spectrometer 15 can be fixed. Therefore, the light source 14 and the spectrometer 15 can be made into a unit.
  • the total station 2 and the surveying and installation point 5 may be close or far away.
  • the irradiation range becomes too wide the amount of light decreases and the workability worsens. Therefore, when they are far away, it is better for the spread angle of the guide light 18 to be small.
  • the light source 14 and the spectrometer 15 may be combined into a light source unit, and the position of the light source unit relative to the illumination lens 12 may be adjustable.
  • the configuration adjustable By making the configuration adjustable, the state of focusing of the guide light 18 by the illumination lens 12 can be changed by adjusting the position of the light source unit, and the spread angle of the guide light 18 can be easily adjusted.
  • the spectrometer 15 may be made rotatable around the optical axis 13.
  • the surveyor is first guided horizontally by the guide light 18, which is color-coded left and right, and then the spectrometer 15 is rotated 90 degrees and the guide light 18 is color-coded up and down, allowing the surveyor to confirm the vertical position of the survey point. Therefore, it is possible to guide the surveyor in two directions, horizontally and vertically.
  • FIGS. 10(A) and 10(B) show the guide light irradiation optical system 11 of the second embodiment.
  • the second embodiment shows a case where the color-producing element 17 is formed on a reflective surface.
  • a reflector 29 is provided as a spectroscopic plate 15 on the optical axis 13 of the irradiation lens 12.
  • a coloring element 17 is formed on the reflecting surface of the reflector 29, and the spectroscopic plate 15 is set at or near the focal position.
  • a light source 14 is provided on the reflected optical axis of the reflector 29, and the optical axis of the reflector 29 is aligned with the reflected optical axis.
  • the color-producing element 17 is similar to that shown in FIG. 3, and is divided into two regions 17a and 17b at a boundary 17e that passes through the optical axis 13, and each of the regions 17a and 17b has optical characteristics with different spectral transmittances.
  • a dichroic film is used as the color-producing element 17.
  • a phosphor that changes the wavelength may be applied.
  • a combination of a dichroic film and a phosphor may be used.
  • the light source 14 is provided close to the reflector 29, and the light source 14 (light emitting point) is at or near the focal position of the irradiation lens 12.
  • the broadband light (white light) emitted from the light source 14 is colored by being reflected by the regions 17a and 17b, and is irradiated as guide light 18 having two colors of guide light 18a, 18b and a boundary 18e.
  • the light source 14 is provided on the reflected optical axis of the reflector 29, so the depth distance to the irradiation lens 12 is shortened, and the guide light irradiation optical system 11 can be configured compactly. Furthermore, bending the optical axis 13 by the reflector 29 has the advantage of increasing the degree of freedom in designing the guide light irradiation optical system 11.
  • a mirror may be provided between the irradiation lens 12 and the spectrometer 15 to bend the optical axis 13 multiple times.
  • a reflective liquid crystal display may be used as the coloring element.
  • a blinking means may be added to the liquid crystal display to partially blink the formed area, thereby enhancing the distinguishability of the area.
  • the spectrometer may be a digital micromirror device (DMD), and the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.
  • DMD digital micromirror device
  • the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.
  • FIGS. 11(A) and 11(B) show a third embodiment.
  • the same reference numerals are used for the parts equivalent to those shown in FIG. 2(A) and FIG. 2(B), and the description thereof will be omitted.
  • FIG. 11(A) shows the upper side indicates the top and the lower side indicates the bottom.
  • the top and bottom are the vertical direction, and the direction perpendicular to the paper surface is the horizontal direction.
  • FIG. 11(B) shows a cross section of the irradiated guide light 18.
  • the third embodiment shows a configuration in which one light source 14 is used to increase the spread angle in the horizontal or vertical direction.
  • Figures 11(A) and 11(B) explain the case in which the spread angle is increased in the horizontal direction.
  • the light source 14 is a broadband light source that emits light having a wide band of wavelengths (e.g., white light), and an LED with a wide spread angle is used.
  • the illumination lens 27 has a stronger light-gathering effect in the vertical direction.
  • the guide light 18 emitted from the light source 14 passes through the spectral plate 15 on which the color-emitting elements 17 are formed, and is colored into upper and lower two-color guide light 18a and guide light 18b. Furthermore, the guide light 18 is more strongly focused in the vertical direction by the irradiation lens 27, and has an elliptical beam cross section with its major axis in the horizontal direction, and a boundary 18e extending in the horizontal direction is formed by the guide light 18a and the guide light 18b.
  • the upper and lower guide lights 18a and 18b of two colors, as well as the boundary 18e, function as guide lights over a wide horizontal range.
  • the guide light irradiation device of the above embodiment uses a broadband light source that emits light in a broad band, and the necessary coloring of the guide light is performed by the spectral plate 15, so one light source 14 and one spectral plate 15 are sufficient, which significantly simplifies the configuration.
  • Figures 12(A), 12(B) and 13 show the fourth embodiment.
  • Figure 12(A) is a schematic diagram showing the main parts of the optical system of the guide light emitting device 1, showing a plan view.
  • the upper side indicates the left and the lower side indicates the right.
  • Figure 12(B) shows a cross section of the light beam of the irradiated guide light 18, and
  • Figure 13 shows the coloring element 17 used in the fourth embodiment.
  • the fourth embodiment shows a case in which the guide light 18 forms a boundary 24e' over a wide area in the left-right (horizontal) direction.
  • Each of the light sources 14a, 14b, and 14c is a broadband light source that emits light having a broadband wavelength (e.g., white light) and is an LED with a spread angle ⁇ .
  • a broadband wavelength e.g., white light
  • optical axes 25a, 25b, and 25c of the light sources 14a, 14b, and 14c are radially arranged within the same horizontal plane that includes the boundary 24e'.
  • an irradiation lens 12a is disposed on the optical axis 25a of the light source 14a, and the color-producing element 17 and the light source 14a are set to be at or near the focal point of the irradiation lens 12a.
  • the irradiation lens 12b and the irradiation lens 12c are arranged on the optical axis 25b and the optical axis 25c, and the color-producing element 17 and the light source 14b and the light source 14c are set to be at or near the focal points of the irradiation lenses 12b and 12c, respectively.
  • each light is focused to a required spread angle by the projection lenses 12a, 12b, and 12c, and is irradiated as guide lights 18a, 18b, and 18c that are color-coded on the left and right. Furthermore, the guide lights 18a, 18b, and 18c are irradiated as a collective guide light 18.
  • the guide light 18 is irradiated as light of different colors above and below the horizontal boundary 24e'.
  • the guide light 18 has a guide light spread angle of 60° + ⁇ in the left-right direction and a single guide light spread angle in the vertical direction.
  • the guide light 18 can be emitted with a large horizontal spread angle. Furthermore, since the horizontal spread angle is obtained by arranging multiple light sources 14, there is no decrease in the light quantity or brightness due to the large spread angle of the guide light 18. Therefore, there is no loss of recognizability by the worker.
  • the light sources 14a, 14b, and 14c are provided close to one spectrometer plate 15, and the light sources 14a, 14b, and 14c are provided close to each other, so the light source unit does not become large.
  • the guide light 18 can be identified over a wide horizontal range, so that the surveyor will not lose sight of the guide light during surveying and installation work over a wide area. Furthermore, since a horizontal reference can be obtained by the guide light 18 over a wide horizontal range, the horizontal reference can be confirmed at multiple points simultaneously. Furthermore, by applying this to indoor construction work, a reference can be obtained for interior work.
  • a mechanical light-shielding shutter may be provided in one area of the spectrometer plate 15, and the blinking may be performed at periodic light-shielding intervals to enhance the distinguishability of the area.
  • the number of light sources 14 is 3, but it may be 2 or 4. Furthermore, the optical axis of the light source is inclined at a predetermined angle with respect to the adjacent optical axis, and the optical axes are inclined at a predetermined angle with respect to each other.
  • the fourth embodiment can also be applied to the modifications of the color-producing elements 17 shown in Figures 5 to 9, such as the modification of the division of the color-producing elements 17 and the formation of a gradation in which the color gradually changes.
  • FIG. 14 is an explanatory diagram showing an overview of the guide light irradiation device 1 according to the fifth embodiment, which is applied to a survey work site with an elevation difference.
  • the guide light irradiation device 1 is attached to the top surface of the total station 2, and the optical axis of the guide light irradiation device 1 is set parallel to the collimation optical axis of the total station 2.
  • FIG 14 indicates a pole on which a prism 4 is attached.
  • Figure 14 shows the pole 3 installed at a survey point 5.
  • the guide light 7 is emitted from the guide light emitting device 1 toward the pole 3.
  • Fig. 16(A) is a schematic diagram showing the main parts of the optical system of the guide light irradiation device 1. Note that Fig. 16(A) shows an elevational view of the optical system, with the upper side in the figure indicating the top, the lower side indicating the bottom, and the right side indicating the front.
  • 11 indicates a guide light irradiation optical system.
  • the guide light irradiation optical system 11 has a plurality of light sources 14 and a plurality of irradiation lenses 12 corresponding to the light sources 14 on the optical axis 13 of the light sources 14.
  • three light sources 14a, 14b, and 14c are provided, and irradiation lenses 12a, 12b, and 12c are provided on the optical axes 13a, 13b, and 13c of the light sources 14a, 14b, and 14c, respectively.
  • a common spectrometer 15 is provided between the light sources 14a, 14b, and 14c and the irradiation lenses 12a, 12b, and 12c, close to the light sources 14a, 14b, and 14c.
  • the light sources 14a, 14b, and 14c are provided so that the optical axes 13a, 13b, and 13c are positioned on the same vertical plane, and the light sources 14b and 14c are arranged symmetrically above and below the optical axis 13a. Furthermore, the optical axes 13b and 13c are inclined at a predetermined angle with respect to the optical axis 13a.
  • the optical axis 13a is set parallel to the collimation optical axis.
  • An irradiation lens 12a is provided on the optical axis 13a, and the optical axis of the irradiation lens 12a coincides with the optical axis 13a.
  • the focal position of the irradiation lens 12a is set to be at the position of the spectrometer 15 or the position of the light source 14a, or near the position of the spectrometer 15 or near the position of the light source 14a. Note that the vicinity of the focal position of the irradiation lens 12a includes the focal position.
  • irradiation lenses 12b and 12c are provided on the optical axes 13b and 13c, and the optical axes of the irradiation lenses 12b and 12c coincide with the optical axes 13b and 13c, respectively.
  • the focal positions of the irradiation lenses 12b and 12c are set to be at the position of the spectroscopic plate 15 or the position of the light sources 14b and 14c, or near the position of the spectroscopic plate 15 or near the position of the light sources 14b and 14c.
  • FIG. 18 shows the basic configuration of the illumination lens, the spectroscopic plate, and the light source in the fifth embodiment, and shows a plan view of the portion related to the light source 14a in FIG. 16(A). Note that the light sources 14b and 14c are similar to the light source 14a, so a description thereof will be omitted.
  • the light source 14a is a broadband light source that emits light having a wide band of wavelengths, for example an LED that emits visible white light.
  • the spectral plate 15 has color elements 17 (17a, 17b) formed on the surface of a transparent substrate 16 (see FIG. 17), and the color elements 17 have optical characteristics in which the regions 17a, 17b on the left and right of a boundary 17e passing through the optical axis 13a have different spectral transmittances.
  • a dichroic film is used as the color elements 17.
  • the boundary 17e i.e., the boundary line, is set so as to be located on a vertical plane including the optical axes 13a, 13b, and 13c.
  • the guide light will be two colors, blue light and white light.
  • the color-developing element 17 is provided on the surface of the spectroscopic plate 15 facing the illumination lenses 12a to 12c, but it may be provided on the surface of the spectroscopic plate 15 facing the light source 14a.
  • the color-producing element 17 is a dichroic film, and for example, the spectral transmission wavelength of the right region 17a is 400 nm to 500 nm (blue), and the spectral transmission wavelength of the left region 17b is 650 nm to 750 nm (red).
  • the color-producing element may be a transmissive liquid crystal display, and a blinking means may be provided to enhance distinguishability, as in the above-mentioned embodiment.
  • the light sources 14a, 14b, and 14c are arranged so that their optical axes are located on the same vertical plane, and further, the light sources 14b and 14c are arranged symmetrically above and below the optical axis 13a, and the optical axes 13b and 13c of the light sources 14b and 14c are inclined at a predetermined angle ⁇ above and below the optical axis 13a.
  • the spectrometer 15 has a rectangular shape that is elongated in the vertical direction, and has the region 17a and the region 17b on the left and right of the boundary 17e that extends in the longitudinal direction.
  • the light sources 14a, 14b, and 14c are disposed close to the spectrometer 15, and the white visible light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c passes through the spectrometer 15 and enters the illumination lenses 12a, 12b, and 12c, respectively.
  • the light beams 18a, 18b, and 18c are focused by the illumination lenses 12a, 12b, and 12c, respectively, at a predetermined spread angle ⁇ , and the light beams 18a, 18b, and 18c are collected and irradiated as guide light 18 having a boundary 18e.
  • the optical axis 13b and the optical axis 13c are inclined at a predetermined angle ⁇ with respect to the optical axis 13a, and the relationship between this inclination angle ⁇ and the spread angle ⁇ is set so that at least the light 18a and the light 18b, and the light 18a and the light 18c overlap partially, respectively, and no discontinuous portions of the light beam are generated between the light 18a, 18b and the light 18a, 18c when irradiated as the guide light 18.
  • the spread angle of the guide light 18 is 2 ⁇ + ⁇ in the vertical direction and ⁇ in the horizontal direction.
  • the vertical length (length in the up-down direction) and horizontal length (width) of the spectrometer 15 are the lengths through which the light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c pass.
  • the inclination angle ⁇ and the spread angle ⁇ are appropriately determined according to the working environment. Also, in the above embodiment, the number of light sources is three, but it is not limited to three, and may be two or four or more.
  • the guide light 18 can be emitted with a large spread angle in the vertical direction. Furthermore, since the spread angle in the vertical direction is obtained by arranging multiple light sources, there is no decrease in the light quantity or brightness due to the large spread angle of the guide light 18. Therefore, there is no loss of recognizability by the worker.
  • the guide light 18 is expanded in the vertical direction, but if it is expanded in the horizontal direction, the above configuration can be rotated 90° horizontally so that the optical axes 13a, 13b, 13c and the boundary 18e are included in the same horizontal plane.
  • the light sources 14a, 14b, and 14c, the spectrometer plate 15, and the irradiation lenses 12a, 12b, and 12c can be rotated 90° together.
  • Figures 19(A) and 19(B) show the sixth embodiment.
  • Each of the small light-splitting plates 15a, 15b, and 15c is divided into left and right regions, and color-producing elements 17 (17a, 17b) with different spectral characteristics are formed in the left and right regions.
  • the boundaries formed by each of the small light-splitting plates 15a, 15b, and 15c are set to be located on a vertical plane that includes the optical axes of the light sources 14a, 14b, and 14c.
  • the degree of freedom in the configuration and arrangement of the guide light irradiation optical system 11 is increased.
  • the light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c are collected and irradiated as guide light 18 having a boundary 18e.
  • the light sources 14a and 14b are arranged symmetrically above and below the optical axis 13 of the guide light irradiation optical system 11.
  • the optical axis 13 is set parallel to the collimation optical axis.
  • Small reflectors 31a and 31b are provided facing the light sources 14a and 14b, respectively, and irradiation lenses 12a and 12b are provided on the reflected light axes 32a and 32b of the small reflectors 31a and 31b, respectively.
  • the small reflectors 31a and 31b constitute the spectrometer 15.
  • the optical axes of the light sources 14a and 14b and the reflected light axes 32a and 32b are set to be located in the same vertical plane.
  • light sources 14a and 14b have the same configuration, the following will describe light source 14a.
  • a coloring element 17 is formed on the reflective surface of the small reflector 31a.
  • the coloring elements 17 (17a, 17b) have optical characteristics in which the regions 17a, 17b on the left and right of the boundary 18e passing through the optical axis 13 have different spectral transmittances (see FIG. 4).
  • a dichroic film is used as the coloring elements 17.
  • the color-producing element 17 is not limited to a dichroic film, but may be, for example, an absorbing film that absorbs a specific wavelength, or a phosphor coating that changes the wavelength.
  • the guide light will be two colors, blue light and white light.
  • the white light emitted from the light source 14a is colored by being reflected by the color-emitting elements 17a and 17b, and is emitted as guide light 18a having a boundary 18e.
  • guide light 18b having a boundary 18e is emitted from the irradiation lens 12b, and the upper and lower guide lights 18a and 18b are combined and irradiated as guide light 18.
  • the boundary 17e between the color-producing elements 17a, 17b formed on the small reflectors 31a, 31b, respectively, is arranged to be located within a vertical plane including the optical axes of the light sources 14a, 14b and the reflected optical axes 32a, 32b. Therefore, in the collected guide light 18, the boundary 18e appears as a vertical straight line passing through the optical axis 13.
  • the light source 14a, the small reflector 31a, the irradiation lens 12a, and the light source 14b, the small reflector 31b, and the irradiation lens 12b may be unitized as the guide light irradiation unit 33a and the guide light irradiation unit 33b, respectively.
  • FIG. 21 shows a modified example of the color-producing element 17.
  • the same reference numerals are used to designate the same parts as those shown in FIG. 17.
  • a gradation of color or brightness is provided to the color elements formed in areas 17a and 17b obtained by dividing the color element 17 into two parts, left and right.
  • Region 17a has a gradation where the color and brightness change gradually from the bottom to the top of the figure, while region 17b has a gradation where the color and brightness change gradually from the bottom to the top of the figure, the opposite to region 17a.
  • gradation can be achieved by, for example, giving a gradient to the thickness of the dichroic film.
  • the guide light 18 has a color gradation, allowing the surveyor to intuitively determine in which direction he or she should move by recognizing the color.
  • the color-producing element 17 is not limited to a dichroic film, but may be, for example, an absorbing film that absorbs a specific wavelength, or a phosphor coating that changes the wavelength.
  • a reflective liquid crystal display may be used as the coloring element.
  • a blinking means may be added to the liquid crystal display to partially blink the formed area, thereby enhancing the distinguishability of the area.
  • the spectrometer may be a digital micromirror device (DMD), and the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.
  • DMD digital micromirror device
  • the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.
  • the eighth embodiment shows a case where multiple light sources 14a, 14b, 14c, 14d, and 14e are arranged three-dimensionally.
  • the light sources 14a, 14b, 14c, 14d, and 14e emit broadband light (for example, visible white light) as in the above-mentioned embodiments.
  • FIG. 22 is a front view
  • FIG. 23 is a view seen from the direction of arrow A in FIG. 22
  • FIG. 24 is a view seen from the direction of arrow B in FIG. 22.
  • Light source 14a is arranged on optical axis 13a, and light sources 14b, 14c and light sources 14d, 14e are arranged symmetrically above, below and to the left and right of optical axis 13a.
  • Optical axis 13a is set parallel to the collimation optical axis, and optical axis 13a is the reference optical axis in the eighth embodiment.
  • optical axes 13b, 13c, 13d, and 13e of the light sources 14b, 14c, 14d, and 14e are inclined at a predetermined angle in the expansion direction with respect to the optical axis 13a.
  • optical axes 13a, 13b, and 13c are configured to be included in the same vertical plane (vertical plane), and the optical axes 13a, 13d, and 13e are configured to be included in the same horizontal plane (horizontal plane).
  • the light source 14a, the small spectrometer 15a, and the irradiation lens 12a constitute the guide light irradiation unit 19a.
  • small light dividing plates 15b, 15c, 15d, and 15e and irradiation lenses 12b, 12c, 12d, and 12e are provided on the optical axes 13b, 13c, 13d, and 13e, respectively, to form guide light irradiation units 19b, 19c, 19d, and 19e, respectively.
  • the small light-splitting plates 15a, 15b, 15c, 15d, and 15e will be described with reference to FIG. 24.
  • the small light-splitting plates 15a, 15b, 15c, 15d, and 15e may have any shape, such as a rectangular plate or a circular plate, but in this embodiment, they are rectangular plates.
  • the small light-splitting plate 15a on the optical axis 13a is divided into four equal parts, vertically and horizontally, around the optical axis 13a, to form regions 35a, 35b, 35c, and 35d, and color-producing elements with different spectral characteristics are formed in each of the regions 35a, 35b, 35c, and 35d.
  • dichroic films with different spectral transmittances are formed as the color-producing elements.
  • the guide light emitted from the light source 14a passes through each of the areas 35a, 35b, 35c, and 35d of the small spectrometer 15a, and each area is colored in one of four colors. Furthermore, vertical and horizontal boundaries are formed at the boundaries of each area. The vertical boundaries are included in the vertical plane, and the horizontal boundaries are included in the horizontal plane. Furthermore, the intersection of the vertical and horizontal boundaries coincides with the optical axis 13a.
  • the small spectrophotometer 15b on the optical axis 13b is divided into left and right regions 36a and 36b with a vertical line passing through the optical axis 13b as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 36a and 36b.
  • the spectral transmittance characteristics of the dichroic film formed in the region 36a are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35a. Also, the spectral transmittance characteristics of the dichroic film formed in the region 36b are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35b.
  • the guide light emitted from the light source 14b passes through each of the areas 36a and 36b of the small light plate 15b, and is colored in two colors for each area.
  • the color of the light that passes through the area 36a matches the color of the light that passes through the area 35a. Furthermore, the color of the light that passes through the area 36b matches the color of the light that passes through the area 35b.
  • the vertical boundary line of the small splitter plate 15b coincides with the vertical boundary line formed by the small splitter plate 15a.
  • the small splitter plate 15c on the optical axis 13c is divided into left and right regions 37c and 37d by a vertical line passing through the optical axis 13c, and dichroic films with different spectral transmittances are formed in the regions 37c and 37d.
  • the spectral transmittance characteristics of the dichroic film formed in the region 37c are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35c. Also, the spectral transmittance characteristics of the dichroic film formed in the region 37d are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35d.
  • the guide light emitted from the light source 14c passes through each of the areas 37c and 37d of the small light plate 15c, and is colored in two colors for each area.
  • the color of the light that passes through the area 37c matches the color of the light that passes through the area 35c. Furthermore, the color of the light that passes through the area 37d matches the color of the light that passes through the area 35d.
  • the vertical boundary line formed by the small light-splitting plate 15c coincides with the vertical boundary line formed by the small light-splitting plate 15a.
  • the small spectrophotometer 15d on the optical axis 13d is divided into upper and lower regions 38b and 38c with a horizontal line passing through the optical axis 13d as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 38b and 38c.
  • the spectral transmittance characteristics of the dichroic film formed in the region 38b are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35b. Also, the spectral transmittance characteristics of the dichroic film formed in the region 38c are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35c.
  • the guide light emitted from the light source 14d passes through each of the areas 38b and 38c of the small light plate 15d, and is colored in two colors for each area.
  • the color of the light that passes through the area 38b matches the color of the light that passes through the area 35b. Furthermore, the color of the light that passes through the area 38c matches the color of the light that passes through the area 35c.
  • the horizontal boundary line formed by the small splitter plate 15d coincides with the horizontal boundary line formed by the small splitter plate 15a.
  • the small spectrophotometer 15e on the optical axis 13e is divided into upper and lower regions 39a and 39d with a horizontal line passing through the optical axis 13e as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 39a and 39d.
  • the spectral transmittance characteristics of the dichroic film formed in the region 39a are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35a. Also, the spectral transmittance characteristics of the dichroic film formed in the region 39d are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35d.
  • the guide light emitted from the light source 14e passes through each of the areas 39a and 39d of the small light plate 15e, and is colored in two colors for each area.
  • the color of the light that passes through the area 39a matches the color of the light that passes through the area 35a. Furthermore, the color of the light that passes through the area 39d matches the color of the light that passes through the area 35d.
  • the horizontal boundary line formed by the small splitter plate 15e coincides with the horizontal boundary line formed by the small splitter plate 15a.
  • the guide light emitted from the guide light irradiation units 19b, 19c, 19d, and 19e is collected and irradiated from the guide light irradiation optical system 11 as a collected guide light 41.
  • the collected state of the collected guide light 41 is shown in FIG. 25.
  • a vertical boundary 41a and a horizontal boundary 41b are formed, and the intersection of the boundary 41a and the boundary 41b coincides with the optical axis 13a.
  • the optical axis 13a is parallel to the collimation optical axis.
  • the first quadrant 42a is light colored by the regions 35a, 36a, and 39a.
  • the second quadrant 42b is light colored by the regions 35b, 36b, and 38b.
  • the third quadrant 42c is light colored by the regions 35c, 37c, and 38c.
  • the fourth quadrant 42d is light colored by the regions 35d, 37d, and 39d.
  • the first quadrant 42a, the second quadrant 42b, the third quadrant 42c, and the fourth quadrant 42d are each a different color, so the boundaries 41a and 41b can be clearly identified, and the survey worker can recognize which quadrant he is in by recognizing the color of the collective guide light 41, and can determine the direction of movement.
  • the boundaries 41a and 41b can be recognized, and the direction of movement toward the optical axis 13a can be recognized.
  • the collective guide light 41 can be recognized over a wide range, and the horizontal and vertical movement directions can be recognized by distinguishing the colors. Furthermore, since the collective guide light 41 is formed by light from multiple light sources 14, a decrease in the amount of light and brightness is suppressed even when irradiated over a wide range, and the recognition ability of the surveyor is not impaired.
  • the light transmitted through the small light plates 15b, 15c, 15d, and 15e may be configured to form a gradation so that the direction of movement can be determined.
  • the small light dividing plates 15a to 15e in the eighth embodiment can each be the reflector light dividing plates shown in the seventh embodiment.
  • the coloring elements can be modified in various ways, just as in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

This guide light beaming device that beams guide light for indicating direction to a stakeout worker is configured such that: the optical system of the guide light beaming device includes a beaming lens (12), a spectroscopic plate (15), and a light source (14); the light source is a broadband light source for emitting broadband light; a coloring element (17) is formed on the spectroscopic plate; the coloring element has at least two regions (17a, 17b) having different spectral characteristics; one of the spectroscopic plate or the light source is positioned on or near the focal position of the beaming lens and the other of the spectroscopic plate or the light source is positioned near or on the focal position of the beaming lens; and the light emitted from the broadband light source is colored by the regions and beamed from the beaming lens as guide light (18) including at least two colors.

Description

ガイド光照射装置Guide light irradiation device

 本発明は、測量作業者を誘導する為のガイド光を照射するガイド光照射装置に関するものである。 The present invention relates to a guide light irradiation device that emits guide light to guide survey workers.

 測設作業に於いて、測設作業者を誘導する為の装置としてガイド光を照射するガイド光照射装置が知られている。 A guide light irradiation device that emits guide light to guide construction workers during construction work is known.

 ガイド光は、視準軸を境界として左右で異なる色とされ、測設点に向けて照射される。測設作業者はガイド光を視認し、色を識別することで移動方向を判断し、左右の色の境界位置に移動することで、測設点に誘導される。 The guide light is a different color on the left and right sides of the sighting axis, and is irradiated towards the staking point. The staking worker visually checks the guide light and distinguishes the color to determine the direction to move in, and is guided to the staking point by moving to the boundary between the left and right colors.

 従来、ガイド光照射装置は、相対向して配設された光源、及び直角ミラーを有している。2つの光源は異なる色の光を発し、光は直角ミラーの直交する2つの反射面に入射される。反射面で反射された2色の光は、境界を有するガイド光として射出される。尚、ガイド装置としては、特許文献1に示されるものがある。 Conventionally, guide light irradiation devices have light sources arranged opposite each other, and a right-angle mirror. The two light sources emit light of different colors, and the light is incident on two perpendicular reflecting surfaces of the right-angle mirror. The two colors of light reflected by the reflecting surfaces are emitted as guide light with a boundary. An example of a guide device is shown in Patent Document 1.

 従来のガイド光照射装置では、2つの色の異なる光源、及び直角ミラーが必要であり、部品数が多く且つ光源は相対向して設けられるので、占有スペースが大きくなる。更に、2つの光源、直角ミラーの位置合せ作業が煩雑となっていた。  Conventional guide light irradiation devices require two light sources of different colors and a right-angle mirror, and because they have a large number of parts and the light sources are placed opposite each other, they take up a large amount of space. Furthermore, the task of aligning the two light sources and the right-angle mirror is complicated.

特開2020-165839号公報JP 2020-165839 A 特開2015-40831号公報JP 2015-40831 A

 本発明は、部品点数が少なく、簡便に製作が可能なガイド光照射装置を提供するものである。 The present invention provides a guide light irradiation device that has a small number of parts and can be easily manufactured.

 本発明は、測設作業者に方向を示す為のガイド光を照射するガイド光照射装置であって、該ガイド光照射装置の光学系が照射レンズ、分光板、光源を含み、該光源は、広帯域の光を発する広帯域光源であり、前記分光板に発色要素が設けられ、該発色要素は分光特性が異なる少なくとも2つの領域を有し、前記分光板、前記光源の一方は前記照射レンズの焦点位置、或は焦点位置近傍に位置する様に、又他方は前記照射レンズの焦点位置近傍、或は焦点位置に位置する様に構成され、前記広帯域光源から発せられる光は前記領域によって色付けされ、少なくとも2色の光を含むガイド光として前記照射レンズから照射される様構成されたガイド光照射装置に係るものである。 The present invention relates to a guide light irradiation device that irradiates guide light to indicate directions to surveying workers, the optical system of the guide light irradiation device including an irradiation lens, a spectral plate, and a light source, the light source being a broadband light source that emits light in a broadband, a coloring element being provided on the spectral plate, the coloring element having at least two regions with different spectral characteristics, one of the spectral plate and the light source being positioned at or near the focal position of the irradiation lens, and the other being positioned at or near the focal position of the irradiation lens, the light emitted from the broadband light source being colored by the region, and the guide light irradiating device being configured to be irradiated from the irradiation lens as guide light including at least two colors of light.

 又本発明は、前記ガイド光照射光学系が複数の光源を含み、前記複数の光源の光軸は、鉛直又は水平な同一平面内に配設され、前記各光軸上に前記光源に対応してそれぞれ前記照射レンズが設けられ、該照射レンズと前記光源との間に前記分光板が設けられ、前記領域の境界は前記平面内に含まれ、前記複数の光源から発せられる光は該領域によって色付けされて、前記照射レンズより照射されて集合され、少なくとも2色の光を含むガイド光として照射される様構成されたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the guide light irradiation optical system includes a plurality of light sources, the optical axes of the plurality of light sources are arranged in the same vertical or horizontal plane, the irradiation lens is provided on each of the optical axes corresponding to the light source, the spectroscopic plate is provided between the irradiation lens and the light source, the boundary of the region is included in the plane, and the light emitted from the plurality of light sources is colored by the region, irradiated by the irradiation lens, and collected to be irradiated as guide light including at least two colors of light.

 又本発明は、前記光源は、可視光の白色光を発する白色LEDであるガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the light source is a white LED that emits visible white light.

 又本発明は、前記光源は、不可視光の近赤外光を発するLEDであるガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the light source is an LED that emits invisible near-infrared light.

 又本発明は、前記分光板は、透明基板に前記発色要素が形成されたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectral plate has the color-developing elements formed on a transparent substrate.

 又本発明は、前記分光板は、反射板の反射面に前記発色要素が形成されたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectral plate has the color-developing elements formed on the reflecting surface of a reflector.

 又本発明は、前記分光板が点滅手段を有し、前記領域の少なくとも1つを点滅可能としたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectroscopic plate has a blinking means, making it possible to blink at least one of the regions.

 又本発明は、前記分光板は、光透過性を有する液晶板を含み、該液晶板が分光特性が異なる少なくとも2つの領域を形成する発色要素であるガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectral plate includes a liquid crystal plate having optical transparency, and the liquid crystal plate is a coloring element that forms at least two regions with different spectral characteristics.

 又本発明は、前記液晶板が、前記領域の少なくとも1つを点滅可能に構成されたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the liquid crystal plate is configured to be able to blink at least one of the regions.

 又本発明は、前記発色要素は、上下又は左右に複数に分割され複数の領域を有するガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the color-developing element is divided into multiple parts vertically or horizontally and has multiple regions.

 又本発明は、前記発色要素は、更に左右又は上下に2分割され、複数の領域を有するガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the color-developing element is further divided into two parts, left and right or top and bottom, and has multiple regions.

 又本発明は、前記発色要素は上下に2分割され、各分割部分は複数の領域を有し、前記点滅手段は、上下一方の分割部分を点滅する様構成されたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the color-producing element is divided into two parts, an upper part and an lower part, each part having a plurality of regions, and the blinking means is configured to blink one of the upper and lower parts.

 又本発明は、前記発色要素は、一端から他端に向って漸次色が変化するグラデーションとなっているガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the color-producing elements have a gradation in which the color changes gradually from one end to the other.

 又本発明は、前記透明基板は、長矩形形状とし、短辺方向で領域を2分割し、分割部分に異なる分光透過率を有する発色要素を設けて2つの領域を形成し、該2つの領域によって透明基板の長手方向に延在する境界が形成され、該境界を含む平面内に複数の前記光源を設け、該光源の光軸相互を所定角度に傾斜させたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the transparent substrate is rectangular in shape, the region is divided into two along the short side, and color-producing elements with different spectral transmittances are provided in the divided portion to form two regions, a boundary extending in the longitudinal direction of the transparent substrate is formed by the two regions, a plurality of the light sources are provided within a plane including the boundary, and the optical axes of the light sources are inclined at a predetermined angle to each other.

 又本発明は、前記照射レンズをアナモルフィックレンズとしたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the irradiation lens is an anamorphic lens.

 又本発明は、前記分光板は、複数の前記光源からの光が透過する長矩形形状とし、短辺方向で領域を2分割し、分割部分に異なる分光特性を有する発色要素を設けて2つの領域を形成し、該2つの領域によって透明基板の長手方向に延在する境界が形成され、該境界が前記平面内に含まれる様に構成されるガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectral plate has a rectangular shape that transmits light from the multiple light sources, the region is divided into two along the short side, and color-producing elements with different spectral characteristics are provided in the divided portion to form two regions, and the two regions form a boundary that extends in the longitudinal direction of the transparent substrate, and the boundary is configured to be included within the plane.

 又本発明は、前記分光板は、複数の前記光源の光軸上に該光源に対応させて設けられた小分光板からなり、該小分光板に少なくとも2つの領域を形成し、各領域に異なる分光透過率を有する発色要素を設け、前記領域の境界が前記平面に含まれる様構成したガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectroscopic plate is made up of small spectroscopic plates arranged on the optical axes of a plurality of the light sources in correspondence with the light sources, at least two regions are formed on the small spectroscopic plates, and coloring elements having different spectral transmittances are provided in each region, and the boundaries of the regions are included in the plane.

 又本発明は、前記光源の光軸相互を照射する光が拡大する方向に所定角度に傾斜させたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the optical axes of the light sources are inclined at a predetermined angle in the direction in which the light irradiating the light expands.

 又本発明は、前記光源の光軸上に配設された前記照射レンズ、小分光板、及び前記光源により、ガイド光照射ユニットが構成され、前記ガイド光照射光学系は、複数のガイド光照射ユニットから成り、1つのガイド光照射ユニットは視準方向と平行な基準光軸を有し、他のガイド光照射ユニットの光軸は前記基準光軸に対して照射する光が拡大する方向に所定角度に傾斜する様設けられたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which a guide light irradiation unit is constituted by the irradiation lens, the small spectrometer, and the light source, which are arranged on the optical axis of the light source, and the guide light irradiation optical system is composed of a plurality of guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, and the optical axes of the other guide light irradiation units are inclined at a predetermined angle with respect to the reference optical axis in the direction in which the irradiated light expands.

 又本発明は、前記光源の光軸上に配設された前記照射レンズ、小分光板、及び前記光源により、ガイド光照射ユニットが構成され、前記ガイド光照射光学系は、5つのガイド光照射ユニットから成り、1つのガイド光照射ユニットは視準方向と平行な基準光軸を有し、該基準光軸を含む鉛直平面内に該基準光軸に関し上下対称に2つのガイド光照射ユニットが設けられ、前記基準光軸を含む水平平面内に該基準光軸に関し左右対称に2つのガイド光照射ユニットが設けられ、前記5つのガイド光照射ユニットから射出された光の集合でガイド光が形成され、該ガイド光に前記鉛直平面に含まれる境界及び前記水平平面に含まれる境界が形成される様、前記小分光板のそれぞれを領域分けし、該領域に発色要素を形成したガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which a guide light irradiation unit is formed by the irradiation lens, the small light plate, and the light source, which are arranged on the optical axis of the light source, and the guide light irradiation optical system is composed of five guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, two guide light irradiation units are provided in a vertical plane including the reference optical axis, symmetrically from top to bottom with respect to the reference optical axis, and two guide light irradiation units are provided in a horizontal plane including the reference optical axis, symmetrically from left to right with respect to the reference optical axis, a guide light is formed by a collection of light emitted from the five guide light irradiation units, each of the small light plates is divided into regions so that the guide light has a boundary included in the vertical plane and a boundary included in the horizontal plane, and color-developing elements are formed in the regions.

 更に又本発明は、前記分光板が点滅手段を有し、前記領域の少なくとも1つを点滅可能としたガイド光照射装置に係るものである。 The present invention also relates to a guide light irradiation device in which the spectroscopic plate has a blinking means, making it possible to blink at least one of the regions.

 本発明によれば、測設作業者に方向を示す為のガイド光を照射するガイド光照射装置であって、該ガイド光照射装置の光学系が照射レンズ、分光板、光源を含み、該光源は、広帯域の光を発する広帯域光源であり、前記分光板に発色要素が設けられ、該発色要素は分光特性が異なる少なくとも2つの領域を有し、前記分光板、前記光源の一方は前記照射レンズの焦点位置、或は焦点位置近傍に位置する様に、又他方は前記照射レンズの焦点位置近傍、或は焦点位置に位置する様に構成され、前記広帯域光源から発せられる光は前記領域によって色付けされ、少なくとも2色の光を含むガイド光として前記照射レンズから照射される様構成されたので、光学系の構成が簡潔であり、部品点数が少なく、簡便に製作が可能である。 According to the present invention, there is provided a guide light irradiation device that irradiates guide light to indicate directions to surveying workers, and the optical system of the guide light irradiation device includes an irradiation lens, a spectral plate, and a light source, the light source is a broadband light source that emits light in a broadband, a coloring element is provided on the spectral plate, and the coloring element has at least two regions with different spectral characteristics, one of the spectral plate and the light source is configured to be located at or near the focal position of the irradiation lens, and the other is configured to be located near or at the focal position of the irradiation lens, and the light emitted from the broadband light source is colored by the region, and is configured to be irradiated from the irradiation lens as guide light containing at least two colors of light, so that the optical system has a simple configuration, has a small number of parts, and can be easily manufactured.

図1は第1の実施例に係るガイド光照射装置の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a guide light emitting device according to a first embodiment. 図2(A)は該ガイド光照射装置のガイド光照射光学系の要部を示す説明図、図2(B)はガイド光の光束断面を示す図である。FIG. 2A is an explanatory diagram showing a main part of a guide light emitting optical system of the guide light emitting device, and FIG. 2B is a diagram showing a cross section of a light beam of the guide light. 図3は発色要素の説明図である。FIG. 3 is an explanatory diagram of color-developing elements. 図4は本実施例に於ける光源の分光特性、ダイクロイック膜の透過率特性、ダイクロイック膜の透過後の光の分光特性を示すグラフである。FIG. 4 is a graph showing the spectral characteristics of the light source, the transmittance characteristics of the dichroic film, and the spectral characteristics of light after passing through the dichroic film in this embodiment. 図5は発色要素の第1の変更例を示す説明図である。FIG. 5 is an explanatory diagram showing a first modification of the coloring element. 図6は発色要素の第2の変更例を示す説明図である。FIG. 6 is an explanatory diagram showing a second modification of the coloring element. 図7は発色要素の第3の変更例を示す説明図である。FIG. 7 is an explanatory diagram showing a third modification of the coloring element. 図8は発色要素の第4の変更例を示す説明図である。FIG. 8 is an explanatory diagram showing a fourth modification of the coloring element. 図9は発色要素の第5の変更例を示す説明図である。FIG. 9 is an explanatory diagram showing a fifth modification of the coloring element. 図10(A)は第2の実施例に係るガイド光照射光学系の概略構成図、図10(B)は第2の実施例に於けるガイド光の光束の断面を示す図である。FIG. 10A is a schematic diagram of a guide light irradiating optical system according to the second embodiment, and FIG. 10B is a diagram showing a cross section of a light beam of guide light in the second embodiment. 図11(A)は第3の実施例に係るガイド光照射光学系の概略構成図、図11(B)は第3の実施例に於けるガイド光の光束の断面を示す図である。FIG. 11A is a schematic diagram of a guide light irradiating optical system according to the third embodiment, and FIG. 11B is a diagram showing a cross section of a light beam of guide light in the third embodiment. 図12(A)は第4の実施例に係るガイド光照射光学系の概略構成図、図12(B)は第4の実施例に於けるガイド光の光束の断面を示す図である。FIG. 12A is a schematic diagram of a guide light irradiating optical system according to the fourth embodiment, and FIG. 12B is a diagram showing a cross section of a light beam of guide light in the fourth embodiment. 図13は第4の実施例に於ける発色要素の説明図である。FIG. 13 is an explanatory diagram of the coloring elements in the fourth embodiment. 図14は第5の実施例に係るガイド光照射装置の概要を示す説明図である。FIG. 14 is an explanatory diagram showing an outline of a guide light emitting device according to the fifth embodiment. 図15(A)は近距離でのガイド光の照射状態を示す説明図、図15(B)は遠距離でのガイド光の照射状態を示す説明図である。FIG. 15A is an explanatory diagram showing an irradiation state of the guide light at a short distance, and FIG. 15B is an explanatory diagram showing an irradiation state of the guide light at a long distance. 図16(A)は、第5の実施例に於けるガイド光照射光学系の概略構成図、図16(B)は該ガイド光照射光学系に於けるガイド光の光束断面を示す図である。FIG. 16A is a schematic diagram of a guide light emitting optical system in the fifth embodiment, and FIG. 16B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system. 図17は第5の実施例に於ける分光板の説明図である。FIG. 17 is an explanatory diagram of the spectroscopic plate in the fifth embodiment. 図18は前記ガイド光照射光学系の基本構成の説明図である。FIG. 18 is an explanatory diagram of the basic configuration of the guide light irradiating optical system. 図19(A)は第6の実施例のガイド光照射光学系の概略構成図、図19(B)は該ガイド光照射光学系に於けるガイド光の光束断面を示す図である。FIG. 19A is a schematic diagram of a guide light emitting optical system according to the sixth embodiment, and FIG. 19B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system. 図20(A)は第7の実施例のガイド光照射光学系の概略構成図、図20(B)は該ガイド光照射光学系に於けるガイド光の光束断面を示す図である。FIG. 20A is a schematic diagram of a guide light emitting optical system according to the seventh embodiment, and FIG. 20B is a diagram showing a cross section of a light beam of guide light in the guide light emitting optical system. 図21は色、又は明度のグラデーションを設けた発色要素の説明図である。FIG. 21 is an explanatory diagram of a coloring element having a gradation of color or brightness. 図22は第8の実施例のガイド光照射光学系の概略構成図である。FIG. 22 is a schematic diagram of a guide light irradiating optical system according to the eighth embodiment. 図23は図22のA矢視図である。FIG. 23 is a view taken along the arrow A in FIG. 図24は図22のB矢視図である。FIG. 24 is a view taken along the arrow B in FIG. 図25は第8の実施例のガイド光照射光学系に於けるガイド光の光束断面を示す図である。FIG. 25 is a diagram showing a cross section of a light beam of guide light in the guide light irradiating optical system of the eighth embodiment.

 以下、図面を参照しつつ本発明の実施例を説明する。 Below, an embodiment of the present invention will be explained with reference to the drawings.

 図1は、本実施例に係るガイド光照射装置1の概要を示すための説明図であり、図1では該ガイド光照射装置1がトータルステーション2の上面に取付けられた状態を示している。前記ガイド光照射装置1の光軸は前記トータルステーション2の視準光軸と平行に設定されている。 FIG. 1 is an explanatory diagram showing an overview of the guide light emitting device 1 according to this embodiment, and shows the guide light emitting device 1 attached to the top surface of a total station 2. The optical axis of the guide light emitting device 1 is set parallel to the collimation optical axis of the total station 2.

 又、図1中、3はプリズム4が設けられたポールを示す。尚、図1では、該ポール3が測設点5に設置された状態を示している。 In addition, in Figure 1, 3 indicates a pole on which a prism 4 is mounted. In addition, Figure 1 shows the state in which the pole 3 is installed at a survey point 5.

 前記トータルステーション2は既知点に設置され、視準方向は前記測設点5に設定される。 The total station 2 is installed at a known point, and the sighting direction is set to the survey point 5.

 図2(A)は、前記ガイド光照射装置1の光学系の要部を示す概略図である。尚、図2(A)は、光学系の平面図を示し、図中に於いて上側が右、下側が左、左側が前方を示している。又、図2(B)はガイド光の光束断面を示している。 Fig. 2(A) is a schematic diagram showing the main parts of the optical system of the guide light irradiation device 1. Fig. 2(A) shows a plan view of the optical system, with the upper side in the figure representing the right, the lower side representing the left, and the left side representing the front. Fig. 2(B) shows a cross section of the light beam of the guide light.

 図2(A)中、11はガイド光照射光学系、12は照射レンズを示し、該照射レンズ12の光軸13上の焦点位置に光源14が設けられ、該光源14の前面に分光板15が設けられる。前記光源14は、広帯域の波長を有する光を発する広帯域光源であり、例えば可視光の白色光を発するLEDである。 In FIG. 2(A), 11 denotes a guide light irradiation optical system, 12 denotes an irradiation lens, a light source 14 is provided at the focal position on the optical axis 13 of the irradiation lens 12, and a spectrometer 15 is provided in front of the light source 14. The light source 14 is a broadband light source that emits light having a wide band of wavelengths, for example an LED that emits visible white light.

 以下に説明する実施例では、領域識別要素として発色要素を含み、ガイド光中に色の異なる領域が形成される様になっている。 In the embodiment described below, a coloring element is included as the area discrimination element, and areas of different colors are formed in the guide light.

 前記分光板15は、透明基板16の表面に発色要素17(17a,17b)が形成され(図3参照)、該発色要素17は前記光軸13を通る境界17eの左右の領域17a,17bで異なる分光透過率を有する光学特性となっている。前記発色要素17としては、例えばダイクロイック膜が用いられる。 The spectral plate 15 has color elements 17 (17a, 17b) formed on the surface of a transparent substrate 16 (see FIG. 3), and the color elements 17 have optical characteristics in which the regions 17a, 17b on the left and right of a boundary 17e passing through the optical axis 13 have different spectral transmittances. For example, a dichroic film is used as the color elements 17.

 尚、上記説明に於いて、図2(A)では、前記発色要素17は前記分光板15の照射レンズ12側の面に形成されているが、前記分光板15の光源14側の面に形成されても良い。又、前記分光板15は前記照射レンズ12の焦点位置付近に設けられる。前記光源14は前記照射レンズ12の焦点位置に設けられる。尚、前記分光板15を前記照射レンズ12の焦点位置とし、前記光源14を焦点位置近傍に設けても良い。 In the above explanation, in FIG. 2(A), the color-developing element 17 is formed on the surface of the spectroscopic plate 15 facing the projection lens 12, but it may be formed on the surface of the spectroscopic plate 15 facing the light source 14. Also, the spectroscopic plate 15 is provided near the focal position of the projection lens 12. The light source 14 is provided at the focal position of the projection lens 12. It is also possible to set the spectroscopic plate 15 at the focal position of the projection lens 12 and provide the light source 14 near the focal position.

 前記発色要素17をダイクロイック膜として、例えば、左領域17aの分光透過波長を400nm~500nm(青色)とし、又、右領域17bの分光透過波長を650nm~750nm(赤色)とする。 The color-producing element 17 is a dichroic film, and for example, the spectral transmission wavelength of the left region 17a is 400 nm to 500 nm (blue), and the spectral transmission wavelength of the right region 17b is 650 nm to 750 nm (red).

 図4は、LEDの分光特性、領域17aのダイクロイック膜の透過率特性、ダイクロイック膜透過後のLEDの分光特性の関係の一例を示している。図4中、曲線Aは、光源14の波長特性、曲線Bは領域17aのダイクロイック膜の透過率特性、曲線Cは領域17aの透過光の波長特性を示している。 Figure 4 shows an example of the relationship between the spectral characteristics of the LED, the transmittance characteristics of the dichroic film in region 17a, and the spectral characteristics of the LED after passing through the dichroic film. In Figure 4, curve A shows the wavelength characteristics of the light source 14, curve B shows the transmittance characteristics of the dichroic film in region 17a, and curve C shows the wavelength characteristics of the transmitted light in region 17a.

 領域17aのダイクロイック膜の透過率特性は、400nm~500nmの波長を透過するので、前記領域17aを透過した光は青色光となっている。尚、図示していないが、領域17bのダイクロイック膜の透過率特性を650nm~750nmとすると、前記領域17bを透過した光は赤色光となっている。 The transmittance characteristics of the dichroic film in region 17a are such that it transmits wavelengths between 400 nm and 500 nm, so the light that passes through region 17a is blue light. Although not shown, if the transmittance characteristics of the dichroic film in region 17b are 650 nm to 750 nm, the light that passes through region 17b is red light.

 前記光源14から発せられた白色光は前記分光板15を透過することで、左側が青色光18a、右側が赤色光18b、境界18eが光軸の位置を示すガイド光18として射出され(図2(B)参照)、更に前記照射レンズ12を透過することで略平行光束(所定の広がり角を有する光束)のガイド光18として測設点に向けて照射される。 The white light emitted from the light source 14 passes through the spectrometer 15, and is emitted as guide light 18, with blue light 18a on the left and red light 18b on the right, and the boundary 18e indicating the position of the optical axis (see FIG. 2B). It then passes through the projection lens 12 and is irradiated toward the measurement point as guide light 18, which is an approximately parallel beam (a beam with a predetermined spread angle).

 測設作業時の測設作業者の誘導に於いて、測設作業者がガイド光18を赤と認識した場合は、測設点の位置より右側に居ると判断でき、作業者は左方向に移動することで測設点に誘導される。 When guiding a surveyor during surveying work, if the surveyor recognizes the guide light 18 as red, it can be determined that he or she is to the right of the surveying point, and the worker will be guided to the surveying point by moving to the left.

 尚、前記領域17a,17bのいずれか一方、例えば、前記領域17bについてはダイクロイック膜を形成しない、或はARコートのみとするとしても良い。この場合、ガイド光は青色光と白色光の2色となる。 It is also possible to form no dichroic film on either one of the regions 17a and 17b, for example, on region 17b, or to form only an AR coating. In this case, the guide light will be two colors, blue light and white light.

 上記説明では、前記発色要素17を左右に分割する領域17a、領域17bを形成したが、測定点が高低差のある場所に設定されている場合等、所定の高さ基準に誘導する場合等では、上下に領域を分割した発色要素17としても良い。 In the above explanation, the color-producing element 17 is divided into left and right regions 17a and 17b, but in cases where the measurement point is set in a location with a difference in elevation, or where it is necessary to guide the measurement to a specific height standard, the color-producing element 17 may be divided into upper and lower regions.

 更に、前記発色要素17の分割の態様は、種々変更が可能である。 Furthermore, the manner in which the color-producing elements 17 are divided can be changed in various ways.

 図5に示される第1の変更例では、前記発色要素17を上下左右に計4分割した場合を示している。4分割された領域21a,21b,21c,21dについて、それぞれ分光透過率が異なるダイクロイック膜を形成する。前記発色要素17を透過したガイド光は、異なる4色の領域を形成し、更に各領域の境界に垂直な境界線、水平な境界線を形成する。更に、垂直な境界線、水平な境界線の交点はガイド光18の光軸13に一致する様になっている。 In the first modified example shown in FIG. 5, the color-producing element 17 is divided into a total of four parts, vertically and horizontally. Dichroic films with different spectral transmittances are formed for the four divided areas 21a, 21b, 21c, and 21d. The guide light transmitted through the color-producing element 17 forms areas of four different colors, and further forms vertical and horizontal boundaries at the boundaries of each area. Furthermore, the intersection of the vertical and horizontal boundaries coincides with the optical axis 13 of the guide light 18.

 測設作業者はガイド光を認識した際に、色により自分がどの領域にいるかを判断でき、又色の認識でどの方向に移動すれば、前記光軸13の位置に移動できるかが判断できる。 When the surveyor recognizes the guide light, he can determine which area he is in by the color, and can also use the color recognition to determine in which direction he needs to move to reach the position of the optical axis 13.

 第1の変更例に於いて、4分割された領域21a,21b,21c,21dを形成することで、水平方向、鉛直方向についての誘導が可能となる。 In the first modified example, the four divided regions 21a, 21b, 21c, and 21d are formed, making it possible to provide guidance in both the horizontal and vertical directions.

 尚、ガイド光を構成する色を2色とし、対角に位置する領域について同色となる様、前記発色要素17を構成しても良い。 In addition, the color-producing element 17 may be configured so that the guide light is made up of two colors and the diagonally opposite areas are the same color.

 図6は発色要素17の第2の変更例を示している。 FIG. 6 shows a second modification of the color element 17.

 第2の変更例では、前記発色要素17を水平方向に4分割し、4の短冊状の領域22a,22b,22c,22dを形成し、各領域に形成されるダイクロイック膜の分光透過率を異ならせる。ガイド光は水平方向に色の異なる領域が形成され、測設作業者は色の認識で自分がどの方向に、どれだけ移動すれば良いかを感覚的に判断することができる。 In the second modified example, the color-producing element 17 is divided horizontally into four to form four rectangular regions 22a, 22b, 22c, and 22d, and the spectral transmittance of the dichroic film formed in each region is made different. Regions of different colors are formed in the horizontal direction of the guide light, and the surveyor can intuitively determine in which direction and how far he or she should move by recognizing the color.

 尚、分割数は4に限らず、3分割、5分割以上の複数分割であっても良い。 The number of divisions is not limited to four, but may be three, five or more.

 図7は第3の変更例を示している。第3の変更例では、第2の変更例の分割に加えて更に上下2段に分割し、8の領域を形成した例を示している。尚、領域の色付けとしては、上段の色付けの順序と下段の色付けの順序を逆にする等が考えられる。 Figure 7 shows a third modified example. In addition to the division of the second modified example, the third modified example is further divided into two levels, upper and lower, to form eight regions. It is also possible to color the regions in the reverse order of coloring the upper level and the lower level.

 第3の変更例では、測設作業者は色の認識で自分がどの方向に、どれだけ移動すれば良いかを感覚的に判断することができると共に、上下の位置及び光軸13の位置を確認することができる。 In the third modified example, the surveyor can intuitively determine in which direction and how far he or she should move by recognizing the color, and can also confirm the up/down position and the position of the optical axis 13.

 図8に示す第4の変更例では、前記発色要素17で明確な領域を形成せず、色が水平方向に漸次変化するグラデーションが形成される様、前記発色要素17を形成したものである。 In the fourth modified example shown in FIG. 8, the coloring elements 17 are formed so that they do not form distinct areas, but rather form a gradation in which the color changes gradually in the horizontal direction.

 尚、グラデーションを形成するには、ダイクロイック膜の膜厚に傾斜を持たせる等することで、実現することができる。 In addition, gradation can be achieved by, for example, giving a gradient to the thickness of the dichroic film.

 ガイド光18に色のグラデーションが形成されることで、測設作業者は色の認識で自分がどの方向に、どれだけ移動すれば良いかを感覚的に判断することができる。 The guide light 18 has a color gradation, allowing surveyors to intuitively determine in which direction and how far they should move by recognizing the color.

 図9に示す第5の変更例では、前記発色要素17を上下2分割し、上下の領域それぞれに色が水平方向に漸次変化するグラデーションが形成される様にしたものである。又、上下のグラデーションの色の変化を逆にすることで、作業者は上下方向の位置を認識し、上下の領域それぞれの領域で、自分がどの方向に、どれだけ移動すれば良いかを感覚的に判断することができる。 In the fifth modified example shown in Figure 9, the color-producing element 17 is divided into two, top and bottom, and a gradation in which the color gradually changes horizontally is formed in each of the top and bottom regions. Also, by reversing the color change of the top and bottom gradations, the worker can recognize his/her position in the vertical direction and intuitively judge in which direction and how far he/she should move in each of the top and bottom regions.

 尚、上記実施例に於いて発色要素17としては、ダイクロイック膜に限定されるものではなく、種々変更が可能である。例えば、特定の波長を吸収する吸収膜とする、異なる色の色ガラスを用いる、或は蛍光体を塗布して波長を変える、EW素子とする、或はダイクロイック膜と蛍光体との組合わせであっても良い。 In the above embodiment, the color-producing element 17 is not limited to a dichroic film, and various modifications are possible. For example, it may be an absorbing film that absorbs specific wavelengths, colored glass of a different color may be used, or a phosphor may be applied to change the wavelength, an EW element may be used, or a combination of a dichroic film and a phosphor may be used.

 更に、前記発色要素17としては透過型液晶ディスプレイであっても良い。例えば、透過型有機ELディスプレイ、透過型無機ELディスプレイ、透過型液晶ディスプレイ等である。 Furthermore, the color-producing element 17 may be a transmissive liquid crystal display. For example, a transmissive organic EL display, a transmissive inorganic EL display, a transmissive liquid crystal display, etc.

 又、識別性を高める為に、少なくとも1つの領域を点滅させる様にしても良い。点滅させる手段として、透過型液晶ディスプレイが用いられる場合は、液晶の表示ドライバが形成された領域を点滅させる様に構成されても良い。 In addition, to improve the distinguishability, at least one area may be made to blink. If a transmissive liquid crystal display is used as the blinking means, the area in which the liquid crystal display driver is formed may be configured to blink.

 更に、点滅手段として分光板に機械遮光シャッタを設け、周期的な遮光間隔による領域の点滅により、領域の識別性を高めても良い。 Furthermore, a mechanical light-shielding shutter may be provided on the spectrometer as a blinking means, and the area may be blinked at periodic light-shielding intervals to improve the identification of the area.

 更に又、点滅手段による点滅で、領域群の区分けを行う様にすることもできる。例えば、図7に示す領域の色付けに於いて、例えば、上段を点滅する様構成すると、点滅により上段と下段との識別が可能となり、作業者は上段に含まれる領域か、下段に含まれる領域かを判断することができる。 Furthermore, the blinking means can be used to distinguish between groups of areas. For example, in the coloring of the areas shown in FIG. 7, if the upper section is configured to blink, the upper and lower sections can be distinguished by the blinking, and the operator can determine whether the area is included in the upper section or the lower section.

 上記説明の如く、前記光源14、前記分光板15は共に前記照射レンズ12の焦点位置、或は焦点位置近傍に設けられるので、前記光源14、前記分光板15の位置関係を固定することができる。従って、前記光源14と前記分光板15とをユニット化することができる。 As explained above, the light source 14 and the spectrometer 15 are both provided at or near the focal position of the irradiation lens 12, so the positional relationship between the light source 14 and the spectrometer 15 can be fixed. Therefore, the light source 14 and the spectrometer 15 can be made into a unit.

 測設作業の環境に於いて、前記トータルステーション2と前記測設点5が近い場合、遠い場合があり、近い場合は前記ガイド光18の広がり角が大きい方がガイド光18を認識し易く、作業性が良い。一方、遠い場合は、照射範囲が広くなりすぎると光量が低下し、作業性が悪くなる。従って、遠い場合は、前記ガイド光18の広がり角は小さい方が良い。 In the environment of the surveying and installation work, the total station 2 and the surveying and installation point 5 may be close or far away. When they are close, the larger the spread angle of the guide light 18, the easier it is to recognize the guide light 18 and the better the workability. On the other hand, when they are far away, if the irradiation range becomes too wide, the amount of light decreases and the workability worsens. Therefore, when they are far away, it is better for the spread angle of the guide light 18 to be small.

 従って、作業環境に応じて、前記ガイド光18の広がり角を調整できることが好ましい。 Therefore, it is preferable to be able to adjust the spread angle of the guide light 18 depending on the work environment.

 上記実施例に於いて、前記光源14と前記分光板15とをユニット化して光源ユニットとし、該光源ユニットの前記照射レンズ12に対する位置を調整可能としても良い。調整可能な構成とすることで、光源ユニットの位置調整により前記照射レンズ12によるガイド光18の集光状態を変化させることができ、該ガイド光18の広がり角を容易に調整できる。 In the above embodiment, the light source 14 and the spectrometer 15 may be combined into a light source unit, and the position of the light source unit relative to the illumination lens 12 may be adjustable. By making the configuration adjustable, the state of focusing of the guide light 18 by the illumination lens 12 can be changed by adjusting the position of the light source unit, and the spread angle of the guide light 18 can be easily adjusted.

 次に、前記分光板15を前記光軸13を中心に回転可能としても良い。 Next, the spectrometer 15 may be made rotatable around the optical axis 13.

 この場合、前記分光板15を90°回転することで、左右で色分けされたガイド光18が上下に色分けされる。 In this case, by rotating the spectrometer 15 by 90 degrees, the guide light 18, which is color-coded on the left and right, becomes color-coded on the top and bottom.

 例えば、高低差のある場所で、先ず左右で色分けされた前記ガイド光18により測設作業者が水平方向に誘導されると、次に前記分光板15を90°回転し、前記ガイド光18を上下に色分けすると、測設作業者は測設点の上下方向の位置を確認することができる。従って、水平、垂直の2方向で測設作業者の誘導が可能となる。 For example, in a location with an elevation difference, the surveyor is first guided horizontally by the guide light 18, which is color-coded left and right, and then the spectrometer 15 is rotated 90 degrees and the guide light 18 is color-coded up and down, allowing the surveyor to confirm the vertical position of the survey point. Therefore, it is possible to guide the surveyor in two directions, horizontally and vertically.

 図10(A)、図10(B)は、第2の実施例のガイド光照射光学系11を示している。 FIGS. 10(A) and 10(B) show the guide light irradiation optical system 11 of the second embodiment.

 第2の実施例では、発色要素17が反射面に形成された場合を示している。 The second embodiment shows a case where the color-producing element 17 is formed on a reflective surface.

 照射レンズ12の光軸13上に分光板15として反射板29を設ける。該反射板29の反射面に発色要素17を形成し、前記分光板15を焦点位置、又は焦点位置近傍に設定する。該反射板29の反射光軸上に光源14を設け、該反射板29の光軸を前記反射光軸に合致させる。 A reflector 29 is provided as a spectroscopic plate 15 on the optical axis 13 of the irradiation lens 12. A coloring element 17 is formed on the reflecting surface of the reflector 29, and the spectroscopic plate 15 is set at or near the focal position. A light source 14 is provided on the reflected optical axis of the reflector 29, and the optical axis of the reflector 29 is aligned with the reflected optical axis.

 前記発色要素17は、図3に示されたものと同様であり、前記光軸13を通る境界17eの2つの領域17a,17bに分割され、各領域17a,17b毎に異なる分光透過率を有する光学特性となっている。前記発色要素17としては、例えばダイクロイック膜が用いられる。その他、波長を変える蛍光体が塗布されても良い。更に、ダイクロイック膜と蛍光体との組合わせであっても良い。 The color-producing element 17 is similar to that shown in FIG. 3, and is divided into two regions 17a and 17b at a boundary 17e that passes through the optical axis 13, and each of the regions 17a and 17b has optical characteristics with different spectral transmittances. For example, a dichroic film is used as the color-producing element 17. Alternatively, a phosphor that changes the wavelength may be applied. Furthermore, a combination of a dichroic film and a phosphor may be used.

 前記光源14は前記反射板29に近接させて設けられ、前記光源14(発光点)を前記照射レンズ12の焦点位置、又は近傍とする。 The light source 14 is provided close to the reflector 29, and the light source 14 (light emitting point) is at or near the focal position of the irradiation lens 12.

 前記光源14から発せられた広帯域の光(白色光)は、前記領域17a、前記領域17bで反射されることで色付けされ、2色のガイド光18a,18b及び境界18eを有するガイド光18として照射される。 The broadband light (white light) emitted from the light source 14 is colored by being reflected by the regions 17a and 17b, and is irradiated as guide light 18 having two colors of guide light 18a, 18b and a boundary 18e.

 第2の実施例では、前記反射板29の反射光軸上に光源14が設けられるので、前記照射レンズ12に対する奥行距離が短くなり、ガイド光照射光学系11をコンパクトに構成することができる。更に、前記反射板29により前記光軸13を屈曲させることで、前記ガイド光照射光学系11の設計上の自由度が増す等の利点がある。 In the second embodiment, the light source 14 is provided on the reflected optical axis of the reflector 29, so the depth distance to the irradiation lens 12 is shortened, and the guide light irradiation optical system 11 can be configured compactly. Furthermore, bending the optical axis 13 by the reflector 29 has the advantage of increasing the degree of freedom in designing the guide light irradiation optical system 11.

 尚、前記照射レンズ12と前記分光板15との間に、更にミラーを設け、前記光軸13を複数回屈曲させる様にしても良い。 In addition, a mirror may be provided between the irradiation lens 12 and the spectrometer 15 to bend the optical axis 13 multiple times.

 又、第2の実施例に於いて、発色要素として、反射型液晶ディスプレイが用いられても良い。更に、液晶ディスプレイに点滅手段を付加し、形成した領域を部分的に点滅させ領域の識別性を高めても良い。 In the second embodiment, a reflective liquid crystal display may be used as the coloring element. Furthermore, a blinking means may be added to the liquid crystal display to partially blink the formed area, thereby enhancing the distinguishability of the area.

 更に又、分光板をデジタルマイクロミラーデバイス(DMD)とし、該デジタルマイクロミラーデバイスと発色要素とを組合わせ、デジタルマイクロミラーデバイスを領域形成手段と点滅手段として機能させ、デジタルマイクロミラーデバイスにより領域を形成すると共に該領域を点滅させ識別性を向上させても良い。 Furthermore, the spectrometer may be a digital micromirror device (DMD), and the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.

 図11(A)、図11(B)は第3の実施例を示している。図11(A)、図11(B)中、図2(A)、図2(B)中で示したものと同等のものには同符号を付しその説明を省略する。 FIGS. 11(A) and 11(B) show a third embodiment. In FIG. 11(A) and FIG. 11(B), the same reference numerals are used for the parts equivalent to those shown in FIG. 2(A) and FIG. 2(B), and the description thereof will be omitted.

 図11(A)中に於いて上側が上、下側が下を示している。上下が鉛直方向、紙面に対して垂直な方向が水平方向としている。又、図11(B)は、照射されるガイド光18の断面を示している。 In FIG. 11(A), the upper side indicates the top and the lower side indicates the bottom. The top and bottom are the vertical direction, and the direction perpendicular to the paper surface is the horizontal direction. FIG. 11(B) shows a cross section of the irradiated guide light 18.

 第3の実施例では、1つの光源14を用い、水平又は鉛直方向に広がり角を大きくする構成を示している。図11(A)、図11(B)では、水平方向に広がり角を大きくする場合を説明している。 The third embodiment shows a configuration in which one light source 14 is used to increase the spread angle in the horizontal or vertical direction. Figures 11(A) and 11(B) explain the case in which the spread angle is increased in the horizontal direction.

 前記光源14としては、広帯域の波長を有する光(例えば、白色光)を発する広帯域光源であり、広がり角の広いLEDが用いられる。 The light source 14 is a broadband light source that emits light having a wide band of wavelengths (e.g., white light), and an LED with a wide spread angle is used.

 照射レンズ27としては、アナモルフィックレンズが用いられる。前記照射レンズ27は、鉛直方向により強い集光作用を有する。 An anamorphic lens is used as the illumination lens 27. The illumination lens 27 has a stronger light-gathering effect in the vertical direction.

 前記光源14から発せられたガイド光18は、発色要素17が形成された分光板15を透過し、上下2色のガイド光18a、ガイド光18bに色付けされる。更に、前記ガイド光18は、前記照射レンズ27により鉛直方向により強く集光され、水平方向に長軸を有する楕円形の光束断面を有し、ガイド光18a、ガイド光18bによって水平方向に延在する境界18eが形成される。 The guide light 18 emitted from the light source 14 passes through the spectral plate 15 on which the color-emitting elements 17 are formed, and is colored into upper and lower two-color guide light 18a and guide light 18b. Furthermore, the guide light 18 is more strongly focused in the vertical direction by the irradiation lens 27, and has an elliptical beam cross section with its major axis in the horizontal direction, and a boundary 18e extending in the horizontal direction is formed by the guide light 18a and the guide light 18b.

 従って、上下2色のガイド光18a、ガイド光18b及び、前記境界18eによって水平方向に広い範囲でガイド光としての機能が発揮される。 Therefore, the upper and lower guide lights 18a and 18b of two colors, as well as the boundary 18e, function as guide lights over a wide horizontal range.

 上記した様に、上記実施例のガイド光照射装置に於いては、広帯域の光を発する広帯域光源を用い、分光板15により、ガイド光として必要な色付けを行うので、1つの光源14、1つの分光板15でよく、構成が著しく簡単になる。 As described above, the guide light irradiation device of the above embodiment uses a broadband light source that emits light in a broad band, and the necessary coloring of the guide light is performed by the spectral plate 15, so one light source 14 and one spectral plate 15 are sufficient, which significantly simplifies the configuration.

 図12(A)、図12(B)、図13は第4の実施例を示している。図12(A)は、前記ガイド光照射装置1の光学系の要部を示す概略図であり、平面図を示している。図12(A)中に於いて上側が左、下側が右を示している。又、図12(B)は、照射されるガイド光18の光束断面を示し、図13は第4の実施例で使用される発色要素17を示している。 Figures 12(A), 12(B) and 13 show the fourth embodiment. Figure 12(A) is a schematic diagram showing the main parts of the optical system of the guide light emitting device 1, showing a plan view. In Figure 12(A), the upper side indicates the left and the lower side indicates the right. Figure 12(B) shows a cross section of the light beam of the irradiated guide light 18, and Figure 13 shows the coloring element 17 used in the fourth embodiment.

 第4の実施例では、ガイド光18により左右(水平)方向に広範囲に境界24e′を形成する場合を示している。 The fourth embodiment shows a case in which the guide light 18 forms a boundary 24e' over a wide area in the left-right (horizontal) direction.

 分光板15の形状を横長の長矩形形状とし、短辺方向で領域を上下に2分割し、分割部分に異なる分光透過率を有する発色要素17を設けて領域24a,24bを形成する。該領域24a,24bによって長手方向(本実施例では水平方向)に延びる境界24e′が形成される。 The spectral plate 15 is shaped like a horizontally long rectangle, and the area is divided into two parts, upper and lower, along the short side. Color-producing elements 17 with different spectral transmittances are provided in the divided parts to form areas 24a and 24b. Areas 24a and 24b form a boundary 24e' that extends in the longitudinal direction (horizontal in this embodiment).

 前記分光板15に対向させて、3つの光源14a,14b,14cを配設する。該光源14a,14b,14cはそれぞれ広帯域の波長を有する光(例えば、白色光)を発する広帯域光源であり、広がり角αのLEDとなっている。 Three light sources 14a, 14b, and 14c are arranged facing the spectroscopic plate 15. Each of the light sources 14a, 14b, and 14c is a broadband light source that emits light having a broadband wavelength (e.g., white light) and is an LED with a spread angle α.

 前記光源14a,14b,14cの光軸25a,25b,25cは、前記境界24e′を含む同一水平面内に放射状に配置される。 The optical axes 25a, 25b, and 25c of the light sources 14a, 14b, and 14c are radially arranged within the same horizontal plane that includes the boundary 24e'.

 前記光源14aの光軸25aは、前記トータルステーション2の視準光軸と平行に設定される(図1参照)。又、前記光軸25bは前記光軸25aに対して例えば30°の角度で上方に傾斜し、前記光軸25cは、前記光軸25aに対して例えば30°の角度で下方に傾斜している。尚、前記傾斜角度は30°に限定されるものではなく、作業環境に応じて10°,20°等適宜設定されるものである。 The optical axis 25a of the light source 14a is set parallel to the collimation optical axis of the total station 2 (see FIG. 1). The optical axis 25b is inclined upward at an angle of, for example, 30° with respect to the optical axis 25a, and the optical axis 25c is inclined downward at an angle of, for example, 30° with respect to the optical axis 25a. The inclination angle is not limited to 30°, but is set appropriately to 10°, 20°, etc. depending on the work environment.

 前記光源14aに関し、該光源14aの前記光軸25a上に照射レンズ12aが配設され、前記発色要素17及び前記光源14aは、前記照射レンズ12aの焦点又は焦点近傍となる様に設定される。 With respect to the light source 14a, an irradiation lens 12a is disposed on the optical axis 25a of the light source 14a, and the color-producing element 17 and the light source 14a are set to be at or near the focal point of the irradiation lens 12a.

 同様に前記光源14b、光源14cについても、前記光軸25b、光軸25c上に照射レンズ12b、照射レンズ12cが配設され、前記発色要素17及び前記光源14b、前記光源14cは、前記照射レンズ12b,12cの焦点又は焦点近傍となる様にそれぞれ設定される。 Similarly, for the light source 14b and the light source 14c, the irradiation lens 12b and the irradiation lens 12c are arranged on the optical axis 25b and the optical axis 25c, and the color-producing element 17 and the light source 14b and the light source 14c are set to be at or near the focal points of the irradiation lenses 12b and 12c, respectively.

 前記光源14a,14b,14cを点灯すると、各光源14a,14b,14cから発せられた各光は前記発色要素17を透過し、前記領域24a、前記領域24bによりそれぞれ色付けされ、更に各光は、前記照射レンズ12a,12b,12cにより所要の広がり角に集光され、左右に色分けされたガイド光18a,18b,18cとして照射される。更に、該ガイド光18a,18b,18cは、集合されたガイド光18として照射される。 When the light sources 14a, 14b, and 14c are turned on, the light emitted from each of the light sources 14a, 14b, and 14c passes through the color-emitting element 17 and is colored by the area 24a and the area 24b, respectively. Furthermore, each light is focused to a required spread angle by the projection lenses 12a, 12b, and 12c, and is irradiated as guide lights 18a, 18b, and 18c that are color-coded on the left and right. Furthermore, the guide lights 18a, 18b, and 18c are irradiated as a collective guide light 18.

 前記光源14a,14b,14cの光軸が前記境界24e′を含む水平面内にあるので、前記境界24e′に対応する該ガイド光18a,18b,18cの色分けの境界は、水平に連続する。従って、前記ガイド光18は水平な境界24e′を境に上下で色の異なる光として照射される。又、前記ガイド光18は、左右方向に60°+αのガイド光の広がり角、鉛直方向には1つのガイド光の広がり角を有する。 Since the optical axes of the light sources 14a, 14b, and 14c are in a horizontal plane including the boundary 24e', the color boundary of the guide lights 18a, 18b, and 18c corresponding to the boundary 24e' is continuous horizontally. Therefore, the guide light 18 is irradiated as light of different colors above and below the horizontal boundary 24e'. In addition, the guide light 18 has a guide light spread angle of 60° + α in the left-right direction and a single guide light spread angle in the vertical direction.

 従って、第4の実施例では、水平方向に大きな広がり角を有する前記ガイド光18を照射することができる。更に、水平方向の広がり角は、複数の光源14を配設することで得られるので、前記ガイド光18の広がり角を大きくしたことによる光量、輝度の低下はない。従って、作業者による識別性を損うことがない。 Therefore, in the fourth embodiment, the guide light 18 can be emitted with a large horizontal spread angle. Furthermore, since the horizontal spread angle is obtained by arranging multiple light sources 14, there is no decrease in the light quantity or brightness due to the large spread angle of the guide light 18. Therefore, there is no loss of recognizability by the worker.

 更に、第4の実施例では、1つの前記分光板15に前記光源14a,14b,14cが近接して設けられ、更に前記光源14a,14b,14cが相互に近接して設けられるので、光源部が大型化することがない。 Furthermore, in the fourth embodiment, the light sources 14a, 14b, and 14c are provided close to one spectrometer plate 15, and the light sources 14a, 14b, and 14c are provided close to each other, so the light source unit does not become large.

 又、第4の実施例では、水平方向に広範囲でガイド光18を識別可能であるので、広範囲の測設作業で、測設作業者がガイド光を見失うことがない。又、水平方向に広範囲のガイド光18による水平基準が得られるので、複数の地点で同時に水平基準を確認することができる。又、屋内での建築作業に適用することで、内装作業の基準が得られる。 In addition, in the fourth embodiment, the guide light 18 can be identified over a wide horizontal range, so that the surveyor will not lose sight of the guide light during surveying and installation work over a wide area. Furthermore, since a horizontal reference can be obtained by the guide light 18 over a wide horizontal range, the horizontal reference can be confirmed at multiple points simultaneously. Furthermore, by applying this to indoor construction work, a reference can be obtained for interior work.

 尚、第4の実施例ではガイド光18の広がり角を左右方向(水平方向)で大きくする場合を説明したが、ガイド光18の広がり角を鉛直方向に大きくすることも可能である。 In the fourth embodiment, the spread angle of the guide light 18 is increased in the left-right direction (horizontal direction), but it is also possible to increase the spread angle of the guide light 18 in the vertical direction.

 更に、第4の実施例に於いても、発色要素として透過型液晶ディスプレイが用いられてもよく、透過型液晶ディスプレイが用いられる場合は、透過型液晶ディスプレイに領域を形成させると共に領域を選択的に点滅し、領域の識別性を高めても良い。 Furthermore, in the fourth embodiment, a transmissive liquid crystal display may be used as the color-producing element, and if a transmissive liquid crystal display is used, the transmissive liquid crystal display may be made to form areas and the areas may be selectively made to blink, thereby enhancing the distinguishability of the areas.

 更に発色要素として、異なる2つの分光特性を有するエレクトロクロミック材料を使用して、エレクトロクロミック材料を領域形成手段と点滅手段として機能させ、領域を形成すると共に領域の一方を点滅させる様にし、領域の識別性を高めても良い。 Furthermore, an electrochromic material having two different spectral characteristics may be used as a coloring element, and the electrochromic material may function as an area forming means and a blinking means, forming an area and blinking one of the areas, thereby enhancing the distinguishability of the areas.

 更に、点滅手段として分光板15の一方の領域に機械遮光シャッタを設け、周期的な遮光間隔による点滅で領域の識別性を高めても良い。 Furthermore, as a blinking means, a mechanical light-shielding shutter may be provided in one area of the spectrometer plate 15, and the blinking may be performed at periodic light-shielding intervals to enhance the distinguishability of the area.

 尚、前記光源14a,14b,14c、分光板15、照射レンズ12a,12b,12cを一体的に構成し、且つ水平軸心(即ち、前記光軸25a)を中心に回転可能に構成し、作業環境に対応し、ガイド光の広がり方向を選択可能としても良い。 The light sources 14a, 14b, and 14c, the spectrometer plate 15, and the illumination lenses 12a, 12b, and 12c may be integrally configured and rotatable about the horizontal axis (i.e., the optical axis 25a), making it possible to select the direction in which the guide light spreads depending on the working environment.

 尚、上記説明では光源14は3としたが、2であっても4であっても良い。更に、光源の光軸は隣接する光軸に対して所定の角度傾斜し、光軸間で相互に所定角度傾斜する様に設定される。 In the above explanation, the number of light sources 14 is 3, but it may be 2 or 4. Furthermore, the optical axis of the light source is inclined at a predetermined angle with respect to the adjacent optical axis, and the optical axes are inclined at a predetermined angle with respect to each other.

 尚、上記した実施例では、広帯域の光として可視光の白色光を例示し、光源として白色LEDを例示したが、広帯域の光として不可視光の光とし、不可視光LEDが用いられても良い。 In the above embodiment, visible white light is used as the broadband light, and a white LED is used as the light source, but invisible light may be used as the broadband light, and an invisible LED may be used.

 この場合、不可視光のガイド光を受光する受光器が用いられ、該受光器にはガイド表示部が設けられ、ガイド表示部にはガイド光の受光結果の表示、更に受光結果に基づき移動方向の指示が表示される様にしても良い。又、音声により測設作業者に移動方向を案内しても良い。 In this case, a light receiver is used that receives invisible guide light, and the light receiver is provided with a guide display unit that displays the results of receiving the guide light, and may also display instructions on the direction of movement based on the results of receiving the light. Also, the direction of movement may be guided to the survey worker by voice.

 更に、受光器にトータルステーション2との通信機能を設け、該トータルステーション2に受光状態を通信し、該トータルステーション2の表示部に作業者への案内を表示させても良い。尚、トータルステーション2での告知方法としては、トータルステーションのインジケータのLEDを点滅、連続発光で方向を測設作業者の移動方向を指示し、或はインジケータの色により測設作業者の移動方向を指示する様にしても良い。 Furthermore, the receiver may be provided with a communication function with the total station 2, and the light receiving state may be communicated to the total station 2, and instructions to the worker may be displayed on the display unit of the total station 2. As a notification method in the total station 2, the LED of the indicator of the total station may be made to flash or emit continuous light to indicate the direction in which the survey worker should move, or the color of the indicator may be used to indicate the direction in which the survey worker should move.

 更に、第4の実施例に於いても、図5~図9で示した前記発色要素17の分割の変形、色が漸次変化するグラデーションの形成等の前記発色要素17の変形については、適用可能であることは言う迄もない。 Furthermore, it goes without saying that the fourth embodiment can also be applied to the modifications of the color-producing elements 17 shown in Figures 5 to 9, such as the modification of the division of the color-producing elements 17 and the formation of a gradation in which the color gradually changes.

 図14は、高低差のある測設作業地で適用される第5の実施例に係るガイド光照射装置1の概要を示すための説明図である。 FIG. 14 is an explanatory diagram showing an overview of the guide light irradiation device 1 according to the fifth embodiment, which is applied to a survey work site with an elevation difference.

 前記ガイド光照射装置1はトータルステーション2の上面に取付けられ、前記ガイド光照射装置1の光軸は前記トータルステーション2の視準光軸と平行に設定されている。 The guide light irradiation device 1 is attached to the top surface of the total station 2, and the optical axis of the guide light irradiation device 1 is set parallel to the collimation optical axis of the total station 2.

 図14中、3はプリズム4が設けられたポールを示す。尚、図14では、該ポール3が測設点5に設置された状態を示している。 In Figure 14, 3 indicates a pole on which a prism 4 is attached. Figure 14 shows the pole 3 installed at a survey point 5.

 前記トータルステーション2は既知点に設置され、視準方向は測設点5に設定される。 The total station 2 is installed at a known point, and the sighting direction is set to the survey point 5.

 前記ガイド光照射装置1から前記ポール3に向け、ガイド光7が照射される。 The guide light 7 is emitted from the guide light emitting device 1 toward the pole 3.

 該ガイド光7は、上下に拡大され光束断面は鉛直方向に長軸を有する楕円面となっている。又、前記ガイド光7は該ガイド光7の光軸を境界として左右が異なる色に色付けされている。例えば、前記ガイド光照射装置1側から見て、前記ガイド光7の右側7aを青色光、左側7bを赤色光とする。図示では赤色光と青色光の境界を7eで示している。 The guide light 7 expands vertically, and the cross section of the light beam is an ellipsoid with its major axis in the vertical direction. The guide light 7 is colored in different colors on the left and right sides, with the optical axis of the guide light 7 as the boundary. For example, when viewed from the guide light irradiation device 1 side, the right side 7a of the guide light 7 is blue light, and the left side 7b is red light. In the illustration, the boundary between the red light and the blue light is indicated by 7e.

 測設作業時の測設作業者の誘導に於いて、測設作業者がガイド光7を青と認識した場合は、測設点5の位置より左側に居ると判断でき、作業者は右方向に移動することで測設点に誘導される(図15(A))。 When guiding a surveyor during survey work, if the surveyor recognizes the guide light 7 as blue, it can be determined that he is to the left of the survey point 5, and the worker is guided to the survey point by moving to the right (Figure 15 (A)).

 高低差がある測設作業地、例えば、地面に凹みがある場合では、作業者が凹みを移動すると、作業者は下方にも移動する。本実施例では、前記ガイド光7が上下に拡大しているので、作業者が下方に移動しても、作業者が前記ガイド光7の照射範囲から外れることなく、誘導が継続される(図15(B))。 In a survey work site with a difference in elevation, for example when there is a depression in the ground, when the worker moves across the depression, the worker also moves downward. In this embodiment, the guide light 7 expands both vertically, so even if the worker moves downward, the worker does not leave the irradiation range of the guide light 7 and guidance continues (Figure 15 (B)).

 図16(A)、図16(B)、図17を参照して第5の実施例を説明する。 The fifth embodiment will be described with reference to Figures 16(A), 16(B), and 17.

 図16(A)は、前記ガイド光照射装置1の光学系の要部を示す概略図である。尚、図16(A)は、光学系の立面図を示し、図中に於いて上側が上、下側が下、右側が前方を示している。 Fig. 16(A) is a schematic diagram showing the main parts of the optical system of the guide light irradiation device 1. Note that Fig. 16(A) shows an elevational view of the optical system, with the upper side in the figure indicating the top, the lower side indicating the bottom, and the right side indicating the front.

 図16(A)中、11はガイド光照射光学系を示している。該ガイド光照射光学系11は複数の光源14、該光源14の光軸13上に該光源14に対応する複数の照射レンズ12を有する。 In FIG. 16(A), 11 indicates a guide light irradiation optical system. The guide light irradiation optical system 11 has a plurality of light sources 14 and a plurality of irradiation lenses 12 corresponding to the light sources 14 on the optical axis 13 of the light sources 14.

 第5の実施例では3の光源14a,14b,14cを有し、及び該光源14a,14b,14cの光軸13a,13b,13c上にそれぞれ照射レンズ12a,12b,12cを設ける。又前記光源14a,14b,14cと前記照射レンズ12a,12b,12cとの間に前記光源14a,14b,14cに接近させて共通の分光板15を設ける。 In the fifth embodiment, three light sources 14a, 14b, and 14c are provided, and irradiation lenses 12a, 12b, and 12c are provided on the optical axes 13a, 13b, and 13c of the light sources 14a, 14b, and 14c, respectively. In addition, a common spectrometer 15 is provided between the light sources 14a, 14b, and 14c and the irradiation lenses 12a, 12b, and 12c, close to the light sources 14a, 14b, and 14c.

 又、前記光軸13a,13b,13cは、鉛直な同一平面上に位置する様に、前記光源14a,14b,14cが設けられ、更に、前記光源14b,14cは前記光軸13aに関して上下対称に配設される。更に、前記光軸13b,13cは前記光軸13aに対して所定の角度傾斜している。ここで、前記光軸13aは、視準光軸と平行に設定される。 The light sources 14a, 14b, and 14c are provided so that the optical axes 13a, 13b, and 13c are positioned on the same vertical plane, and the light sources 14b and 14c are arranged symmetrically above and below the optical axis 13a. Furthermore, the optical axes 13b and 13c are inclined at a predetermined angle with respect to the optical axis 13a. Here, the optical axis 13a is set parallel to the collimation optical axis.

 前記光軸13aに照射レンズ12aが設けられ、該照射レンズ12aの光軸は前記光軸13aと合致している。前記照射レンズ12aの焦点位置は、前記分光板15の位置又は前記光源14aの位置、或は前記分光板15の位置近傍又は前記光源14aの位置近傍となる様に設定される。尚、前記照射レンズ12aの焦点位置近傍とは、焦点位置を含むものとする。 An irradiation lens 12a is provided on the optical axis 13a, and the optical axis of the irradiation lens 12a coincides with the optical axis 13a. The focal position of the irradiation lens 12a is set to be at the position of the spectrometer 15 or the position of the light source 14a, or near the position of the spectrometer 15 or near the position of the light source 14a. Note that the vicinity of the focal position of the irradiation lens 12a includes the focal position.

 同様に、前記光軸13b,13cに照射レンズ12b,12cが設けられ、該照射レンズ12b,12cの光軸は前記光軸13b,13cとそれぞれ合致している。又、該照射レンズ12b,12cの各焦点位置は、前記分光板15の位置又は前記光源14b,14cの位置、或は前記分光板15の位置近傍又は前記光源14b,14cの位置近傍となる様に設定される。 Similarly, irradiation lenses 12b and 12c are provided on the optical axes 13b and 13c, and the optical axes of the irradiation lenses 12b and 12c coincide with the optical axes 13b and 13c, respectively. In addition, the focal positions of the irradiation lenses 12b and 12c are set to be at the position of the spectroscopic plate 15 or the position of the light sources 14b and 14c, or near the position of the spectroscopic plate 15 or near the position of the light sources 14b and 14c.

 図18は、第5の実施例に於ける照射レンズ、分光板、光源の基本構成を示しており、図16(A)に於ける前記光源14a部分に関する部分を抽出した平面図を示している。尚、前記光源14b,14cに関しては、前記光源14aと同様であるので説明を省略する。 FIG. 18 shows the basic configuration of the illumination lens, the spectroscopic plate, and the light source in the fifth embodiment, and shows a plan view of the portion related to the light source 14a in FIG. 16(A). Note that the light sources 14b and 14c are similar to the light source 14a, so a description thereof will be omitted.

 前記光源14aは、広帯域の波長を有する光を発する広帯域光源であり、例えば可視光の白色光を発するLEDである。 The light source 14a is a broadband light source that emits light having a wide band of wavelengths, for example an LED that emits visible white light.

 前記分光板15は、透明基板16の表面に発色要素17(17a,17b)が形成され(図17参照)、該発色要素17は前記光軸13aを通る境界17eの左右の領域17a,17bで異なる分光透過率を有する光学特性となっている。前記発色要素17としては、例えばダイクロイック膜が用いられる。又、前記境界17e、即ち、境界線は、前記光軸13a,13b,13cを含む鉛直平面上に位置する様に設定される。 The spectral plate 15 has color elements 17 (17a, 17b) formed on the surface of a transparent substrate 16 (see FIG. 17), and the color elements 17 have optical characteristics in which the regions 17a, 17b on the left and right of a boundary 17e passing through the optical axis 13a have different spectral transmittances. For example, a dichroic film is used as the color elements 17. Furthermore, the boundary 17e, i.e., the boundary line, is set so as to be located on a vertical plane including the optical axes 13a, 13b, and 13c.

 尚、前記領域17a,17bのいずれか一方、例えば、前記領域17bについてはダイクロイック膜を形成しない、或はARコートのみとするとしても良い。この場合、ガイド光は青色光と白色光の2色となる。 It is also possible to form no dichroic film on either one of the regions 17a and 17b, for example, on region 17b, or to form only an AR coating. In this case, the guide light will be two colors, blue light and white light.

 又、上記説明に於いて、図18では、前記発色要素17は前記分光板15の照射レンズ12a~12c側の面に設けられているが、前記分光板15の光源14a側の面に設けられても良い。 In the above explanation, in FIG. 18, the color-developing element 17 is provided on the surface of the spectroscopic plate 15 facing the illumination lenses 12a to 12c, but it may be provided on the surface of the spectroscopic plate 15 facing the light source 14a.

 前記発色要素17をダイクロイック膜として、例えば、右領域17aの分光透過波長を400nm~500nm(青色)とし、又、左領域17bの分光透過波長を650nm~750nm(赤色)とする。 The color-producing element 17 is a dichroic film, and for example, the spectral transmission wavelength of the right region 17a is 400 nm to 500 nm (blue), and the spectral transmission wavelength of the left region 17b is 650 nm to 750 nm (red).

 LEDの分光特性、領域17aのダイクロイック膜の透過率特性、ダイクロイック膜透過後のLEDの分光特性の関係は、図4で示した通りである。 The relationship between the spectral characteristics of the LED, the transmittance characteristics of the dichroic film in region 17a, and the spectral characteristics of the LED after passing through the dichroic film is as shown in Figure 4.

 尚、発色要素17としては、ダイクロイック膜に限定されるものではなく、種々変更が可能である。例えば、特定の波長を吸収する吸収膜とする、異なる色の色ガラスを用いる、或は蛍光体を塗布して波長を変える、EW素子とする、或はダイクロイック膜と蛍光体との組合わせであっても良い等である。 The color-producing element 17 is not limited to a dichroic film, and can be modified in various ways. For example, it can be an absorbing film that absorbs specific wavelengths, colored glass of a different color can be used, or a phosphor can be applied to change the wavelength, an EW element can be used, or a combination of a dichroic film and a phosphor can be used.

 更に、前記発色要素としては透過型液晶ディスプレイであっても良く、又識別性を高める為に点滅手段を設けても良い等は、上述した実施例と同様である。 Furthermore, the color-producing element may be a transmissive liquid crystal display, and a blinking means may be provided to enhance distinguishability, as in the above-mentioned embodiment.

 次に、前記光源14a,14b,14c及び前記分光板15の関係について説明する。 Next, the relationship between the light sources 14a, 14b, and 14c and the spectrometer 15 will be explained.

 上記した様に、前記光源14a,14b,14cは、その光軸が同一の鉛直平面に位置する様に配置され、更に、前記光源14b,14cは前記光軸13aに関して上下対称に配置され、前記光源14b,14cの前記光軸13b,13cは、前記光軸13aに対して上下にそれぞれ所定角度αで傾斜している。 As described above, the light sources 14a, 14b, and 14c are arranged so that their optical axes are located on the same vertical plane, and further, the light sources 14b and 14c are arranged symmetrically above and below the optical axis 13a, and the optical axes 13b and 13c of the light sources 14b and 14c are inclined at a predetermined angle α above and below the optical axis 13a.

 前記分光板15は鉛直方向に長矩形形状をしており、長手方向に延在する前記境界17eの左右に前記領域17a、前記領域17bを有する。 The spectrometer 15 has a rectangular shape that is elongated in the vertical direction, and has the region 17a and the region 17b on the left and right of the boundary 17e that extends in the longitudinal direction.

 前記光源14a,14b,14cは、前記分光板15に近接して設けられ、前記各光源14a,14b,14cから発せられる可視光の白色の光18a,18b,18cは、前記分光板15を透過してそれぞれ前記照射レンズ12a,12b,12cに入射する。 The light sources 14a, 14b, and 14c are disposed close to the spectrometer 15, and the white visible light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c passes through the spectrometer 15 and enters the illumination lenses 12a, 12b, and 12c, respectively.

 前記光18a,18b,18cは前記照射レンズ12a,12b,12cにより、それぞれ所定の広がり角βに集光され、前記光18a,18b,18cは集合され、境界18eを有するガイド光18として照射される。 The light beams 18a, 18b, and 18c are focused by the illumination lenses 12a, 12b, and 12c, respectively, at a predetermined spread angle β, and the light beams 18a, 18b, and 18c are collected and irradiated as guide light 18 having a boundary 18e.

 前記光軸13b、前記光軸13cは前記光軸13aに対して所定角度αで傾斜しているが、この傾斜角α及び前記広がり角βとの関係は、少なくとも前記光18aと前記光18b、及び前記光18aと前記光18cとがそれぞれ部分的にオーバラップし、前記ガイド光18として照射された場合に前記光18a,18b及び前記光18a,18cとの間に光束の不連続部分が生じない様に設定されている。 The optical axis 13b and the optical axis 13c are inclined at a predetermined angle α with respect to the optical axis 13a, and the relationship between this inclination angle α and the spread angle β is set so that at least the light 18a and the light 18b, and the light 18a and the light 18c overlap partially, respectively, and no discontinuous portions of the light beam are generated between the light 18a, 18b and the light 18a, 18c when irradiated as the guide light 18.

 第5の実施例での前記ガイド光18の広がり角は、鉛直方向で2×α+βとなり、水平方向でβとなる。又、前記分光板15の鉛直方向の長さ(上下方向の長さ)、水平方向の長さ(幅)は、前記光源14a,14b,14cから発せられる前記光18a,18b,18cが透過する長さとされる。 In the fifth embodiment, the spread angle of the guide light 18 is 2×α+β in the vertical direction and β in the horizontal direction. The vertical length (length in the up-down direction) and horizontal length (width) of the spectrometer 15 are the lengths through which the light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c pass.

 尚、前記傾斜角α、前記広がり角βは作業環境に対応して適宜決定される。又、上記実施例では光源の数を3としたが、3に限定されるものではなく、2であっても或は4以上でも良い。 The inclination angle α and the spread angle β are appropriately determined according to the working environment. Also, in the above embodiment, the number of light sources is three, but it is not limited to three, and may be two or four or more.

 本実施例では、上下方向に大きな広がり角を有する前記ガイド光18を照射することができる。更に、上下方向の広がり角は、複数の光源を配設することで得られるので、前記ガイド光18の広がり角を大きくしたことによる光量、輝度の低下は生じない。従って、作業者による識別性を損うことがない。 In this embodiment, the guide light 18 can be emitted with a large spread angle in the vertical direction. Furthermore, since the spread angle in the vertical direction is obtained by arranging multiple light sources, there is no decrease in the light quantity or brightness due to the large spread angle of the guide light 18. Therefore, there is no loss of recognizability by the worker.

 又、上記実施例では、前記ガイド光18を鉛直方向に拡大したが、水平方向に拡大する場合は、上記した構成を水平方向に90°回転し、前記光軸13a,13b,13c及び前記境界18eが同一の水平平面に含まれる構成とすれば良い。 In addition, in the above embodiment, the guide light 18 is expanded in the vertical direction, but if it is expanded in the horizontal direction, the above configuration can be rotated 90° horizontally so that the optical axes 13a, 13b, 13c and the boundary 18e are included in the same horizontal plane.

 即ち、前記光源14a,14b,14c、前記分光板15、及び前記照射レンズ12a,12b,12cを一体に90°回転させた構成とすれば良い。 In other words, the light sources 14a, 14b, and 14c, the spectrometer plate 15, and the irradiation lenses 12a, 12b, and 12c can be rotated 90° together.

 図19(A)、図19(B)は第6の実施例を示している。 Figures 19(A) and 19(B) show the sixth embodiment.

 第6の実施例では、光源14a,14b,14c及び照射レンズ12a,12b,12cの配置については第5の実施例と同様であるが、分光板15を小分光板15a,15b,15cに分割し、各小分光板15a,15b,15cを前記光源14a,14b,14cそれぞれに対応させた構成としている。前記小分光板15a,15b,15cの形状は矩形板、円板等の任意で良いが、本実施例では矩形板としている。 In the sixth embodiment, the arrangement of the light sources 14a, 14b, 14c and the illumination lenses 12a, 12b, 12c is the same as in the fifth embodiment, but the light splitter 15 is divided into small light splitters 15a, 15b, 15c, and each small light splitter 15a, 15b, 15c corresponds to the light sources 14a, 14b, 14c, respectively. The small light splitters 15a, 15b, 15c may have any shape, such as a rectangular plate or a circular plate, but in this embodiment they are rectangular plates.

 前記各小分光板15a,15b,15cはそれぞれ左右の領域に分割され、左の領域、右の領域には異なる分光特性の発色要素17(17a,17b)が形成される。又、前記小分光板15a,15b,15cはそれぞれが形成する境界線は、前記光源14a,14b,14cの光軸を含む鉛直平面に位置する様に設定される。 Each of the small light-splitting plates 15a, 15b, and 15c is divided into left and right regions, and color-producing elements 17 (17a, 17b) with different spectral characteristics are formed in the left and right regions. In addition, the boundaries formed by each of the small light-splitting plates 15a, 15b, and 15c are set to be located on a vertical plane that includes the optical axes of the light sources 14a, 14b, and 14c.

 前記小分光板15a,15b,15cを、前記光源14a,14b,14cに対応させる様に分割することで、前記小分光板15a,15b,15cは光18a,18b,18cの最も光束径の小さい部分が透過する大きさでよく、微小化が可能となる。 By dividing the small light-splitting plates 15a, 15b, and 15c to correspond to the light sources 14a, 14b, and 14c, the small light-splitting plates 15a, 15b, and 15c need only be large enough to transmit the smallest part of the light beam diameter of the light 18a, 18b, and 18c, making it possible to miniaturize them.

 又、前記光源14a、前記小分光板15a、前記照射レンズ12aをガイド光照射ユニット19aとして、ユニット化することで(前記光源14b,14c、前記小分光板15b,15c、前記照射レンズ12b,12cについても同様にガイド光照射ユニット19b,19cとしてユニット化する)、ガイド光照射光学系11の構成、配置の自由度が大きくなる。 In addition, by unitizing the light source 14a, the small light plate 15a, and the irradiation lens 12a into the guide light irradiation unit 19a (similarly unitizing the light sources 14b and 14c, the small light plates 15b and 15c, and the irradiation lenses 12b and 12c into the guide light irradiation units 19b and 19c), the degree of freedom in the configuration and arrangement of the guide light irradiation optical system 11 is increased.

 図19(B)に示される様に、第6の実施例に於いても、前記各光源14a,14b,14cから発せられる前記光18a,18b,18cは集合され、境界18eを有するガイド光18として照射される。 As shown in FIG. 19(B), in the sixth embodiment, the light 18a, 18b, and 18c emitted from the light sources 14a, 14b, and 14c are collected and irradiated as guide light 18 having a boundary 18e.

 図20(A)、図20(B)は第7の実施例のガイド光照射光学系11の要部を示している。図20(A)、図20(B)中、図19(A)、図19(B)中で示したものと同等のものには同符号を付しその説明を省略する。 FIGS. 20(A) and 20(B) show the main parts of the guide light irradiation optical system 11 of the seventh embodiment. In FIG. 20(A) and FIG. 20(B), the same reference numerals are used for the parts equivalent to those shown in FIG. 19(A) and FIG. 19(B), and the description thereof will be omitted.

 上記第5の実施例、第6の実施例ではガイド光18を分光板15に透過させ、光の色付けを行ったが、第7の実施例では分光板15を反射板とし、該分光板15で反射させることで色付けを行うものである。又、図20(A)では光源として2つの光源14a,14bを含む場合を示している。 In the fifth and sixth embodiments, the guide light 18 is transmitted through the spectral plate 15 to color the light, but in the seventh embodiment, the spectral plate 15 is a reflector, and coloring is performed by reflecting the light off the spectral plate 15. Also, FIG. 20(A) shows a case where two light sources 14a and 14b are included as light sources.

 該光源14a,14bは、ガイド光照射光学系11の光軸13に対して上下対称に設けられている。該光軸13は視準光軸と平行に設定される。 The light sources 14a and 14b are arranged symmetrically above and below the optical axis 13 of the guide light irradiation optical system 11. The optical axis 13 is set parallel to the collimation optical axis.

 前記光源14a,14bに対向してそれぞれ小反射板31a,31bが設けられ、該小反射板31a,31bの反射光軸32a,32b上にそれぞれ照射レンズ12a,12bが設けられている。前記小反射板31a,31bは前記分光板15を構成する。前記光源14a,14bの光軸、前記反射光軸32a,32bは同一鉛直平面内に位置する様に設定される。 Small reflectors 31a and 31b are provided facing the light sources 14a and 14b, respectively, and irradiation lenses 12a and 12b are provided on the reflected light axes 32a and 32b of the small reflectors 31a and 31b, respectively. The small reflectors 31a and 31b constitute the spectrometer 15. The optical axes of the light sources 14a and 14b and the reflected light axes 32a and 32b are set to be located in the same vertical plane.

 前記光源14a,14bそれぞれに関しては、同様の構成であるので、以下は前記光源14aについて説明する。 Since light sources 14a and 14b have the same configuration, the following will describe light source 14a.

 前記小反射板31aの反射面に発色要素17を形成する。 A coloring element 17 is formed on the reflective surface of the small reflector 31a.

 前記発色要素17(17a,17b)は、前記光軸13を通る境界18eの左右の領域17a,17bで異なる分光透過率を有する光学特性となっている(図4参照)。前記発色要素17としては、例えばダイクロイック膜が用いられる。 The coloring elements 17 (17a, 17b) have optical characteristics in which the regions 17a, 17b on the left and right of the boundary 18e passing through the optical axis 13 have different spectral transmittances (see FIG. 4). For example, a dichroic film is used as the coloring elements 17.

 尚、発色要素17としては、ダイクロイック膜に限定されるものではなく、例えば、特定の波長を吸収する吸収膜とする、或は蛍光体を塗布して波長を変える等であっても良い。 The color-producing element 17 is not limited to a dichroic film, but may be, for example, an absorbing film that absorbs a specific wavelength, or a phosphor coating that changes the wavelength.

 又、前記領域17a,17bのいずれか一方、例えば、前記領域17bについてはダイクロイック膜を形成しなくても良い。この場合、ガイド光は青色光と白色光の2色となる。 Furthermore, it is not necessary to form a dichroic film on either one of the regions 17a and 17b, for example, on the region 17b. In this case, the guide light will be two colors, blue light and white light.

 前記光源14aから発せられた白色光は前記発色要素17a,17bで反射されることで、色付けされ、境界18eを有するガイド光18aとして射出される。 The white light emitted from the light source 14a is colored by being reflected by the color-emitting elements 17a and 17b, and is emitted as guide light 18a having a boundary 18e.

 前記光源14bについても同様に、前記照射レンズ12bから境界18eを有するガイド光18bが射出され、上下の前記ガイド光18a,18bが集合されてガイド光18として照射される。 Similarly, for the light source 14b, guide light 18b having a boundary 18e is emitted from the irradiation lens 12b, and the upper and lower guide lights 18a and 18b are combined and irradiated as guide light 18.

 ここで、前記小反射板31a,31bにそれぞれ形成される発色要素17a,17bの境界17eは、前記光源14a,14bの光軸、前記反射光軸32a,32bを含む鉛直平面内に位置する様に配置される。従って、集合されたガイド光18に於いて、前記境界18eは前記光軸13を通過する鉛直な直線として現れる。 Here, the boundary 17e between the color-producing elements 17a, 17b formed on the small reflectors 31a, 31b, respectively, is arranged to be located within a vertical plane including the optical axes of the light sources 14a, 14b and the reflected optical axes 32a, 32b. Therefore, in the collected guide light 18, the boundary 18e appears as a vertical straight line passing through the optical axis 13.

 第7の実施例に於いても、前記光源14a、前記小反射板31a、前記照射レンズ12a及び前記光源14b、前記小反射板31b、前記照射レンズ12bをそれぞれユニット化し、ガイド光照射ユニット33a、ガイド光照射ユニット33bとしても良い。 In the seventh embodiment, the light source 14a, the small reflector 31a, the irradiation lens 12a, and the light source 14b, the small reflector 31b, and the irradiation lens 12b may be unitized as the guide light irradiation unit 33a and the guide light irradiation unit 33b, respectively.

 図21は、前記発色要素17の変形例を示している。尚、図21に於いて、図17で示したものと同等のものには同符号を付してある。 FIG. 21 shows a modified example of the color-producing element 17. In FIG. 21, the same reference numerals are used to designate the same parts as those shown in FIG. 17.

 該変形例では前記発色要素17を左右に2分割して得られる領域17a,17bに形成される発色要素に色、又は明度のグラデーションを設けている。 In this modified example, a gradation of color or brightness is provided to the color elements formed in areas 17a and 17b obtained by dividing the color element 17 into two parts, left and right.

 前記領域17aに関して、図中下端から上端に向って漸次色、明度が変化するグラデーションとし、前記領域17bについては、図中下端から上端に向って漸次色、明度が前記領域17aとは逆のグラデーションとしている。 Region 17a has a gradation where the color and brightness change gradually from the bottom to the top of the figure, while region 17b has a gradation where the color and brightness change gradually from the bottom to the top of the figure, the opposite to region 17a.

 尚、グラデーションを形成するには、ダイクロイック膜の膜厚に傾斜を持たせる等することで、実現することができる。 In addition, gradation can be achieved by, for example, giving a gradient to the thickness of the dichroic film.

 前記ガイド光18に色のグラデーションが形成されることで、測設作業者は色の認識で自分がどの方向に移動すれば良いかを感覚的に判断することができる。 The guide light 18 has a color gradation, allowing the surveyor to intuitively determine in which direction he or she should move by recognizing the color.

 尚、上記実施例に於いて、発色要素17としては、ダイクロイック膜に限定されるものではなく、例えば、特定の波長を吸収する吸収膜とする、或は蛍光体を塗布して波長を変える等であっても良い。 In the above embodiment, the color-producing element 17 is not limited to a dichroic film, but may be, for example, an absorbing film that absorbs a specific wavelength, or a phosphor coating that changes the wavelength.

 更に、第2の実施例と同様、発色要素として、反射型液晶ディスプレイが用いられても良い。更に、液晶ディスプレイに点滅手段を付加し、形成した領域を部分的に点滅させ領域の識別性を高めても良い。 Furthermore, as in the second embodiment, a reflective liquid crystal display may be used as the coloring element. Furthermore, a blinking means may be added to the liquid crystal display to partially blink the formed area, thereby enhancing the distinguishability of the area.

 更に又、分光板をデジタルマイクロミラーデバイス(DMD)とし、該デジタルマイクロミラーデバイスと発色要素とを組合わせ、デジタルマイクロミラーデバイスを領域形成手段と点滅手段として機能させ、デジタルマイクロミラーデバイスにより領域を形成すると共に該領域を点滅させ識別性を向上させても良い。 Furthermore, the spectrometer may be a digital micromirror device (DMD), and the digital micromirror device may be combined with a color-developing element to function as an area forming means and a blinking means, so that the digital micromirror device forms an area and causes the area to blink, improving identification.

 図22~図25に於いて、第8の実施例を説明する。尚、図22~図25に於いて、図19中に於いて示したものと同等のものには同符号を付している。 The eighth embodiment will be described with reference to Figs. 22 to 25. In Figs. 22 to 25, the same reference numerals are used for the parts that are the same as those shown in Fig. 19.

 第8の実施例では、複数の光源14a,14b,14c,14d,14eを立体的に配設した場合を示す。該光源14a,14b,14c,14d,14eは上記した実施例と同様広帯域の光(例えば、可視白色光)を発する。 The eighth embodiment shows a case where multiple light sources 14a, 14b, 14c, 14d, and 14e are arranged three-dimensionally. The light sources 14a, 14b, 14c, 14d, and 14e emit broadband light (for example, visible white light) as in the above-mentioned embodiments.

 図22は正面図、図23は図22のA矢視図、図24は図22のB矢視図を示している。 FIG. 22 is a front view, FIG. 23 is a view seen from the direction of arrow A in FIG. 22, and FIG. 24 is a view seen from the direction of arrow B in FIG. 22.

 光軸13aに光源14aを配設し、前記光軸13aを基準として上下、左右対称にそれぞれ光源14b,14c及び光源14d,14eを配設する。前記光軸13aは視準光軸と平行に設定され、該光軸13aは第8の実施例に於ける基準光軸とされる。 Light source 14a is arranged on optical axis 13a, and light sources 14b, 14c and light sources 14d, 14e are arranged symmetrically above, below and to the left and right of optical axis 13a. Optical axis 13a is set parallel to the collimation optical axis, and optical axis 13a is the reference optical axis in the eighth embodiment.

 前記光源14b,14c,14d,14eの各光軸13b,13c,13d,13eは前記光軸13aに関してそれぞれ拡大方向に所定の角度傾斜している。 The optical axes 13b, 13c, 13d, and 13e of the light sources 14b, 14c, 14d, and 14e are inclined at a predetermined angle in the expansion direction with respect to the optical axis 13a.

 又、前記光軸13a、前記光軸13b、前記光軸13cは鉛直な同一平面(鉛直平面)に含まれ、前記光軸13a、前記光軸13d、前記光軸13eは水平な同一平面(水平平面)に含まれる様構成される。 Furthermore, the optical axes 13a, 13b, and 13c are configured to be included in the same vertical plane (vertical plane), and the optical axes 13a, 13d, and 13e are configured to be included in the same horizontal plane (horizontal plane).

 先ず、前記光源14aに関して、前記光軸13a上に前記光源14a、小分光板15a、照射レンズ12aが配設され、該照射レンズ12aの焦点位置近傍に前記小分光板15a、前記光源14aが設けられる。尚、前記光源14a、前記小分光板15aのいずれか一方が、前記照射レンズ12aの焦点位置に設けられても良い。 First, regarding the light source 14a, the light source 14a, the small light plate 15a, and the irradiation lens 12a are arranged on the optical axis 13a, and the small light plate 15a and the light source 14a are provided near the focal position of the irradiation lens 12a. Note that either the light source 14a or the small light plate 15a may be provided at the focal position of the irradiation lens 12a.

 前記光源14a、前記小分光板15a、前記照射レンズ12aは、ガイド光照射ユニット19aを構成する。 The light source 14a, the small spectrometer 15a, and the irradiation lens 12a constitute the guide light irradiation unit 19a.

 前記光源14b,14c,14d,14eに関しても同様に、各光軸13b,13c,13d,13e上に小分光板15b,15c,15d,15e、照射レンズ12b,12c,12d,12eがそれぞれ設けられ、それぞれガイド光照射ユニット19b,19c,19d,19eが構成される。 Similarly, for the light sources 14b, 14c, 14d, and 14e, small light dividing plates 15b, 15c, 15d, and 15e and irradiation lenses 12b, 12c, 12d, and 12e are provided on the optical axes 13b, 13c, 13d, and 13e, respectively, to form guide light irradiation units 19b, 19c, 19d, and 19e, respectively.

 前記小分光板15a,15b,15c,15d,15eについて、図24を参照して説明する。前記小分光板15a,15b,15c,15d,15eの形状は矩形板、円板等の任意で良いが、本実施例では矩形板としている。 The small light-splitting plates 15a, 15b, 15c, 15d, and 15e will be described with reference to FIG. 24. The small light-splitting plates 15a, 15b, 15c, 15d, and 15e may have any shape, such as a rectangular plate or a circular plate, but in this embodiment, they are rectangular plates.

 前記光軸13a上の前記小分光板15aは、前記光軸13aを中心に上下左右に4等分されて領域35a,35b,35c,35dが形成され、各領域35a,35b,35c,35dにそれぞれ分光特性の異なる発色要素を形成する。例えば、発色要素として分光透過率の異なるダイクロイック膜を形成する。 The small light-splitting plate 15a on the optical axis 13a is divided into four equal parts, vertically and horizontally, around the optical axis 13a, to form regions 35a, 35b, 35c, and 35d, and color-producing elements with different spectral characteristics are formed in each of the regions 35a, 35b, 35c, and 35d. For example, dichroic films with different spectral transmittances are formed as the color-producing elements.

 前記光源14aから発せられたガイド光は、前記小分光板15aの各領域35a,35b,35c,35dを透過し、領域毎に4色に色付けされ、更に各領域の境界に垂直な境界線、水平な境界線を形成する。前記垂直な境界線は前記鉛直平面に含まれ、前記水平な境界線は前記水平平面に含まれる様に構成される。又、垂直な境界線、水平な境界線の交点は前記光軸13aに一致する。 The guide light emitted from the light source 14a passes through each of the areas 35a, 35b, 35c, and 35d of the small spectrometer 15a, and each area is colored in one of four colors. Furthermore, vertical and horizontal boundaries are formed at the boundaries of each area. The vertical boundaries are included in the vertical plane, and the horizontal boundaries are included in the horizontal plane. Furthermore, the intersection of the vertical and horizontal boundaries coincides with the optical axis 13a.

 前記光軸13b上の前記小分光板15bは、前記光軸13bを通る鉛直線を境界として左右に分割された領域36a,36bが形成され、各領域36a,36bに分光透過率の異なるダイクロイック膜が形成される。 The small spectrophotometer 15b on the optical axis 13b is divided into left and right regions 36a and 36b with a vertical line passing through the optical axis 13b as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 36a and 36b.

 ここで、前記領域36aに形成されるダイクロイック膜の分光透過率特性は、前記領域35aに形成されるダイクロイック膜の分光透過率特性と同一にする。又、前記領域36bに形成されるダイクロイック膜の分光透過率特性は、前記領域35bに形成されるダイクロイック膜の分光透過率特性と同一にする。 Here, the spectral transmittance characteristics of the dichroic film formed in the region 36a are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35a. Also, the spectral transmittance characteristics of the dichroic film formed in the region 36b are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35b.

 前記光源14bから発せられたガイド光は、前記小分光板15bの各領域36a,36bを透過し、領域毎に2色に色付けされる。前記領域36aを透過した光の色は、前記領域35aを透過した光の色と一致する。更に、前記領域36bを透過した光の色は、前記領域35bを透過した光の色と一致する。 The guide light emitted from the light source 14b passes through each of the areas 36a and 36b of the small light plate 15b, and is colored in two colors for each area. The color of the light that passes through the area 36a matches the color of the light that passes through the area 35a. Furthermore, the color of the light that passes through the area 36b matches the color of the light that passes through the area 35b.

 又、前記小分光板15bに於ける垂直な境界線は、前記小分光板15aによって形成される垂直な境界線と一致する。 In addition, the vertical boundary line of the small splitter plate 15b coincides with the vertical boundary line formed by the small splitter plate 15a.

 前記光軸13c上の前記小分光板15cには、前記光軸13cを通る鉛直線を境界として左右に分割された領域37c,37dが形成され、各領域37c,37dに分光透過率の異なるダイクロイック膜が形成される。 The small splitter plate 15c on the optical axis 13c is divided into left and right regions 37c and 37d by a vertical line passing through the optical axis 13c, and dichroic films with different spectral transmittances are formed in the regions 37c and 37d.

 前記領域37cに形成されるダイクロイック膜の分光透過率特性は、前記領域35cに形成されるダイクロイック膜の分光透過率特性と同一にする。又、前記領域37dに形成されるダイクロイック膜の分光透過率特性は、前記領域35dに形成されるダイクロイック膜の分光透過率特性と同一にする。 The spectral transmittance characteristics of the dichroic film formed in the region 37c are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35c. Also, the spectral transmittance characteristics of the dichroic film formed in the region 37d are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35d.

 前記光源14cから発せられたガイド光は、前記小分光板15cの各領域37c,37dを透過し、領域毎に2色に色付けされる。前記領域37cを透過した光の色は、前記領域35cを透過した光の色と一致する。更に、前記領域37dを透過した光の色は、前記領域35dを透過した光の色と一致する。 The guide light emitted from the light source 14c passes through each of the areas 37c and 37d of the small light plate 15c, and is colored in two colors for each area. The color of the light that passes through the area 37c matches the color of the light that passes through the area 35c. Furthermore, the color of the light that passes through the area 37d matches the color of the light that passes through the area 35d.

 又、前記小分光板15cで形成される垂直な境界線は、前記小分光板15aによって形成される垂直な境界線と一致する。 In addition, the vertical boundary line formed by the small light-splitting plate 15c coincides with the vertical boundary line formed by the small light-splitting plate 15a.

 前記光軸13d上の前記小分光板15dは、前記光軸13dを通る水平線を境界として上下に分割された領域38b,38cが形成され、各領域38b,38cに分光透過率の異なるダイクロイック膜が形成される。 The small spectrophotometer 15d on the optical axis 13d is divided into upper and lower regions 38b and 38c with a horizontal line passing through the optical axis 13d as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 38b and 38c.

 前記領域38bに形成されるダイクロイック膜の分光透過率特性は、前記領域35bに形成されるダイクロイック膜の分光透過率特性と同一にする。又、前記領域38cに形成されるダイクロイック膜の分光透過率特性は、前記領域35cに形成されるダイクロイック膜の分光透過率特性と同一にする。 The spectral transmittance characteristics of the dichroic film formed in the region 38b are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35b. Also, the spectral transmittance characteristics of the dichroic film formed in the region 38c are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35c.

 前記光源14dから発せられたガイド光は、前記小分光板15dの各領域38b,38cを透過し、領域毎に2色に色付けされる。前記領域38bを透過した光の色は、前記領域35bを透過した光の色と一致する。更に、前記領域38cを透過した光の色は、前記領域35cを透過した光の色と一致する。 The guide light emitted from the light source 14d passes through each of the areas 38b and 38c of the small light plate 15d, and is colored in two colors for each area. The color of the light that passes through the area 38b matches the color of the light that passes through the area 35b. Furthermore, the color of the light that passes through the area 38c matches the color of the light that passes through the area 35c.

 又、前記小分光板15dで形成される水平な境界線は、前記小分光板15aによって形成される水平な境界線と一致する。 In addition, the horizontal boundary line formed by the small splitter plate 15d coincides with the horizontal boundary line formed by the small splitter plate 15a.

 前記光軸13e上の前記小分光板15eは、前記光軸13eを通る水平線を境界として上下に分割された領域39a,39dが形成され、各領域39a,39dに分光透過率の異なるダイクロイック膜が形成される。 The small spectrophotometer 15e on the optical axis 13e is divided into upper and lower regions 39a and 39d with a horizontal line passing through the optical axis 13e as the boundary, and dichroic films with different spectral transmittances are formed in each of the regions 39a and 39d.

 前記領域39aに形成されるダイクロイック膜の分光透過率特性は、前記領域35aに形成されるダイクロイック膜の分光透過率特性と同一にする。又、前記領域39dに形成されるダイクロイック膜の分光透過率特性は、前記領域35dに形成されるダイクロイック膜の分光透過率特性と同一にする。 The spectral transmittance characteristics of the dichroic film formed in the region 39a are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35a. Also, the spectral transmittance characteristics of the dichroic film formed in the region 39d are made the same as the spectral transmittance characteristics of the dichroic film formed in the region 35d.

 前記光源14eから発せられたガイド光は、前記小分光板15eの各領域39a,39dを透過し、領域毎に2色に色付けされる。前記領域39aを透過した光の色は、前記領域35aを透過した光の色と一致する。更に、前記領域39dを透過した光の色は、前記領域35dを透過した光の色と一致する。 The guide light emitted from the light source 14e passes through each of the areas 39a and 39d of the small light plate 15e, and is colored in two colors for each area. The color of the light that passes through the area 39a matches the color of the light that passes through the area 35a. Furthermore, the color of the light that passes through the area 39d matches the color of the light that passes through the area 35d.

 又、前記小分光板15eで形成される水平な境界線は、前記小分光板15aによって形成される水平な境界線と一致する。 In addition, the horizontal boundary line formed by the small splitter plate 15e coincides with the horizontal boundary line formed by the small splitter plate 15a.

 前記ガイド光照射ユニット19b,19c,19d,19eから射出されたガイド光は集合され、集合ガイド光41として前記ガイド光照射光学系11から照射される。該集合ガイド光41の集合状態が図25に示される。 The guide light emitted from the guide light irradiation units 19b, 19c, 19d, and 19e is collected and irradiated from the guide light irradiation optical system 11 as a collected guide light 41. The collected state of the collected guide light 41 is shown in FIG. 25.

 該集合ガイド光41では、鉛直な境界41a及び水平な境界41bが形成され、前記境界41aと前記境界41bとの交点が、前記光軸13aに一致する。尚、該光軸13aは視準光軸と平行である。 In the collective guide light 41, a vertical boundary 41a and a horizontal boundary 41b are formed, and the intersection of the boundary 41a and the boundary 41b coincides with the optical axis 13a. The optical axis 13a is parallel to the collimation optical axis.

 前記境界41aと前記境界41bによって区画される4の領域を、第1象限42a、第2象限42b、第3象限42c、第4象限42dとすると、前記第1象限42aは、前記領域35a、前記領域36a、前記領域39aによって色付けされた光である。又、前記第2象限42bは、前記領域35b、前記領域36b、前記領域38bによって色付けされた光である。又、前記第3象限42cは、前記領域35c、前記領域37c、前記領域38cによって色付けされた光である。更に、前記第4象限42dは、前記領域35d、前記領域37d、前記領域39dによって色付けされた光となる。 If the four regions defined by the boundary 41a and the boundary 41b are the first quadrant 42a, the second quadrant 42b, the third quadrant 42c, and the fourth quadrant 42d, the first quadrant 42a is light colored by the regions 35a, 36a, and 39a. The second quadrant 42b is light colored by the regions 35b, 36b, and 38b. The third quadrant 42c is light colored by the regions 35c, 37c, and 38c. The fourth quadrant 42d is light colored by the regions 35d, 37d, and 39d.

 前記第1象限42a、前記第2象限42b、前記第3象限42c、前記第4象限42dはそれぞれ色が異なることから、前記境界41a、前記境界41bは明確に認識でき、更に測設作業者は、前記集合ガイド光41の色認識で、どの象限にいるかを認識でき、移動方向を判別することができる。 The first quadrant 42a, the second quadrant 42b, the third quadrant 42c, and the fourth quadrant 42d are each a different color, so the boundaries 41a and 41b can be clearly identified, and the survey worker can recognize which quadrant he is in by recognizing the color of the collective guide light 41, and can determine the direction of movement.

 更に、前記集合ガイド光41の色の変化を認識することで、前記境界41a、前記境界41bを認識でき、前記光軸13aへの移動方向を認識できる。 Furthermore, by recognizing the change in color of the collective guide light 41, the boundaries 41a and 41b can be recognized, and the direction of movement toward the optical axis 13a can be recognized.

 第8の実施例によれば、広範囲で前記集合ガイド光41を認識でき、色の判別で水平方向、鉛直方向についての移動方向も認識できる。又、前記集合ガイド光41は複数の光源14からの光で形成されるので、広範囲の照射でも光量、輝度の低下が抑止され、測設作業者による識別性を損うことがない。 According to the eighth embodiment, the collective guide light 41 can be recognized over a wide range, and the horizontal and vertical movement directions can be recognized by distinguishing the colors. Furthermore, since the collective guide light 41 is formed by light from multiple light sources 14, a decrease in the amount of light and brightness is suppressed even when irradiated over a wide range, and the recognition ability of the surveyor is not impaired.

 更に、第8の実施例に於いても、移動方向が分る様に、小分光板15b,15c,15d,15eを透過した光がグラデーションを形成する様構成しても良い。 Furthermore, in the eighth embodiment, the light transmitted through the small light plates 15b, 15c, 15d, and 15e may be configured to form a gradation so that the direction of movement can be determined.

 又、第8の実施例に於ける、小分光板15a~小分光板15eをそれぞれ、第7の実施例で示した、反射板の分光板としても良いことは言う迄もない。 It goes without saying that the small light dividing plates 15a to 15e in the eighth embodiment can each be the reflector light dividing plates shown in the seventh embodiment.

 更に、第8の実施例に於いても、発色要素については、上記した実施例と同様種々変更が可能であることは言う迄もない。 Furthermore, it goes without saying that in the eighth embodiment, the coloring elements can be modified in various ways, just as in the above embodiments.

    1       ガイド光照射装置
    2       トータルステーション
    3       ポール
    11      ガイド光照射光学系
    12      照射レンズ
    13      光軸
    14      光源
    15      分光板
    17      発色要素
    18      ガイド光
    27      照射レンズ
    29      反射板
    41      集合ガイド光
REFERENCE SIGNS LIST 1 Guide light irradiation device 2 Total station 3 Pole 11 Guide light irradiation optical system 12 Irradiation lens 13 Optical axis 14 Light source 15 Spectroscopic plate 17 Coloring element 18 Guide light 27 Irradiation lens 29 Reflector 41 Collective guide light

Claims (21)

 測設作業者に方向を示す為のガイド光を照射するガイド光照射装置であって、該ガイド光照射装置の光学系が照射レンズ、分光板、光源を含み、該光源は、広帯域の光を発する広帯域光源であり、前記分光板に発色要素が設けられ、該発色要素は分光特性が異なる少なくとも2つの領域を有し、前記分光板、前記光源の一方は前記照射レンズの焦点位置、或は焦点位置近傍に位置する様に、又他方は前記照射レンズの焦点位置近傍、或は焦点位置に位置する様に構成され、前記広帯域光源から発せられる光は前記領域によって色付けされ、少なくとも2色の光を含むガイド光として前記照射レンズから照射される様構成されたガイド光照射装置。 A guide light irradiation device that irradiates guide light to indicate directions to surveying workers, the optical system of the guide light irradiation device includes an irradiation lens, a spectral plate, and a light source, the light source is a broadband light source that emits light in a broadband, a coloring element is provided on the spectral plate, the coloring element has at least two regions with different spectral characteristics, one of the spectral plate and the light source is configured to be located at or near the focal position of the irradiation lens, and the other is configured to be located near or at the focal position of the irradiation lens, the light emitted from the broadband light source is colored by the region, and the guide light irradiation device is configured to be irradiated from the irradiation lens as guide light containing at least two colors of light.  前記ガイド光照射光学系が複数の光源を含み、前記複数の光源の光軸は、鉛直又は水平な同一平面内に配設され、前記各光軸上に前記光源に対応してそれぞれ前記照射レンズが設けられ、該照射レンズと前記光源との間に前記分光板が設けられ、前記領域の境界は前記平面内に含まれ、前記複数の光源から発せられる光は該領域によって色付けされて、前記照射レンズより照射されて集合され、少なくとも2色の光を含むガイド光として照射される様構成された請求項1のガイド光照射装置。 The guide light irradiation device of claim 1, wherein the guide light irradiation optical system includes a plurality of light sources, the optical axes of the plurality of light sources are arranged in the same vertical or horizontal plane, the irradiation lens is provided on each of the optical axes in correspondence with the light source, the spectroscopic plate is provided between the irradiation lens and the light source, the boundary of the region is included in the plane, and the light emitted from the plurality of light sources is colored by the region, irradiated by the irradiation lens, and collected to be irradiated as guide light including at least two colors of light.  前記光源は、可視光の白色光を発する白色LEDである請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, wherein the light source is a white LED that emits visible white light.  前記光源は、不可視光の近赤外光を発するLEDである請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, wherein the light source is an LED that emits invisible near-infrared light.  前記分光板は、透明基板に前記発色要素が形成された請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, in which the color-developing elements are formed on a transparent substrate.  前記分光板は、反射板の反射面に前記発色要素が形成された請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, in which the coloring elements are formed on the reflecting surface of the reflector.  前記分光板が点滅手段を有し、前記領域の少なくとも1つを点滅可能とした請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, wherein the spectrometer has a blinking means and at least one of the regions can be made to blink.  前記分光板は、光透過性を有する液晶板を含み、該液晶板が分光特性が異なる少なくとも2つの領域を形成する発色要素である請求項1又は請求項2のガイド光照射装置。 The guide light irradiation device of claim 1 or claim 2, wherein the spectroscopic plate includes a liquid crystal plate having optical transparency, and the liquid crystal plate is a coloring element that forms at least two regions with different spectroscopic characteristics.  前記液晶板が、前記領域の少なくとも1つを点滅可能に構成された請求項7のガイド光照射装置。 The guide light irradiation device of claim 7, wherein the liquid crystal plate is configured to be able to blink at least one of the regions.  前記発色要素は、上下又は左右に複数に分割され複数の領域を有する請求項1のガイド光照射装置。 The guide light irradiation device of claim 1, wherein the color-producing element is divided into multiple areas vertically or horizontally.  前記発色要素は、更に左右又は上下に2分割され、複数の領域を有する請求項6のガイド光照射装置。 The guide light irradiation device of claim 6, wherein the color-producing element is further divided into two parts, left and right or top and bottom, and has multiple regions.  前記発色要素は上下に2分割され、各分割部分は複数の領域を有し、前記点滅手段は、上下一方の分割部分を点滅する様構成された請求項7のガイド光照射装置。 The guide light irradiation device of claim 7, wherein the color-producing element is divided into two parts, an upper part and an lower part, each part having a plurality of regions, and the blinking means is configured to blink one of the upper and lower parts.  前記発色要素は、一端から他端に向って漸次色が変化するグラデーションとなっている請求項1のガイド光照射装置。 The guide light irradiation device of claim 1, wherein the color-producing elements have a gradation in which the color changes gradually from one end to the other end.  前記透明基板は、長矩形形状とし、短辺方向で領域を2分割し、分割部分に異なる分光透過率を有する発色要素を設けて2つの領域を形成し、該2つの領域によって透明基板の長手方向に延在する境界が形成され、該境界を含む平面内に複数の前記光源を設け、該光源の光軸相互を所定角度に傾斜させた請求項5のガイド光照射装置。 The guide light irradiation device of claim 5, in which the transparent substrate is rectangular and divided into two regions along the short side, and coloring elements having different spectral transmittances are provided in the divided portions to form two regions, and a boundary extending in the longitudinal direction of the transparent substrate is formed by the two regions, and a plurality of the light sources are provided within a plane including the boundary, and the optical axes of the light sources are inclined at a predetermined angle to each other.  前記照射レンズをアナモルフィックレンズとした請求項1のガイド光照射装置。 The guide light irradiation device of claim 1, wherein the irradiation lens is an anamorphic lens.  前記分光板は、複数の前記光源からの光が透過する長矩形形状とし、短辺方向で領域を2分割し、分割部分に異なる分光特性を有する発色要素を設けて2つの領域を形成し、該2つの領域によって透明基板の長手方向に延在する境界が形成され、該境界が前記平面内に含まれる様に構成される請求項2のガイド光照射装置。 The guide light irradiation device of claim 2, in which the spectral plate has an elongated rectangular shape through which light from the multiple light sources passes, the region is divided into two along the short side direction, and color-producing elements with different spectral characteristics are provided in the divided portion to form two regions, and the two regions form a boundary extending in the longitudinal direction of the transparent substrate, and the boundary is configured to be included within the plane.  前記分光板は、複数の前記光源の光軸上に該光源に対応させて設けられた小分光板からなり、該小分光板に少なくとも2つの領域を形成し、各領域に異なる分光透過率を有する発色要素を設け、前記領域の境界が前記平面に含まれる様構成した請求項2のガイド光照射装置。 The guide light irradiation device of claim 2, in which the spectroscopic plate is made up of small spectroscopic plates arranged on the optical axes of the plurality of light sources in correspondence with the light sources, at least two regions are formed on the small spectroscopic plates, and coloring elements having different spectral transmittances are provided in each region, and the boundaries of the regions are configured to be included in the plane.  前記光源の光軸相互を照射する光が拡大する方向に所定角度に傾斜させた請求項2のガイド光照射装置。 The guide light irradiation device of claim 2, in which the optical axes of the light sources are inclined at a predetermined angle in the direction in which the irradiated light expands.  前記光源の光軸上に配設された前記照射レンズ、小分光板、及び前記光源により、ガイド光照射ユニットが構成され、前記ガイド光照射光学系は、複数のガイド光照射ユニットから成り、1つのガイド光照射ユニットは視準方向と平行な基準光軸を有し、他のガイド光照射ユニットの光軸は前記基準光軸に対して照射する光が拡大する方向に所定角度に傾斜する様設けられた請求項2のガイド光照射装置。 The guide light irradiation device of claim 2, in which the guide light irradiation unit is constituted by the irradiation lens, the small spectrometer, and the light source arranged on the optical axis of the light source, and the guide light irradiation optical system is composed of a plurality of guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, and the optical axes of the other guide light irradiation units are inclined at a predetermined angle with respect to the reference optical axis in the direction in which the irradiated light expands.  前記光源の光軸上に配設された前記照射レンズ、小分光板、及び前記光源により、ガイド光照射ユニットが構成され、前記ガイド光照射光学系は、5つのガイド光照射ユニットから成り、1つのガイド光照射ユニットは視準方向と平行な基準光軸を有し、該基準光軸を含む鉛直平面内に該基準光軸に関し上下対称に2つのガイド光照射ユニットが設けられ、前記基準光軸を含む水平平面内に該基準光軸に関し左右対称に2つのガイド光照射ユニットが設けられ、前記5つのガイド光照射ユニットから射出された光の集合でガイド光が形成され、該ガイド光に前記鉛直平面に含まれる境界及び前記水平平面に含まれる境界が形成される様、前記小分光板のそれぞれを領域分けし、該領域に発色要素を形成した請求項2のガイド光照射装置。 The guide light irradiation device of claim 2, in which a guide light irradiation unit is formed by the irradiation lens, the small light plate, and the light source arranged on the optical axis of the light source, the guide light irradiation optical system is composed of five guide light irradiation units, one guide light irradiation unit has a reference optical axis parallel to the collimation direction, two guide light irradiation units are provided in a vertical plane including the reference optical axis and are symmetrical from top to bottom with respect to the reference optical axis, and two guide light irradiation units are provided in a horizontal plane including the reference optical axis and are symmetrical from left to right with respect to the reference optical axis, the guide light is formed by a collection of light emitted from the five guide light irradiation units, each of the small light plates is divided into regions and coloring elements are formed in the regions so that the guide light has a boundary included in the vertical plane and a boundary included in the horizontal plane.  前記分光板が点滅手段を有し、前記領域の少なくとも1つを点滅可能とした請求項16、請求項17、請求項19又は請求項20のうちいずれか1項のガイド光照射装置。 The guide light irradiation device according to any one of claims 16, 17, 19, and 20, in which the spectroscopic plate has a blinking means and at least one of the regions can be made to blink.
PCT/JP2024/021561 2023-06-23 2024-06-13 Guide light beaming device WO2024262414A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023103135A JP2025002787A (en) 2023-06-23 2023-06-23 Guide light irradiation device
JP2023-103135 2023-06-23
JP2023104232A JP2025004506A (en) 2023-06-26 2023-06-26 Guide light irradiation device
JP2023-104232 2023-06-26

Publications (1)

Publication Number Publication Date
WO2024262414A1 true WO2024262414A1 (en) 2024-12-26

Family

ID=93935328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/021561 WO2024262414A1 (en) 2023-06-23 2024-06-13 Guide light beaming device

Country Status (1)

Country Link
WO (1) WO2024262414A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573514U (en) * 1992-03-10 1993-10-08 株式会社ソキア Track light device for reflector installation
JPH08159769A (en) * 1994-12-09 1996-06-21 Topcon Corp Surveying instrument
JPH08219765A (en) * 1995-02-15 1996-08-30 Asahi Optical Co Ltd Point setting light irradiation device
JP2004138382A (en) * 2002-08-21 2004-05-13 Pentax Precision Co Ltd Pointing device
US20140375796A1 (en) * 2011-10-10 2014-12-25 Fb Technology Measuring Apparatus for Checking an Approach Path Indicator for the Landing of an Aircraft, and Corresponding Checking Device
JP2015040831A (en) * 2013-08-23 2015-03-02 株式会社トプコン Surveyor and surveying work system
JP2018508010A (en) * 2014-12-09 2018-03-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector
JP2021032818A (en) * 2019-08-28 2021-03-01 株式会社トプコン Surveying machine equipped with guide light irradiation unit
JP2022081918A (en) * 2020-11-20 2022-06-01 株式会社ディスコ Measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573514U (en) * 1992-03-10 1993-10-08 株式会社ソキア Track light device for reflector installation
JPH08159769A (en) * 1994-12-09 1996-06-21 Topcon Corp Surveying instrument
JPH08219765A (en) * 1995-02-15 1996-08-30 Asahi Optical Co Ltd Point setting light irradiation device
JP2004138382A (en) * 2002-08-21 2004-05-13 Pentax Precision Co Ltd Pointing device
US20140375796A1 (en) * 2011-10-10 2014-12-25 Fb Technology Measuring Apparatus for Checking an Approach Path Indicator for the Landing of an Aircraft, and Corresponding Checking Device
JP2015040831A (en) * 2013-08-23 2015-03-02 株式会社トプコン Surveyor and surveying work system
JP2018508010A (en) * 2014-12-09 2018-03-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Optical detector
JP2021032818A (en) * 2019-08-28 2021-03-01 株式会社トプコン Surveying machine equipped with guide light irradiation unit
JP2022081918A (en) * 2020-11-20 2022-06-01 株式会社ディスコ Measuring device

Similar Documents

Publication Publication Date Title
KR101848186B1 (en) Head-up display device
JP4446850B2 (en) Surveying instrument target
JP7151190B2 (en) vehicle lamp
WO2015198527A1 (en) Lighting device and lighting method
KR101741938B1 (en) Head-up display device
US20160048017A1 (en) Headup display device
US20170160543A1 (en) Scanning projector transmissive screen, and scanning projector system
CN108700747B (en) Head-up display device
JP7355013B2 (en) Display device and head-up display device
US10851960B2 (en) Vehicular lighting fixture
JP2015133304A (en) Illumination lens, illumination unit, and head-up display device
US20160004081A1 (en) Headup display device
JP2008209665A (en) Head-up display device
CN109690178A (en) Illumination and/or signal indicating device particularly for motor vehicles
WO2024262414A1 (en) Guide light beaming device
JP2000056254A (en) Information display device
JP2025002787A (en) Guide light irradiation device
JP2025004506A (en) Guide light irradiation device
JP7178312B2 (en) Guide light irradiation device
KR101839207B1 (en) Condensing lens for light source module and light source using the same
JP7373984B2 (en) image display device
TW202238216A (en) Head up display system
WO2024262413A1 (en) Guide light irradiation device
JP2014215481A (en) Head-up display device
US6041186A (en) Finder system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24825817

Country of ref document: EP

Kind code of ref document: A1