[go: up one dir, main page]

WO2024262203A1 - Ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program - Google Patents

Ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program Download PDF

Info

Publication number
WO2024262203A1
WO2024262203A1 PCT/JP2024/017995 JP2024017995W WO2024262203A1 WO 2024262203 A1 WO2024262203 A1 WO 2024262203A1 JP 2024017995 W JP2024017995 W JP 2024017995W WO 2024262203 A1 WO2024262203 A1 WO 2024262203A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ground
creating
composite image
grayscale
Prior art date
Application number
PCT/JP2024/017995
Other languages
French (fr)
Japanese (ja)
Inventor
千夏 米澤
瑚春 岡田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2024262203A1 publication Critical patent/WO2024262203A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction

Definitions

  • a method has been proposed in which a DSM image of a target area and a DSM image of a target object such as a plant are obtained, and then a target object is detected from the DSM using artificial intelligence (see, for example, Patent Document 1); a method has been proposed in which a slope map and a curvature map are obtained based on the DSM, and these are combined with an orthoimage to generate a composite image that is more three-dimensional and has higher visibility than an orthoimage (see, for example, Patent Document 2); a method has been proposed in which a distribution of a second type of plant is extracted from a DSM of a field having a first type of plant and a second type of plant according to the difference in plant height (see, for example, Patent Document 3); and a method has been proposed in which, for a target area including a forest, feature values are extracted
  • Patent Document 1 uses only DSM image information and does not use orthoimages, which results in poor detection efficiency for target objects.
  • the method described in Patent Document 2 generates a three-dimensional, highly visible composite image that is effective for grasping topography, but has the problem that it is difficult to grasp the utilization status of the ground surface, such as vegetation.
  • the method described in Patent Document 3 is for farm fields with only two types of plants, and has the problem that it is difficult to grasp the utilization status of target areas other than farm fields, such as rural areas.
  • the method described in Patent Document 4 allows for various settings for the feature amounts to be extracted, but has the problem that the procedures and formulas for determining the pixel values of the color image are complicated.
  • the present invention was made with a focus on these problems, and aims to provide a method for creating a composite image of the ground surface, a system for creating a composite image of the ground surface, and a program for creating a composite image of the ground surface that can relatively easily grasp the utilization status of the ground surface, such as vegetation, using height information.
  • the method for creating a composite image of the earth's surface is characterized by having an image acquisition step of acquiring an orthoimage of a target area and a digital surface model (DSM; Digital Surface Model), a ground height image creation step of creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired in the image acquisition step, a pixel extraction step of extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created in the ground height image creation step, a grayscale image creation step of creating a grayscale image in which the grayscale value of each pixel extracted in the pixel extraction step is set based on the corresponding ground height or set to a constant value, and a composite image creation step of creating a composite image by superimposing the grayscale image created in the grayscale image creation step on the orthoimage.
  • DSM Digital Surface Model
  • the earth surface composite image creation system of the present invention is characterized by having an image acquisition means for acquiring an ortho-image and a digital surface model of a target area, a ground height image creation means for creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired by the image acquisition means, a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means, a grayscale image creation means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extraction means is set based on the corresponding ground height or set to a constant value, and a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the ortho-image.
  • the earth's surface composite image creation program of the present invention is characterized by having a computer function as an image acquisition means for acquiring an ortho-image and a digital surface model of a target area, a ground height image creation means for creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired by the image acquisition means, a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means, a grayscale image creation means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extraction means is set based on the corresponding ground height or set to a constant value, and a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the ortho-image.
  • the method, system, and program for creating a composite image of the earth's surface according to the present invention can easily obtain a composite image that reflects height information by setting the shading of the ortho-image of the target area based on the ground height, which indicates the height of objects on the ground. Furthermore, by using this composite image, it is possible to determine not only the appearance from the sky, but also differences in height, making it relatively easy to grasp the utilization status of the ground surface, such as vegetation. Furthermore, even if the resolution of the ortho-image is low, the accuracy of extracting vegetation, etc. can be improved.
  • ground height refers to the height from the ground of objects on the ground, such as buildings and trees.
  • the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention create a composite image that reflects height information in the shading of the orthoimage, and the composite image can be obtained as a three-channel image of red, green, and blue.
  • general image processing programs using machine learning and the like are developed on the premise of processing three-channel images of RGB, and images taken with a normal camera mounted on a UAV are also three-channel images.
  • the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention are highly versatile, as there is no need to convert a three-channel image into an image with four or more channels or to modify an image processing program for use with four or more channels.
  • the composite image created by the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention may be used as training data for machine learning together with the utilization status of the earth surface, such as vegetation, as understood from the composite image, in order to build a system for grasping the utilization status of the earth surface, such as vegetation.
  • the utilization status of the earth surface, such as vegetation may be grasped from the newly created composite image using a system thus constructed.
  • each pixel of the ground height image and the grayscale image correspond 1:1 to each pixel of the orthoimage, but this does not necessarily have to correspond 1:1 as long as the positions of the images are not shifted.
  • the grayscale image creating step may set each grayscale value to a constant value so that each pixel extracted in the pixel extraction step becomes white.
  • the grayscale image creating means may set each grayscale value to a constant value so that each pixel extracted in the pixel extraction means becomes white. In this case, in the created composite image, parts above a certain threshold level above ground level become white, so that parts higher than the threshold level can be easily extracted.
  • the grayscale image creating step may set the grayscale value of each pixel extracted in the pixel extraction step to a value obtained by converting the corresponding height above ground with a predetermined monotonically increasing function or monotonically decreasing function.
  • the grayscale image creating means may set the grayscale value of each pixel extracted by the pixel extraction means to a value obtained by converting the corresponding height above ground with a predetermined monotonically increasing function or monotonically decreasing function.
  • the ground height image is converted in tone according to the height above ground of each pixel and reflected in the grayscale of the composite image, making it easy to grasp height information from the created composite image. Therefore, the composite image makes it easy to extract differences in vegetation, etc. that are difficult to grasp just from the appearance from above.
  • the ground height image creation step may create a digital elevation model (DEM; Digital Elevation Model) based on the digital surface model, and create the ground height image from the difference between the digital surface model and the created digital elevation model.
  • the image acquisition step may also acquire a digital elevation model of the target area, and the ground height image creation step may create the ground height image from the difference between the digital surface model and the digital elevation model acquired in the image acquisition step.
  • the ground height image creation means may create a digital elevation model based on the digital surface model, and create the ground height image from the difference between the digital surface model and the created digital elevation model.
  • the image acquisition means may also acquire a digital elevation model of the target area, and the ground elevation image creation means may create the ground elevation image from the difference between the digital surface model and the digital elevation model acquired by the image acquisition means.
  • the digital surface model when creating a digital elevation model based on a digital surface model, for example, the digital surface model can be filtered to remove the heights of objects on the ground such as buildings and trees, thereby creating the digital elevation model. Furthermore, when acquiring a digital elevation model in the image acquisition step or image acquisition means, for example, a digital elevation model provided by the Geospatial Information Authority of Japan can be used. Furthermore, by using the digital elevation model, a ground height image can be easily created from the difference between the digital surface model (DSM) and the digital elevation model (DEM). The created ground height image is, for example, an image based on a digital height model (DHM; Digital Height Model).
  • DSM digital surface model
  • DEM digital elevation model
  • the image acquisition step may acquire three-dimensional point cloud data from image data of the target area photographed from the sky, and create the ortho-image and the digital surface model from the acquired three-dimensional point cloud data.
  • the image acquisition means may acquire three-dimensional point cloud data from image data of the target area photographed from the sky, and create the ortho-image and the digital surface model from the acquired three-dimensional point cloud data.
  • three-dimensional point cloud data can be easily acquired by processing image data photographed continuously from different viewpoints in the sky by a UAV using Structure from Motion (SfM) or the like.
  • the image acquisition step may create the ortho-image and the digital surface model based on an aerial photograph of the target area taken from the sky and measurement data obtained by measuring the target area from the sky with a LiDAR (Liquid Detection and Ranging).
  • the image acquisition means may create the ortho-image and the digital surface model based on an aerial photograph of the target area taken from the sky and measurement data obtained by measuring the target area from the sky with a LiDAR (Liquid Detection and Ranging).
  • the ortho-image and the digital surface model can be created using the aerial photograph and measurement data obtained by the LiDAR (Liquid Detection and Ranging) without using a UAV.
  • the earth surface composite image creation method preferably includes a composite image display step for displaying the composite image created in the composite image creation step.
  • the earth surface composite image creation system preferably includes a composite image display means for displaying the composite image created by the composite image creation means.
  • the earth surface composite image creation program preferably causes the computer to further function as a composite image display means for displaying the composite image created by the composite image creation means. In this case, the utilization status of the earth surface, such as vegetation, can be grasped using the displayed composite image.
  • the ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program of the present invention are preferably used in areas with little elevation difference, such as rural areas, because they use height information to grasp the utilization status of the ground surface, such as vegetation.
  • the ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program of the present invention can be used, for example, to grasp the distribution of trees and plantings in residential forests and parks, to grasp the distribution of artificial objects such as buildings and solar panels, to grasp fallen trees due to disasters, and to manage them. For this reason, they are suitable for use in environmental consulting, environmental information processing services, construction, aerial surveying, and the agriculture, forestry, and fisheries industries, etc.
  • the present invention provides a method for creating a composite image of the ground surface, a system for creating a composite image of the ground surface, and a program for creating a composite image of the ground surface that can relatively easily grasp the utilization status of the ground surface, such as vegetation, by using height information.
  • FIG. 1 is a block diagram showing a configuration of a ground surface composite image creation system according to an embodiment of the present invention
  • 4 is a flowchart showing a processing procedure of the ground surface composite image creation system according to the embodiment of the present invention.
  • (a) An ortho-image created by using a rural area as a target area of a system for creating a composite image of the earth's surface according to an embodiment of the present invention (b) a grayscale image (1) created in the target area of (a); (c) a grayscale image (2) created in the target area of (a); and (d) a composite image created by superimposing the ortho-image (a) and the grayscale image (b).
  • FIG. 1 to 3 show a ground surface composite image creating method, a ground surface composite image creating system, and a ground surface composite image creating program according to an embodiment of the present invention.
  • the ground surface composite image creating method according to the embodiment of the present invention is a method preferably implemented by the ground surface composite image creating system according to an embodiment of the present invention, and can be executed by a computer using the ground surface composite image creating program.
  • the earth surface composite image creation system 10 is made up of a computer, and has a storage means 11, an input means 12, a display means 13, and a main control unit 14.
  • the storage means 11 is made up of a memory capable of storing various data.
  • the input means 12 is made up of a keyboard, mouse, etc. that allow the user to input various data and information.
  • the display means 13 is made up of a monitor (display).
  • the main control unit 14 is made up of a CPU, and has calculation and control functions. The main control unit 14 is connected to the input means 12, storage means 11, and display means 13, and is configured to be able to control each of them.
  • the storage means 11 is configured to store digital aerial image data of the target area taken from the sky, previously acquired by a UAV, aerial photographs of the target area taken from the sky, and measurement data of the target area measured from the sky by a laser distance measuring device (LiDAR).
  • the aerial image data taken by the UAV consists of multiple images taken continuously from different viewpoints in the sky.
  • the storage means 11 is also configured to store three-dimensional point cloud data, orthoimages, digital surface models (DSM), ground height images, grayscale images, composite images, and the like, created by the main control unit 14.
  • the storage means 11 may also be configured to store a digital elevation model (DEM) of the target area provided by the Geospatial Information Authority of Japan, etc., previously acquired via the Internet, etc.
  • DEM digital elevation model
  • the input means 12 is configured to input the set threshold value and to instruct the method of creating the grayscale image.
  • the display means 13 is configured to be capable of displaying the aerial image data stored in the storage means 11, the orthoimage, the digital surface model, the digital elevation model, the ground height image, the grayscale image, the composite image, etc.
  • the main control unit 14 has an image acquisition means 21, a ground height image creation means 22, a pixel extraction means 23, a grayscale image creation means 24, a composite image creation means 25, and a composite image display means 26.
  • the image acquisition means 21 is configured to acquire three-dimensional point cloud data by processing a plurality of aerial image data stored in the storage means 11 using Structure from Motion (SfM) and to create an orthoimage and a digital surface model of the target area from the three-dimensional point cloud data, or to create a digital surface model from LiDAR measurement data stored in the storage means 11.
  • the image acquisition means 21 may also be configured to acquire a digital elevation model from the storage means 11.
  • the created orthoimage is a three-channel image of RGB.
  • the ground height image creation means 22 is configured to create a ground height image relating to the height of an object on the ground based on the digital surface model acquired by the image acquisition means 21.
  • the ground height image creation means 22 may, for example, create a digital elevation model based on the digital surface model, and create a ground height image from the difference between the digital surface model and the created digital elevation model.
  • the ground height image creation means 22 may create a ground height image from the difference between the digital surface model and the digital elevation model acquired by the image acquisition means.
  • the created ground height image is an image based on the digital height model (DHM; Digital Height Model).
  • the pixel extraction means 23 is configured to extract pixels having a ground height equal to or greater than a predetermined threshold input by the input means 12 from the ground height image created by the ground height image creation means 22.
  • the shading image creation means 24 is configured to set the shading value of each pixel extracted by the pixel extraction means 23 from the ground height image created by the ground height image creation means 22 according to the following (1) and (2), and to create each shading image.
  • the shading value of each pixel extracted by the pixel extracting means 23 is set to a constant value so that each pixel becomes white.
  • the gray value of each pixel extracted by the pixel extracting means 23 is set to a value obtained by converting the corresponding ground height using a predetermined monotonically increasing or decreasing function.
  • the composite image creation means 25 is configured to create a composite image by superimposing the grayscale image (1) or the grayscale image (2) created by the grayscale image creation means 24 on the orthoimage created by the image acquisition means 21 based on the selection input by the input means 12.
  • the composite image display means 26 is configured to display the composite image created by the composite image creation means 25 on the display means 13.
  • the earth's surface composite image creation system 10 is configured so that each pixel not extracted by the pixel extraction means 23 is colored black (pixel value is zero), and the shading value of the orthoimage created by the image acquisition means 21 becomes the shading value of the composite image as is. Note that when creating the shading image of (1), it is also possible to set each pixel extracted by the pixel extraction means 23 to be black, and each pixel not extracted by the pixel extraction means 23 to be white.
  • a target area is photographed continuously from different viewpoints in the sky, and the acquired multiple aerial image data are stored in the storage means 11 (step 31).
  • each aerial image data stored in the storage means 11 is processed by the image acquisition means 21 using SfM to create 3D point cloud data (step 32).
  • the image acquisition means 21 creates an orthoimage (step 33) and a digital surface model (DSM image) (step 34) of the target area from the 3D point cloud data.
  • the ground height image creation means 22 uses the digital surface model and a digital elevation model (DEM image) (step 35) provided by a provider such as the Geospatial Information Authority of Japan and stored in the storage means 11 to obtain differential data (DSM-DEM) between the DSM image and the DEM image (step 36), and creates a ground height image (DHM) (step 37).
  • DEM image digital elevation model
  • the image acquisition means 21 orthorectifies the aerial photographs stored in the storage means 11 to create an orthoimage (step 33), and creates a digital surface model (DSM image) from the LiDAR measurement data stored in the storage means 11.
  • the ground height image creation means 22 filters the digital surface model to remove the heights of objects on the ground such as buildings and trees, creates a digital elevation model (DEM image), obtains difference data (DSM-DEM) between the DSM image and the DEM image (step 36), and creates a ground height image (DHM) (step 37).
  • the aerial photograph may be orthorectified using the DEM image created by the ground height image creation means 22.
  • An example of an aerial photograph of a rural area is shown in FIG. 3(a) as a target area.
  • a ground height threshold is set by referring to the orthoimage, the created DSM image, the DEM image, the ground height image, etc., and the threshold is input from the input means 12 (step 38).
  • the pixel extraction means 23 extracts pixels from the ground height image that have a ground height equal to or greater than the input threshold (step 39).
  • the grayscale image creation means 24 sets the grayscale value of each pixel to a constant value so that each extracted pixel becomes white, and creates a grayscale image (1) according to the setting (step 40). Furthermore, the grayscale image creation means 24 uses a gradation conversion (contrast conversion) technique to set the grayscale value of each extracted pixel to a value obtained by converting the corresponding ground height with a predetermined monotonically increasing or decreasing function, and creates a grayscale image (2) according to the setting (step 41). At this time, each pixel not extracted by the pixel extraction means 23 is set to black (pixel value is zero) (binarization). Examples of the grayscale image (1) and the grayscale image (2) in the target area of Figure 3(a) are shown in Figures 3(b) and (c), respectively.
  • a threshold value is set to a ground height higher than plants such as hedges and houses and lower than a residential forest.
  • Figures 3(b) and (c) are images taken using aerial photographs and LiDAR measurement data.
  • a monotonically increasing function or a monotonically decreasing function for converting the ground height into a grayscale value may be preset, and the type of monotonically increasing function or monotonically decreasing function to be used may be specified from the input means 12.
  • the monotonically increasing function and the monotonically decreasing function may be a linear function or a nonlinear function, or may be a combination of these.
  • the user selects grayscale image (1) or grayscale image (2), and inputs the selection from input means 12 (step 42).
  • the composite image creation means 25 creates a composite image by superimposing the grayscale image (1) or grayscale image (2) selected by input from input means 12 on the orthoimage (step 43).
  • the composite image display means 26 sends the composite image created by the composite image creation means 25 to display means 13, and displays the composite image on display means 13 (step 44). This makes it possible to grasp the utilization status of the ground surface, such as vegetation, using the displayed composite image.
  • FIG. 3(d) An example of a composite image of the target area of FIG. 3(a) is shown in FIG. 3(d).
  • the composite image of FIG. 3(d) is obtained by superimposing the grayscale image of (1) on the ortho-image.
  • the parts above a certain threshold are white, so that the parts higher than the threshold can be easily extracted.
  • the target area is a rural area
  • a composite image obtained by setting the certain threshold higher than the height of the houses only the residential forests can be easily extracted.
  • the white parts can be easily extracted as the residential forests from the composite image of FIG. 3(d).
  • the range above ground level that is above a certain threshold is converted into gradations and reflected in the grayscale of the composite image, making it easy to grasp height information from the composite image. Therefore, even in the composite image created by superimposing the grayscale image (2) on the orthoimage, differences in vegetation, etc. that are difficult to grasp from the appearance alone from above can be easily extracted.
  • the earth surface composite image creation system 10 can easily obtain a composite image that reflects height information by setting the shading of the ortho-image of the target area based on the height above ground. Furthermore, by using this composite image, it is possible to determine not only the appearance from the sky, but also differences in height, making it relatively easy to grasp the utilization status of the earth surface, such as vegetation. Furthermore, even if the resolution of the ortho-image is low, the accuracy of extracting vegetation, etc. can be improved.
  • the earth surface composite image creation system 10 creates a composite image that reflects height information in the shading of the ortho-image, and can obtain the composite image as a three-channel image of RGB. This means that there is no need to convert a three-channel image into an image with four or more channels, or to modify an image processing program for use with four or more channels, making it highly versatile.
  • the composite image created by the ground surface composite image creation system 10 may be used as training data for machine learning together with data on the ground surface utilization status, such as vegetation, as understood from the composite image, in order to construct a ground surface utilization status estimation system for grasping the utilization status of the ground surface, such as vegetation. Furthermore, the ground surface utilization status, such as vegetation, may be grasped from the newly created composite image using the ground surface utilization status estimation system constructed in this manner.
  • a synthetic image was created for a number of regions using the earth's surface synthetic image creation system 10 according to an embodiment of the present invention. Images obtained by dividing a synthetic image into multiple parts were divided into training data and test data, and machine learning was performed using the training data (teacher data; actual distribution of compound forests) to construct an estimation system for the distribution of compound forests. Next, the accuracy of compound forest extraction was evaluated for the constructed system using the test data. The Dice coefficient was used for the accuracy evaluation. As a comparative example, machine learning and accuracy evaluation were performed using images obtained by dividing only the orthoimage into multiple parts as training data and test data without using the earth's surface synthetic image creation system 10 according to an embodiment of the present invention.
  • the Dice coefficient in the comparative example where the compound grove was extracted using only the orthoimage was 0.64.
  • the Dice coefficient was 0.76 when the compound grove was extracted using the composite image made up of the grayscale image (1).
  • the Dice coefficient was 0.80 when the compound grove was extracted using the composite image made up of the grayscale image (2). It should be noted that when creating the grayscale image (2), a linear transformation was used as the tone transformation. From these results, it can be said that the use of composite images can improve extraction accuracy.
  • the earth surface composite image creation program of the embodiment of the present invention may be provided from the outside via a communication line, for example, or may be provided in a form recorded on a computer-readable recording medium such as a CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD-ROM, DVD-RAM, DVD-R, DVD-RW, DVD+R, DVD+RW, etc.), USB memory, etc.
  • the computer can read the earth surface composite image creation program from the communication line or recording medium, transfer it to the computer's internal storage device, and store it for use.
  • the earth surface composite image creation program of the embodiment of the present invention may also be recorded in a storage device (recording medium) such as a magnetic disk, optical disk, or magneto-optical disk, and provided to the computer from the storage device via a communication line.
  • a computer is a concept that includes hardware and an OS (operating system), and refers to hardware that operates under the control of the OS. Also, in cases where an OS is not required and the hardware is operated by an application program alone, the hardware itself corresponds to a computer.
  • the hardware is equipped with at least a microprocessor such as a CPU, and a means for reading computer programs recorded on an internal storage device or recording medium.
  • the application program as the earth surface composite image creation program of the embodiment of the present invention includes program code that is executed by the computer as described above.
  • some of the functions may be executed by the OS instead of the application program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Processing (AREA)

Abstract

[Problem] To provide a ground surface composite image creation method, a ground surface composite image creation system, and a ground surface composite image creation program that can make it possible to relatively easily understand a use state of a ground surface, such as vegetation, by using height information. [Solution] The present invention acquires an ortho-image of a target area and a digital surface model, and creates, on the basis of the digital surface model, a ground height image pertaining to the height of an object on the ground. Each pixel having a ground height equal to or greater than a prescribed threshold is extracted from the created ground height image. A grayscale image is created in which a grayscale value of each of the extracted pixels is set on the basis of the corresponding ground height or set to a constant value. The created grayscale image is superimposed on the ortho-image to create a composite image.

Description

地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムEarth's surface composite image creation method, earth's surface composite image creation system, and earth's surface composite image creation program

 本発明は、地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムに関する。 The present invention relates to a method for creating a composite image of the earth's surface, a system for creating a composite image of the earth's surface, and a program for creating a composite image of the earth's surface.

 近年、世界農業遺産や日本農業遺産の認定が進んでいることに象徴されるように、農村がもつ文化や景観、生物多様性等の機能への注目度が高まっている。例えば屋敷林は、農村景観を形成する主要な要素のひとつであり、生物多様性の保全など周辺環境に対する役割も有している。このため、屋敷林を含めた農村の現況の定量的な評価や把握を行うことが期待されている。 In recent years, as symbolized by the increasing number of Globally Important Agricultural Heritage Sites and Japanese Agricultural Heritage Sites being certified, attention has been paid to the culture, landscape, biodiversity, and other functions of rural areas. For example, private homestead forests are one of the main elements that form the rural landscape, and also play a role in the surrounding environment, such as conserving biodiversity. For this reason, there is a need to quantitatively evaluate and understand the current state of rural areas, including private homestead forests.

 従来、植生等による地表面の利用状況や地形などを把握するため、有人の航空機や無人航空機(Unmanned Aerial Vehicle:UAVまたはドローン)などを利用して、上空の異なる視点から対象地域を連続して撮影し、その撮影した画像をStructure from Motion(SfM)等で処理したり、上空から対象地域をレーザ測距計(Light Detection and Ranging;LiDAR)で計測して、デジタル画像データや計測データを取得したりすることにより、地表面画像(オルソ画像)や数値表層モデル(Digital Surface Model;DSM)を得ることが一般的に行われている。 Traditionally, in order to understand the use of the ground surface by vegetation and other factors, and the topography, it has been common to use manned aircraft or unmanned aerial vehicles (UAVs or drones) to continuously photograph the target area from different viewpoints in the sky, and then process the images using techniques such as Structure from Motion (SfM), or measure the target area from the sky with a Light Detection and Ranging (LiDAR) to obtain digital image data and measurement data, thereby obtaining ground surface images (orthoimages) and digital surface models (DSMs).

 また、こうして得られたオルソ画像やDSMを利用して、地表面の植物等を検出したり、地表面の植生等の利用状況を把握したりするための方法が提案されている。例えば、対象地域のDSM画像と、植物等の標的物体のDSM画像とを得た後、人工知能によりDSMから標的物体を検出する方法(例えば、特許文献1参照)や、DSMに基づいて傾斜量図や曲率図を求め、それらをオルソ画像と合成することにより、オルソ画像より立体的で視認性が高い合成画像を生成する方法(例えば、特許文献2参照)、第1種の植物と第2種の植物とを有する圃場のDSMから、それらの植物高の差異に応じて、第2種の植物の分布を抽出する方法(例えば、特許文献3参照)、森林を含む対象地域について、レーザ計測データおよび空中撮影画像からそれぞれ特徴量を抽出し、各画素に対応する各特徴量の値に基づいて、各画素でのカラー画像の画素値を定めることにより、林相の違いをカラー画像で可視化する方法(例えば、特許文献4参照)等が提案されている。 Also, methods have been proposed for detecting plants on the ground surface and grasping the utilization status of vegetation on the ground surface using the orthoimages and DSMs obtained in this way. For example, a method has been proposed in which a DSM image of a target area and a DSM image of a target object such as a plant are obtained, and then a target object is detected from the DSM using artificial intelligence (see, for example, Patent Document 1); a method has been proposed in which a slope map and a curvature map are obtained based on the DSM, and these are combined with an orthoimage to generate a composite image that is more three-dimensional and has higher visibility than an orthoimage (see, for example, Patent Document 2); a method has been proposed in which a distribution of a second type of plant is extracted from a DSM of a field having a first type of plant and a second type of plant according to the difference in plant height (see, for example, Patent Document 3); and a method has been proposed in which, for a target area including a forest, feature values are extracted from laser measurement data and aerial photographed images, and the pixel values of the color image at each pixel are determined based on the value of each feature value corresponding to each pixel, thereby visualizing differences in forest types in a color image (see, for example, Patent Document 4).

特開2018-92628号公報JP 2018-92628 A 特許第6700519号公報Patent No. 6700519 特開2022-66907号公報JP 2022-66907 A 特開2015-141118号公報JP 2015-141118 A

 しかしながら、特許文献1に記載の方法では、DSMの画像情報のみを用いており、オルソ画像を用いていないため、標的物体の検出効率が悪いという課題があった。特許文献2に記載の方法では、生成された立体的で視認性が高い合成画像により、地形などの把握には効果的であるが、植生等の地表面の利用状況を把握するのは困難であるという課題があった。特許文献3に記載の方法では、2種類の植物のみを有する圃場に対するものであり、圃場以外の農村などの対象地域での利用状況の把握は難しいという課題があった。特許文献4に記載の方法では、抽出する特徴量を様々に設定することができるが、カラー画像の画素値を定める手順や式が複雑になるという課題があった。 However, the method described in Patent Document 1 uses only DSM image information and does not use orthoimages, which results in poor detection efficiency for target objects. The method described in Patent Document 2 generates a three-dimensional, highly visible composite image that is effective for grasping topography, but has the problem that it is difficult to grasp the utilization status of the ground surface, such as vegetation. The method described in Patent Document 3 is for farm fields with only two types of plants, and has the problem that it is difficult to grasp the utilization status of target areas other than farm fields, such as rural areas. The method described in Patent Document 4 allows for various settings for the feature amounts to be extracted, but has the problem that the procedures and formulas for determining the pixel values of the color image are complicated.

 本発明は、このような課題に着目してなされたもので、高さ情報を用いて、植生等の地表面の利用状況を比較的容易に把握することができる地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムを提供することを目的とする。 The present invention was made with a focus on these problems, and aims to provide a method for creating a composite image of the ground surface, a system for creating a composite image of the ground surface, and a program for creating a composite image of the ground surface that can relatively easily grasp the utilization status of the ground surface, such as vegetation, using height information.

 上記目的を達成するために、本発明に係る地表面合成画像作成方法は、対象地域のオルソ画像と数値表層モデル(DSM;Digital Surface Model)とを取得する画像取得ステップと、前記画像取得ステップで取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成ステップと、前記地上高画像作成ステップで作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出ステップと、前記画素抽出ステップで抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成ステップと、前記濃淡画像作成ステップで作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成ステップとを、有することを特徴とする。 In order to achieve the above object, the method for creating a composite image of the earth's surface according to the present invention is characterized by having an image acquisition step of acquiring an orthoimage of a target area and a digital surface model (DSM; Digital Surface Model), a ground height image creation step of creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired in the image acquisition step, a pixel extraction step of extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created in the ground height image creation step, a grayscale image creation step of creating a grayscale image in which the grayscale value of each pixel extracted in the pixel extraction step is set based on the corresponding ground height or set to a constant value, and a composite image creation step of creating a composite image by superimposing the grayscale image created in the grayscale image creation step on the orthoimage.

 本発明に係る地表面合成画像作成システムは、対象地域のオルソ画像と数値表層モデルとを取得する画像取得手段と、前記画像取得手段で取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成手段と、前記地上高画像作成手段で作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出手段と、前記画素抽出手段で抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成手段と、前記濃淡画像作成手段で作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成手段とを、有することを特徴とする。 The earth surface composite image creation system of the present invention is characterized by having an image acquisition means for acquiring an ortho-image and a digital surface model of a target area, a ground height image creation means for creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired by the image acquisition means, a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means, a grayscale image creation means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extraction means is set based on the corresponding ground height or set to a constant value, and a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the ortho-image.

 本発明に係る地表面合成画像作成プログラムは、コンピュータを、対象地域のオルソ画像と数値表層モデルとを取得する画像取得手段、前記画像取得手段で取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成手段、前記地上高画像作成手段で作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出手段、前記画素抽出手段で抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成手段、前記濃淡画像作成手段で作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成手段、として機能させることを特徴とする。 The earth's surface composite image creation program of the present invention is characterized by having a computer function as an image acquisition means for acquiring an ortho-image and a digital surface model of a target area, a ground height image creation means for creating a ground height image relating to the height of objects on the ground based on the digital surface model acquired by the image acquisition means, a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means, a grayscale image creation means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extraction means is set based on the corresponding ground height or set to a constant value, and a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the ortho-image.

 本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、地上の物体の高さを表す地上高に基づいて対象地域のオルソ画像の濃淡を設定することにより、高さ情報を反映した合成画像を容易に得ることができる。また、その合成画像を利用することにより、上空からの外観だけでなく、高さの差異も含めて判断することができ、植生等の地表面の利用状況を比較的容易に把握することができる。また、オルソ画像の解像度が低い場合であっても、植生等の抽出精度を高めることができる。なお、地上高とは、建物や樹木などの地上の物体の、地上からの高さである。 The method, system, and program for creating a composite image of the earth's surface according to the present invention can easily obtain a composite image that reflects height information by setting the shading of the ortho-image of the target area based on the ground height, which indicates the height of objects on the ground. Furthermore, by using this composite image, it is possible to determine not only the appearance from the sky, but also differences in height, making it relatively easy to grasp the utilization status of the ground surface, such as vegetation. Furthermore, even if the resolution of the ortho-image is low, the accuracy of extracting vegetation, etc. can be improved. Note that ground height refers to the height from the ground of objects on the ground, such as buildings and trees.

 本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、オルソ画像の濃淡に、高さ情報を反映させた合成画像を作成するため、その合成画像を、赤、緑、青の3チャンネル画像として得ることができる。例えば、機械学習などによる一般的な画像処理プログラムは、RGBの3チャンネル画像を処理することを前提に開発されており、また、UAVに搭載されている通常のカメラで撮影した画像も、3チャンネル画像である。このため、本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、3チャンネル画像を、4チャンネル以上の多チャンネルの画像に変換したり、画像処理プログラムを4チャンネル以上の多チャンネル用に改変したりする必要がなく、汎用性が高い。 The earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention create a composite image that reflects height information in the shading of the orthoimage, and the composite image can be obtained as a three-channel image of red, green, and blue. For example, general image processing programs using machine learning and the like are developed on the premise of processing three-channel images of RGB, and images taken with a normal camera mounted on a UAV are also three-channel images. For this reason, the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention are highly versatile, as there is no need to convert a three-channel image into an image with four or more channels or to modify an image processing program for use with four or more channels.

 本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムで、作成された合成画像は、植生等の地表面の利用状況を把握するためのシステムを構築するために、その合成画像から把握された植生等の地表面の利用状況と共に、教師データとして機械学習に使用されてもよい。また、そのようにして構築されたシステムを用いて、新たに作成された合成画像から、植生等の地表面の利用状況を把握してもよい。本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、地上高画像や濃淡画像の各画素が、オルソ画像の各画素と1:1に対応していることが好ましいが、各画像同士の位置がずれなければ、必ずしも1:1に対応していなくてもよい。 The composite image created by the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention may be used as training data for machine learning together with the utilization status of the earth surface, such as vegetation, as understood from the composite image, in order to build a system for grasping the utilization status of the earth surface, such as vegetation. In addition, the utilization status of the earth surface, such as vegetation, may be grasped from the newly created composite image using a system thus constructed. In the earth surface composite image creation method, earth surface composite image creation system, and earth surface composite image creation program of the present invention, it is preferable that each pixel of the ground height image and the grayscale image correspond 1:1 to each pixel of the orthoimage, but this does not necessarily have to correspond 1:1 as long as the positions of the images are not shifted.

 本発明に係る地表面合成画像作成方法で、前記濃淡画像作成ステップは、前記画素抽出ステップで抽出された各画素が白色になるよう、各濃淡値を一定値に設定してもよい。本発明に係る地表面合成画像作成システムおよび地表面合成画像作成プログラムで、前記濃淡画像作成手段は、前記画素抽出手段で抽出された各画素が白色になるよう、各濃淡値を一定値に設定してもよい。この場合、作成された合成画像で、所定の閾値以上の地上高の部分が白色になるため、その閾値より高い部分を容易に抽出することができる。このため、例えば、農村などの地域を対象地域としたとき、上空から撮影された画像では、家屋より低い生け垣などの植栽と、家屋よりも高く成長した屋敷林とを区別するのは非常に難しいが、所定の閾値を家屋の高さより高く設定して得られた合成画像では、屋敷林のみを容易に抽出することができる。 In the method for creating a composite ground surface image according to the present invention, the grayscale image creating step may set each grayscale value to a constant value so that each pixel extracted in the pixel extraction step becomes white. In the system for creating a composite ground surface image and the program for creating a composite ground surface image according to the present invention, the grayscale image creating means may set each grayscale value to a constant value so that each pixel extracted in the pixel extraction means becomes white. In this case, in the created composite image, parts above a certain threshold level above ground level become white, so that parts higher than the threshold level can be easily extracted. For this reason, for example, when a target area is a rural area, it is very difficult to distinguish between plants such as hedges that are lower than the house and a woodland that has grown higher than the house in an image taken from the sky, but in a composite image obtained by setting the certain threshold level higher than the height of the house, only the woodland can be easily extracted.

 また、本発明に係る地表面合成画像作成方法で、前記濃淡画像作成ステップは、前記画素抽出ステップで抽出された各画素の濃淡値を、対応する地上高を所定の単調増加関数または単調減少関数で変換した値に設定してもよい。本発明に係る地表面合成画像作成システムおよび地表面合成画像作成プログラムで、前記濃淡画像作成手段は、前記画素抽出手段で抽出された各画素の濃淡値を、対応する地上高を所定の単調増加関数または単調減少関数で変換した値に設定してもよい。この場合、各画素の地上高に応じて地上高画像を階調変換し、合成画像の濃淡に反映させるため、作成された合成画像から高さ情報を把握しやすい。このため、合成画像により、上空からの外観だけでは把握が難しい植生等の違いを容易に抽出することができる。 In the method for creating a composite earth surface image according to the present invention, the grayscale image creating step may set the grayscale value of each pixel extracted in the pixel extraction step to a value obtained by converting the corresponding height above ground with a predetermined monotonically increasing function or monotonically decreasing function. In the system for creating a composite earth surface image and the program for creating a composite earth surface image according to the present invention, the grayscale image creating means may set the grayscale value of each pixel extracted by the pixel extraction means to a value obtained by converting the corresponding height above ground with a predetermined monotonically increasing function or monotonically decreasing function. In this case, the ground height image is converted in tone according to the height above ground of each pixel and reflected in the grayscale of the composite image, making it easy to grasp height information from the created composite image. Therefore, the composite image makes it easy to extract differences in vegetation, etc. that are difficult to grasp just from the appearance from above.

 本発明に係る地表面合成画像作成方法で、前記地上高画像作成ステップは、前記数値表層モデルに基づいて数値標高モデル(DEM;Digital Elevation Model)を作成し、前記数値表層モデルと、作成された前記数値標高モデルとの差から、前記地上高画像を作成してもよい。あるいは、前記画像取得ステップは、前記対象地域の数値標高モデルも取得し、前記地上高画像作成ステップは、前記数値表層モデルと、前記画像取得ステップで取得された前記数値標高モデルとの差から、前記地上高画像を作成してもよい。本発明に係る地表面合成画像作成システムおよび地表面合成画像作成プログラムで、前記地上高画像作成手段は、前記数値表層モデルに基づいて数値標高モデルを作成し、前記数値表層モデルと、作成された前記数値標高モデルとの差から、前記地上高画像を作成してもよい。あるいは、前記画像取得手段は、前記対象地域の数値標高モデルも取得し、前記地上高画像作成手段は、前記数値表層モデルと、前記画像取得手段で取得された前記数値標高モデルとの差から、前記地上高画像を作成してもよい。 In the ground surface synthetic image creation method of the present invention, the ground height image creation step may create a digital elevation model (DEM; Digital Elevation Model) based on the digital surface model, and create the ground height image from the difference between the digital surface model and the created digital elevation model. Alternatively, the image acquisition step may also acquire a digital elevation model of the target area, and the ground height image creation step may create the ground height image from the difference between the digital surface model and the digital elevation model acquired in the image acquisition step. In the ground surface synthetic image creation system and ground surface synthetic image creation program of the present invention, the ground height image creation means may create a digital elevation model based on the digital surface model, and create the ground height image from the difference between the digital surface model and the created digital elevation model. Alternatively, the image acquisition means may also acquire a digital elevation model of the target area, and the ground elevation image creation means may create the ground elevation image from the difference between the digital surface model and the digital elevation model acquired by the image acquisition means.

 この数値標高モデルを利用する場合、数値表層モデルに基づいて数値標高モデルを作成する際には、例えば、数値表層モデルに対してフィルタリングを行って、建物や樹木などの地上の物体の高さを取り除くことにより、数値標高モデルを作成することができる。また、画像取得ステップまたは画像取得手段で数値標高モデルを取得する際には、例えば、国土地理院などから提供されている数値標高モデルを利用することができる。また、数値標高モデルを利用することにより、数値表層モデル(DSM)と数値標高モデル(DEM)との差から、地上高画像を容易に作成することができる。作成される地上高画像は、例えば、数値高さモデル(DHM;Digital Height Model)に基づく画像である。 When using this digital elevation model, when creating a digital elevation model based on a digital surface model, for example, the digital surface model can be filtered to remove the heights of objects on the ground such as buildings and trees, thereby creating the digital elevation model. Furthermore, when acquiring a digital elevation model in the image acquisition step or image acquisition means, for example, a digital elevation model provided by the Geospatial Information Authority of Japan can be used. Furthermore, by using the digital elevation model, a ground height image can be easily created from the difference between the digital surface model (DSM) and the digital elevation model (DEM). The created ground height image is, for example, an image based on a digital height model (DHM; Digital Height Model).

 本発明に係る地表面合成画像作成方法で、前記画像取得ステップは、前記対象地域を上空から撮影した画像データから3次元点群データを取得し、取得した前記3次元点群データから前記オルソ画像と前記数値表層モデルとを作成してもよい。本発明に係る地表面合成画像作成システムおよび地表面合成画像作成プログラムで、前記画像取得手段は、前記対象地域を上空から撮影した画像データから3次元点群データを取得し、取得した前記3次元点群データから前記オルソ画像と前記数値表層モデルとを作成してもよい。この場合、例えば、UAVにより、上空の異なる視点から連続して撮影した画像データを用いて、Structure from Motion(SfM)等で処理することにより、3次元点群データを容易に取得することができる。 In the earth surface synthetic image creation method according to the present invention, the image acquisition step may acquire three-dimensional point cloud data from image data of the target area photographed from the sky, and create the ortho-image and the digital surface model from the acquired three-dimensional point cloud data. In the earth surface synthetic image creation system and earth surface synthetic image creation program according to the present invention, the image acquisition means may acquire three-dimensional point cloud data from image data of the target area photographed from the sky, and create the ortho-image and the digital surface model from the acquired three-dimensional point cloud data. In this case, for example, three-dimensional point cloud data can be easily acquired by processing image data photographed continuously from different viewpoints in the sky by a UAV using Structure from Motion (SfM) or the like.

 また、本発明に係る地表面合成画像作成方法で、前記画像取得ステップは、前記対象地域を上空から撮影した空中写真と、レーザ測距計(LiDAR)で前記対象地域を上空から計測した計測データとに基づいて、前記オルソ画像と前記数値表層モデルとを作成してもよい。本発明に係る地表面合成画像作成システムおよび地表面合成画像作成プログラムで、前記画像取得手段は、前記対象地域を上空から撮影した空中写真と、レーザ測距計(LiDAR)で前記対象地域を上空から計測した計測データとに基づいて、前記オルソ画像と前記数値表層モデルとを作成してもよい。この場合、UAVを使用することなく、空中写真とレーザ測距計(LiDAR)による計測データを用いて、オルソ画像、数値表層モデルを作成することができる。 In the method for creating a synthetic earth surface image according to the present invention, the image acquisition step may create the ortho-image and the digital surface model based on an aerial photograph of the target area taken from the sky and measurement data obtained by measuring the target area from the sky with a LiDAR (Liquid Detection and Ranging). In the synthetic earth surface image creation system and the synthetic earth surface image creation program according to the present invention, the image acquisition means may create the ortho-image and the digital surface model based on an aerial photograph of the target area taken from the sky and measurement data obtained by measuring the target area from the sky with a LiDAR (Liquid Detection and Ranging). In this case, the ortho-image and the digital surface model can be created using the aerial photograph and measurement data obtained by the LiDAR (Liquid Detection and Ranging) without using a UAV.

 本発明に係る地表面合成画像作成方法は、前記合成画像作成ステップで作成された前記合成画像を表示する合成画像表示ステップを有することが好ましい。本発明に係る地表面合成画像作成システムは、前記合成画像作成手段で作成された前記合成画像を表示する合成画像表示手段を有することが好ましい。本発明に係る地表面合成画像作成プログラムは、コンピュータを、さらに、前記合成画像作成手段で作成された前記合成画像を表示する合成画像表示手段として機能させることが好ましい。この場合、表示された合成画像を用いて、植生等の地表面の利用状況を把握することができる。 The earth surface composite image creation method according to the present invention preferably includes a composite image display step for displaying the composite image created in the composite image creation step. The earth surface composite image creation system according to the present invention preferably includes a composite image display means for displaying the composite image created by the composite image creation means. The earth surface composite image creation program according to the present invention preferably causes the computer to further function as a composite image display means for displaying the composite image created by the composite image creation means. In this case, the utilization status of the earth surface, such as vegetation, can be grasped using the displayed composite image.

 本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、高さ情報を利用して、植生等の地表面の利用状況を把握するため、農村等の地面の高低差が小さい地域で利用されることが好ましい。本発明に係る地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムは、例えば、屋敷林や公園の樹木や植栽などの分布の把握、建物や太陽光パネルなどの人工物の分布の把握、災害による倒木等の把握、またそれらの管理などに利用することができる。このため、環境コンサルタント業や、環境に関する情報処理サービス業、建設業、航空測量業、農林水産業界などでの利用に適している。 The ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program of the present invention are preferably used in areas with little elevation difference, such as rural areas, because they use height information to grasp the utilization status of the ground surface, such as vegetation. The ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program of the present invention can be used, for example, to grasp the distribution of trees and plantings in residential forests and parks, to grasp the distribution of artificial objects such as buildings and solar panels, to grasp fallen trees due to disasters, and to manage them. For this reason, they are suitable for use in environmental consulting, environmental information processing services, construction, aerial surveying, and the agriculture, forestry, and fisheries industries, etc.

 本発明によれば、高さ情報を用いて、植生等の地表面の利用状況を比較的容易に把握することができる地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムを提供することができる。 The present invention provides a method for creating a composite image of the ground surface, a system for creating a composite image of the ground surface, and a program for creating a composite image of the ground surface that can relatively easily grasp the utilization status of the ground surface, such as vegetation, by using height information.

本発明の実施の形態の地表面合成画像作成システムの構成を示すブロック図である。1 is a block diagram showing a configuration of a ground surface composite image creation system according to an embodiment of the present invention; 本発明の実施の形態の地表面合成画像作成システムの処理手順を示すフローチャートである。4 is a flowchart showing a processing procedure of the ground surface composite image creation system according to the embodiment of the present invention. 本発明の実施の形態の地表面合成画像作成システムの、(a)ある農村を対象地域として作成されたオルソ画像、(b) (a)の対象地域で作成された(1)の濃淡画像、(c) (a)の対象地域で作成された(2)の濃淡画像、(d) (a)のオルソ画像と(b)の濃淡画像とを重畳して作成した合成画像である。(a) An ortho-image created by using a rural area as a target area of a system for creating a composite image of the earth's surface according to an embodiment of the present invention; (b) a grayscale image (1) created in the target area of (a); (c) a grayscale image (2) created in the target area of (a); and (d) a composite image created by superimposing the ortho-image (a) and the grayscale image (b).

 以下、図面に基づいて、本発明の実施の形態について説明する。
 図1乃至図3は、本発明の実施の形態の地表面合成画像作成方法、地表面合成画像作成システム、および地表面合成画像作成プログラムを示している。なお、本発明の実施の形態の地表面合成画像作成方法は、本発明の実施の形態の地表面合成画像作成システムにより好適に実施される方法であり、地表面合成画像作成プログラムを利用してコンピュータに実行させることができる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 to 3 show a ground surface composite image creating method, a ground surface composite image creating system, and a ground surface composite image creating program according to an embodiment of the present invention. The ground surface composite image creating method according to the embodiment of the present invention is a method preferably implemented by the ground surface composite image creating system according to an embodiment of the present invention, and can be executed by a computer using the ground surface composite image creating program.

 図1に示すように、本発明の実施の形態の地表面合成画像作成システム10は、コンピュータから成り、記憶手段11と入力手段12と表示手段13と主制御部14とを有している。記憶手段11は、各種データを記憶可能なメモリから成っている。入力手段12は、使用者が各種データや情報を入力するためのキーボードやマウスなどから成っている。表示手段13は、モニタ(ディスプレイ)から成っている。主制御部14は、CPUから成り、演算機能および制御機能を有している。主制御部14は、入力手段12、記憶手段11および表示手段13に接続されて、それぞれを制御可能に構成されている。 As shown in FIG. 1, the earth surface composite image creation system 10 according to an embodiment of the present invention is made up of a computer, and has a storage means 11, an input means 12, a display means 13, and a main control unit 14. The storage means 11 is made up of a memory capable of storing various data. The input means 12 is made up of a keyboard, mouse, etc. that allow the user to input various data and information. The display means 13 is made up of a monitor (display). The main control unit 14 is made up of a CPU, and has calculation and control functions. The main control unit 14 is connected to the input means 12, storage means 11, and display means 13, and is configured to be able to control each of them.

 記憶手段11は、UAVによりあらかじめ取得された、対象地域を上空から撮影したデジタルの空撮画像データや、あらかじめ対象地域を上空から撮影した空中写真、レーザ測距計(LiDAR)で、あらかじめ対象地域を上空から計測した計測データ等を記憶しておくよう構成されている。UAVによる空撮画像データは、複数から成り、上空の異なる視点から連続して撮影したものから成っている。また、記憶手段11は、その他にも、主制御部14で作成される3次元点群データ、オルソ画像、数値表層モデル(DSM)、地上高画像、濃淡画像、合成画像なども記憶するよう構成されている。また、記憶手段11は、あらかじめインターネット等を介して取得された、国土地理院などから提供されている、対象地域の数値標高モデル(DEM)を記憶しておくよう構成されていてもよい。 The storage means 11 is configured to store digital aerial image data of the target area taken from the sky, previously acquired by a UAV, aerial photographs of the target area taken from the sky, and measurement data of the target area measured from the sky by a laser distance measuring device (LiDAR). The aerial image data taken by the UAV consists of multiple images taken continuously from different viewpoints in the sky. The storage means 11 is also configured to store three-dimensional point cloud data, orthoimages, digital surface models (DSM), ground height images, grayscale images, composite images, and the like, created by the main control unit 14. The storage means 11 may also be configured to store a digital elevation model (DEM) of the target area provided by the Geospatial Information Authority of Japan, etc., previously acquired via the Internet, etc.

 入力手段12は、設定した閾値を入力したり、濃淡画像の作成方法を指示したりするよう構成されている。表示手段13は、記憶手段11に記憶された空撮画像データや、オルソ画像、数値表層モデル、数値標高モデル、地上高画像、濃淡画像、合成画像等を表示可能に構成されている。 The input means 12 is configured to input the set threshold value and to instruct the method of creating the grayscale image. The display means 13 is configured to be capable of displaying the aerial image data stored in the storage means 11, the orthoimage, the digital surface model, the digital elevation model, the ground height image, the grayscale image, the composite image, etc.

 主制御部14は、画像取得手段21と地上高画像作成手段22と画素抽出手段23と濃淡画像作成手段24と合成画像作成手段25と合成画像表示手段26とを有している。画像取得手段21は、記憶手段11に記憶された複数の空撮画像データを、Structure from Motion(SfM)で処理することにより、3次元点群データを取得し、その3次元点群データから、対象地域のオルソ画像と数値表層モデルとを作成したり、記憶手段11に記憶されたLiDARによる計測データから、数値表層モデルを作成したりするよう構成されている。また、画像取得手段21は、記憶手段11から数値標高モデルを取得するよう構成されていてもよい。なお、作成されたオルソ画像は、RGBの3チャンネル画像である。 The main control unit 14 has an image acquisition means 21, a ground height image creation means 22, a pixel extraction means 23, a grayscale image creation means 24, a composite image creation means 25, and a composite image display means 26. The image acquisition means 21 is configured to acquire three-dimensional point cloud data by processing a plurality of aerial image data stored in the storage means 11 using Structure from Motion (SfM) and to create an orthoimage and a digital surface model of the target area from the three-dimensional point cloud data, or to create a digital surface model from LiDAR measurement data stored in the storage means 11. The image acquisition means 21 may also be configured to acquire a digital elevation model from the storage means 11. The created orthoimage is a three-channel image of RGB.

 地上高画像作成手段22は、画像取得手段21で取得された数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成するよう構成されている。地上高画像作成手段22は、例えば、数値表層モデルに基づいて数値標高モデルを作成し、数値表層モデルと、作成された数値標高モデルとの差から、地上高画像を作成してもよい。あるいは、地上高画像作成手段22は、数値表層モデルと、画像取得手段で取得された数値標高モデルとの差から、地上高画像を作成してもよい。これらの場合、作成される地上高画像は、数値高さモデル(DHM;Digital Height Model)に基づく画像となる。 The ground height image creation means 22 is configured to create a ground height image relating to the height of an object on the ground based on the digital surface model acquired by the image acquisition means 21. The ground height image creation means 22 may, for example, create a digital elevation model based on the digital surface model, and create a ground height image from the difference between the digital surface model and the created digital elevation model. Alternatively, the ground height image creation means 22 may create a ground height image from the difference between the digital surface model and the digital elevation model acquired by the image acquisition means. In these cases, the created ground height image is an image based on the digital height model (DHM; Digital Height Model).

 画素抽出手段23は、地上高画像作成手段22で作成された地上高画像から、入力手段12で入力された所定の閾値以上の地上高を有する画素を抽出するよう構成されている。 The pixel extraction means 23 is configured to extract pixels having a ground height equal to or greater than a predetermined threshold input by the input means 12 from the ground height image created by the ground height image creation means 22.

 濃淡画像作成手段24は、地上高画像作成手段22で作成された地上高画像のうち、画素抽出手段23で抽出された各画素の濃淡値を、次の(1)および(2)により設定し、それぞれの濃淡画像を作成するよう構成されている。
 (1)画素抽出手段23で抽出された各画素が白色になるよう、それらの各画素の濃淡値を一定値に設定する。
 (2)画素抽出手段23で抽出された各画素の濃淡値を、対応する地上高を所定の単調増加関数または単調減少関数で変換した値に設定する。
The shading image creation means 24 is configured to set the shading value of each pixel extracted by the pixel extraction means 23 from the ground height image created by the ground height image creation means 22 according to the following (1) and (2), and to create each shading image.
(1) The shading value of each pixel extracted by the pixel extracting means 23 is set to a constant value so that each pixel becomes white.
(2) The gray value of each pixel extracted by the pixel extracting means 23 is set to a value obtained by converting the corresponding ground height using a predetermined monotonically increasing or decreasing function.

 合成画像作成手段25は、入力手段12で入力された選択に基づいて、濃淡画像作成手段24で作成された(1)の濃淡画像または(2)の濃淡画像を、画像取得手段21で作成されたオルソ画像に重畳して、合成画像を作成するよう構成されている。合成画像表示手段26は、合成画像作成手段25で作成された合成画像を、表示手段13で表示するよう構成されている。 The composite image creation means 25 is configured to create a composite image by superimposing the grayscale image (1) or the grayscale image (2) created by the grayscale image creation means 24 on the orthoimage created by the image acquisition means 21 based on the selection input by the input means 12. The composite image display means 26 is configured to display the composite image created by the composite image creation means 25 on the display means 13.

 本発明の実施の形態の地表面合成画像作成システム10では、画素抽出手段23で抽出されなかった各画素を黒色(画素値をゼロ)とし、画像取得手段21で作成されたオルソ画像の濃淡値がそのまま合成画像の濃淡値になるよう構成されている。なお、(1)の濃淡画像を作成する際、画素抽出手段23で抽出された各画素が黒色になり、画素抽出手段23で抽出されなかった各画素が白色となるよう設定してもよい。 In the embodiment of the present invention, the earth's surface composite image creation system 10 is configured so that each pixel not extracted by the pixel extraction means 23 is colored black (pixel value is zero), and the shading value of the orthoimage created by the image acquisition means 21 becomes the shading value of the composite image as is. Note that when creating the shading image of (1), it is also possible to set each pixel extracted by the pixel extraction means 23 to be black, and each pixel not extracted by the pixel extraction means 23 to be white.

 次に、本発明の実施の形態の地表面合成画像作成システム10の処理手順および作用について、図2を参照しながら説明する。
 図2に示すように、UAV(ドローン)を使用する場合には、まず、あらかじめ、対象地域を上空の異なる視点から連続して撮影し、取得した複数の空撮画像データを記憶手段11に記憶させておく(ステップ31)。次に、記憶手段11に記憶された各空撮画像データを、画像取得手段21によりSfMで処理して3次元点群データを作成する(ステップ32)。さらに、画像取得手段21により、その3次元点群データから、対象地域のオルソ画像(ステップ33)と数値表層モデル(DSM画像)(ステップ34)とを作成する。
Next, the processing procedure and operation of the ground surface composite image generating system 10 according to the embodiment of the present invention will be described with reference to FIG.
As shown in Fig. 2, when using a UAV (drone), first, a target area is photographed continuously from different viewpoints in the sky, and the acquired multiple aerial image data are stored in the storage means 11 (step 31). Next, each aerial image data stored in the storage means 11 is processed by the image acquisition means 21 using SfM to create 3D point cloud data (step 32). Furthermore, the image acquisition means 21 creates an orthoimage (step 33) and a digital surface model (DSM image) (step 34) of the target area from the 3D point cloud data.

 地上高画像作成手段22により、その数値表層モデルと、国土地理院などの提供元から提供され、記憶手段11に記憶された数値標高モデル(DEM画像)(ステップ35)とを用いて、DSM画像とDEM画像との差分データ(DSM-DEM)を求め(ステップ36)、地上高画像(DHM)を作成する(ステップ37)。 The ground height image creation means 22 uses the digital surface model and a digital elevation model (DEM image) (step 35) provided by a provider such as the Geospatial Information Authority of Japan and stored in the storage means 11 to obtain differential data (DSM-DEM) between the DSM image and the DEM image (step 36), and creates a ground height image (DHM) (step 37).

 また、UAV(ドローン)を使用せず、空中写真およびLiDARによる計測データを使用する場合には、画像取得手段21により、記憶手段11に記憶された空中写真をオルソ化してオルソ画像を作成する(ステップ33)と共に、記憶手段11に記憶されたLiDARによる計測データから、数値表層モデル(DSM画像)を作成する。地上高画像作成手段22により、その数値表層モデルに対してフィルタリングを行って、建物や樹木などの地上の物体の高さを取り除くことにより、数値標高モデル(DEM画像)を作成し、DSM画像とDEM画像との差分データ(DSM-DEM)を求め(ステップ36)、地上高画像(DHM)を作成する(ステップ37)。ここで、オルソ画像を作成する際に、地上高画像作成手段22で作成されたDEM画像を用いて、空中写真をオルソ化してもよい。なお、対象地域として、ある農村の空中写真の一例を、図3(a)に示す。 In addition, when aerial photographs and LiDAR measurement data are used without using a UAV (drone), the image acquisition means 21 orthorectifies the aerial photographs stored in the storage means 11 to create an orthoimage (step 33), and creates a digital surface model (DSM image) from the LiDAR measurement data stored in the storage means 11. The ground height image creation means 22 filters the digital surface model to remove the heights of objects on the ground such as buildings and trees, creates a digital elevation model (DEM image), obtains difference data (DSM-DEM) between the DSM image and the DEM image (step 36), and creates a ground height image (DHM) (step 37). Here, when creating the orthoimage, the aerial photograph may be orthorectified using the DEM image created by the ground height image creation means 22. An example of an aerial photograph of a rural area is shown in FIG. 3(a) as a target area.

 オルソ画像や、作成したDSM画像、DEM画像、地上高画像等を参考にして、地上高の閾値を設定し、入力手段12からその閾値を入力する(ステップ38)。画素抽出手段23により、地上高画像から、入力された閾値以上の地上高を有する画素を抽出する(ステップ39)。 A ground height threshold is set by referring to the orthoimage, the created DSM image, the DEM image, the ground height image, etc., and the threshold is input from the input means 12 (step 38). The pixel extraction means 23 extracts pixels from the ground height image that have a ground height equal to or greater than the input threshold (step 39).

 濃淡画像作成手段24により、抽出された各画素が白色になるよう、各画素の濃淡値を一定値に設定し、その設定に従って(1)の濃淡画像を作成する(ステップ40)。さらに、濃淡画像作成手段24により、階調変換(コントラスト変換)の手法を用いて、抽出された各画素の濃淡値を、対応する地上高を所定の単調増加関数または単調減少関数で変換した値に設定し、その設定に従って(2)の濃淡画像を作成する(ステップ41)。なお、このとき、画素抽出手段23で抽出されなかった各画素は、黒色(画素値をゼロ)にしておく(二値化)。図3(a)の対象地域での(1)の濃淡画像および(2)の濃淡画像の一例を、それぞれ図3(b)および(c)に示す。図3(b)および(c)では、生け垣などの植栽や家屋よりも高く、屋敷林よりも低い地上高を、閾値として設定している。なお、図3(b)および(c)は、空中写真およびLiDARによる計測データを使用したときの画像である。 The grayscale image creation means 24 sets the grayscale value of each pixel to a constant value so that each extracted pixel becomes white, and creates a grayscale image (1) according to the setting (step 40). Furthermore, the grayscale image creation means 24 uses a gradation conversion (contrast conversion) technique to set the grayscale value of each extracted pixel to a value obtained by converting the corresponding ground height with a predetermined monotonically increasing or decreasing function, and creates a grayscale image (2) according to the setting (step 41). At this time, each pixel not extracted by the pixel extraction means 23 is set to black (pixel value is zero) (binarization). Examples of the grayscale image (1) and the grayscale image (2) in the target area of Figure 3(a) are shown in Figures 3(b) and (c), respectively. In Figures 3(b) and (c), a threshold value is set to a ground height higher than plants such as hedges and houses and lower than a residential forest. Note that Figures 3(b) and (c) are images taken using aerial photographs and LiDAR measurement data.

 なお、(2)の濃淡画像を作成するとき、地上高を濃淡値に変換するための単調増加関数または単調減少関数があらかじめ設定されていてもよく、どのような単調増加関数または単調減少関数を使用するかを、入力手段12から指示するようになっていてもよい。また、単調増加関数および単調減少関数は、線形関数であっても非線形関数であってもよく、それらを組み合わせた関数であってもよい。 When creating the grayscale image (2), a monotonically increasing function or a monotonically decreasing function for converting the ground height into a grayscale value may be preset, and the type of monotonically increasing function or monotonically decreasing function to be used may be specified from the input means 12. Furthermore, the monotonically increasing function and the monotonically decreasing function may be a linear function or a nonlinear function, or may be a combination of these.

 作成された(1)の濃淡画像および(2)の濃淡画像を参照するなどして、(1)の濃淡画像または(2)の濃淡画像を選択し、その選択を入力手段12から入力する(ステップ42)。合成画像作成手段25により、入力手段12からの入力で選択された(1)の濃淡画像または(2)の濃淡画像を、オルソ画像に重畳して合成画像を作成する(ステップ43)。合成画像表示手段26により、合成画像作成手段25で作成された合成画像を表示手段13に送り、表示手段13で合成画像を表示する(ステップ44)。これにより、表示された合成画像を用いて、植生等の地表面の利用状況を把握することができる。 By referring to the created grayscale image (1) and grayscale image (2), the user selects grayscale image (1) or grayscale image (2), and inputs the selection from input means 12 (step 42). The composite image creation means 25 creates a composite image by superimposing the grayscale image (1) or grayscale image (2) selected by input from input means 12 on the orthoimage (step 43). The composite image display means 26 sends the composite image created by the composite image creation means 25 to display means 13, and displays the composite image on display means 13 (step 44). This makes it possible to grasp the utilization status of the ground surface, such as vegetation, using the displayed composite image.

 図3(a)の対象地域での合成画像の一例を、図3(d)に示す。図3(d)の合成画像は、(1)の濃淡画像をオルソ画像に重畳したものである。このような(1)の濃淡画像をオルソ画像に重畳して作成された合成画像によれば、所定の閾値以上の地上高の部分が白色になるため、その閾値より高い部分を容易に抽出することができる。このため、例えば、農村などの地域を対象地域としたとき、上空から撮影された画像(例えば、図3(a)の画像)では、家屋より低い生け垣などの植栽と、家屋よりも高く成長した屋敷林とを区別するのは非常に難しいが、所定の閾値を家屋の高さより高く設定して得られた合成画像では、屋敷林のみを容易に抽出することができる。例えば、図3(d)の合成画像からは、白色の部分を屋敷林として容易に抽出することができる。 An example of a composite image of the target area of FIG. 3(a) is shown in FIG. 3(d). The composite image of FIG. 3(d) is obtained by superimposing the grayscale image of (1) on the ortho-image. In such a composite image created by superimposing the grayscale image of (1) on the ortho-image, the parts above a certain threshold are white, so that the parts higher than the threshold can be easily extracted. For example, when the target area is a rural area, it is very difficult to distinguish between hedges and other plantings that are lower than the houses and the residential forests that have grown higher than the houses in an image taken from the sky (for example, the image of FIG. 3(a)). However, in a composite image obtained by setting the certain threshold higher than the height of the houses, only the residential forests can be easily extracted. For example, the white parts can be easily extracted as the residential forests from the composite image of FIG. 3(d).

 また、(2)の濃淡画像をオルソ画像に重畳して作成された合成画像によれば、所定の閾値以上の地上高の範囲を階調変換して、合成画像の濃淡に反映させるため、作成された合成画像から高さ情報を把握しやすい。このため、(2)の濃淡画像をオルソ画像に重畳して作成された合成画像からも、上空からの外観だけでは把握が難しい植生等の違いを容易に抽出することができる。 In addition, in the composite image created by superimposing the grayscale image (2) on the orthoimage, the range above ground level that is above a certain threshold is converted into gradations and reflected in the grayscale of the composite image, making it easy to grasp height information from the composite image. Therefore, even in the composite image created by superimposing the grayscale image (2) on the orthoimage, differences in vegetation, etc. that are difficult to grasp from the appearance alone from above can be easily extracted.

 本発明の実施の形態の地表面合成画像作成システム10は、地上高に基づいて対象地域のオルソ画像の濃淡を設定することにより、高さ情報を反映した合成画像を容易に得ることができる。また、その合成画像を利用することにより、上空からの外観だけでなく、高さの差異も含めて判断することができ、植生等の地表面の利用状況を比較的容易に把握することができる。また、オルソ画像の解像度が低い場合であっても、植生等の抽出精度を高めることができる。 The earth surface composite image creation system 10 according to the embodiment of the present invention can easily obtain a composite image that reflects height information by setting the shading of the ortho-image of the target area based on the height above ground. Furthermore, by using this composite image, it is possible to determine not only the appearance from the sky, but also differences in height, making it relatively easy to grasp the utilization status of the earth surface, such as vegetation. Furthermore, even if the resolution of the ortho-image is low, the accuracy of extracting vegetation, etc. can be improved.

 本発明の実施の形態の地表面合成画像作成システム10は、オルソ画像の濃淡に、高さ情報を反映させた合成画像を作成するため、その合成画像を、RGBの3チャンネル画像として得ることができる。このため、3チャンネル画像を、4チャンネル以上の多チャンネルの画像に変換したり、画像処理プログラムを4チャンネル以上の多チャンネル用に改変したりする必要がなく、汎用性が高い。 The earth surface composite image creation system 10 according to the embodiment of the present invention creates a composite image that reflects height information in the shading of the ortho-image, and can obtain the composite image as a three-channel image of RGB. This means that there is no need to convert a three-channel image into an image with four or more channels, or to modify an image processing program for use with four or more channels, making it highly versatile.

 なお、本発明の実施の形態の地表面合成画像作成システム10で、作成された合成画像は、植生等の地表面の利用状況を把握するための地表面利用状況推定システムを構築するために、その合成画像から把握された植生等の地表面の利用状況のデータと共に、教師データとして機械学習に使用されてもよい。また、そのようにして構築された地表面利用状況推定システムを用いて、新たに作成された合成画像から、植生等の地表面の利用状況を把握してもよい。 The composite image created by the ground surface composite image creation system 10 according to the embodiment of the present invention may be used as training data for machine learning together with data on the ground surface utilization status, such as vegetation, as understood from the composite image, in order to construct a ground surface utilization status estimation system for grasping the utilization status of the ground surface, such as vegetation. Furthermore, the ground surface utilization status, such as vegetation, may be grasped from the newly created composite image using the ground surface utilization status estimation system constructed in this manner.

 本発明の実施の形態の地表面合成画像作成システム10を使用して、複数の地域について合成画像を作成した。合成画像を複数に分割することによって得た画像を、トレーニングデータおよびテストデータに分け、トレーニングデータ(教師データ;実際の屋敷林の分布)を用いて機械学習を行い、屋敷林の分布状況の推定システムを構築した。次に、その構築されたシステムに対して、テストデータを用いて屋敷林抽出の精度評価を行った。精度評価には、Dice係数を用いた。なお、比較例として、本発明の実施の形態の地表面合成画像作成システム10を使用せずに、オルソ画像のみを複数に分割することによって得た画像をトレーニングデータおよびテストデータとし、機械学習および精度評価を行った。  A synthetic image was created for a number of regions using the earth's surface synthetic image creation system 10 according to an embodiment of the present invention. Images obtained by dividing a synthetic image into multiple parts were divided into training data and test data, and machine learning was performed using the training data (teacher data; actual distribution of compound forests) to construct an estimation system for the distribution of compound forests. Next, the accuracy of compound forest extraction was evaluated for the constructed system using the test data. The Dice coefficient was used for the accuracy evaluation. As a comparative example, machine learning and accuracy evaluation were performed using images obtained by dividing only the orthoimage into multiple parts as training data and test data without using the earth's surface synthetic image creation system 10 according to an embodiment of the present invention.

 その結果、オルソ画像のみを用いて屋敷林の抽出を行った比較例でのDice係数は、0.64であった。これに対し、(1)の濃淡画像を用いた合成画像で屋敷林の抽出を行った場合のDice係数は、0.76であった。また、(2)の濃淡画像を用いた合成画像で屋敷林の抽出を行った場合のDice係数は、0.80であった。なお、(2)の濃淡画像を作成する際には、階調変換として線形変換を用いている。これらの結果から、合成画像を用いることにより、抽出精度を高めることができるといえる。 As a result, the Dice coefficient in the comparative example where the compound grove was extracted using only the orthoimage was 0.64. In contrast, the Dice coefficient was 0.76 when the compound grove was extracted using the composite image made up of the grayscale image (1). The Dice coefficient was 0.80 when the compound grove was extracted using the composite image made up of the grayscale image (2). It should be noted that when creating the grayscale image (2), a linear transformation was used as the tone transformation. From these results, it can be said that the use of composite images can improve extraction accuracy.

 なお、本発明の実施の形態の地表面合成画像作成プログラムは、例えば、通信回線を介して外部から提供されてもよく、CD(CD-ROM、CD-R、CD-RWなど)、DVD(DVD-ROM、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RWなど)、USBメモリ等のコンピュータ読み取り可能な記録媒体に記録された形態で提供されてもよい。これらの場合、コンピュータは、その通信回線や記録媒体から地表面合成画像作成プログラムを読み取ってコンピュータの内部記憶装置に転送し格納して用いることができる。また、本発明の実施の形態の地表面合成画像作成プログラムを、例えば、磁気ディスク、光ディスク、光磁気ディスク等の記憶装置(記録媒体)に記録しておき、その記憶装置から通信回線を介してコンピュータに提供するようになっていてもよい。 The earth surface composite image creation program of the embodiment of the present invention may be provided from the outside via a communication line, for example, or may be provided in a form recorded on a computer-readable recording medium such as a CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD-ROM, DVD-RAM, DVD-R, DVD-RW, DVD+R, DVD+RW, etc.), USB memory, etc. In these cases, the computer can read the earth surface composite image creation program from the communication line or recording medium, transfer it to the computer's internal storage device, and store it for use. The earth surface composite image creation program of the embodiment of the present invention may also be recorded in a storage device (recording medium) such as a magnetic disk, optical disk, or magneto-optical disk, and provided to the computer from the storage device via a communication line.

 ここで、コンピュータとは、ハードウェアとOS(オペレーティングシステム)とを含む概念であり、OSの制御の下で動作するハードウェアを意味している。また、OSが不要で、アプリケーションプログラム単独でハードウェアを動作させるような場合には、そのハードウェア自体がコンピュータに相当する。ハードウェアは、少なくとも、CPU等のマイクロプロセッサと、内部記憶装置や記録媒体に記録されたコンピュータプログラムを読み取るための手段とを備えている。 Here, a computer is a concept that includes hardware and an OS (operating system), and refers to hardware that operates under the control of the OS. Also, in cases where an OS is not required and the hardware is operated by an application program alone, the hardware itself corresponds to a computer. The hardware is equipped with at least a microprocessor such as a CPU, and a means for reading computer programs recorded on an internal storage device or recording medium.

 本発明の実施の形態の地表面合成画像作成プログラムとしてのアプリケーションプログラムは、上述のようなコンピュータに実現させるプログラムコードを含んでいる。また、その機能の一部は、アプリケーションプログラムではなくOSによって実現されてもよい。 The application program as the earth surface composite image creation program of the embodiment of the present invention includes program code that is executed by the computer as described above. In addition, some of the functions may be executed by the OS instead of the application program.

 10 地表面合成画像作成システム
 11 記憶手段
 12 入力手段
 13 表示手段
 14 主制御部
  21 画像取得手段
  22 地上高画像作成手段
  23 画素抽出手段
  24 濃淡画像作成手段
  25 合成画像作成手段
  26 合成画像表示手段

 
REFERENCE SIGNS LIST 10 Earth's surface composite image creation system 11 Storage means 12 Input means 13 Display means 14 Main control unit 21 Image acquisition means 22 Ground height image creation means 23 Pixel extraction means 24 Grayscale image creation means 25 Composite image creation means 26 Composite image display means

Claims (10)

 対象地域のオルソ画像と数値表層モデル(DSM;Digital Surface Model)とを取得する画像取得ステップと、
 前記画像取得ステップで取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成ステップと、
 前記地上高画像作成ステップで作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出ステップと、
 前記画素抽出ステップで抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成ステップと、
 前記濃淡画像作成ステップで作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成ステップとを、
 有することを特徴とする地表面合成画像作成方法。
an image acquisition step for acquiring an orthoimage and a digital surface model (DSM) of the area of interest;
a ground height image creation step of creating a ground height image relating to the height of an object on the ground based on the digital surface model acquired in the image acquisition step;
a pixel extraction step of extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created in the ground height image creation step;
a grayscale image creating step of creating a grayscale image in which the grayscale value of each pixel extracted in the pixel extracting step is set based on the corresponding ground height or set to a constant value;
a composite image creation step of creating a composite image by superimposing the grayscale image created in the grayscale image creation step on the orthoimage;
A method for creating a composite image of the earth's surface, comprising:
 前記濃淡画像作成ステップは、前記画素抽出ステップで抽出された各画素が白色になるよう、各濃淡値を一定値に設定することを特徴とする請求項1記載の地表面合成画像作成方法。 The method for creating a composite earth surface image according to claim 1, characterized in that the grayscale image creation step sets each grayscale value to a constant value so that each pixel extracted in the pixel extraction step becomes white.  前記濃淡画像作成ステップは、前記画素抽出ステップで抽出された各画素の濃淡値を、対応する地上高を所定の単調増加関数または単調減少関数で変換した値に設定することを特徴とする請求項1記載の地表面合成画像作成方法。 The method for creating a synthetic earth surface image according to claim 1, characterized in that the grayscale image creation step sets the grayscale value of each pixel extracted in the pixel extraction step to a value obtained by converting the corresponding ground height using a predetermined monotonically increasing or decreasing function.  前記地上高画像作成ステップは、前記数値表層モデルに基づいて数値標高モデル(DEM;Digital Elevation Model)を作成し、前記数値表層モデルと、作成された前記数値標高モデルとの差から、前記地上高画像を作成することを特徴とする請求項1記載の地表面合成画像作成方法。 The method for creating a synthetic ground surface image according to claim 1, characterized in that the ground height image creation step creates a digital elevation model (DEM; Digital Elevation Model) based on the digital surface model, and creates the ground height image from the difference between the digital surface model and the created digital elevation model.  前記画像取得ステップは、前記対象地域の数値標高モデルも取得し、
 前記地上高画像作成ステップは、前記数値表層モデルと、前記画像取得ステップで取得された前記数値標高モデルとの差から、前記地上高画像を作成することを
 特徴とする請求項1記載の地表面合成画像作成方法。
The image capturing step also captures a digital elevation model of the area of interest;
2. The method for generating a synthetic earth surface image according to claim 1, wherein the ground height image generating step generates the ground height image from a difference between the digital surface model and the digital elevation model acquired in the image acquiring step.
 前記画像取得ステップは、前記対象地域を上空から撮影した画像データから3次元点群データを取得し、取得した前記3次元点群データから前記オルソ画像と前記数値表層モデルとを作成することを特徴とする請求項1乃至5のいずれか1項に記載の地表面合成画像作成方法。 The method for creating a synthetic earth surface image according to any one of claims 1 to 5, characterized in that the image acquisition step includes acquiring three-dimensional point cloud data from image data obtained by photographing the target area from the air, and creating the orthoimage and the digital surface model from the acquired three-dimensional point cloud data.  前記画像取得ステップは、前記対象地域を上空から撮影した空中写真と、レーザ測距計(LiDAR)で前記対象地域を上空から計測した計測データとに基づいて、前記オルソ画像と前記数値表層モデルとを作成することを特徴とする請求項1乃至5のいずれか1項に記載の地表面合成画像作成方法。 The method for creating a synthetic earth surface image according to any one of claims 1 to 5, characterized in that the image acquisition step creates the orthoimage and the digital surface model based on an aerial photograph taken of the target area from above and measurement data obtained by measuring the target area from above using a laser distance measuring device (LiDAR).  前記合成画像作成ステップで作成された前記合成画像を表示する合成画像表示ステップを有することを特徴とする請求項1乃至5のいずれか1項に記載の地表面合成画像作成方法。 The method for creating a composite image of the earth's surface according to any one of claims 1 to 5, further comprising a composite image display step for displaying the composite image created in the composite image creation step.  対象地域のオルソ画像と数値表層モデルとを取得する画像取得手段と、
 前記画像取得手段で取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成手段と、
 前記地上高画像作成手段で作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出手段と、
 前記画素抽出手段で抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成手段と、
 前記濃淡画像作成手段で作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成手段とを、
 有することを特徴とする地表面合成画像作成システム。
image acquisition means for acquiring an orthoimage and a digital surface model of a target area;
a ground height image generating means for generating a ground height image relating to the height of an object on the ground based on the digital surface model acquired by the image acquiring means;
a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means;
a grayscale image creating means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extracting means is set based on the corresponding ground height or set to a constant value;
a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the orthoimage;
A ground surface synthetic image creation system comprising:
 コンピュータを、
 対象地域のオルソ画像と数値表層モデルとを取得する画像取得手段、
 前記画像取得手段で取得された前記数値表層モデルに基づいて、地上の物体の高さに関する地上高画像を作成する地上高画像作成手段、
 前記地上高画像作成手段で作成された前記地上高画像から、所定の閾値以上の地上高を有する画素を抽出する画素抽出手段、
 前記画素抽出手段で抽出された各画素の濃淡値を、対応する地上高に基づいて設定または一定値に設定した濃淡画像を作成する濃淡画像作成手段、
 前記濃淡画像作成手段で作成された前記濃淡画像を、前記オルソ画像に重畳して合成画像を作成する合成画像作成手段、
 として機能させることを特徴とする地表面合成画像作成プログラム。
Computer,
image acquisition means for acquiring an orthoimage and a digital surface model of a target area;
a ground height image creation means for creating a ground height image relating to the height of an object on the ground based on the digital surface model acquired by the image acquisition means;
a pixel extraction means for extracting pixels having a ground height equal to or greater than a predetermined threshold from the ground height image created by the ground height image creation means;
a grayscale image creating means for creating a grayscale image in which the grayscale value of each pixel extracted by the pixel extracting means is set based on the corresponding ground height or set to a constant value;
a composite image creation means for creating a composite image by superimposing the grayscale image created by the grayscale image creation means on the orthoimage;
A ground surface composite image creation program that functions as follows.
PCT/JP2024/017995 2023-06-21 2024-05-15 Ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program WO2024262203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023101862 2023-06-21
JP2023-101862 2023-06-21

Publications (1)

Publication Number Publication Date
WO2024262203A1 true WO2024262203A1 (en) 2024-12-26

Family

ID=93935160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/017995 WO2024262203A1 (en) 2023-06-21 2024-05-15 Ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program

Country Status (1)

Country Link
WO (1) WO2024262203A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Feature environment status providing method and program thereof
JP2008203991A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Image processing device
JP2016170308A (en) * 2015-03-13 2016-09-23 株式会社ゼンリンデータコム Information processing apparatus, map display system, and program
JP2018005846A (en) * 2016-07-08 2018-01-11 株式会社パスコ Terrain visualization device, terrain visualization method, and program
JP2021033899A (en) * 2019-08-29 2021-03-01 office yamanaka合同会社 Composite image generation device, composite image generation program and composite image generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252529A (en) * 2005-02-09 2006-09-21 Asia Air Survey Co Ltd Feature environment status providing method and program thereof
JP2008203991A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Image processing device
JP2016170308A (en) * 2015-03-13 2016-09-23 株式会社ゼンリンデータコム Information processing apparatus, map display system, and program
JP2018005846A (en) * 2016-07-08 2018-01-11 株式会社パスコ Terrain visualization device, terrain visualization method, and program
JP2021033899A (en) * 2019-08-29 2021-03-01 office yamanaka合同会社 Composite image generation device, composite image generation program and composite image generation method

Similar Documents

Publication Publication Date Title
Campana Drones in archaeology. State‐of‐the‐art and future perspectives
US8179393B2 (en) Fusion of a 2D electro-optical image and 3D point cloud data for scene interpretation and registration performance assessment
Baltsavias et al. High‐quality image matching and automated generation of 3D tree models
Voltersen et al. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level
Zhang et al. Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery
Li et al. Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach
Díaz et al. Customizing unmanned aircraft systems to reduce forest inventory costs: can oblique images substantially improve the 3D reconstruction of the canopy?
CN115760885B (en) High-closure-degree wetland forest parameter extraction method based on consumer-level unmanned aerial vehicle image
CN105139401A (en) Depth credibility assessment method for depth map
US8139863B1 (en) System for capturing, characterizing and visualizing lidar and generic image data
Gonzalez Musso et al. Applying unmanned aerial vehicles (UAVs) to map shrubland structural attributes in northern Patagonia, Argentina
Yin et al. Individual tree parameters estimation for Chinese fir (Cunninghamia lanceolate (Lamb.) hook) plantations of south China using UAV oblique photography: Possibilities and challenges
Congalton Remote sensing: an overview
JP2020091640A (en) Object classification system, learning system, learning data generation method, learned model generation method, learned model, discrimination device, discrimination method, and computer program
CN114078104B (en) A method for automatically splicing and fusing concrete cracks
WO2024262203A1 (en) Ground surface composite image creation method, ground surface composite image creation system, and ground surface composite image creation program
Maravelakis et al. Automatic building identification and features extraction from aerial images: Application on the historic 1866 square of Chania Greece
Rizaev et al. A technique to increase the efficiency of artefacts identification in lidar-based canopy height models
JP6207968B2 (en) Forest phase analysis apparatus, forest phase analysis method and program
Adamiak et al. Generative adversarial approach to urban areas NDVI estimation: A case study of Łódź, Poland
JP6200821B2 (en) Forest phase analysis apparatus, forest phase analysis method and program
Das Land use/Land cover change detection: An object oriented approach, Münster, Germany
Templin Mapping buildings and cities
Kazantsev et al. Prospects of using unmanned aerial vehicle for assessing climate-making properties of park tree species using Kiev AV Fomin Botanical Garden as an example
Chiappini et al. Comparing the accuracy of 3D urban olive tree models detected by smartphone using LiDAR sensor, photogrammetry and NeRF: a case study of’Ascolana Tenera’in Italy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24825612

Country of ref document: EP

Kind code of ref document: A1