[go: up one dir, main page]

WO2024262121A1 - Picking system - Google Patents

Picking system Download PDF

Info

Publication number
WO2024262121A1
WO2024262121A1 PCT/JP2024/012823 JP2024012823W WO2024262121A1 WO 2024262121 A1 WO2024262121 A1 WO 2024262121A1 JP 2024012823 W JP2024012823 W JP 2024012823W WO 2024262121 A1 WO2024262121 A1 WO 2024262121A1
Authority
WO
WIPO (PCT)
Prior art keywords
automated warehouse
product
picking
controller
automated
Prior art date
Application number
PCT/JP2024/012823
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 中曽根
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2024262121A1 publication Critical patent/WO2024262121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • This disclosure relates to a picking system.
  • a system includes multiple automated warehouses and transports items stored in the automated warehouses to a picking station.
  • trays containing multiple items are stored on the storage shelves of a first automated warehouse, and individual items or collections of multiple items are stored on the storage shelves of a second automated warehouse.
  • Trays or items removed from each of the first and second automated warehouses are transported to a picking station near an automatic sorting device.
  • a worker removes the necessary items and transfers them to the automatic sorting device.
  • the products sorted by the automatic sorting device are packed into boxes by a worker.
  • This disclosure describes a picking system that can increase the number of items sent to a picking station for a wide variety of orders.
  • a picking system includes a first automated warehouse that stores products in case units, a conversion station connected to the first automated warehouse and for transferring case-unit inventory products into containers, a second automated warehouse connected to the conversion station, a third automated warehouse connected to each of the conversion station and the second automated warehouse, a picking station connected to the third automated warehouse, and a controller that receives orders and manages the movement of products.
  • the products include a first product that is picked frequently and a second product that is picked less frequently than the first product.
  • the controller moves the first product directly from the conversion station to the third automated warehouse for storage, moves the second product from the conversion station to the second automated warehouse for storage, moves the second product from the second automated warehouse to the third automated warehouse based on the order, and continuously moves the first product and the second product included in the order from the third automated warehouse to the picking station.
  • a controller combines multiple automated warehouses and manages the flow of goods according to picking frequency.
  • the first goods are moved directly from the conversion station to the third automated warehouse, while the second goods are temporarily stored in the second automated warehouse and then moved to the third automated warehouse based on the order. This makes it possible to increase the quantity shipped to the picking station even for large orders consisting of a wide variety of goods.
  • the controller grasps the shipping quantity of the second product included in the order and the number of the second product stored in the second automated warehouse. If the controller determines that the shipping quantity of the second product is large compared to the number stored, it may move the second product stored in the first automated warehouse in case units to the conversion station, and then move the second product transferred to a container directly to the third automated warehouse. In this case, it is possible to respond to emergency delivery of the second product. For example, by directly moving the second product included in the next batch of orders from the conversion station, it is possible to shorten the time required to collect the second product in the next batch at the third automated warehouse.
  • the controller executes multiple batches in sequence and keeps track of the orders included in the next batch scheduled after the current batch.
  • the controller may move a first product that is not included in the next batch from the third automated warehouse to the second automated warehouse while the current batch is being executed. In this case, even if it is a first product, if it will not be shipped in the next batch, it will be moved to the second automated warehouse.
  • the free space in the third automated warehouse can be increased, and the margin for handling a variety of products can be increased. Inventory optimization is achieved.
  • the third automated warehouse is, for example, an automated warehouse group consisting of multiple automated warehouse units.
  • the controller for example, executes multiple batches in sequence and grasps the orders included in the next batch scheduled after the current batch.
  • the controller may move a second product stored in the automated warehouse unit and not included in the next batch from the third automated warehouse to the second automated warehouse while the current batch is being executed.
  • the second product is not removed from the automated warehouse unit in the next batch, it is moved to the second automated warehouse.
  • the free space in the third automated warehouse can be increased, and the margin for handling a variety of products can be increased. Inventory optimization is achieved.
  • the third automated warehouse is, for example, an automated warehouse group consisting of multiple automated warehouse units.
  • the controller for example, executes multiple batches in sequence and grasps the orders included in the next batch scheduled after the current batch.
  • the controller may move a second product stored in the automated warehouse unit during execution of the current batch and not to be delivered in the next batch to another automated warehouse unit that can deliver the second product in the next batch.
  • the second product is not delivered from the automated warehouse unit in the next batch, but is moved to another automated warehouse unit that is closer to the scheduled picking station, for example.
  • Inventory is optimized.
  • FIG. 1 is a block diagram showing the overall configuration of a picking system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of a flow of products (containers) in the picking system of FIG.
  • the picking system S is a system that is installed in, for example, a distribution center.
  • the picking system S stores a wide variety of products (articles) in multiple automated warehouses, and moves products corresponding to orders from the multiple automated warehouses to a picking station ST by sequentially executing multiple batches.
  • the number of areas between the multiple automated warehouses where workers need to be involved is reduced, and movement control between the automated warehouses is performed by a controller 5.
  • the picking system S excels in the number of items delivered to the picking station ST (the number of items delivered per unit time) for a wide variety of orders.
  • the picking system S comprises a first automated warehouse 1, a conversion station 10, a second automated warehouse 20, a third automated warehouse 30, and a picking station ST. There may be one each of the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, and the third automated warehouse 30, but as appropriate, at least one of these may be provided multiple times.
  • the picking system S comprises three different types (three formats) of automated warehouses consisting of the first automated warehouse 1, the second automated warehouse 20, and the third automated warehouse 30.
  • the first automated warehouse 1 is connected to the receiving station of the center, and stores many types of products in case units. When products are stored in case units, only one type of product is stored in one case. A case is also called, for example, an outer box or outer carton.
  • the first automated warehouse 1 is a case automated warehouse.
  • the first automated warehouse 1 is an automated warehouse using a stacker crane system, and is equipped with well-known components such as storage shelves, stacker cranes, and conveyors related to retrieval and entry. As an example, the first automated warehouse 1 has 30 to 40 lines.
  • a piece of equipment is "connected" to another piece of equipment, it means that the equipment is equipped with a configuration that allows products (goods) to be moved (or transported) between those pieces of equipment.
  • the conversion station 10 is connected to the first automated warehouse 1 via the moving path T1.
  • the conversion station 10 is a station for transferring case-based inventory items into containers smaller than the cases.
  • the conversion station 10 is a container transfer station.
  • the containers used in the conversion station 10 are, for example, folding containers and other collapsible containers, also called returnable containers.
  • In the picking system S a large number of containers are used to transfer (transport) a wide variety of products, and are circulated by moving along paths connecting each automated warehouse and station.
  • the conversion station 10 has, as an example, about 25 to 35 individual stations. At each individual station, for example, a worker removes products from the case and transfers them into containers. Only one type of product is placed in one container.
  • the conversion station 10 includes conveyors related to transport, a display device provided for worker work, a work space, and the like. Note that an automatic conversion station having multiple container conversion devices may be adopted as the conversion station 10.
  • the second automated warehouse 20 is connected to the conversion station 10 via the movement path T2.
  • the second automated warehouse 20 is a double-deep type shuttle type automated warehouse.
  • the second automated warehouse 20 is equipped with a known configuration such as storage shelves, multiple shuttle carts, and conveyors related to retrieval and storage.
  • the second automated warehouse 20 has 20 to 30 series, as an example.
  • double-deep type automated warehouse two loads can be placed in the depth direction on each shelf.
  • double-deep type automated warehouses have a relatively poor retrieval capacity, they have the advantage of being able to store a large number of items. In the picking system S, this format is adopted for the mass storage of low-ranked items, which will be described later.
  • the third automated warehouse 30 is connected to the conversion station 10 and the second automated warehouse 20 via the movement paths T3a and T3b.
  • the third automated warehouse 30 is, for example, an automated warehouse group consisting of multiple automated warehouse units 31 to 36.
  • Each automated warehouse unit has, for example, four shuttle-type automated warehouses.
  • Each shuttle-type automated warehouse includes a storage shelf and a shuttle cart that moves back and forth on each level.
  • a movement path T4 is provided between the second automated warehouse 20 and the third automated warehouse 30.
  • the movement path T3b is a path for moving goods (containers) from the second automated warehouse 20 to the third automated warehouse 30, and the movement path T4 is a path for moving goods (containers) from the third automated warehouse 30 (any of the automated warehouse units) to the second automated warehouse 20.
  • the forward movement path T3b and the reverse movement path T4 may be shared.
  • the number of shuttle-type automated warehouses in the third automated warehouse 30 is set to a multiple of four, for example.
  • the third automated warehouse 30 has, for example, 24 to 36 lines in total.
  • One automated warehouse unit has four shuttle-type automated warehouses that are grouped together as one picking unit. Each picking unit is responsible for picking one small batch (a batch that is included in a large batch described below and is a smaller unit than the large batch). For example, if the third automated warehouse 30 has a total of 24 lines, six picking units (automatic warehouse units 31 to 36) make up the third automated warehouse 30. If the third automated warehouse 30 has a total of 36 lines, nine picking units make up the third automated warehouse 30.
  • each automated warehouse unit of the third automated warehouse 30 temporarily stores low-ranked items that are to be picked in the currently executed batch, i.e., the next batch scheduled after the current batch.
  • the storage and movement control of products in the third automated warehouse 30 will be described later.
  • the picking station ST is connected to the third automated warehouse 30. Each series of shuttle-type automated warehouses is connected to the picking station ST via an individual route.
  • the picking station ST is made up of multiple order pick stations PS1 to PS8, etc. As an example, the picking station ST has approximately 60 to 70 order pick stations.
  • a worker picks products from containers in the order quantity indicated in each order, and packs them into boxes, etc.
  • the picking station ST includes a display device provided for the worker's picking work, a picking work space, conveyors, etc.
  • the movement paths T1, T2, T3a, T3b, and T4 are configured with known transport equipment including conveyors and/or transport carts.
  • the multiple paths between the third automated warehouse 30 and the order pick station of the picking station ST are shown as movement paths T5 and T6 collectively in FIG. 2.
  • the forward movement path and the reverse movement path may also be made common.
  • the picking system S may be provided with any other necessary components in addition to those shown in FIG. 1.
  • the picking system S may be provided with a pallet automated warehouse connected to the first automated warehouse 1.
  • a container sequencer may be provided between the picking station ST and the shipping station of the center.
  • a case movement path for shipping cases may be provided between the first automated warehouse 1 and the shipping station of the center.
  • the picking system S is equipped with a controller 5 that receives orders from a higher-level controller and manages the movement of various types of products based on the received orders.
  • the controller 5 executes various types of movement control and other equipment control in the picking system S.
  • the controller 5 is configured to include a processor such as a CPU, a RAM, and a ROM.
  • the controller 5 can communicate information with each of the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, the third automated warehouse 30, and the picking station ST, and can transmit control signals to each of them. Note that only one controller 5 is shown in FIG. 1, but the functions of the controller 5 do not need to be concentrated in one place (in one device).
  • controller 5 may be distributed (shared) to individual controllers provided in, for example, the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, the third automated warehouse 30, and the picking station ST. In that case, communication (transmission and reception) of information and commands between each controller is necessary, but such a control unit (control function) can be constructed appropriately by a person skilled in the art of this technical field.
  • the controller 5 executes multiple large batches in sequence in the picking system S according to a predetermined schedule for one day.
  • the picking system S many types of products are classified into high-ranked products (first products) that are picked frequently, and low-ranked products (second products) that are picked less frequently than the high-ranked products.
  • Some index or threshold may be used to determine whether a high-ranked product has a "high picking frequency," or the high-ranked product may be set manually by a user or worker.
  • the picking frequency of high-ranked products is higher than the picking frequency of low-ranked products.
  • the classification and setting of high-ranked products and low-ranked products may be performed appropriately, but overall, the picking frequency of high-ranked products tends to be higher than the picking frequency of low-ranked products.
  • the controller 5 stores identification information for a certain type of product as to whether it is a high-ranked product or a low-ranked product.
  • the controller 5 identifies all products as being high-ranked or low-ranked products.
  • the controller 5 moves the goods to the first automated warehouse 1 for storage, regardless of whether the goods are high-ranked or low-ranked goods.
  • the controller 5 moves the goods to the conversion station 10.
  • inventory goods in cases are transferred to containers.
  • the controller 5 moves high-ranked goods directly from the conversion station 10 to the third automated warehouse 30 for storage.
  • the controller 5 also moves low-ranked goods from the conversion station 10 to the second automated warehouse 20 for storage.
  • a storage capacity equivalent to 1.5 to 2 large batches of low-ranked goods is secured.
  • the controller 5 starts the execution of one large batch (current batch).
  • the controller 5 first imports data and starts the batch.
  • the controller 5 then performs regular replenishment.
  • the controller 5 moves the products included in the order of the next large batch (next batch) scheduled after the current large batch from the second automated warehouse 20 to the third automated warehouse 30.
  • the controller 5 supplies the third automated warehouse 30 with low-ranked products of a type and quantity equivalent to the shortage for the required number of pickings, based on the orders included in the next large batch in particular. More specifically, the controller 5 tally up the types and quantities of products to be shipped in the orders included in the large batch, and supplies low-ranked products to the third automated warehouse 30 so that each product is equal to or greater than the shipping quantity.
  • the replenishment amount is determined and stored in the third automated warehouse 30.
  • the controller 5 performs regular replenishment of the replenishment amount for high-ranked products when the replenishment point is lowered, and emergency replenishment for excess allocation exceeding the storage amount, from the first automated warehouse 1 via the conversion station 10.
  • the controller 5 successively moves the high-ranked and low-ranked items included in the orders of the current large batch from the third automated warehouse 30 to the picking station ST. More specifically, for the high-ranked items included in the orders, the controller 5 releases the items stored in the third automated warehouse 30. For the low-ranked items, the controller 5 releases the items moved from the second automated warehouse 20. At this time, each picking unit (shuttle cart) of the third automated warehouse 30 enters and leaves the warehouse. Then, picking work is performed by workers at each order pick station in the picking station ST.
  • the controller 5 performs emergency replenishment (direct emergency shipment) of low-ranked items as necessary. Specifically, the controller 5 grasps the shipping quantity of low-ranked items included in the order and the number of low-ranked items stored in the second automated warehouse 20. If the controller 5 determines that the shipping quantity of the low-ranked items is large compared to the number stored, it moves the low-ranked items stored in the first automated warehouse 1 by the case to the conversion station 10, and then moves the low-ranked items, which have been transferred to containers, directly to the third automated warehouse 30.
  • emergency replenishment direct emergency shipment
  • the amount of product A stored in the second automated warehouse 20 is one container, which is below the replenishment point in this case, so the controller 5 issues one case from the first automated warehouse 1 as regular replenishment for the next large batch, and container conversion is performed at the conversion station 10, supplying two containers to the third automated warehouse 30. Note that here it is assumed that the amount of replenishment in regular replenishment is two containers, but if the product is replaced from one case to three containers, the controller 5 only needs to replenish three containers in the minimum case unit.
  • the controller 5 judges whether the supply of low-ranked products will catch up based on the inventory levels in each automated warehouse at the time the previous large batch was completed.
  • Emergency replenishment takes about half the time required for each picking unit (automated warehouse unit) in the third automated warehouse 30 to work on a small batch. During emergency replenishment, priority is given to picking orders for which there is no allocation of that product (above product A). Regular replenishment is carried out sequentially in anticipation of the remaining number to be picked while each small batch is being shipped out.
  • the controller 5 further performs control to increase the free space in the third automated warehouse 30 by utilizing the storage capacity of the second automated warehouse 20.
  • the controller 5 executes this type of control for both high-ranked and low-ranked products.
  • the controller 5 grasps the orders included in the next large batch scheduled after the current large batch. Then, while the current batch is being executed, the controller 5 moves high-ranking items that are not included in the next batch from the automated warehouse units 31-36 to the second automated warehouse 20. When the controller 5 determines that the high-ranking items are necessary for the next batch, it moves (returns) the high-ranking items to the third automated warehouse 30 for storage.
  • the controller 5 moves low-ranked items stored in the automated warehouse units 31-36, etc., during the execution of the current batch and that are not included in the next batch, from the third automated warehouse 30 to the second automated warehouse 20.
  • the flow of goods in the picking system S in which the above movement control has been performed will be described with reference to FIG. 2.
  • the flow of goods is represented by the number of containers moved per hour. Note that the quantities shown here are merely an example.
  • the movement path T3a bulk replenishment of high-ranked goods is performed (1,000 pieces/hour).
  • the minimum number of cases of pieces used in the picking units of the third automated warehouse 30 is converted into containers and supplied to the third automated warehouse 30.
  • low-ranked goods for picking are supplied (12,000 pieces/hour).
  • inventory containers of low-ranked goods are supplied in batches to each picking unit.
  • inventory is returned to the storage inventory (10,000 pieces/hour).
  • inventory containers that are not allocated in each picking unit in the next large batch are returned to the second automated warehouse 20 (the automated warehouse in the storage area).
  • the second automated warehouse 20 the automated warehouse in the storage area.
  • high-ranking products that are not scheduled for allocation in the first large batch of the next day may be returned to the second automated warehouse 20.
  • a quantity of containers equivalent to the number of picking tasks is moved to picking station ST (25,000 containers/hour).
  • a quantity of containers equivalent to the number of containers consumed is moved to the third automated warehouse 30 (20,000 containers/hour).
  • the picking system S of this embodiment described above multiple automated warehouses are combined by the controller 5, and the flow of goods is managed according to picking frequency.
  • High-ranked goods (first goods) are moved directly from the conversion station 10 to the third automated warehouse 30 via the movement path T3a, while low-ranked goods (second goods) are temporarily stored in the second automated warehouse 20 and then moved to the third automated warehouse 30 via the movement path T3b based on the order.
  • This makes it possible to increase the shipping quantity to the picking station ST even for large orders consisting of a wide variety of goods.
  • the controller 5 grasps the shipping quantity of the low-ranked items included in the order and the number of low-ranked items stored in the second automated warehouse 20, and when it is determined that the shipping quantity of the low-ranked items is large compared to the number of items stored, it moves the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10. More specifically, when it is determined that the absolute number of the shipping quantity of the low-ranked items is large compared to the absolute number of the stored items, the controller 5 moves the low-ranked items stored in the first automated warehouse 1 to the conversion station 10. Alternatively, when it is determined that the ratio of the shipping quantity to the number of items stored is large, the controller 5 may move the low-ranked items stored in the first automated warehouse 1 to the conversion station 10.
  • the controller 5 moves the low-ranked items that have been transferred to the container directly to the third automated warehouse 30 (urgent replenishment of low-ranked items).
  • This control of movement between the automated warehouses makes it possible to respond to emergency release of low-ranked items. For example, by moving low-ranked items included in the next batch of orders directly from the conversion station 10, the time required to collect low-ranked items in the next batch in the third automated warehouse 30 can be shortened.
  • the controller 5 moves high-ranking items that are not included in the next batch from the automated warehouse units 31-36 to the second automated warehouse 20 while the current batch is being executed.
  • This movement control between the automated warehouses allows even high-ranking items to be moved to the second automated warehouse 20 if they will not be shipped out in the next batch.
  • the free space in the third automated warehouse 30 can be increased, increasing the margin for handling a wide variety of products. Also, inventory optimization is achieved.
  • the controller 5 moves low-ranked items that are stored in the automated warehouse units 31-36, etc., and that are not included in the next batch, from the third automated warehouse 30 to the second automated warehouse 20 while the current batch is being executed.
  • This movement control between the automated warehouses moves low-ranked items to the second automated warehouse 20 if they will not be shipped out of that automated warehouse unit in the next batch.
  • the free space in the third automated warehouse 30 can be increased, and the margin for handling a wide variety of products can be increased. Inventory optimization is achieved.
  • the controller 5 moves low-ranked items stored in any of the automated warehouse units 31 to 36 during execution of the current batch and that will not be shipped in the next batch to another automated warehouse unit that can ship the low-ranked items in the next batch (or will ship the low-ranked items).
  • the low-ranked items are not shipped from the automated warehouse unit in the next batch, but are moved to another automated warehouse unit that is closer to the scheduled picking station, for example.
  • low-ranked items stored in the automated warehouse unit 31 are required in the next batch in the automated warehouse unit 32, they are moved to the automated warehouse unit 32 after picking in the automated warehouse unit 31 is completed.
  • the low-ranked items are also required in the next batch in the automated warehouse unit 33, the low-ranked items are shipped from the second automated warehouse 20 to replenish the automated warehouse unit 33.
  • This type of replenishment control increases the efficiency of movement from the automated warehouses to the picking stations, optimizing inventory.
  • the controller 5 grasps the shipping quantity of low-ranked items included in an order and the number of low-ranked items stored in the second automated warehouse 20, and if it determines that the shipping quantity of the low-ranked items is large compared to the number stored, it moves the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10.
  • the controller 5 may also grasp the shipping quantity of low-ranked items included in an order and the number of low-ranked items stored in the second automated warehouse 20, and if it determines that the shipping quantity and the number stored of the low-ranked items are approximately the same number (within a difference threshold of 1 to 2 items), it may move the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10. In this case, measures are taken to prevent errors in the inventory quantity (number stored).
  • This disclosure may also be applied to non-batch picking systems.
  • the first automated warehouse 1 may be a shuttle-type automated warehouse.
  • the second automated warehouse 20 is not limited to a double-deep type automated warehouse.
  • the second automated warehouse 20 is not limited to a shuttle-type automated warehouse.
  • the second automated warehouse 20 may be, for example, a stacker crane type automated warehouse. Different types of automated warehouses may be combined in each of the first automated warehouse 1 and the second automated warehouse 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

This picking system comprises: a first automated warehouse for storing items in case units; a diversion station for transferring, into containers, in-stock items which are in units of cases; a second automated warehouse connected to the diversion station; a third automated warehouse connected to the diversion station and the second automated warehouse, respectively; a picking station connected to the third automated warehouse; and a controller for managing the movement of the items. The controller causes a first item having a high picking frequency to be moved directly from the diversion station to the third automated warehouse to be stored, causes a second item having a low picking frequency to be moved from the diversion station to the second automated warehouse to be stored and, on the basis of an order, causes the second item to be moved from the second automated warehouse to the third automated warehouse.

Description

ピッキングシステムPicking System

 本開示は、ピッキングシステムに関する。 This disclosure relates to a picking system.

 複数の自動倉庫を備え、自動倉庫に保管された物品をピッキングステーションにまで搬送するシステムが知られている。例えば特許文献1に記載されたシステムでは、第1自動倉庫の保管棚に、複数の物品を収容したトレーが保管され、第2自動倉庫の保管棚に、物品単位又は複数の物品の集合体が保管される。第1自動倉庫及び第2自動倉庫のそれぞれから出庫されたトレー又は物品は、自動仕分装置の近くのピッキングステーションにまで搬送される。各ピッキングステーションでは、作業者によって、必要な物品が取り出され、自動仕分装置に移し替えられる。自動仕分装置によって仕分けられた商品は、作業者によって、箱に詰められる。 A system is known that includes multiple automated warehouses and transports items stored in the automated warehouses to a picking station. For example, in the system described in Patent Document 1, trays containing multiple items are stored on the storage shelves of a first automated warehouse, and individual items or collections of multiple items are stored on the storage shelves of a second automated warehouse. Trays or items removed from each of the first and second automated warehouses are transported to a picking station near an automatic sorting device. At each picking station, a worker removes the necessary items and transfers them to the automatic sorting device. The products sorted by the automatic sorting device are packed into boxes by a worker.

特開2018-47997号公報JP 2018-47997 A

 上記したように、複数の自動倉庫を備えたシステムが従来検討されているが、システム内において作業者が介在すべき部分も多く存在する。近年、オーダーの多様化・大量化が進む傾向にある。そこで、ピッキングシステムにおいて、ピッキングステーションへの出庫数量(単位時間当たりに出庫される物品の数量)の増大が望まれている。 As mentioned above, systems with multiple automated warehouses have been considered in the past, but there are many parts of the system that require human intervention. In recent years, there has been a trend toward more diverse and larger-volume orders. Therefore, in picking systems, there is a demand for an increase in the number of items sent to picking stations (the number of items sent per unit time).

 本開示は、多種多様なオーダーに対して、ピッキングステーションへの出庫数量を増大させることができるピッキングシステムを説明する。 This disclosure describes a picking system that can increase the number of items sent to a picking station for a wide variety of orders.

 [1]本開示の一態様に係るピッキングシステムは、商品をケース単位で保管する第1自動倉庫と、第1自動倉庫と接続し、ケース単位の在庫商品を容器に入れ替えるための変換ステーションと、変換ステーションと接続した第2自動倉庫と、変換ステーション及び第2自動倉庫のそれぞれと接続した第3自動倉庫と、第3自動倉庫と接続したピッキングステーションと、オーダーを受信すると共に商品の移動を管理するコントローラと、を備える。商品は、ピッキング頻度の高い第1の商品と、第1の商品よりもピッキング頻度の低い第2の商品とを含む。コントローラは、第1の商品を変換ステーションから第3自動倉庫に直接移動して保管させ、第2の商品を変換ステーションから第2自動倉庫に移動して保管させ、オーダーに基づいて第2の商品を第2自動倉庫から第3自動倉庫に移動させると共に、当該オーダーに含まれる第1の商品と第2の商品を第3自動倉庫からピッキングステーションに連続して移動させる。 [1] A picking system according to one aspect of the present disclosure includes a first automated warehouse that stores products in case units, a conversion station connected to the first automated warehouse and for transferring case-unit inventory products into containers, a second automated warehouse connected to the conversion station, a third automated warehouse connected to each of the conversion station and the second automated warehouse, a picking station connected to the third automated warehouse, and a controller that receives orders and manages the movement of products. The products include a first product that is picked frequently and a second product that is picked less frequently than the first product. The controller moves the first product directly from the conversion station to the third automated warehouse for storage, moves the second product from the conversion station to the second automated warehouse for storage, moves the second product from the second automated warehouse to the third automated warehouse based on the order, and continuously moves the first product and the second product included in the order from the third automated warehouse to the picking station.

 上記[1]のピッキングシステムによれば、コントローラによって、複数の自動倉庫を組み合わせ、ピッキング頻度に応じて商品の流れが管理される。第1の商品は変換ステーションから第3自動倉庫へと直接移動されるが、第2の商品については、第2自動倉庫にていったん保管された後、オーダーに基づいて第3自動倉庫へと移動される。これにより、多種多様な商品からなる大量のオーダーに対しても、ピッキングステーションへの出荷数量を増大させることができる。 According to the picking system of [1] above, a controller combines multiple automated warehouses and manages the flow of goods according to picking frequency. The first goods are moved directly from the conversion station to the third automated warehouse, while the second goods are temporarily stored in the second automated warehouse and then moved to the third automated warehouse based on the order. This makes it possible to increase the quantity shipped to the picking station even for large orders consisting of a wide variety of goods.

 [2]上記[1]のピッキングシステムにおいて、コントローラは、例えば、オーダーに含まれる第2の商品の出荷数量と第2自動倉庫における当該第2の商品の保管数を把握する。コントローラは、当該第2の商品の出荷数量が保管数に対して多いと判定した場合、ケース単位で第1自動倉庫に保管された当該第2の商品を変換ステーションに移動させ、その後、容器に入れ替えられた当該第2の商品を第3自動倉庫に直接移動させてもよい。この場合、第2の商品の緊急出庫に対応することができる。例えば、次バッチのオーダーに含まれる第2の商品を変換ステーションから直接移動させることにより、次バッチにおいて第2の商品を第3自動倉庫に集める時間を短縮できる。 [2] In the picking system of [1] above, the controller, for example, grasps the shipping quantity of the second product included in the order and the number of the second product stored in the second automated warehouse. If the controller determines that the shipping quantity of the second product is large compared to the number stored, it may move the second product stored in the first automated warehouse in case units to the conversion station, and then move the second product transferred to a container directly to the third automated warehouse. In this case, it is possible to respond to emergency delivery of the second product. For example, by directly moving the second product included in the next batch of orders from the conversion station, it is possible to shorten the time required to collect the second product in the next batch at the third automated warehouse.

 [3]上記[1]又は[2]のピッキングシステムにおいて、コントローラは、例えば、複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握する。その場合に、コントローラは、現バッチの実行中に、当該次バッチに含まれない第1の商品を第3自動倉庫から第2自動倉庫に移動させてもよい。この場合、第1の商品であっても、次バッチにおいて出庫されないのであれば第2自動倉庫に移動させられる。その結果として、第3自動倉庫の空きスペースを増やし、多種商品に対応する余裕度を高めることができる。在庫の最適化が図られる。 [3] In the picking system of [1] or [2] above, the controller, for example, executes multiple batches in sequence and keeps track of the orders included in the next batch scheduled after the current batch. In this case, the controller may move a first product that is not included in the next batch from the third automated warehouse to the second automated warehouse while the current batch is being executed. In this case, even if it is a first product, if it will not be shipped in the next batch, it will be moved to the second automated warehouse. As a result, the free space in the third automated warehouse can be increased, and the margin for handling a variety of products can be increased. Inventory optimization is achieved.

 [4]上記[1]~[3]の何れか1つのピッキングシステムにおいて、第3自動倉庫は、例えば、複数の自動倉庫ユニットからなる自動倉庫群である。コントローラは、例えば、複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握する。その場合に、コントローラは、現バッチの実行中に、自動倉庫ユニットに保管されており且つ当該次バッチに含まれない第2の商品を、第3自動倉庫から第2自動倉庫に移動させてもよい。この場合、第2の商品は、次バッチにおいてその自動倉庫ユニットから出庫されないのであれば第2自動倉庫に移動させられる。その結果として、第3自動倉庫の空きスペースを増やし、多種商品に対応する余裕度を高めることができる。在庫の最適化が図られる。 [4] In any one of the above picking systems [1] to [3], the third automated warehouse is, for example, an automated warehouse group consisting of multiple automated warehouse units. The controller, for example, executes multiple batches in sequence and grasps the orders included in the next batch scheduled after the current batch. In this case, the controller may move a second product stored in the automated warehouse unit and not included in the next batch from the third automated warehouse to the second automated warehouse while the current batch is being executed. In this case, if the second product is not removed from the automated warehouse unit in the next batch, it is moved to the second automated warehouse. As a result, the free space in the third automated warehouse can be increased, and the margin for handling a variety of products can be increased. Inventory optimization is achieved.

 [5]上記[1]~[3]の何れか1つのピッキングシステムにおいて、第3自動倉庫は、例えば、複数の自動倉庫ユニットからなる自動倉庫群である。コントローラは、例えば、複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握する。その場合に、コントローラは、現バッチの実行中に、自動倉庫ユニットに保管されており且つ当該次バッチにおいては出庫されない第2の商品を、当該次バッチにおいて当該第2の商品を出庫し得る別の自動倉庫ユニットに移動させてもよい。この場合、第2の商品は、次バッチにおいてその自動倉庫ユニットから出庫されないが、例えば予定されたピッキングステーションにより近い別の自動倉庫ユニットに移動させられる。自動倉庫群からピッキングステーションへの移動効率が高められる。在庫の最適化が図られる。 [5] In any one of the above picking systems [1] to [3], the third automated warehouse is, for example, an automated warehouse group consisting of multiple automated warehouse units. The controller, for example, executes multiple batches in sequence and grasps the orders included in the next batch scheduled after the current batch. In this case, the controller may move a second product stored in the automated warehouse unit during execution of the current batch and not to be delivered in the next batch to another automated warehouse unit that can deliver the second product in the next batch. In this case, the second product is not delivered from the automated warehouse unit in the next batch, but is moved to another automated warehouse unit that is closer to the scheduled picking station, for example. The efficiency of moving from the automated warehouse group to the picking station is improved. Inventory is optimized.

 本開示によれば、多種多様な商品からなる大量のオーダーに対しても、ピッキングステーションへの出荷数量を増大させることができる。 According to this disclosure, it is possible to increase the quantity shipped to the picking station even for large orders consisting of a wide variety of products.

図1は、本開示の一実施形態に係るピッキングシステムの全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a picking system according to an embodiment of the present disclosure. 図2は、図1のピッキングシステムにおける商品(容器)の流れの一例を示す図である。FIG. 2 is a diagram showing an example of a flow of products (containers) in the picking system of FIG.

 以下、本開示の実施形態について、図面を参照しながら説明する。 The following describes an embodiment of the present disclosure with reference to the drawings.

 まず図1を参照して、一実施形態に係るピッキングシステムSについて説明する。ピッキングシステムSは、例えば配送センター等に設置されるシステムである。ピッキングシステムSは、複数の自動倉庫に多種類の商品(物品)を保管しつつ、複数のバッチを順次実行することで、複数の自動倉庫からオーダーに対応した商品をピッキングステーションSTへと移動させる。ピッキングシステムSでは、複数の自動倉庫間において作業者が介在すべき部分が減らされており、コントローラ5による自動倉庫間での移動制御が行われる。ピッキングシステムSは、多種多様なオーダーに対して、ピッキングステーションSTへの出庫数量(単位時間当たりに出庫される物品の数量)に優れている。 First, referring to FIG. 1, a picking system S according to one embodiment will be described. The picking system S is a system that is installed in, for example, a distribution center. The picking system S stores a wide variety of products (articles) in multiple automated warehouses, and moves products corresponding to orders from the multiple automated warehouses to a picking station ST by sequentially executing multiple batches. In the picking system S, the number of areas between the multiple automated warehouses where workers need to be involved is reduced, and movement control between the automated warehouses is performed by a controller 5. The picking system S excels in the number of items delivered to the picking station ST (the number of items delivered per unit time) for a wide variety of orders.

 ピッキングシステムSは、第1自動倉庫1と、変換ステーション10と、第2自動倉庫20と、第3自動倉庫30と、ピッキングステーションSTとを備える。第1自動倉庫1、変換ステーション10、第2自動倉庫20、及び第3自動倉庫30は、それぞれ1つずつ設けられてもよいが、適宜、この中の少なくとも1つが、複数設けられてもよい。ピッキングシステムSは、第1自動倉庫1、第2自動倉庫20、及び第3自動倉庫30からなる異なる3種類(3形式)の自動倉庫を備えている。 The picking system S comprises a first automated warehouse 1, a conversion station 10, a second automated warehouse 20, a third automated warehouse 30, and a picking station ST. There may be one each of the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, and the third automated warehouse 30, but as appropriate, at least one of these may be provided multiple times. The picking system S comprises three different types (three formats) of automated warehouses consisting of the first automated warehouse 1, the second automated warehouse 20, and the third automated warehouse 30.

 第1自動倉庫1は、センターの入荷ステーションに接続しており、多種類の商品をケース単位で保管する。商品がケース単位で保管される場合、1つのケースに、一種類のみの商品が収納される。ケースは、例えば、外箱又はアウターカートン等とも呼ばれる。第1自動倉庫1は、ケース自動倉庫である。第1自動倉庫1は、スタッカクレーン方式の自動倉庫であり、保管棚、スタッカクレーン、出庫及び入庫に関わるコンベア類等の公知の構成を備える。第1自動倉庫1は、一例として、30~40系列を有する。本明細書において、ある設備が別のある設備に「接続する」とは、商品(物品)がそれらの設備間を移動する(又は搬送される)ことを可能とする構成が備わっていることを意味する。 The first automated warehouse 1 is connected to the receiving station of the center, and stores many types of products in case units. When products are stored in case units, only one type of product is stored in one case. A case is also called, for example, an outer box or outer carton. The first automated warehouse 1 is a case automated warehouse. The first automated warehouse 1 is an automated warehouse using a stacker crane system, and is equipped with well-known components such as storage shelves, stacker cranes, and conveyors related to retrieval and entry. As an example, the first automated warehouse 1 has 30 to 40 lines. In this specification, when a piece of equipment is "connected" to another piece of equipment, it means that the equipment is equipped with a configuration that allows products (goods) to be moved (or transported) between those pieces of equipment.

 変換ステーション10は、移動経路T1を介して第1自動倉庫1と接続している。変換ステーション10は、ケース単位の在庫商品を、ケースよりも小さな容器に入れ替えるためのステーションである。変換ステーション10は、容器変換ステーションである。変換ステーション10において用いられる容器は、例えば、折り畳みコンテナ等の折り畳み容器であり、通い容器等とも呼ばれる。ピッキングシステムSでは、多数の容器が、多種類の商品の移動(搬送)に用いられ、各自動倉庫及びステーションを接続する経路を移動して循環利用される。変換ステーション10は、一例として、25~35程度の個別ステーションを有する。個別ステーションのそれぞれでは、例えば作業者によって、ケース内から商品がばらされ、容器に入れ替えられる。1つの容器に、一種類のみの商品が入れられる。変換ステーション10は、搬送に関わるコンベア類、作業者の作業用に供される表示装置、作業用スペース等を含む。なお、変換ステーション10として、複数の容器変換装置を有する自動変換ステーションが採用されてもよい。 The conversion station 10 is connected to the first automated warehouse 1 via the moving path T1. The conversion station 10 is a station for transferring case-based inventory items into containers smaller than the cases. The conversion station 10 is a container transfer station. The containers used in the conversion station 10 are, for example, folding containers and other collapsible containers, also called returnable containers. In the picking system S, a large number of containers are used to transfer (transport) a wide variety of products, and are circulated by moving along paths connecting each automated warehouse and station. The conversion station 10 has, as an example, about 25 to 35 individual stations. At each individual station, for example, a worker removes products from the case and transfers them into containers. Only one type of product is placed in one container. The conversion station 10 includes conveyors related to transport, a display device provided for worker work, a work space, and the like. Note that an automatic conversion station having multiple container conversion devices may be adopted as the conversion station 10.

 第2自動倉庫20は、移動経路T2を介して変換ステーション10と接続している。第2自動倉庫20は、ダブルディープ式かつシャトル式の自動倉庫である。第2自動倉庫20は、保管棚、複数のシャトル台車、出庫及び入庫に関わるコンベア類等の公知の構成を備える。第2自動倉庫20は、一例として、20~30系列を有する。ダブルディープ式自動倉庫では、各棚において、奥行き方向に2つの荷を載置可能になっている。ダブルディープ式自動倉庫は、出庫能力は比較的劣るが、格納数が多いという利点を有する。ピッキングシステムSでは、後述する低ランク品の大量保管のために当該形式が採用されている。 The second automated warehouse 20 is connected to the conversion station 10 via the movement path T2. The second automated warehouse 20 is a double-deep type shuttle type automated warehouse. The second automated warehouse 20 is equipped with a known configuration such as storage shelves, multiple shuttle carts, and conveyors related to retrieval and storage. The second automated warehouse 20 has 20 to 30 series, as an example. In a double-deep type automated warehouse, two loads can be placed in the depth direction on each shelf. Although double-deep type automated warehouses have a relatively poor retrieval capacity, they have the advantage of being able to store a large number of items. In the picking system S, this format is adopted for the mass storage of low-ranked items, which will be described later.

 第3自動倉庫30は、変換ステーション10及び第2自動倉庫20のそれぞれと、移動経路T3a,T3bを介して接続している。第3自動倉庫30は、例えば、複数の自動倉庫ユニット31~36…からなる自動倉庫群である。各自動倉庫ユニットは、例えば、4系列のシャトル式自動倉庫を有する。各シャトル式自動倉庫は、保管棚と、各段において往復移動するシャトル台車とを含む。なお、第2自動倉庫20と第3自動倉庫30との間には、移動経路T3b以外に、移動経路T4が別途設けられている。移動経路T3bは、第2自動倉庫20から第3自動倉庫30へと商品(容器)を移動させるための経路であり、移動経路T4は、第3自動倉庫30(何れかの自動倉庫ユニット)から第2自動倉庫20へと商品(容器)を移動させるための経路である。順方向の移動経路T3bと逆方向の移動経路T4が共通化されていてもよい。 The third automated warehouse 30 is connected to the conversion station 10 and the second automated warehouse 20 via the movement paths T3a and T3b. The third automated warehouse 30 is, for example, an automated warehouse group consisting of multiple automated warehouse units 31 to 36. Each automated warehouse unit has, for example, four shuttle-type automated warehouses. Each shuttle-type automated warehouse includes a storage shelf and a shuttle cart that moves back and forth on each level. In addition to the movement path T3b, a movement path T4 is provided between the second automated warehouse 20 and the third automated warehouse 30. The movement path T3b is a path for moving goods (containers) from the second automated warehouse 20 to the third automated warehouse 30, and the movement path T4 is a path for moving goods (containers) from the third automated warehouse 30 (any of the automated warehouse units) to the second automated warehouse 20. The forward movement path T3b and the reverse movement path T4 may be shared.

 第3自動倉庫30が有するシャトル式自動倉庫の数は、例えば4の倍数に設定される。第3自動倉庫30は、全体として例えば24~36系列を有する。1つの自動倉庫ユニットが、4系列のシャトル式自動倉庫を有して1つのピッキングユニットとしてまとめられている。各ピッキングユニットが、1つの小バッチ(後述する大バッチに含まれ、大バッチよりも小さな単位を構成するバッチ)のピッキング作業を受け持つ。例えば、第3自動倉庫30が全体で24系列を有する場合、6つのピッキングユニット(自動倉庫ユニット31~36)が、第3自動倉庫30を構成する。第3自動倉庫30が全体で36系列を有する場合、9つのピッキングユニットが、第3自動倉庫30を構成する。 The number of shuttle-type automated warehouses in the third automated warehouse 30 is set to a multiple of four, for example. The third automated warehouse 30 has, for example, 24 to 36 lines in total. One automated warehouse unit has four shuttle-type automated warehouses that are grouped together as one picking unit. Each picking unit is responsible for picking one small batch (a batch that is included in a large batch described below and is a smaller unit than the large batch). For example, if the third automated warehouse 30 has a total of 24 lines, six picking units (automatic warehouse units 31 to 36) make up the third automated warehouse 30. If the third automated warehouse 30 has a total of 36 lines, nine picking units make up the third automated warehouse 30.

 ピッキングシステムSでは、第3自動倉庫30の各自動倉庫ユニットは、現在実行しているバッチすなわち現バッチの次に予定されている次バッチでピッキングが行われる低ランク品を一時的に保管する。第3自動倉庫30における商品の保管・移動制御については後述する。 In the picking system S, each automated warehouse unit of the third automated warehouse 30 temporarily stores low-ranked items that are to be picked in the currently executed batch, i.e., the next batch scheduled after the current batch. The storage and movement control of products in the third automated warehouse 30 will be described later.

 ピッキングステーションSTは、第3自動倉庫30と接続している。各系列のシャトル式自動倉庫が、個別の経路を介してピッキングステーションSTと接続している。ピッキングステーションSTは、複数のオーダーピックステーションPS1~PS8…からなる。ピッキングステーションSTは、一例として、60~70程度のオーダーピックステーションを有する。オーダーピックステーションのそれぞれでは、例えば作業者によって、容器内の商品が各オーダーに示される受注数量ずつピッキングされ、箱等に詰められる。ピッキングステーションSTは、作業者のピッキング作業用に供される表示装置、ピッキング作業用スペース、コンベア類等を含む。 The picking station ST is connected to the third automated warehouse 30. Each series of shuttle-type automated warehouses is connected to the picking station ST via an individual route. The picking station ST is made up of multiple order pick stations PS1 to PS8, etc. As an example, the picking station ST has approximately 60 to 70 order pick stations. At each order pick station, for example, a worker picks products from containers in the order quantity indicated in each order, and packs them into boxes, etc. The picking station ST includes a display device provided for the worker's picking work, a picking work space, conveyors, etc.

 ピッキングシステムSにおいて、移動経路T1,T2,T3a,T3b,T4は、コンベア類、及び/又は搬送台車などを含む公知の搬送設備により構成される。また第3自動倉庫30とピッキングステーションSTのオーダーピックステーションとの間の複数の経路は、図2においては、全体でまとめた移動経路T5,T6として表されている。第3自動倉庫30とオーダーピックステーションのそれぞれとの間の移動経路についても、順方向の移動経路と逆方向の移動経路が共通化されていてもよい。 In the picking system S, the movement paths T1, T2, T3a, T3b, and T4 are configured with known transport equipment including conveyors and/or transport carts. In addition, the multiple paths between the third automated warehouse 30 and the order pick station of the picking station ST are shown as movement paths T5 and T6 collectively in FIG. 2. Regarding the movement paths between the third automated warehouse 30 and each of the order pick stations, the forward movement path and the reverse movement path may also be made common.

 ピッキングシステムSは、図1に示された構成以外にも、適宜に必要な構成を備えることができる。ピッキングシステムSは、例えば、第1自動倉庫1に接続するパレット自動倉庫を備えてもよい。ピッキングステーションSTと、センターの出荷ステーションとの間に、容器シーケンサが設けられてもよい。第1自動倉庫1と、センターの出荷ステーションとの間に、ケースごと出荷するためのケース移動経路が設けられてもよい。 The picking system S may be provided with any other necessary components in addition to those shown in FIG. 1. For example, the picking system S may be provided with a pallet automated warehouse connected to the first automated warehouse 1. A container sequencer may be provided between the picking station ST and the shipping station of the center. A case movement path for shipping cases may be provided between the first automated warehouse 1 and the shipping station of the center.

 ピッキングシステムSは、オーダーを上位のコントローラ等から受信し、受信したオーダーに基づいて多種類の商品の移動を管理するコントローラ5を備えている。コントローラ5は、ピッキングシステムSにおける各種の移動制御、その他の機器制御を実行する。コントローラ5は、CPU等のプロセッサ、RAM、及びROMを含んで構成される。コントローラ5は、第1自動倉庫1、変換ステーション10、第2自動倉庫20、第3自動倉庫30、及びピッキングステーションSTのそれぞれと情報通信可能であり、それぞれに対して制御信号を送信可能である。なお、図1では、1つのコントローラ5のみが示されているが、コントローラ5の機能が一箇所に(1つの装置に)集約されている必要はない。コントローラ5の各種機能は、例えば、第1自動倉庫1、変換ステーション10、第2自動倉庫20、第3自動倉庫30、及びピッキングステーションSTのそれぞれに備わっている個別のコントローラに分散(分担)されてもよい。その場合、各コントローラ間における情報及び指令の通信(授受)が必要であるが、そのような制御部(制御機能)の構築は、本技術分野の当業者であれば適宜になし得る。 The picking system S is equipped with a controller 5 that receives orders from a higher-level controller and manages the movement of various types of products based on the received orders. The controller 5 executes various types of movement control and other equipment control in the picking system S. The controller 5 is configured to include a processor such as a CPU, a RAM, and a ROM. The controller 5 can communicate information with each of the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, the third automated warehouse 30, and the picking station ST, and can transmit control signals to each of them. Note that only one controller 5 is shown in FIG. 1, but the functions of the controller 5 do not need to be concentrated in one place (in one device). The various functions of the controller 5 may be distributed (shared) to individual controllers provided in, for example, the first automated warehouse 1, the conversion station 10, the second automated warehouse 20, the third automated warehouse 30, and the picking station ST. In that case, communication (transmission and reception) of information and commands between each controller is necessary, but such a control unit (control function) can be constructed appropriately by a person skilled in the art of this technical field.

 コントローラ5は、ピッキングシステムSにおいて、1日のうちの所定スケジュールに従って、複数の大バッチを順次実行する。ピッキングシステムSにおいては、多種類の商品は、ピッキング頻度の高い高ランク品(第1の商品)と、高ランク品よりもピッキング頻度の低い低ランク品(第2の商品)とに分類されている。高ランク品に関して「ピッキング頻度が高い」ことを判別するために、何らかの指標又は閾値が用いられてもよいし、ユーザ又は作業者によって手動で高ランク品の設定がなされてもよい。通常、高ランク品のピッキング頻度は低ランク品のピッキング頻度よりも高い。しかし、一時的に、一部の高ランク品のピッキング頻度よりも、一部の低ランク品のピッキング頻度の方が高いという状況が生じても構わない。高ランク品と低ランク品の分類及び設定は、適宜になされ得るが、全体として、高ランク品のピッキング頻度が、低ランク品のピッキング頻度よりも高い傾向にある。 The controller 5 executes multiple large batches in sequence in the picking system S according to a predetermined schedule for one day. In the picking system S, many types of products are classified into high-ranked products (first products) that are picked frequently, and low-ranked products (second products) that are picked less frequently than the high-ranked products. Some index or threshold may be used to determine whether a high-ranked product has a "high picking frequency," or the high-ranked product may be set manually by a user or worker. Usually, the picking frequency of high-ranked products is higher than the picking frequency of low-ranked products. However, it is acceptable for a situation to arise where the picking frequency of some low-ranked products is temporarily higher than the picking frequency of some high-ranked products. The classification and setting of high-ranked products and low-ranked products may be performed appropriately, but overall, the picking frequency of high-ranked products tends to be higher than the picking frequency of low-ranked products.

 以下、コントローラ5による商品の移動制御について詳細に説明する。コントローラ5は、ある種類の商品について、高ランク品であるか又は低ランク品であるかの識別情報を記憶している。コントローラ5は、すべての商品について、高ランク品であるか又は低ランク品であるかを識別する。 The control of product movement by the controller 5 will be described in detail below. The controller 5 stores identification information for a certain type of product as to whether it is a high-ranked product or a low-ranked product. The controller 5 identifies all products as being high-ranked or low-ranked products.

 まずコントローラ5は、センターの入荷ステーションから商品を収納したケースが入荷された場合、商品が高ランク品であるか低ランク品であるかに関わらず、商品を第1自動倉庫1に移動して保管させる。次に、コントローラ5は、商品を変換ステーション10に移動する。変換ステーション10では、ケース単位の在庫商品が容器に入れ替えられる。次に、コントローラ5は、高ランク品を変換ステーション10から第3自動倉庫30に直接移動して保管させる。またコントローラ5は、低ランク品を変換ステーション10から第2自動倉庫20に移動して保管させる。第2自動倉庫20では、低ランク品につき、大バッチ1.5~2回分に相当する保管容量が確保されている。 First, when a case containing goods arrives from the center's receiving station, the controller 5 moves the goods to the first automated warehouse 1 for storage, regardless of whether the goods are high-ranked or low-ranked goods. Next, the controller 5 moves the goods to the conversion station 10. In the conversion station 10, inventory goods in cases are transferred to containers. Next, the controller 5 moves high-ranked goods directly from the conversion station 10 to the third automated warehouse 30 for storage. The controller 5 also moves low-ranked goods from the conversion station 10 to the second automated warehouse 20 for storage. In the second automated warehouse 20, a storage capacity equivalent to 1.5 to 2 large batches of low-ranked goods is secured.

 コントローラ5は、ある1つの大バッチ(現バッチ)の実行を開始する。コントローラ5は、まず、データの取り込み及びバッチの起動を行う。コントローラ5は、続いて、定期補給を行う。コントローラ5は、現大バッチの次に予定された次大バッチ(次バッチ)のオーダーに含まれる商品を第2自動倉庫20から第3自動倉庫30へと移動する。コントローラ5は、特に、次大バッチに含まれるオーダーに基づいて、ピッキング必要数に対する不足分に相当する種類及び数量の低ランク品を第3自動倉庫30に供給する。より具体的には、コントローラ5は、大バッチに含まれるオーダーで出荷する商品の種類と数量を集計し、各商品が出荷数量以上となるように低ランク品を第3自動倉庫30に供給する。高ランク品については、第3自動倉庫30において補充点補充量を決めて保管される。コントローラ5は、高ランク品につき、補充点を下回った場合の補充量分の定期補充と、保管量を上回る過剰な引当に対する緊急補充を、第1自動倉庫1から変換ステーション10を介して行う。 The controller 5 starts the execution of one large batch (current batch). The controller 5 first imports data and starts the batch. The controller 5 then performs regular replenishment. The controller 5 moves the products included in the order of the next large batch (next batch) scheduled after the current large batch from the second automated warehouse 20 to the third automated warehouse 30. The controller 5 supplies the third automated warehouse 30 with low-ranked products of a type and quantity equivalent to the shortage for the required number of pickings, based on the orders included in the next large batch in particular. More specifically, the controller 5 tally up the types and quantities of products to be shipped in the orders included in the large batch, and supplies low-ranked products to the third automated warehouse 30 so that each product is equal to or greater than the shipping quantity. For high-ranked products, the replenishment amount is determined and stored in the third automated warehouse 30. The controller 5 performs regular replenishment of the replenishment amount for high-ranked products when the replenishment point is lowered, and emergency replenishment for excess allocation exceeding the storage amount, from the first automated warehouse 1 via the conversion station 10.

 その後、コントローラ5は、現大バッチのオーダーに含まれる高ランク品と低ランク品を第3自動倉庫30からピッキングステーションSTに連続して移動させる。より詳細には、オーダーに含まれる商品のうち、高ランク品については、コントローラ5は第3自動倉庫30に格納された商品を出庫する。低ランク品については、コントローラ5は、第2自動倉庫20から移動してきた商品を出庫する。このとき、第3自動倉庫30の各ピッキングユニット(シャトル台車)が入出庫する。その後、ピッキングステーションSTの各オーダーピックステーションにおいて、作業者によるピッキング作業が行われる。 Then, the controller 5 successively moves the high-ranked and low-ranked items included in the orders of the current large batch from the third automated warehouse 30 to the picking station ST. More specifically, for the high-ranked items included in the orders, the controller 5 releases the items stored in the third automated warehouse 30. For the low-ranked items, the controller 5 releases the items moved from the second automated warehouse 20. At this time, each picking unit (shuttle cart) of the third automated warehouse 30 enters and leaves the warehouse. Then, picking work is performed by workers at each order pick station in the picking station ST.

 コントローラ5は、低ランク品につき、必要に応じて緊急補充(直接緊急出庫)を行う。具体的には、コントローラ5は、オーダーに含まれる低ランク品の出荷数量と第2自動倉庫20における当該低ランク品の保管数を把握する。そしてコントローラ5は、当該低ランク品の出荷数量が保管数に対して多いと判定した場合、ケース単位で第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させ、その後、容器に入れ替えられた当該低ランク品を第3自動倉庫30に直接移動させる。 The controller 5 performs emergency replenishment (direct emergency shipment) of low-ranked items as necessary. Specifically, the controller 5 grasps the shipping quantity of low-ranked items included in the order and the number of low-ranked items stored in the second automated warehouse 20. If the controller 5 determines that the shipping quantity of the low-ranked items is large compared to the number stored, it moves the low-ranked items stored in the first automated warehouse 1 by the case to the conversion station 10, and then moves the low-ranked items, which have been transferred to containers, directly to the third automated warehouse 30.

 ここで、低ランク品の緊急補充の具体例について説明する。低ランク品である商品Aは、1つのケースから、2つの容器に入れ替えられる。第2自動倉庫20における補充点補充量設定では、商品Aの補充点は容器2つ、補充量は容器3つ、保管量は容器3つであると仮定する。第3自動倉庫30での商品Aの必要数(出荷数量)は、容器7つ分であるが、前バッチからの残数(保管数)は容器1つのみである。この場合、コントローラ5は、第2自動倉庫20から第3自動倉庫30に容器3つを供給するが、まだ容器3つが不足している。そこで、コントローラ5は、第1自動倉庫1からケース2つを出庫させ、変換ステーション10において容器変換がなされて、第3自動倉庫30に容器3つを緊急補充させる。なお、コントローラ5は、残りの容器1つを第2自動倉庫20へと供給する。 Here, a specific example of emergency replenishment of low-ranked products will be described. Product A, which is a low-ranked product, is replaced from one case to two containers. In the replenishment point replenishment amount setting in the second automated warehouse 20, it is assumed that the replenishment point of product A is two containers, the replenishment amount is three containers, and the storage amount is three containers. The required number (shipping amount) of product A in the third automated warehouse 30 is seven containers, but the remaining number (storage amount) from the previous batch is only one container. In this case, the controller 5 supplies three containers from the second automated warehouse 20 to the third automated warehouse 30, but three containers are still insufficient. Therefore, the controller 5 causes two cases to be removed from the first automated warehouse 1, container conversion is performed in the conversion station 10, and three containers are urgently replenished to the third automated warehouse 30. The controller 5 also supplies the remaining one container to the second automated warehouse 20.

 第2自動倉庫20における商品Aの保管量は容器1つとなり、この場合補充点を下回っているので、コントローラ5は、次大バッチ用の定期補充として、第1自動倉庫1からケース1つを出庫させ、変換ステーション10において容器変換がなされて、第3自動倉庫30に容器2つを供給する。なお、ここでは定期補充における補充量は容器2つと仮定しているが、商品が、1つのケースから3つの容器に入れ替えられる場合には、コントローラ5は、最小ケース単位で容器3つを補充させればよい。 The amount of product A stored in the second automated warehouse 20 is one container, which is below the replenishment point in this case, so the controller 5 issues one case from the first automated warehouse 1 as regular replenishment for the next large batch, and container conversion is performed at the conversion station 10, supplying two containers to the third automated warehouse 30. Note that here it is assumed that the amount of replenishment in regular replenishment is two containers, but if the product is replaced from one case to three containers, the controller 5 only needs to replenish three containers in the minimum case unit.

 このように、コントローラ5は、低ランク品の供給が追い付くか否かの判断を、前大バッチ完了時の各自動倉庫の在庫数から判断する。緊急補充には、第3自動倉庫30における各ピッキングユニット(自動倉庫ユニット)の小バッチの作業に要する半分程度の時間を要する。緊急補充中は、その商品(上記商品A)の引当てがないオーダーのピッキングが優先される。定期補充は、各小バッチの出庫を行いつつ、ピッキング残数を見越して順次行われる。 In this way, the controller 5 judges whether the supply of low-ranked products will catch up based on the inventory levels in each automated warehouse at the time the previous large batch was completed. Emergency replenishment takes about half the time required for each picking unit (automated warehouse unit) in the third automated warehouse 30 to work on a small batch. During emergency replenishment, priority is given to picking orders for which there is no allocation of that product (above product A). Regular replenishment is carried out sequentially in anticipation of the remaining number to be picked while each small batch is being shipped out.

 以上のように、現大バッチにおいて、第2自動倉庫20からの出庫、第3自動倉庫30からの出庫、定期補充、及び緊急補充が行われる。コントローラ5は、さらに、第2自動倉庫20の保管容量を利用して、第3自動倉庫30における空きスペースを増やす制御を行う。コントローラ5は、この類いの制御を、高ランク品に対しても、低ランク品に対しても実行する。 As described above, for the current large batch, shipping from the second automated warehouse 20, shipping from the third automated warehouse 30, regular replenishment, and emergency replenishment are performed. The controller 5 further performs control to increase the free space in the third automated warehouse 30 by utilizing the storage capacity of the second automated warehouse 20. The controller 5 executes this type of control for both high-ranked and low-ranked products.

 コントローラ5は、現大バッチの次に予定された次大バッチに含まれるオーダーを把握する。そしてコントローラ5は、現バッチの実行中に、当該次バッチに含まれない高ランク品を自動倉庫ユニット31~36…から第2自動倉庫20に移動させる。コントローラ5は、次バッチで当該高ランク品が必要と判断されたときに、当該高ランク品を第3自動倉庫30に移動して(戻して)保管させる。 The controller 5 grasps the orders included in the next large batch scheduled after the current large batch. Then, while the current batch is being executed, the controller 5 moves high-ranking items that are not included in the next batch from the automated warehouse units 31-36 to the second automated warehouse 20. When the controller 5 determines that the high-ranking items are necessary for the next batch, it moves (returns) the high-ranking items to the third automated warehouse 30 for storage.

 或いは、コントローラ5は、現バッチの実行中に、自動倉庫ユニット31~36…に保管されており且つ当該次バッチに含まれない低ランク品を、第3自動倉庫30から第2自動倉庫20に移動させる。 Alternatively, the controller 5 moves low-ranked items stored in the automated warehouse units 31-36, etc., during the execution of the current batch and that are not included in the next batch, from the third automated warehouse 30 to the second automated warehouse 20.

 以上の移動制御が行われたピッキングシステムSにおける商品の流れを、図2を参照して説明する。図2では、商品の流れが、時間当たりに移動した容器の数量で表されている。なお、ここで示される数量はあくまで一例に過ぎない。移動経路T3aでは、高ランク品のバラ補給が行われる(1,000個/時)。ここでは、第3自動倉庫30のピッキングユニットで使用するピースの最小ケース数が容器変換され、第3自動倉庫30に供給される。移動経路T3bでは、ピッキング用の低ランク品の供給が行われる(12,000個/時)。ここでは、低ランク品の在庫容器が各ピッキングユニットにバッチ単位で供給される。移動経路T4では、保管在庫への在庫戻しが行われる(10,000個/時)。ここでは、次大バッチにおいて各ピッキングユニットで引当てがない在庫容器が、第2自動倉庫20(保管エリアの自動倉庫)に戻される。なお、高ランク品については、引当て確立が高いため、基本的に戻す必要がない。1日の終わりに、翌日の最初の大バッチで引当て予定がない高ランク品については、第2自動倉庫20に戻してもよい。 The flow of goods in the picking system S in which the above movement control has been performed will be described with reference to FIG. 2. In FIG. 2, the flow of goods is represented by the number of containers moved per hour. Note that the quantities shown here are merely an example. In the movement path T3a, bulk replenishment of high-ranked goods is performed (1,000 pieces/hour). Here, the minimum number of cases of pieces used in the picking units of the third automated warehouse 30 is converted into containers and supplied to the third automated warehouse 30. In the movement path T3b, low-ranked goods for picking are supplied (12,000 pieces/hour). Here, inventory containers of low-ranked goods are supplied in batches to each picking unit. In the movement path T4, inventory is returned to the storage inventory (10,000 pieces/hour). Here, inventory containers that are not allocated in each picking unit in the next large batch are returned to the second automated warehouse 20 (the automated warehouse in the storage area). Note that there is a high probability of allocation for high-ranked goods, so basically there is no need to return them. At the end of the day, high-ranking products that are not scheduled for allocation in the first large batch of the next day may be returned to the second automated warehouse 20.

 移動経路T5においては、ピッキング作業数に相当する数量の容器がピッキングステーションSTへと移動する(25,000個/時)。また移動経路T6においては、その容器数から、消費容器数に相当する数量の容器が第3自動倉庫30へと移動する(20,000個/時)。 On movement path T5, a quantity of containers equivalent to the number of picking tasks is moved to picking station ST (25,000 containers/hour). On movement path T6, from that number of containers, a quantity of containers equivalent to the number of containers consumed is moved to the third automated warehouse 30 (20,000 containers/hour).

 以上説明した本実施形態のピッキングシステムSによれば、コントローラ5によって、複数の自動倉庫を組み合わせ、ピッキング頻度に応じて商品の流れが管理される。高ランク品(第1の商品)は変換ステーション10から第3自動倉庫30へと移動経路T3aを介して直接移動されるが、低ランク品(第2の商品)については、第2自動倉庫20にていったん保管された後、オーダーに基づいて、移動経路T3bを介して第3自動倉庫30へと移動される。これにより、多種多様な商品からなる大量のオーダーに対しても、ピッキングステーションSTへの出荷数量を増大させることができる。 According to the picking system S of this embodiment described above, multiple automated warehouses are combined by the controller 5, and the flow of goods is managed according to picking frequency. High-ranked goods (first goods) are moved directly from the conversion station 10 to the third automated warehouse 30 via the movement path T3a, while low-ranked goods (second goods) are temporarily stored in the second automated warehouse 20 and then moved to the third automated warehouse 30 via the movement path T3b based on the order. This makes it possible to increase the shipping quantity to the picking station ST even for large orders consisting of a wide variety of goods.

 コントローラ5は、オーダーに含まれる低ランク品の出荷数量と第2自動倉庫20における当該低ランク品の保管数を把握し、当該低ランク品の出荷数量が保管数に対して多いと判定した場合、ケース単位で第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させる。より詳細には、コントローラ5は、当該低ランク品の出荷数量の絶対数が保管数の絶対数に対して多いと判定した場合に、第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させる。或いは、コントローラ5は、当該低ランク品の保管数に対して出荷数量の割合が多いと判定した場合に、第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させてもよい。その後、コントローラ5は、容器に入れ替えられた当該低ランク品を第3自動倉庫30に直接移動させる(低ランク品の緊急補充)。この自動倉庫間における移動制御により、低ランク品の緊急出庫に対応することができる。例えば、次バッチのオーダーに含まれる低ランク品を変換ステーション10から直接移動させることにより、次バッチにおいて低ランク品を第3自動倉庫30に集める時間を短縮できる。 The controller 5 grasps the shipping quantity of the low-ranked items included in the order and the number of low-ranked items stored in the second automated warehouse 20, and when it is determined that the shipping quantity of the low-ranked items is large compared to the number of items stored, it moves the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10. More specifically, when it is determined that the absolute number of the shipping quantity of the low-ranked items is large compared to the absolute number of the stored items, the controller 5 moves the low-ranked items stored in the first automated warehouse 1 to the conversion station 10. Alternatively, when it is determined that the ratio of the shipping quantity to the number of items stored is large, the controller 5 may move the low-ranked items stored in the first automated warehouse 1 to the conversion station 10. After that, the controller 5 moves the low-ranked items that have been transferred to the container directly to the third automated warehouse 30 (urgent replenishment of low-ranked items). This control of movement between the automated warehouses makes it possible to respond to emergency release of low-ranked items. For example, by moving low-ranked items included in the next batch of orders directly from the conversion station 10, the time required to collect low-ranked items in the next batch in the third automated warehouse 30 can be shortened.

 コントローラ5は、現バッチの実行中に、当該次バッチに含まれない高ランク品を自動倉庫ユニット31~36…から第2自動倉庫20に移動させる。この自動倉庫間における移動制御により、高ランク品であっても、次バッチにおいて出庫されないのであれば第2自動倉庫20に移動させられる。その結果として、第3自動倉庫30の空きスペースを増やし、多種商品に対応する余裕度を高めることができる。また、在庫の最適化が図られる。 The controller 5 moves high-ranking items that are not included in the next batch from the automated warehouse units 31-36 to the second automated warehouse 20 while the current batch is being executed. This movement control between the automated warehouses allows even high-ranking items to be moved to the second automated warehouse 20 if they will not be shipped out in the next batch. As a result, the free space in the third automated warehouse 30 can be increased, increasing the margin for handling a wide variety of products. Also, inventory optimization is achieved.

 コントローラ5は、現バッチの実行中に、自動倉庫ユニット31~36…に保管されており且つ当該次バッチに含まれない低ランク品を、第3自動倉庫30から第2自動倉庫20に移動させる。この自動倉庫間における移動制御により、低ランク品は、次バッチにおいてその自動倉庫ユニットから出庫されないのであれば第2自動倉庫20に移動させられる。その結果として、第3自動倉庫30の空きスペースを増やし、多種商品に対応する余裕度を高めることができる。在庫の最適化が図られる。 The controller 5 moves low-ranked items that are stored in the automated warehouse units 31-36, etc., and that are not included in the next batch, from the third automated warehouse 30 to the second automated warehouse 20 while the current batch is being executed. This movement control between the automated warehouses moves low-ranked items to the second automated warehouse 20 if they will not be shipped out of that automated warehouse unit in the next batch. As a result, the free space in the third automated warehouse 30 can be increased, and the margin for handling a wide variety of products can be increased. Inventory optimization is achieved.

 以上、本開示の実施形態について説明したが、本発明は上記実施形態に限られない。例えば、コントローラ5は、現バッチの実行中に、自動倉庫ユニット31~36…の何れかに保管されており且つ当該次バッチにおいては出庫されない低ランク品を、当該次バッチにおいて当該低ランク品を出庫し得る(又は当該低ランク品を出庫する)別の自動倉庫ユニットに移動させる。この第3自動倉庫30内の自動倉庫ユニット間における移動制御により、低ランク品は、次バッチにおいてその自動倉庫ユニットから出庫されないが、例えば予定されたピッキングステーションにより近い別の自動倉庫ユニットに移動させられる。例えば、自動倉庫ユニット31に保管された低ランク品で次バッチにおいて不要なものは、自動倉庫ユニット32で次バッチにおいて必要となる場合は、自動倉庫ユニット31におけるピッキング完了後に、自動倉庫ユニット32へと在庫移動させる。もし自動倉庫ユニット33でも、次バッチにおいてその低ランク品が必要となる場合は、その低ランク品を、第2自動倉庫20から出庫させて自動倉庫ユニット33に補充する。このような補充制御によれば、自動倉庫群からピッキングステーションへの移動効率が高められる。在庫の最適化が図られる。 The above describes the embodiments of the present disclosure, but the present invention is not limited to the above embodiments. For example, the controller 5 moves low-ranked items stored in any of the automated warehouse units 31 to 36 during execution of the current batch and that will not be shipped in the next batch to another automated warehouse unit that can ship the low-ranked items in the next batch (or will ship the low-ranked items). By controlling the movement between the automated warehouse units in the third automated warehouse 30, the low-ranked items are not shipped from the automated warehouse unit in the next batch, but are moved to another automated warehouse unit that is closer to the scheduled picking station, for example. For example, if low-ranked items stored in the automated warehouse unit 31 are required in the next batch in the automated warehouse unit 32, they are moved to the automated warehouse unit 32 after picking in the automated warehouse unit 31 is completed. If the low-ranked items are also required in the next batch in the automated warehouse unit 33, the low-ranked items are shipped from the second automated warehouse 20 to replenish the automated warehouse unit 33. This type of replenishment control increases the efficiency of movement from the automated warehouses to the picking stations, optimizing inventory.

 上記実施形態では、コントローラ5は、オーダーに含まれる低ランク品の出荷数量と第2自動倉庫20における当該低ランク品の保管数を把握し、当該低ランク品の出荷数量が保管数に対して多いと判定した場合、ケース単位で第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させた。しかし、コントローラ5は、オーダーに含まれる低ランク品の出荷数量と第2自動倉庫20における当該低ランク品の保管数を把握し、当該低ランク品の出荷数量と保管数とがほぼ同数(1~2個の差分閾値以内)であると判定した場合、ケース単位で第1自動倉庫1に保管された当該低ランク品を変換ステーション10に移動させてもよい。この場合、在庫数(保管数)の間違い対策がなされる。 In the above embodiment, the controller 5 grasps the shipping quantity of low-ranked items included in an order and the number of low-ranked items stored in the second automated warehouse 20, and if it determines that the shipping quantity of the low-ranked items is large compared to the number stored, it moves the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10. However, the controller 5 may also grasp the shipping quantity of low-ranked items included in an order and the number of low-ranked items stored in the second automated warehouse 20, and if it determines that the shipping quantity and the number stored of the low-ranked items are approximately the same number (within a difference threshold of 1 to 2 items), it may move the low-ranked items stored in the first automated warehouse 1 in case units to the conversion station 10. In this case, measures are taken to prevent errors in the inventory quantity (number stored).

 本開示が、バッチ以外によるピッキングシステムに適用されてもよい。 This disclosure may also be applied to non-batch picking systems.

 第1自動倉庫1が、シャトル式自動倉庫であってもよい。また、第2自動倉庫20はダブルディープ式自動倉庫に限られない。また第2自動倉庫20はシャトル式自動倉庫に限られない。第2自動倉庫20は、例えば、スタッカクレーン方式の自動倉庫であってもよい。第1自動倉庫1、第2自動倉庫20のそれぞれにおいて、異なる形式の自動倉庫が組み合わされてもよい。 The first automated warehouse 1 may be a shuttle-type automated warehouse. Furthermore, the second automated warehouse 20 is not limited to a double-deep type automated warehouse. Furthermore, the second automated warehouse 20 is not limited to a shuttle-type automated warehouse. The second automated warehouse 20 may be, for example, a stacker crane type automated warehouse. Different types of automated warehouses may be combined in each of the first automated warehouse 1 and the second automated warehouse 20.

 1…第1自動倉庫、5…コントローラ、10…変換ステーション、20…第2自動倉庫、30…第3自動倉庫、31~36…自動倉庫ユニット、PS1~PS8…オーダーピックステーション、S…ピッキングシステム、ST…ピッキングステーション。 1...first automated warehouse, 5...controller, 10...conversion station, 20...second automated warehouse, 30...third automated warehouse, 31-36...automated warehouse units, PS1-PS8...order pick stations, S...picking system, ST...picking station.

Claims (5)

 商品をケース単位で保管する第1自動倉庫と、
 前記第1自動倉庫と接続し、ケース単位の在庫商品を容器に入れ替えるための変換ステーションと、
 前記変換ステーションと接続した第2自動倉庫と、
 前記変換ステーション及び前記第2自動倉庫のそれぞれと接続した第3自動倉庫と、
 前記第3自動倉庫と接続したピッキングステーションと、
 オーダーを受信すると共に前記商品の移動を管理するコントローラと、を備え、
 前記商品は、ピッキング頻度の高い第1の商品と、前記第1の商品よりもピッキング頻度の低い第2の商品とを含み、
 前記コントローラは、
 前記第1の商品を前記変換ステーションから前記第3自動倉庫に直接移動して保管させ、
 前記第2の商品を前記変換ステーションから前記第2自動倉庫に移動して保管させ、
 オーダーに基づいて前記第2の商品を前記第2自動倉庫から前記第3自動倉庫に移動させると共に、当該オーダーに含まれる前記第1の商品と前記第2の商品を前記第3自動倉庫から前記ピッキングステーションに連続して移動させる、ピッキングシステム。
The first automated warehouse stores products in case units;
a conversion station connected to the first automated warehouse for transferring case-based inventory items into containers;
a second automated warehouse connected to the conversion station;
a third automated warehouse connected to each of the conversion station and the second automated warehouse;
a picking station connected to the third automated warehouse;
a controller for receiving orders and managing the movement of the goods;
The products include a first product having a high picking frequency and a second product having a lower picking frequency than the first product,
The controller:
moving the first product directly from the conversion station to the third automated warehouse for storage;
moving the second product from the conversion station to the second automated warehouse for storage;
A picking system that moves the second product from the second automated warehouse to the third automated warehouse based on an order, and continuously moves the first product and the second product included in the order from the third automated warehouse to the picking station.
 前記コントローラは、
 前記オーダーに含まれる前記第2の商品の出荷数量と前記第2自動倉庫における当該第2の商品の保管数を把握し、
 当該第2の商品の出荷数量が保管数に対して多いと判定した場合、ケース単位で前記第1自動倉庫に保管された当該第2の商品を前記変換ステーションに移動させ、その後、前記容器に入れ替えられた当該第2の商品を前記第3自動倉庫に直接移動させる、請求項1に記載のピッキングシステム。
The controller:
Grasping the shipping quantity of the second product included in the order and the storage quantity of the second product in the second automated warehouse;
2. The picking system according to claim 1, wherein, when it is determined that the shipping quantity of the second product is large compared to the number stored, the second product stored in the first automated warehouse is moved in case units to the conversion station, and then the second product transferred to the container is moved directly to the third automated warehouse.
 前記コントローラは、
 複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握し、
 前記現バッチの実行中に、当該次バッチに含まれない前記第1の商品を前記第3自動倉庫から前記第2自動倉庫に移動させる、請求項1又は2に記載のピッキングシステム。
The controller:
Execute multiple batches in sequence, and keep track of the orders in the next batch scheduled after the current batch.
3. The picking system according to claim 1, wherein the first product not included in the next batch is moved from the third automated warehouse to the second automated warehouse during execution of the current batch.
 前記第3自動倉庫は、複数の自動倉庫ユニットからなる自動倉庫群であり、
 前記コントローラは、
 複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握し、
 前記現バッチの実行中に、前記自動倉庫ユニットに保管されており且つ当該次バッチに含まれない前記第2の商品を、前記第3自動倉庫から前記第2自動倉庫に移動させる、請求項1又は2に記載のピッキングシステム。
The third automated warehouse is an automated warehouse group consisting of a plurality of automated warehouse units,
The controller:
Execute multiple batches in sequence, and keep track of the orders in the next batch scheduled after the current batch.
The picking system according to claim 1 or 2, wherein the second product stored in the automated warehouse unit and not included in the next batch is moved from the third automated warehouse to the second automated warehouse during execution of the current batch.
 前記第3自動倉庫は、複数の自動倉庫ユニットからなる自動倉庫群であり、
 前記コントローラは、
 複数のバッチを順次実行すると共に、現バッチの次に予定された次バッチに含まれるオーダーを把握し、
 前記現バッチの実行中に、前記自動倉庫ユニットに保管されており且つ当該次バッチにおいては出庫されない前記第2の商品を、当該次バッチにおいて当該第2の商品を出庫し得る別の前記自動倉庫ユニットに移動させる、請求項1又は2に記載のピッキングシステム。
The third automated warehouse is an automated warehouse group consisting of a plurality of automated warehouse units,
The controller:
Execute multiple batches in sequence, and keep track of the orders in the next batch scheduled after the current batch.
The picking system according to claim 1 or 2, wherein during execution of the current batch, the second product stored in the automated warehouse unit and which will not be delivered in the next batch is moved to another automated warehouse unit which can deliver the second product in the next batch.
PCT/JP2024/012823 2023-06-20 2024-03-28 Picking system WO2024262121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023100672 2023-06-20
JP2023-100672 2023-06-20

Publications (1)

Publication Number Publication Date
WO2024262121A1 true WO2024262121A1 (en) 2024-12-26

Family

ID=93935375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012823 WO2024262121A1 (en) 2023-06-20 2024-03-28 Picking system

Country Status (1)

Country Link
WO (1) WO2024262121A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093667A (en) * 2009-10-30 2011-05-12 Daifuku Co Ltd Sorting apparatus
JP2021102499A (en) * 2019-12-24 2021-07-15 トーヨーカネツ株式会社 Article delivery system
JP2022099021A (en) * 2020-12-22 2022-07-04 トーヨーカネツ株式会社 Physical distribution system
JP2022165950A (en) * 2021-04-20 2022-11-01 小西医療器株式会社 picking system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093667A (en) * 2009-10-30 2011-05-12 Daifuku Co Ltd Sorting apparatus
JP2021102499A (en) * 2019-12-24 2021-07-15 トーヨーカネツ株式会社 Article delivery system
JP2022099021A (en) * 2020-12-22 2022-07-04 トーヨーカネツ株式会社 Physical distribution system
JP2022165950A (en) * 2021-04-20 2022-11-01 小西医療器株式会社 picking system

Similar Documents

Publication Publication Date Title
US10207871B2 (en) Storage and order-picking system
JP7082047B2 (en) How to process an order in a warehouse with an order processing area
US9342811B2 (en) System and method for filling an order
EP3057888B1 (en) Method of order fulfilling by making storage units available from a storage facility in a desired sequence at a pack station
US10934092B2 (en) Method of order fulfilling by making storage units available from a storage facility in a desired sequence at a picking station
US11465849B2 (en) Method of order fulfilling by making storage units available from a storage facility in a desired sequence at a pack station
CN110963226B (en) Goods-to-person workstation conveying line routing control method based on multilayer work bin storage warehouse
CN113177827B (en) Order dispatching method, device, electronic equipment and storage medium
JP2004010289A (en) Physical distribution facility
CN115557145A (en) Warehousing system
WO2024262121A1 (en) Picking system
JP2022099021A (en) Physical distribution system
CN112581068A (en) Cross-region combined type commodity sorting method, device and system
CN116216161A (en) Warehousing system, goods delivery method, program product and storage medium
CN111638716B (en) Inventory management method and system
JP2003246421A (en) Distribution facility
US20250100800A1 (en) Picking System
JP7589861B2 (en) Automated warehouse system and luggage storage method
CN221466030U (en) Warehouse management system
JP2025056883A (en) Picking System
JP2025056882A (en) Picking System
WO2024006195A1 (en) Robotic system to fulfill orders using cooperating robots
JPH1017119A (en) Stock managing method for merchandise in automatic warehouse
WO2025046930A1 (en) Picking system
TW202340062A (en) Material handling system and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24825531

Country of ref document: EP

Kind code of ref document: A1