[go: up one dir, main page]

WO2024257861A1 - Lipid-binding oligonucleotide or complex thereof - Google Patents

Lipid-binding oligonucleotide or complex thereof Download PDF

Info

Publication number
WO2024257861A1
WO2024257861A1 PCT/JP2024/021728 JP2024021728W WO2024257861A1 WO 2024257861 A1 WO2024257861 A1 WO 2024257861A1 JP 2024021728 W JP2024021728 W JP 2024021728W WO 2024257861 A1 WO2024257861 A1 WO 2024257861A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
group
lipid
linked
nucleosides
Prior art date
Application number
PCT/JP2024/021728
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 松岡
友輔 入山
龍太郎 石川
雅彦 入江
将大 成田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024257861A1 publication Critical patent/WO2024257861A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to a lipid-bound oligonucleotide or a complex thereof.
  • Nucleic acid medicines are medicines consisting of nucleic acids (oligonucleotides) that form complementary base pairs with target DNA or RNA, and are expected to be new medicines.
  • Representative nucleic acid medicines include antisense nucleic acids (ASOs) and siRNAs, but the development of a means to efficiently deliver these to target organs, especially to organs other than the liver, has long been recognized as a challenge.
  • ASOs antisense nucleic acids
  • siRNAs siRNAs
  • Non-Patent Document 1 It has been reported that binding lipids such as cholesterol, tocopherol, or palmitic acid to ASO as a delivery means improves its antisense effect in muscle and heart (see, for example, Non-Patent Document 1). However, the effect is limited. Also, cholesterol conjugates have been shown to cause toxicity.
  • conjugating lipids to oligonucleotides can have an effect on organs other than the liver, but the effect is often limited, and there is still a need to develop lipids as a more effective means of delivery.
  • the objective of the present invention is to provide a lipid-bound oligonucleotide or a complex thereof that improves the pharmacological effect on the liver and organs other than the liver.
  • the present invention encompasses the following aspects:
  • a lipid-linked oligonucleotide or a complex thereof represented by the following general formula (I): (Wherein, W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate; L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol, R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.
  • W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate
  • L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstitute
  • [6] The lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [5], wherein L is an unsubstituted C 1-10 alkylene group.
  • [7] The lipid-linked oligonucleotide or its complex according to any one of [1] to [6], wherein L is an unsubstituted C6 alkylene group.
  • [8] The lipid-linked oligonucleotide according to any one of [1] to [7], wherein the oligonucleotide compound is a gapmer-type antisense oligonucleotide.
  • the oligonucleotide complex being a double-stranded oligonucleotide complex comprising a first oligonucleotide and a second oligonucleotide, the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
  • the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L;
  • the complex according to any one of [1] to [7], wherein the first oligonucleotide and the second oli
  • the oligonucleotide compound comprises a first oligonucleotide and a second oligonucleotide;
  • the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
  • the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L; a first oligonucleotide and a second oligonucleotide are linked together;
  • the lipid-linked oligonucleotide according to any one of [1
  • lipid-linked oligonucleotide according to any one of [1] to [7] and [24], wherein the oligonucleotide compound or oligonucleotide complex is an siRNA.
  • a pharmaceutical composition comprising the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25] and a pharmacologically acceptable carrier.
  • a method for controlling a function of a target RNA comprising a step of contacting a cell with the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25].
  • a method for regulating a function of a target RNA in a mammal comprising a step of administering to the mammal the pharmaceutical composition according to [26].
  • a method for controlling expression of a target gene comprising a step of contacting a cell with the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25].
  • a method for regulating expression of a target gene in a mammal comprising the step of administering to the mammal the pharmaceutical composition according to [26].
  • the present invention provides lipid-bound oligonucleotides or complexes thereof that have enhanced pharmacological effects on the liver and organs other than the liver.
  • 13 is a graph showing the results of the expression level of Malat1 10 days after administration of antisense oligonucleotides in antisense suppression of Malat1 in mice in Evaluation Example 3.
  • 13 is a graph showing the results of the expression level of Malat1 5 days after administration of antisense oligonucleotides in antisense suppression of Malat1 in mice in Evaluation Example 3.
  • 13 is a graph showing the results of Hprt1 expression levels in the liver of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in the liver 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in the hearts of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in the heart 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in the lungs of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in muscle of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in muscle 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4.
  • 13 is a graph showing the results of Hprt1 expression levels in the hearts of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 6.
  • 13 is a graph showing the results of Hprt1 expression levels in the liver of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 6.
  • 13 is a graph showing the results of Hprt1 expression levels in muscle of mice administered 2.9 ⁇ mol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 6.
  • 13 is a graph showing the results of Sod1 expression levels in the cerebrum after administration of siRNA in RNA interference of Sod1 in mice in Evaluation Example 8.
  • 13 is a graph showing the results of Sod1 expression levels in the hippocampus after administration of siRNA in RNA interference of Sod1 in mice in Evaluation Example 8.
  • nucleoside is a term well known to those skilled in the art, and is generally understood to be a molecule in which a sugar and a nucleic acid base are bound, and which can be a unit constituting a nucleic acid.
  • nucleoside is a broader concept, and includes deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, which are described below.
  • the nucleic acid base may be modified.
  • Deoxyribonucleoside means a molecule having a nucleobase at the carbon atom at position 1 of 2-deoxyribose.
  • the deoxyribonucleoside in the present invention may be a naturally occurring deoxyribonucleoside or a deoxyribonucleoside in which the nucleobase portion of a naturally occurring deoxyribonucleoside has been modified.
  • a naturally occurring deoxyribonucleoside is a deoxyribonucleoside having a naturally occurring nucleobase.
  • a single deoxyribonucleoside may be modified by a combination of multiple types. The modified deoxyribonucleosides are described, for example, in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365; and International Publication No. WO 2018/155450.
  • “Ribonucleoside” means a molecule having a nucleobase at the first carbon atom of ribose.
  • the ribonucleoside in the present invention may be a naturally occurring ribonucleoside or a ribonucleoside in which the nucleobase portion of a naturally occurring ribonucleoside has been modified.
  • a naturally occurring ribonucleoside is a ribonucleoside having a naturally occurring nucleobase.
  • a combination of multiple types of modifications may be applied to one ribonucleoside.
  • the modified ribonucleosides are described, for example, in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365; and International Publication No. WO 2018/155450.
  • Modified sugar refers to (Z1) A molecule in which ribose or 2-deoxyribose is partially replaced by one or more substituents; (Z2) Molecules in which ribose or 2-deoxyribose is replaced by a pentose or hexose sugar different from ribose and 2-deoxyribose (e.g., hexitol, threose, etc.); (Z3) A molecule in which the entire ribose or 2-deoxyribose, or the tetrahydrofuran ring thereof, is replaced with a 5- to 7-membered saturated or unsaturated ring (e.g., cyclohexane, cyclohexene, morpholine, etc.), or a partial structure capable of forming a 5- to 7-membered ring by hydrogen bonding (e.g., a peptide structure), Or (Z4) means a molecule in which ribo
  • Modified sugars include "2-modified sugars" and "2-4 linked sugars," as defined below.
  • modified sugars and sugar-modified nucleosides described below include sugars and sugar-modified nucleosides disclosed as being suitable for use in the antisense method in JP-A-10-304889, WO 2005/021570, JP-A-10-195098, JP-T-2002-521310, WO 2007/143315, WO 2008/043753, WO 2008/029619, WO 2008/049085, and WO 2017/142054 (hereinafter, these documents are referred to as "documents related to the antisense method" and the like.
  • examples of the N-substituted carbamoyl group include an N-methyl-carbamoyl group and an N-ethyl-carbamoyl group, in which the methyl group and the ethyl group of the N-methyl-carbamoyl group and the N-ethyl-carbamoyl group may be substituted with a 5- to 10-membered heterocyclic group or a mono- or di-C 1-6 alkylamino group.
  • N-substituted carbamoyl group examples include an N-methylcarbamoyl group, an N-ethylcarbamoyl group, an N-dimethylaminoethyl-carbamoyl group, an N-morpholinoethylcarbamoyl group, an N-(2-pyridylethyl)carbamoyl group, an N-((benzimidazol-1-yl)ethyl)carbamoyl group, and the like.
  • “Sugar-modified nucleoside” refers to a molecule having the above-mentioned “modified sugar” in place of the sugar portion of a deoxyribonucleoside or ribonucleoside. For example, it includes the "2'-modified nucleoside” and "2'-4'-bridged nucleoside” described below.
  • the modified sugar is (Z3) as defined above, the sugar-modified nucleoside also includes a molecule in which the modified sugar and the nucleic acid base are linked via a methylene chain or the like.
  • Dimodified sugar means a non-bridged sugar in which the oxygen atom or carbon atom at the 2-position of ribose is modified, and includes "2-O-Me”, “2-O-MOE”, “2-O-MCE”, “2-O-NMA”, “2-O-AP”, “2-F”, “2-DMAECE”, “2-MorECE”, “2-PyECE”, and “2-BimECE”.
  • 2'-modified nucleoside means a molecule having a nucleobase at the 1-position of the dimodified sugar, and examples include "2'-O-Me nucleoside,”"2'-O-MOEnucleoside,”"2'-O-MCEnucleoside,”"2'-O-NMAnucleoside,”"2'-O-APnucleoside,”"2'-Fnucleoside,””2'-DMAECEnucleoside,”"2'-MorECEnucleoside,””2'-PyECEnucleoside,” and “2'-BimECE nucleoside.”
  • 2-O-Me (also called 2-O-methyl) means a sugar in which the hydroxy group at position 2 of ribose is replaced with a methoxy group.
  • a "2'-O-Me nucleoside” (also referred to as a 2'-O-methyl nucleoside) means a molecule having a nucleobase at the 1-position of "2-O-Me.”
  • 2-O-MOE also known as 2-O-methoxyethyl
  • 2-O-methoxyethyl means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 2-methoxyethyloxy group.
  • a "2'-O-MOE nucleoside” (also referred to as a 2'-O-methoxyethyl nucleoside) means a molecule having a nucleobase at position 1 of "2-O-MOE.”
  • 2-O-MCE also called 2-O-methylcarbamoylethyl
  • 2-O-methylcarbamoylethyl means a sugar in which the hydroxy group at position 2 of ribose is replaced with a methylcarbamoylethyloxy group.
  • 2'-O-MCE nucleoside also referred to as 2'-O-methylcarbamoylethyl nucleoside
  • 2-O-NMA means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 2-[(methylamino)-2-oxoethyl]oxy group.
  • 2-O-NMA nucleoside means a molecule having a nucleobase at position 1 of "2-O-NMA.”
  • 2-O-AP means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 3-aminopropyloxy group.
  • 2'-O-AP nucleoside means a molecule having a nucleobase at position 1 of "2-O-AP”.
  • 2-F means a sugar in which the hydroxy group at position 2 of ribose is replaced with a fluorine atom.
  • 2'-F nucleoside means a molecule having a nucleobase at position 1 of "2-F.”
  • 2-DMAECE modified sugars in which the hydroxyl group at position 2 of ribose has been replaced with structures shown below as DMAECE, MorECE, PyECE, and BimECE, respectively.
  • the wavy line indicates the bond position with the carbon atom to which the hydroxyl group at position 2 of ribose is bonded.
  • 2-4 bridged sugar refers to a sugar in which a bridge unit is formed by substitution at two positions, the 2- and 4-positions of ribose.
  • the bridge unit include a C 2-6 alkylene group (the alkylene group is unsubstituted or substituted with one or more substituents selected from the group consisting of a halogen atom, an oxo group, and a thioxo group, and one or two methylene groups of the alkylene group are unsubstituted or independently substituted with a group selected from the group consisting of -O-, -NR 10 - (R 10 is a hydrogen atom, a C 1-6 alkyl group, or a haloC 1-6 alkyl group), and -S-).
  • “2',4'-bridged nucleoside”(2',4'-BNA) means a molecule having a nucleobase at the 1-position of the 2-4 bridged sugar.
  • ⁇ -D-methyleneoxy (4'-CH 2 -O-2') BNA or ⁇ -L-methyleneoxy (4'-CH 2 -O-2') BNA also referred to as LNA (Locked Nucleic Acid (registered trademark)) described below
  • ethyleneoxy (4'-(CH 2 ) 2 -O-2') BNA also referred to as ENA
  • ⁇ -D-thio (4'-CH 2 -S-2') BNA aminooxy (4'-CH 2 -O-N(R 11 )-2') BNA (R 11 is H or CH 3 ), oxyamino (4'-CH 2 -N(R 12 )-O-2') BNA (R 12 is H or CH 3 ), also referred to as 2',4'-BNA NC , 2
  • 5-modified sugar refers to a non-bridged sugar in which the oxygen or carbon atom at position 5 of the ribose backbone is modified, and includes "5-CP,””5-methyl,” and “5-aminopropyl.” Positions 2 and 4 of the "5-modified sugar” are preferably not modified.
  • 5'-modified nucleoside means a molecule having a nucleobase at the carbon atom at position 1 (position 1 of 2-deoxyribose before modification) of the "5-modified sugar" and includes, for example, "5'-CP nucleoside,”"5'-methylnucleoside,” and "5'-aminopropyl nucleoside.”
  • the 2' position of a 5'-modified nucleoside may or may not be modified.
  • the 2' and 4' positions of a 5'-modified nucleoside may or may not be bridged, but are preferably not bridged.
  • “5-CP” is a sugar in which the 5-position of the ribose backbone is substituted with two methyl groups, which together form a cyclopropane.
  • a “5'-CP nucleoside” is a molecule in which the sugar is the above-mentioned “5-CP” and which has a nucleic acid base at the carbon atom at position 1 (position 1 of the base 2-deoxyribose), and can be represented by the following structural formula.
  • Base is a nucleic acid base. The wavy line is understood to represent a bond to an adjacent nucleoside, a linker, etc., or to represent a hydrogen atom or a phosphate group.
  • 5-methyl is a sugar in which the 5-position of the ribose backbone is substituted with a methyl group.
  • 5-aminopropyl is a sugar in which the 5-position of the ribose backbone is substituted with a 3-aminopropyl group.
  • the terms "5'-methylnucleoside” and “5'-aminopropylnucleoside” refer to molecules having a nucleobase at the 1-position (the 1-position of the parent 2-deoxyribose) carbon atom of "5-methyl” and “5-aminopropyl,” respectively.
  • 5-vinyl is a sugar in which the methylene group at the 5th position of ribose is replaced with an ethene-1,2-diyl group (vinyl group).
  • Vinylphosphonate (VP) nucleosides and cyclopropanephosphonate (CPP) nucleosides, described below, are also included in the 5'-modified nucleosides.
  • the bond between the carbon atom at the 1' position and the nucleic acid base can be an ⁇ -glycosidic bond or a ⁇ -glycosidic bond, but is usually a ⁇ -glycosidic bond. Therefore, ⁇ -D-methyleneoxy BNA is usually used as LNA.
  • n- means normal, "s-” means secondary, and "t-" means tertiary.
  • Halogen atom or "halo" means a fluorine atom, chlorine atom, bromine atom, or iodine atom.
  • C1-6 alkyl group means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, and examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, and an isohexyl group (including various isomers).
  • C 1-10 alkyl group means a straight-chain or branched alkyl group having 1 to 10 carbon atoms, and examples thereof include, in addition to the examples of the "C 1-6 alkyl group” mentioned above, a heptyl group, an octyl group, a nonyl group, a decyl group (including various isomers), etc.
  • C5-32 alkyl group means a straight-chain or branched alkyl group having 5 to 32 carbon atoms, and examples thereof include pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl, hexacosyl, octacosyl, triacontyl, hentriacontyl, and dotriacontyl (including various isomers) groups.
  • C8-28 alkyl group means a straight-chain or branched alkyl group having 8 to 28 carbon atoms, and examples thereof include octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl, hexacosyl, and octacosyl (including various isomers).
  • C10-20 alkyl group means a straight-chain or branched alkyl group having 10 to 20 carbon atoms, and examples thereof include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, and an icosyl group (including various isomers).
  • C 12-14 alkyl group refers to a straight or branched alkyl group having 12 to 14 carbon atoms, and examples thereof include dodecyl, tridecyl, and tetradecyl groups (including various isomers).
  • C12 alkyl group means a straight or branched alkyl group having 12 carbon atoms, and examples include 1-dodecyl, 6-dodecyl, 1-methylundecyl, 6-methylundecyl, and the like.
  • C14 alkyl group means a straight or branched alkyl group having 14 carbon atoms, and examples include 1-tetradecyl group, 7-tetradecyl group, 1-methyltridecyl group, 12-methyltridecyl group, and the like.
  • C 5-32 alkenyl group means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 5 to 32 carbon atoms, and examples thereof include a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an icosenyl group, a docosenyl group, a tetracosenyl group, a hexacosenyl group, an an
  • C8-28 alkenyl group means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 8 to 28 carbon atoms, and examples thereof include octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icosenyl, docosenyl, tetracosenyl, hexacosenyl, and octacosenyl (including various isomers).
  • C10-20 alkenyl group means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 10 to 20 carbon atoms, and examples thereof include a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, and an icosenyl group (including various isomers).
  • C 14 alkenyl group means a straight-chain or branched alkenyl group having 14 carbon atoms, and examples thereof include a tetradec-2-enyl group, a tetradec-7-enyl group, a 1-methyltridec-2-enyl group, and a 12-methyltridec-2-enyl group.
  • halo C 1-6 alkyl group means a group in which a hydrogen atom at any position of the above “C 1-6 alkyl group” is substituted with one or more of the above “halogen atoms”.
  • C 2-6 alkylene group means a divalent group (alkanediyl group) obtained by removing two hydrogen atoms at any position from a straight-chain or branched saturated hydrocarbon group having 2 to 6 carbon atoms, and examples include an ethylene (ethanediyl) group, a propane-1,3-diyl (trimethylene) group, a propane-2,2-diyl group, a 2,2-dimethyl-propane-1,3-diyl group, a hexane-1,6-diyl (hexamethylene) group, and a 3-methylbutane-1,2-diyl group.
  • C 1-10 alkylene group means a straight-chain or branched alkylene group having 1 to 10 carbon atoms, and examples thereof include, in addition to the examples of the "C 2-6 alkylene group” above, a methylene group, a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, an octamethylene group, and a decamethylene group.
  • C 2-8 alkylene group means a straight-chain or branched alkylene group having 2 to 8 carbon atoms, and examples thereof include, in addition to the examples of the "C 2-6 alkylene group” above, a methylene group, a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, and an octamethylene group.
  • C 3-6 alkylene group means a straight-chain or branched alkylene group having 3 to 6 carbon atoms, and examples thereof include a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, a hexamethylene group, and the like.
  • C6 alkylene group means a straight or branched alkylene group having 6 carbon atoms, and examples include hexamethylene, 1-methyl-pentamethylene, 2-methyl-pentamethylene, 1,1-dimethyl-tetramethylene, and the like.
  • C 1-6 alkoxy group means a group in which the above “C 1-6 alkyl group” is bonded to an oxy group.
  • halo C 1-6 alkoxy group means a group in which a hydrogen atom at any position of the above “C 1-6 alkoxy group” is substituted with one or more of the above “halogen atoms”.
  • the "mono- or di-C 1-6 alkylamino group” means a group in which one hydrogen atom of an amino group is replaced by one "C 1-6 alkyl group", or a group in which two hydrogen atoms of an amino group are replaced by the same or different two "C 1-6 alkyl groups", and examples thereof include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, and an N-ethyl-N-methylamino group.
  • 3- to 6-membered ring means a monocyclic saturated or unsaturated hydrocarbon ring having 3 to 6 carbon atoms, such as cyclopropane, cyclobutane, and cyclohexane.
  • 5- to 10-membered heterocyclic group means a 5- to 10-membered monocyclic or condensed polycyclic aromatic or non-aromatic heterocyclic group containing, as ring-constituting atoms other than carbon atoms, 1 to 4 heteroatoms selected from a nitrogen atom, a sulfur atom, and an oxygen atom.
  • the "5- to 10-membered heterocyclic group” include a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a benzothiophenyl group, a benzofuranyl group, a benzimidazolyl group, a benzoxazolyl group, a benzisoxazolyl group, a benzothiazolyl group, a benzisothiazolyl group, a benzotriazolyl group, an imidazolyl group
  • Nucleic acid base refers to a purine base or a pyrimidine base, and may be a naturally occurring nucleobase or a modified naturally occurring nucleobase.
  • Naturally occurring nucleobases include adenine (A), guanine (G), thymine (T), cytosine (C) and uracil (U).
  • the "nucleic acid base” includes naturally occurring nucleobases and the “modified nucleobases” described below.
  • modified nucleic acid bases examples include halogenation, methylation, ethylation, n-propylation, isopropylation, cyclopropylation, n-butylation, isobutylation, s-butylation, t-butylation, cyclobutylation, hydroxylation, amination, thiolation, demethylation, etc.
  • the nucleic acid base in the nucleoside is preferably at least one selected from the group consisting of adenine, guanine, thymine, cytosine, uracil, and 5-methylcytosine.
  • 5-methylcytosine means cytosine with a methyl group at the 5th position.
  • Nucleic acid base sequence refers to the sequence from the 5' to the 3' side of the nucleic acid bases of each nucleoside contained in an oligonucleotide.
  • Consecutive nucleobases refers to a sequence from the 5' to the 3' end of a contiguous portion of nucleobases in the "nucleobase sequence.”
  • Internucleoside linkage means a group or bond that forms a covalent bond between adjacent nucleosides in an oligonucleotide.
  • Internucleoside linkage includes phosphodiester linkages and "modified internucleoside linkages” described below.
  • Modified internucleoside bond means a modified phosphodiester bond, such as a phosphorothioate bond, a methylphosphonate bond (including a chiral-methylphosphonate bond), a methylthiophosphonate bond, a phosphorodithioate bond, a phosphoramidate bond, a phosphorodiamidate bond, a phosphoroamidothioate bond, and a boranophosphate bond.
  • modified phosphodiester bonds are disclosed in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365, etc., and can be used for modified phosphodiester bonds.
  • Modified nucleoside means a nucleoside having a modified sugar and/or a modified nucleobase.
  • Oligodeoxyribonucleotide refers to a polynucleotide or oligonucleotide in which two or more of the same or different "deoxyribonucleosides" are linked by the "internucleoside bonds” selected independently from each other.
  • oligoribonucleotide refers to a polynucleotide or oligonucleotide in which two or more of the same or different "ribonucleosides" are linked by the above-mentioned "internucleoside linkages" which are independently selected from each other.
  • the 5' position of a nucleoside is linked to another nucleoside, the 5' position is linked to the 2', 3', or 5' position (preferably the 3' position) of the other nucleoside through an internucleoside bond.
  • the 3' position of a nucleoside is linked to another nucleoside, the 3' position is linked to the 2', 3', or 5' position (preferably the 5' position) of the other nucleoside through an internucleoside bond.
  • DNA refers to a polynucleotide or oligonucleotide in which two or more naturally occurring "deoxyribonucleosides” as defined above are linked by phosphodiester bonds. The naturally occurring deoxyribonucleosides that make up DNA may be the same or different.
  • RNA refers to a polynucleotide or oligonucleotide in which two or more naturally occurring "ribonucleosides” are linked by phosphodiester bonds. The naturally occurring ribonucleosides that make up the RNA may be the same or different.
  • Oligonucleotide complex refers to a complex in which multiple "oligonucleotides” (molecules) that are not covalently linked to each other are combined together by intermolecular hybridization.
  • Target RNA means mRNA, mRNA precursor, or ncRNA, and includes mRNA transcribed from genomic DNA encoding the target gene, mRNA with no base modifications, mRNA precursor and ncRNA that have not been spliced, etc.
  • target RNA whose function is controlled by the antisense effect, and examples include RNA associated with genes whose expression is increased in various diseases.
  • target RNA may be any RNA synthesized by DNA-dependent RNA polymerase, and is preferably mRNA or mRNA precursor. More preferably, it is mammalian mRNA or mRNA precursor, even more preferably human mRNA or mRNA precursor, and particularly preferably human mRNA.
  • the "antisense effect” means that the function of a target RNA is controlled by hybridization of a target RNA selected corresponding to a target gene with, for example, an oligonucleotide having a sequence complementary to a partial sequence of the target RNA.
  • a target RNA selected corresponding to a target gene
  • an oligonucleotide having a sequence complementary to a partial sequence of the target RNA for example, when the target RNA is an mRNA, this means inhibition of translation of the target RNA by hybridization, a splicing function conversion effect such as exon skipping, or degradation of the target RNA by recognition of the hybridized portion.
  • an “antisense oligonucleotide” is an oligonucleotide that produces the antisense effect. Examples include, but are not limited to, DNA, oligodeoxyribonucleotides, gapmer-type antisense oligonucleotides (or simply “gapmers”), and mixmer-type antisense oligonucleotides (or simply “mixmers”).
  • the ASO may also be RNA, oligoribonucleotides, or oligonucleotides designed to normally produce an antisense effect.
  • Hybridize refers to the act of forming a double strand between oligonucleotides or portions thereof that contain complementary sequences, and the phenomenon in which oligonucleotides or portions thereof that contain complementary sequences form a double strand.
  • “Complementary” means that two nucleobases can form Watson-Crick base pairs (natural base pairs) or non-Watson-Crick base pairs (Hoogsteen base pairs, etc.) through hydrogen bonds.
  • Two oligonucleotides or portions thereof can "hybridize” if their sequences are complementary. Although two oligonucleotides or portions thereof do not need to be completely complementary to hybridize, the complementarity for two oligonucleotides or portions thereof to hybridize is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more (e.g., 95%, 96%, 97%, 98%, or 99% or more).
  • Sequence complementarity is determined by using a computer program that automatically identifies partial sequences of oligonucleotides.
  • OligoAnalyzer is one such software and is provided by Integrated DNA Technologies. This program is also available on the website.
  • a person skilled in the art can determine that the two oligonucleotides hybridize.
  • Gapmer refers to an oligonucleotide that includes a "gap segment,” a “5' wing segment,” and a “3' wing segment,” as described below.
  • gap segment refers to a region that includes "at least four consecutive nucleosides that are recognized by RNase H” and is not particularly limited as long as it includes four or more consecutive nucleosides and is recognized by RNase H, but the consecutive nucleosides are preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides and include at least two deoxyribonucleosides.
  • the nucleosides at the 5' and 3' ends of the gap segment are deoxyribonucleosides or 5'-modified nucleosides, more preferably deoxyribonucleosides. In one embodiment, preferably the 5' end of the gap segment is a 5'-modified nucleoside and the 3' end of the gap segment is a deoxyribonucleoside.
  • the "5' wing segment” is a region that is linked to the 5' side of the gap segment and contains "at least one nucleoside” without containing the "at least four consecutive nucleosides recognized by RNase H", and the sugar moiety of the 3'-terminal nucleoside of the 5' wing segment is different from the sugar moiety of the 5'-terminal nucleoside of the gap segment.
  • the difference in sugar moiety identifies the boundary between the 5' wing segment and the gap segment. In one embodiment of the present invention, the difference in sugar moiety is determined by the presence or absence of modification at the 2-position of the corresponding sugar.
  • a "2-modified sugar” is a non-bridged sugar in which the oxygen or carbon atom at the 2-position of ribose is modified
  • a "2-4 bridged sugar” is a sugar in which the bridge unit is replaced by substitutions at two positions, the 2-position and the 4-position of ribose, as defined above, and therefore the 2-position is modified in both cases.
  • the nucleoside at the 5' end of the gap segment is a deoxyribonucleoside and the nucleoside at the 3' end of the 5' wing segment is a sugar-modified nucleoside.
  • This sugar-modified nucleoside is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the nucleoside at the 5' end of the gap segment is a 5'-modified nucleoside and the nucleoside at the 3' end of the 5' wing segment is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the nucleoside at the 3' end of the 5' wing segment is generally a sugar-modified nucleoside, preferably a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the 5' wing segment is not particularly limited as long as it satisfies the above definition, but the at least one nucleoside is preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides, and includes at least one sugar-modified nucleoside.
  • the 5' wing segment is preferably independently selected from sugar-modified nucleosides, and more preferably independently selected from 2'-4'-bridged nucleosides and 2'-modified nucleosides.
  • the "3' wing segment” is a region that is linked to the 3' side of the gap segment and contains "at least one nucleoside” without containing the "at least four consecutive nucleosides recognized by RNase H", in which the sugar moiety of the 5'-terminal nucleoside of the 3' wing segment is different from the sugar moiety of the 3'-terminal nucleoside of the gap segment.
  • the difference in sugar moieties identifies the boundary between the 3' wing segment and the gap segment. In one embodiment of the present invention, the difference in sugar moieties is determined by the presence or absence of modification at the 2-position of the corresponding sugar.
  • nucleoside at the 3' end of the gap segment is a deoxyribonucleoside and the nucleoside at the 5' end of the 3' wing segment is a sugar-modified nucleoside.
  • This sugar-modified nucleoside is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the nucleoside at the 3' end of the gap segment is a 5'-modified nucleoside and the nucleoside at the 5' end of the 3' wing segment is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the nucleoside at the 5' end of the 3' wing segment is generally a sugar-modified nucleoside, preferably a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.
  • the 3' wing segment is not particularly limited as long as it satisfies the above definition, but the at least one nucleoside is preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides, and includes at least one sugar-modified nucleoside.
  • the 3' wing segment is preferably independently selected from sugar-modified nucleosides, and more preferably independently selected from 2'-4'-bridged nucleosides and 2'-modified nucleosides.
  • the portion from the 5' end where 2'-modified nucleosides or 2'-4'-bridged nucleosides continue is the 5' wing segment, and the boundary where the nucleoside at the 3' end of the 5' wing segment is linked to another nucleoside (deoxyribonucleoside, ribonucleoside, etc.) other than the 2'-modified nucleoside or 2'-4'-bridged nucleoside is the boundary between the 5' wing segment and the gap segment.
  • the portion from the 3' end where 2'-modified nucleosides or 2'-4'-bridged nucleosides continue is the 3' wing segment, and the boundary where the 5'-end nucleoside of the 3' wing segment is linked to another nucleoside (deoxyribonucleoside, ribonucleoside, etc.) other than the 2'-modified nucleoside or 2'-4'-bridged nucleoside is the boundary between the 3' wing segment and the gap segment.
  • RNase H is generally known as a ribonuclease that recognizes a double strand in which DNA and RNA are hybridized in a living body, cleaves the RNA, and produces single-stranded DNA.
  • RNase H can recognize not only a double strand in which DNA and RNA are hybridized, but also a double strand in which at least one of the nucleic acid base portion, the phosphodiester bond portion, and the sugar portion of at least one of DNA and RNA is modified. For example, it can recognize a double strand in which DNA modified with phosphorothioate bonds is hybridized with RNA.
  • RNA hybridizes with DNA it can be recognized by RNase H.
  • RNA hybridizes with DNA it can be cleaved by RNase H.
  • at least one of the nucleic acid base portion, the phosphodiester bond portion, and the sugar portion is modified in at least one of DNA and RNA.
  • a representative example is an oligonucleotide in which the phosphodiester bond portion of DNA is modified to phosphorothioate.
  • RNase H is preferably mammalian RNase H, more preferably human RNase H, and particularly preferably human RNase H1.
  • At least four consecutive nucleosides recognized by RNase H includes four or more consecutive nucleosides, and is not particularly limited as long as it is recognized by RNase H, and examples thereof include “at least four consecutive deoxyribonucleosides".
  • the number of nucleosides constituting "at least four consecutive nucleosides recognized by RNase H” is, for example, 5 to 30, preferably 5 to 15, more preferably 8 to 12, and particularly preferably 10.
  • These nucleosides are independently preferably deoxyribonucleosides or 5'-modified nucleosides, and more preferably deoxyribonucleosides.
  • Whether or not a certain sequence of at least four consecutive nucleosides is "at least four consecutive nucleosides recognized by RNase H” can be determined by a person skilled in the art based on the structure of the sugar moieties of the consecutive nucleosides.
  • the number of nucleosides constituting the 5' wing segment and the 3' wing segment is, independently, for example, 1 to 10, preferably 2 to 6, more preferably 3 to 5, and particularly preferably 3.
  • the number of nucleosides constituting a gapmer is preferably 7 to 50, more preferably 7 to 27, even more preferably 14 to 22, and particularly preferably 16.
  • a mixmer is an oligonucleotide that contains multiple sugar-modified nucleosides and produces an antisense effect without having the gap segment
  • examples of such oligonucleotides include an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides and nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides are alternately linked, and an oligonucleotide consisting only of sugar-modified nucleosides as nucleosides.
  • the mixmer is an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides independently selected from 2'-modified nucleosides and 2',4'-BNA are alternately linked with nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides.
  • siRNA small interfering RNA
  • siRNA is a small double-stranded oligoribonucleotide.
  • siRNA is involved in a phenomenon called RNA interference (RNAi) and suppresses gene expression by destroying the target mRNA.
  • RNAi RNA interference
  • siRNA includes an antisense strand and a sense strand.
  • the antisense strand and the sense strand of the siRNA comprise RNA.
  • the siRNA typically consists of 15 to 30 base pairs, and preferably 21 to 23 base pairs.
  • the 3' ends of the two nucleic acid strands often have 1 to 5 (preferably 2) overhanging deoxythymidines (generally written as tt, dTdT, etc.) (generally called an overhang). Only the 3' end of the sense strand may have two overhanging deoxythymidines, or only the 3' end of the antisense strand may have two overhanging deoxythymidines.
  • neither the antisense nor the sense strand has an overhang.
  • an siRNA asymmetrically having a blunt end at the 5' end of the antisense strand and an overhang at the 3' end of the antisense strand favors the process of loading the guide strand into RISC.
  • the siRNA may contain one or more sugar-modified nucleosides. For example, at least 50%, 60%, 70%, 80%, 90%, 95%, or 100% of the nucleosides constituting the siRNA are sugar-modified nucleosides.
  • the sugar-modified nucleoside used in the siRNA is, for example, at least one selected from 2'-modified nucleosides and 2'-4'-bridged nucleosides, preferably at least one selected from 2'-modified nucleosides, and particularly preferably 2'-O-Me nucleosides and 2'-F nucleosides.
  • the siRNA is composed of 2'-O-Me nucleosides and 2'-F nucleosides. The ratio is, for example, 10-30% 2'-F nucleosides and 90-70% 2'-O-Me nucleosides.
  • the sense strand contains 10-20% 2'-F nucleosides and 90-80% 2'-O-Me nucleosides
  • the antisense strand contains 20-30% 2'-F nucleosides and 80-70% 2'-O-Me nucleosides.
  • the antisense strand contains a 2'-fluoronucleoside at at least one position selected from positions 2, 6, 8, 9, 14, and 16, counting from the 5' end.
  • the antisense strand has 2'-fluoronucleosides at positions 2, 6, 8, 9, 14, and 16, counting from the 5' end of the antisense strand hybridizing portion.
  • the other nucleosides are 2'-O-Me nucleosides.
  • the sense strand contains a 2'-fluoro nucleoside at at least one position selected from positions 7, 9, 10, and 11, counting from the 5' end.
  • the sense strand contains 2'-fluoro nucleosides at positions 7, 9, 10, and 11, counting from the 5' end.
  • the other nucleosides are 2'-O-Me nucleosides.
  • the internucleoside bonds of the siRNA may be phosphodiester bonds or modified internucleoside bonds, but each internucleoside bond is preferably independently a phosphodiester bond or a phosphorothioate bond. More preferably, 1 to 5 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds. Even more preferably, 1 to 3 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds.
  • 2 to 3 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds.
  • two internucleoside bonds at the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds.
  • the sense strand or/and the antisense strand comprising the siRNA may be 5' phosphorylated or may include a phosphate modification at the 5' end.
  • Exemplary phosphate groups or modified phosphate groups include those compatible with RISC-mediated gene silencing.
  • suitable phosphate groups or phosphate modifications include 5'-monophosphate ((HO) 2 (O)P-O-5'), 5'-diphosphate ((HO) 2 (O)P-O-P(HO)(O)-O-5'), 5'-triphosphate ((HO) 2 (O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothioate; (HO) 2 (S)P-O-5'), 5'-monodithiophosphate (dithiophosphate, (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO) 2 (S)P-O-5'), 5'-monodithiophosphate (phosphorothioate; (HO) 2 (S)P-O-5'), 5'-monodithiophosphate (dithiophosphate, (HO)(HS)(S)P-O-5
  • 5'-cycloalkylphosphonate ((OH) 2 (O)P-5'-(cycloalkane-diyl)-, e.g., (OH) 2 (O)P-5'-(cyclopropane-1,2-diyl)-).
  • the antisense strand may include a 5'-vinyl phosphonate nucleoside at the 5' terminus, preferably a 5'-E-vinyl phosphonate nucleoside.
  • the antisense strand may include a 5'-cyclopropane phosphonate nucleoside at the 5' terminus, preferably a 5'-(trans)-cyclopropane phosphonate nucleoside.
  • the 5'-terminal nucleotide of the antisense strand comprises a 5'-E-vinyl phosphonate or a 5' cyclopropane phosphonate, for example, the following formula (X):
  • the compound of formula (XI) (Base in formula (XI) has the same meaning as X and Base in formula (I).
  • the substituent on the cyclopropane is in a trans form) (5'-cyclopropanephosphonate (CPP)-modified 2'-O-Me nucleoside) is preferred.
  • siRNA is well known in the field, and reference can be made, for example, to Sig Transduct Target Ther 2020, 5, pp101, RNA Biol. 2022, 19(1) pp452-467, Trends Mol Med. 2024, 30(1) pp13-24, Nat Rev Drug Discov 2024, 23, pp341-364, etc.
  • aptamer is an oligonucleotide that binds to specific extracellular proteins and inhibits their function.
  • a "ribozyme” is an RNA or oligoribonucleotide with catalytic activity.
  • micro-RNA is RNA that is coded in the genome but is not translated into protein (non-coding RNA), and has the effect of suppressing gene expression. It is typically RNA of 21 to 25 bases.
  • CpG oligo is an oligonucleotide that contains deoxycytidine (C) and deoxyguanosine (G) and activates natural immunity by interacting with proteins such as Toll-like Receptor 9 (TLR9). It is typically an oligodeoxyribonucleotide of 15 to 30 bases.
  • Decoy nucleic acid is a double-stranded oligodeoxyribonucleotide that binds to a transcription factor, among other proteins, and inhibits the transcription stage. Decoy nucleic acid can inhibit gene expression of the transcription factor. Decoy nucleic acid typically consists of 15 to 30 base pairs.
  • the present invention provides a lipid-linked oligonucleotide or a complex thereof.
  • the lipid-linked oligonucleotide or a complex thereof of the present invention has the following general formula (I): (Wherein, W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate; L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol; R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring. It is expressed as:
  • a "substituted or unsubstituted C 1-10 alkylene group” means an (unsubstituted) C 1-10 alkylene group or a C 1-10 alkylene group substituted with one or more arbitrary substituents.
  • substituted or unsubstituted means that the group is unsubstituted or substituted with at least one substituent selected from a given group of substituents, for example, a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.
  • substituted C 1-10 alkylene group means that any one or more hydrogen atoms of the alkylene group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.
  • Examples of divalent groups derived from poly C 1-10 alkylene glycol include groups represented by the formula: -(O) l -(Alk-O-) m -Alk-(O) n - (wherein l and n are independently 0 or 1, m is an integer from 2 to 20, and Alk is a C 1-10 alkylene group which is optionally substituted with a group selected from the group consisting of a hydroxy group, a protected hydroxy group, a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group).
  • the protected hydroxy group is not particularly limited as long as it is stable when bound to an oligonucleotide, and examples of the protected hydroxy group include ether-based protecting groups such as triarylmethyl (e.g., triphenylmethyl (trityl), monomethoxytrityl, dimethoxytrityl (DMTr), trimethoxytrityl, etc.); acetal-based protecting groups such as methoxymethyl, methylthiomethyl, methoxyethyl, benzyloxymethyl, 2-tetrahydropyranyl, etc.; acyl-based protecting groups such as acyl (e.g., formyl, acetyl, pivaloyl, benzoyl, etc.); tri(alkyl)silyl (e.g., trimethylsilyl, triethylsilyl, silyl-based protecting groups such as (alkyl)diarylsilyl (for example, t-butyldipheny
  • the protecting group for a "protected hydroxy group” is preferably benzoyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, t-butyldimethylsilyl, triphenylmethyl, monomethoxytrityl, dimethoxytrityl, trimethoxytrityl, 9-phenylxanthen-9-yl or 9-(p-methoxyphenyl)xanthen-9-yl.
  • an unsubstituted C 1-10 alkylene group is preferable, a C 2-8 alkylene group is more preferable, a C 3-6 alkylene group is even more preferable, and a C 6 alkylene group is particularly preferable.
  • an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, or an octamethylene group (including various isomers) is more preferable, a trimethylene group, a tetramethylene group, or a hexamethylene group (including various isomers) is even more preferable, and a hexamethylene group (including various isomers) is particularly preferable.
  • a 1,6-hexamethylene group (1,6-hexanediyl group) is particularly preferable.
  • substituted or unsubstituted C 5-32 alkyl group means an (unsubstituted) C 5-32 alkyl group or a C 5-32 alkyl group substituted with one or more optional substituents.
  • substituted C 5-32 alkyl group means that any one or more hydrogen atoms of the alkyl group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.
  • R 1 and R 2 in the general formula (I) are preferably unsubstituted C 5-32 alkyl groups, more preferably C 8-28 alkyl groups, even more preferably C 10-20 alkyl groups, even more preferably C 12-14 alkyl groups, and particularly preferably C 14 alkyl groups. Also, C 12 alkyl groups are particularly preferred.
  • decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and icosyl group (including various isomers) are more preferred, and tetradecyl group (including various isomers) is particularly preferred.
  • alkyl groups of R 1 and R 2 in the general formula (I) linear alkyl groups are preferred.
  • substituted or unsubstituted C 5-32 alkenyl group means an (unsubstituted) C 5-32 alkenyl group or a C 5-32 alkenyl group substituted by one or more optional substituents.
  • substituted C5-32 alkenyl group means that any one or more hydrogen atoms of the alkenyl group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C1-6 alkoxy group, and an aryl group.
  • R 1 and R 2 in general formula (I) are preferably unsubstituted C 5-32 alkenyl groups, more preferably C 8-28 alkenyl groups, even more preferably C 10-20 alkenyl groups, and particularly preferably C 14 alkenyl groups.
  • decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, and icosenyl groups (including various isomers) are more preferred, and tetradecenyl groups (including various isomers) are particularly preferred.
  • "may be bonded to each other to form a ring” means that the substituted or unsubstituted C 5-32 alkyl group or substituted or unsubstituted C 5-32 alkenyl group of R 1 and R 2 may be bonded to each other at a part thereof to form a 10-64 membered ring including the "-O-CH 2 -CH-O-" portion in general formula (I) to which they are bonded.
  • the 10-64 membered ring is preferably a 10-40 membered ring, more preferably a 12-30 membered ring, even more preferably a 20-30 membered ring, and particularly preferably a 22 membered ring.
  • the ring is even more preferably unsubstituted.
  • the "group derived from an oligonucleotide compound or oligonucleotide complex" of the present invention means a partial structure of an oligonucleotide compound formed by removing a hydrogen atom, a hydroxyl group, etc. from the 3'-end or 5'-end of at least one oligonucleotide compound constituting the oligonucleotide compound or oligonucleotide complex.
  • one of the 3'-end or 5'-end of the oligonucleotide compound is covalently bonded to L in general formula (I).
  • One of the 3'-end or 5'-end of the oligonucleotide compound and L are preferably linked via a phosphodiester bond or a modified phosphodiester bond, more preferably via a phosphodiester bond. In one embodiment, they are preferably linked via a phosphorothioate bond.
  • the oligonucleotide compound or oligonucleotide complex of the present invention is not particularly limited as long as it is an oligonucleotide useful as a nucleic acid drug, and may be, for example, an antisense oligonucleotide, siRNA, aptamer, ribozyme, miRNA, CpG oligo, decoy nucleic acid, etc.
  • Antisense oligonucleotides and siRNA can be designed to be complementary to the target RNA.
  • the complementarity is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more (e.g., 95%, 96%, 97%, 98%, or 99% or more).
  • the oligonucleotide compound of the present invention is preferably an antisense oligonucleotide
  • examples of the antisense oligonucleotide include, but are not limited to, DNA, oligodeoxyribonucleotide, gapmer-type antisense oligonucleotide (or simply referred to as “gapmer”), and mixmer-type antisense oligonucleotide (or simply referred to as "mixmer”), and may be RNA, oligoribonucleotide, or an oligonucleotide designed to normally produce an antisense effect.
  • the "oligonucleotide complex" of the present invention may be a heteroduplex (HDO) comprising an antisense oligonucleotide (first oligonucleotide) which is a single-stranded DNA and a complementary RNA oligonucleotide (second oligonucleotide).
  • first oligonucleotide antisense oligonucleotide
  • second oligonucleotide complementary RNA oligonucleotide
  • the first and second oligonucleotides may be linked via a nucleic acid linker, via a linking group containing a non-nucleotide structure, or directly (single-stranded heteroduplex nucleic acid).
  • W in the general formula (I) of the present invention is preferably a group derived from a gapmer-type antisense oligonucleotide.
  • the group derived from a gapmer-type antisense oligonucleotide means a partial structure formed by removing a hydrogen atom, a hydroxyl group, or the like from the 3'-end or 5'-end of a gapmer, and is, for example, composed of 7 to 100 nucleosides, preferably 10 to 40 nucleosides, more preferably 13 to 25 nucleosides, and is preferably covalently bonded to L at its 3'-end or 5'-end and covalently bonded to L at its 5'-end.
  • Gapmer-type antisense oligonucleotides also preferably contain at least four consecutive deoxyribonucleosides. Furthermore, the gapmer-type antisense oligonucleotide preferably contains at least one selected from the group consisting of a 2'-modified nucleoside and a 2'-4'-bridged nucleoside.
  • W in the general formula (I) of the present invention is preferably a group derived from a mixmer-type antisense oligonucleotide.
  • the group derived from a mixmer-type antisense oligonucleotide means a partial structure formed by removing a hydrogen atom, a hydroxyl group, or the like from the 3'-end or 5'-end of a mixmer, and is, for example, composed of 7 to 100 nucleosides, preferably 10 to 40 nucleosides, more preferably 13 to 25 nucleosides, and is preferably covalently bonded to L at its 3'-end or 5'-end and covalently bonded to L at its 5'-end.
  • the mixmer-type antisense oligonucleotide preferably does not contain at least four consecutive deoxyribonucleosides. Moreover, the mixmer-type antisense oligonucleotide preferably contains at least one selected from the group consisting of a 2'-modified nucleoside and a 2'-4'-bridged nucleoside.
  • Each internucleoside bond in the gapmer and mixmer antisense oligonucleotides may be a phosphodiester bond or a modified internucleoside bond.
  • Each internucleoside bond is, for example, preferably independently a phosphodiester bond or a phosphorothioate bond. More preferably, the 5'-most internucleoside bond is a phosphorothioate bond, and the 3'-most internucleoside bond is a phosphorothioate bond.
  • 50-100% (more preferably 70-100%, 80-100%, 90-100%, 95-100%) of the internucleoside bonds in the antisense oligonucleotide are phosphorothioate bonds. The remaining internucleoside bonds are phosphodiester bonds.
  • W in the general formula (I) of the present invention is preferably a group derived from a double-stranded nucleic acid in an oligonucleotide complex.
  • the double-stranded nucleic acid is, for example, described as HDO (heteroduplex nucleic acid) in WO 2013/089283, the entire contents of which are incorporated herein by reference.
  • the oligonucleotide complex is a double-stranded oligonucleotide complex comprising a first oligonucleotide and a second oligonucleotide, wherein the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides, and the second oligonucleotide comprises a sequence that allows hybridization with at least a portion of the first oligonucleotide and consists of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides and sugar-modified nucleosides, and the first oligonucleotide and the second oligonucleotide hybridize with each other.
  • the first oligonucleotide is a gapmer-type antisense oligonucleotide or a
  • the oligonucleotide conjugate is covalently linked to L via the 3' or 5' end of the first or second oligonucleotide, more preferably via the 3' or 5' end of the second oligonucleotide, and especially preferably via the 5' end of the second oligonucleotide.
  • W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are linked by a nucleic acid linker.
  • nucleic acid linker a group derived from an oligonucleotide consisting of 2 to 10 nucleosides is preferable, a group derived from an oligonucleotide consisting of 3 to 7 nucleosides is more preferable, a group derived from an oligonucleotide consisting of 4 or 5 nucleosides is even more preferable, and a group derived from an oligonucleotide consisting of 4 nucleosides is particularly preferable.
  • the internucleoside bonds linking the nucleosides constituting the linker may be independently phosphodiester bonds or modified internucleoside bonds, but are preferably independently phosphodiester bonds or phosphorothioate bonds.
  • the linker further preferably contains one or two phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds, and particularly preferably the internucleoside bonds linking the nucleosides constituting the linker are phosphodiester bonds.
  • the nucleosides constituting the linker are independently preferably adenosine, uridine, cytidine, guanosine, 2'-deoxyadenosine, thymidine, 2'-deoxycytidine, or 2'-deoxyguanosine, and particularly preferably adenosine.
  • W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are linked by a linking group containing a non-nucleotide structure.
  • the linking group containing a non-nucleotide structure include an alkylene group having 2 to 50 carbon atoms and a group derived from a polyalkylene glycol.
  • W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are directly linked together.
  • the first oligonucleotide of said oligonucleotide complex is preferably a gapmer-type antisense oligonucleotide, and the above-mentioned embodiments of gapmer-type antisense oligonucleotides are applied to the first oligonucleotide of the oligonucleotide complex.
  • the number of nucleosides constituting the second oligonucleotide is preferably 7 to 50, more preferably 7 to 27, even more preferably 14 to 22, and particularly preferably 16, similar to the gapmer.
  • the number of nucleosides constituting the second oligonucleotide is preferably 10 to 40, more preferably 13 to 25, similar to the mixmer.
  • the second oligonucleotide preferably contains at least one ribonucleoside, more preferably contains at least 4 consecutive ribonucleosides, and further preferably contains 1 to 6 (even more preferably 2 to 4, 2 to 3) sugar-modified nucleosides (even more preferably 2'-modified nucleosides), and other nucleosides contained in the second oligonucleotide are ribonucleosides. Even more preferably, both or one of the 3' and 5' ends of the second oligonucleotide are sugar-modified nucleosides. Particularly preferably, all nucleosides constituting the second oligonucleotide are ribonucleosides.
  • the internucleoside bonds linking the nucleosides constituting the second oligonucleotide may be independently phosphodiester bonds or modified internucleoside bonds, but are preferably independently phosphodiester bonds or phosphorothioate bonds, more preferably contains 1 to 6 (even more preferably 2 to 4, 2 to 3) phosphorothioate bonds, and other internucleoside bonds are phosphodiester bonds.
  • the internucleoside bond linking the nucleosides constituting the second oligonucleotide is a phosphodiester bond.
  • a group derived from siRNA is also preferred.
  • Either the antisense strand or the sense strand may be bound to L, but it is preferred that the sense strand be bound to L.
  • the 5' or 3' end of the antisense strand is bound to L, particularly preferably the 3' end.
  • the 5' or 3' end of the sense strand is bound to L, particularly preferably the 5' end.
  • the group derived from the siRNA may be bound to L, for example, via an internucleoside bond, preferably via a phosphodiester bond or a phosphorothioate bond, more preferably via a phosphorothioate bond.
  • the lipid-bound oligonucleotides and the like according to this embodiment can be produced by the method shown below, but the production method below is an example of a general production method and does not limit the method for producing the oligonucleotides and the like according to this embodiment.
  • step means a process.
  • Compound A which is the starting material in step I, can be synthesized, for example, according to the method described in JP-A-2018-532990 or Japanese Patent No. 6356171. Specifically, compound A having various R 1 and R 2 can be synthesized from compound A-1 described below by combining oxidation reactions known to those skilled in the art (for the oxidation reaction, see, for example, Comprehensive Organic Transformations, Second Edition, by R.C. Larock, Wiley-VCH (1999)).
  • R 1 and R 2 are as defined above.
  • the desired R 1 can be introduced by alkylating or alkenylating the primary hydroxy group of compound A-2 using an alkyl halide reagent or the like corresponding to R 1.
  • the desired R 2 can be introduced by alkylating or alkenylating the secondary hydroxy group using an alkyl halide reagent or the like corresponding to R 2.
  • the hydroxy group protected by P1 of the obtained compound is deprotected to synthesize compound A-1 in which R 1 and R 2 are alkyl or alkenyl groups, or the like.
  • Compound A-1 in which R 1 and R 2 are bonded to each other to form a ring, can be obtained by introducing desired R 1 and R 2 to the terminals of R 1 and R 2 using an alkyl halide reagent having a double bond, and then subjecting the compound to an olefin metathesis reaction.
  • a specific example of the olefin metathesis reaction is a method in which a second generation Grubbs catalyst, for example, dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium(II) is reacted in a solvent.
  • a second generation Grubbs catalyst for example, dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium(II) is
  • P1 and P2 each represent a hydroxy-protecting group, and the other symbols are as defined above.
  • Step I Amidation Reaction with Primary Amine
  • a primary alkylamine bound to L can be used to carry out a condensation exchange reaction with a carboxylic acid (compound A) to obtain compound B.
  • a method can be exemplified in which compound A is reacted with 1 to 10 equivalents of the primary alkylamine in a solvent in the presence of 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate.
  • Step II Phosphitylation Reaction
  • the hydroxy group of compound B can be phosphitylated by a reaction known to those skilled in the art (e.g., a reaction using a disubstituted alkoxyphosphine) to obtain compound C.
  • a reaction known to those skilled in the art e.g., a reaction using a disubstituted alkoxyphosphine
  • a specific example of the phosphitylation reaction is a method of reacting 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite in a solvent in the presence of 4,5-dicyanoimidazole.
  • Step III Conjugation reaction between oligonucleotide and lipid
  • the lipid-conjugated oligonucleotide can be synthesized using compound C, commercially available nucleotides necessary for producing an oligonucleotide compound of a desired nucleotide sequence, phosphoramidite reagents, etc., with an automatic nucleic acid synthesizer (e.g., M-8-SE (manufactured by Nippon Techno Co., Ltd.), nS-8II (manufactured by Gene Design Co., Ltd.), etc.).
  • M-8-SE automatic nucleic acid synthesizer
  • the desired oligonucleotide compound can be produced by solid-phase synthesis using an automatic nucleic acid synthesizer or by reactions using enzymes (polymerase, ligase, restriction enzymes, etc.) using commercially available phosphoramidite reagents that correspond to the nucleotide sequence.
  • the process may include mixing the oligonucleotide compounds in an appropriate buffer, denaturing them at 90-98°C for several minutes (e.g., 5 minutes), and then hybridizing them at 30-70°C for 1-8 hours.
  • One embodiment of the present invention is a compound represented by the following formula (II): (Wherein, L is a substituted or unsubstituted C 1-10 alkylene group; R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring; Each R 3 is independently a C 1-10 alkyl group, or the two alkyl groups of R 3 may be bonded to each other to form a ring; R4 is a 2-cyanoethyl group. It is a compound represented by the formula: The compound of formula (II) is useful for producing the lipid-linked oligonucleotide of the present invention.
  • One embodiment of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a lipid-linked oligonucleotide compound of the general formula (I) or a complex thereof and a pharmacologically acceptable carrier.
  • the pharmaceutical composition of the present invention containing the lipid-linked oligonucleotide of the general formula (I) or a complex thereof can be formulated by known pharmaceutical methods.
  • it can be used enterally (orally, etc.) or parenterally as a capsule, tablet, pill, liquid, powder, granule, fine granule, film coating agent, pellet, troche, sublingual, chewable agent, buccal agent, paste, syrup, suspension, elixir, emulsion, liniment, ointment, plaster, cataplasm, transdermal preparation, lotion, inhalant, aerosol, injection, suppository, etc.
  • these formulations can be appropriately combined with carriers that are pharmacologically or food and beverage acceptable, specifically, sterile water, physiological saline, vegetable oil, solvent, base, emulsifier, suspending agent, surfactant, pH adjuster, stabilizer, flavoring agent, fragrance, excipient, vehicle, preservative, binder, diluent, isotonicity agent, soothing agent, bulking agent, disintegrant, buffer, coating agent, lubricant, colorant, sweetener, thickener, flavoring agent, dissolution aid, or other additives.
  • carriers that are pharmacologically or food and beverage acceptable, specifically, sterile water, physiological saline, vegetable oil, solvent, base, emulsifier, suspending agent, surfactant, pH adjuster, stabilizer, flavoring agent, fragrance, excipient, vehicle, preservative, binder, diluent, isotonicity agent, soothing agent, bulking agent, disintegrant, buffer, coating agent, lubricant, colorant, sweet
  • the administration form of the pharmaceutical composition containing the lipid-linked oligonucleotide of the general formula (I) or a complex thereof of the present invention is not particularly limited, and examples thereof include enteral (oral, etc.) and parenteral administration. More preferred examples include intravenous administration, intraarterial administration, intraperitoneal administration, subcutaneous administration, intradermal administration, intratracheal administration, rectal administration, intramuscular administration, intrathecal administration, intraventricular administration, intranasal administration, and intravitreal administration, as well as administration by infusion.
  • Diseases that can be treated, prevented, or ameliorated by a nucleic acid drug using a pharmaceutical composition containing the lipid-linked oligonucleotide of the general formula (I) of the present invention or a complex thereof are not particularly limited, and examples thereof include metabolic diseases, cardiovascular diseases, tumors, infectious diseases, eye diseases, inflammatory diseases, autoimmune diseases, rare genetic diseases, and other diseases caused by gene expression.
  • hypercholesterolemia hypertriglyceridemia, spinal muscular atrophy, muscular dystrophy (Duchenne muscular dystrophy, myotonic dystrophy, congenital muscular dystrophy (Fukuyama congenital muscular dystrophy, Ullrich congenital muscular dystrophy, merosin-deficient congenital muscular dystrophy, integrin deficiency, Walker-Warburg syndrome, etc.), Becker muscular dystrophy, limb-girdle muscular dystrophy, Miyoshi muscular dystrophy, facioscapulohumeral muscular dystrophy, etc.), Huntington's disease, Alzheimer's disease, and other conditions.
  • rheumatoid arthritis transthyretin amyloidosis, familial amyloidotic cardiomyopathy, multiple sclerosis, Crohn's disease, inflammatory bowel disease, acromegaly, type 2 diabetes, chronic nephropathy, respiratory syncytial virus infection, Ebola hemorrhagic fever, Marburg fever, HIV, influenza, hepatitis B, hepatitis C, cirrhosis, chronic heart failure, myocardial fibrosis, atrial fibrillation, prostate cancer, melanoma, breast cancer, pancreatic cancer, colon cancer, renal cell carcinoma, bile duct cancer, cervical cancer, liver cancer, lung cancer, leukemia, non-Hodgkin's lymphoma, atopic dermatitis, glaucoma, and age-related macular degeneration.
  • a gene causing the disease is set as the target gene, and the expression control sequence (e.g., antisense sequence) can be set as the target gene, and
  • various other mammalian diseases can be treated, prevented, or ameliorated by pharmaceutical compositions containing the lipid-linked oligonucleotides of the general formula (I) of the present invention or complexes thereof.
  • diseases of mammalian species including, but not limited to, cow, sheep, goat, horse, dog, cat, guinea pig, or other rodent species such as bovine, ovine, equine, canine, feline, and mouse can be treated.
  • Compositions containing antisense oligonucleotides can also be applied in other species such as birds (e.g., chickens).
  • the dosage or intake is appropriately selected depending on the age, weight, symptoms, health condition, type of composition (medicine, food, beverage, etc.) of the subject, and the dosage or intake is preferably 0.0001 mg/kg/day to 100 mg/kg/day in terms of lipid-linked oligonucleotide.
  • the lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof is delivered to a target organ more efficiently than conventional oligonucleotides, and is therefore expected to have enhanced pharmacological effects. Therefore, a method for controlling the expression of a target gene more safely can be provided by administering the lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof to an animal, including a human.
  • a method for treating, preventing, and ameliorating various diseases involving the control of a target gene includes administering a composition containing the lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof to a mammal, including a human.
  • Preferred methods for using the lipid-linked oligonucleotide of the present invention represented by the above general formula (I) or a complex thereof are as follows. - A method for regulating the function of a target RNA, comprising the step of contacting a cell with the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof. - A method for regulating the function of a target RNA in a mammal, comprising the step of administering to said mammal a pharmaceutical composition comprising the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
  • lipid-linked oligonucleotide of the present invention of said general formula (I) or a complex thereof for controlling the function of a target RNA in a mammal.
  • a method for controlling the expression of a target gene comprising the step of contacting a cell with the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
  • a method for controlling the expression of a target gene in a mammal comprising the step of administering to said mammal a pharmaceutical composition comprising the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
  • a pharmaceutical composition comprising the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
  • control of the function of the target RNA means, for example, the regulation or conversion of the splicing function, such as translation inhibition or exon skipping, which occurs when the antisense sequence portion covers a part of the target RNA through hybridization, or the suppression of the function of the target RNA through degradation of the target RNA, which may occur when the hybridized part of the antisense sequence portion and a part of the target RNA is recognized.
  • the regulation or conversion of the splicing function such as translation inhibition or exon skipping
  • the mammal is preferably a human.
  • the route of administration is preferably enteral. In other embodiments, the route of administration is parenteral.
  • NMR nuclear magnetic resonance
  • v/v means (volume/volume).
  • 1 H NMR data is given, it is measured at 300 MHz (JNM-ECX300; manufactured by JEOL Ltd., or JNM-ECP400; manufactured by JEOL Ltd.), and the chemical shift ⁇ (unit: ppm) (splitting pattern, integral value) of the signal is shown using tetramethylsilane as an internal standard.
  • the obtained crude compound 2 was dissolved in ethyl acetate (100 mL) and methanol (100 mL), 10% palladium-carbon (5.0 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere.
  • the reaction liquid was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water.
  • the filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 3 (17.8 g, yield 67%) as a white solid.
  • the obtained crude compound 7 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), and 10% palladium-carbon (1.5 g) was added and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere.
  • the reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water.
  • the filtrate and washings were concentrated to obtain a crude product, which was then added with ethyl acetate and ethanol, stirred vigorously, and filtered. This operation was repeated three times to obtain the desired compound 8 (7.79 g, yield 87%) as a white solid.
  • the obtained crude compound 12 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), 10% palladium-carbon (1.5 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere.
  • the reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water.
  • the filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 13 (4.62 g, yield 65%) as a white solid.
  • the obtained crude compound 17 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), 10% palladium-carbon (1.5 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere.
  • the reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate and methanol.
  • the filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 18 (6.08 g, yield 85%) as a white solid.
  • 2-Azaadamantane-N-hydroxyl (AZADOL (registered trademark)) (956 mg, 2.25 mmol) and diacetoxyiodobenzene (7.26 g, 22.5 mmol) were added to a mixed solution of compound 18 (4.00 g, 10.7 mmol) in methylene chloride (40 mL) and water (20 mL), and the mixture was stirred at room temperature overnight (about 16 to 20 hours). Subsequently, an aqueous sodium thiosulfate solution was added to the reaction solution, followed by extraction with methylene chloride, and the organic layer was washed with water and dried with sodium sulfate.
  • AZADOL registered trademark
  • the resulting residue was filtered through silica gel and washed with a mixed solution of ethyl acetate and hexane.
  • the crude compound 23 obtained by concentration was dissolved in ethyl acetate (43 mL) and methanol (43 mL), 10% palladium-carbon (2.4 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere.
  • the reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate and methanol.
  • “Compd No” means the compound number
  • “Chemical Structure” means the chemical structure of each compound.
  • the target gene is mouse Metastasis Associated in Lung Adenocarcinoma Transcript-1 (Malat1) or mouse Hypoxanthine Phosphoribosyltransferase 1 (Hprt1).
  • (L) means LNA ( ⁇ -D-methyleneoxy BNA)
  • lowercase alphabets mean deoxyribonucleosides
  • uppercase alphabets excluding the alphabets with (L) above and (I) below
  • means phosphorothioate bond
  • 5(x) means that the nucleobase of the deoxyribonucleoside is 5-methylcytosine
  • 5" in “5(L)” means that the nucleobase of the nucleoside is 5-methylcytosine.
  • J1- means that the oxygen atom of the hydroxyl group at the 5'-terminus is linked to the nucleotide of the following formula (III) via a phosphodiester bond. (wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of the phosphodiester bond)) is bonded to the oxygen atom of the hydroxyl group at the 5' end.
  • "J2-” means that a group represented by the following formula (IV): (wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of a phosphodiester bond)) is bonded.
  • the internucleoside bond between the two nucleic acid bases is a phosphodiester bond.
  • the internucleoside bond between A and T is a phosphodiester bond
  • the internucleoside bond between A and G is a phosphodiester bond.
  • the antisense oligonucleotides (compounds represented by chemical structures corresponding to the compound numbers) listed in Table 1 were prepared using automated nucleic acid synthesizers nS-8II (manufactured by Gene Design Co., Ltd.) and M-8-SE (manufactured by Nippon Techno Service Co., Ltd.). Intramolecular hybridization of the single-stranded oligonucleotides P22790172 and P22790146 was confirmed by non-denaturing polyacrylamide gel electrophoresis.
  • single-stranded DNA size markers manufactured by Gene Design Co., Ltd.
  • single-stranded DNA with 15, 20, 30, 40, 50, 60, and 80 nucleotides and double-stranded RNA size markers manufactured by Gene Design Co., Ltd.
  • double-stranded RNA size markers manufactured by Gene Design Co., Ltd.
  • RNA-containing cell lysates were prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and the expression level of the mouse Malat1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the mRNA amount of the housekeeping gene Gapdh [glyceraldehyde-3-phosphate dehydrogenase] was also quantified at the same time, and the amount of Malat1 mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Malat1.
  • the results are shown in Table 2 as the percentage expression of Malat1 relative to untreated control cells.
  • N1E-115 cells were seeded in a 96-well plate at a density of 20,000 cells/well. After about 24 hours, the culture supernatant of the N1E-115 cells was replaced with D-MEM containing no FBS, and P21790027 and P22790171 were added to a final concentration of 1000 nM (Free-Uptake).
  • RNA was prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and then the expression level of the mouse Malat1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of mRNA of Malat1 relative to the amount of mRNA of Gapdh was evaluated as the expression level of Malat1.
  • the results are presented in Table 3 as the percentage expression of Malat1 relative to untreated control cells.
  • the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of mRNA of Malat1 relative to the amount of mRNA of Gapdh was evaluated as the expression level of Malat1.
  • the results are shown in FIG. 1 (Day 10) and FIG. 2 (Day 5) as the percentage expression of Malat1 relative to the untreated control group (control).
  • P22790171 and P22790172 showed a higher inhibitory effect on Malat1 expression in the heart, muscle, lung, and liver than P21790027.
  • cardiac Five, ten and twenty days after administration, cardiac (P22790163 and P23790244), liver (P22790163, P23790243, P23790244 and P23790246), lung (P22790163, P23790243 and P23790244) and muscle (P22790163, P23790244 and P23790246) tissues were collected under isoflurane anesthesia (P23790246 was collected only 10 days after administration).
  • the expression level of the mouse Hprt1 gene was measured by quantitative real-time PCR using One Step PrimeScript (registered trademark) III RT-qPCR Mix (Takara Bio) and TaqMan (registered trademark) Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of Hprt mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Hprt1.
  • P23790244 and P23790246 showed a higher inhibitory effect on Hprt1 expression in the liver, heart, lungs, and muscles than P22790163 and P23790243.
  • RNA was prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and then the expression level of the mouse Hprt1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific).
  • real-time PCR the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of Hprt1 mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Hprt1.
  • the results are presented in Table 5 as percent expression of Hprt1 relative to untreated control cells.
  • P23790460 showed a higher inhibitory effect on Hprt1 expression in the heart, liver, and muscle than P22790163.
  • siRNAs compounds represented by chemical structures corresponding to compound numbers
  • Table 6 The siRNAs (compounds represented by chemical structures corresponding to compound numbers) shown in Table 6 were prepared using an automatic nucleic acid synthesizer M-8-SE (manufactured by Nippon Techno Service Co., Ltd.).
  • the target gene is mouse superoxide dismutase 1 (Sod1).
  • “Compd No,” ChemicalStructure,” and sequence notation are the same as in Tables 1 and 4.
  • “Strand” indicates whether each strand is a sense strand (S) or an antisense strand (AS).
  • S sense strand
  • AS antisense strand
  • (M)” means 2'-OMe nucleoside
  • (F)” means 2'-fluoro nucleoside.
  • VPU(M) at the 5' end is a compound represented by the following formula (IX): (wherein * is an oxygen atom of an internucleoside bond such as a phosphodiester bond or a phosphorothioate bond)) means a vinylphosphonate-2'-OMe nucleoside represented by the formula: "J1- ⁇ ", “J2- ⁇ ”, “J3- ⁇ ", “J4- ⁇ ” and “J6- ⁇ ” are bonded to the same group as “J1-", “J2-”, “J3-”, “J4-” and “J6-", respectively, but the group is bonded to the oxygen atom of the hydroxy group at the 5' end via a phosphorothioate bond, and * in the corresponding formulas (III), (IV), (V), (VI) and (VIII) is the oxygen atom of the phosphorothioate bond.
  • * is an oxygen atom of an internucleoside bond such as a phosphodiester bond or a phosphorot
  • Hybridization of each sense strand (S) and antisense strand (AS) was performed by heating at 95°C for 5 minutes and then leaving at a constant temperature of 37°C for 1 hour. Hybridization was confirmed by non-denaturing polyacrylamide gel electrophoresis.
  • Ppia peptidylprolyl isomerase A
  • mice were filled in a Hamilton syringe. A needle was inserted about 2 mm into the perforated area, and 10 ⁇ l of the solution per mouse was administered into the right lateral ventricle at a rate of 10 ⁇ l/min, and the skin was sutured with nylon thread. Two weeks later, the mice were dissected to remove the cerebrum and hippocampus.
  • Tbp TATA binding protein
  • P24791054, P24791055, and P24791056 showed a higher inhibitory effect on Sod1 expression in the cerebrum and hippocampus than P24791052.
  • P22790171, P23790244, P23790458, P23790459, P23790460, P24791053, P24791054, and P24791055 demonstrated improved knockdown activity of target RNA under Free-Uptake conditions, which are highly applicable to animal experiments (in vivo testing) (Evaluation Examples 1, 2, 5, and 7).
  • the lipid-bound oligonucleotide of the present invention has been confirmed to have enhanced pharmacological effects not only on the liver, but also on organs other than the liver, such as the heart, muscles, and lungs. Therefore, the lipid portion of the present invention is expected to be a means of delivering various oligonucleotides.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

The present invention addresses the problem of providing a lipid-binding oligonucleotide or a complex thereof that improves pharmacological effects for the liver and even for organs other than the liver. The present invention provides a lipid-binding oligonucleotide represented by general formula (I) or a complex thereof, or provides a pharmaceutical composition including the same. (In the formula, W, L, R1, and R2 have the same meanings as in the specification and the claims.)

Description

脂質結合オリゴヌクレオチド又はその複合体Lipid-bound oligonucleotide or complex thereof

 本発明は、脂質結合オリゴヌクレオチド又はその複合体に関する。 The present invention relates to a lipid-bound oligonucleotide or a complex thereof.

 核酸医薬は、標的となるDNA又はRNAと相補的塩基対を形成する核酸(オリゴヌクレオチド)からなる医薬品であり、新規な医薬品として期待されている。代表的な核酸医薬として、アンチセンス核酸(ASO)やsiRNA等が知られているが、これらを標的臓器に効率よく送達する手段、特に肝臓以外の臓器への送達の開発は長い間課題として認識されている。 Nucleic acid medicines are medicines consisting of nucleic acids (oligonucleotides) that form complementary base pairs with target DNA or RNA, and are expected to be new medicines. Representative nucleic acid medicines include antisense nucleic acids (ASOs) and siRNAs, but the development of a means to efficiently deliver these to target organs, especially to organs other than the liver, has long been recognized as a challenge.

 送達手段として、ASOにコレステロール、トコフェロール又はパルミチン酸等の脂質を結合すると、筋肉や心臓でそのアンチセンス効果を向上することが報告されている(例えば、非特許文献1参照)。しかしながら、その効果は限定的である。また、コレステロールの結合体では、毒性が生ずることが示されている。 It has been reported that binding lipids such as cholesterol, tocopherol, or palmitic acid to ASO as a delivery means improves its antisense effect in muscle and heart (see, for example, Non-Patent Document 1). However, the effect is limited. Also, cholesterol conjugates have been shown to cause toxicity.

 さらに、ASOを含む第一オリゴヌクレオチド、及びコレステロール等の脂質が結合した第二オリゴヌクレオチドからなる複合体が、肝臓以外の臓器に対してアンチセンス効果を向上することも報告されている(例えば、特許文献1参照)。 Furthermore, it has been reported that a complex consisting of a first oligonucleotide containing ASO and a second oligonucleotide bound to a lipid such as cholesterol improves the antisense effect on organs other than the liver (see, for example, Patent Document 1).

 このように、脂質をオリゴヌクレオチドに結合することで、肝臓以外の臓器に対してもその効果を発揮することが示されているが、その効果は限定的なものが多く、依然としてより効果的な送達手段としての脂質の開発が望まれている。 In this way, it has been shown that conjugating lipids to oligonucleotides can have an effect on organs other than the liver, but the effect is often limited, and there is still a need to develop lipids as a more effective means of delivery.

国際公開第2017/053999号International Publication No. 2017/053999

Nucleic Acids Research, 2019, 47, 12, pp 6045-6058Nucleic Acids Research, 2019, 47, 12, pp 6045-6058

 本発明は、肝臓及び肝臓以外の臓器に対しても薬理効果を向上する、脂質結合オリゴヌクレオチド又はその複合体を提供することを課題とする。 The objective of the present invention is to provide a lipid-bound oligonucleotide or a complex thereof that improves the pharmacological effect on the liver and organs other than the liver.

 本発明者らは、上記課題を解決するため、鋭意検討を重ねた結果、新たなジアルキル脂質を結合したオリゴヌクレオチド又はその複合体が、肝臓及び肝臓以外の臓器に対してもその薬理効果を向上することを見出した。これらの知見に基づき、本発明者らは本発明を完成するに至った。すなわち、本発明は以下の態様を包含する。 The inventors conducted extensive research to solve the above problems and discovered that a novel oligonucleotide bound to a dialkyl lipid or a complex thereof improves the pharmacological effect on the liver and organs other than the liver. Based on these findings, the inventors have completed the present invention. In other words, the present invention encompasses the following aspects:

[1]
 下記一般式(I)で表される、脂質結合オリゴヌクレオチド又はその複合体。

Figure JPOXMLDOC01-appb-C000003

(式中、
Wは、オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体に由来する基であり、
Lは、置換された若しくは置換されていないC1-10アルキレン基又は置換された若しくは置換されていないポリC1-10アルキレングリコールに由来する2価の基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよい。)
[2]
 前記R及びRが、それぞれ独立に、置換されていないC5-32アルキル基、又は置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよい、[1]に記載の脂質結合オリゴヌクレオチド又はその複合体。
[3]
 前記R及びRが、それぞれ独立に、置換されていないC5-32アルキル基、又は置換されていないC5-32アルケニル基である、[1]又は[2]に記載の脂質結合オリゴヌクレオチド又はその複合体。
[4]
 前記R及びRが、それぞれ独立に、置換されていないC10-20アルキル基である、[1]~[3]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体。
[5]
 前記R及びRが、置換されていないC14アルキル基である、[1]~[4]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体。 [1]
A lipid-linked oligonucleotide or a complex thereof, represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000003

(Wherein,
W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate;
L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol,
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.
[2]
The lipid-bound oligonucleotide or its complex according to [1], wherein R 1 and R 2 are each independently an unsubstituted C 5-32 alkyl group or an unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.
[3]
The lipid-bound oligonucleotide or its complex according to [1] or [2], wherein R 1 and R 2 are each independently an unsubstituted C 5-32 alkyl group or an unsubstituted C 5-32 alkenyl group.
[4]
The lipid-bound oligonucleotide or its complex according to any one of [1] to [3], wherein R 1 and R 2 are each independently an unsubstituted C 10-20 alkyl group.
[5]
The lipid-linked oligonucleotide or its complex according to any one of [1] to [4], wherein R 1 and R 2 are unsubstituted C 14 alkyl groups.

[6]
 前記Lが、置換されていないC1-10アルキレン基である、[1]~[5]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体。
[7]
 前記Lが、置換されていないCアルキレン基である、[1]~[6]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体。
[8]
 前記オリゴヌクレオチド化合物が、ギャップマー型アンチセンスオリゴヌクレオチドである、[1]~[7]のいずれかに記載の脂質結合オリゴヌクレオチド。
[9]
 前記ギャップマー型アンチセンスオリゴヌクレオチドが、2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む、[8]に記載の脂質結合オリゴヌクレオチド。
[10]
 前記ギャップマー型アンチセンスオリゴヌクレオチドが、少なくとも4個の連続するデオキシリボヌクレオシドを含む、[8]又は[9]に記載の脂質結合オリゴヌクレオチド。
[6]
The lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [5], wherein L is an unsubstituted C 1-10 alkylene group.
[7]
The lipid-linked oligonucleotide or its complex according to any one of [1] to [6], wherein L is an unsubstituted C6 alkylene group.
[8]
The lipid-linked oligonucleotide according to any one of [1] to [7], wherein the oligonucleotide compound is a gapmer-type antisense oligonucleotide.
[9]
The lipid-linked oligonucleotide according to [8], wherein the gapmer-type antisense oligonucleotide comprises at least one selected from the group consisting of 2'-modified nucleosides and 2'-4'-bridged nucleosides.
[10]
The lipid-linked oligonucleotide according to [8] or [9], wherein the gapmer-type antisense oligonucleotide comprises at least four consecutive deoxyribonucleosides.

[11]
 前記ギャップマー型アンチセンスオリゴヌクレオチドが13~25個のヌクレオシドからなる、[8]~[10]のいずれかに記載の脂質結合オリゴヌクレオチド。
[12]
 Lが、前記ギャップマー型アンチセンスオリゴヌクレオチドの5′末端に結合している、[8]~[11]のいずれかに記載の脂質結合オリゴヌクレオチド。
[13]
 前記オリゴヌクレオチド化合物が、ミックスマー型アンチセンスオリゴヌクレオチドである、[1]~[7]のいずれかに記載の脂質結合オリゴヌクレオチド。
[14]
 前記ミックスマー型アンチセンスオリゴヌクレオチドが、2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む、[13]に記載の脂質結合オリゴヌクレオチド。
[15]
 前記ミックスマー型アンチセンスオリゴヌクレオチドが、1~20個の糖修飾ヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドと1~3個のデオキシリボヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドとが交互に連結されたオリゴヌクレオチド、又はヌクレオシドとして糖修飾ヌクレオシドのみから構成されるオリゴヌクレオチドである、[13]又は[14]に記載の脂質結合オリゴヌクレオチド。
[11]
The lipid-linked oligonucleotide according to any one of [8] to [10], wherein the gapmer-type antisense oligonucleotide consists of 13 to 25 nucleosides.
[12]
The lipid-linked oligonucleotide according to any one of [8] to [11], wherein L is linked to the 5' end of the gapmer-type antisense oligonucleotide.
[13]
The lipid-linked oligonucleotide according to any one of [1] to [7], wherein the oligonucleotide compound is a mixmer-type antisense oligonucleotide.
[14]
The lipid-linked oligonucleotide according to [13], wherein the mixmer-type antisense oligonucleotide comprises at least one selected from the group consisting of 2'-modified nucleosides and 2'-4'-bridged nucleosides.
[15]
The lipid-linked oligonucleotide according to [13] or [14], wherein the mixmer-type antisense oligonucleotide is an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides and nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides are alternately linked, or an oligonucleotide consisting only of sugar-modified nucleosides as nucleosides.

[16]
 前記ミックスマー型アンチセンスオリゴヌクレオチドが13~25個のヌクレオシドからなる、[13]~[15]のいずれかに記載のオリゴヌクレオチド化合物。
[17]
 Lが、前記ミックスマー型アンチセンスオリゴヌクレオチドの5′末端に結合している、[13]~[16]のいずれかに記載の脂質結合オリゴヌクレオチド化合物。
[18]
 前記オリゴヌクレオチド複合体が、第一オリゴヌクレオチドと第二オリゴヌクレオチドとを含む二本鎖オリゴヌクレオチド複合体であって、
第一オリゴヌクレオチドは7~100個のヌクレオシドからなるギャップマー型アンチセンスオリゴヌクレオチド又はミックスマー型アンチセンスオリゴヌクレオチドであり、
第二オリゴヌクレオチドは、第一オリゴヌクレオチドの少なくとも一部とのハイブリダイズを可能とする配列を含み、デオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドから独立して選択される4~100個のヌクレオシドからなり、且つ、第一オリゴヌクレオチド又は第二オリゴヌクレオチドがLに結合しており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドとがハイブリダイズする、[1]~[7]のいずれかに記載の複合体。
[19]
 前記第二オリゴヌクレオチドが、少なくとも4個の連続するリボヌクレオシドを含む、[18]に記載の複合体。
[20]
 Lが、前記第二オリゴヌクレオチドの5′末端に結合している、[18]又は[19]に記載の複合体。
[16]
The oligonucleotide compound according to any one of [13] to [15], wherein the mixmer-type antisense oligonucleotide consists of 13 to 25 nucleosides.
[17]
The lipid-linked oligonucleotide compound according to any one of [13] to [16], wherein L is bound to the 5' end of the mixmer-type antisense oligonucleotide.
[18]
the oligonucleotide complex being a double-stranded oligonucleotide complex comprising a first oligonucleotide and a second oligonucleotide,
the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L;
The complex according to any one of [1] to [7], wherein the first oligonucleotide and the second oligonucleotide hybridize.
[19]
The conjugate according to claim 18, wherein the second oligonucleotide comprises at least four consecutive ribonucleosides.
[20]
The conjugate according to [18] or [19], wherein L is attached to the 5' end of the second oligonucleotide.

[21]
 前記オリゴヌクレオチド化合物が、第一オリゴヌクレオチドと第二オリゴヌクレオチドとを含み、
第一オリゴヌクレオチドは7~100個のヌクレオシドからなるギャップマー型アンチセンスオリゴヌクレオチド又はミックスマー型アンチセンスオリゴヌクレオチドであり、
第二オリゴヌクレオチドは、第一オリゴヌクレオチドの少なくとも一部とのハイブリダイズを可能とする配列を含み、デオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドから独立して選択される4~100個のヌクレオシドからなり、且つ、第一オリゴヌクレオチド又は第二オリゴヌクレオチドがLに結合しており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドが連結されており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドがハイブリダイズする、[1]~[7]のいずれかに記載の脂質結合オリゴヌクレオチド。
[22]
 前記第二オリゴヌクレオチドが、少なくとも4個の連続するリボヌクレオシドを含む、[21]に記載の脂質結合オリゴヌクレオチド。
[23]
 Lが、前記第二オリゴヌクレオチドの5′末端に結合している、[21]又は[22]に記載の脂質結合オリゴヌクレオチド。
[24]
 前記オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体が、siRNA、アプタマー及びリボザイムから選択される、[1]~[7]のいずれかに記載の脂質結合オリゴヌクレオチド。
[25]
 前記オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体が、siRNAである、[1]~[7]及び[24]のいずれかに記載の脂質結合オリゴヌクレオチド。
[26]
 [1]~[25]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体と、薬理学上許容される担体とを含む、医薬組成物。
[27]
 [1]~[25]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体と細胞とを接触させる工程を含む、標的RNAの機能を制御する方法。
[28]
 [26]に記載の医薬組成物を哺乳動物に投与する工程を含む、該哺乳動物おける標的RNAの機能を制御する方法。
[29]
 [1]~[25]のいずれかに記載の脂質結合オリゴヌクレオチド又はその複合体と細胞とを接触させる工程を含む、標的遺伝子の発現を制御する方法。
[30]
 [26]に記載の医薬組成物を哺乳動物に投与する工程を含む、該哺乳動物おける標的遺伝子の発現を制御する方法。
[31]
 下記式(II)で表される化合物。

Figure JPOXMLDOC01-appb-C000004

(式中、
Lは、置換された若しくは置換されていないC1-10アルキレン基又は置換された若しくは置換されていないポリC1-10アルキレングリコールに由来する2価の基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよく、
は、それぞれ独立に、C1-10アルキル基であるか、あるいはRの2つのアルキル基は、互いに結合して環を形成していてもよく、
は、2-シアノエチル基である。)。 [21]
the oligonucleotide compound comprises a first oligonucleotide and a second oligonucleotide;
the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L;
a first oligonucleotide and a second oligonucleotide are linked together;
The lipid-linked oligonucleotide according to any one of [1] to [7], wherein the first oligonucleotide and the second oligonucleotide hybridize.
[22]
The lipid-linked oligonucleotide according to [21], wherein the second oligonucleotide comprises at least four consecutive ribonucleosides.
[23]
The lipid-linked oligonucleotide according to [21] or [22], wherein L is bound to the 5' end of the second oligonucleotide.
[24]
The lipid-linked oligonucleotide according to any one of [1] to [7], wherein the oligonucleotide compound or oligonucleotide complex is selected from siRNA, aptamers and ribozymes.
[25]
The lipid-linked oligonucleotide according to any one of [1] to [7] and [24], wherein the oligonucleotide compound or oligonucleotide complex is an siRNA.
[26]
A pharmaceutical composition comprising the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25] and a pharmacologically acceptable carrier.
[27]
A method for controlling a function of a target RNA, comprising a step of contacting a cell with the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25].
[28]
A method for regulating a function of a target RNA in a mammal, comprising a step of administering to the mammal the pharmaceutical composition according to [26].
[29]
A method for controlling expression of a target gene, comprising a step of contacting a cell with the lipid-linked oligonucleotide or a complex thereof according to any one of [1] to [25].
[30]
A method for regulating expression of a target gene in a mammal, comprising the step of administering to the mammal the pharmaceutical composition according to [26].
[31]
A compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000004

(Wherein,
L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol;
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring;
Each R 3 is independently a C 1-10 alkyl group, or the two alkyl groups of R 3 may be bonded to each other to form a ring;
R4 is a 2-cyanoethyl group.

 本発明により、肝臓及び肝臓以外の臓器に対して、薬理効果の増強した脂質結合オリゴヌクレオチド又はその複合体を提供することができた。 The present invention provides lipid-bound oligonucleotides or complexes thereof that have enhanced pharmacological effects on the liver and organs other than the liver.

評価例3のマウスにおけるMalat1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド投与10日後のMalat1の発現レベルの結果を示したグラフである。13 is a graph showing the results of the expression level of Malat1 10 days after administration of antisense oligonucleotides in antisense suppression of Malat1 in mice in Evaluation Example 3. 評価例3のマウスにおけるMalat1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド投与5日後のMalat1の発現レベルの結果を示したグラフである。13 is a graph showing the results of the expression level of Malat1 5 days after administration of antisense oligonucleotides in antisense suppression of Malat1 in mice in Evaluation Example 3. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の肝臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the liver of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド投与10日後の肝臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the liver 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の心臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the hearts of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド投与10日後の心臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the heart 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の肺におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the lungs of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の筋肉におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in muscle of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 4. 評価例4のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド投与10日後の筋肉におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in muscle 10 days after administration of antisense oligonucleotides in antisense suppression of Hprt1 in mice in Evaluation Example 4. 評価例6のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の心臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the hearts of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 6. 評価例6のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の肝臓におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in the liver of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in mice in Evaluation Example 6. 評価例6のマウスにおけるHprt1のアンチセンス抑制において、アンチセンスオリゴヌクレオチド2.9μmol/kg投与の筋肉におけるHprt1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Hprt1 expression levels in muscle of mice administered 2.9 μmol/kg of antisense oligonucleotide in antisense suppression of Hprt1 in Evaluation Example 6. 評価例8のマウスにおけるSod1のRNA干渉において、siRNA投与後の大脳におけるSod1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Sod1 expression levels in the cerebrum after administration of siRNA in RNA interference of Sod1 in mice in Evaluation Example 8. 評価例8のマウスにおけるSod1のRNA干渉において、siRNA投与後の海馬におけるSod1の発現レベルの結果を示したグラフである。13 is a graph showing the results of Sod1 expression levels in the hippocampus after administration of siRNA in RNA interference of Sod1 in mice in Evaluation Example 8.

<用語>
 本発明において用いられる用語は、他に特に断りのない限り、以下の定義を有する。
<Terminology>
The terms used in the present invention have the following definitions unless otherwise specified.

 「ヌクレオシド」は、当業者に周知の用語であり、一般的に、糖及び核酸塩基が結合した分子であって、核酸を構成する単位となりうる分子と理解される。本明細書において、ヌクレオシドは、より広義の概念であり、後述のデオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドを包含する。前記核酸塩基は、修飾されていてもよい。 "Nucleoside" is a term well known to those skilled in the art, and is generally understood to be a molecule in which a sugar and a nucleic acid base are bound, and which can be a unit constituting a nucleic acid. In this specification, nucleoside is a broader concept, and includes deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, which are described below. The nucleic acid base may be modified.

 「デオキシリボヌクレオシド」は、2-デオキシリボースの1位の炭素原子に核酸塩基を有する分子を意味する。本発明におけるデオキシリボヌクレオシドは、天然に存在するデオキシリボヌクレオシドであっても、天然に存在するデオキシリボヌクレオシドの核酸塩基部分が修飾されたデオキシリボヌクレオシドであってもよい。天然に存在するデオキシリボヌクレオシドとは、天然に存在する核酸塩基を有するデオキシリボヌクレオシドである。修飾は1つのデオキシリボヌクレオシドに対して、複数種組み合わせて施されていてもよい。前記修飾されたデオキシリボヌクレオシドは、例えば、Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667、Medicinal Chemistry Communication, 2014, 5, pp 1454-1471、Future Medicinal Chemistry, 2011, 3, pp 339-365、国際公開第2018/155450号等に記載されている。 "Deoxyribonucleoside" means a molecule having a nucleobase at the carbon atom at position 1 of 2-deoxyribose. The deoxyribonucleoside in the present invention may be a naturally occurring deoxyribonucleoside or a deoxyribonucleoside in which the nucleobase portion of a naturally occurring deoxyribonucleoside has been modified. A naturally occurring deoxyribonucleoside is a deoxyribonucleoside having a naturally occurring nucleobase. A single deoxyribonucleoside may be modified by a combination of multiple types. The modified deoxyribonucleosides are described, for example, in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365; and International Publication No. WO 2018/155450.

 「リボヌクレオシド」は、リボースの1位の炭素原子に核酸塩基を有する分子を意味する。本発明におけるリボヌクレオシドは、天然に存在するリボヌクレオシドであっても、天然に存在するリボヌクレオシドの核酸塩基部分が修飾されたリボヌクレオシドであってもよい。天然に存在するリボヌクレオシドは、天然に存在する核酸塩基を有するリボヌクレオシドである。修飾は1つのリボヌクレオシドに対して、複数種組み合わせて施されてもよい。前記修飾されたリボヌクレオシドは、例えば、Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667、Medicinal Chemistry Communication, 2014, 5, pp 1454-1471、Future Medicinal Chemistry, 2011, 3, pp 339-365、国際公開第2018/155450号等に記載されている。 "Ribonucleoside" means a molecule having a nucleobase at the first carbon atom of ribose. The ribonucleoside in the present invention may be a naturally occurring ribonucleoside or a ribonucleoside in which the nucleobase portion of a naturally occurring ribonucleoside has been modified. A naturally occurring ribonucleoside is a ribonucleoside having a naturally occurring nucleobase. A combination of multiple types of modifications may be applied to one ribonucleoside. The modified ribonucleosides are described, for example, in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365; and International Publication No. WO 2018/155450.

 「修飾糖」は、
(Z1)リボース又は2-デオキシリボースが、部分的に1つ以上の置換基によって置換されている分子、
(Z2)リボース又は2-デオキシリボースが、リボース及び2-デオキシリボースとは異なる五単糖又は六単糖(例えば、ヘキシトール、トレオース等)によって置換されている分子、
(Z3)リボース又は2-デオキシリボース全体、又はこれらのテトラヒドロフラン環が、5から7員の飽和若しくは不飽和環(例えば、シクロヘキサン、シクロヘキセン、モルホリン等)、又は5から7員の環を水素結合によって形成し得る部分構造(例えば、ペプチド構造)へ置き換えられた分子、
又は
(Z4)リボース又は2-デオキシリボースが、C2-6アルキレングリコール(例えば、エチレングリコール、プロピレングリコール等)へ置き換えられた分子
を意味する。
 修飾糖は、後述の「2修飾糖」及び「2-4架橋糖」を含む。
 修飾糖及び、後述の糖修飾ヌクレオシドとしては、例えば、特開平10-304889号公報、国際公開第2005/021570号、特開平10-195098号公報、特表2002-521310号公報、国際公開第2007/143315号、国際公開第2008/043753号、国際公開第2008/029619号、国際公開第2008/049085号及び国際公開2017/142054号(以下、これら文献を「アンチセンス法に関する文献」と称する)等において、アンチセンス法に好適に用いられるとして開示されている糖及び糖修飾ヌクレオシド等が挙げられる。また、Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667、Medicinal Chemistry Communication, 2014, 5, pp 1454-1471、Future Medicinal Chemistry, 2011, 3, pp 339-365、国際公開第2018/155450号等にも、修飾糖及び糖修飾ヌクレオシドが開示されている。
"Modified sugar" refers to
(Z1) A molecule in which ribose or 2-deoxyribose is partially replaced by one or more substituents;
(Z2) Molecules in which ribose or 2-deoxyribose is replaced by a pentose or hexose sugar different from ribose and 2-deoxyribose (e.g., hexitol, threose, etc.);
(Z3) A molecule in which the entire ribose or 2-deoxyribose, or the tetrahydrofuran ring thereof, is replaced with a 5- to 7-membered saturated or unsaturated ring (e.g., cyclohexane, cyclohexene, morpholine, etc.), or a partial structure capable of forming a 5- to 7-membered ring by hydrogen bonding (e.g., a peptide structure),
Or (Z4) means a molecule in which ribose or 2-deoxyribose is replaced with C2-6 alkylene glycol (eg, ethylene glycol, propylene glycol, etc.).
Modified sugars include "2-modified sugars" and "2-4 linked sugars," as defined below.
Examples of modified sugars and sugar-modified nucleosides described below include sugars and sugar-modified nucleosides disclosed as being suitable for use in the antisense method in JP-A-10-304889, WO 2005/021570, JP-A-10-195098, JP-T-2002-521310, WO 2007/143315, WO 2008/043753, WO 2008/029619, WO 2008/049085, and WO 2017/142054 (hereinafter, these documents are referred to as "documents related to the antisense method") and the like. Modified sugars and sugar-modified nucleosides are also disclosed in Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667, Medicinal Chemistry Communication, 2014, 5, pp 1454-1471, Future Medicinal Chemistry, 2011, 3, pp 339-365, WO 2018/155450, and the like.

 部分的に1つの置換基によって置換されている修飾糖の例としては、糖部分の任意の位置が、以下の(i)又は(ii)で置換されたリボース若しくは2-デオキシリボースが挙げられる。
(i)C1-6アルキル基。ここで、2以上のC1-6アルキル基による置換が含有される場合、2以上のC1-6アルキル基は、一緒になって3~6員の環を形成していてもよい。
(ii)ハロゲン原子、C1-6アルコキシ基、ハロC1-6アルコキシ基、モノ-又はジ-C1-6アルキルアミノ基、5-10員複素環基、カルボキシ基、カルバモイル基及びN-置換カルバモイル基からなる群から選択される少なくとも1つで置換されたC1-6アルキル基。
 ここで、前記N-置換カルバモイル基としては、N-メチル-カルバモイル基及びN-エチル-カルバモイル基が挙げられ、ここで、N-メチル-カルバモイル基及びN-エチル-カルバモイル基のメチル基及びエチル基は、5-10員複素環基又はモノ-又はジ-C1-6アルキルアミノ基で置換されていてもよい。N-置換カルバモイル基の具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基、N-ジメチルアミノエチル-カルバモイル基、N-モルホリノエチルカルバモイル基、N-(2-ピリジルエチル)カルバモイル基、N-((ベンズイミダゾール-1-イル)エチル)カルバモイル基等が挙げられる。
Examples of modified sugars that are partially substituted with a single substituent include a ribose or 2-deoxyribose substituted at any position of the sugar moiety with the following (i) or (ii):
(i) a C 1-6 alkyl group, where, when substitution with two or more C 1-6 alkyl groups is contained, the two or more C 1-6 alkyl groups may be joined together to form a 3- to 6-membered ring.
(ii) a C 1-6 alkyl group substituted with at least one selected from the group consisting of a halogen atom, a C 1-6 alkoxy group, a halo C 1-6 alkoxy group, a mono- or di-C 1-6 alkylamino group, a 5- to 10-membered heterocyclic group, a carboxy group, a carbamoyl group, and an N-substituted carbamoyl group.
Here, examples of the N-substituted carbamoyl group include an N-methyl-carbamoyl group and an N-ethyl-carbamoyl group, in which the methyl group and the ethyl group of the N-methyl-carbamoyl group and the N-ethyl-carbamoyl group may be substituted with a 5- to 10-membered heterocyclic group or a mono- or di-C 1-6 alkylamino group. Specific examples of the N-substituted carbamoyl group include an N-methylcarbamoyl group, an N-ethylcarbamoyl group, an N-dimethylaminoethyl-carbamoyl group, an N-morpholinoethylcarbamoyl group, an N-(2-pyridylethyl)carbamoyl group, an N-((benzimidazol-1-yl)ethyl)carbamoyl group, and the like.

 「糖修飾ヌクレオシド」は、デオキシリボヌクレオシド又はリボヌクレオシドの糖部分の代わりに、前記「修飾糖」を有する分子を意味する。例えば、後述の「2’修飾ヌクレオシド」及び「2’-4’-架橋ヌクレオシド」を包含する。修飾糖が、前記定義の(Z3)である場合、糖修飾ヌクレオシドは、修飾糖と核酸塩基とが、メチレン鎖等を介して結合した分子も含む。 "Sugar-modified nucleoside" refers to a molecule having the above-mentioned "modified sugar" in place of the sugar portion of a deoxyribonucleoside or ribonucleoside. For example, it includes the "2'-modified nucleoside" and "2'-4'-bridged nucleoside" described below. When the modified sugar is (Z3) as defined above, the sugar-modified nucleoside also includes a molecule in which the modified sugar and the nucleic acid base are linked via a methylene chain or the like.

 「2修飾糖」は、リボースの2位の酸素原子又は炭素原子が修飾された、非架橋の糖を意味し、「2-O-Me」、「2-O-MOE」、「2-O-MCE」、「2-O-NMA」、「2-O-AP」、「2-F」、「2-DMAECE」、「2-MоrECE」、「2-PyECE」及び「2-BimECE」を包含する。
 「2’修飾ヌクレオシド」は、前記2修飾糖の1位に核酸塩基を有する分子を意味し、例えば、「2’-O-Meヌクレオシド」、「2’-O-MOEヌクレオシド」、「2’-O-MCEヌクレオシド」、「2’-O-NMAヌクレオシド」、「2’-O-APヌクレオシド」、「2’-Fヌクレオシド」、「2’-DMAECEヌクレオシド」、「2’-MоrECEヌクレオシド」、「2’-PyECEヌクレオシド」及び「2’-BimECEヌクレオシド」等が挙げられる。
"Dimodified sugar" means a non-bridged sugar in which the oxygen atom or carbon atom at the 2-position of ribose is modified, and includes "2-O-Me", "2-O-MOE", "2-O-MCE", "2-O-NMA", "2-O-AP", "2-F", "2-DMAECE", "2-MorECE", "2-PyECE", and "2-BimECE".
"2'-modified nucleoside" means a molecule having a nucleobase at the 1-position of the dimodified sugar, and examples include "2'-O-Me nucleoside,""2'-O-MOEnucleoside,""2'-O-MCEnucleoside,""2'-O-NMAnucleoside,""2'-O-APnucleoside,""2'-Fnucleoside,""2'-DMAECEnucleoside,""2'-MorECEnucleoside,""2'-PyECEnucleoside," and "2'-BimECE nucleoside."

 「2-O-Me」(2-O-メチルとも称される)は、リボースの2位のヒドロキシ基が、メトキシ基に置き換えられた糖を意味する。
 「2’-O-Meヌクレオシド」(2’-O-メチルヌクレオシドとも称される)は、「2-O-Me」の1位に核酸塩基を有する分子を意味する。
"2-O-Me" (also called 2-O-methyl) means a sugar in which the hydroxy group at position 2 of ribose is replaced with a methoxy group.
A "2'-O-Me nucleoside" (also referred to as a 2'-O-methyl nucleoside) means a molecule having a nucleobase at the 1-position of "2-O-Me."

 「2-O-MOE」(2-O-メトキシエチルとも称される)は、リボースの2位のヒドロキシ基が、2-メトキシエチルオキシ基に置き換えられた糖を意味する。
 「2’-O-MOEヌクレオシド」(2’-O-メトキシエチルヌクレオシドとも称される)は、「2-O-MOE」の1位に核酸塩基を有する分子を意味する。
"2-O-MOE" (also known as 2-O-methoxyethyl) means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 2-methoxyethyloxy group.
A "2'-O-MOE nucleoside" (also referred to as a 2'-O-methoxyethyl nucleoside) means a molecule having a nucleobase at position 1 of "2-O-MOE."

 「2-O-MCE」(2-O-メチルカルバモイルエチルとも称される)は、リボースの2位のヒドロキシ基が、メチルカルバモイルエチルオキシ基に置き換えられた糖を意味する。
 「2’-O-MCEヌクレオシド」(2’-O-メチルカルバモイルエチルヌクレオシドとも称される)は、「2-O-MCE」の1位に核酸塩基を有する分子を意味する。
"2-O-MCE" (also called 2-O-methylcarbamoylethyl) means a sugar in which the hydroxy group at position 2 of ribose is replaced with a methylcarbamoylethyloxy group.
"2'-O-MCE nucleoside" (also referred to as 2'-O-methylcarbamoylethyl nucleoside) means a molecule having a nucleobase at the 1-position of "2-O-MCE."

 「2-O-NMA」は、リボースの2位のヒドロキシ基が、2-[(メチルアミノ)-2-オキソエチル]オキシ基に置き換えられた糖を意味する。
 「2’-O-NMAヌクレオシド」は、「2-O-NMA」の1位に核酸塩基を有する分子を意味する。
"2-O-NMA" means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 2-[(methylamino)-2-oxoethyl]oxy group.
"2'-O-NMA nucleoside" means a molecule having a nucleobase at position 1 of "2-O-NMA."

 「2-O-AP」は、リボースの2位のヒドロキシ基が、3-アミノプロピルオキシ基に置き換えられた糖を意味する。
 「2’-O-APヌクレオシド」は、「2-O-AP」の1位に核酸塩基を有する分子を意味する。
"2-O-AP" means a sugar in which the hydroxy group at position 2 of ribose is replaced with a 3-aminopropyloxy group.
"2'-O-AP nucleoside" means a molecule having a nucleobase at position 1 of "2-O-AP".

 「2-F」は、リボースの2位のヒドロキシ基が、フッ素原子に置き換えられた糖を意味する。
 「2’-Fヌクレオシド」は、「2-F」の1位に核酸塩基を有する分子を意味する。
"2-F" means a sugar in which the hydroxy group at position 2 of ribose is replaced with a fluorine atom.
"2'-F nucleoside" means a molecule having a nucleobase at position 1 of "2-F."

 「2-DMAECE」、「2-MоrECE」、「2-PyECE」、及び「2-BimECE」は、リボースの2位のヒドロキシ基が、それぞれ、以下、DMAECE、MоrECE、PyECE、BimECEで示される構造に置き換えられた修飾糖である。以下構造中、波線は、リボースの2位のヒドロキシ基が結合する炭素原子との結合位置を示す。

Figure JPOXMLDOC01-appb-C000005
"2-DMAECE", "2-MorECE", "2-PyECE", and "2-BimECE" are modified sugars in which the hydroxyl group at position 2 of ribose has been replaced with structures shown below as DMAECE, MorECE, PyECE, and BimECE, respectively. In the structures below, the wavy line indicates the bond position with the carbon atom to which the hydroxyl group at position 2 of ribose is bonded.
Figure JPOXMLDOC01-appb-C000005

 「2’-DMAECEヌクレオシド」、「2’-MоrECEヌクレオシド」、「2’-PyECEヌクレオシド」及び「2’-BimECEヌクレオシド」は、それぞれ「2-DMAECE」、「2-MоrECE」、「2-PyECE」及び「2-BimECE」の1位に核酸塩基を有する分子を意味する。 "2'-DMAECE nucleoside", "2'-MorECE nucleoside", "2'-PyECE nucleoside" and "2'-BimECE nucleoside" refer to molecules having a nucleobase at position 1 of "2-DMAECE", "2-MorECE", "2-PyECE" and "2-BimECE", respectively.

 「2-4架橋糖」は、リボースにおける2位及び4位の2箇所の置換によって架橋ユニットが形成された糖を意味する。架橋ユニットとしては、例えば、C2-6アルキレン基(前記アルキレン基は無置換であるか、又はハロゲン原子、オキソ基及びチオキソ基からなる群から選択される1個以上の置換基で置換されており、かつ前記アルキレン基の1若しくは2つのメチレン基は、置き換えられていないか、又は独立して-O-、-NR10-(R10は水素原子、C1-6アルキル基又はハロC1-6アルキル基を示す)及び-S-からなる群から選択される基で置き換えられている)が挙げられる。 The term "2-4 bridged sugar" refers to a sugar in which a bridge unit is formed by substitution at two positions, the 2- and 4-positions of ribose. Examples of the bridge unit include a C 2-6 alkylene group (the alkylene group is unsubstituted or substituted with one or more substituents selected from the group consisting of a halogen atom, an oxo group, and a thioxo group, and one or two methylene groups of the alkylene group are unsubstituted or independently substituted with a group selected from the group consisting of -O-, -NR 10 - (R 10 is a hydrogen atom, a C 1-6 alkyl group, or a haloC 1-6 alkyl group), and -S-).

 「2’-4’-架橋ヌクレオシド」(2’,4’-BNA)は、前記2-4架橋糖の1位に核酸塩基を有する分子を意味する。例えば、後述のLNA(ロックド核酸;Locked Nucleic Acid(登録商標))とも称されるβ-D-メチレンオキシ(4’-CH-O-2’)BNA又はα-L-メチレンオキシ(4’-CH-O-2’)BNA、ENAとも称されるエチレンオキシ(4’-(CH-O-2’)BNA、β-D-チオ(4’-CH-S-2’)BNA、アミノオキシ(4’-CH-O-N(R11)-2’)BNA(R11は、H又はCHである)、2’,4’-BNANCとも称されるオキシアミノ(4’-CH-N(R12)-O-2’)BNA(R12は、H又はCHである)、2’,4’-BNACOC、3’-アミノ-2’,4’-BNA、5’-メチルBNA、cEtとも称される(4’-CH(CH)-O-2’)BNA、cMOE-BNAとも称される(4’-CH(CHOCH)-O-2’)BNA、AmNAとも称されるアミド型BNA(4’-C(=O)-N(R13)-2’)BNA(R13は、H又はCHである)、scpBNAとも称される(4’-C(スピロ-シクロプロピル)-O-2’)BNA、GuNAとも称される(4’-CH-N(R14)-2’)BNA(R14は、C(=NH +)NHR15であり、R15は、H又はCHである)、及び当業者に知られた他のBNA等が挙げられる。 "2',4'-bridged nucleoside"(2',4'-BNA) means a molecule having a nucleobase at the 1-position of the 2-4 bridged sugar. For example, β-D-methyleneoxy (4'-CH 2 -O-2') BNA or α-L-methyleneoxy (4'-CH 2 -O-2') BNA, also referred to as LNA (Locked Nucleic Acid (registered trademark)) described below, ethyleneoxy (4'-(CH 2 ) 2 -O-2') BNA, also referred to as ENA, β-D-thio (4'-CH 2 -S-2') BNA, aminooxy (4'-CH 2 -O-N(R 11 )-2') BNA (R 11 is H or CH 3 ), oxyamino (4'-CH 2 -N(R 12 )-O-2') BNA (R 12 is H or CH 3 ), also referred to as 2',4'-BNA NC , 2',4'-BNA COC , 3'-amino-2',4'-BNA, 5'-methyl BNA, (4'-CH(CH 3 )-O-2') BNA also referred to as cEt, (4'-CH(CH 2 OCH 3 )-O-2') BNA also referred to as cMOE-BNA, amide type BNA (4'-C(═O)-N(R 13 )-2') BNA also referred to as AmNA (R 13 is H or CH 3 ), (4'-C(spiro-cyclopropyl)-O-2') BNA also referred to as scpBNA, (4'-CH 2 -N(R 14 )-2') BNA also referred to as GuNA (R 14 is C(═NH 2 + )NHR 15 , R 15 is H or CH 3 ), and other BNAs known to those skilled in the art.

 「5修飾糖」は、リボース骨格の5位の酸素原子又は炭素原子が修飾された、非架橋の糖を意味し、「5-CP」「5-メチル」「5-アミノプロピル」を包含する。「5修飾糖」の2位及び4位は、好ましくは修飾されていない。
 「5’-修飾ヌクレオシド」は、前記「5修飾糖」の1位(修飾前の2-デオキシリボースの1位)の炭素原子に核酸塩基を有する分子を意味し、例えば「5’-CPヌクレオシド」、「5’-メチルヌクレオシド」及び「5’-アミノプロピルヌクレオシド」を含む。5’-修飾ヌクレオシドの2’位は修飾されていても修飾されていなくてもよい。5’-修飾ヌクレオシドの2’位及び4’位は、架橋していてもしていなくてもよいが、架橋していないことが好ましい。
"5-modified sugar" refers to a non-bridged sugar in which the oxygen or carbon atom at position 5 of the ribose backbone is modified, and includes "5-CP,""5-methyl," and "5-aminopropyl." Positions 2 and 4 of the "5-modified sugar" are preferably not modified.
"5'-modified nucleoside" means a molecule having a nucleobase at the carbon atom at position 1 (position 1 of 2-deoxyribose before modification) of the "5-modified sugar" and includes, for example, "5'-CP nucleoside,""5'-methylnucleoside," and "5'-aminopropyl nucleoside." The 2' position of a 5'-modified nucleoside may or may not be modified. The 2' and 4' positions of a 5'-modified nucleoside may or may not be bridged, but are preferably not bridged.

 「5-CP」は、リボース骨格の5位が2個のメチル基で置換され、この2個のメチル基が一緒になってシクロプロパンを形成している糖である。
 「5’-CPヌクレオシド」は、糖が前記「5-CP」であり、その1位(基となる2-デオキシリボースの1位)の炭素原子に核酸塩基を有する分子であり、以下の構造式で表すことができる。式中、Baseは、核酸塩基である。波線は隣接するヌクレオシドやリンカー等と結合すること、又は水素原子若しくはリン酸基と理解される。

Figure JPOXMLDOC01-appb-C000006

 「5-メチル」は、リボース骨格の5位がメチル基で置換された糖である。
 「5-アミノプロピル」は、リボース骨格の5位が、3-アミノプロピル基で置換された糖である。
 「5’-メチルヌクレオシド」及び「5’-アミノプロピルヌクレオシド」は、それぞれ「5-メチル」及び「5-アミノプロピル」の1位(基となる2-デオキシリボースの1位)の炭素原子に核酸塩基を有する分子を意味する。 "5-CP" is a sugar in which the 5-position of the ribose backbone is substituted with two methyl groups, which together form a cyclopropane.
A "5'-CP nucleoside" is a molecule in which the sugar is the above-mentioned "5-CP" and which has a nucleic acid base at the carbon atom at position 1 (position 1 of the base 2-deoxyribose), and can be represented by the following structural formula. In the formula, Base is a nucleic acid base. The wavy line is understood to represent a bond to an adjacent nucleoside, a linker, etc., or to represent a hydrogen atom or a phosphate group.
Figure JPOXMLDOC01-appb-C000006

"5-methyl" is a sugar in which the 5-position of the ribose backbone is substituted with a methyl group.
"5-aminopropyl" is a sugar in which the 5-position of the ribose backbone is substituted with a 3-aminopropyl group.
The terms "5'-methylnucleoside" and "5'-aminopropylnucleoside" refer to molecules having a nucleobase at the 1-position (the 1-position of the parent 2-deoxyribose) carbon atom of "5-methyl" and "5-aminopropyl," respectively.

 「5-ビニル」は、リボースの5位のメチレン基がエテン-1,2-ジイル基(ビニル基)に置き換えられた糖である。 "5-vinyl" is a sugar in which the methylene group at the 5th position of ribose is replaced with an ethene-1,2-diyl group (vinyl group).

 後述のビニルホスホネート化(VP)ヌクレオシド、及びシクロプロパンホスホネート化(CPP)ヌクレオシドは、5’-修飾ヌクレオシドにも含有される。 Vinylphosphonate (VP) nucleosides and cyclopropanephosphonate (CPP) nucleosides, described below, are also included in the 5'-modified nucleosides.

 前記「デオキシリボヌクレオシド」、「リボヌクレオシド」、「2’修飾ヌクレオシド」、「2’-4’-架橋ヌクレオシド」及び「5’-修飾ヌクレオシド」等において、1’位の炭素原子と核酸塩基との結合は、α-グリコシド結合及びβ-グリコシド結合が挙げられるが、通常は、β-グリコシド結合である。したがって、LNAとして、通常β-D-メチレンオキシBNAが用いられる。 In the above-mentioned "deoxyribonucleosides", "ribonucleosides", "2'-modified nucleosides", "2'-4'-bridged nucleosides" and "5'-modified nucleosides", the bond between the carbon atom at the 1' position and the nucleic acid base can be an α-glycosidic bond or a β-glycosidic bond, but is usually a β-glycosidic bond. Therefore, β-D-methyleneoxy BNA is usually used as LNA.

 「n-」はノルマル、「s-」はセカンダリー、「t-」はターシャリーを意味する。 "n-" means normal, "s-" means secondary, and "t-" means tertiary.

 「ハロゲン原子」又は「ハロ」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。 "Halogen atom" or "halo" means a fluorine atom, chlorine atom, bromine atom, or iodine atom.

 「C1-6アルキル基」とは、炭素原子数が1~6の直鎖又は分枝状の飽和炭化水素基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基及びイソヘキシル基(各種異性体を含む)等が挙げられる。 The term " C1-6 alkyl group" means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, and examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a neopentyl group, an n-hexyl group, and an isohexyl group (including various isomers).

 「C1-10アルキル基」は、炭素原子数1~10の直鎖又は分岐アルキル基を意味し、例としては、上記「C1-6アルキル基」の例に加えて、例えば、ヘプチル基、オクチル基、ノニル基、デシル基(各種異性体を含む)等が挙げられる。 The term "C 1-10 alkyl group" means a straight-chain or branched alkyl group having 1 to 10 carbon atoms, and examples thereof include, in addition to the examples of the "C 1-6 alkyl group" mentioned above, a heptyl group, an octyl group, a nonyl group, a decyl group (including various isomers), etc.

 「C5-32アルキル基」は、炭素原子数5~32の直鎖又は分岐アルキル基を意味し、例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ドコシル基、テトラコシル基、ヘキサコシル基、オクタコシル基、トリアコンチル基、ヘントリアコンチル基、ドトリアコンチル基(各種異性体を含む)等が挙げられる。 The term " C5-32 alkyl group" means a straight-chain or branched alkyl group having 5 to 32 carbon atoms, and examples thereof include pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl, hexacosyl, octacosyl, triacontyl, hentriacontyl, and dotriacontyl (including various isomers) groups.

 「C8-28アルキル基」は、炭素原子数8~28の直鎖又は分岐アルキル基を意味し、例えば、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ドコシル基、テトラコシル基、ヘキサコシル基、オクタコシル基(各種異性体を含む)等が挙げられる。 The term " C8-28 alkyl group" means a straight-chain or branched alkyl group having 8 to 28 carbon atoms, and examples thereof include octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl, hexacosyl, and octacosyl (including various isomers).

 「C10-20アルキル基」は、炭素原子数10~20の直鎖又は分岐アルキル基を意味し、例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基(各種異性体を含む)等が挙げられる。
 「C12-14アルキル基」は、炭素原子数12~14の直鎖又は分岐アルキル基を意味し、例えば、ドデシル基、トリデシル基、テトラデシル基(各種異性体を含む)等が挙げられる。
 「C12アルキル基」とは、炭素原子数12の直鎖又は分岐アルキル基を意味し、例としては、1-ドデシル基、6-ドデシル基、1-メチルウンデシル基、6-メチルウンデシル基等が挙げられる。
 「C14アルキル基」とは、炭素原子数14の直鎖又は分岐アルキル基を意味し、例としては、1-テトラデシル基、7-テトラデシル基、1-メチルトリデシル基、12-メチルトリデシル基等が挙げられる。
The term " C10-20 alkyl group" means a straight-chain or branched alkyl group having 10 to 20 carbon atoms, and examples thereof include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, and an icosyl group (including various isomers).
The term "C 12-14 alkyl group" refers to a straight or branched alkyl group having 12 to 14 carbon atoms, and examples thereof include dodecyl, tridecyl, and tetradecyl groups (including various isomers).
The term " C12 alkyl group" means a straight or branched alkyl group having 12 carbon atoms, and examples include 1-dodecyl, 6-dodecyl, 1-methylundecyl, 6-methylundecyl, and the like.
The term " C14 alkyl group" means a straight or branched alkyl group having 14 carbon atoms, and examples include 1-tetradecyl group, 7-tetradecyl group, 1-methyltridecyl group, 12-methyltridecyl group, and the like.

 「C5-32アルケニル基」は、1以上の炭素-炭素二重結合を含む、炭素原子数5~32の直鎖又は分枝状の不飽和炭化水素基を意味し、例えば、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ドコセニル基、テトラコセニル基、ヘキサコセニル基、オクタコセニル基、トリアコンテニル基、ヘントリアコンテニル基、ドトリアコンテニル基(各種異性体を含む)等が挙げられる。
 「C8-28アルケニル基」は、1以上の炭素-炭素二重結合を含む、炭素原子数8~28の直鎖又は分枝状の不飽和炭化水素基を意味し、例えば、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ドコセニル基、テトラコセニル基、ヘキサコセニル基、オクタコセニル基(各種異性体を含む)等が挙げられる。
 「C10-20アルケニル基」は、1以上の炭素-炭素二重結合を含む、炭素原子数10~20の直鎖又は分枝状の不飽和炭化水素基を意味し、例えば、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基(各種異性体を含む)等が挙げられる。
 「C14アルケニル基」とは、炭素原子数14の直鎖又は分岐アルケニル基を意味し、例としては、テトラデカ-2-エニル基、テトラデカ-7-エニル基、1-メチルトリデカ-2-エニル基、12-メチルトリデカ-2-エニル基等が挙げられる。
The term "C 5-32 alkenyl group" means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 5 to 32 carbon atoms, and examples thereof include a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an icosenyl group, a docosenyl group, a tetracosenyl group, a hexacosenyl group, an octacosenyl group, a triacontenyl group, a hentriacontenyl group, and a dotriacontenyl group (including various isomers).
The term " C8-28 alkenyl group" means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 8 to 28 carbon atoms, and examples thereof include octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, icosenyl, docosenyl, tetracosenyl, hexacosenyl, and octacosenyl (including various isomers).
The term " C10-20 alkenyl group" means a straight-chain or branched unsaturated hydrocarbon group containing one or more carbon-carbon double bonds and having 10 to 20 carbon atoms, and examples thereof include a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, and an icosenyl group (including various isomers).
The term "C 14 alkenyl group" means a straight-chain or branched alkenyl group having 14 carbon atoms, and examples thereof include a tetradec-2-enyl group, a tetradec-7-enyl group, a 1-methyltridec-2-enyl group, and a 12-methyltridec-2-enyl group.

 「ハロC1-6アルキル基」とは、前記「C1-6アルキル基」の任意の位置の水素原子が、1個以上の前記「ハロゲン原子」で置換された基を意味する。 The term "halo C 1-6 alkyl group" means a group in which a hydrogen atom at any position of the above "C 1-6 alkyl group" is substituted with one or more of the above "halogen atoms".

 「C2-6アルキレン基」とは、炭素原子数が2~6の直鎖又は分枝状の飽和炭化水素基から任意の位置の水素原子を2個取り除いた2価の基(アルカンジイル基)を意味し、例としては、エチレン(エタンジイル)基、プロパン-1,3-ジイル(トリメチレン)基、プロパン-2,2-ジイル基、2,2-ジメチル-プロパン-1,3-ジイル基、ヘキサン-1,6-ジイル(ヘキサメチレン)基及び3-メチルブタン-1,2-ジイル基等が挙げられる。 The term "C 2-6 alkylene group" means a divalent group (alkanediyl group) obtained by removing two hydrogen atoms at any position from a straight-chain or branched saturated hydrocarbon group having 2 to 6 carbon atoms, and examples include an ethylene (ethanediyl) group, a propane-1,3-diyl (trimethylene) group, a propane-2,2-diyl group, a 2,2-dimethyl-propane-1,3-diyl group, a hexane-1,6-diyl (hexamethylene) group, and a 3-methylbutane-1,2-diyl group.

 「C1-10アルキレン基」とは、炭素原子数1~10の直鎖又は分岐アルキレン基を意味し、例としては、上記「C2-6アルキレン基」の例に加えて、メチレン基、プロピレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基、オクタメチレン基及びデカメチレン基等が挙げられる。 The term "C 1-10 alkylene group" means a straight-chain or branched alkylene group having 1 to 10 carbon atoms, and examples thereof include, in addition to the examples of the "C 2-6 alkylene group" above, a methylene group, a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, an octamethylene group, and a decamethylene group.

 「C2-8アルキレン基」とは、炭素原子数2~8の直鎖又は分岐アルキレン基を意味し、例としては、上記「C2-6アルキレン基」の例に加えて、メチレン基、プロピレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基、及びオクタメチレン基等が挙げられる。 The term "C 2-8 alkylene group" means a straight-chain or branched alkylene group having 2 to 8 carbon atoms, and examples thereof include, in addition to the examples of the "C 2-6 alkylene group" above, a methylene group, a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, and an octamethylene group.

 「C3-6アルキレン基」とは、炭素原子数3~6の直鎖又は分岐アルキレン基を意味し、例としては、プロピレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基、ヘキサメチレン基等が挙げられる。 The term "C 3-6 alkylene group" means a straight-chain or branched alkylene group having 3 to 6 carbon atoms, and examples thereof include a propylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group, a pentamethylene group, a 1-methyl-tetramethylene group, a 2-methyl-tetramethylene group, a 1,1-dimethyl-trimethylene group, a 1,2-dimethyl-trimethylene group, a 1-ethyl-trimethylene group, a hexamethylene group, and the like.

 「Cアルキレン基」とは、炭素原子数6の直鎖又は分岐アルキレン基を意味し、例としては、ヘキサメチレン基、1-メチル-ペンタメチレン基、2-メチル-ペンタメチレン基、1,1-ジメチル-テトラメチレン基等が挙げられる。 The term " C6 alkylene group" means a straight or branched alkylene group having 6 carbon atoms, and examples include hexamethylene, 1-methyl-pentamethylene, 2-methyl-pentamethylene, 1,1-dimethyl-tetramethylene, and the like.

 「C1-6アルコキシ基」とは、前記「C1-6アルキル基」がオキシ基に結合した基を意味する。 The term "C 1-6 alkoxy group" means a group in which the above "C 1-6 alkyl group" is bonded to an oxy group.

 「ハロC1-6アルコキシ基」とは、前記「C1-6アルコキシ基」の任意の位置の水素原子が、1個以上の前記「ハロゲン原子」で置換された基を意味する。 The term "halo C 1-6 alkoxy group" means a group in which a hydrogen atom at any position of the above "C 1-6 alkoxy group" is substituted with one or more of the above "halogen atoms".

 「モノ-又はジ-C1-6アルキルアミノ基」とは、アミノ基の1つの水素原子が1つの「C1-6アルキル基」に置き換えられた基、又はアミノ基の2つの水素原子が同一又は異なる2つの「C1-6アルキル基」に置き換えられた基を意味し、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、及びN-エチル-N-メチルアミノ基等が挙げられる。 The "mono- or di-C 1-6 alkylamino group" means a group in which one hydrogen atom of an amino group is replaced by one "C 1-6 alkyl group", or a group in which two hydrogen atoms of an amino group are replaced by the same or different two "C 1-6 alkyl groups", and examples thereof include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, and an N-ethyl-N-methylamino group.

 「3~6員の環」は、炭素原子数が3から6の単環式の飽和若しくは不飽和炭化水素環を意味し、例えば、シクロプロパン、シクロブタン、シクロヘキサン等が挙げられる。 "3- to 6-membered ring" means a monocyclic saturated or unsaturated hydrocarbon ring having 3 to 6 carbon atoms, such as cyclopropane, cyclobutane, and cyclohexane.

 「5-10員複素環基」は、環構成原子として炭素原子以外に窒素原子、硫黄原子及び酸素原子から選ばれる1から4個のヘテロ原子を含有する5から10員の単環系又は縮合多環系の芳香族又は非芳香族の複素環基を意味する。
 前記「5-10員複素環基」の好適な例としては、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、トリアジニル基、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、ベンゾトリアゾリル基、イミダゾピリジニル基、チエノピリジニル基、ピロロピリジニル基、ピラゾロピリジニル基、オキサゾロピリジニル基、チアゾロピリジニル基、イミダゾピラジニル基、イミダゾピリミジニル基、アジリジニル基、オキシラニル基、アゼチジニル基、オキセタニル基、チエタニル基、テトラヒドロチエニル基、テトラヒドロフラニル基、ピロリニル基、ピロリジニル基、オキソピロリジニル基、イミダゾリニル基、オキソイミダゾリニル基、イミダゾリジニル基、オキサゾリニル基、オキサゾリジニル基、ピラゾリニル基、ピラゾリジニル基、チアゾリニル基、チアゾリジニル基、テトラヒドロイソチアゾリル基、テトラヒドロオキサゾリル基、テトラヒドロイソオキサゾリル基、ピペリジニル基、ピペラジニル基、テトラヒドロピリジニル基、ジヒドロピリジニル基、テトラヒドロピリダジニル基、ジヒドロピラニル基、テトラヒドロピラニル基、テトラヒドロチオピラニル基、モルホリニル基、及びチオモルホリニル基等が挙げられる。
The term "5- to 10-membered heterocyclic group" means a 5- to 10-membered monocyclic or condensed polycyclic aromatic or non-aromatic heterocyclic group containing, as ring-constituting atoms other than carbon atoms, 1 to 4 heteroatoms selected from a nitrogen atom, a sulfur atom, and an oxygen atom.
Preferable examples of the "5- to 10-membered heterocyclic group" include a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazolyl group, a tetrazolyl group, a triazinyl group, a benzothiophenyl group, a benzofuranyl group, a benzimidazolyl group, a benzoxazolyl group, a benzisoxazolyl group, a benzothiazolyl group, a benzisothiazolyl group, a benzotriazolyl group, an imidazopyridinyl group, a thienopyridinyl group, a pyrrolopyridinyl group, a pyrazolopyridinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, an imidazopyrazinyl group, an imidazopyrimidinyl group, an aziridinyl group, Examples of such groups include an oxiranyl group, an azetidinyl group, an oxetanyl group, a thietanyl group, a tetrahydrothienyl group, a tetrahydrofuranyl group, a pyrrolinyl group, a pyrrolidinyl group, an oxopyrrolidinyl group, an imidazolinyl group, an oxoimidazolinyl group, an imidazolidinyl group, an oxazolinyl group, an oxazolidinyl group, a pyrazolinyl group, a pyrazolidinyl group, a thiazolinyl group, a thiazolidinyl group, a tetrahydroisothiazolyl group, a tetrahydrooxazolyl group, a tetrahydroisoxazolyl group, a piperidinyl group, a piperazinyl group, a tetrahydropyridinyl group, a dihydropyridinyl group, a tetrahydropyridazinyl group, a dihydropyranyl group, a tetrahydropyranyl group, a tetrahydrothiopyranyl group, a morpholinyl group, and a thiomorpholinyl group.

 「オキソ基」とは、酸素原子が二重結合を介して置換した基(=O)を示す。オキソ基が炭素原子に置換した場合は当該炭素原子と一緒となってカルボニル基を形成する。
 「チオキソ基」とは、硫黄原子が二重結合を介して置換した基(=S)を示す。チオキソ基が炭素原子に置換した場合は当該炭素原子と一緒となってチオカルボニル基を形成する。
The term "oxo group" refers to a group in which an oxygen atom is substituted via a double bond (=O). When an oxo group is substituted for a carbon atom, it forms a carbonyl group together with the carbon atom.
The term "thioxo group" refers to a group in which a sulfur atom is substituted via a double bond (=S). When a thioxo group is substituted for a carbon atom, it forms a thiocarbonyl group together with the carbon atom.

 「核酸塩基」は、プリン塩基又はピリミジン塩基であり、天然に存在する核酸塩基であっても、天然に存在する核酸塩基が修飾されたものであってもよい。天然に存在する核酸塩基としては、アデニン(A)、グアニン(G)、チミン(T)、シトシン(C)及びウラシル(U)が挙げられる。前記「核酸塩基」は、天然に存在する核酸塩基及び、後述の「修飾核酸塩基」を含む。 "Nucleic acid base" refers to a purine base or a pyrimidine base, and may be a naturally occurring nucleobase or a modified naturally occurring nucleobase. Naturally occurring nucleobases include adenine (A), guanine (G), thymine (T), cytosine (C) and uracil (U). The "nucleic acid base" includes naturally occurring nucleobases and the "modified nucleobases" described below.

 「修飾核酸塩基」における核酸塩基の修飾の例としては、ハロゲン化、メチル化、エチル化、n-プロピル化、イソプロピル化、シクロプロピル化、n-ブチル化、イソブチル化、s-ブチル化、t-ブチル化、シクロブチル化、水酸化、アミノ化、チオ化及びデメチル化等が挙げられる。より具体的には、シトシンの5-メチル化、5-フルオロ化、5-ブロモ化、5-ヨード化及びN4-メチル化;チミンの2-チオ化、5-デメチル化、5-フルオロ化、5-ブロモ化及び5-ヨード化;ウラシルの2-チオ化、5-フルオロ化、5-ブロモ化及び5-ヨード化;アデニンのN6-メチル化及び8-ブロモ化;グアニンのN2-メチル化及び8-ブロモ化等が挙げられる。また、Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667、Medicinal Chemistry Communication, 2014, 5, pp 1454-1471、Future Medicinal Chemistry, 2011, 3, pp 339-365、国際公開第2018/155450号等に、ヌクレオシドにおける核酸塩基部分の修飾の例が開示されている。 Examples of modifications of nucleic acid bases in "modified nucleic acid bases" include halogenation, methylation, ethylation, n-propylation, isopropylation, cyclopropylation, n-butylation, isobutylation, s-butylation, t-butylation, cyclobutylation, hydroxylation, amination, thiolation, demethylation, etc. More specifically, 5-methylation, 5-fluoroation, 5-bromination, 5-iodination, and N4-methylation of cytosine; 2-thiolation, 5-demethylation, 5-fluoroation, 5-bromination, and 5-iodination of thymine; 2-thiolation, 5-fluoroation, 5-bromination, and 5-iodination of uracil; N6-methylation and 8-bromination of adenine; N2-methylation and 8-bromination of guanine, etc. Furthermore, examples of modifications of the nucleic acid base moiety in nucleosides are disclosed in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667, Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471, Future Medicinal Chemistry, 2011, 3, pp. 339-365, WO 2018/155450, etc.

 ヌクレオシドにおける核酸塩基は、好ましくは、アデニン、グアニン、チミン、シトシン、ウラシル及び5-メチルシトシンからなる群から選ばれる少なくとも1種である。 The nucleic acid base in the nucleoside is preferably at least one selected from the group consisting of adenine, guanine, thymine, cytosine, uracil, and 5-methylcytosine.

 「5-メチルシトシン」は、5位にメチル基を有するシトシンを意味する。 "5-methylcytosine" means cytosine with a methyl group at the 5th position.

 「核酸塩基配列」は、オリゴヌクレオチドに含有される各ヌクレオシドが有する核酸塩基の5’側から3’側への配列を意味する。 "Nucleic acid base sequence" refers to the sequence from the 5' to the 3' side of the nucleic acid bases of each nucleoside contained in an oligonucleotide.

 「連続核酸塩基」は、前記「核酸塩基配列」において連続する一部分の核酸塩基の5’側から3’側への配列を意味する。 "Consecutive nucleobases" refers to a sequence from the 5' to the 3' end of a contiguous portion of nucleobases in the "nucleobase sequence."

 「ヌクレオシド間結合」は、オリゴヌクレオチド中の隣接ヌクレオシド間の共有結合を形成する基又は結合を意味する。「ヌクレオシド間結合」は、ホスホジエステル結合及び後述の「修飾ヌクレオシド間結合」を含む。 "Internucleoside linkage" means a group or bond that forms a covalent bond between adjacent nucleosides in an oligonucleotide. "Internucleoside linkage" includes phosphodiester linkages and "modified internucleoside linkages" described below.

 「修飾ヌクレオシド間結合」は、修飾されたホスホジエステル結合を意味し、例えば、ホスホロチオエート結合、メチルホスホネート結合(キラル-メチルホスホネート結合を含む)、メチルチオホスホネート結合、ホスホロジチオエート結合、ホスホロアミデート結合、ホスホロジアミデート結合、ホスホロアミドチオエート結合及びボラノホスフェート結合等が挙げられる。また、Journal of Medicinal Chemistry, 2016, 59, pp 9645-9667、Medicinal Chemistry Communication, 2014, 5, pp 1454-1471、Future Medicinal Chemistry, 2011, 3, pp 339-365等に、ホスホジエステル結合の修飾の例が開示されており、修飾されたホスホジエステル結合に用いることができる。 "Modified internucleoside bond" means a modified phosphodiester bond, such as a phosphorothioate bond, a methylphosphonate bond (including a chiral-methylphosphonate bond), a methylthiophosphonate bond, a phosphorodithioate bond, a phosphoramidate bond, a phosphorodiamidate bond, a phosphoroamidothioate bond, and a boranophosphate bond. Examples of modified phosphodiester bonds are disclosed in Journal of Medicinal Chemistry, 2016, 59, pp. 9645-9667; Medicinal Chemistry Communication, 2014, 5, pp. 1454-1471; Future Medicinal Chemistry, 2011, 3, pp. 339-365, etc., and can be used for modified phosphodiester bonds.

 「修飾ヌクレオシド」は、修飾糖及び/又は修飾核酸塩基を有するヌクレオシドを意味する。 "Modified nucleoside" means a nucleoside having a modified sugar and/or a modified nucleobase.

 「オリゴヌクレオチド」は、同一又は異なる2以上の「ヌクレオシド」が、互いに独立して選択される前記「ヌクレオシド間結合」(例えば、ホスホジエステル結合又は修飾されたホスホジエステル結合)で連結した構造を有する分子を意味する。
 「オリゴデオキシリボヌクレオチド」は、同一又は異なる2以上の前記「デオキシリボヌクレオシド」が、互いに独立して選択される前記「ヌクレオシド間結合」によって、連結したポリヌクレオチド又はオリゴヌクレオチドを意味する。
 「オリゴリボヌクレオチド」は、同一又は異なる2以上の前記「リボヌクレオシド」が、互いに独立して選択される前記「ヌクレオシド間結合」によって、連結したポリヌクレオチド又はオリゴヌクレオチドを意味する。
 ヌクレオシドの5’位が他のヌクレオシドと連結するとき、当該5’位は他のヌクレオシドの2’位、3’位、5’位(好ましくは3’位)とヌクレオシド間結合によって結合する。ヌクレオシドの3’位が他のヌクレオシドと連結するとき、当該3’位は他のヌクレオシドの2’位、3’位、5’位(好ましくは5’位)とヌクレオシド間結合によって結合する。
"Oligonucleotide" refers to a molecule having a structure in which two or more "nucleosides" that are the same or different are linked together by "internucleoside bonds" (e.g., phosphodiester bonds or modified phosphodiester bonds) that are independently selected from each other.
The term "oligodeoxyribonucleotide" refers to a polynucleotide or oligonucleotide in which two or more of the same or different "deoxyribonucleosides" are linked by the "internucleoside bonds" selected independently from each other.
The term "oligoribonucleotide" refers to a polynucleotide or oligonucleotide in which two or more of the same or different "ribonucleosides" are linked by the above-mentioned "internucleoside linkages" which are independently selected from each other.
When the 5' position of a nucleoside is linked to another nucleoside, the 5' position is linked to the 2', 3', or 5' position (preferably the 3' position) of the other nucleoside through an internucleoside bond. When the 3' position of a nucleoside is linked to another nucleoside, the 3' position is linked to the 2', 3', or 5' position (preferably the 5' position) of the other nucleoside through an internucleoside bond.

 「DNA」は、天然に存在する2以上の前記「デオキシリボヌクレオシド」が、ホスホジエステル結合によって、連結したポリヌクレオチド又はオリゴヌクレオチドを意味する。DNAを構成する天然のデオキシリボヌクレオシドは、それぞれ同一であっても異なっていてもよい。
 「RNA」は、天然に存在する2以上の前記「リボヌクレオシド」が、ホスホジエステル結合によって、連結したポリヌクレオチド又はオリゴヌクレオチドを意味する。RNAを構成する天然のリボヌクレオシドは、それぞれ同一であっても異なっていてもよい。
"DNA" refers to a polynucleotide or oligonucleotide in which two or more naturally occurring "deoxyribonucleosides" as defined above are linked by phosphodiester bonds. The naturally occurring deoxyribonucleosides that make up DNA may be the same or different.
"RNA" refers to a polynucleotide or oligonucleotide in which two or more naturally occurring "ribonucleosides" are linked by phosphodiester bonds. The naturally occurring ribonucleosides that make up the RNA may be the same or different.

 「オリゴヌクレオチド複合体」は、互いに共有結合で連結されていない複数の前記「オリゴヌクレオチド」(分子)が、分子間でハイブリダイズすることにより、該複数のオリゴヌクレオチドが一体となった複合体を意味する。 "Oligonucleotide complex" refers to a complex in which multiple "oligonucleotides" (molecules) that are not covalently linked to each other are combined together by intermolecular hybridization.

 「標的RNA」は、mRNA、mRNA前駆体又はncRNAを意味し、標的遺伝子をコードするゲノムDNAから転写されたmRNA、塩基の修飾を受けていないmRNA、スプライシングを受けていないmRNA前駆体及びncRNA等を含む。アンチセンス効果によって機能が制御される「標的RNA」としては、特に制限はなく、各種疾患において発現が亢進する遺伝子に関連するRNAが挙げられる。「標的RNA」は、DNA依存性RNAポリメラーゼによって合成されるいかなるRNAでもよく、好ましくはmRNA又はmRNA前駆体である。より好ましくは、哺乳動物のmRNA又はmRNA前駆体であり、更に好ましくは、ヒトのmRNA又はmRNA前駆体であり、特に好ましくは、ヒトのmRNAである。 "Target RNA" means mRNA, mRNA precursor, or ncRNA, and includes mRNA transcribed from genomic DNA encoding the target gene, mRNA with no base modifications, mRNA precursor and ncRNA that have not been spliced, etc. There are no particular limitations on the "target RNA" whose function is controlled by the antisense effect, and examples include RNA associated with genes whose expression is increased in various diseases. "Target RNA" may be any RNA synthesized by DNA-dependent RNA polymerase, and is preferably mRNA or mRNA precursor. More preferably, it is mammalian mRNA or mRNA precursor, even more preferably human mRNA or mRNA precursor, and particularly preferably human mRNA.

 「アンチセンス効果」とは、標的遺伝子に対応して選択される標的RNAと、例えば、その部分配列に相補的な配列を有するオリゴヌクレオチドとがハイブリダイズすることによって、標的RNAの機能が制御されることを意味する。例えば、標的RNAがmRNAの場合、ハイブリダイゼーションにより前記標的RNAの翻訳が阻害されること、エキソンスキッピング等のスプライシング機能変換効果、ハイブリダイズした部分が認識されることにより前記標的RNAが分解されること等を意味する。 The "antisense effect" means that the function of a target RNA is controlled by hybridization of a target RNA selected corresponding to a target gene with, for example, an oligonucleotide having a sequence complementary to a partial sequence of the target RNA. For example, when the target RNA is an mRNA, this means inhibition of translation of the target RNA by hybridization, a splicing function conversion effect such as exon skipping, or degradation of the target RNA by recognition of the hybridized portion.

 「アンチセンスオリゴヌクレオチド」(ASO)は、前記アンチセンス効果が生じるオリゴヌクレオチドである。例えば、DNA、オリゴデオキシリボヌクレオチド、ギャップマー型アンチセンスオリゴヌクレオチド(あるいは、単に「ギャップマー」とも称される)、及びミックスマー型アンチセンスオリゴヌクレオチド(あるいは、単に「ミックスマー」とも称される)等が挙げられるが、これらに限定されず、RNA、オリゴリボヌクレオチド又はアンチセンス効果が通常生じるように設計されたオリゴヌクレオチド等でもよい。 An "antisense oligonucleotide" (ASO) is an oligonucleotide that produces the antisense effect. Examples include, but are not limited to, DNA, oligodeoxyribonucleotides, gapmer-type antisense oligonucleotides (or simply "gapmers"), and mixmer-type antisense oligonucleotides (or simply "mixmers"). The ASO may also be RNA, oligoribonucleotides, or oligonucleotides designed to normally produce an antisense effect.

 「ハイブリダイズ」とは、相補的な配列を含むオリゴヌクレオチド又はその一部同士で二重鎖を形成させる行為、及び相補的な配列を含むオリゴヌクレオチド又はその一部同士が二重鎖を形成する現象を意味する。 "Hybridize" refers to the act of forming a double strand between oligonucleotides or portions thereof that contain complementary sequences, and the phenomenon in which oligonucleotides or portions thereof that contain complementary sequences form a double strand.

 「相補的」とは、2つの核酸塩基が、水素結合を介して、ワトソン-クリック型塩基対(天然型塩基対)又は非ワトソン-クリック型塩基対(フーグスティーン型塩基対等)を形成できることを意味する。2つのオリゴヌクレオチド又はその一部は、それらの配列が相補的である場合に「ハイブリダイズ」し得る。2つのオリゴヌクレオチド又はその一部がハイブリダイズするために、それらが完全に相補的である必要はないが、2つのオリゴヌクレオチド又はその一部がハイブリダイズするための相補性は、好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上(例えば、95%、96%、97%、98%、又は99%以上)である。配列の相補性は、オリゴヌクレオチドの部分配列を自動的に同定するコンピュータープログラムを利用することにより決定される。例えば、OligoAnalyzerは、そのようなソフトウエアの1つであり、Integrated DNA Technologies社が提供している。このプログラムは、ウェブサイトでも利用することができる。2つのオリゴヌクレオチドが上記好ましい相補性を有するとき、当業者は、2つのオリゴヌクレオチドがハイブリダイズすると判断することができる。 "Complementary" means that two nucleobases can form Watson-Crick base pairs (natural base pairs) or non-Watson-Crick base pairs (Hoogsteen base pairs, etc.) through hydrogen bonds. Two oligonucleotides or portions thereof can "hybridize" if their sequences are complementary. Although two oligonucleotides or portions thereof do not need to be completely complementary to hybridize, the complementarity for two oligonucleotides or portions thereof to hybridize is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more (e.g., 95%, 96%, 97%, 98%, or 99% or more). Sequence complementarity is determined by using a computer program that automatically identifies partial sequences of oligonucleotides. For example, OligoAnalyzer is one such software and is provided by Integrated DNA Technologies. This program is also available on the website. When two oligonucleotides have the above-described preferred complementarity, a person skilled in the art can determine that the two oligonucleotides hybridize.

 「ギャップマー」は、後述する「ギャップセグメント」、「5’ウィングセグメント」及び「3’ウィングセグメント」を含むオリゴヌクレオチドを意味する。 "Gapmer" refers to an oligonucleotide that includes a "gap segment," a "5' wing segment," and a "3' wing segment," as described below.

 「ギャップセグメント」は、「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」を含む領域であり、4個以上の連続するヌクレオシドを含み、RNaseHによって認識される限り特に限定されないが、前記連続するヌクレオシドは、好ましくはデオキシリボヌクレオシド及び糖修飾ヌクレオシドから独立して選ばれ、少なくとも2つのデオキシリボヌクレオシドを含む。ギャップセグメントの5’末端及び3’末端のヌクレオシドは、デオキシリボヌクレオシド又は5’修飾ヌクレオシドであり、より好ましくはデオキシリボヌクレオシドである。ある実施態様においては、好ましくはギャップセグメントの5’末端は、5’修飾ヌクレオシドであり、ギャップセグメントの3’末端は、デオキシリボヌクレオシドである。 The term "gap segment" refers to a region that includes "at least four consecutive nucleosides that are recognized by RNase H" and is not particularly limited as long as it includes four or more consecutive nucleosides and is recognized by RNase H, but the consecutive nucleosides are preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides and include at least two deoxyribonucleosides. The nucleosides at the 5' and 3' ends of the gap segment are deoxyribonucleosides or 5'-modified nucleosides, more preferably deoxyribonucleosides. In one embodiment, preferably the 5' end of the gap segment is a 5'-modified nucleoside and the 3' end of the gap segment is a deoxyribonucleoside.

 「5’ウィングセグメント」は、ギャップセグメントの5’側に連結しており、前記「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」を含まずに「少なくとも1個のヌクレオシド」を含む領域であり、ここで、5’ウィングセグメントの3’末端のヌクレオシドの糖部分は、ギャップセグメントの5’末端のヌクレオシドの糖部分と異なっている。糖部分の違いにより、5’ウィングセグメントとギャップセグメントの境界が確認される。本発明において、一態様として好ましくは、前記糖部分の違いは、対応する糖の2位の修飾の有無により判断される。なお、ここで「2修飾糖」は前記定義のとおり、リボースの2位の酸素原子又は炭素原子が修飾された非架橋の糖であり、「2-4架橋糖」は、上述の定義においてリボースにおける2位及び4位の2箇所の置換によって架橋ユニットが置換された糖であるため、いずれも2位は修飾されている。(例えば、ギャップセグメントの5’末端のヌクレオシドは、デオキシリボヌクレオシドであり、5’ウィングセグメントの3’末端のヌクレオシドは、糖修飾ヌクレオシドである。この糖修飾ヌクレオシドは、2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。また、一態様として例えば、ギャップセグメントの5’末端のヌクレオシドは、5’修飾ヌクレオシドであり、5’ウィングセグメントの3’末端のヌクレオシドは、2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。)5’ウィングセグメントの3’末端のヌクレオシドは、一般的に、糖修飾ヌクレオシドであり、好ましくは2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。5’ウィングセグメントは、上記定義を満たす限り特に限定されないが、前記少なくとも1個のヌクレオシドは、好ましくはデオキシリボヌクレオシド及び糖修飾ヌクレオシドから独立して選ばれ、少なくとも1個の糖修飾ヌクレオシドを含む。5’ウィングセグメントは、好ましくは糖修飾ヌクレオシドから独立して選ばれ、さらに好ましくは2’-4’-架橋ヌクレオシド及び2’修飾ヌクレオシドから独立して選ばれる。 The "5' wing segment" is a region that is linked to the 5' side of the gap segment and contains "at least one nucleoside" without containing the "at least four consecutive nucleosides recognized by RNase H", and the sugar moiety of the 3'-terminal nucleoside of the 5' wing segment is different from the sugar moiety of the 5'-terminal nucleoside of the gap segment. The difference in sugar moiety identifies the boundary between the 5' wing segment and the gap segment. In one embodiment of the present invention, the difference in sugar moiety is determined by the presence or absence of modification at the 2-position of the corresponding sugar. Note that here, as defined above, a "2-modified sugar" is a non-bridged sugar in which the oxygen or carbon atom at the 2-position of ribose is modified, and a "2-4 bridged sugar" is a sugar in which the bridge unit is replaced by substitutions at two positions, the 2-position and the 4-position of ribose, as defined above, and therefore the 2-position is modified in both cases. (For example, the nucleoside at the 5' end of the gap segment is a deoxyribonucleoside and the nucleoside at the 3' end of the 5' wing segment is a sugar-modified nucleoside. This sugar-modified nucleoside is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside. Also, in one embodiment, for example, the nucleoside at the 5' end of the gap segment is a 5'-modified nucleoside and the nucleoside at the 3' end of the 5' wing segment is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.) The nucleoside at the 3' end of the 5' wing segment is generally a sugar-modified nucleoside, preferably a 2'-4'-bridged nucleoside or a 2'-modified nucleoside. The 5' wing segment is not particularly limited as long as it satisfies the above definition, but the at least one nucleoside is preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides, and includes at least one sugar-modified nucleoside. The 5' wing segment is preferably independently selected from sugar-modified nucleosides, and more preferably independently selected from 2'-4'-bridged nucleosides and 2'-modified nucleosides.

 「3’ウィングセグメント」は、ギャップセグメントの3’側に連結しており、前記「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」を含まずに「少なくとも1個のヌクレオシド」を含む領域であり、ここで、3’ウィングセグメントの5’末端のヌクレオシドの糖部分は、ギャップセグメントの3’末端のヌクレオシドの糖部分と異なっている。糖部分の違いにより、3’ウィングセグメントとギャップセグメントの境界が確認される。本発明において、一態様として好ましくは、前記糖部分の違いは、対応する糖の2位の修飾の有無により判断される。(例えば、ギャップセグメントの3’末端のヌクレオシドは、デオキシリボヌクレオシドであり、3’ウィングセグメントの5’末端のヌクレオシドは、糖修飾ヌクレオシドである。この糖修飾ヌクレオシドは、2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。また、一態様として例えば、ギャップセグメントの3’末端のヌクレオシドは、5’修飾ヌクレオシドであり、3’ウィングセグメントの5’末端のヌクレオシドは、2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。)3’ウィングセグメントの5’末端のヌクレオシドは、一般的に、糖修飾ヌクレオシドであり、好ましくは2’-4’-架橋ヌクレオシド又は2’修飾ヌクレオシドである。3’ウィングセグメントは、上記定義を満たす限り特に限定されないが、前記少なくとも1個のヌクレオシドは、好ましくはデオキシリボヌクレオシド及び糖修飾ヌクレオシドから独立して選ばれ、少なくとも1個の糖修飾ヌクレオシドを含む。3’ウィングセグメントは、好ましくは糖修飾ヌクレオシドから独立して選ばれ、さらに好ましくは2’-4’-架橋ヌクレオシド及び2’修飾ヌクレオシドから独立して選ばれる。 The "3' wing segment" is a region that is linked to the 3' side of the gap segment and contains "at least one nucleoside" without containing the "at least four consecutive nucleosides recognized by RNase H", in which the sugar moiety of the 5'-terminal nucleoside of the 3' wing segment is different from the sugar moiety of the 3'-terminal nucleoside of the gap segment. The difference in sugar moieties identifies the boundary between the 3' wing segment and the gap segment. In one embodiment of the present invention, the difference in sugar moieties is determined by the presence or absence of modification at the 2-position of the corresponding sugar. (For example, the nucleoside at the 3' end of the gap segment is a deoxyribonucleoside and the nucleoside at the 5' end of the 3' wing segment is a sugar-modified nucleoside. This sugar-modified nucleoside is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside. Also, in one embodiment, for example, the nucleoside at the 3' end of the gap segment is a 5'-modified nucleoside and the nucleoside at the 5' end of the 3' wing segment is a 2'-4'-bridged nucleoside or a 2'-modified nucleoside.) The nucleoside at the 5' end of the 3' wing segment is generally a sugar-modified nucleoside, preferably a 2'-4'-bridged nucleoside or a 2'-modified nucleoside. The 3' wing segment is not particularly limited as long as it satisfies the above definition, but the at least one nucleoside is preferably independently selected from deoxyribonucleosides and sugar-modified nucleosides, and includes at least one sugar-modified nucleoside. The 3' wing segment is preferably independently selected from sugar-modified nucleosides, and more preferably independently selected from 2'-4'-bridged nucleosides and 2'-modified nucleosides.

 一つの典型としては、5’末端から2’修飾ヌクレオシド又は2’-4’-架橋ヌクレオシドが連続する部分が5’ウィングセグメントであり、5’ウィングセグメントの3’末端のヌクレオシドが、2’修飾ヌクレオシド又は2’-4’-架橋ヌクレオシドを除く他のヌクレオシド(デオキシリボヌクレオシド、リボヌクレオシドなど)に繋がる境目が、5’ウィングセグメントとギャップセグメントの境界である。
 一つの典型としては、3’末端から2’修飾ヌクレオシド又は2’-4’-架橋ヌクレオシドが連続する部分が3’ウィングセグメントであり、3’ウィングセグメントの5’末端のヌクレオシドが、2’修飾ヌクレオシド又は2’-4’-架橋ヌクレオシドを除く他のヌクレオシド(デオキシリボヌクレオシド、リボヌクレオシドなど)に繋がる境目が、3’ウィングセグメントとギャップセグメントの境界である。
In one typical example, the portion from the 5' end where 2'-modified nucleosides or 2'-4'-bridged nucleosides continue is the 5' wing segment, and the boundary where the nucleoside at the 3' end of the 5' wing segment is linked to another nucleoside (deoxyribonucleoside, ribonucleoside, etc.) other than the 2'-modified nucleoside or 2'-4'-bridged nucleoside is the boundary between the 5' wing segment and the gap segment.
In one typical example, the portion from the 3' end where 2'-modified nucleosides or 2'-4'-bridged nucleosides continue is the 3' wing segment, and the boundary where the 5'-end nucleoside of the 3' wing segment is linked to another nucleoside (deoxyribonucleoside, ribonucleoside, etc.) other than the 2'-modified nucleoside or 2'-4'-bridged nucleoside is the boundary between the 3' wing segment and the gap segment.

 「RNaseH」は、一般的には、生体内のDNAとRNAとがハイブリダイズした二重鎖を認識して、そのRNAを切断し一本鎖DNAを生じさせるリボヌクレアーゼとして知られている。RNaseHは、DNAとRNAがハイブリダイズした二重鎖に限らず、DNA及びRNAの少なくとも一方の、核酸塩基部分、ホスホジエステル結合部分及び糖部分の少なくとも1つが修飾された二重鎖をも認識し得る。例えば、ホスホロチオエート結合で修飾されたDNAと、RNAとがハイブリダイズした二重鎖をも認識し得る。また、オリゴデオキシリボヌクレオチドとオリゴリボヌクレオチドがハイブリダイズした二重鎖をも認識し得る。
 よって、DNAは、RNAとハイブリダイズした際に、RNaseHによって認識され得る。また、RNAは、DNAとハイブリダイズした際に、RNaseHによって切断され得る。DNA及びRNAの少なくとも一方において、核酸塩基部分、ホスホジエステル結合部分及び糖部分の少なくとも1つが修飾された場合も、同様である。例えば、代表的なものとして、DNAのホスホジエステル結合部分が、ホスホロチオエートに修飾されたオリゴヌクレオチド等が挙げられる。
 RNaseHによって認識され得るDNA及び/又はRNAの修飾例は、例えば、Nucleic Acids Research, 2014, 42, pp 5378-5389、Bioorganic & Medicinal Chemistry Letters, 2008, 18, pp 2296-2300、Molecular BioSystems, 2009, 5, pp 838-843、Nucleic Acid Therapeutics, 2015, 25, pp 266-274、The Journal of Biological Chemistry, 2004, 279, pp 36317-36326等に記載されている。
 本発明において、RNaseHは、好ましくは哺乳動物のRNaseHであり、より好ましくはヒトのRNaseHであり、特に好ましくはヒトRNaseH1である。
"RNase H" is generally known as a ribonuclease that recognizes a double strand in which DNA and RNA are hybridized in a living body, cleaves the RNA, and produces single-stranded DNA. RNase H can recognize not only a double strand in which DNA and RNA are hybridized, but also a double strand in which at least one of the nucleic acid base portion, the phosphodiester bond portion, and the sugar portion of at least one of DNA and RNA is modified. For example, it can recognize a double strand in which DNA modified with phosphorothioate bonds is hybridized with RNA. It can also recognize a double strand in which an oligodeoxyribonucleotide is hybridized with an oligoribonucleotide.
Therefore, when DNA hybridizes with RNA, it can be recognized by RNase H. Also, when RNA hybridizes with DNA, it can be cleaved by RNase H. The same applies when at least one of the nucleic acid base portion, the phosphodiester bond portion, and the sugar portion is modified in at least one of DNA and RNA. For example, a representative example is an oligonucleotide in which the phosphodiester bond portion of DNA is modified to phosphorothioate.
Examples of modifications of DNA and/or RNA that can be recognized by RNase H are described, for example, in Nucleic Acids Research, 2014, 42, pp 5378-5389; Bioorganic & Medicinal Chemistry Letters, 2008, 18, pp 2296-2300; Molecular BioSystems, 2009, 5, pp 838-843; Nucleic Acid Therapeutics, 2015, 25, pp 266-274; The Journal of Biological Chemistry, 2004, 279, pp 36317-36326, and the like.
In the present invention, RNase H is preferably mammalian RNase H, more preferably human RNase H, and particularly preferably human RNase H1.

 「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」は、4個以上の連続するヌクレオシドを含み、RNaseHによって認識される限り特に限定されないが、例えば、「少なくとも4個の連続するデオキシリボヌクレオシド」等が挙げられる。「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」を構成するヌクレオシドの数は、例えば、5~30であり、好ましくは5~15であり、より好ましくは8~12であり、特に好ましくは10である。これらのヌクレオシドは、独立して好ましくはデオキシリボヌクレオシド又は5’修飾ヌクレオシドであり、より好ましくはデオキシリボヌクレオシドである。
 ある少なくとも4個の連続するヌクレオシドが、「RNaseHによって認識される少なくとも4個の連続するヌクレオシド」であるかどうか、当業者は、その連続するヌクレオシドの糖部分の構造により、判断できる。
"At least four consecutive nucleosides recognized by RNase H" includes four or more consecutive nucleosides, and is not particularly limited as long as it is recognized by RNase H, and examples thereof include "at least four consecutive deoxyribonucleosides". The number of nucleosides constituting "at least four consecutive nucleosides recognized by RNase H" is, for example, 5 to 30, preferably 5 to 15, more preferably 8 to 12, and particularly preferably 10. These nucleosides are independently preferably deoxyribonucleosides or 5'-modified nucleosides, and more preferably deoxyribonucleosides.
Whether or not a certain sequence of at least four consecutive nucleosides is "at least four consecutive nucleosides recognized by RNase H" can be determined by a person skilled in the art based on the structure of the sugar moieties of the consecutive nucleosides.

 5’ウィングセグメント及び3’ウィングセグメントを構成するヌクレオシドの数は、独立して例えば、1~10であり、好ましくは2~6であり、より好ましくは3~5であり、特に好ましくは3である。 The number of nucleosides constituting the 5' wing segment and the 3' wing segment is, independently, for example, 1 to 10, preferably 2 to 6, more preferably 3 to 5, and particularly preferably 3.

 ギャップマーを構成するヌクレオシドの数は、好ましくは7~50であり、より好ましくは7~27であり、さらに好ましくは14~22であり、特に好ましくは16である。 The number of nucleosides constituting a gapmer is preferably 7 to 50, more preferably 7 to 27, even more preferably 14 to 22, and particularly preferably 16.

 ミックスマーは、複数の糖修飾ヌクレオシドを含み、かつ前記ギャップセグメントを有さずにアンチセンス効果を生じるオリゴヌクレオチドであり、例えば、1~20個の糖修飾ヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドと1~3個のデオキシリボヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドとが交互に連結されたオリゴヌクレオチド、ヌクレオシドとして糖修飾ヌクレオシドのみから構成されるオリゴヌクレオチドなどが挙げられる。一態様として、ミックスマーは、好ましくは、2’-修飾ヌクレオシド及び2’,4’-BNAから独立して選択される1~20個の糖修飾ヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドと1~3個のデオキシリボヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドとが交互に連結されたオリゴヌクレオチドである。 A mixmer is an oligonucleotide that contains multiple sugar-modified nucleosides and produces an antisense effect without having the gap segment, and examples of such oligonucleotides include an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides and nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides are alternately linked, and an oligonucleotide consisting only of sugar-modified nucleosides as nucleosides. In one embodiment, the mixmer is an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides independently selected from 2'-modified nucleosides and 2',4'-BNA are alternately linked with nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides.

 「siRNA」(small interfering RNA)は、低分子の二本鎖オリゴリボヌクレオチドである。siRNAはRNA干渉(RNAi)と呼ばれる現象に関与し、標的とするmRNAの破壊によって遺伝子の発現を抑制する。siRNAは、アンチセンス鎖及びセンス鎖を含む。
 ある実施形態においてsiRNAのアンチセンス鎖及びセンス鎖は、RNAを含む。siRNAは、典型的には15~30塩基対からなり、好ましくは21~23塩基対からなる。2つの核酸鎖の3’末端は、しばしば1~5つ(好ましくは2つ)の突出したデオキシチミジン(一般的にtt、又はdTdT等と表記される)を有する(一般にオーバーハングという)。センス鎖の3’末端のみが2つ突出したデオキシチミジンを有する場合もあり、アンチセンス鎖の3’末端のみが2つ突出したデオキシチミジンを有する場合もある。
"siRNA" (small interfering RNA) is a small double-stranded oligoribonucleotide. siRNA is involved in a phenomenon called RNA interference (RNAi) and suppresses gene expression by destroying the target mRNA. siRNA includes an antisense strand and a sense strand.
In one embodiment, the antisense strand and the sense strand of the siRNA comprise RNA. The siRNA typically consists of 15 to 30 base pairs, and preferably 21 to 23 base pairs. The 3' ends of the two nucleic acid strands often have 1 to 5 (preferably 2) overhanging deoxythymidines (generally written as tt, dTdT, etc.) (generally called an overhang). Only the 3' end of the sense strand may have two overhanging deoxythymidines, or only the 3' end of the antisense strand may have two overhanging deoxythymidines.

 ある実施形態においてアンチセンス鎖とセンス鎖の両方ともオーバーハングを有しない。例えば、非対称にアンチセンス鎖の5’末端に平滑末端を有し、アンチセンス鎖の3’末端オーバーハングを有するsiRNAは、ガイド鎖をRISCに負荷するプロセスに有利に作用する。
 siRNAは、1個以上の糖修飾ヌクレオシドを含んでもよい。例えば、siRNAを構成するヌクレオシドの少なくとも50%、60%、70%、80%、90%、95%、100%が糖修飾ヌクレオシドである。siRNAに用いられる糖修飾ヌクレオシドは、例えば、2’修飾ヌクレオシド及び2′-4′架橋ヌクレオシドから選択される少なくとも1つであり、好ましくは2’修飾ヌクレオシドから選択される少なくとも1つであり、特に好ましくは、2’-O-Meヌクレオシド及び2’-Fヌクレオシドである。
 ある実施態様において、siRNAは、2’-O-Meヌクレオシド及び2’-Fヌクレオシドから構成される。その割合としては、例えば、2’-Fヌクレオシドが10~30%であり、2’-O-Meヌクレオシドが90~70%である。好ましくは、センス鎖の2’-Fヌクレオシドが10~20%であり、2’-O-Meヌクレオシドが90~80%であり、アンチセンス鎖の2’-Fヌクレオシドが20~30%であり、2’-O-Meヌクレオシドが80~70%である。
In some embodiments, neither the antisense nor the sense strand has an overhang. For example, an siRNA asymmetrically having a blunt end at the 5' end of the antisense strand and an overhang at the 3' end of the antisense strand favors the process of loading the guide strand into RISC.
The siRNA may contain one or more sugar-modified nucleosides. For example, at least 50%, 60%, 70%, 80%, 90%, 95%, or 100% of the nucleosides constituting the siRNA are sugar-modified nucleosides. The sugar-modified nucleoside used in the siRNA is, for example, at least one selected from 2'-modified nucleosides and 2'-4'-bridged nucleosides, preferably at least one selected from 2'-modified nucleosides, and particularly preferably 2'-O-Me nucleosides and 2'-F nucleosides.
In one embodiment, the siRNA is composed of 2'-O-Me nucleosides and 2'-F nucleosides. The ratio is, for example, 10-30% 2'-F nucleosides and 90-70% 2'-O-Me nucleosides. Preferably, the sense strand contains 10-20% 2'-F nucleosides and 90-80% 2'-O-Me nucleosides, and the antisense strand contains 20-30% 2'-F nucleosides and 80-70% 2'-O-Me nucleosides.

 好ましくは、アンチセンス鎖は、5’末端から数えて2、6、8、9、14及び16位から選択される少なくとも1つに2’-フルオロヌクレオシドを含む。特に好ましくは、アンチセンス鎖は、アンチセンス鎖ハイブリダイズ部分の5’末端から数えて2、6、8、9、14及び16位が2’-フルオロヌクレオシドである。他のヌクレオシドは2’-O-Meヌクレオシドである。 Preferably, the antisense strand contains a 2'-fluoronucleoside at at least one position selected from positions 2, 6, 8, 9, 14, and 16, counting from the 5' end. Particularly preferably, the antisense strand has 2'-fluoronucleosides at positions 2, 6, 8, 9, 14, and 16, counting from the 5' end of the antisense strand hybridizing portion. The other nucleosides are 2'-O-Me nucleosides.

 好ましくは、センス鎖は、5’末端から数えて7、9、10及び11位から選択される少なくとも1つに2’-フルオロヌクレオシドを含む。特に好ましくは、センス鎖は、5’末端から数えて7、9、10及び11位が2’-フルオロヌクレオドである。他のヌクレオシドは2’-O-Meヌクレオシドである。 Preferably, the sense strand contains a 2'-fluoro nucleoside at at least one position selected from positions 7, 9, 10, and 11, counting from the 5' end. Particularly preferably, the sense strand contains 2'-fluoro nucleosides at positions 7, 9, 10, and 11, counting from the 5' end. The other nucleosides are 2'-O-Me nucleosides.

 siRNAのヌクレオシド間結合は、ホスホジエステル結合でも修飾ヌクレオシド間結合でもよいが、各ヌクレオシド間結合は、独立して好ましくはホスホジエステル結合又はホスホロチオエート結合である。より好ましくは、アンチセンス鎖およびセンス鎖のそれぞれの5’末端および3’末端から1~5個のヌクレオシド間結合が、ホスホロチオエート結合であり、他のヌクレオシド間結合は、ホスホジエステル結合である。さらに好ましくは、アンチセンス鎖およびセンス鎖のそれぞれの5’末端および3’末端から1~3個のヌクレオシド間結合が、ホスホロチオエート結合であり、他のヌクレオシド間結合は、ホスホジエステル結合である。さらにより好ましくは、アンチセンス鎖およびセンス鎖のそれぞれの5’末端および3’末端から2~3個のヌクレオシド間結合が、ホスホロチオエート結合であり、他のヌクレオシド間結合は、ホスホジエステル結合である。特に好ましくは、アンチセンス鎖およびセンス鎖のそれぞれの5’末端および3’末端から2個のヌクレオシド間結合が、ホスホロチオエート結合であり、他のヌクレオシド間結合は、ホスホジエステル結合である。 The internucleoside bonds of the siRNA may be phosphodiester bonds or modified internucleoside bonds, but each internucleoside bond is preferably independently a phosphodiester bond or a phosphorothioate bond. More preferably, 1 to 5 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds. Even more preferably, 1 to 3 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds. Even more preferably, 2 to 3 internucleoside bonds from the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds. Particularly preferably, two internucleoside bonds at the 5' and 3' ends of each of the antisense and sense strands are phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds.

 一部の実施形態では、siRNAが含む、センス鎖又は/及びアンチセンス鎖は5’リン酸化され得るか、又は5’末端にリン酸修飾体を含み得る。例示的なリン酸基又は修飾リン酸基は、RISC媒介遺伝子サイレンシングに適合するものを含む。例えば、好適なリン酸基又はリン酸修飾としては、5’-一リン酸((HO)(O)P-O-5’)、5’-二リン酸((HO)(O)P-O-P(HO)(O)-O-5’)、5’-三リン酸((HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5’)、5’-モノチオリン酸(ホスホロチオエート;(HO)(S)P-O-5’)、5’-モノジチオリン酸(ジチオリン酸、(HO)(HS)(S)P-O-5’)、5’-ホスホロチオラート((HO)(O)P-S-5’)、酸素/硫黄が置換された一リン酸、二リン酸及び三リン酸の任意のさらなる組み合わせ(例えば、5’-α-チオ三リン酸、5’-γ-チオ三リン酸など)、5’-ホスホロアミド酸((HO)(O)P-NH-5’、(HO)(NH)(O)P-O-5’)、メチレンリン酸((HO)(O)P-CH-5’)、5’-アルキルホスホネート(R′P(OH)(O)-O-5’- (R′=アルキル、例えばメチル、エチル、イソプロピル、プロピルなど))、5’-アルケニルホスホネート(アルケニルとしては例えばビニル((OH)(O)P-5’-CH=CH-)、置換ビニル)、5’-アルコキシアルキルホスホネート(R″P(OH)(O)-O-5’- (R″=アルコキシアルキル、例えばメトキシメチル、エトキシメチルなど)、5’-シクロアルキルホスホネート((OH)(O)P-5’-(シクロアルカン-ジイル)-、例えば、(OH)(O)P-5’-(シクロプロパン-1,2-ジイル)-)を含む。修飾は、siRNAのアンチセンス鎖内に配置され得る。例えば、アンチセンス鎖は、5’末端に5’-ビニルホスホネートヌクレオシド(好ましくは5’-E-ビニルホスホネート化ヌクレオシド)を含み得る。また、例えば、アンチセンス鎖は、5’末端に5’-シクロプロパンホスホネート化ヌクレオシド(好ましくは5’-(trans)-シクロプロパンホスホネート化ヌクレオシド)を含み得る。 In some embodiments, the sense strand or/and the antisense strand comprising the siRNA may be 5' phosphorylated or may include a phosphate modification at the 5' end. Exemplary phosphate groups or modified phosphate groups include those compatible with RISC-mediated gene silencing. For example, suitable phosphate groups or phosphate modifications include 5'-monophosphate ((HO) 2 (O)P-O-5'), 5'-diphosphate ((HO) 2 (O)P-O-P(HO)(O)-O-5'), 5'-triphosphate ((HO) 2 (O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'), 5'-monothiophosphate (phosphorothioate; (HO) 2 (S)P-O-5'), 5'-monodithiophosphate (dithiophosphate, (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO) 2 (S)P-O-5'), 5'-monodithiophosphate (phosphorothioate; (HO) 2 (S)P-O-5'), 5'-monodithiophosphate (dithiophosphate, (HO)(HS)(S)P-O-5'), 5'-phosphorothiolate ((HO) 2 ( ... (O)P-S-5'), any further combination of oxygen/sulfur substituted monophosphates, diphosphates and triphosphates (e.g. 5'-α-thiotriphosphate, 5'-γ-thiotriphosphate, etc.), 5'-phosphoramidic acid ((HO) 2 (O)P-NH-5', (HO)(NH 2 )(O)P-O-5'), methylene phosphate ((HO) 2 (O)P-CH 2 -5'), 5'-alkyl phosphonates (R'P(OH)(O)-O-5'- (R'=alkyl, e.g. methyl, ethyl, isopropyl, propyl, etc.)), 5'-alkenyl phosphonates (alkenyl is e.g. vinyl ((OH) 2 (O)P-5'-CH=CH-), substituted vinyl), 5'-alkoxyalkyl phosphonates (R"P(OH)(O)-O-5'- (R" = alkoxyalkyl, e.g., methoxymethyl, ethoxymethyl, etc.), 5'-cycloalkylphosphonate ((OH) 2 (O)P-5'-(cycloalkane-diyl)-, e.g., (OH) 2 (O)P-5'-(cyclopropane-1,2-diyl)-). Modifications may be located within the antisense strand of the siRNA. For example, the antisense strand may include a 5'-vinyl phosphonate nucleoside at the 5' terminus, preferably a 5'-E-vinyl phosphonate nucleoside. Also, for example, the antisense strand may include a 5'-cyclopropane phosphonate nucleoside at the 5' terminus, preferably a 5'-(trans)-cyclopropane phosphonate nucleoside.

 一部の実施形態では、アンチセンス鎖の5’末端のヌクレオチドは、5’-E-ビニルホスホネート又は5’シクロプロパンホスホネートを含む。例えば、以下の式(X):

Figure JPOXMLDOC01-appb-C000007

(式(X)におけるBaseは、式(I)におけるX及びBaseと同義である)で示される構造(5’-ビニルホスホネート(VP)化2’-O-Meヌクレオシド)が5’-E-ビニルホスホネートとして好ましい。 In some embodiments, the 5'-terminal nucleotide of the antisense strand comprises a 5'-E-vinyl phosphonate or a 5' cyclopropane phosphonate, for example, the following formula (X):
Figure JPOXMLDOC01-appb-C000007

A structure represented by the following formula (5'-vinylphosphonate (VP)-modified 2'-O-Me nucleoside) (Base in formula (X) has the same meaning as X and Base in formula (I)) is preferred as the 5'-E-vinylphosphonate.

 一部の実施形態では、以下の式(XI):

Figure JPOXMLDOC01-appb-C000008

(式(XI)におけるBaseは、式(I)におけるX及びBaseと同義である。シクロプロパンへの置換基はtrans体である)で示される構造(5’-シクロプロパンホスホネート(CPP)化2’-O-Meヌクレオシド)が好ましい。 In some embodiments, the compound of formula (XI):
Figure JPOXMLDOC01-appb-C000008

(Base in formula (XI) has the same meaning as X and Base in formula (I). The substituent on the cyclopropane is in a trans form) (5'-cyclopropanephosphonate (CPP)-modified 2'-O-Me nucleoside) is preferred.

 siRNAにおける化学修飾については、当該分野においてよく知られており、例えば、Sig Transduct Target Ther 2020, 5, pp101、RNA Biol. 2022, 19(1) pp452-467、Trends Mol Med. 2024, 30(1) pp13-24、Nat Rev Drug Discov 2024, 23, pp341-364等を参照できる。 Chemical modifications in siRNA are well known in the field, and reference can be made, for example, to Sig Transduct Target Ther 2020, 5, pp101, RNA Biol. 2022, 19(1) pp452-467, Trends Mol Med. 2024, 30(1) pp13-24, Nat Rev Drug Discov 2024, 23, pp341-364, etc.

 「アプタマー」は、細胞外の特定の蛋白質に対して結合能を示し、その機能を阻害するオリゴヌクレオチドである。 An "aptamer" is an oligonucleotide that binds to specific extracellular proteins and inhibits their function.

 「リボザイム」は、触媒活性を有するRNA又はオリゴリボヌクレオチドである。 A "ribozyme" is an RNA or oligoribonucleotide with catalytic activity.

 「miRNA」(micro-RNA)は、ゲノム上にコードされているが蛋白質へは翻訳されないRNAであって(non-cording RNA)、かつ遺伝子発現を抑制する効果を有する。典型的には21~25塩基のRNAである。 "miRNA" (micro-RNA) is RNA that is coded in the genome but is not translated into protein (non-coding RNA), and has the effect of suppressing gene expression. It is typically RNA of 21 to 25 bases.

 「CpGオリゴ」は、デオキシシチジン(C)及びデオキシグアノシン(G)を含み、Toll-like Receptor9(TLR9)等の蛋白質と相互作用することにより自然免疫を活性化するオリゴヌクレオチドである。典型的には、15~30塩基のオリゴデオキシリボヌクレオチドである。 "CpG oligo" is an oligonucleotide that contains deoxycytidine (C) and deoxyguanosine (G) and activates natural immunity by interacting with proteins such as Toll-like Receptor 9 (TLR9). It is typically an oligodeoxyribonucleotide of 15 to 30 bases.

 「デコイ核酸」は、蛋白質の中でも転写因子と結合して転写段階を抑制する二本鎖オリゴデオキシリボヌクレオチドである。デコイ核酸は、該転写因子の遺伝子発現を抑制することができる。デコイ核酸は、典型的には15~30塩基対からなる。 "Decoy nucleic acid" is a double-stranded oligodeoxyribonucleotide that binds to a transcription factor, among other proteins, and inhibits the transcription stage. Decoy nucleic acid can inhibit gene expression of the transcription factor. Decoy nucleic acid typically consists of 15 to 30 base pairs.

<脂質結合オリゴヌクレオチド又はその複合体>
 本発明は、脂質結合オリゴヌクレオチド又はその複合体を提供する。本発明の脂質結合オリゴヌクレオチド又はその複合体は、下記一般式(I): 

Figure JPOXMLDOC01-appb-C000009

(式中、
Wは、オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体に由来する基であり、
Lは、置換された若しくは置換されていないC1-10アルキレン基又は置換された若しくは置換されていないポリC1-10アルキレングリコールに由来する2価の基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよい)
で表される。 <Lipid-bound oligonucleotide or complex thereof>
The present invention provides a lipid-linked oligonucleotide or a complex thereof. The lipid-linked oligonucleotide or a complex thereof of the present invention has the following general formula (I):
Figure JPOXMLDOC01-appb-C000009

(Wherein,
W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate;
L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol;
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.
It is expressed as:

 本発明において、「置換された若しくは置換されていないC1-10アルキレン基」は、(非置換の)C1-10アルキレン基又は1以上の任意の置換基で置換されたC1-10アルキレン基を意味する。 In the present invention, a "substituted or unsubstituted C 1-10 alkylene group" means an (unsubstituted) C 1-10 alkylene group or a C 1-10 alkylene group substituted with one or more arbitrary substituents.

 本発明において「置換された若しくは置換されていない」とは、当該基が、所与の置換基群、例えば、ハロゲン原子、ヒドロキシ基、カルボキシ基、C1-6アルコキシ基及びアリール基からなる群より選択される少なくとも1個の置換基で置換されているか、あるいは非置換であることを意味する。 In the present invention, the term "substituted or unsubstituted" means that the group is unsubstituted or substituted with at least one substituent selected from a given group of substituents, for example, a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.

 「置換されたC1-10アルキレン基」は、前記アルキレン基の1以上の任意の水素原子が、ハロゲン原子、ヒドロキシ基、カルボキシ基、C1-6アルコキシ基及びアリール基からなる群より選択される置換基で置換されているものを意味する。 The term "substituted C 1-10 alkylene group" means that any one or more hydrogen atoms of the alkylene group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.

 ポリC1-10アルキレングリコールに由来する2価の基は、例えば、式: -(О)-(Alk-O-)-Alk-(O)- (式中、l及びnは、独立して0又は1であり、mは2から20の整数であり、Alkは、C1-10アルキレン基であり、該アルキレン基はヒドロキシ基、保護されたヒドロキシ基、ハロゲン原子、ヒドロキシ基、カルボキシ基、C1-6アルコキシ基及びアリール基からなる群より選択されるにより置換されていてもよい)で表される基が挙げられる。前記保護されたヒドロキシ基としては、オリゴヌクレオチドと結合させる際に安定であればよいため、特に限定されず、例えばトリアリールメチル(例えば、トリフェニルメチル(トリチル)、モノメトキシトリチル、ジメトキシトリチル(DMTr)、トリメトキシトリチル等が挙げられる)等のエーテル系保護基;メトキシメチル、メチルチオメチル、メトキシエチル、ベンジルオキシメチル、2-テトラヒドロピラニル等のアセタール系保護基;アシル(例えば、ホルミル、アセチル、ピバロイル、ベンゾイル等が挙げられる)等のアシル系保護基;トリ(アルキル)シリル(例えば、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル、ジメチルイソプロピルシリル等が挙げられる)、(アルキル)ジアリールシリル(例えば、t-ブチルジフェニルシリル、ジフェニルメチルシリル等が挙げられる)、トリアリールシリル(例えば、トリフェニルシリル等が挙げられる)、トリベンジルシリル、[(トリイソプロピルシリル)オキシ]メチル(Tom基)等のシリル系保護基;1-(4-クロロフェニル)-4-エトキシピペリジン-4-イル(Cpep基)、9-フェニルキサンテン-9-イル(Pixyl基)、9-(p-メトキシフェニル)キサンテン-9-イル(MOX基)等を挙げることができる。「保護されたヒドロキシ基」の保護基は、好ましくは、ベンゾイル、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル、トリフェニルメチル、モノメトキシトリチル、ジメトキシトリチル、トリメトキシトリチル、9-フェニルキサンテン-9-イル又は9-(p-メトキシフェニル)キサンテン-9-イルである。 Examples of divalent groups derived from poly C 1-10 alkylene glycol include groups represented by the formula: -(O) l -(Alk-O-) m -Alk-(O) n - (wherein l and n are independently 0 or 1, m is an integer from 2 to 20, and Alk is a C 1-10 alkylene group which is optionally substituted with a group selected from the group consisting of a hydroxy group, a protected hydroxy group, a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group). The protected hydroxy group is not particularly limited as long as it is stable when bound to an oligonucleotide, and examples of the protected hydroxy group include ether-based protecting groups such as triarylmethyl (e.g., triphenylmethyl (trityl), monomethoxytrityl, dimethoxytrityl (DMTr), trimethoxytrityl, etc.); acetal-based protecting groups such as methoxymethyl, methylthiomethyl, methoxyethyl, benzyloxymethyl, 2-tetrahydropyranyl, etc.; acyl-based protecting groups such as acyl (e.g., formyl, acetyl, pivaloyl, benzoyl, etc.); tri(alkyl)silyl (e.g., trimethylsilyl, triethylsilyl, silyl-based protecting groups such as (alkyl)diarylsilyl (for example, t-butyldiphenylsilyl, diphenylmethylsilyl, etc.), triarylsilyl (for example, triphenylsilyl, etc.), tribenzylsilyl, and [(triisopropylsilyl)oxy]methyl (Tom group); 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl (Cpep group), 9-phenylxanthen-9-yl (Pixyl group), 9-(p-methoxyphenyl)xanthen-9-yl (MOX group), etc. The protecting group for a "protected hydroxy group" is preferably benzoyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, t-butyldimethylsilyl, triphenylmethyl, monomethoxytrityl, dimethoxytrityl, trimethoxytrityl, 9-phenylxanthen-9-yl or 9-(p-methoxyphenyl)xanthen-9-yl.

 これらの中で、一般式(I)におけるLとしては、置換されていないC1-10アルキレン基が好ましく、C2-8アルキレン基がより好ましく、C3-6アルキレン基がさらに好ましく、Cアルキレン基が特に好ましい。例えば、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基(各種異性体を含む)がより好ましく、トリメチレン基、テトラメチレン基、ヘキサメチレン基(各種異性体を含む)がさらに好ましく、ヘキサメチレン基(各種異性体を含む)が特に好ましい。さらに、1,6-ヘキサメチレン基(1,6-ヘキサンジイル基)が特に好ましい。 Among these, as L in general formula (I), an unsubstituted C 1-10 alkylene group is preferable, a C 2-8 alkylene group is more preferable, a C 3-6 alkylene group is even more preferable, and a C 6 alkylene group is particularly preferable. For example, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, or an octamethylene group (including various isomers) is more preferable, a trimethylene group, a tetramethylene group, or a hexamethylene group (including various isomers) is even more preferable, and a hexamethylene group (including various isomers) is particularly preferable. Furthermore, a 1,6-hexamethylene group (1,6-hexanediyl group) is particularly preferable.

 本発明において、「置換された若しくは置換されていないC5-32アルキル基」は、(非置換の)C5-32アルキル基又は1以上の任意の置換基で置換されたC5-32アルキル基を意味する。 In the present invention, "substituted or unsubstituted C 5-32 alkyl group" means an (unsubstituted) C 5-32 alkyl group or a C 5-32 alkyl group substituted with one or more optional substituents.

 「置換されたC5-32アルキル基」は、前記アルキル基の1以上の任意の水素原子が、ハロゲン原子、ヒドロキシ基、カルボキシ基、C1-6アルコキシ基及びアリール基からなる群より選択される置換基で置換されているものを意味する。 The term "substituted C 5-32 alkyl group" means that any one or more hydrogen atoms of the alkyl group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C 1-6 alkoxy group, and an aryl group.

 これらの中で、一般式(I)におけるR及びRとしては、置換されていないC5-32アルキル基が好ましく、C8-28アルキル基がより好ましく、C10-20アルキル基がさらに好ましく、C12-14アルキル基がさらにより好ましく、C14アルキル基が特に好ましい。また、C12アルキル基も特に好ましい。例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基(各種異性体を含む)がさらに好ましく、テトラデシル基(各種異性体を含む)が特に好ましい。一般式(I)におけるR及びRのアルキル基としては、直鎖のアルキル基が好ましい。 Among these, R 1 and R 2 in the general formula (I) are preferably unsubstituted C 5-32 alkyl groups, more preferably C 8-28 alkyl groups, even more preferably C 10-20 alkyl groups, even more preferably C 12-14 alkyl groups, and particularly preferably C 14 alkyl groups. Also, C 12 alkyl groups are particularly preferred. For example, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, and icosyl group (including various isomers) are more preferred, and tetradecyl group (including various isomers) is particularly preferred. As the alkyl groups of R 1 and R 2 in the general formula (I), linear alkyl groups are preferred.

 本発明において、「置換された若しくは置換されていないC5-32アルケニル基」は、(非置換の)C5-32アルケニル基又は1以上の任意の置換基で置換されたC5-32アルケニル基を意味する。 In the present invention, "substituted or unsubstituted C 5-32 alkenyl group" means an (unsubstituted) C 5-32 alkenyl group or a C 5-32 alkenyl group substituted by one or more optional substituents.

 「置換されたC5-32アルケニル基」は、前記アルケニル基の1以上の任意の水素原子が、ハロゲン原子、ヒドロキシ基、カルボキシ基、C1-6アルコキシ基及びアリール基からなる群より選択される置換基で置換されているものを意味する。 The term "substituted C5-32 alkenyl group" means that any one or more hydrogen atoms of the alkenyl group are substituted with a substituent selected from the group consisting of a halogen atom, a hydroxy group, a carboxy group, a C1-6 alkoxy group, and an aryl group.

 これらの中で、一般式(I)におけるR及びRとしては、置換されていないC5-32アルケニル基が好ましく、C8-28アルケニル基がより好ましく、C10-20アルケニル基がさらに好ましく、C14アルケニル基が特に好ましい。例えば、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基(各種異性体を含む)がさらに好ましく、テトラデセニル基(各種異性体を含む)が特に好ましい。 Among these, R 1 and R 2 in general formula (I) are preferably unsubstituted C 5-32 alkenyl groups, more preferably C 8-28 alkenyl groups, even more preferably C 10-20 alkenyl groups, and particularly preferably C 14 alkenyl groups. For example, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, and icosenyl groups (including various isomers) are more preferred, and tetradecenyl groups (including various isomers) are particularly preferred.

 本発明において、「互いに結合して環を形成していてもよい」は、R及びRの置換された若しくは置換されていないC5-32アルキル基又は置換された若しくは置換されていないC5-32アルケニル基が、その一部で互いに結合し、それらが結合している一般式(I)における「-O-CH-CH-O-」部分を含めて、10~64員の環を形成してもよいことを意味する。前記10~64員の環は、好ましくは10~40員の環であり、より好ましくは12~30員の環であり、さらに好ましくは20~30員の環であり、特に好ましくは22員の環である。前記の環はさらに好ましくは置換基されていない。 In the present invention, "may be bonded to each other to form a ring" means that the substituted or unsubstituted C 5-32 alkyl group or substituted or unsubstituted C 5-32 alkenyl group of R 1 and R 2 may be bonded to each other at a part thereof to form a 10-64 membered ring including the "-O-CH 2 -CH-O-" portion in general formula (I) to which they are bonded. The 10-64 membered ring is preferably a 10-40 membered ring, more preferably a 12-30 membered ring, even more preferably a 20-30 membered ring, and particularly preferably a 22 membered ring. The ring is even more preferably unsubstituted.

 本発明の「オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体に由来する基」は、前記オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体を構成する少なくとも1つのオリゴヌクレオチド化合物の3’末端又は5’末端から水素原子、ヒドロキシ基等を取り除いて形成される、オリゴヌクレオチド化合物の部分構造を意味する。したがって、オリゴヌクレオチド化合物の3’末端又は5’末端の一方が、一般式(I)におけるLに共有結合する。オリゴヌクレオチド化合物の3’末端又は5’末端の一方とLとは、ホスホジエステル結合又は修飾されたホスホジエステル結合で連結されていることが好ましく、ホスホジエステル結合で連結されていることがより好ましい。ある実施態様においては、ホスホロチオエート結合で連結されていることが好ましい。 The "group derived from an oligonucleotide compound or oligonucleotide complex" of the present invention means a partial structure of an oligonucleotide compound formed by removing a hydrogen atom, a hydroxyl group, etc. from the 3'-end or 5'-end of at least one oligonucleotide compound constituting the oligonucleotide compound or oligonucleotide complex. Thus, one of the 3'-end or 5'-end of the oligonucleotide compound is covalently bonded to L in general formula (I). One of the 3'-end or 5'-end of the oligonucleotide compound and L are preferably linked via a phosphodiester bond or a modified phosphodiester bond, more preferably via a phosphodiester bond. In one embodiment, they are preferably linked via a phosphorothioate bond.

 本発明のオリゴヌクレオチド化合物又はオリゴヌクレオチド複合体は、核酸医薬として有用なオリゴヌクレオチドであれば特に限定はなく、例えば、アンチセンスオリゴヌクレオチド、siRNA、アプタマー、リボザイム、miRNA、CpGオリゴ、デコイ核酸等であってよい。アンチセンスオリゴヌクレオチドやsiRNAは、標的RNAと相補的に設計することができる。相補性は、好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは90%以上(例えば、95%、96%、97%、98%、又は99%以上)である。 The oligonucleotide compound or oligonucleotide complex of the present invention is not particularly limited as long as it is an oligonucleotide useful as a nucleic acid drug, and may be, for example, an antisense oligonucleotide, siRNA, aptamer, ribozyme, miRNA, CpG oligo, decoy nucleic acid, etc. Antisense oligonucleotides and siRNA can be designed to be complementary to the target RNA. The complementarity is preferably 70% or more, more preferably 80% or more, and even more preferably 90% or more (e.g., 95%, 96%, 97%, 98%, or 99% or more).

 本発明のオリゴヌクレオチド化合物は、アンチセンスオリゴヌクレオチドであるのが好ましく、アンチセンスオリゴヌクレオチドの例としは、DNA、オリゴデオキシリボヌクレオチド、ギャップマー型アンチセンスオリゴヌクレオチド(あるいは、単に「ギャップマー」とも称される)、及びミックスマー型アンチセンスオリゴヌクレオチド(あるいは、単に「ミックスマー」とも称される)等が挙げられるが、これらに限定されず、RNA、オリゴリボヌクレオチド又はアンチセンス効果が通常生じるように設計されたオリゴヌクレオチド等でもよい。
 あるいは、本発明の「オリゴヌクレオチド複合体」としては、一本鎖DNAであるアンチセンスオリゴヌクレオチド(第一オリゴヌクレオチド)と相補的なRNAオリゴヌクレオチド(第二オリゴヌクレオチド)を含むHDO(ヘテロ二本鎖核酸)が挙げられる。
 または、前記第一オリゴヌクレオチドと第二オリゴヌクレオチドとが、核酸リンカーによって連結された一本鎖オリゴヌクレオチド化合物、非ヌクレオチド構造を含む連結基によって連結された一本鎖オリゴヌクレオチド化合物、直接連結された一本鎖オリゴヌクレオチド化合物が挙げられる(一本鎖化ヘテロ二本鎖核酸)。
The oligonucleotide compound of the present invention is preferably an antisense oligonucleotide, and examples of the antisense oligonucleotide include, but are not limited to, DNA, oligodeoxyribonucleotide, gapmer-type antisense oligonucleotide (or simply referred to as "gapmer"), and mixmer-type antisense oligonucleotide (or simply referred to as "mixmer"), and may be RNA, oligoribonucleotide, or an oligonucleotide designed to normally produce an antisense effect.
Alternatively, the "oligonucleotide complex" of the present invention may be a heteroduplex (HDO) comprising an antisense oligonucleotide (first oligonucleotide) which is a single-stranded DNA and a complementary RNA oligonucleotide (second oligonucleotide).
Alternatively, the first and second oligonucleotides may be linked via a nucleic acid linker, via a linking group containing a non-nucleotide structure, or directly (single-stranded heteroduplex nucleic acid).

 本発明の一般式(I)におけるWとしては、ギャップマー型アンチセンスオリゴヌクレオチドに由来する基が好ましい。ギャップマー型アンチセンスオリゴヌクレオチドに由来する基は、ギャップマーの3’末端又は5’末端から水素原子、ヒドロキシ基等を取り除いて形成される部分構造を意味し、例えば、7~100個のヌクレオシドからなり、好ましくは10~40個のヌクレオシドからなり、より好ましくは13~25個のヌクレオシドからなり、その3’末端又は5’末端でLに共有結合し、5’末端でLに共有結合するのが好ましい。
 またギャップマー型アンチセンスオリゴヌクレオチドは、好ましくは少なくとも4個の連続するデオキシリボヌクレオシドを含む。
 またギャップマー型アンチセンスオリゴヌクレオチドは、好ましくは2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む。
W in the general formula (I) of the present invention is preferably a group derived from a gapmer-type antisense oligonucleotide. The group derived from a gapmer-type antisense oligonucleotide means a partial structure formed by removing a hydrogen atom, a hydroxyl group, or the like from the 3'-end or 5'-end of a gapmer, and is, for example, composed of 7 to 100 nucleosides, preferably 10 to 40 nucleosides, more preferably 13 to 25 nucleosides, and is preferably covalently bonded to L at its 3'-end or 5'-end and covalently bonded to L at its 5'-end.
Gapmer-type antisense oligonucleotides also preferably contain at least four consecutive deoxyribonucleosides.
Furthermore, the gapmer-type antisense oligonucleotide preferably contains at least one selected from the group consisting of a 2'-modified nucleoside and a 2'-4'-bridged nucleoside.

 本発明の一般式(I)におけるWとしては、ミックスマー型アンチセンスオリゴヌクレオチドに由来する基が好ましい。ミックスマー型アンチセンスオリゴヌクレオチドに由来する基は、ミックスマーの3’末端又は5’末端から水素原子、ヒドロキシ基等を取り除いて形成される部分構造を意味し、例えば、7~100個のヌクレオシドからなり、好ましくは10~40個のヌクレオシドからなり、より好ましくは13~25個のヌクレオシドからなり、その3’末端又は5’末端でLに共有結合し、5’末端でLに共有結合するのが好ましい。
 またミックスマー型アンチセンスオリゴヌクレオチドは、好ましくは少なくとも4個の連続するデオキシリボヌクレオシドを含まない。
 またミックスマー型アンチセンスオリゴヌクレオチドは、好ましくは2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む。
W in the general formula (I) of the present invention is preferably a group derived from a mixmer-type antisense oligonucleotide. The group derived from a mixmer-type antisense oligonucleotide means a partial structure formed by removing a hydrogen atom, a hydroxyl group, or the like from the 3'-end or 5'-end of a mixmer, and is, for example, composed of 7 to 100 nucleosides, preferably 10 to 40 nucleosides, more preferably 13 to 25 nucleosides, and is preferably covalently bonded to L at its 3'-end or 5'-end and covalently bonded to L at its 5'-end.
Also, the mixmer-type antisense oligonucleotide preferably does not contain at least four consecutive deoxyribonucleosides.
Moreover, the mixmer-type antisense oligonucleotide preferably contains at least one selected from the group consisting of a 2'-modified nucleoside and a 2'-4'-bridged nucleoside.

 ギャップマー型及びミックスマー型アンチセンスオリゴヌクレオチドの各ヌクレオシド間結合は、ホスホジエステル結合でも修飾ヌクレオシド間結合でもよい。各ヌクレオシド間結合は、例えば、独立して好ましくはホスホジエステル結合又はホスホロチオエート結合である。より好ましくは、最も5’末端側のヌクレオシド間結合はホスホロチオエート結合であり、最も3’末端側のヌクレオシド間結合はホスホロチオエート結合である。また、好ましくは、アンチセンスオリゴヌクレオチドのヌクレオシド間結合の50~100%(より好ましくは70~100%、80~100%、90~100%、95~100%)がホスホロチオエート結合である。残りのヌクレオシド間結合はホスホジエステル結合である。 Each internucleoside bond in the gapmer and mixmer antisense oligonucleotides may be a phosphodiester bond or a modified internucleoside bond. Each internucleoside bond is, for example, preferably independently a phosphodiester bond or a phosphorothioate bond. More preferably, the 5'-most internucleoside bond is a phosphorothioate bond, and the 3'-most internucleoside bond is a phosphorothioate bond. Also, preferably, 50-100% (more preferably 70-100%, 80-100%, 90-100%, 95-100%) of the internucleoside bonds in the antisense oligonucleotide are phosphorothioate bonds. The remaining internucleoside bonds are phosphodiester bonds.

 あるいは、本発明の一般式(I)におけるWとしては、オリゴヌクレオチド複合体であって、二本鎖核酸に由来する基が好ましい。二本鎖核酸は、HDO(ヘテロ二本鎖核酸)として、例えば国際公開第2013/089283号に記載されており、その全体は参照として本明細書に組み込まれる。
 好ましくは、オリゴヌクレオチド複合体は、第一オリゴヌクレオチドと第二オリゴヌクレオチドとを含む二本鎖オリゴヌクレオチド複合体であって、第一オリゴヌクレオチドは7~100個のヌクレオシドからなるギャップマー型アンチセンスオリゴヌクレオチド又はミックスマー型アンチセンスオリゴヌクレオチドであり、第二オリゴヌクレオチドは、第一オリゴヌクレオチドの少なくとも一部とのハイブリダイズを可能とする配列を含み、デオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドから独立して選択される4~100個のヌクレオシドからなり、第一オリゴヌクレオチドと第二オリゴヌクレオチドとがハイブリダイズするものである。
 オリゴヌクレオチド複合体は、第一オリゴヌクレオチド又は第二オリゴヌクレオチドの3’末端又は5’末端を介してLに共有結合するのが好ましく、第二オリゴヌクレオチドの3’末端又は5’末端を介してLに共有結合するのがより好ましく、第二オリゴヌクレオチドの5’末端を介してLに共有結合するのが特に好ましい。
Alternatively, W in the general formula (I) of the present invention is preferably a group derived from a double-stranded nucleic acid in an oligonucleotide complex. The double-stranded nucleic acid is, for example, described as HDO (heteroduplex nucleic acid) in WO 2013/089283, the entire contents of which are incorporated herein by reference.
Preferably, the oligonucleotide complex is a double-stranded oligonucleotide complex comprising a first oligonucleotide and a second oligonucleotide, wherein the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides, and the second oligonucleotide comprises a sequence that allows hybridization with at least a portion of the first oligonucleotide and consists of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides and sugar-modified nucleosides, and the first oligonucleotide and the second oligonucleotide hybridize with each other.
Preferably, the oligonucleotide conjugate is covalently linked to L via the 3' or 5' end of the first or second oligonucleotide, more preferably via the 3' or 5' end of the second oligonucleotide, and especially preferably via the 5' end of the second oligonucleotide.

 または、本発明の一般式(I)におけるWとしては、前記オリゴヌクレオチド複合体の第一オリゴヌクレオチドと第二オリゴヌクレオチドとが、核酸リンカーによって連結された一本鎖オリゴヌクレオチド化合物に由来する基が好ましい。核酸リンカーとしては、好ましくは、2~10個のヌクレオシドからなるオリゴヌクレオチドに由来する基が好ましく、3~7個のヌクレオシドからなるオリゴヌクレオチドに由来する基がより好ましく、4又は5個のヌクレオシドからなるオリゴヌクレオチドに由来する基がさらに好ましく、4個のヌクレオシドからなるオリゴヌクレオチドに由来する基が特に好ましい。
 リンカーを構成するヌクレオシドを連結するヌクレオシド間結合は、独立してホスホジエステル結合でも修飾ヌクレオシド間結合でもよいが、好ましくは独立してホスホジエステル結合又はホスホロチオエート結合である。リンカーは、さらに好ましくは、1又は2個のホスホロチオエート結合を含み、他のヌクレオシド間結合はホスホジエステル結合であり、特に好ましくはリンカーを構成するヌクレオシドを連結するヌクレオシド間結合はホスホジエステル結合である。リンカーを構成するヌクレオシドは、独立して好ましくはアデノシン、ウリジン、シチジン、グアノシン、2’-デオキシアデノシン、チミジン、2’-デオキシシチジン、又は2’-デオキシグアノシンであり、特に好ましくはアデノシンである。
 または、本発明の一般式(I)におけるWとしては、前記オリゴヌクレオチド複合体の第一オリゴヌクレオチドと第二オリゴヌクレオチドとが、非ヌクレオチド構造を含む連結基によって連結された一本鎖オリゴヌクレオチド化合物に由来する基が好ましい。非ヌクレオチド構造を含む連結基としては、炭素原子数が2~50のアルキレン基、ポリアルキレングリコールに由来する基などが挙げられる。
 または、本発明の一般式(I)におけるWとしては、前記オリゴヌクレオチド複合体の第一オリゴヌクレオチドと第二オリゴヌクレオチドとが、直接連結された一本鎖オリゴヌクレオチド化合物に由来する基が好ましい。
 前記オリゴヌクレオチド複合体の第一オリゴヌクレオチドは、好ましくはギャップマー型アンチセンスオリゴヌクレオチドであり、前述のギャップマー型アンチセンスオリゴヌクレオチドの実施形態がオリゴヌクレオチド複合体の第一オリゴヌクレオチドに適用される。
 第一オリゴヌクレオチドがギャップマーのとき、第二オリゴヌクレオチドを構成するヌクレオシドの数は、ギャップマーと同様に好ましくは7~50であり、より好ましくは7~27であり、さらに好ましくは14~22であり、特に好ましくは16である。
 第一オリゴヌクレオチドがミックスマーのとき、第二オリゴヌクレオチドを構成するヌクレオシドの数は、ミックスマーと同様に好ましくは10~40であり、より好ましくは13~25である。
 第二オリゴヌクレオチドは、好ましくは少なくとも1個のリボヌクレオシドを含み、より好ましくは、少なくとも4個の連続するリボヌクレオシドを含み、さらに好ましくは1~6個(さらにより好ましくは2~4個、2~3個)の糖修飾ヌクレオシド(さらに好ましくは2’修飾ヌクレオシド)を含み、第二オリゴヌクレオチドに含まれる他のヌクレオシドはリボヌクレオシドである。さらにより好ましくは、第二オリゴヌクレオチドの3’末端及び5’末端の双方又は一方が糖修飾ヌクレオシドである。特に好ましくは第二オリゴヌクレオチドを構成する全てのヌクレオシドはリボヌクレオシドである。第二オリゴヌクレオチドを構成するヌクレオシドを連結するヌクレオシド間結合は、独立してホスホジエステル結合でも修飾ヌクレオシド間結合でもよいが、好ましくは独立してホスホジエステル結合又はホスホロチオエート結合であり、より好ましくは1~6個(さらにより好ましくは2~4個、2~3個)のホスホロチオエート結合を含み、他のヌクレオシド間結合はホスホジエステル結合である。特に好ましくは、第二オリゴヌクレオチドを構成するヌクレオシドを連結するヌクレオシド間結合は、ホスホジエステル結合である。
 上記の態様は、例えば国際公開第2017/131124号、国際公開2018/143475号、国際公開2019/022196号に記載されており、その全体は参照として本明細書に組み込まれる。
Alternatively, W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are linked by a nucleic acid linker. As the nucleic acid linker, a group derived from an oligonucleotide consisting of 2 to 10 nucleosides is preferable, a group derived from an oligonucleotide consisting of 3 to 7 nucleosides is more preferable, a group derived from an oligonucleotide consisting of 4 or 5 nucleosides is even more preferable, and a group derived from an oligonucleotide consisting of 4 nucleosides is particularly preferable.
The internucleoside bonds linking the nucleosides constituting the linker may be independently phosphodiester bonds or modified internucleoside bonds, but are preferably independently phosphodiester bonds or phosphorothioate bonds. The linker further preferably contains one or two phosphorothioate bonds, and the other internucleoside bonds are phosphodiester bonds, and particularly preferably the internucleoside bonds linking the nucleosides constituting the linker are phosphodiester bonds. The nucleosides constituting the linker are independently preferably adenosine, uridine, cytidine, guanosine, 2'-deoxyadenosine, thymidine, 2'-deoxycytidine, or 2'-deoxyguanosine, and particularly preferably adenosine.
Alternatively, W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are linked by a linking group containing a non-nucleotide structure. Examples of the linking group containing a non-nucleotide structure include an alkylene group having 2 to 50 carbon atoms and a group derived from a polyalkylene glycol.
Alternatively, W in the general formula (I) of the present invention is preferably a group derived from a single-stranded oligonucleotide compound in which the first and second oligonucleotides of the oligonucleotide complex are directly linked together.
The first oligonucleotide of said oligonucleotide complex is preferably a gapmer-type antisense oligonucleotide, and the above-mentioned embodiments of gapmer-type antisense oligonucleotides are applied to the first oligonucleotide of the oligonucleotide complex.
When the first oligonucleotide is a gapmer, the number of nucleosides constituting the second oligonucleotide is preferably 7 to 50, more preferably 7 to 27, even more preferably 14 to 22, and particularly preferably 16, similar to the gapmer.
When the first oligonucleotide is a mixmer, the number of nucleosides constituting the second oligonucleotide is preferably 10 to 40, more preferably 13 to 25, similar to the mixmer.
The second oligonucleotide preferably contains at least one ribonucleoside, more preferably contains at least 4 consecutive ribonucleosides, and further preferably contains 1 to 6 (even more preferably 2 to 4, 2 to 3) sugar-modified nucleosides (even more preferably 2'-modified nucleosides), and other nucleosides contained in the second oligonucleotide are ribonucleosides. Even more preferably, both or one of the 3' and 5' ends of the second oligonucleotide are sugar-modified nucleosides. Particularly preferably, all nucleosides constituting the second oligonucleotide are ribonucleosides. The internucleoside bonds linking the nucleosides constituting the second oligonucleotide may be independently phosphodiester bonds or modified internucleoside bonds, but are preferably independently phosphodiester bonds or phosphorothioate bonds, more preferably contains 1 to 6 (even more preferably 2 to 4, 2 to 3) phosphorothioate bonds, and other internucleoside bonds are phosphodiester bonds. Particularly preferably, the internucleoside bond linking the nucleosides constituting the second oligonucleotide is a phosphodiester bond.
The above aspects are described, for example, in WO 2017/131124, WO 2018/143475, and WO 2019/022196, the entireties of which are incorporated herein by reference.

 本発明の一般式(I)におけるWとしては、siRNAに由来する基も好ましい。アンチセンス鎖とセンス鎖のどちらがLに結合してもよいが、センス鎖がLに結合することが好ましい。
 アンチセンス鎖の5’末端又は3’末端がLに結合し、特に好ましくは3’末端がLに結合する。センス鎖の5’末端又は3’末端がLに結合し、特に好ましくは5’末端がLに結合する。
As W in the general formula (I) of the present invention, a group derived from siRNA is also preferred. Either the antisense strand or the sense strand may be bound to L, but it is preferred that the sense strand be bound to L.
The 5' or 3' end of the antisense strand is bound to L, particularly preferably the 3' end. The 5' or 3' end of the sense strand is bound to L, particularly preferably the 5' end.

 siRNAに由来する基は、例えばヌクレオシド間結合を介してLに結合し、好ましくはホスホジエステル結合又はホスホロチオエート結合を介してLに結合し、より好ましくはホスホロチオエート結合を介してLに結合する場合がある。 The group derived from the siRNA may be bound to L, for example, via an internucleoside bond, preferably via a phosphodiester bond or a phosphorothioate bond, more preferably via a phosphorothioate bond.

 本実施形態に係る脂質結合オリゴヌクレオチド等は、以下に示す方法によって製造することができるが、下記製造方法は一般的な製造方法の一例を示すものであり、本実施形態に係るオリゴヌクレオチド等の製造方法を限定するものではない。 The lipid-bound oligonucleotides and the like according to this embodiment can be produced by the method shown below, but the production method below is an example of a general production method and does not limit the method for producing the oligonucleotides and the like according to this embodiment.

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

 式中の記号は前記定義に同じであり、stepは工程を意味する。 The symbols in the formula are the same as defined above, and step means a process.

 工程Iの出発物質である化合物Aは、例えば、特表2018-532990号又は特許6356171等に記載の方法に準じて合成できる。具体的に、多様なR、Rを有する化合物Aは、以下に記載の化合物A-1から、当業者に公知の酸化反応(酸化反応は、例えば、コンプリヘンシブ・オーガニック・トランスフォーメーションズ第2版(Comprehensive Organic Transformations, Second Edition)、ラロック(R.C.Larock)著、ワイリー-ブイシーエイチ(Wiley-VCH)(1999年)等を参照できる)を組み合わせて用い、合成することができる。 Compound A, which is the starting material in step I, can be synthesized, for example, according to the method described in JP-A-2018-532990 or Japanese Patent No. 6356171. Specifically, compound A having various R 1 and R 2 can be synthesized from compound A-1 described below by combining oxidation reactions known to those skilled in the art (for the oxidation reaction, see, for example, Comprehensive Organic Transformations, Second Edition, by R.C. Larock, Wiley-VCH (1999)).

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011

 式中、R及びRは前記定義に同じである。
 例えば、R及びRがアルキル基又はアルケニル基等である化合物A-1を合成するためには、化合物A-2の一級ヒドロキシ基を、Rに対応するハロゲン化アルキル試薬などを用いてアルキル化又はアルケニル化等することにより、所望のR1を導入できる。また、二級ヒドロキシ基を、Rに対応するハロゲン化アルキル試薬などを用いてアルキル化又はアルケニル化等することにより、所望のRを導入できる。得られた化合物のP1で保護されたヒドロキシ基を脱保護することで、R及びRがアルキル基又はアルケニル基等である化合物A-1を合成できる。
In the formula, R 1 and R 2 are as defined above.
For example, to synthesize compound A-1 in which R 1 and R 2 are alkyl or alkenyl groups, the desired R 1 can be introduced by alkylating or alkenylating the primary hydroxy group of compound A-2 using an alkyl halide reagent or the like corresponding to R 1. Also, the desired R 2 can be introduced by alkylating or alkenylating the secondary hydroxy group using an alkyl halide reagent or the like corresponding to R 2. The hydroxy group protected by P1 of the obtained compound is deprotected to synthesize compound A-1 in which R 1 and R 2 are alkyl or alkenyl groups, or the like.

 R及びRが互いに結合して環を形成する化合物A-1は、R及びRの末端に、二重結合を有するハロゲン化アルキル試薬などを用いて所望のR及びRを導入した後に、オレフィンメタセシス反応により得ることができる。オレフィンメタセシス反応の具体的な例としては、溶媒中、第二世代グラブス触媒、例えば、ジクロロ[1,3-ビス(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン](ベンジリデン)(トリシクロヘキシルホスフィン)ルテニウム(II)を反応させる方法等が挙げられる。また、例えばオレフィンメタセシス反応により得られるオレフィン環化合物を、溶媒中、水素及びパラジウムカーボンにより水素化することにより、飽和環化合物を得ることができる。

Figure JPOXMLDOC01-appb-C000012
Compound A-1, in which R 1 and R 2 are bonded to each other to form a ring, can be obtained by introducing desired R 1 and R 2 to the terminals of R 1 and R 2 using an alkyl halide reagent having a double bond, and then subjecting the compound to an olefin metathesis reaction. A specific example of the olefin metathesis reaction is a method in which a second generation Grubbs catalyst, for example, dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium(II) is reacted in a solvent. In addition, for example, an olefin ring compound obtained by the olefin metathesis reaction can be hydrogenated in a solvent with hydrogen and palladium on carbon to obtain a saturated ring compound.
Figure JPOXMLDOC01-appb-C000012

 式中、P及びはヒドロキシ基保護基を表し、その他の記号は前記定義に同じである。 In the formula, P1 and P2 each represent a hydroxy-protecting group, and the other symbols are as defined above.

(工程I)一級アミンとのアミド化反応
 Lが結合した一級アルキルアミンを用いて、カルボン酸(化合物A)との縮合交換反応により化合物Bを得ることができる。例えば、化合物Aを溶媒中、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシドヘキサフルオロホスファート存在下、1~10当量の該一級アルキルアミンを反応させる方法が挙げられる。
(Step I) Amidation Reaction with Primary Amine A primary alkylamine bound to L can be used to carry out a condensation exchange reaction with a carboxylic acid (compound A) to obtain compound B. For example, a method can be exemplified in which compound A is reacted with 1 to 10 equivalents of the primary alkylamine in a solvent in the presence of 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate.

(工程II)ホスフィチル化反応
 化合物Bのヒドロキシ基を、当業者に公知な反応(例えば、ジ置換-アルコキシホスフィン類を用いる反応)によりホスフィチル化することにより、化合物Cを得ることができる。ホスフィチル化反応の具体的な例としては、溶媒中、4,5-ジシアノイミダゾール存在下、2-シアノエチル N,N,N’,N’-テトライソプロピルホスホロジアミダイトを反応させる方法等が挙げられる。
(Step II) Phosphitylation Reaction The hydroxy group of compound B can be phosphitylated by a reaction known to those skilled in the art (e.g., a reaction using a disubstituted alkoxyphosphine) to obtain compound C. A specific example of the phosphitylation reaction is a method of reacting 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite in a solvent in the presence of 4,5-dicyanoimidazole.

(工程III)オリゴヌクレオチドと脂質との結合反応
 脂質結合オリゴヌクレオチドは、化合物C、及び所望のヌクレオチド配列のオリゴヌクレオチド化合物を製造するのに必要な市販のヌクレオチド類や、ホスホロアミダイト試薬等を使用して、核酸自動合成装置(例えば、M-8-SE(日本テクノ(株)製)、nS-8II(ジーンデザイン社製)等)により合成することができる。
(Step III) Conjugation reaction between oligonucleotide and lipid The lipid-conjugated oligonucleotide can be synthesized using compound C, commercially available nucleotides necessary for producing an oligonucleotide compound of a desired nucleotide sequence, phosphoramidite reagents, etc., with an automatic nucleic acid synthesizer (e.g., M-8-SE (manufactured by Nippon Techno Co., Ltd.), nS-8II (manufactured by Gene Design Co., Ltd.), etc.).

 所望のオリゴヌクレオチド化合物は、そのヌクレオチド配列に対応する市販のホスホロアミダイト試薬等を使用して、核酸自動合成装置を用いた固相合成や、酵素を用いた反応(ポリメラーゼ、ライゲース及び制限酵素等)等により製造することができる。オリゴヌクレオチド化合物又はその複合体が、互いにハイブリダイズする二本鎖構造を含む場合、オリゴヌクレオチド化合物を適当な緩衝液中にて混合し、90~98℃にて数分間(例えば、5分間)かけて変性させた後、30~70℃にて1~8時間かけてハイブリダイズさせる工程を含むことがある。 The desired oligonucleotide compound can be produced by solid-phase synthesis using an automatic nucleic acid synthesizer or by reactions using enzymes (polymerase, ligase, restriction enzymes, etc.) using commercially available phosphoramidite reagents that correspond to the nucleotide sequence. When the oligonucleotide compound or its complex contains a double-stranded structure that hybridizes with each other, the process may include mixing the oligonucleotide compounds in an appropriate buffer, denaturing them at 90-98°C for several minutes (e.g., 5 minutes), and then hybridizing them at 30-70°C for 1-8 hours.

 本発明の一実施態様は、下記式(II): 

Figure JPOXMLDOC01-appb-C000013

(式中、
Lは、置換された若しくは置換されていないC1-10アルキレン基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよく、
は、それぞれ独立に、C1-10アルキル基であるか、あるいはRの2つのアルキル基は、互いに結合して環を形成していてもよく、
は、2-シアノエチル基である)
で表される化合物である。
 前記式(II)の化合物は、本発明の脂質結合オリゴヌクレオチドの製造に有用である。 One embodiment of the present invention is a compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000013

(Wherein,
L is a substituted or unsubstituted C 1-10 alkylene group;
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring;
Each R 3 is independently a C 1-10 alkyl group, or the two alkyl groups of R 3 may be bonded to each other to form a ring;
R4 is a 2-cyanoethyl group.
It is a compound represented by the formula:
The compound of formula (II) is useful for producing the lipid-linked oligonucleotide of the present invention.

 本発明の一実施態様は、前記一般式(I)の脂質結合オリゴヌクレオチド化合物又はその複合体と、薬理学上許容される担体とを含む、医薬組成物である。 One embodiment of the present invention is a pharmaceutical composition comprising a lipid-linked oligonucleotide compound of the general formula (I) or a complex thereof and a pharmacologically acceptable carrier.

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物は、公知の製剤学的方法により製剤化することができる。例えば、カプセル剤、錠剤、丸剤、液剤、散剤、顆粒剤、細粒剤、フィルムコーティング剤、ペレット剤、トローチ剤、舌下剤、咀嚼剤、バッカル剤、ペースト剤、シロップ剤、懸濁剤、エリキシル剤、乳剤、塗布剤、軟膏剤、硬膏剤、パップ剤、経皮吸収型製剤、ローション剤、吸引剤、エアゾール剤、注射剤、坐剤等として、経腸管的(経口的等)又は非経腸管的に使用することができる。 The pharmaceutical composition of the present invention containing the lipid-linked oligonucleotide of the general formula (I) or a complex thereof can be formulated by known pharmaceutical methods. For example, it can be used enterally (orally, etc.) or parenterally as a capsule, tablet, pill, liquid, powder, granule, fine granule, film coating agent, pellet, troche, sublingual, chewable agent, buccal agent, paste, syrup, suspension, elixir, emulsion, liniment, ointment, plaster, cataplasm, transdermal preparation, lotion, inhalant, aerosol, injection, suppository, etc.

 これら製剤化においては、薬理学上若しくは飲食品として許容される担体、具体的には、滅菌水や生理食塩水、植物油、溶剤、基剤、乳化剤、懸濁剤、界面活性剤、pH調節剤、安定剤、香味剤、芳香剤、賦形剤、ベヒクル、防腐剤、結合剤、希釈剤、等張化剤、無痛化剤、増量剤、崩壊剤、緩衝剤、コーティング剤、滑沢剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、溶解補助剤あるいはその他の添加剤等と適宜組み合わせることができる。 In these formulations, they can be appropriately combined with carriers that are pharmacologically or food and beverage acceptable, specifically, sterile water, physiological saline, vegetable oil, solvent, base, emulsifier, suspending agent, surfactant, pH adjuster, stabilizer, flavoring agent, fragrance, excipient, vehicle, preservative, binder, diluent, isotonicity agent, soothing agent, bulking agent, disintegrant, buffer, coating agent, lubricant, colorant, sweetener, thickener, flavoring agent, dissolution aid, or other additives.

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物の投与形態としては特に制限はないが、経腸管的(経口的等)又は非経腸管的投与が挙げられる。より好ましくは、静脈内投与、動脈内投与、腹腔内投与、皮下投与、皮内投与、気道内投与、直腸投与、筋肉内投与、髄腔内投与、脳室内投与、経鼻投与及び硝子体内投与等及び輸液による投与が挙げられる。 The administration form of the pharmaceutical composition containing the lipid-linked oligonucleotide of the general formula (I) or a complex thereof of the present invention is not particularly limited, and examples thereof include enteral (oral, etc.) and parenteral administration. More preferred examples include intravenous administration, intraarterial administration, intraperitoneal administration, subcutaneous administration, intradermal administration, intratracheal administration, rectal administration, intramuscular administration, intrathecal administration, intraventricular administration, intranasal administration, and intravitreal administration, as well as administration by infusion.

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物を利用した核酸医薬品が治療、予防、改善できる疾患は、特に制限されず、例えば、代謝性疾患、循環器疾患、腫瘍、感染症、眼疾患、炎症性疾患、自己免疫疾患、遺伝性希少疾患等、遺伝子の発現が原因となる疾患等が挙げられる。より具体的には、高コレステロール血症、高トリグリセリド血症、脊髄性筋委縮症、筋ジストロフィー(デュシェンヌ型筋ジストロフィー、筋強直性ジストロフィー、先天性筋ジストロフィー(福山型先天性筋ジストロフィー、ウールリッヒ型先天性筋ジストロフィー、メロシン欠損型先天性筋ジストロフィー、インテグリン欠損症、ウォーカーワールブルグ症候群等)、ベッカー型筋ジストロフィー、肢帯型筋ジストロフィー、三好型筋ジストロフィー、顔面肩甲上腕型筋ジストロフィー等)、ハンチントン病、アルツハイマー症、トランスサイレイチン型アミロイドーシス、家族性アミロイド性心筋症、多発性硬化症、クローン病、炎症性大腸疾患、先端巨大症、2型糖尿病、慢性腎症、RSウイルス感染症、エボラ出血熱、マールブルグ熱、HIV、インフルエンザ、B型肝炎、C型肝炎、肝硬変、慢性心不全、心筋線維化、心房細動、前立腺癌、メラノーマ、乳癌、膵臓癌、大腸癌、腎細胞癌、胆管癌、子宮頸癌、肝癌、肺癌、白血病、非ホジキンリンパ腫、アトピー性皮膚炎、緑内障、加齢性黄斑変性症等が挙げられる。前記疾患の種類に応じて、その疾患の原因となる遺伝子を前記標的遺伝子に設定し、さらに、前記標的遺伝子の配列に応じて、前記発現制御配列(例えば、アンチセンス配列)を適宜設定することができる。 Diseases that can be treated, prevented, or ameliorated by a nucleic acid drug using a pharmaceutical composition containing the lipid-linked oligonucleotide of the general formula (I) of the present invention or a complex thereof are not particularly limited, and examples thereof include metabolic diseases, cardiovascular diseases, tumors, infectious diseases, eye diseases, inflammatory diseases, autoimmune diseases, rare genetic diseases, and other diseases caused by gene expression. More specifically, hypercholesterolemia, hypertriglyceridemia, spinal muscular atrophy, muscular dystrophy (Duchenne muscular dystrophy, myotonic dystrophy, congenital muscular dystrophy (Fukuyama congenital muscular dystrophy, Ullrich congenital muscular dystrophy, merosin-deficient congenital muscular dystrophy, integrin deficiency, Walker-Warburg syndrome, etc.), Becker muscular dystrophy, limb-girdle muscular dystrophy, Miyoshi muscular dystrophy, facioscapulohumeral muscular dystrophy, etc.), Huntington's disease, Alzheimer's disease, and other conditions. These include rheumatoid arthritis, transthyretin amyloidosis, familial amyloidotic cardiomyopathy, multiple sclerosis, Crohn's disease, inflammatory bowel disease, acromegaly, type 2 diabetes, chronic nephropathy, respiratory syncytial virus infection, Ebola hemorrhagic fever, Marburg fever, HIV, influenza, hepatitis B, hepatitis C, cirrhosis, chronic heart failure, myocardial fibrosis, atrial fibrillation, prostate cancer, melanoma, breast cancer, pancreatic cancer, colon cancer, renal cell carcinoma, bile duct cancer, cervical cancer, liver cancer, lung cancer, leukemia, non-Hodgkin's lymphoma, atopic dermatitis, glaucoma, and age-related macular degeneration. Depending on the type of disease, a gene causing the disease is set as the target gene, and the expression control sequence (e.g., antisense sequence) can be appropriately set according to the sequence of the target gene.

 ヒトなどの霊長類に加えて、様々な他の哺乳類の疾患を、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物により治療、予防、改善することができる。例えば、それだけに限らないが、ウシ(cow)、ヒツジ(sheep)、ヤギ、ウマ(horse)、イヌ(dog)、ネコ(cat)、テンジクネズミ、又は他のウシ(bovine)、ヒツジ(ovine)、ウマ(equine)、イヌ(canine)、ネコ(feline)、マウスなどの齧歯類の種を含めた哺乳類の種の疾患を治療することができる。また、アンチセンスオリゴヌクレオチドを含む組成物は、鳥類(例えば、ニワトリ)などの他の種においても適用することができる。 In addition to primates such as humans, various other mammalian diseases can be treated, prevented, or ameliorated by pharmaceutical compositions containing the lipid-linked oligonucleotides of the general formula (I) of the present invention or complexes thereof. For example, diseases of mammalian species including, but not limited to, cow, sheep, goat, horse, dog, cat, guinea pig, or other rodent species such as bovine, ovine, equine, canine, feline, and mouse can be treated. Compositions containing antisense oligonucleotides can also be applied in other species such as birds (e.g., chickens).

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物を、ヒトを含む動物に投与又は摂取する場合、その投与量又は摂取量は、対象の年齢、体重、症状、健康状態、組成物の種類(医薬品、飲食品など)等に応じて、適宜選択されるが、その投与量又は摂取量は、脂質結合オリゴヌクレオチド換算で0.0001mg/kg/日~100mg/kg/日であることが好ましい。 When a pharmaceutical composition containing the lipid-linked oligonucleotide of the general formula (I) of the present invention or a complex thereof is administered or ingested by an animal, including a human, the dosage or intake is appropriately selected depending on the age, weight, symptoms, health condition, type of composition (medicine, food, beverage, etc.) of the subject, and the dosage or intake is preferably 0.0001 mg/kg/day to 100 mg/kg/day in terms of lipid-linked oligonucleotide.

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体は、従来のオリゴヌクレオチドに比較して、標的臓器に効率よく送達されるので、薬理効果の増強が期待できる。従って、ヒトを含む動物に本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を投与し、より安全に標的遺伝子の発現を制御する方法を提供することができる。また、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む組成物を、ヒトを含む哺乳動物に投与することを含む、標的遺伝子の制御を伴う各種疾患を治療、予防、改善するための方法をも提供することができる。 The lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof is delivered to a target organ more efficiently than conventional oligonucleotides, and is therefore expected to have enhanced pharmacological effects. Therefore, a method for controlling the expression of a target gene more safely can be provided by administering the lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof to an animal, including a human. In addition, a method for treating, preventing, and ameliorating various diseases involving the control of a target gene can also be provided, which includes administering a composition containing the lipid-linked oligonucleotide of the present invention represented by the general formula (I) or a complex thereof to a mammal, including a human.

 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を使用する好ましい方法としては以下に示すものが挙げられる。
- 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体と、細胞を接触させる工程を含む、標的RNAの機能を制御する方法。
- 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物を、哺乳動物に投与する工程を含む、該哺乳動物おける標的RNAの機能を制御する方法。
- 哺乳動物において、標的RNAの機能を制御するための、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体の使用。
- 哺乳動物において、標的RNAの機能を制御するための薬剤を製造するための、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体の使用。
- 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体と細胞を接触させる工程を含む、標的遺伝子の発現を制御する方法。
- 本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体を含む医薬組成物を、哺乳動物に投与する工程を含む、該哺乳動物おける標的遺伝子の発現を制御する方法。
- 哺乳動物において、標的遺伝子の発現を制御するための、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体の使用。
- 哺乳動物において、標的遺伝子の発現を制御するための薬剤を製造するための、本発明の前記一般式(I)の脂質結合オリゴヌクレオチド又はその複合体の使用。
Preferred methods for using the lipid-linked oligonucleotide of the present invention represented by the above general formula (I) or a complex thereof are as follows.
- A method for regulating the function of a target RNA, comprising the step of contacting a cell with the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
- A method for regulating the function of a target RNA in a mammal, comprising the step of administering to said mammal a pharmaceutical composition comprising the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
The use of the lipid-linked oligonucleotide of the present invention of said general formula (I) or a complex thereof for controlling the function of a target RNA in a mammal.
The use of the lipid-linked oligonucleotide of said general formula (I) of the invention or a complex thereof for the manufacture of a drug for controlling the function of a target RNA in a mammal.
- a method for controlling the expression of a target gene, comprising the step of contacting a cell with the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
A method for controlling the expression of a target gene in a mammal, comprising the step of administering to said mammal a pharmaceutical composition comprising the lipid-linked oligonucleotide of the present invention of general formula (I) or a complex thereof.
The use of the lipid-linked oligonucleotide of said general formula (I) of the present invention or a complex thereof for controlling the expression of a target gene in a mammal.
The use of the lipid-linked oligonucleotide of said general formula (I) of the invention or a complex thereof for the manufacture of a drug for controlling the expression of a target gene in a mammal.

 本発明における標的RNAの機能の制御は、例えば、アンチセンス配列部分がハイブリダイゼーションにより標的RNAの一部を被覆することによって生じる、翻訳の阻害又はエキソンスキッピング等のスプライシング機能が調節若しくは変換されること、又は、アンチセンス配列部分と標的RNAの一部とがハイブリダイズした部分が認識されることにより生じ得る前記標的RNAの分解によって、標的RNAの機能が抑制されること等を意味する。 In the present invention, control of the function of the target RNA means, for example, the regulation or conversion of the splicing function, such as translation inhibition or exon skipping, which occurs when the antisense sequence portion covers a part of the target RNA through hybridization, or the suppression of the function of the target RNA through degradation of the target RNA, which may occur when the hybridized part of the antisense sequence portion and a part of the target RNA is recognized.

 前記哺乳動物は、好ましくはヒトである。
 投与経路は、好ましくは経腸管的である。その他の態様として、投与経路は、非経腸管的である。
The mammal is preferably a human.
The route of administration is preferably enteral. In other embodiments, the route of administration is parenteral.

 以下、実施例に基づいて本発明をより具体的に説明するが、以下の実施例は本発明の範囲を何ら限定するものではない。
 実施例中、「NMR」は核磁気共鳴を、「(v/v)」は(体積/体積)を意味する。
 H NMRデータが記載されている場合には、300MHz(JNM-ECX300;日本電子(JEOL)(株)製、又はJNM-ECP400;日本電子(JEOL)(株)製)で測定し、テトラメチルシランを内部標準としたシグナルの化学シフトδ(単位:ppm)(分裂パターン、積分値)を表す。「d」はダブレット、「t」はトリプレット、「dd」はダブレット・オブ・ダブレット、「m」はマルチプレット、「J」はカップリング定数、「CDCl3」は重クロロホルムを意味する。
 シリカゲルカラムクロマトグラフィーでの精製は、SHOKO SCIENCE製Purif-Pack(登録商標)-EX(SI-50μm)を用いた。
The present invention will be described in more detail below with reference to examples, but the following examples are not intended to limit the scope of the present invention in any way.
In the examples, "NMR" means nuclear magnetic resonance, and "(v/v)" means (volume/volume).
When 1 H NMR data is given, it is measured at 300 MHz (JNM-ECX300; manufactured by JEOL Ltd., or JNM-ECP400; manufactured by JEOL Ltd.), and the chemical shift δ (unit: ppm) (splitting pattern, integral value) of the signal is shown using tetramethylsilane as an internal standard. "d" means doublet, "t" means triplet, "dd" means doublet of doublets, "m" means multiplet, "J" means coupling constant, and " CDCl3 " means deuterated chloroform.
Purification by silica gel column chromatography was performed using Purif-Pack (registered trademark)-EX (SI-50 μm) manufactured by SHOKO SCIENCE.

[製造例1]

Figure JPOXMLDOC01-appb-C000014
[Production Example 1]
Figure JPOXMLDOC01-appb-C000014

 アルゴン雰囲気下、化合物1(10.0g、54.9mmol)のジメチルホルムアミド(100mL)溶液に水素化ナトリウム(55重量%流動パラフィン、8.38g、192mmol)と1-ブロモテトラデカン(67.1mL、247mmol)を加えて、80℃で終夜(約16~20時間)加熱攪拌を行った。室温に放冷後、反応液に水を加え、次いで濃縮した。残渣をヘキサンと酢酸エチルの混合溶媒にて抽出した後に希塩酸、水、食塩水の順で洗浄した。有機層を濃縮後、得られた粗化合物2を酢酸エチル(100mL)とメタノール(100mL)に溶かし、10%パラジウム-炭素(5.0g)を加えて水素雰囲気下で終夜(約16~20時間)攪拌した。反応液をセライトろ過し、ろ物を酢酸エチルとエタノールと水の混合溶液で洗浄後、ろ液及び洗浄液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物3(17.8g、収率67%)を白色固体として得た。
1H NMR (CDCl3, 300 MHz) δ 0.88 (3H, t, 6.6 Hz), 1.19-1.38 (44H, m), 1.50-1.62 (4H, m), 2.16 (1H, t, 6.3Hz), 3.40-3.66 (8H, m), 3.68-3.77 (1H, m).
Under an argon atmosphere, sodium hydride (55% by weight liquid paraffin, 8.38 g, 192 mmol) and 1-bromotetradecane (67.1 mL, 247 mmol) were added to a solution of compound 1 (10.0 g, 54.9 mmol) in dimethylformamide (100 mL), and the mixture was heated and stirred at 80° C. overnight (about 16 to 20 hours). After cooling to room temperature, water was added to the reaction solution, which was then concentrated. The residue was extracted with a mixed solvent of hexane and ethyl acetate, and then washed with dilute hydrochloric acid, water, and brine in that order. After concentrating the organic layer, the obtained crude compound 2 was dissolved in ethyl acetate (100 mL) and methanol (100 mL), 10% palladium-carbon (5.0 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere. The reaction liquid was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water. The filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 3 (17.8 g, yield 67%) as a white solid.
1 H NMR (CDCl 3 , 300 MHz) δ 0.88 (3H, t, 6.6 Hz), 1.19-1.38 (44H, m), 1.50-1.62 (4H, m), 2.16 (1H, t, 6.3Hz), 3.40-3.66 (8H, m), 3.68-3.77 (1H, m).

 化合物3(17.4g、35.9mmol)の塩化メチレン(120mL)と水(60mL)の混合溶液に2-アザアダマンタン-N-ヒドロキシル(AZADOL(登録商標))(457mg、1.08mmol)とジアセトキシヨードベンゼン(34.7g、108 mmol)を加えて室温にて終夜(約16~20時間)攪拌した。続いて、反応液にチオ硫酸ナトリウム水溶液を加えた後に塩化メチレンで抽出し、有機層を水による洗浄を行い、硫酸ナトリウム乾燥を行った。濃縮後、得られた粗生成物にメタノールを加えて激しく攪拌した後にろ過した。この操作を3度行い、化合物4(16.3g、収率91%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (3H, t, 7.2 Hz), 1.20-1.37 (44H, m), 1.53-1.68 (4H, m), 3.43-3.53 (2H, m), 3.61-3.67 (2H, m), 3.71 (1H, dd, 10.6Hz, 5.0Hz), 3.80 (1H, dd, 10.6Hz, 3.2Hz), 4.04 (1H, dd, 5.0Hz, 3.2Hz).
2-Azaadamantane-N-hydroxyl (AZADOL®) (457 mg, 1.08 mmol) and diacetoxyiodobenzene (34.7 g, 108 mmol) were added to a mixed solution of compound 3 (17.4 g, 35.9 mmol) in methylene chloride (120 mL) and water (60 mL), and the mixture was stirred overnight (about 16 to 20 hours) at room temperature. Successively, an aqueous sodium thiosulfate solution was added to the reaction solution, followed by extraction with methylene chloride, and the organic layer was washed with water and dried with sodium sulfate. After concentration, methanol was added to the obtained crude product, which was vigorously stirred and then filtered. This operation was repeated three times to obtain compound 4 (16.3 g, yield 91%) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (3H, t, 7.2 Hz), 1.20-1.37 (44H, m), 1.53-1.68 (4H, m), 3.43-3.53 (2H, m), 3.61-3.67 (2H, m), 3.71 (1H, dd, 10.6Hz, 5.0Hz), 3.80 (1H, dd, 10.6Hz, 3.2Hz), 4.04 (1H, dd, 5.0Hz, 3.2Hz).

 アルゴン雰囲気下、化合物4(11.0g、22.1mmol)の塩化メチレン(100mL)溶液にトリエチルアミン(4.59mL、66.4mmol)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム 3-オキシドヘキサフルオロホスファート(HATU)(10.1g、26.6mmol)及び6-アミノ-1-ヘキサノール(3.11g、26.6mmol)を加えて室温にて終夜(約16~20時間)攪拌した。続いて、反応液に水を加えた後に塩化メチレンで抽出し、有機層を希塩酸及び食塩水で洗浄した。濃縮後、得られた粗生成物に酢酸エチルを加えて激しく攪拌した後にろ過した。この操作を3度行い、目的とする化合物5(11.8g、収率87%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (3H, t, 7.2Hz), 1.21-1.44 (48H, m), 1.49-1.64 (9H, m), 3.28 (1H, dd, 13.6Hz, 6.8Hz), 3.38-3.53 (3H, m), 3.38-3.53 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.8Hz), 3.87 (1H, dd, 5.4Hz, 2.4Hz), 6.70 (1H, t, 6.0Hz).
Under an argon atmosphere, triethylamine (4.59 mL, 66.4 mmol), 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) (10.1 g, 26.6 mmol) and 6-amino-1-hexanol (3.11 g, 26.6 mmol) were added to a solution of compound 4 (11.0 g, 22.1 mmol) in methylene chloride (100 mL) and the mixture was stirred overnight (about 16 to 20 hours) at room temperature. Subsequently, water was added to the reaction solution, which was then extracted with methylene chloride, and the organic layer was washed with dilute hydrochloric acid and saline. After concentration, ethyl acetate was added to the obtained crude product, which was vigorously stirred and then filtered. This operation was repeated three times to obtain the desired compound 5 (11.8 g, 87% yield) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (3H, t, 7.2Hz), 1.21-1.44 (48H, m), 1.49-1.64 (9H, m), 3.28 (1H, dd, 13.6Hz, 6.8Hz), 3.38-3.53 (3H, m), 3.38-3.53 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.8Hz), 3.87 (1H, dd, 5.4Hz, 2.4Hz), 6.70 (1H, t, 6.0Hz).

 化合物5(4.58g、7.66mmol)にトルエンを加えて濃縮した。アルゴン雰囲気下、濃縮後の化合物5の塩化メチレン(40mL)溶液に2-シアノエチル N,N,N’,N’-テトライソプロピルホスホロジアミダイト(3.40mL、10.7mmol)を加え、室温にて攪拌した。続いて、4,5-ジシアノイミダゾール(628mg、5.36mmol)のアセトニトリル溶液を加えて2時間攪拌した。濃縮後、塩化メチレンを加えた後にろ過して白色沈殿物を取り除いた。ろ液を濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル/トリエチルアミン)にて精製し、目的とする化合物6(3.22g、53%)を白色固体として得た。
1H NMR (CDCl3, 300 MHz) δ 0.88 (3H, t, 6.6Hz), 1.17 (3H, d, 3.9Hz), 1.19 (3H, d, 3.6Hz), 1.23-1.38 (48H, m), 1.47-1.66 (8H, m), 2.64 (1H, t, 6.9Hz), 3.26 (1H, dd, 13.7Hz, 5.7Hz), 3.36-3.68 (9H,m), 3.74-3.89 (4H, m), 6.68 (1H, t, 6.3Hz).
Toluene was added to compound 5 (4.58 g, 7.66 mmol) and the mixture was concentrated. Under an argon atmosphere, 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite (3.40 mL, 10.7 mmol) was added to a methylene chloride (40 mL) solution of the concentrated compound 5, and the mixture was stirred at room temperature. Then, an acetonitrile solution of 4,5-dicyanoimidazole (628 mg, 5.36 mmol) was added and the mixture was stirred for 2 hours. After concentration, methylene chloride was added and the mixture was filtered to remove the white precipitate. The filtrate was concentrated and then purified by silica gel column chromatography (hexane/ethyl acetate/triethylamine) to obtain the target compound 6 (3.22 g, 53%) as a white solid.
1 H NMR (CDCl 3 , 300 MHz) δ 0.88 (3H, t, 6.6Hz), 1.17 (3H, d, 3.9Hz), 1.19 (3H, d, 3.6Hz), 1.23-1.38 (48H, m), 1.47-1.66 (8H, m), 2.64 (1H, t, 6.9Hz), 3.26 (1H, dd, 13.7Hz, 5.7Hz), 3.36-3.68 (9H, m), 3.74-3.89 (4H, m), 6.68 (1H, t, 6.3Hz).

[製造例2]

Figure JPOXMLDOC01-appb-C000015
[Production Example 2]
Figure JPOXMLDOC01-appb-C000015

 アルゴン雰囲気下、化合物1(3.00g、16.5mmol)のジメチルホルムアミド(30mL)溶液に水素化ナトリウム(55重量%流動パラフィン、2.51g、57.6mmol)と1-ブロモヘキサデカン(22.6mL、74.1mmol)を加えて、80℃で終夜(約16~20時間)加熱攪拌を行った。室温に放冷後、反応液に水を加え、次いで濃縮した。残渣をヘキサンと酢酸エチルの混合溶媒にて抽出した後に希塩酸、水、食塩水の順で洗浄した。有機層を濃縮後、得られた粗化合物7を酢酸エチル(30mL)とメタノール(30mL)に溶かし、10%パラジウム-炭素(1.5g)を加えて水素雰囲気下で終夜(約16~20時間)攪拌した。反応液をセライトろ過し、ろ物を酢酸エチルとエタノールと水の混合溶液で洗浄後、ろ液及び洗浄液を濃縮して得られた粗生成物に酢酸エチルとエタノールを加えて激しく攪拌した後にろ過した。この操作を3度行い、目的とする化合物8(7.79g、収率87%)を白色固体として得た。
1H NMR (CDCl3, 300 MHz) δ 0.88 (6H, t, 6.5 Hz), 1.20-1.36 (52H, m), 1.50-1.62 (4H, m), 2.16 (1H, dd, 6.8Hz, 5.8Hz), 3.39-3.66 (8H, m), 3.68-3.77 (1H, m).
Under an argon atmosphere, sodium hydride (55% by weight liquid paraffin, 2.51 g, 57.6 mmol) and 1-bromohexadecane (22.6 mL, 74.1 mmol) were added to a solution of compound 1 (3.00 g, 16.5 mmol) in dimethylformamide (30 mL), and the mixture was heated and stirred at 80° C. overnight (about 16 to 20 hours). After cooling to room temperature, water was added to the reaction solution, which was then concentrated. The residue was extracted with a mixed solvent of hexane and ethyl acetate, and then washed with dilute hydrochloric acid, water, and saline in that order. After concentrating the organic layer, the obtained crude compound 7 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), and 10% palladium-carbon (1.5 g) was added and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere. The reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water. The filtrate and washings were concentrated to obtain a crude product, which was then added with ethyl acetate and ethanol, stirred vigorously, and filtered. This operation was repeated three times to obtain the desired compound 8 (7.79 g, yield 87%) as a white solid.
1 H NMR (CDCl 3 , 300 MHz) δ 0.88 (6H, t, 6.5 Hz), 1.20-1.36 (52H, m), 1.50-1.62 (4H, m), 2.16 (1H, dd, 6.8Hz, 5.8Hz), 3.39-3.66 (8H, m), 3.68-3.77 (1H, m).

 化合物8(3.87g、7.15mmol)を出発物質とし、化合物4の合成と同様の手法で化合物9(2.68g、収率68%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.2 Hz), 1.19-1.38 (52H, m), 1.52-1.68 (4H, m), 3.42-3.54 (2H, m), 3.59-3.73 (3H, m), 3.80 (1H, dd, 10.6Hz, 3.3Hz), 4.04 (1H, dd, 5.1Hz, 3.2Hz).
Compound 9 (2.68 g, 68% yield) was obtained as a white solid using compound 8 (3.87 g, 7.15 mmol) as a starting material and in a similar manner to the synthesis of compound 4.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.2 Hz), 1.19-1.38 (52H, m), 1.52-1.68 (4H, m), 3.42-3.54 (2H, m), 3.59-3.73 (3H, m), 3.80 (1H, dd, 10.6Hz, 3.3Hz), 4.04 (1H, dd, 5.1Hz, 3.2Hz).

 化合物9(1.60g、2.88mmol)を出発物質とし、化合物5の合成と同様の手法で化合物10(1.61g、収率85%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 7.0Hz), 1.19-1.44 (56H, m), 1.48-1.66 (9H, m), 3.28 (2H, dd, 13.9Hz, 7.0Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.8Hz), 3.87 (1H, dd, 5.1Hz, 2.2Hz), 6.70 (1H, t, 6.2Hz).
Compound 10 (1.61 g, 85% yield) was obtained as a white solid using compound 9 (1.60 g, 2.88 mmol) as a starting material and in a similar manner to the synthesis of compound 5.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 7.0Hz), 1.19-1.44 (56H, m), 1.48-1.66 (9H, m), 3.28 (2H, dd, 13.9Hz, 7.0Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.8Hz), 3.87 (1H, dd, 5.1Hz, 2.2Hz), 6.70 (1H, t, 6.2Hz).

 化合物10(1.60g、2.45mmol)を出発物質とし、化合物6の合成と同様の手法で化合物11(1.93g、収率92%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.11-1.42 (68H, m), 1.47-1.66 (8H, m), 2.64 (2H, t, 6.6Hz), 3.18-3.32 (2H, m), 3.36-3.70 (9H,m), 3.71-3.90 (4H, m), 6.78 (1H, t, 5.9Hz).
Compound 11 (1.93 g, 92% yield) was obtained as a white solid using compound 10 (1.60 g, 2.45 mmol) as a starting material and a method similar to that for the synthesis of compound 6.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.11-1.42 (68H, m), 1.47-1.66 (8H, m), 2.64 (2H, t, 6.6Hz), 3.18-3.32 (2H, m), 3.36-3.70 (9H, m), 3.71-3.90 (4H, m), 6.78 (1H, t, 5.9Hz).

[製造例3]

Figure JPOXMLDOC01-appb-C000016
[Production Example 3]
Figure JPOXMLDOC01-appb-C000016

 アルゴン雰囲気下、化合物1(3.00g、16.5mmol)のジメチルホルムアミド(30mL)溶液に水素化ナトリウム(55重量%流動パラフィン、2.51g、57。6mmol)と1-ブロモドデカン(17.8mL、74.1mmol)を加えて、80℃で終夜(約16~20時間)加熱攪拌を行った。室温に放冷後、反応液に水を加え、次いで濃縮した。残渣をヘキサンと酢酸エチルの混合溶媒にて抽出した後に希塩酸、水、食塩水の順で洗浄した。有機層を濃縮後、得られた粗化合物12を酢酸エチル(30mL)とメタノール(30mL)に溶かし、10%パラジウム-炭素(1.5g)を加えて水素雰囲気下で終夜(約16~20時間)攪拌した。反応液をセライトろ過し、ろ物を酢酸エチルとエタノールと水の混合溶液で洗浄後、ろ液及び洗浄液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物13(4.62g、収率65%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.20-1.37 (36H, m), 1.52-1.61 (4H, m), 2.19 (1H, t, 5.5Hz), 3.41-3.65 (8H, m), 3.69-3.76 (1H, m).
Under an argon atmosphere, sodium hydride (55% by weight liquid paraffin, 2.51 g, 57.6 mmol) and 1-bromododecane (17.8 mL, 74.1 mmol) were added to a solution of compound 1 (3.00 g, 16.5 mmol) in dimethylformamide (30 mL), and the mixture was heated and stirred at 80° C. overnight (about 16 to 20 hours). After cooling to room temperature, water was added to the reaction solution, which was then concentrated. The residue was extracted with a mixed solvent of hexane and ethyl acetate, and then washed with dilute hydrochloric acid, water, and brine in that order. After concentrating the organic layer, the obtained crude compound 12 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), 10% palladium-carbon (1.5 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere. The reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate, ethanol, and water. The filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 13 (4.62 g, yield 65%) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.20-1.37 (36H, m), 1.52-1.61 (4H, m), 2.19 (1H, t, 5.5Hz), 3.41-3.65 (8H, m), 3.69-3.76 (1H, m).

 化合物13(4.00g、9.33mmol)を出発物質とし、化合物4の合成と同様の手法で粗化合物14を得た。得られた粗化合物にメタノールを加えて激しく攪拌した後にろ過して化合物14(2.00g、収率48%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.20-1.38 (36H, m), 1.51-1.68 (4H, m), 3.42-3.54 (2H, m), 3.64 (2H, t, 6.6Hz), 3.71 (1H, dd, 10.6Hz, 5.1Hz), 3.80 (1H, dd, 10.6Hz, 3.3Hz), 4.05 (1H, dd, 5.1Hz, 3.3Hz).
Starting from compound 13 (4.00 g, 9.33 mmol), crude compound 14 was obtained in the same manner as in the synthesis of compound 4. Methanol was added to the crude compound obtained, and the mixture was stirred vigorously and then filtered to obtain compound 14 (2.00 g, yield 48%) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.20-1.38 (36H, m), 1.51-1.68 (4H, m), 3.42-3.54 (2H, m), 3.64 (2H, t, 6.6Hz), 3.71 (1H, dd, 10.6Hz, 5.1Hz), 3.80 (1H, dd, 10.6Hz, 3.3Hz), 4.05 (1H, dd, 5.1Hz, 3.3Hz).

 化合物14(2.00g、4.51mmol)を出発物質とし、化合物5の合成と同様の手法で粗化合物15を得た。得られた粗化合物に酢酸エチルを加えて激しく攪拌した後にろ過して化合物15(1.23g、収率50%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.21-1.44 (40H, m), 1.48-1.65 (9H, m), 3.28 (2H, dd, 12.8Hz, 6.6Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.6Hz), 3.87 (1H, dd, 5.1Hz, 2.6Hz), 6.70 (1H, t, 6.2Hz).
Starting from compound 14 (2.00 g, 4.51 mmol), crude compound 15 was obtained in the same manner as in the synthesis of compound 5. Ethyl acetate was added to the obtained crude compound, and the mixture was stirred vigorously and then filtered to obtain compound 15 (1.23 g, yield 50%) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.21-1.44 (40H, m), 1.48-1.65 (9H, m), 3.28 (2H, dd, 12.8Hz, 6.6Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.6Hz), 3.87 (1H, dd, 5.1Hz, 2.6Hz), 6.70 (1H, t, 6.2Hz).

 化合物15(1.20g、2.21mmol)を出発物質とし、化合物6の合成と同様の手法で化合物16(1.21g、収率74%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.17 (3H, d, 5.5Hz), 1.19 (3H, d, 5.1Hz), 1.22-1.43 (40H, m), 1.48-1.65 (8H, m), 2.64 (2H, t, 7.0Hz), 3.22-3.30 (2H, m), 3.38-3.68 (9H,m), 3.74-3.89 (4H, m), 6.69 (1H, t, 5.9Hz).
Compound 16 (1.21 g, 74% yield) was obtained as a white solid using compound 15 (1.20 g, 2.21 mmol) as a starting material and a method similar to that for the synthesis of compound 6.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6Hz), 1.17 (3H, d, 5.5Hz), 1.19 (3H, d, 5.1Hz), 1.22-1.43 (40H, m), 1.48-1.65 (8H, m), 2.64 (2H, t, 7.0Hz), 3.22-3.30 (2H, m), 3.38-3.68 (9H, m), 3.74-3.89 (4H, m), 6.69 (1H, t, 5.9Hz).

[製造例4]

Figure JPOXMLDOC01-appb-C000017
[Production Example 4]
Figure JPOXMLDOC01-appb-C000017

 アルゴン雰囲気下、化合物1(3.50g、19.2mmol)のジメチルホルムアミド(30mL)溶液に水素化ナトリウム(55重量%流動パラフィン、2.51g、57.6mmol)と1-ブロモデカン(15.9mL、76.8mmol)を加えて、80℃で終夜(約16~20時間)加熱攪拌を行った。室温に放冷後、反応液に水を加え、次いで濃縮した。残渣をヘキサンと酢酸エチルの混合溶媒にて抽出した後に希塩酸、水、食塩水の順で洗浄した。有機層を濃縮後、得られた粗化合物17を酢酸エチル(30mL)とメタノール(30mL)に溶かし、10%パラジウム-炭素(1.5g)を加えて水素雰囲気下で終夜(約16~20時間)攪拌した。反応液をセライトろ過し、ろ物を酢酸エチルとメタノールの混合溶液で洗浄後、ろ液及び洗浄液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物18(6.08g、収率85%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.22-1.36 (28H, m), 1.52-1.62 (4H, m), 2.19 (1H, t, 6.6Hz), 3.41-3.66 (8H, m), 3.70-3.76 (1H, m).
Under an argon atmosphere, sodium hydride (55% by weight liquid paraffin, 2.51 g, 57.6 mmol) and 1-bromodecane (15.9 mL, 76.8 mmol) were added to a solution of compound 1 (3.50 g, 19.2 mmol) in dimethylformamide (30 mL), and the mixture was heated and stirred at 80° C. overnight (about 16 to 20 hours). After cooling to room temperature, water was added to the reaction solution, which was then concentrated. The residue was extracted with a mixed solvent of hexane and ethyl acetate, and then washed with dilute hydrochloric acid, water, and brine in that order. After concentrating the organic layer, the obtained crude compound 17 was dissolved in ethyl acetate (30 mL) and methanol (30 mL), 10% palladium-carbon (1.5 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere. The reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate and methanol. The filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 18 (6.08 g, yield 85%) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.88 (6H, t, 6.6 Hz), 1.22-1.36 (28H, m), 1.52-1.62 (4H, m), 2.19 (1H, t, 6.6Hz), 3.41-3.66 (8H, m), 3.70-3.76 (1H, m).

 化合物18(4.00g、10.7mmol)の塩化メチレン(40mL)と水(20mL)の混合溶液に2-アザアダマンタン-N-ヒドロキシル(AZADOL(登録商標))(956mg、2.25mmol)とジアセトキシヨードベンゼン(7.26g、22.5 mmol)を加えて室温にて終夜(約16~20時間)攪拌した。続いて、反応液にチオ硫酸ナトリウム水溶液を加えた後に塩化メチレンで抽出し、有機層を水による洗浄を行い、硫酸ナトリウム乾燥を行った。濃縮後、得られた化合物19に塩化メチレン(40mL)、トリエチルアミン(1.66mL、12.0mmol)、1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム 3-オキシドヘキサフルオロホスファート(HATU)(4.90g、12.9mmol)及び6-アミノ-1-ヘキサノール(1.51g、12.9mmol)を加えて室温にて終夜(約16~20時間)攪拌した。続いて、反応液に水を加えた後に塩化メチレンで抽出し、有機層を希塩酸及び食塩水で洗浄した。濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物20(4.64g、収率89%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.86-0.91 (6H, m), 1.20-1.45 (32H, m), 1.48-1.65 (9H, m), 3.28 (2H, dd, 13.6Hz, 6.2Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.6Hz), 3.87 (1H, dd, 5.1Hz, 2.6Hz), 6.71 (1H, t, 5.9Hz).
2-Azaadamantane-N-hydroxyl (AZADOL (registered trademark)) (956 mg, 2.25 mmol) and diacetoxyiodobenzene (7.26 g, 22.5 mmol) were added to a mixed solution of compound 18 (4.00 g, 10.7 mmol) in methylene chloride (40 mL) and water (20 mL), and the mixture was stirred at room temperature overnight (about 16 to 20 hours). Subsequently, an aqueous sodium thiosulfate solution was added to the reaction solution, followed by extraction with methylene chloride, and the organic layer was washed with water and dried with sodium sulfate. After concentration, methylene chloride (40 mL), triethylamine (1.66 mL, 12.0 mmol), 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) (4.90 g, 12.9 mmol) and 6-amino-1-hexanol (1.51 g, 12.9 mmol) were added to the obtained compound 19, and the mixture was stirred overnight (about 16 to 20 hours) at room temperature. Subsequently, water was added to the reaction solution, followed by extraction with methylene chloride, and the organic layer was washed with dilute hydrochloric acid and saline. After concentration, the obtained crude product was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the target compound 20 (4.64 g, 89% yield) as a white solid.
1 H NMR (CDCl 3 , 400 MHz) δ 0.86-0.91 (6H, m), 1.20-1.45 (32H, m), 1.48-1.65 (9H, m), 3.28 (2H, dd, 13.6Hz, 6.2Hz), 3.38-3.54 (3H, m), 3.59-3.66 (4H, m), 3.77 (1H, dd, 10.6Hz, 2.6Hz), 3.87 (1H, dd, 5.1Hz, 2.6Hz), 6.71 (1H, t, 5.9Hz).

 化合物20(1.50g、2.29mmol)を出発物質とし、化合物6の合成と同様の手法で化合物21(1.11g、収率52%)を白色固体として得た。
1H NMR (CDCl3, 400 MHz) δ 0.85-0.91 (6H, m), 1.17 (3H, d, 5.1Hz), 1.19 (3H, d, 5.5Hz), 1.21-1.41 (32H, m), 1.48-1.66 (8H, m), 2.65 (2H, t, 6.6Hz), 3.23-3.31 (2H, m), 3.38-3.69 (9H, m), 3.74-3.90 (4H, m), 6.69 (1H, t, 5.9Hz).
Compound 21 (1.11 g, 52% yield) was obtained as a white solid using compound 20 (1.50 g, 2.29 mmol) as a starting material and a method similar to that for the synthesis of compound 6.
1 H NMR (CDCl 3 , 400 MHz) δ 0.85-0.91 (6H, m), 1.17 (3H, d, 5.1Hz), 1.19 (3H, d, 5.5Hz), 1.21-1.41 (32H, m), 1.48-1.66 (8H, m), 2.65 (2H, t, 6.6Hz), 3.23-3.31 (2H, m), 3.38-3.69 (9H, m), 3.74-3.90 (4H, m), 6.69 (1H, t, 5.9Hz).

[製造例5]

Figure JPOXMLDOC01-appb-C000018
[Production Example 5]
Figure JPOXMLDOC01-appb-C000018

 アルゴン雰囲気下、化合物1(4.00g、22.0mmol)のジメチルホルムアミド(40mL)溶液に水素化ナトリウム(55重量%流動パラフィン、2.87g、65.9mmol)と10-ブロモ-1-デセン(17.7mL、87.8mmol)を加えて、80℃で終夜(約16~20時間)加熱攪拌を行った。室温に放冷後、反応液に水を加え、次いで濃縮した。残渣をヘキサンと酢酸エチルの混合溶媒にて抽出した後に水、食塩水の順で洗浄した。有機層を濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物22(6.16g、収率61%)を無色油状物として得た。
1H NMR (CDCl3, 400 MHz) δ 1.23-1.41 (20H, m), 1.50-1.61 (4H, m), 2.00-2.08 (4H, m), 3.43 (2H, t, 6.6Hz), 3.46-3.63 (7H, m), 4.55 (2H, s), 4.90-4.96 (2H, m), 4.95-5.03 (2H, m), 5.75-5.87 (2H, m), 7.27-7.36 (5H, m).
Under an argon atmosphere, sodium hydride (55% by weight liquid paraffin, 2.87 g, 65.9 mmol) and 10-bromo-1-decene (17.7 mL, 87.8 mmol) were added to a solution of compound 1 (4.00 g, 22.0 mmol) in dimethylformamide (40 mL), and the mixture was heated and stirred at 80° C. overnight (about 16 to 20 hours). After cooling to room temperature, water was added to the reaction solution, which was then concentrated. The residue was extracted with a mixed solvent of hexane and ethyl acetate, and then washed with water and brine in that order. After concentrating the organic layer, the obtained crude product was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the target compound 22 (6.16 g, yield 61%) as a colorless oil.
1 H NMR (CDCl 3 , 400 MHz) δ 1.23-1.41 (20H, m), 1.50-1.61 (4H, m), 2.00-2.08 (4H, m), 3.43 (2H, t, 6.6Hz), 3.46-3.63 (7H, m), 4.55 (2H, s), 4.90-4.96 (2H, m), 4.95-5.03 (2H, m), 5.75-5.87 (2H, m), 7.27-7.36 (5H, m).

 アルゴン雰囲気下、化合物22(4.80g、10.5mmol)の1,2-ジクロロメタン(1.05L)溶液に(1,3-ビス-(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン)ジクロロ(オルト-イソプロポキシフェニルメチレン)ルテニウム(Hoveyda-Grubbs触媒(登録商標))(444mg、0.523mmol)を加えて、80℃で終夜(約16~20時間)攪拌した。反応終了後、反応液を室温に放冷し、濃縮した。得られた残渣をシリカゲルろ過し、酢酸エチルとヘキサンの混合溶液で洗浄した。濃縮して得られた粗化合物23を酢酸エチル(43mL)とメタノール(43mL)に溶かし、10%パラジウム-炭素(2.4g)を加えて水素雰囲気下で終夜(約16~20時間)攪拌した。反応液をセライトろ過し、ろ物を酢酸エチルとメタノールの混合溶液で洗浄後、ろ液及び洗浄液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、目的とする化合物24(2.32g、収率65%)を無色油状物として得た。
1H NMR (CDCl3, 300 MHz) δ 1.23-1.44 (28H, m), 1.48-1.70 (4H, m), 2.14 (1H, s), 3.38-3.73 (9H, m).
Under an argon atmosphere, (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(ortho-isopropoxyphenylmethylene)ruthenium (Hoveyda-Grubbs catalyst (registered trademark)) (444 mg, 0.523 mmol) was added to a solution of compound 22 (4.80 g, 10.5 mmol) in 1,2-dichloromethane (1.05 L), and the mixture was stirred at 80° C. overnight (about 16 to 20 hours). After completion of the reaction, the reaction solution was allowed to cool to room temperature and concentrated. The resulting residue was filtered through silica gel and washed with a mixed solution of ethyl acetate and hexane. The crude compound 23 obtained by concentration was dissolved in ethyl acetate (43 mL) and methanol (43 mL), 10% palladium-carbon (2.4 g) was added, and the mixture was stirred overnight (about 16 to 20 hours) under a hydrogen atmosphere. The reaction solution was filtered through Celite, and the filter cake was washed with a mixed solution of ethyl acetate and methanol. The filtrate and the washings were then concentrated to obtain a crude product, which was purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the desired compound 24 (2.32 g, yield 65%) as a colorless oil.
1 H NMR (CDCl 3 , 300 MHz) δ 1.23-1.44 (28H, m), 1.48-1.70 (4H, m), 2.14 (1H, s), 3.38-3.73 (9H, m).

 化合物24(1.50g、4.38mmol)を出発物質とし、化合物20の合成と同様の手法で化合物26(975mg、収率49%)を無色油状物として得た。
1H NMR (CDCl3, 400 MHz) δ 1.29-1.50 (32H, m), 1.53-1.71 (8H, m), 3.32 (1H, dd, 13.9Hz, 7.0Hz), 3.47-3.55 (9H, m), 3.59-3.66 (9H, m), 3.68 (1H, t, 6.6Hz), 3.80-3.87 (1H, m), 3.95 (1H, dd, 6.2Hz, 2.2Hz), 6.71-6.81 (1H, m).
Compound 26 (975 mg, yield 49%) was obtained as a colorless oil using compound 24 (1.50 g, 4.38 mmol) as a starting material and in a similar manner to the synthesis of compound 20.
1 H NMR (CDCl 3 , 400 MHz) δ 1.29-1.50 (32H, m), 1.53-1.71 (8H, m), 3.32 (1H, dd, 13.9Hz, 7.0Hz), 3.47-3.55 (9H, m), 3.59-3.66 (9H, m), 3.68 (1H, t, 6.6Hz), 3.80-3.87 (1H, m), 3.95 (1H, dd, 6.2Hz, 2.2Hz), 6.71-6.81 (1H, m).

 化合物26(970mg、2.13mmol)を出発物質とし、化合物6の合成と同様の手法で化合物27(980mg、収率70%)を無色油状物として得た。
1H NMR (CDCl3, 400 MHz) δ 1.17 (3H, d, 4.8Hz), 1.19 (3H, d, 5.1Hz), 1.27-1.43 (32H, m), 1.48-1.66 (8H, m), 2.65 (2H, t, 6.6Hz), 3.19-3.32 (2H, m), 3.41-3.51 (2H,m), 3.52-3.70 (7H,m), 3.75-3.93 (4H, m), 6.66-6.75 (1H, m).
Compound 27 (980 mg, 70% yield) was obtained as a colorless oil using compound 26 (970 mg, 2.13 mmol) as a starting material and in a similar manner to the synthesis of compound 6.
1 H NMR (CDCl 3 , 400 MHz) δ 1.17 (3H, d, 4.8Hz), 1.19 (3H, d, 5.1Hz), 1.27-1.43 (32H, m), 1.48-1.66 (8H, m), 2.65 (2H, t, 6.6Hz), 3.19-3.32 (2H, m), 3.41-3.51 (2H, m), 3.52-3.70 (7H, m), 3.75-3.93 (4H, m), 6.66-6.75 (1H, m).

 実施例中の表(1)において、「Cоmpd No」は化合物番号を、「Chemical Structure」は、各化合物の化学構造を意味する。標的遺伝子はマウスMetastasis Associated in Lung Adenocarcinoma Transcript-1(Malat1)又はマウスHypoxanthine Phosphoribosyltransferase 1(Hprt1)である。
 実施例中の配列表記(表1)において、特に記載がない限り、「(L)」はLNA(β-D-メチレンオキシBNA)を、小文字のアルファベットはデオキシリボヌクレオシドを、大文字のアルファベット(前記(L)及び後記(I)付のアルファベットは除く)はリボヌクレオシドを、「^」はホスホロチオエート結合を、「5(x)」は、そのデオキシリボヌクレオシドの核酸塩基が5-メチルシトシンであることを、「5(L)」における「5」は、そのヌクレオシドの核酸塩基が5-メチルシトシンであることを、意味する。「J1-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(III)

Figure JPOXMLDOC01-appb-C000019

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味する。「J2-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(IV)
Figure JPOXMLDOC01-appb-C000020

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味する。
 なお、実施例中の化学構造の表記(表1、4及び6)において、隣り合う2つのヌクレオシドの間に、「^」が記載されていないとき、その2つの核酸塩基の間のヌクレオシド間結合は、ホスホジエステル結合である。例えば、「A(L)T(L)」との表記では、AとTとの間のヌクレオシド間結合は、ホスホジエステル結合であり、「AG(L)」との表記では、AとGの間のヌクレオシド間結合は、ホスホジエステル結合である。 In Table (1) in the Examples, "Compd No" means the compound number, and "Chemical Structure" means the chemical structure of each compound. The target gene is mouse Metastasis Associated in Lung Adenocarcinoma Transcript-1 (Malat1) or mouse Hypoxanthine Phosphoribosyltransferase 1 (Hprt1).
In the sequence notations in the Examples (Table 1), unless otherwise specified, "(L)" means LNA (β-D-methyleneoxy BNA), lowercase alphabets mean deoxyribonucleosides, uppercase alphabets (excluding the alphabets with (L) above and (I) below) mean ribonucleosides, "^" means phosphorothioate bond, "5(x)" means that the nucleobase of the deoxyribonucleoside is 5-methylcytosine, and "5" in "5(L)" means that the nucleobase of the nucleoside is 5-methylcytosine. "J1-" means that the oxygen atom of the hydroxyl group at the 5'-terminus is linked to the nucleotide of the following formula (III) via a phosphodiester bond.
Figure JPOXMLDOC01-appb-C000019

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of the phosphodiester bond)) is bonded to the oxygen atom of the hydroxyl group at the 5' end. "J2-" means that a group represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000020

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of a phosphodiester bond)) is bonded.
In addition, in the notation of the chemical structure in the examples (Tables 1, 4 and 6), when there is no "^" between two adjacent nucleosides, the internucleoside bond between the two nucleic acid bases is a phosphodiester bond. For example, in the notation "A(L)T(L)", the internucleoside bond between A and T is a phosphodiester bond, and in the notation "AG(L)", the internucleoside bond between A and G is a phosphodiester bond.

[製造例6]
 表1に記載されたアンチセンスオリゴヌクレオチド(化合物番号に対応する化学構造で表される化合物)を、核酸自動合成機nS-8II(ジーンデザイン社製)及びM-8-SE(日本テクノサービス社製)を使用して調製した。また、P22790172及びP22790146の一本鎖オリゴヌクレオチドが分子内でハイブリダイズしていることを、非変性ポリアクリドアミドゲル電気泳動により確認した。非変性ポリアクリドアミドゲル電気泳動では、マーカーとしてヌクレオチド数が15、20、30、40、50、60及び80の一本鎖のDNAを含む一本鎖DNAサイズマーカー(ジーンデザイン社製)と、塩基対の数が17、21、25及び29の二本鎖のRNAサイズマーカー(ジーンデザイン社製)を用い、各一本鎖オリゴヌクレオチドについて単一のバンドが確認された。
[Production Example 6]
The antisense oligonucleotides (compounds represented by chemical structures corresponding to the compound numbers) listed in Table 1 were prepared using automated nucleic acid synthesizers nS-8II (manufactured by Gene Design Co., Ltd.) and M-8-SE (manufactured by Nippon Techno Service Co., Ltd.). Intramolecular hybridization of the single-stranded oligonucleotides P22790172 and P22790146 was confirmed by non-denaturing polyacrylamide gel electrophoresis. In non-denaturing polyacrylamide gel electrophoresis, single-stranded DNA size markers (manufactured by Gene Design Co., Ltd.) containing single-stranded DNA with 15, 20, 30, 40, 50, 60, and 80 nucleotides and double-stranded RNA size markers (manufactured by Gene Design Co., Ltd.) with 17, 21, 25, and 29 base pairs were used as markers, and a single band was confirmed for each single-stranded oligonucleotide.

Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021

[評価例1]3T3-L1細胞中のマウスMalat1のアンチセンス抑制
 20,000細胞/ウェルの密度で96ウェルプレートに播種した3T3-L1細胞に、約24時間後、2%FBSを含有するD-MEM(ダルベッコ改変イーグル培地)に培養上清を置換し、その最終濃度が1000nMとなるようにP21790027及びP22790171を添加した(Free-Uptake)。72時間後、CellAmp(登録商標)Direct RNA Prep Kit for RT-PCR (Real Time)(タカラバイオ)を用いて、RNAを含む細胞ライセートを作製したのちに、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスMalat1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGapdh[Glyceraldehyde-3-phosphate dehydrogenase]のmRNA量も同時に定量し、GapdhのmRNA量に対するMalat1のmRNA量を、Malat1の発現レベルとして評価した。結果を未処理対照細胞に対する、Malat1のパーセント発現として表2に表した。
[Evaluation Example 1] Antisense inhibition of mouse Malat1 in 3T3-L1 cells 3T3-L1 cells were seeded in a 96-well plate at a density of 20,000 cells/well. After about 24 hours, the culture supernatant of the cells was replaced with D-MEM (Dulbecco's modified Eagle medium) containing 2% FBS, and P21790027 and P22790171 were added to a final concentration of 1000 nM (Free-Uptake). After 72 hours, RNA-containing cell lysates were prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and the expression level of the mouse Malat1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the mRNA amount of the housekeeping gene Gapdh [glyceraldehyde-3-phosphate dehydrogenase] was also quantified at the same time, and the amount of Malat1 mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Malat1. The results are shown in Table 2 as the percentage expression of Malat1 relative to untreated control cells.

Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

[評価例2]N1E-115細胞中のマウスMalat1のアンチセンス抑制
 20,000細胞/ウェルの密度で96ウェルプレートに播種したN1E-115細胞に、約24時間後、FBSを含有しないD-MEMに培養上清を置換し、その最終濃度が1000nMとなるようにP21790027及びP22790171を添加した(Free-Uptake)。24時間後、CellAmp(登録商標)Direct RNA Prep Kit for RT-PCR (Real Time)(タカラバイオ)を用いて、RNAを含む細胞ライセートを作製したのちに、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスMalat1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGapdhのmRNA量も同時に定量し、GapdhのmRNA量に対するMalat1のmRNA量を、Malat1の発現レベルとして評価した。結果を未処理対照細胞に対する、Malat1のパーセント発現として表3に表した。
[Evaluation Example 2] Antisense inhibition of mouse Malat1 in N1E-115 cells N1E-115 cells were seeded in a 96-well plate at a density of 20,000 cells/well. After about 24 hours, the culture supernatant of the N1E-115 cells was replaced with D-MEM containing no FBS, and P21790027 and P22790171 were added to a final concentration of 1000 nM (Free-Uptake). After 24 hours, a cell lysate containing RNA was prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and then the expression level of the mouse Malat1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of mRNA of Malat1 relative to the amount of mRNA of Gapdh was evaluated as the expression level of Malat1. The results are presented in Table 3 as the percentage expression of Malat1 relative to untreated control cells.

Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

[評価例3]マウスにおけるMalat1のアンチセンス抑制
 C57BL/6Jマウス(オス6週齢、ジャクソン・ラボラトリー・ジャパン株式会社)へ、生理食塩水(大塚生食注、大塚製薬工場)に溶解したP21790027、P22790171及びP22790172を、マウス個体あたりの投与量がアンチセンスオリゴヌクレオチド量換算で0.95μmol/kgとなるように静脈内投与した。コントロールとして、生理食塩水(大塚生食注、大塚製薬工場)のみを投与した。投与5日後及び10日後にイソフルラン麻酔下で心臓、筋肉、肺、肝臓及び腎臓組織を採取した(P22790172は投与5日後のみ採取した)。各臓器からMagMAX(登録商標) mirVana(登録商標) Total RNA Isolation Kit(Thermo Fisher Scientific)を用いてRNAを単離した後に、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスMalat1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGapdhのmRNA量も同時に定量し、GapdhのmRNA量に対するMalat1のmRNA量を、Malat1の発現レベルとして評価した。結果を未処理対照群(cоntrоl)に対する、Malat1のパーセント発現として、図1(Day10)、図2(Day5)に示す。
[Evaluation Example 3] Antisense inhibition of Malat1 in mice C57BL/6J mice (male, 6 weeks old, Jackson Laboratory Japan Co., Ltd.) were intravenously administered with P21790027, P22790171, and P22790172 dissolved in saline (Otsuka saline injection, Otsuka Pharmaceutical Factory) so that the dose per mouse was 0.95 μmol/kg in terms of the amount of antisense oligonucleotide. As a control, saline alone (Otsuka saline injection, Otsuka Pharmaceutical Factory) was administered. Heart, muscle, lung, liver, and kidney tissues were collected under isoflurane anesthesia 5 and 10 days after administration (P22790172 was collected only 5 days after administration). After isolating RNA from each organ using MagMAX (registered trademark) mirVana (registered trademark) Total RNA Isolation Kit (Thermo Fisher Scientific), the expression level of mouse Malat1 gene was measured by quantitative real-time PCR using One Step PrimeScript (registered trademark) III RT-qPCR Mix (Takara Bio) and TaqMan (registered trademark) Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of mRNA of Malat1 relative to the amount of mRNA of Gapdh was evaluated as the expression level of Malat1. The results are shown in FIG. 1 (Day 10) and FIG. 2 (Day 5) as the percentage expression of Malat1 relative to the untreated control group (control).

 図1及び2から明らかなように、P22790171及びP22790172はP21790027に比べ、心臓(Heart)、筋肉(Muscle)、肺(Lung)、及び肝臓(Liver)においてMalat1の高い発現抑制効果を示した。 As is clear from Figures 1 and 2, P22790171 and P22790172 showed a higher inhibitory effect on Malat1 expression in the heart, muscle, lung, and liver than P21790027.

[評価例4]マウスにおけるHprt1のアンチセンス抑制
 C57BL/6Jマウス(オス6週齢、ジャクソン・ラボラトリー・ジャパン株式会社)へ、生理食塩水(大塚生食注、大塚製薬工場)に溶解したP22790163、P23790243、P23790244及びP23790246を、マウス個体あたりの投与量がアンチセンスオリゴヌクレオチド量換算で0.95μmol/kg(P23790243、P23790244及びP23790246を投与)、2.9μmol/kg(P22790163、P23790243及びP23790244を投与)、9.5μmol/kg(P22790163、P23790243及びP23790244を投与)、及び19.5μmol/kg(P22790163のみ投与)となるように静脈内投与した。コントロールとして、生理食塩水(大塚生食注、大塚製薬工場)のみを投与した。投与5日後、10日後及び20日後にイソフルラン麻酔下で心臓(P22790163及びP23790244)、肝臓(P22790163、P23790243、P23790244及びP23790246)、肺(P22790163、P23790243及びP23790244)及び筋肉(P22790163、P23790244及びP23790246)の組織を採取した(P23790246は投与10日後のみ採取した)。各臓器からMagMAX(登録商標) mirVana(登録商標) Total RNA Isolation Kit(Thermo Fisher Scientific)を用いてRNAを単離した後に、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスHprt1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGapdhのmRNA量も同時に定量し、GapdhのmRNA量に対するHprtのmRNA量を、Hprt1の発現レベルとして評価した。結果を未処理対照群(cоntrоl)に対する、Hprt1のパーセント発現として、図3(2.9μmol/kg投与、肝臓)、図4(Day10、肝臓)、図5(2.9μmol/kg投与、心臓)、図6(Day10、心臓)、図7(2.9μmol/kg投与、肺)、図8(2.9μmol/kg投与、筋肉)及び図9(Day10、筋肉)に示す。
[Evaluation Example 4] Antisense inhibition of Hprt1 in mice C57BL/6J mice (male, 6 weeks old, Jackson Laboratory Japan, Inc.) were administered with P22790163, P23790243, P23790244, or P23790246 dissolved in physiological saline (Otsuka saline injection, Otsuka Pharmaceutical Factory, Ltd.) at a dose of 0.95 μmol/kg (P2379024 The mice were intravenously administered with 1.2 μmol/kg of saline (Otsuka saline injection, Otsuka Pharmaceutical Factory) as a control. Five, ten and twenty days after administration, cardiac (P22790163 and P23790244), liver (P22790163, P23790243, P23790244 and P23790246), lung (P22790163, P23790243 and P23790244) and muscle (P22790163, P23790244 and P23790246) tissues were collected under isoflurane anesthesia (P23790246 was collected only 10 days after administration). After isolating RNA from each organ using MagMAX (registered trademark) mirVana (registered trademark) Total RNA Isolation Kit (Thermo Fisher Scientific), the expression level of the mouse Hprt1 gene was measured by quantitative real-time PCR using One Step PrimeScript (registered trademark) III RT-qPCR Mix (Takara Bio) and TaqMan (registered trademark) Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of Hprt mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Hprt1. The results are shown as the percentage expression of Hprt1 relative to the untreated control group (control), in Figure 3 (2.9 μmol/kg administration, liver), Figure 4 (Day 10, liver), Figure 5 (2.9 μmol/kg administration, heart), Figure 6 (Day 10, heart), Figure 7 (2.9 μmol/kg administration, lung), Figure 8 (2.9 μmol/kg administration, muscle) and Figure 9 (Day 10, muscle).

 図3~9から明らかなように、P23790244及びP23790246はP22790163及びP23790243に比べ、肝臓(Liver)、心臓(Heart)、肺(Lung)及び筋肉(Muscle)においてHprt1の高い発現抑制効果を示した。 As is clear from Figures 3 to 9, P23790244 and P23790246 showed a higher inhibitory effect on Hprt1 expression in the liver, heart, lungs, and muscles than P22790163 and P23790243.

[製造例7]
 表4に記載されたアンチセンスオリゴヌクレオチド(化合物番号に対応する化学構造で表される化合物)を、核酸自動合成機nS-8II(ジーンデザイン社製)及びM-8-SE(日本テクノサービス社製)を使用して調製した。標的遺伝子はマウスHypoxanthine Phosphoribosyltransferase 1(Hprt1)である。表4において、「Cоmpd No」、「Chemical Structure」及び配列表記は、表1と同じである。表4中の配列表記の、「J3-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(V)

Figure JPOXMLDOC01-appb-C000024

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味し、「J4-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(VI)
Figure JPOXMLDOC01-appb-C000025

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味し、「J5-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(VII)
Figure JPOXMLDOC01-appb-C000026

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味し、「J6-」は、5’末端のヒドロキシ基の酸素原子に、ホスホジエステル結合を介して下記式(VIII)
Figure JPOXMLDOC01-appb-C000027

(式中、*は、オリゴヌクレオチドWとの結合位置を表す。(*がホスホジエステル結合の酸素原子である))で表される基が結合していることを意味する。 [Production Example 7]
The antisense oligonucleotides (compounds represented by chemical structures corresponding to compound numbers) shown in Table 4 were prepared using automated nucleic acid synthesizers nS-8II (Gene Design) and M-8-SE (Nihon Techno Service). The target gene is mouse hypoxanthine phosphoribosyltransferase 1 (Hprt1). In Table 4, "Cmpd No", "Chemical Structure" and sequence notation are the same as in Table 1. In the sequence notation in Table 4, "J3-" indicates that the following formula (V) is linked to the oxygen atom of the hydroxyl group at the 5' end via a phosphodiester bond.
Figure JPOXMLDOC01-appb-C000024

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of the phosphodiester bond)) is bonded to the oxygen atom of the hydroxyl group at the 5' end, and "J4-" means that a group represented by the following formula (VI) is bonded to the oxygen atom of the hydroxyl group at the 5' end via a phosphodiester bond.
Figure JPOXMLDOC01-appb-C000025

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of the phosphodiester bond)) is bonded to the oxygen atom of the hydroxyl group at the 5' end, and "J5-" means that a group represented by the following formula (VII) is bonded to the oxygen atom of the hydroxyl group at the 5' end via a phosphodiester bond.
Figure JPOXMLDOC01-appb-C000026

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of the phosphodiester bond)) is bonded to the oxygen atom of the hydroxyl group at the 5' end, and "J6-" means that a group represented by the following formula (VIII) is bonded to the oxygen atom of the hydroxyl group at the 5' end via a phosphodiester bond.
Figure JPOXMLDOC01-appb-C000027

(wherein * represents the bonding position with oligonucleotide W. (* is the oxygen atom of a phosphodiester bond)) is bonded.

Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028

[評価例5]3T3-L1細胞中のマウスHprt1のアンチセンス抑制
 15,000細胞/ウェルの密度で96ウェルプレートに播種した3T3-L1細胞に、約24時間後、2%FBSを含有するD-MEMに培養上清を置換し、その最終濃度が300nMとなるようにP22790163、P23790243、P23790244、P23790458、P23790459及びP23790460を添加した(Free-Uptake)。72時間後、CellAmp(登録商標)Direct RNA Prep Kit for RT-PCR (Real Time)(タカラバイオ)を用いて、RNAを含む細胞ライセートを作製したのちに、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスHprt1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のGapdhのmRNA量も同時に定量し、GapdhのmRNA量に対するHprt1のmRNA量を、Hprt1の発現レベルとして評価した。結果を未処理対照細胞に対する、Hprt1のパーセント発現として表5に表した。
[Evaluation Example 5] Antisense inhibition of mouse Hprt1 in 3T3-L1 cells 3T3-L1 cells were seeded in a 96-well plate at a density of 15,000 cells/well. After about 24 hours, the culture supernatant of the cells was replaced with D-MEM containing 2% FBS, and P22790163, P23790243, P23790244, P23790458, P23790459 and P23790460 were added to a final concentration of 300 nM (Free-Uptake). After 72 hours, a cell lysate containing RNA was prepared using CellAmp® Direct RNA Prep Kit for RT-PCR (Real Time) (Takara Bio), and then the expression level of the mouse Hprt1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Gapdh was also quantified at the same time, and the amount of Hprt1 mRNA relative to the amount of Gapdh mRNA was evaluated as the expression level of Hprt1. The results are presented in Table 5 as percent expression of Hprt1 relative to untreated control cells.

Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029

[評価例6]マウスにおけるHprt1のアンチセンス抑制
 評価例4と同じ評価方法を用いた。P22790163及びP23790460を、マウス個体あたりの投与量がアンチセンスオリゴヌクレオチド量換算で2.9μmol/kgとなるように静脈内投与した。コントロールとして、生理食塩水(大塚生食注、大塚製薬工場)のみを投与した。投与10日後の心臓、肝臓及び筋肉組織における、GapdhのmRNA量に対するHprt1のmRNA量を、Hprt1の発現レベルとして評価した。結果を未処理対照群(cоntrоl)に対する、Hprt1のパーセント発現として、図10(心臓)、図11(肝臓)、及び図12(筋肉)に示す。
[Evaluation Example 6] Antisense Suppression of Hprt1 in Mice The same evaluation method as in Evaluation Example 4 was used. P22790163 and P23790460 were administered intravenously so that the dose per mouse was 2.9 μmol/kg in terms of the amount of antisense oligonucleotide. As a control, only physiological saline (Otsuka Saline Injection, Otsuka Pharmaceutical Factory) was administered. The amount of Hprt1 mRNA relative to the amount of Gapdh mRNA in the heart, liver, and muscle tissues 10 days after administration was evaluated as the expression level of Hprt1. The results are shown in Figure 10 (heart), Figure 11 (liver), and Figure 12 (muscle) as the percentage expression of Hprt1 relative to the untreated control group (control).

 図10~12から明らかなように、P23790460はP22790163に比べ、心臓(Heart)、肝臓(Liver)及び筋肉(Muscle)においてHprt1の高い発現抑制効果を示した。 As is clear from Figures 10 to 12, P23790460 showed a higher inhibitory effect on Hprt1 expression in the heart, liver, and muscle than P22790163.

[製造例8]
 表6に記載されたsiRNA(化合物番号に対応する化学構造で表される化合物)を、核酸自動合成機M-8-SE(日本テクノサービス社製)を使用して調製した。標的遺伝子はマウスSuperoxide dismutase 1(Sod1)である。表6において、「Cоmpd No」、「Chemical Structure」及び配列表記は、表1及び表4と同じである。「Strand」は各鎖がセンス鎖(S)又はアンチセンス鎖(AS)どちらであるのかを表す。「(M)」は2’-OMeヌクレオシドを、「(F)」は2’-フルオロヌクレオシドを意味する。5’末端の「VPU(M)」は、下記式(IX)

Figure JPOXMLDOC01-appb-C000030

(式中、*は、ホスホジエステル結合やホスホロチオエート結合などのヌクレオシド間結合の酸素原子である))で表されるビニルホスホネート化2’-OMeヌクレオシドを意味する。
 「J1-^」、「J2-^」、「J3-^」、「J4-^」及び「J6-^」は、それぞれ前記「J1-」、「J2-」、「J3-」、「J4-」及び「J6-」と同じ基が結合するが、当該基は5’末端のヒドロキシ基の酸素原子にホスホロチオエート結合を介して結合し、対応する式(III)、式(IV)、式(V)、式(VI)及び式(VIII)における*は、ホスホロチオエート結合の酸素原子である。 [Production Example 8]
The siRNAs (compounds represented by chemical structures corresponding to compound numbers) shown in Table 6 were prepared using an automatic nucleic acid synthesizer M-8-SE (manufactured by Nippon Techno Service Co., Ltd.). The target gene is mouse superoxide dismutase 1 (Sod1). In Table 6, "Compd No,""ChemicalStructure," and sequence notation are the same as in Tables 1 and 4. "Strand" indicates whether each strand is a sense strand (S) or an antisense strand (AS). "(M)" means 2'-OMe nucleoside, and "(F)" means 2'-fluoro nucleoside. "VPU(M)" at the 5' end is a compound represented by the following formula (IX):
Figure JPOXMLDOC01-appb-C000030

(wherein * is an oxygen atom of an internucleoside bond such as a phosphodiester bond or a phosphorothioate bond)) means a vinylphosphonate-2'-OMe nucleoside represented by the formula:
"J1-^", "J2-^", "J3-^", "J4-^" and "J6-^" are bonded to the same group as "J1-", "J2-", "J3-", "J4-" and "J6-", respectively, but the group is bonded to the oxygen atom of the hydroxy group at the 5' end via a phosphorothioate bond, and * in the corresponding formulas (III), (IV), (V), (VI) and (VIII) is the oxygen atom of the phosphorothioate bond.

 各センス鎖(S)及びアンチセンス鎖(AS)のハイブリダイゼーションは、95℃にて5分間加熱した後、37℃にて1時間、定温にて放置することで行った。ハイブリダイゼーションの確認は、非変性ポリアクリドアミドゲル電気泳動により確認した。 Hybridization of each sense strand (S) and antisense strand (AS) was performed by heating at 95°C for 5 minutes and then leaving at a constant temperature of 37°C for 1 hour. Hybridization was confirmed by non-denaturing polyacrylamide gel electrophoresis.

Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031

[評価例7]マウス初代肝細胞におけるsiRNAのSod1ノックダウン作用
 20,000細胞/ウェルの密度で96ウェルプレートに播種したマウス初代肝細胞に、約24時間後、FBSを含有しないWilliam‘s E Medium(ウィリアム培地E)に培養上清を置換し、その最終濃度が1000nMとなるようにP24791052、P24791053、P24791054及びP24791055を添加した(Free-Uptake)。24時間後、MagMAX(登録商標) mirVana(登録商標) Total RNA Isolation Kit(Thermo Fisher Scientific)を用いてRNAを単離したのちに、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスSod1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のPpia[peptidylprolyl isomerase A]のmRNA量も同時に定量し、PpiaのmRNA量に対するSod1のmRNA量を、Sod1の発現レベルとして評価した。結果を未処理対照細胞に対する、Sod1のパーセント発現として表7に表した。
[Evaluation Example 7] Sod1 knockdown effect of siRNA in mouse primary hepatocytes Mouse primary hepatocytes were seeded in a 96-well plate at a density of 20,000 cells/well. After about 24 hours, the culture supernatant was replaced with FBS-free William's E Medium, and P24791052, P24791053, P24791054, and P24791055 were added to a final concentration of 1000 nM (Free-Uptake). After 24 hours, RNA was isolated using MagMAX® mirVana® Total RNA Isolation Kit (Thermo Fisher Scientific), and then the expression level of mouse Sod1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Ppia [peptidylprolyl isomerase A] was also quantified at the same time, and the amount of Sod1 mRNA relative to the amount of Ppia mRNA was evaluated as the expression level of Sod1. The results are shown in Table 7 as the percentage expression of Sod1 relative to the untreated control cells.

Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032

[評価例8]マウスにおけるsiRNAのSod1ノックダウン作用
 P24791052、P24791054、P24791055及びP24791056各4.0nmolを生理食塩水(大塚生食注、大塚製薬工場)10μlに溶解し、各種核酸剤を用意した。C57BL/6Jマウス(オス6週齢、ジャクソン・ラボラトリー・ジャパン株式会社)を、2.5~4%イソフルラン麻酔下にて脳定位固定装置に固定した。その後、耳間に前後2~3cmで皮膚を切開し、ブレグマの1mm右方かつ0.5mm後方に1mm径ドリルで穿孔した。ハミルトンシリンジ内に各種核酸剤又は陰性対照としての生理食塩水を充填した。穿孔部より針を2mm程度刺入し、10μl/分の速度で、マウス1匹当たり10μlの溶液を右側脳室内に投与し、ナイロン糸で皮膚縫合した。2週間後、マウスを解剖して大脳及び海馬を摘出し、MagMAX(登録商標) mirVana(登録商標) Total RNA Isolation Kit(Thermo Fisher Scientific)を用いてRNAを単離した後に、One Step PrimeScript(登録商標) III RT-qPCR Mix(タカラバイオ)を用いて、TaqMan(登録商標) Gene Expression Assays(Thermo Fisher Scientific)による定量リアルタイムPCRでマウスSod1遺伝子発現レベルを測定した。リアルタイムPCRでは、ハウスキーピング遺伝子のTbp(TATA binding protein)のmRNA量も同時に定量し、TbpのmRNA量に対するSod1のmRNA量を、Sod1の発現レベルとして評価した。結果を陰性対照(vehicle)に対する、Sod1のパーセント発現として、図13(大脳)及び図14(海馬)に示す。
[Evaluation Example 8] Sod1 knockdown effect of siRNA in mice P24791052, P24791054, P24791055 and P24791056 (4.0 nmol each) were dissolved in 10 μl of physiological saline (Otsuka saline injection, Otsuka Pharmaceutical Factory) to prepare various nucleic acid agents. C57BL/6J mice (male, 6 weeks old, Jackson Laboratory Japan Co., Ltd.) were fixed in a brain stereotaxic apparatus under 2.5-4% isoflurane anesthesia. Then, the skin was incised 2-3 cm anterior-posterior between the ears, and a hole was made 1 mm to the right and 0.5 mm posterior to the bregma with a 1 mm diameter drill. Various nucleic acid agents or physiological saline as a negative control were filled in a Hamilton syringe. A needle was inserted about 2 mm into the perforated area, and 10 μl of the solution per mouse was administered into the right lateral ventricle at a rate of 10 μl/min, and the skin was sutured with nylon thread. Two weeks later, the mice were dissected to remove the cerebrum and hippocampus. RNA was isolated using MagMAX® mirVana® Total RNA Isolation Kit (Thermo Fisher Scientific), and then the expression level of the mouse Sod1 gene was measured by quantitative real-time PCR using One Step PrimeScript® III RT-qPCR Mix (Takara Bio) and TaqMan® Gene Expression Assays (Thermo Fisher Scientific). In real-time PCR, the amount of mRNA of the housekeeping gene Tbp (TATA binding protein) was also quantified at the same time, and the amount of Sod1 mRNA relative to the amount of Tbp mRNA was evaluated as the expression level of Sod1. The results are shown in Figure 13 (cerebrum) and Figure 14 (hippocampus) as the percentage expression of Sod1 relative to the negative control (vehicle).

 図13及び14から明らかなように、P24791054、P24791055及びP24791056はP24791052に比べ、大脳(Cerebrum)及び海馬(Hippocampus)においてSod1の高い発現抑制効果を示した。 As is clear from Figures 13 and 14, P24791054, P24791055, and P24791056 showed a higher inhibitory effect on Sod1 expression in the cerebrum and hippocampus than P24791052.

 P22790171、P23790244、P23790458、P23790459、P23790460、P24791053、P24791054、P24791055は、動物実験(in vivo 試験)への外挿性の高いFree-Uptake条件において、標的RNAのノックダウン活性向上を示した(評価例1、2、5、7)。 P22790171, P23790244, P23790458, P23790459, P23790460, P24791053, P24791054, and P24791055 demonstrated improved knockdown activity of target RNA under Free-Uptake conditions, which are highly applicable to animal experiments (in vivo testing) (Evaluation Examples 1, 2, 5, and 7).

 本発明の脂質結合オリゴヌクレオチドは、肝臓と共に、心臓、筋肉、肺等の肝臓以外の臓器に対しても、薬理効果の増強が確認できた。したがって、本発明の脂質部分は、種々のオリゴヌクレオチドの送達手段として期待できる。 The lipid-bound oligonucleotide of the present invention has been confirmed to have enhanced pharmacological effects not only on the liver, but also on organs other than the liver, such as the heart, muscles, and lungs. Therefore, the lipid portion of the present invention is expected to be a means of delivering various oligonucleotides.

Claims (31)

 下記一般式(I)で表される、脂質結合オリゴヌクレオチド又はその複合体。
Figure JPOXMLDOC01-appb-C000001

(式中、
Wは、オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体に由来する基であり、
Lは、置換された若しくは置換されていないC1-10アルキレン基又は置換された若しくは置換されていないポリC1-10アルキレングリコールに由来する2価の基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよい。)
A lipid-linked oligonucleotide or a complex thereof, represented by the following general formula (I):
Figure JPOXMLDOC01-appb-C000001

(Wherein,
W is a group derived from an oligonucleotide compound or an oligonucleotide conjugate;
L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol,
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.
 前記R及びRが、それぞれ独立に、置換されていないC5-32アルキル基、又は置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよい、請求項1に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-bound oligonucleotide or its complex according to claim 1, wherein R 1 and R 2 are each independently an unsubstituted C 5-32 alkyl group or an unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring.  前記R及びRが、それぞれ独立に、置換されていないC5-32アルキル基、又は置換されていないC5-32アルケニル基である、請求項1又は2に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-bound oligonucleotide or its complex according to claim 1 or 2, wherein R 1 and R 2 are each independently an unsubstituted C 5-32 alkyl group or an unsubstituted C 5-32 alkenyl group.  前記R及びRが、それぞれ独立に、置換されていないC10-20アルキル基である、請求項1~3のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-linked oligonucleotide or its complex according to any one of claims 1 to 3, wherein R 1 and R 2 are each independently an unsubstituted C 10-20 alkyl group.  前記R及びRが、置換されていないC14アルキル基である、請求項1~4のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-linked oligonucleotide or its complex according to any one of claims 1 to 4, wherein R 1 and R 2 are unsubstituted C 14 alkyl groups.  前記Lが、置換されていないC1-10アルキレン基である、請求項1~5のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-linked oligonucleotide or a complex thereof according to any one of claims 1 to 5, wherein said L is an unsubstituted C 1-10 alkylene group.  前記Lが、置換されていないCアルキレン基である、請求項1~6のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体。 The lipid-linked oligonucleotide or its complex according to any one of claims 1 to 6, wherein L is an unsubstituted C6 alkylene group.  前記オリゴヌクレオチド化合物が、ギャップマー型アンチセンスオリゴヌクレオチドである、請求項1~7のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 1 to 7, wherein the oligonucleotide compound is a gapmer-type antisense oligonucleotide.  前記ギャップマー型アンチセンスオリゴヌクレオチドが、2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む、請求項8に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide of claim 8, wherein the gapmer-type antisense oligonucleotide comprises at least one selected from the group consisting of 2'-modified nucleosides and 2'-4'-bridged nucleosides.  前記ギャップマー型アンチセンスオリゴヌクレオチドが、少なくとも4個の連続するデオキシリボヌクレオシドを含む、請求項8又は9に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide of claim 8 or 9, wherein the gapmer-type antisense oligonucleotide comprises at least four consecutive deoxyribonucleosides.  前記ギャップマー型アンチセンスオリゴヌクレオチドが13~25個のヌクレオシドからなる、請求項8~10のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 8 to 10, wherein the gapmer-type antisense oligonucleotide is composed of 13 to 25 nucleosides.  Lが、前記ギャップマー型アンチセンスオリゴヌクレオチドの5′末端に結合している、請求項8~11のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 8 to 11, wherein L is bound to the 5' end of the gapmer-type antisense oligonucleotide.  前記オリゴヌクレオチド化合物が、ミックスマー型アンチセンスオリゴヌクレオチドである、請求項1~7のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 1 to 7, wherein the oligonucleotide compound is a mixmer-type antisense oligonucleotide.  前記ミックスマー型アンチセンスオリゴヌクレオチドが、2′修飾ヌクレオシド及び2′-4′-架橋ヌクレオシドからなる群から選択される少なくとも1つを含む、請求項13に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to claim 13, wherein the mixmer-type antisense oligonucleotide comprises at least one selected from the group consisting of 2'-modified nucleosides and 2'-4'-bridged nucleosides.  前記ミックスマー型アンチセンスオリゴヌクレオチドが、1~20個の糖修飾ヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドと1~3個のデオキシリボヌクレオシドからなるヌクレオシド又はオリゴヌクレオチドとが交互に連結されたオリゴヌクレオチド、又はヌクレオシドとして糖修飾ヌクレオシドのみから構成されるオリゴヌクレオチドである、請求項13又は14に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to claim 13 or 14, wherein the mixmer-type antisense oligonucleotide is an oligonucleotide in which nucleosides or oligonucleotides consisting of 1 to 20 sugar-modified nucleosides and nucleosides or oligonucleotides consisting of 1 to 3 deoxyribonucleosides are alternately linked, or an oligonucleotide consisting only of sugar-modified nucleosides as nucleosides.  前記ミックスマー型アンチセンスオリゴヌクレオチドが13~25個のヌクレオシドからなる、請求項13~15のいずれか一項に記載のオリゴヌクレオチド化合物。 The oligonucleotide compound according to any one of claims 13 to 15, wherein the mixmer-type antisense oligonucleotide consists of 13 to 25 nucleosides.  Lが、前記ミックスマー型アンチセンスオリゴヌクレオチドの5′末端に結合している、請求項13~16のいずれか一項に記載の脂質結合オリゴヌクレオチド化合物。 The lipid-linked oligonucleotide compound according to any one of claims 13 to 16, wherein L is bound to the 5' end of the mixmer-type antisense oligonucleotide.  前記オリゴヌクレオチド複合体が、第一オリゴヌクレオチドと第二オリゴヌクレオチドとを含む二本鎖オリゴヌクレオチド複合体であって、
第一オリゴヌクレオチドは7~100個のヌクレオシドからなるギャップマー型アンチセンスオリゴヌクレオチド又はミックスマー型アンチセンスオリゴヌクレオチドであり、
第二オリゴヌクレオチドは、第一オリゴヌクレオチドの少なくとも一部とのハイブリダイズを可能とする配列を含み、デオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドから独立して選択される4~100個のヌクレオシドからなり、且つ、第一オリゴヌクレオチド又は第二オリゴヌクレオチドがLに結合しており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドとがハイブリダイズする、請求項1~7のいずれか一項に記載の複合体。
the oligonucleotide complex being a double-stranded oligonucleotide complex comprising a first oligonucleotide and a second oligonucleotide,
the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L;
The complex of any one of claims 1 to 7, wherein the first oligonucleotide and the second oligonucleotide hybridize.
 前記第二オリゴヌクレオチドが、少なくとも4個の連続するリボヌクレオシドを含む、請求項18に記載の複合体。 The complex of claim 18, wherein the second oligonucleotide comprises at least four consecutive ribonucleosides.  Lが、前記第二オリゴヌクレオチドの5′末端に結合している、請求項18又は19に記載の複合体。 20. The complex of claim 18 or 19, wherein L is attached to the 5' end of the second oligonucleotide.  前記オリゴヌクレオチド化合物が、第一オリゴヌクレオチドと第二オリゴヌクレオチドとを含み、
第一オリゴヌクレオチドは7~100個のヌクレオシドからなるギャップマー型アンチセンスオリゴヌクレオチド又はミックスマー型アンチセンスオリゴヌクレオチドであり、
第二オリゴヌクレオチドは、第一オリゴヌクレオチドの少なくとも一部とのハイブリダイズを可能とする配列を含み、デオキシリボヌクレオシド、リボヌクレオシド及び糖修飾ヌクレオシドから独立して選択される4~100個のヌクレオシドからなり、且つ、第一オリゴヌクレオチド又は第二オリゴヌクレオチドがLに結合しており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドが連結されており、
第一オリゴヌクレオチドと第二オリゴヌクレオチドがハイブリダイズする、請求項1~7のいずれか一項に記載の脂質結合オリゴヌクレオチド。
the oligonucleotide compound comprises a first oligonucleotide and a second oligonucleotide;
the first oligonucleotide is a gapmer-type antisense oligonucleotide or a mixmer-type antisense oligonucleotide consisting of 7 to 100 nucleosides;
the second oligonucleotide comprises a sequence capable of hybridizing to at least a portion of the first oligonucleotide, and is composed of 4 to 100 nucleosides independently selected from deoxyribonucleosides, ribonucleosides, and sugar-modified nucleosides, and the first oligonucleotide or the second oligonucleotide is bound to L;
a first oligonucleotide and a second oligonucleotide are linked together;
The lipid-linked oligonucleotide according to any one of claims 1 to 7, wherein the first oligonucleotide and the second oligonucleotide hybridize.
 前記第二オリゴヌクレオチドが、少なくとも4個の連続するリボヌクレオシドを含む、請求項21に記載の脂質結合オリゴヌクレオチド。 22. The lipid-linked oligonucleotide of claim 21, wherein the second oligonucleotide comprises at least four consecutive ribonucleosides.  Lが、前記第二オリゴヌクレオチドの5′末端に結合している、請求項21又は22に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide of claim 21 or 22, wherein L is attached to the 5' end of the second oligonucleotide.  前記オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体が、siRNA、アプタマー及びリボザイムから選択される、請求項1~7のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 1 to 7, wherein the oligonucleotide compound or oligonucleotide complex is selected from siRNA, aptamers and ribozymes.  前記オリゴヌクレオチド化合物又はオリゴヌクレオチド複合体が、siRNAである、請求項1~7及び24のいずれか一項に記載の脂質結合オリゴヌクレオチド。 The lipid-linked oligonucleotide according to any one of claims 1 to 7 and 24, wherein the oligonucleotide compound or oligonucleotide complex is an siRNA.  請求項1~25のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体と、薬理学上許容される担体とを含む、医薬組成物。 A pharmaceutical composition comprising the lipid-linked oligonucleotide or complex thereof according to any one of claims 1 to 25 and a pharmacologically acceptable carrier.  請求項1~25のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体と細胞とを接触させる工程を含む、標的RNAの機能を制御する方法。 A method for controlling the function of a target RNA, comprising a step of contacting a cell with the lipid-linked oligonucleotide or a complex thereof according to any one of claims 1 to 25.  請求項26に記載の医薬組成物を哺乳動物に投与する工程を含む、該哺乳動物おける標的RNAの機能を制御する方法。 A method for regulating the function of a target RNA in a mammal, comprising administering to the mammal the pharmaceutical composition according to claim 26.  請求項1~25のいずれか一項に記載の脂質結合オリゴヌクレオチド又はその複合体と細胞とを接触させる工程を含む、標的遺伝子の発現を制御する方法。 A method for controlling expression of a target gene, comprising a step of contacting a cell with the lipid-bound oligonucleotide or a complex thereof according to any one of claims 1 to 25.  請求項26に記載の医薬組成物を哺乳動物に投与する工程を含む、該哺乳動物おける標的遺伝子の発現を制御する方法。 A method for controlling expression of a target gene in a mammal, comprising administering to the mammal the pharmaceutical composition according to claim 26.  下記式(II)で表される化合物。
Figure JPOXMLDOC01-appb-C000002

(式中、
Lは、置換された若しくは置換されていないC1-10アルキレン基又は置換された若しくは置換されていないポリC1-10アルキレングリコールに由来する2価の基であり、
及びRは、それぞれ独立に、置換された若しくは置換されていないC5-32アルキル基、又は置換された若しくは置換されていないC5-32アルケニル基であるか、あるいはR及びRは、互いに結合して環を形成していてもよく、
は、それぞれ独立に、C1-10アルキル基であるか、あるいはRの2つのアルキル基は、互いに結合して環を形成していてもよく、
は、2-シアノエチル基である。)。
A compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000002

(Wherein,
L is a divalent group derived from a substituted or unsubstituted C 1-10 alkylene group or a substituted or unsubstituted poly C 1-10 alkylene glycol;
R 1 and R 2 are each independently a substituted or unsubstituted C 5-32 alkyl group, or a substituted or unsubstituted C 5-32 alkenyl group, or R 1 and R 2 may be bonded to each other to form a ring;
Each R 3 is independently a C 1-10 alkyl group, or the two alkyl groups of R 3 may be bonded to each other to form a ring;
R4 is a 2-cyanoethyl group.
PCT/JP2024/021728 2023-06-16 2024-06-14 Lipid-binding oligonucleotide or complex thereof WO2024257861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023099122 2023-06-16
JP2023-099122 2023-06-16

Publications (1)

Publication Number Publication Date
WO2024257861A1 true WO2024257861A1 (en) 2024-12-19

Family

ID=93852228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/021728 WO2024257861A1 (en) 2023-06-16 2024-06-14 Lipid-binding oligonucleotide or complex thereof

Country Status (1)

Country Link
WO (1) WO2024257861A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503957A (en) * 1989-03-07 1992-07-16 ジェネンテク,インコーポレイテッド Covalent conjugates of lipids and oligonucleotides
JP2007504830A (en) * 2003-09-09 2007-03-08 ジェロン・コーポレーション Modified oligonucleotides for telomerase inhibition
JP2018528783A (en) * 2015-09-25 2018-10-04 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Conjugate antisense compounds and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503957A (en) * 1989-03-07 1992-07-16 ジェネンテク,インコーポレイテッド Covalent conjugates of lipids and oligonucleotides
JP2007504830A (en) * 2003-09-09 2007-03-08 ジェロン・コーポレーション Modified oligonucleotides for telomerase inhibition
JP2018528783A (en) * 2015-09-25 2018-10-04 アイオーニス ファーマシューティカルズ, インコーポレーテッドIonis Pharmaceuticals,Inc. Conjugate antisense compounds and uses thereof

Similar Documents

Publication Publication Date Title
US20240117347A1 (en) Oligonucleotide compositions and methods thereof
JP4584986B2 (en) Single-stranded and double-stranded oligonucleotides containing 2-arylpropyl moieties
JP2022106928A (en) Compositions comprising reversibly modified oligonucleotides and uses thereof
JP5995855B2 (en) Base-modified oligonucleotide
DK2958998T3 (en) SHORT INTERFERATING NUCLEIC ACID (SINA) MOLECULES CONTAINING A 2&#39;-INTERNUCLEOSIDE BOND
JP2008504840A (en) Oligonucleotides containing non-phosphate backbone bonds
JP7348922B2 (en) Nucleic acid molecules for reducing PAPD5 and PAPD7 mRNA for the treatment of hepatitis B infection
MX2014011276A (en) Boronic acid conjugates of oligonucleotide analogues.
WO2019022196A1 (en) Single-stranded oligonucleotide
JP7394392B2 (en) nucleic acid complex
WO2021153747A1 (en) Antisense oligonucleotide of atn1
WO2021157730A1 (en) Nucleic acid drug and use thereof
WO2024257861A1 (en) Lipid-binding oligonucleotide or complex thereof
JP6826984B2 (en) Acyl-amino-LNA oligonucleotides and / or hydrocarbyl-amino-LNA oligonucleotides
WO2024175013A1 (en) Nucleotide analog, and preparation method therefor and use thereof
WO2022211129A1 (en) Antisense oligonucleotide derivative for atn1
WO2025047953A1 (en) ANTISENSE OLIGONUCLEOTIDE OF RasGRP4
CN117645995A (en) SiRNA for inhibiting expression of asialoglycoprotein receptor gene, conjugate, pharmaceutical composition and application thereof
CN118421622A (en) SiRNA for inhibiting angiopoietin-like protein 8 gene expression, conjugate, pharmaceutical composition and application thereof
CN117412773A (en) Ligand binding nucleic acid complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24823474

Country of ref document: EP

Kind code of ref document: A1