WO2024257636A1 - Electrical circuit body and power conversion device - Google Patents
Electrical circuit body and power conversion device Download PDFInfo
- Publication number
- WO2024257636A1 WO2024257636A1 PCT/JP2024/020198 JP2024020198W WO2024257636A1 WO 2024257636 A1 WO2024257636 A1 WO 2024257636A1 JP 2024020198 W JP2024020198 W JP 2024020198W WO 2024257636 A1 WO2024257636 A1 WO 2024257636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric circuit
- circuit body
- conductor
- insulating sheet
- intermediate conductor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 24
- 239000004020 conductor Substances 0.000 claims abstract description 129
- 239000004065 semiconductor Substances 0.000 claims abstract description 84
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 239000000919 ceramic Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 abstract description 17
- 239000003990 capacitor Substances 0.000 description 12
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 9
- 230000017525 heat dissipation Effects 0.000 description 8
- 239000003566 sealing material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to an electric circuit and a power conversion device.
- Power conversion devices which convert between DC and AC power by the switching operation of semiconductor elements, have a high conversion efficiency and are therefore widely used in consumer, automotive, railway and substation equipment.
- Power conversion devices are configured by incorporating an electric circuit body that operates as an inverter and includes a cooling member that cools the heat generated by the semiconductor elements and an insulating sheet that is placed between the semiconductor elements and the cooling member.
- Electric circuits used as inverters are required to be compact and lightweight, and also to have improved insulation reliability in order to meet the demand for higher voltages.
- Patent Document 1 discloses a power module that includes a first power semiconductor element on the upper arm side and a second power semiconductor element on the lower arm side, a first conductor portion that transmits AC current, a second conductor portion that transmits DC current, a conductive heat dissipation portion, a first intermediate conductor layer that is arranged between the first conductor portion and the heat dissipation portion via an insulating layer, and a second intermediate conductor layer that is arranged between the second conductor portion and the heat dissipation portion via an insulating layer, the second intermediate conductor layer being configured separately from the first intermediate conductor layer, and the first intermediate conductor layer forming a capacitive circuit that shares the voltage between the first conductor portion and the heat dissipation portion.
- Patent Document 1 The device described in Patent Document 1 had problems with insulation reliability when considering high voltages.
- the electric circuit according to the present invention comprises a conductor plate to which a semiconductor element is bonded, a cooling member disposed opposite the conductor plate for cooling heat generated by the semiconductor element, and an insulating sheet disposed between the conductor plate and the cooling member, the insulating sheet incorporating an intermediate conductor facing the conductor plate, the intermediate conductor being divided into a plurality of pieces and disposed on the conductor plate corresponding to one of the semiconductor elements, and forming an electrical capacitance electrically parallel to the conductor plate.
- the present invention improves the insulation reliability of the electrical circuit.
- FIG. 2 is a cross-sectional view of the electric circuit body taken along line XX. 4 is a cross-sectional view of the electric circuit body taken along line YY.
- FIG. FIG. 2 is a semi-transparent plan view of a semiconductor module.
- FIG. 2 is a circuit diagram of a semiconductor module.
- FIG. 11 is an enlarged cross-sectional view of an electric circuit body according to a first modified example.
- FIG. 11 is a plan view of an insulating sheet in Modification 2.
- FIG. 13 is a plan view of an insulating sheet in Modification 3.
- FIG. 13 is a plan view of an insulating sheet in Modification 4.
- FIG. 13 is an enlarged cross-sectional view of an electric circuit body according to Modification 5.
- 1 is a circuit diagram of a power conversion device using a semiconductor module.
- FIG. 2 is an external perspective view of the power conversion device.
- 1 is a cross-sectional perspective view of the power conversion device taken along line XV-X
- FIG. 1 is a plan view of an electric circuit body 400 according to an embodiment of the present invention.
- the electric circuit body 400 includes the semiconductor modules 300 and a cooling member 340.
- the electric circuit body 400 includes three semiconductor modules 300 arranged in parallel.
- the semiconductor module 300 incorporates the semiconductor elements 155 and 157, which are sealed with a sealing material 360. Both sides of the semiconductor module 300 dissipate heat generated by the switching operation of the semiconductor elements 155 and 157. Furthermore, the terminals connected to the semiconductor elements 155 and 157 of the semiconductor module 300 are led out from the sealing material 360 on the side of the semiconductor module 300. These terminals are power terminals through which a large current flows, such as the positive terminal 325P and the negative terminal 325M connected to the capacitor module 500 (see FIG. 12) of the DC circuit, and the AC terminal 325A connected to the motor generators 192 and 194 (see FIG. 12) of the AC circuit.
- the semiconductor elements 155 and 157 can be switching elements such as IGBTs (insulated gate bipolar transistors) and MOSFETs (metal oxide semiconductor field effect transistors).
- the terminals extending from the sealing material 360 on the side of the semiconductor module 300 are the lower arm gate terminal 325L, the collector sense terminal 325C, the emitter sense terminal 325E, the upper arm gate terminal 325U, and other terminals. These terminals extending from the semiconductor module 300 are connected to wiring such as a wiring pattern on a substrate (not shown).
- An electric circuit body 400 having three semiconductor modules 300 arranged in parallel functions as a power conversion device 200 (see FIG. 12) that converts DC power and AC power mutually by the switching operation of the semiconductor elements 155, 157.
- the number of semiconductor modules 300 included in the electric circuit body 400 is not limited to three, and can be set arbitrarily according to various forms of the electric circuit body 400.
- the cooling member 340 is disposed opposite the semiconductor module 300, and cools the heat generated by the switching operation of the semiconductor elements 155, 157. Specifically, the cooling member 340 has a flow path formed therein through which a refrigerant flows, and the refrigerant flowing through the flow path cools the heat generated by the semiconductor elements 155, 157.
- the refrigerant used may be water or an antifreeze solution made by mixing ethylene glycol into water.
- the cooling member 340 is preferably made of aluminum, which has high thermal conductivity and is lightweight.
- FIGS. 2 and 3 are cross-sectional views of the electric circuit body 400.
- FIG. 2 is a cross-sectional view of the electric circuit body 400 shown in FIG. 1 taken along line X-X.
- FIG. 3 is a cross-sectional view of one semiconductor module 300 taken along line Y-Y of the electric circuit body 400 shown in FIG. 1.
- the power conversion device 200 includes an active element 155 and a diode 156 as first semiconductor elements forming the upper arm circuit (see FIGS. 5 and 6 described below).
- the active element may be made of Si, SiC, GaN, GaO, C, or the like.
- a separate diode may be omitted.
- the collector side of the first semiconductor element 155 is bonded to a second conductor plate 431. This bonding may be performed using solder or sintered metal.
- the first conductor plate 430 is bonded to the emitter side of the first semiconductor element 155.
- the second semiconductor element forming the lower arm circuit includes an active element 157 and a diode 158 (see Figures 5 and 6 described below).
- the collector side of the second semiconductor element 157 is bonded to the fourth conductor plate 433.
- the third conductor plate 432 is bonded to the emitter side of the second semiconductor element 157.
- the conductive plates 430, 431, 432, and 433 are not particularly limited as long as they are made of a material with high electrical conductivity and thermal conductivity, but it is preferable to use metallic materials such as copper-based or aluminum-based materials, or composite materials of metallic materials and diamond, carbon, ceramic, or other materials with high thermal conductivity. These may be used alone, or may be plated with Ni, Ag, or the like to improve adhesion to solder or sintered metal.
- the conductor plates 430, 431, 432, and 433 also serve as heat transfer members that transfer heat generated by the semiconductor elements 155, 156, 157, and 158 to the cooling member 340.
- the surfaces opposite to the surfaces joined to the semiconductor elements 155, 156, 157, and 158 are the heat dissipation surfaces of the conductor plates 430, 431, 432, and 433. Since the conductor plates 430, 431, 432, and 433 and the cooling member 340 have different potentials, an insulating sheet 443 is placed between the heat dissipation surfaces.
- the insulating sheet 443 is intended to prevent current from passing from the conductor plates 430, 431, 432, and 433 to the cooling member 340 and the like, and to provide electrical insulation.
- the insulating sheet 443 is the part that forms the main insulation of the semiconductor module 300 in the power conversion device 200.
- Insulating sheet 443 covers conductor plates 430, 431, 432, and 433 on one side and is adhered to the heat dissipation surface of conductor plates 430, 431, 432, and 433.
- Insulating sheet 443 can be made of either organic or inorganic material as long as it can ensure the required insulation. Generally, insulating sheet 443 is called a resin insulating layer and is often made of epoxy resin, but ceramic may also be used. Insulating sheet 443 made of ceramic is manufactured by firing a green sheet in the same manner as ceramic capacitors, for example, and inserting a sheet-shaped electrode as intermediate conductor 440. By using ceramic, thermal degradation is less likely to occur even if partial discharge occurs. Insulating sheet 443 may contain filler particles to improve thermal conductivity.
- the insulating sheet 443 incorporates an intermediate conductor 440 that faces the conductor plates 430, 431, 432, and 433, and the intermediate conductor 440 is divided into multiple conductor plates 430, 431, 432, and 433 that correspond to one of the semiconductor elements 155, 157, and forms an electrical capacitance that is electrically parallel to the conductor plates 430, 431, 432, and 433.
- a surface conductor layer 444 is attached to the other surface of the insulating sheet 443, is exposed on the surface of the semiconductor module 300, and is in contact with the heat conductive member 453.
- the surface conductor layer 444 is, for example, a metal foil.
- the semiconductor elements 155, 156, 157, 158, conductor plates 430, 431, 432, 433, along with the insulating sheet 443 and the surface conductor layer 444, are sealed with sealing material 360 by transfer molding to form the semiconductor module 300.
- the sealing material 360 is often an epoxy resin, but any type of sealing material may be used as long as it has insulating properties.
- the cooling members 340 are arranged on both sides of the semiconductor module 300 and are fixed to the semiconductor module 300 by fixing members not shown. Note that, in this embodiment, the electric circuit body 400 in which the cooling members 340 are arranged on both sides of the semiconductor module 300 is described, but the electric circuit body 400 in which the cooling members 340 are arranged on one side of the semiconductor module 300 may also be used. In this case, a housing or mounting member is arranged on the other side of the semiconductor module 300, and the other side of the semiconductor module 300 is fixed to this housing or mounting member by fixing members.
- the thermal conductive member 453 is disposed between the semiconductor module 300 and the cooling member 340 to reduce contact thermal resistance.
- the thermal conductive member 453 may be made of grease, gel grease, a phase change sheet, or the like.
- FIG. 4 is an enlarged cross-sectional view of the electrical circuit body 400, showing part A of FIG.
- the insulating sheet 443 incorporates an intermediate conductor 440 facing the conductive plate 433.
- the conductive plate 433 corresponds to the semiconductor element 157 (see Fig. 3).
- the intermediate conductor 440 is divided into a plurality of pieces and disposed relative to the conductive plate 433.
- the intermediate conductor 440 divided into a plurality of pieces forms an electric capacitance that is electrically parallel with the conductive plate 433.
- the thickness of the insulating sheet 443 is set so that the distance between the intermediate conductor 440 and the conductive plates 430, 432 or the cooling member 340 sandwiching the insulating sheet 443 does not cause partial discharge during normal operation.
- the portion P where the insulating sheet 443, the sealing material 360, and the conductor plate 433 contact is generally called a triple point from an electrical standpoint.
- This triple point is the boundary between materials with different dielectric constants, so potential concentration is likely to occur at the triple point, and it is therefore necessary to improve the insulation reliability.
- the triple point is prone to voids, cracks, peeling, and other voids due to the application of mechanical force, so it is necessary to improve the insulation reliability.
- peeling is likely to occur due to thermal stress and other factors when the power conversion device 200 is in operation, so it is necessary to improve the insulation reliability.
- the insulating sheet 443 incorporates a conductive intermediate conductor 440, so even if a void occurs in the insulating sheet 443 and potential concentrates due to its low dielectric constant, the intermediate conductor 2 can share the potential concentration in the voids, etc. It is desirable that the area of the intermediate conductor 440 in the cross section of the insulating sheet 443 is 20% or more.
- the intermediate conductor 440 is divided into multiple pieces of the same width and arranged at equal intervals within the insulating sheet 443.
- the width and intervals at which the intermediate conductor 440 is divided and arranged are merely examples, and can be determined as appropriate depending on the structure, configuration, and electrical characteristics of the semiconductor module 300.
- the intermediate conductor 440 may be configured to be divided into multiple pieces and arranged at least in the area facing the end of the conductor plate 433.
- the intermediate conductor 440 of the insulating sheet 443 is divided into multiple pieces, so even if the intermediate conductor 440 divided by a void or the like is partially short-circuited, the entire intermediate conductor 440 does not become at the same potential, and the concentration of potential in the intermediate conductor 440 other than the short-circuited portion can be suppressed.
- the concentration of potential on the entire intermediate conductor 440 can be suppressed, and insulation reliability can be improved.
- the heat dissipation of the semiconductor module 300 can be improved and the size can be reduced by thinning the insulating sheet 443 depending on the voltage value of the drive voltage. This in turn improves the insulation performance of the power conversion device 200, contributing to an increase in the output density of the power conversion device 200.
- the insulation reliability can be improved by dividing the intermediate conductor 440 into multiple pieces and arranging them in this region.
- FIG. 5 is a semi-transparent plan view of semiconductor module 300.
- FIG. 6 is a circuit diagram of semiconductor module 300.
- the positive terminal 325P is output from the collector side of the upper arm circuit and is connected to the positive side of a battery or a capacitor.
- the upper arm gate terminal 325U is output from the gate of the active element 155 of the upper arm circuit.
- the negative terminal 325M is output from the emitter side of the lower arm circuit and is connected to the negative side of a battery or a capacitor, or GND.
- the lower arm gate terminal 325L is output from the gate of the active element 157 of the lower arm circuit.
- the AC terminal 325A is output from the collector side of the lower arm circuit and is connected to the motor. When the neutral point is grounded, the lower arm circuit is connected to the negative side of the capacitor instead of GND.
- the emitter sense terminal 325E of the upper arm is output from the emitter of the active element 155 of the upper arm circuit
- the emitter sense terminal 325E of the lower arm is output from the emitter of the active element 157 of the lower arm circuit.
- the collector sense terminal 325C of the upper arm is output from the collector of the active element 155 of the upper arm circuit
- the collector sense terminal 325C of the lower arm is output from the collector of the active element 157 of the lower arm circuit.
- conductor plates (upper arm circuit emitter side) 430 and conductor plates (upper arm circuit collector side) 431 are arranged above and below active element 155 and diode 156 of the semiconductor element (upper arm circuit).
- Conductor plates (lower arm circuit emitter side) 432 and conductor plates (lower arm circuit collector side) 433 are arranged above and below active element 157 and diode 158 of the semiconductor element (lower arm circuit).
- the semiconductor module 300 of this embodiment has a 2-in-1 structure in which two arm circuits, an upper arm circuit and a lower arm circuit, are integrated into one module.
- a structure in which multiple upper arm circuits and lower arm circuits are integrated into one module may be used. In this case, the number of output terminals from the semiconductor module 300 can be reduced, making it smaller.
- FIG. 7 is an enlarged cross-sectional view of the electric circuit body 400 in the first modification, and like FIG. 4, corresponds to part A in FIG. 3.
- the same parts as in FIG. 4 are given the same reference numerals and will be described briefly.
- the intermediate conductor 440 is divided into multiple pieces of the same width within the insulating sheet 443 and arranged at equal intervals.
- the number of divisions of the intermediate conductor 440 is greater in the area facing the end of the conductor plate 433 than in the area facing the center of the conductor plate 433.
- the area of the insulating sheet 443 facing the end of the conductor plate 433 is prone to peeling due to thermal stress when the power conversion device 200 is in operation, but by increasing the number of divisions of the intermediate conductor 440 in this area, the insulation reliability can be improved.
- FIG. 8 is a plan view of insulating sheet 443 in variant 2. Intermediate conductor 440 in insulating sheet 443 is shown with diagonal shading, and the periphery of the ends of conductor plates 430, 432 is shown with dashed lines. Note that although the shapes are not the same as those of insulating sheet 443 and conductor plates 430, 432 shown in the semi-transparent plan view of FIG. 5, they are illustrated diagrammatically in FIG. 8 and in FIG. 9 and FIG. 10 shown below for ease of understanding.
- the divided intermediate conductors 440 with smaller areas are arranged in the portions of the insulating sheet 443 that are located around the ends of the conductor plates 430 and 432. Furthermore, the divided intermediate conductors 440 with smaller areas are arranged in the portions of the insulating sheet 443 that are located around the ends.
- the entire intermediate conductor 440 does not become at the same potential, and it is possible to suppress the concentration of potential on the intermediate conductor 440 other than the short-circuited portion.
- FIG. 9 is a plan view of an insulating sheet 443 in Modification 3.
- An intermediate conductor 440 in the insulating sheet 443 is indicated by hatching, and the periphery of the ends of the conductor plates 430 and 432 is indicated by dashed lines.
- the intermediate conductor 440 of the insulating sheet 443 is divided into a spherical lattice shape.
- the area of the spherical shape is smaller than the area of the regions of the conductor plates 430 and 432, and is appropriately determined according to the structure, configuration, and electrical characteristics of the semiconductor module 300.
- the divided intermediate conductors 440 are appropriately arranged in the portions located around the ends of the conductor plates 430 and 432.
- the shape is not limited to a spherical shape, and may be an ellipse, a semicircle, or other shape, or these shapes may be mixed. Furthermore, regardless of whether the shapes are the same or different, the areas of the divided intermediate conductors 440 may be the same or different.
- Variation 3 eliminates the need to design the division position and area of the intermediate conductor 440 according to the positions of the conductor plates 430 and 432. In addition, insulation reliability can be improved.
- FIG. 10 is a plan view of an insulating sheet 443 in Modification 4.
- the intermediate conductor 440 in the insulating sheet 443 is indicated by hatching, and the periphery of the ends of the conductor plates 430 and 432 is indicated by dashed lines.
- the intermediate conductor 440 of the insulating sheet 443 is divided into a diamond-shaped lattice.
- the area of the diamond shape is smaller than the area of the conductive plates 430 and 432, and is appropriately determined according to the structure, configuration, and electrical characteristics of the semiconductor module 300.
- the divided intermediate conductors 440 are appropriately arranged in the portions located around the ends of the conductive plates 430 and 432.
- the shape is not limited to a diamond shape, and may be a triangle, a rectangle, or another polygon, or these shapes may be mixed. Furthermore, the areas of the divided intermediate conductors 440 may be the same or different, regardless of whether they are the same shape or different shapes.
- Variation 4 eliminates the need to design the division position and area of the intermediate conductor 440 according to the positions of the conductor plates 430 and 432. In addition, insulation reliability can be improved.
- FIG. 11 is an enlarged cross-sectional view of the electric circuit body 400 in the fifth modified example, and like FIG. 7, corresponds to part A in FIG. 3.
- the same parts as in FIG. 7 are given the same reference numerals and will be described briefly.
- the insulating sheet 443 has one intermediate conductor 440 embedded in the thickness direction of the insulating sheet 443.
- the insulating sheet 443 has two intermediate conductors 440 embedded in the thickness direction of the insulating sheet 443.
- the number of intermediate conductors is not limited to two, and multiple intermediate conductors may be provided.
- the distance between the intermediate conductor 440 and the conductive plates 430, 432 or cooling member 340 that sandwich the insulating sheet 443 is made larger than the diameter of the filler particles mixed in the insulating sheet 443.
- the potential can be shared more effectively between the intermediate conductors 440 and either the conductor plates 430, 432 sandwiching the insulating sheet 443 or the cooling member 340. This makes it possible to provide multiple protection in the event of a short circuit.
- FIG. 12 is a circuit diagram of a power conversion device 200 using a semiconductor module 300.
- the power conversion device 200 includes inverter circuit units 140 and 142, an inverter circuit unit 43 for auxiliary equipment, and a capacitor module 500.
- the inverter circuit units 140 and 142 include a plurality of semiconductor modules 300, which are connected to form a three-phase bridge circuit. When the current capacity is large, the semiconductor modules 300 are further connected in parallel, and these parallel connections are made corresponding to each phase of the three-phase inverter circuit, thereby enabling an increase in the current capacity to be accommodated.
- the active elements 155 and 157 and the diodes 156 and 158 which are semiconductor elements built into the semiconductor modules 300, can also be connected in parallel to enable an increase in the current capacity.
- Inverter circuit unit 140 and inverter circuit unit 142 have the same basic circuit configuration, and their control methods and operations are also basically the same.
- the outline of the circuit operation of inverter circuit unit 140 and the like is well known, so a detailed explanation will be omitted here.
- the upper arm circuit has an upper arm active element 155 and an upper arm diode 156 as switching semiconductor elements
- the lower arm circuit has a lower arm active element 157 and a lower arm diode 158 as switching semiconductor elements.
- the active elements 155 and 157 perform switching operations in response to drive signals output from one or the other of the two driver circuits that make up the driver circuit 174, and convert the DC power supplied from the battery 136 into three-phase AC power.
- the upper arm active element 155 and the lower arm active element 157 each have a collector electrode, an emitter electrode, and a gate electrode.
- the upper arm diode 156 and the lower arm diode 158 each have two electrodes, a cathode electrode and an anode electrode. As shown in FIG. 6, the cathode electrodes of the diodes 156 and 158 are electrically connected to the collector electrodes of the active elements 155 and 157, and the anode electrodes are electrically connected to the emitter electrodes of the active elements 155 and 157, respectively. This causes the current flow from the emitter electrode of the upper arm active element 155 and the lower arm active element 157 to the collector electrode in the forward direction.
- the active elements 155 and 157 are, for example, IGBTs.
- MOSFET may be used as the active element, in which case the upper arm diode 156 and the lower arm diode 158 are not necessary.
- the positive terminal 325P and negative terminal 325M of each upper and lower arm series circuit are each connected to a DC terminal for connecting a capacitor to the capacitor module 500.
- AC power is generated at the connection between the upper arm circuit and the lower arm circuit, and the connection between the upper arm circuit and the lower arm circuit of each upper and lower arm series circuit is connected to the AC side terminal 325A of each semiconductor module 300.
- the AC side terminal 320B of each semiconductor module 300 of each phase is each connected to the AC output terminal of the power conversion device 200, and the generated AC power is supplied to the stator winding of the motor generator 192 or 194.
- the control circuit 172 generates a timing signal for controlling the switching timing of the upper arm active element 155 and the lower arm active element 157 based on input information from the vehicle's control device and sensors (e.g., current sensor 180).
- the driver circuit 174 generates a drive signal for switching the upper arm active element 155 and the lower arm active element 157 based on the timing signal output from the control circuit 172. Note that 181 and 188 are connectors.
- the upper and lower arm series circuits include a temperature sensor (not shown), and temperature information about the upper and lower arm series circuits is input to the microcomputer.
- temperature information about the upper and lower arm series circuits is input to the microcomputer.
- voltage information about the DC positive pole side of the upper and lower arm series circuits is input to the microcomputer.
- the microcomputer performs over-temperature and over-voltage detection based on this information, and if over-temperature or over-voltage is detected, it stops the switching operation of all upper arm active elements 155 and lower arm active elements 157, protecting the upper and lower arm series circuits from over-temperature or over-voltage.
- FIG. 13 is an external perspective view of the power conversion device 200 shown in FIG. 12, and FIG. 14 is a cross-sectional perspective view of the power conversion device 200 shown in FIG. 13 taken along line XV-XV.
- the power conversion device 200 is provided with a housing 12 formed of a substantially rectangular parallelepiped shape and composed of a lower case 11 and an upper case 10.
- An electric circuit body 400, a capacitor module 500, etc. are housed inside the housing 12.
- the electric circuit body 400 has a cooling flow path that flows to the cooling member 340, and a refrigerant inlet pipe 13 and a refrigerant outlet pipe 14 that communicate with the cooling flow path protrude from one side of the housing 12.
- the upper side of the lower case 11 is open, and the upper case 10 is attached to the lower case 11 by closing the opening of the lower case 11.
- the upper case 10 and the lower case 11 are formed of an aluminum alloy or the like, and are fixed in place while being sealed from the outside.
- the upper case 10 and the lower case 11 may be integrally formed.
- a connector 17 is attached to one longitudinal side of the housing 12, and an AC terminal 18 is connected to this connector 17.
- a connector 21 is provided on the surface from which the refrigerant inlet pipe 13 and the refrigerant outlet pipe 14 are led out.
- an electric circuit body 400 is housed in the housing 12.
- a control circuit 172 and a driver circuit 174 are arranged in the electric circuit body 400, and a capacitor module 500 is housed on the DC terminal side of the electric circuit body 400.
- the AC side terminal 325A of the electric circuit body 400 is connected to the connector 188 through the current sensor 180.
- the positive side terminal 325P and the negative side terminal 325M which are the DC terminals of the semiconductor module 300, are joined to the positive and negative terminals 362A and 362B of the capacitor module 500, respectively.
- the electric circuit body 400 includes conductive plates 430, 431, 432, 433 to which the semiconductor elements 155, 156, 157, 158 are joined, a cooling member 340 that is disposed opposite the conductive plates 430, 431, 432, 433 and cools the heat generated by the semiconductor elements 155, 156, 157, 158, and an insulating sheet 340 that is disposed between the conductive plates 430, 431, 432, 433 and the cooling member 340.
- the insulating sheet 443 incorporates an intermediate conductor 440 facing the conductor plates 430, 431, 432, 433, and the intermediate conductor 440 is divided into a plurality of pieces and arranged with respect to the conductor plates 430, 431, 432, 433 corresponding to one of the semiconductor elements 155, 156, 157, 158, and forms an electric capacitance electrically parallel to the conductor plates 430, 431, 432, 433. This improves the insulation reliability of the electric circuit body.
- the present invention is not limited to the above-described embodiment, and other forms that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention, so long as they do not impair the characteristics of the present invention.
- a configuration that combines the above-described embodiment with multiple modified examples may also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inverter Devices (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、電気回路体および電力変換装置に関する。 The present invention relates to an electric circuit and a power conversion device.
半導体素子のスイッチング動作により直流電力と交流電力とを相互に変換する電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。電力変換装置は、半導体素子による発熱を冷却する冷却部材と、半導体素子と冷却部材との間に配置される絶縁シートと、を備えた電気回路体をインバータとして動作するように組み込んで構成される。インバータとして用いられる電気回路体は、小型化および軽量化が要求される他、高電圧化の要望に応えるべく絶縁信頼性の向上が求められる。 Power conversion devices, which convert between DC and AC power by the switching operation of semiconductor elements, have a high conversion efficiency and are therefore widely used in consumer, automotive, railway and substation equipment. Power conversion devices are configured by incorporating an electric circuit body that operates as an inverter and includes a cooling member that cools the heat generated by the semiconductor elements and an insulating sheet that is placed between the semiconductor elements and the cooling member. Electric circuits used as inverters are required to be compact and lightweight, and also to have improved insulation reliability in order to meet the demand for higher voltages.
特許文献1には、上アーム側の第1パワー半導体素子及び下アーム側の第2パワー半導体素子と、交流電流を伝達する第1導体部と、直流電流を伝達する第2導体部と、導電性の放熱部と、第1導体部と放熱部との間に絶縁層を介して配置される第1中間導体層と、第2導体部と放熱部との間に絶縁層を介して配置される第2中間導体層と、を備え、第2中間導体層は、第1中間導体層と分離して構成され、第1中間導体層は、第1導体部と放熱部との間の電圧を分担する容量回路を形成するパワーモジュールが開示されている。
特許文献1に記載の装置では、高電圧化を考慮した場合に、絶縁信頼性に課題があった。
The device described in
本発明による電気回路体は、半導体素子が接合された導体板と、前記導体板と対向して配置され、前記半導体素子による発熱を冷却する冷却部材と、前記導体板と前記冷却部材との間に配置される絶縁シートと、を備え、前記絶縁シートは、前記導体板と対向する中間導体を内蔵し、前記中間導体は、前記半導体素子の一つに対応する前記導体板に対して複数個に分割して配置され、前記導体板に対して電気的に並列となる電気容量を形成する。 The electric circuit according to the present invention comprises a conductor plate to which a semiconductor element is bonded, a cooling member disposed opposite the conductor plate for cooling heat generated by the semiconductor element, and an insulating sheet disposed between the conductor plate and the cooling member, the insulating sheet incorporating an intermediate conductor facing the conductor plate, the intermediate conductor being divided into a plurality of pieces and disposed on the conductor plate corresponding to one of the semiconductor elements, and forming an electrical capacitance electrically parallel to the conductor plate.
本発明によれば、電気回路体の絶縁信頼性が向上する。 The present invention improves the insulation reliability of the electrical circuit.
以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Below, an embodiment of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and some parts have been omitted or simplified as appropriate for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
図1は、本発明の実施形態における電気回路体400の平面図である。
電気回路体400は、半導体モジュール300、冷却部材340等よりなる。図1に示す例では、電気回路体400は、半導体モジュール300を3個並列に設けてなる。
FIG. 1 is a plan view of an
The
半導体モジュール300は、半導体素子155、157を封止材360により封止して、これを内蔵している。半導体モジュール300の両面は半導体素子155、157のスイッチング動作による熱を放熱する。さらに、半導体モジュール300は、半導体素子155、157と接続されている端子が半導体モジュール300の側面の封止材360より導出される。これらの端子は、直流回路のコンデンサモジュール500(図12参照)に連結する正極側端子325Pおよび負極側端子325M、交流回路のモータジェネレータ192、194(図12参照)に連結する交流側端子325A等の大電流が流れるパワー端子である。なお、半導体素子155、157は、IGBT(絶縁ゲート型バイポーラートランジスター)やMOSFET(金属酸化物半導体型電界効果トランジスタ)などのスイッチング素子を用いることができる。
The
また、半導体モジュール300の側面の封止材360より導出される端子は、下アームゲート端子325L、コレクタセンス端子325C、エミッタセンス端子325E、上アームゲート端子325Uなどの端子である。半導体モジュール300より導出されるこれらの端子は、図示省略した基板の配線パターンなどの配線に接続される。半導体モジュール300を3個並列に設けた電気回路体400は、半導体素子155、157のスイッチング動作により直流電力と交流電力を相互に変換する電力変換装置200(図12参照)として機能する。なお、電気回路体400が有する半導体モジュール300の個数は3個に限らず、電気回路体400の種々の形態に合わせて任意に設定される。
The terminals extending from the
冷却部材340は、半導体モジュール300と対向して配置され、半導体素子155、157のスイッチング動作による発熱を冷却する。具体的には、冷却部材340は、内部に冷媒が流通する流路が形成され、流路を流通する冷媒により半導体素子155、157からの発熱を冷却する。冷媒には、水や水にエチレングリコールを混入した不凍液等を用いる。冷却部材340は、熱伝導率が高く軽量なアルミ系が望ましい。
The
図2、図3は、電気回路体400の断面図である。図2は、図1に示す電気回路体400のX-X線における断面図である。図3は、図1に示す電気回路体400のY-Y線における半導体モジュール300の一個分の断面図である。
FIGS. 2 and 3 are cross-sectional views of the
図2に示すように、電力変換装置200の上アーム回路を形成する第1半導体素子として、能動素子155、ダイオード156を備える(後述の図5、図6参照)。能動素子としては、Si、SiC、GaN、GaO、C等を用いることができる。能動素子155のボディダイオードを用いる場合は、別付けのダイオードを省略してもよい。図3に示すように、第1半導体素子155のコレクタ側は、第2導体板431に接合されている。この接合には、はんだを用いてもよいし、焼結金属を用いてもよい。第1半導体素子155のエミッタ側には第1導体板430が接合されている。
As shown in FIG. 2, the
図2、図3に示すように、下アーム回路を形成する第2半導体素子として、能動素子157、ダイオード158を備える(後述の図5、図6参照)。第2半導体素子157のコレクタ側は、第4導体板433に接合されている。第2半導体素子157のエミッタ側には第3導体板432が接合されている。
As shown in Figures 2 and 3, the second semiconductor element forming the lower arm circuit includes an
導体板430、431、432、433は、電気伝導性と熱伝導率が高い材料であれば特に限定されないが、銅系又はアルミ系材料等の金属系材料や、金属系材料と高熱伝導率のダイヤモンド、カーボンやセラミック等の複合材料等を用いることが望ましい。これらは、単独で用いてもよいが、はんだや、焼結金属との接合性を高めるためNiやAg等のめっきを施してもよい。
The
導体板430、431、432、433は、電流を通電する役割の他に、半導体素子155、156、157、158が発する熱を冷却部材340に伝熱する伝熱部材としての役割をはたしている。半導体素子155、156、157、158と接合されている面と反対側の面が導体板430、431、432、433の放熱面となる。そして、導体板430、431、432、433と冷却部材340は電位が異なるため、放熱面との間に絶縁シート443を配置する。すなわち、絶縁シート443は導体板430、431、432、433から冷却部材340等へ電流が導通するのを防止し、電気的に絶縁するのが目的である。絶縁シート443は電力変換装置200において半導体モジュール300の主要な絶縁を形成する部位である。
In addition to carrying current, the
絶縁シート443は、一方面において導体板430、431、432、433を覆って導体板430、431、432、433の放熱面に接着される。絶縁シート443は、所定の絶縁性が確保できるのであれば有機物でも無機物でも適用することができる。一般的には、絶縁シート443は、樹脂絶縁層と呼ばれエポキシ樹脂であることが多いが、セラミックを用いてもよい。セラミックを用いた絶縁シート443の製作法は、例えば、セラミックコンデンサなどと同じようにグリーンシートを焼成し、中間導体440としてシート状の電極を入れる。セラミックを用いることにより部分放電が発生しても熱劣化が生じにくくなる。絶縁シート443は、熱伝導性を向上するためにフィラー粒子などを入れることがある。
絶縁シート443の詳細は後述するが、絶縁シート443は、導体板430、431、432、433と対向する中間導体440を内蔵し、中間導体440は、半導体素子155、157の一つに対応する導体板430、431、432、433にして複数個に分割して配置され、導体板430、431、432、433に対して電気的に並列となる電気容量を形成する。
絶縁シート443の他方面には、表面導体層444が接着され、半導体モジュール300の表面に露出し、熱伝導部材453と接する。表面導体層444は、例えば金属箔である。
Details of the insulating
A surface conductor layer 444 is attached to the other surface of the insulating
半導体素子155、156、157、158、導体板430、431、432、433は、絶縁シート443、表面導体層444と共に、トランスファーモールド成型により封止材360で封止され、半導体モジュール300を構成する。封止材360はエポキシ樹脂であることが多いが、絶縁性があれば種類を選ばず適用するものとする。
The
冷却部材340は、半導体モジュール300の両面に配置され、図示省略した固定部材により半導体モジュール300に固定されている。なお、本実施形態では、冷却部材340を半導体モジュール300の両面に配置した電気回路体400で説明するが、冷却部材340を半導体モジュール300の片面に配置した電気回路体400であってもよい。この場合は、半導体モジュール300の他の片面には、筐体や取り付け部材が配置され、この筐体や取り付け部材に、半導体モジュール300の他の片面が、固定部材により固定される。
The cooling
熱伝導部材453は、半導体モジュール300と冷却部材340との間に、接触熱抵抗を低減するために配置される。熱伝導部材453は、グリースや、ゲルグリース、フェーズチェンジシートなどを用いる。
The thermal conductive member 453 is disposed between the
図4は、電気回路体400の断面拡大図であり、図3のA部分を示す。
図4に示すように、絶縁シート443は、導体板433と対向する中間導体440を内蔵している。導体板433は、半導体素子157(図3参照)に対応している。中間導体440は、導体板433に対して複数個に分割して配置されている。その結果、複数個に分割された中間導体440は、導体板433との間で電気的に並列となる電気容量を形成する。なお、絶縁シート443の厚さは、中間導体440と絶縁シート443を挟む導体板430、432あるいは冷却部材340との間の距離が、通常動作時において、部分放電が発生しない厚さにする。
FIG. 4 is an enlarged cross-sectional view of the
As shown in Fig. 4, the insulating
絶縁シート443と封止材360と導体板433が接する部分Pは、電気的な観点から一般的に三重点と呼ばれる。この三重点は、比誘電率が異なる部材の境界となるため、電位集中などが発生しやすく、絶縁信頼性を高めることが要求される。また三重点は、機械的な力が加わることからもボイド、クラック、剥離などの空隙が発生しやすく、絶縁信頼性を高めることが要求される。また、三重点に限らず、導体板433の端部と対向する絶縁シート443の領域は、電力変換装置200の稼働時に熱応力などに起因した剥離等が生じやすく、絶縁信頼性を高めることが要求される。
The portion P where the insulating
絶縁シート443は、導電性の中間導体440を内蔵しているので、絶縁シート443内に空隙が発生した場合にその誘電率の低さにより電位が集中しても、中間導体2によりボイド等への電位集中を分担することができる。絶縁シート443は、絶縁シート443の断面において中間導体440が占める面積の割合が20%以上であることが望ましい。
The insulating
図4に示すように、中間導体440は、絶縁シート443内において同じ幅で複数個に分割され、同じ間隔で配置されている。なお、中間導体440の分割配置される幅や間隔は一例であり、半導体モジュール300の構造、構成、電気的特性に応じて適宜決定することができる。例えば、中間導体440は、少なくとも導体板433の端部と対向する領域において複数個に分割して配置される構成であればよい。
As shown in FIG. 4, the
絶縁シート443の中間導体440を複数個に分割しているので、仮にボイドなどにより分割された中間導体440が部分的に短絡しても中間導体440の全体が同電位にならず、短絡部以外の中間導体440への電位の集中を抑制することができる。
The
例えば、部分Pで示す三重点において、電位集中や機械的な力により、ボイド、クラック、剥離などが発生したとしても、中間導体440の全体への電位の集中を抑制でき、絶縁信頼性を高めることができる。この結果、駆動電圧の電圧値に応じて、絶縁シート443の薄肉化により半導体モジュール300の放熱性が向上し、小型化も図れる。ひいては電力変換装置200の絶縁性能が向上し、電力変換装置200の出力密度向上に寄与できる。
For example, even if voids, cracks, peeling, etc. occur at the triple junction indicated by part P due to potential concentration or mechanical force, the concentration of potential on the entire
また、三重点に限らず、導体板433の端部と対向する絶縁シート443の領域で熱応力などに起因した剥離等が発生しても、この領域で中間導体440を複数個に分割して配置することにより、絶縁信頼性を高めることができる。
In addition, even if peeling or the like due to thermal stress occurs in the region of the insulating
図5は、半導体モジュール300の半透過平面図である。図6は、半導体モジュール300の回路図である。
FIG. 5 is a semi-transparent plan view of
図5、図6に示すように、正極側端子325Pは、上アーム回路のコレクタ側から出力しており、バッテリ又はコンデンサの正極側に接続される。上アームゲート端子325Uは、上アーム回路の能動素子155のゲートから出力している。負極側端子325Mは、下アーム回路のエミッタ側から出力しており、バッテリ若しくはコンデンサの負極側、又はGNDに接続される。下アームゲート端子325Lは、下アーム回路の能動素子157のゲートから出力している。交流側端子325Aは、下アーム回路のコレクタ側から出力しており、モータに接続される。中性点接地をする場合は、下アーム回路は、GNDでなくコンデンサの負極側に接続する。
As shown in Figures 5 and 6, the
上アームのエミッタセンス端子325Eは、上アーム回路の能動素子155のエミッタから、下アームのエミッタセンス端子325Eは、下アーム回路の能動素子157のエミッタから出力される。上アームのコレクタセンス端子325Cは、上アーム回路の能動素子155のコレクタから、下アームのコレクタセンス端子325Cは、下アーム回路の能動素子157のコレクタから出力される。
The
また、半導体素子(上アーム回路)の能動素子155およびダイオード156の上下に導体板(上アーム回路エミッタ側)430、導体板(上アーム回路コレクタ側)431が配置される。半導体素子(下アーム回路)の能動素子157およびダイオード158の上下に導体板(下アーム回路エミッタ側)432、導体板(下アーム回路コレクタ側)433が配置される。
Furthermore, conductor plates (upper arm circuit emitter side) 430 and conductor plates (upper arm circuit collector side) 431 are arranged above and below
本実施形態の半導体モジュール300は、上アーム回路及び下アーム回路の2つのアーム回路を、1つのモジュールに一体化した構造である2in1構造である。この他に、複数の上アーム回路及び下アーム回路を、1つのモジュールに一体化した構造を用いてもよい。この場合は、半導体モジュール300からの出力端子の数を低減し小型化することができる。
The
図7は、変形例1における電気回路体400の断面拡大図であり、図4と同様に、図3のA部分に相当する。図4と同一の箇所には同一の符号を付してその説明を簡略に行う。
FIG. 7 is an enlarged cross-sectional view of the
図4では、中間導体440は、絶縁シート443内において同じ幅で複数個に分割され、同じ間隔で配置されている例を示した。変形例1では、図7に示すように、中間導体440の分割数は、導体板433の端部と対向する領域の分割数が導体板433の中央部と対向する領域の分割数よりも多い。
In FIG. 4, the
導体板433の端部と対向する絶縁シート443の領域は、電力変換装置200の稼働時に熱応力などに起因した剥離等が生じやすいが、この領域で中間導体440の分割数を多くすることにより、絶縁信頼性を高めることができる。
The area of the insulating
図8は、変形例2における絶縁シート443の平面図である。絶縁シート443内の中間導体440を斜線網掛けで、導体板430、432の端部周囲を破線で示す。なお、図5の半透過平面図に示す絶縁シート443、導体板430、432とはその形状が同じではないが、図8、および以下に示す図9、図10では、分かり易くするために、模式的に図示する。
FIG. 8 is a plan view of insulating
図8に示すように、絶縁シート443の導体板430、432の端部周囲に位置する部分には、分割した中間導体440のうち面積が小さい中間導体440を配置する。さらに、絶縁シート443の端部周囲に位置する部分には、分割した中間導体440のうち面積が小さい中間導体440を配置する。
As shown in FIG. 8, the divided
変形例2によれば、分割された中間導体440が絶縁シート443を挟む導体板430、432あるいは冷却部材340のいずれかと部分的に短絡しても中間導体440の全体が同電位にならず、短絡部以外の中間導体440への電位の集中を抑制することができる。
According to the second modification, even if the divided
図9は、変形例3における絶縁シート443の平面図である。絶縁シート443内の中間導体440を斜線網掛けで、導体板430、432の端部周囲を破線で示す。
図9に示すように、絶縁シート443の中間導体440は球形状の格子状に分割されている。球形状の面積は導体板430、432の領域の面積より小さく、半導体モジュール300の構造、構成、電気的特性に応じて適宜決定する。導体板430、432の端部周囲に位置する部分には、分割した中間導体440が適宜配置される。なお、球形状に限らず、楕円形、半円形、その他の形状であってもよく、これらの形状を混在してもよい。また、同一の形状、異なる形状を問わず、分割した中間導体440の面積は、同一であっても、異なってもよい。
9 is a plan view of an insulating
As shown in Fig. 9, the
変形例3によれば、導体板430、432の位置に応じて中間導体440の分割位置や面積などを設計する手間を省略できる。そのうえで、絶縁信頼性を高めることができる。
Variation 3 eliminates the need to design the division position and area of the
図10は、変形例4における絶縁シート443の平面図である。絶縁シート443内の中間導体440を斜線網掛けで、導体板430、432の端部周囲を破線で示す。
図10に示すように、絶縁シート443の中間導体440は菱形形状の格子状に分割されている。菱形形状の面積は導体板430、432の領域の面積より小さく、半導体モジュール300の構造、構成、電気的特性に応じて適宜決定する。導体板430、432の端部周囲に位置する部分には、分割した中間導体440が適宜配置される。なお、菱形形状に限らず、三角形、四角形、その他の多角形であってもよく、これらの形状を混在してもよい。また、同一の形状、異なる形状を問わず、分割した中間導体440の面積は、同一であっても、異なってもよい。
10 is a plan view of an insulating
As shown in Fig. 10, the
変形例4によれば、導体板430、432の位置に応じて中間導体440の分割位置や面積などを設計する手間を省略できる。そのうえで、絶縁信頼性を高めることができる。
Variation 4 eliminates the need to design the division position and area of the
図11は、変形例5における電気回路体400の断面拡大図であり、図7と同様に、図3のA部分に相当する。図7と同一の箇所には同一の符号を付してその説明を簡略に行う。
FIG. 11 is an enlarged cross-sectional view of the
図7では、絶縁シート443は、中間導体440を絶縁シート443の厚み方向に一本内蔵する例を示した。変形例5では、図11に示すように、絶縁シート443は、中間導体440を絶縁シート443の厚み方向に二本内蔵する。二本に限らず、複数本設けてもよい。なお、中間導体440と絶縁シート443を挟む導体板430、432あるいは冷却部材340との間の距離は、絶縁シート443の混在させたフィラー粒子の径よりも大きくする。
In FIG. 7, an example is shown in which the insulating
中間導体440の本数が増えることにより、中間導体440と絶縁シート443を挟む導体板430、432あるいは冷却部材340のいずれかとの電位分担がより効果的になる。これにより、短絡した場合における保護を多重化することが可能になる。
By increasing the number of
図12は、半導体モジュール300を用いた電力変換装置200の回路図である。
電力変換装置200は、インバータ回路部140、142と、補機用のインバータ回路部43と、コンデンサモジュール500とを備えている。インバータ回路部140及び142は、半導体モジュール300を複数個備えており、それらを接続することにより三相ブリッジ回路を構成している。電流容量が大きい場合には、更に半導体モジュール300を並列接続し、これら並列接続を三相インバータ回路の各相に対応して行うことにより、電流容量の増大に対応できる。また、半導体モジュール300に内蔵している半導体素子である能動素子155、157やダイオード156、158を並列接続することでも電流容量の増大に対応できる。
FIG. 12 is a circuit diagram of a
The
インバータ回路部140とインバータ回路部142とは、基本的な回路構成は同じであり、制御方法や動作も基本的には同じである。インバータ回路部140等の回路的な動作の概要は周知であるため、ここでは詳細な説明を省略する。
上アーム回路は、スイッチング用の半導体素子として上アーム用の能動素子155と上アーム用のダイオード156とを備えており、下アーム回路は、スイッチング用の半導体素子として下アーム用の能動素子157と下アーム用のダイオード158とを備えている。能動素子155、157は、ドライバ回路174を構成する2つのドライバ回路の一方あるいは他方から出力された駆動信号を受けてスイッチング動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。
The upper arm circuit has an upper arm
上アーム用の能動素子155および下アーム用の能動素子157は、コレクタ電極、エミッタ電極、ゲート電極を備えている。上アーム用のダイオード156および下アーム用のダイオード158は、カソード電極およびアノード電極の2つの電極を備えている。図6に示すように、ダイオード156、158のカソード電極が能動素子155、157のコレクタ電極に、アノード電極が能動素子155、157のエミッタ電極にそれぞれ電気的に接続されている。これにより、上アーム用の能動素子155および下アーム用の能動素子157のエミッタ電極からコレクタ電極に向かう電流の流れが順方向となっている。能動素子155、157は、例えばIGBTである。
The upper arm
なお、能動素子としてはMOSFETを用いても良く、この場合は、上アーム用のダイオード156、下アーム用のダイオード158は不要となる。
Note that a MOSFET may be used as the active element, in which case the
各上・下アーム直列回路の正極側端子325Pと負極側端子325Mはコンデンサモジュール500のコンデンサ接続用の直流端子にそれぞれ接続されている。上アーム回路と下アーム回路の接続部にはそれぞれ交流電力が発生し、各上・下アーム直列回路の上アーム回路と下アーム回路の接続部は各半導体モジュール300の交流側端子325Aに接続されている。各相の各半導体モジュール300の交流側端子320Bはそれぞれ電力変換装置200の交流出力端子に接続され、発生した交流電力はモータジェネレータ192または194の固定子巻線に供給される。
The
制御回路172は、車両側の制御装置やセンサ(例えば、電流センサ180)などからの入力情報に基づいて、上アーム用の能動素子155、下アーム用の能動素子157のスイッチングタイミングを制御するためのタイミング信号を生成する。ドライバ回路174は、制御回路172から出力されたタイミング信号に基づいて、上アーム用の能動素子155、下アーム用の能動素子157をスイッチング動作させるための駆動信号を生成する。なお、181、188はコネクタである。
The
上・下アーム直列回路は、不図示の温度センサを含み、上・下アーム直列回路の温度情報がマイコンに入力される。また、マイコンには上・下アーム直列回路の直流正極側の電圧情報が入力される。マイコンは、それらの情報に基づいて過温度検知および過電圧検知を行い、過温度或いは過電圧が検知された場合には全ての上アーム用の能動素子155、下アーム用の能動素子157のスイッチング動作を停止させ、上・下アーム直列回路を過温度或いは過電圧から保護する。
The upper and lower arm series circuits include a temperature sensor (not shown), and temperature information about the upper and lower arm series circuits is input to the microcomputer. In addition, voltage information about the DC positive pole side of the upper and lower arm series circuits is input to the microcomputer. The microcomputer performs over-temperature and over-voltage detection based on this information, and if over-temperature or over-voltage is detected, it stops the switching operation of all upper arm
図13は、図12に示す電力変換装置200の外観斜視図であり、図14は、図13に示す電力変換装置200のXV-XV線の断面斜視図である。
FIG. 13 is an external perspective view of the
電力変換装置200は、下部ケース11および上部ケース10により構成され、ほぼ直方体形状に形成された筐体12を備えている。筐体12の内部には、電気回路体400、コンデンサモジュール500等が収容されている。電気回路体400は冷却部材340へ流れる冷却流路を有しており、筐体12の一側面からは、冷却流路に連通する冷媒流入管13および冷媒流出管14が突出している。下部ケース11は、上部側が開口され、上部ケース10は、下部ケース11の開口を塞いで下部ケース11に取り付けられている。上部ケース10と下部ケース11とは、アルミニウム合金等により形成され、外部に対して密封して固定される。上部ケース10と下部ケース11とを一体化して構成してもよい。筐体12を、単純な直方体形状としたことで、車両等への取り付けが容易となり、また、生産もし易い。
The
筐体12の長手方向の一側面に、コネクタ17が取り付けられており、このコネクタ17には、交流ターミナル18が接続されている。また、冷媒流入管13および冷媒流出管14が導出された面には、コネクタ21が設けられている。
A connector 17 is attached to one longitudinal side of the
図14に図示されるように、筐体12内には、電気回路体400が収容されている。電気回路体400には、制御回路172およびドライバ回路174が配置され、電気回路体400の直流端子側には、コンデンサモジュール500が収容されている。コンデンサモジュールを電気回路体400と同一高さに配置することで、電力変換装置200を薄型化でき、車両への設置自由度が向上する。電気回路体400の交流側端子325Aは、電流センサ180を貫通してコネクタ188に接続されている。また、半導体モジュール300の直流端子である、正極側端子325Pおよび負極側端子325Mは、それぞれ、コンデンサモジュール500の正・負極端子362A、362Bに接合される。
As shown in FIG. 14, an
以上説明した実施形態によれば、次の作用効果が得られる。
(1)電気回路体400は、半導体素子155、156、157、158が接合された導体板430、431、432、433と、導体板430、431、432、433と対向して配置され、半導体素子155、156、157、158による発熱を冷却する冷却部材340と、導体板430、431、432、433と冷却部材340との間に配置される絶縁シート443と、を備え、絶縁シート443は、導体板430、431、432、433と対向する中間導体440を内蔵し、中間導体440は、半導体素子155、156、157、158の一つに対応する導体板430、431、432、433に対して複数個に分割して配置され、導体板430、431、432、433に対して電気的に並列となる電気容量を形成する。これにより、電気回路体の絶縁信頼性が向上する。
According to the embodiment described above, the following advantageous effects can be obtained.
(1) The
本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other forms that are conceivable within the scope of the technical concept of the present invention are also included within the scope of the present invention, so long as they do not impair the characteristics of the present invention. In addition, a configuration that combines the above-described embodiment with multiple modified examples may also be used.
10・・・上部ケース、11・・・下部ケース、13・・・冷媒流入管、14・・・冷媒流出管、17、21、181、182、188・・・コネクタ、18・・・交流ターミナル、43、140、142・・・インバータ回路、155、156、157、158・・・半導体素子、172・・・制御回路、174・・・ドライバ回路、180・・・電流センサ、192、194・・・モータジェネレータ、200・・・電力変換装置、300・・・半導体モジュール、310・・・回路体、325P・・・正極側端子、325M・・・負極側端子、325A・・・交流側端子、325C・・・コレクタセンス端子、325L・・・下アームゲート端子、325E・・・エミッタセンス端子、325U・・・上アームゲート端子、340・・・冷却部材、360・・・封止材、400・・・電気回路体、430、431、432、433・・・導体板、440・・・中間導体、443・・・絶縁シート、444・・・表面導体層、453・・・熱伝導部材、500・・・コンデンサモジュール。 10: upper case, 11: lower case, 13: refrigerant inlet pipe, 14: refrigerant outlet pipe, 17, 21, 181, 182, 188: connector, 18: AC terminal, 43, 140, 142: inverter circuit, 155, 156, 157, 158: semiconductor element, 172: control circuit, 174: driver circuit, 180: current sensor, 192, 194: motor generator, 200: power conversion device, 300: semiconductor module, 310: circuit body, 32 5P: Positive terminal, 325M: Negative terminal, 325A: AC terminal, 325C: Collector sense terminal, 325L: Lower arm gate terminal, 325E: Emitter sense terminal, 325U: Upper arm gate terminal, 340: Cooling member, 360: Sealing material, 400: Electrical circuit body, 430, 431, 432, 433: Conductive plate, 440: Intermediate conductor, 443: Insulating sheet, 444: Surface conductor layer, 453: Heat conductive member, 500: Capacitor module.
Claims (9)
前記絶縁シートは、前記導体板と対向する中間導体を内蔵し、
前記中間導体は、前記半導体素子の一つに対応する前記導体板に対して複数個に分割して配置され、前記導体板に対して電気的に並列となる電気容量を形成する電気回路体。 a conductive plate to which a semiconductor element is bonded, a cooling member disposed opposite the conductive plate for cooling heat generated by the semiconductor element, and an insulating sheet disposed between the conductive plate and the cooling member,
the insulating sheet includes an intermediate conductor that faces the conductor plate;
The intermediate conductor is an electric circuit body that is divided into a plurality of pieces and arranged on the conductor plate corresponding to one of the semiconductor elements, and forms an electric capacitance that is electrically parallel to the conductor plate.
前記中間導体は、前記導体板の端部と対向する領域において複数個に分割して配置される電気回路体。 2. The electric circuit body according to claim 1,
The intermediate conductor is an electric circuit body that is divided into a plurality of pieces and disposed in a region facing the end of the conductive plate.
前記中間導体は、前記導体板の端部と対向する領域の分割数が前記導体板の中央部と対向する領域の分割数よりも多い電気回路体。 2. The electric circuit body according to claim 1,
The intermediate conductor is an electric circuit body in which the number of divisions of the region facing the end portion of the conductor plate is greater than the number of divisions of the region facing the center portion of the conductor plate.
前記中間導体は、格子状に分割される電気回路体。 2. The electric circuit body according to claim 1,
The intermediate conductor is an electric circuit divided into a lattice pattern.
前記絶縁シートは、前記中間導体を前記絶縁シートの厚み方向に複数本内蔵する電気回路体。 2. The electric circuit body according to claim 1,
The insulating sheet is an electric circuit body having a plurality of the intermediate conductors embedded therein in the thickness direction of the insulating sheet.
前記絶縁シートは、セラミックを用いた電気回路体。 2. The electric circuit body according to claim 1,
The insulating sheet is an electric circuit body using ceramic.
前記絶縁シートは、前記絶縁シートの断面において前記中間導体が占める面積の割合が20%以上である電気回路体。 2. The electric circuit body according to claim 1,
The insulating sheet is an electric circuit body, in which the area of the intermediate conductor occupies 20% or more of a cross section of the insulating sheet.
前記導体板は、前記半導体素子の両面に形成され、
前記冷却部材は、前記各導体板と対向して両面に配置され、
前記絶縁シートは、前記導体板と前記冷却部材との間にそれぞれ配置される電気回路体。 8. The electric circuit body according to claim 1,
the conductive plates are formed on both sides of the semiconductor element,
the cooling members are disposed on both sides of the conductive plates so as to face each other,
The insulating sheets are electric circuits disposed between the conductive plates and the cooling members.
A power conversion device comprising the electric circuit body according to any one of claims 1 to 7, for converting DC power and AC power mutually.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023097115A JP2024178741A (en) | 2023-06-13 | 2023-06-13 | Electrical circuit and power conversion device |
JP2023-097115 | 2023-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024257636A1 true WO2024257636A1 (en) | 2024-12-19 |
Family
ID=93851841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/020198 WO2024257636A1 (en) | 2023-06-13 | 2024-06-03 | Electrical circuit body and power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024178741A (en) |
WO (1) | WO2024257636A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044581A (en) * | 1999-05-24 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
JP2009004731A (en) * | 2007-01-29 | 2009-01-08 | Panasonic Corp | Insulating heat dissipation substrate, method for manufacturing the same, and circuit module using the same |
WO2016038955A1 (en) * | 2014-09-09 | 2016-03-17 | 日立オートモティブシステムズ株式会社 | Power module |
-
2023
- 2023-06-13 JP JP2023097115A patent/JP2024178741A/en active Pending
-
2024
- 2024-06-03 WO PCT/JP2024/020198 patent/WO2024257636A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044581A (en) * | 1999-05-24 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
JP2009004731A (en) * | 2007-01-29 | 2009-01-08 | Panasonic Corp | Insulating heat dissipation substrate, method for manufacturing the same, and circuit module using the same |
WO2016038955A1 (en) * | 2014-09-09 | 2016-03-17 | 日立オートモティブシステムズ株式会社 | Power module |
Also Published As
Publication number | Publication date |
---|---|
JP2024178741A (en) | 2024-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7650635B2 (en) | Half-bridge modules in power electronics traction inverters for electric or hybrid vehicles | |
JP5169353B2 (en) | Power module | |
JP5830480B2 (en) | Wiring board and power conversion device using the same | |
JP6200871B2 (en) | Power module and power converter | |
US6836006B2 (en) | Semiconductor module | |
CN107851638B (en) | Power module | |
WO2015072105A1 (en) | Power module | |
CN103782380A (en) | Semiconductor module | |
CN103296016A (en) | Semiconductor module | |
CN111587528B (en) | Power semiconductor device | |
JP6767898B2 (en) | Power semiconductor device | |
JP2021141275A (en) | Electric circuit bodies, power converters, and methods for manufacturing electric circuit bodies | |
JP2019068534A (en) | Power converter | |
JP3673776B2 (en) | Semiconductor module and power conversion device | |
JP6163305B2 (en) | Circuit equipment | |
JP7355707B2 (en) | Semiconductor equipment, busbars and power conversion equipment | |
EP3916782B1 (en) | Power semiconductor device | |
US20220263425A1 (en) | Electric circuit device | |
US20200211954A1 (en) | Semiconductor module | |
JP7555261B2 (en) | Electrical circuit and power conversion device | |
WO2024257636A1 (en) | Electrical circuit body and power conversion device | |
JP2019062739A (en) | Electric power conversion system | |
US20230395457A1 (en) | Power Semiconductor Device, Power Conversion Device, and Electric System | |
JP7580349B2 (en) | Power Semiconductor Device | |
WO2024106072A1 (en) | Electrical circuit body and power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24823256 Country of ref document: EP Kind code of ref document: A1 |