[go: up one dir, main page]

WO2024257459A1 - Closed-bottom cylindrical body processing device - Google Patents

Closed-bottom cylindrical body processing device Download PDF

Info

Publication number
WO2024257459A1
WO2024257459A1 PCT/JP2024/014473 JP2024014473W WO2024257459A1 WO 2024257459 A1 WO2024257459 A1 WO 2024257459A1 JP 2024014473 W JP2024014473 W JP 2024014473W WO 2024257459 A1 WO2024257459 A1 WO 2024257459A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
neck processing
neck
circulating conveyor
bottomed
Prior art date
Application number
PCT/JP2024/014473
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 弓削
禎 遠藤
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Publication of WO2024257459A1 publication Critical patent/WO2024257459A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/04Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
    • B21D43/12Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by chains or belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/04Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
    • B21D43/14Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by turning devices, e.g. turn-tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/16Advancing work in relation to the stroke of the die or tool by gravity, e.g. chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/18Advancing work in relation to the stroke of the die or tool by means in pneumatic or magnetic engagement with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Definitions

  • the present invention relates to a bottomed cylindrical body processing device that performs neck processing multiple times on the open end of a bottomed cylindrical body while transporting the bottomed cylindrical body along a transport path.
  • cans used for beverage cans and the like are manufactured by forming a cylindrical can body with a bottom by drawing and ironing a metal plate punched into a circular shape, and then performing a predetermined necking and trimming process on the open end of the can body and, as necessary, a mouth forming process such as threading or curling.
  • the drawing process known as necking
  • necking is usually divided into a number of steps and carried out in stages so as not to subject the metal material constituting the can body to excessive stress.
  • An example of an apparatus that carries out such necking multiple times in stages is an apparatus that connects multiple process turrets in series, carries out one stage of necking per process turret while sequentially transporting the can body, and carries out multiple necking processes in one round.
  • Patent Document 1 discloses an apparatus in which multiple processing turrets are arranged in series, with a supply position at one end where can bodies are supplied and a discharge position at the other end where can bodies are discharged, in which the can bodies are transported from the supply position and subjected to a first round of multiple processing steps in each processing turret in sequence, and the semi-processed can bodies discharged from the discharge position are returned to the supply position by a circulating conveyor and transported again to the multiple processing turrets where they are subjected to a second round of multiple processing steps.
  • the number of processing turrets arranged in parallel in the horizontal direction can be reduced, and the number of processing operations that can be performed per installation space can be increased.
  • each processing turret processes the open end of the can body, it is aligned and transported in order so that the open end of the can body is surely provided for processing, and since the circulating conveyor is structured to suck and transport the bottom of the can body for ease of carrying and transporting, if the device is only suitable for can bodies of a certain height, the circulating conveyor may be positioned in such a way that the transport surface of the circulating conveyor faces closely to the bottom of the can body in the initial design, but if the same device is directly used for necking can bodies of different heights, a problem occurs in that the can bodies that have completed the first round of processing cannot be transferred to the circulating conveyor. In such a case, it would be possible to address the issue by moving the circulating conveyor itself to shift the position of the transport surface, but due to the size of the circulating conveyor, this would be a complex setup and would be unrealistic, and the setup process itself would be complicated.
  • the present invention aims to solve the above problems, and its purpose is to provide a bottomed cylindrical body processing device that can perform multiple necking operations on bottomed cylindrical bodies without maximizing the installation space, and that has a simple configuration and can be used commonly for bottomed cylindrical bodies of different heights without complicated setup procedures.
  • the present invention relates to an apparatus for processing a bottomed tubular body, the apparatus being configured to perform necking on an open end of a bottomed tubular body multiple times while transporting the bottomed tubular body along a transport path, the apparatus comprising: a multi-stage neck processing section in which a plurality of neck processing units are sequentially arranged along a conveying path; a circulation conveyor for resupplying the bottomed tubular body discharged from a downstream neck processing unit provided downstream of the multi-stage neck processing section to an upstream neck processing unit provided upstream of the multi-stage neck processing section; a transfer turret having a plurality of pockets arranged in a circumferential direction, the transfer turret holding the bottomed cylindrical body discharged from the downstream neck processing unit in the pocket, the transfer turret moving the bottomed cylindrical body to a transfer position facing the circulating conveyor,
  • the transfer turret solves the above problem by being equipped with an axial movement mechanism that moves the bottomed cylindrical body in the tubular
  • the circulating conveyor has a conveying surface and is disposed so as to face the bottom of the bottomed cylindrical body, The bottom of the bottomed cylindrical object may be attracted to the conveying surface and conveyed.
  • the axial movement mechanism can be configured as an air blow mechanism that moves the bottomed cylindrical body in the cylindrical axial direction by ejecting gas.
  • each neck processing unit of the multi-stage neck processing section is arranged in series in one horizontal direction,
  • the circulating conveyor extends along the one direction above the multi-stage neck processing section, a chute is provided for moving the bottomed cylindrical body downward from the rear end of the conveying path of the circulating conveyor to the upstream neck processing unit,
  • the chute may be configured to include a guide that moves the bottomed cylindrical body in the axial direction.
  • the bottomed tubular body processing device of the present invention is provided with a circulation conveyor that supplies the bottomed tubular bodies discharged from the downstream neck processing unit back to the upstream neck processing unit, thereby reducing the number of processing turrets required for the desired series of multiple neck processing operations, so that multiple neck processing operations can basically be performed on bottomed tubular bodies without maximizing the installation space.
  • the axial movement mechanism moves the bottomed tubular body in the axial direction toward the circulating conveyor.
  • the axial movement mechanism can automatically transfer the bottomed tubular body to the circulating conveyor without any additional complicated setting action. Therefore, the bottomed cylindrical body processing device of the present invention can be used commonly for bottomed cylindrical bodies of different heights without complicated setting procedures, providing high convenience.
  • the bottom of the bottomed tubular body is adsorbed to the transport surface of the circulating conveyor and transported, so even if the bottomed tubular body is in a semi-processed state after the first round of neck processing has been performed in sequence and discharged from the discharge position, the shape of the bottom is not deformed, and support by adsorption can be reliably achieved.
  • the axial movement mechanism is composed of an air blow mechanism that moves the bottomed cylindrical body in the axial direction by ejecting gas, so that when changing the shape to neck a bottomed cylindrical body of a different height, optimal transfer of the bottomed cylindrical body can be achieved simply by changing the amount of gas ejected based on the weight of the bottomed cylindrical body after the changeover, and since the bottomed cylindrical body can be moved in the axial direction without contact, scratches on the bottomed cylindrical body can be prevented.
  • a chute is provided that moves the bottomed tubular body downward from the rear end of the transport path of the circulating conveyor to the upstream neck processing unit, and the chute is provided with a guide that moves the bottomed tubular body in the axial direction. Therefore, even when changing to necking of bottomed tubular bodies of different heights, the bottomed tubular body transferred downward is aligned in the axial direction of the tubular body by the guide to the open end side without any additional complicated setting action, and the bottomed tubular body is returned to an axial position where it can be necked and re-supplied to the upstream neck processing unit. Therefore, bottomed tubular bodies of different heights can be used in common without complicated setting action, resulting in high convenience.
  • FIG. 1 is an explanatory diagram showing the configuration of a bottomed cylindrical body processing device according to an embodiment of the present invention from the front side; 2 is an explanatory diagram showing the bottomed tubular body processing apparatus of FIG. 1 from the back side.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of a transfer turret and a circulating conveyor in the bottomed cylindrical body processing apparatus of FIG. 1 .
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3, showing a state in which a high-height can is being transferred.
  • 4 is a cross-sectional view taken along line AA in FIG. 3, showing the state during transfer of the low-height can.
  • FIG. 1 is an explanatory diagram showing the configuration of a bottomed tubular body processing apparatus according to one embodiment of the present invention as viewed from the front side (the bottom side of the can body C), and FIG. 2 is an explanatory diagram showing the bottomed tubular body processing apparatus of FIG. 1 as viewed from the back side (the opening end side of the can body C).
  • the bottomed tubular body processing apparatus 100 according to one embodiment of the present invention performs neck processing multiple times on the open end of the can body C, which is a bottomed tubular body, while circulating the can body C along a conveying path.
  • the bottomed tubular body processing apparatus 100 includes a multi-stage neck processing section 110 in which multiple (six in Figure 1) neck processing units are arranged in sequence along the conveying path, a re-supply mechanism 130 having a circulation conveyor 131 that re-supplies the can body C discharged from a downstream neck processing unit provided downstream in the conveying direction of the multi-stage neck processing section 110 to an upstream neck processing unit provided upstream in the conveying direction of the multi-stage neck processing section 110, and a transfer turret 140 for transferring the can body C discharged from the downstream neck processing unit to the circulation conveyor 131.
  • Each neck processing unit has a rotatable processing turret 120 having multiple pockets P on its outer periphery that are arranged at approximately equal intervals in the circumferential direction for individually storing and transporting can bodies C, and a processing device (not shown) that performs neck processing on the can bodies C stored in the pockets P.
  • processing turrets 120 of the neck processing units and transport turrets 121 that transport the can bodies C between two adjacent processing turrets 120 are arranged alternately.
  • the can bodies C accommodated in each pocket P of the processing turrets 120 are subjected to one stage of neck processing before being transferred to the transport turret 121 downstream in the transport direction.
  • the pockets P of the processing turret 120 are alternately designated as a first pocket held in the first round and a second pocket held in the second round, and the can bodies C held in the first pocket are subjected to the nth stage of neck processing in the first round, while the can bodies C held in the second pocket are subjected to the nth stage of neck processing in the second round (i.e., the n+xth stage in total), where n is the arrangement order of the neck processing units counted from the upstream side, and x is the total number of neck processing units.
  • the conveying turrets 121 also each have a plurality of pockets on their outer periphery that hold the can bodies C, and are rotatable turrets that receive the can bodies C that have been processed by the neck processing unit located adjacent to them on the upstream side and supply them to pockets P of the same phase of the processing turret 120 located adjacent to them on the downstream side.
  • a processing device (not shown) for performing neck processing is disposed in the pocket P of the processing turret 120, and moves in synchronization with the rotation of the processing turret 120.
  • the processing device includes, for example, a bottom tool that supports the bottom of the can body C, an annular outer tool that fits into the outer periphery of the open end of the can body C to reduce the diameter, and an inner tool that is inserted into the open end of the can body C and has a diameter smaller than the outer diameter of the open end of the can body C by about 1 to 2 mm, and is configured so that the bottom tool and the inner tool can be reciprocated in the cylindrical axial direction of the can body C by a drive mechanism (not shown), and the bottom tool and the inner tool are driven in the approaching direction and further driven in the outer tool direction, whereby the open end of the can body C is inserted between the inner tool and the outer tool, thereby performing one-stage neck processing on the open end of the can body C.
  • the specific configuration of the neck processing device is not limited to
  • the processing turrets 120 of each neck processing unit of the multi-stage neck processing section 110 are arranged in series so that they are lined up in one horizontal direction (left-right direction in FIG. 1) with their central axes extending in the horizontal direction (direction perpendicular to the paper surface in FIG. 1), and each transport turret 121 is also arranged in series so that they are lined up in one horizontal direction with their central axes extending in the same axial direction as the processing turret 120.
  • the circulation conveyor 131 has a parallel path 131b extending in the space above the multi-stage neck processing section 110 in one direction (left-right direction in FIG. 1) that is the same as the installation direction of the multi-stage neck processing section 110, and is arranged so that the supported can bodies C move in a direction (left-right direction in FIG. 1) opposite to the direction in which the can bodies C are conveyed in the multi-stage neck processing section 110 (right-right direction in FIG. 1).
  • the circulation conveyor 131 extends with a bend so as to have an upward path 131a for moving the can bodies C transferred from the transfer turret 140 upward and a parallel path 131b for moving them in the circulation direction.
  • the parallel path 131b and the upward path 131a are not limited to a configuration that extends linearly in the horizontal and vertical directions, respectively, as shown in FIG. 1, but may be configured to be disposed at a predetermined angle or to extend in a curved manner. Also, a configuration that extends in a curved manner without distinction between the parallel path 131b and the upward path 131a may be used.
  • the circulating conveyor 131 has a vertical configuration for moving the can bodies C for resupply in the space above the multi-stage neck processing section 110, thereby making it possible to save planar space.
  • the circulating conveyor 131 is a so-called vacuum conveyor that adsorbs the bottom B of the can body C to the conveying surface 132 and conveys it. If the can body C is made of steel, it may be a magnetic conveyor that adsorbs it by magnetic force.
  • the circulating conveyor 131 is arranged so that the conveying surface 132 coincides with a plane perpendicular to the cylindrical axis of the can body C and faces the cylindrical axis direction of the bottom B of the can body C that has been conveyed to the transfer position by the transfer turret 140.
  • the conveying surface 132 is not limited to being arranged so that it coincides with a plane completely perpendicular to the cylindrical axis of the can body C, and may be arranged so that it forms a slight angle with the plane perpendicular to the cylindrical axis of the can body C as long as it is possible to face the bottom B of the can body C at the transfer position and perform the specified transfer.
  • 133 is a support member that supports the circulating conveyor 131 and maintains the transport path
  • 134 is a pier that supports the support member 133 in the space above the multi-stage neck processing section 110.
  • the transfer turret 140 has multiple pockets P arranged circumferentially, and the pockets P are configured to rotate between a receiving position where the can body C discharged from the downstream neck processing unit is received via the conveying turret 121 and the transfer turret 150 arranged at the most downstream side, and a delivery position opposite the circulating conveyor 131.
  • the can body C In the transport path of the can body C, from the time it is supplied to the multi-stage neck processing section 110 until it is transferred to the circulating conveyor 131, specifically in the transport turret 121, the processing turret 120, the transfer turret 150 and the transfer turret 140, the can body C is transported in such a manner that the opening end of the can body C is always positioned in the same axial direction.
  • the conveying surface 132 of the circulating conveyor 131 is located in an axial direction that is adapted to, for example, the bottom B of a tall can body C (a high-height can), i.e., that faces the bottom B of the high-height can with a small gap therebetween.
  • the can body C is a low-height can, as shown in FIG. 5, a certain amount of gap G is formed between the bottom B of the low-height can and the conveying surface 132 of the circulating conveyor 131.
  • the allowable range of the gap G between the transport surface 132 of the circulating conveyor 131 and the bottom B of the can body C varies depending on the configuration of the axial movement mechanism, but is, for example, 80 mm or less.
  • the gap G is also within the range of freedom for the height of the can body C that can be used as the object to be treated, by setting the allowable range of the gap G within the above range, necking can be performed on a sufficiently wide range of low-height cans compared to the standard high-height cans, and a high degree of freedom is obtained in the application of the bottomed tubular body processing apparatus 100.
  • the transfer turret 140 is equipped with an axial movement mechanism (not shown) that moves the can body C in the cylindrical axial direction toward the circulating conveyor 131 (the front side in Figure 1) when the pocket P holding the can body C is in a transfer position to the circulating conveyor 131.
  • the axial movement mechanism can be constituted, for example, by an air blow mechanism that moves the can body C in the cylindrical axial direction by blowing gas (air).
  • the air blow mechanism has, for example, a blow nozzle, an air compressor, and piping, and the blow nozzle is arranged to the side of the transfer turret 140 (the opening end side of the can body C) and is capable of blowing air in the transfer direction (towards the bottom side of the can body C). It is preferable to blow air continuously.
  • the axial movement mechanism is not limited to being constituted by an air blow mechanism, as long as it is capable of moving the can body C toward the bottom side in the cylindrical axial direction, and may be configured to move the can body C by physical contact with a leaf spring or the like, or by magnetic force.
  • the resupply mechanism 130 equipped with the circulating conveyor 131 is provided with a chute 135 that moves the can bodies C downward from the rear end of the transport path of the circulating conveyor 131 to the upstream neck processing unit.
  • the chute 135 has an internal space suitable for a tall can body C (high-height can), and is provided with a guide (not shown) for moving the can body C in the internal space toward the open end in the axial direction (the rear side in FIG. 1) when a can body C of a lower height is fed into the chute 135.
  • the can body C When the can body C is a low-height can, by providing such a guide in the chute 135, the axial position of the open end of the can body C, which is shifted toward the bottom at the transfer position of the transfer turret 140, can be returned to its original axial position suitable for necking, regardless of the axial height of the can body C sliding down inside the chute 135. In this state, the can body C is fed to the upstream necking unit via the re-supply turret group 136 and the most upstream conveying turret 121, so that a second round of necking can be performed without providing a separate means for adjusting the axial position.
  • the unprocessed can body C supplied from the supply mechanism 160 to the multi-stage neck processing section 110 is transferred to the first pocket P of the upstream neck processing unit via the most upstream conveying turret 121, and one stage of neck processing is performed during the time until it is transferred to the adjacent conveying turret 121 on the downstream side in the conveying direction.
  • first round neck processing steps are performed in stages in the first pocket P of each of the adjacent neck processing units on the downstream side via the conveying turret 121, and when it moves to the discharge position of the most downstream downstream neck processing unit, it is transferred to the pocket P of the transfer turret 140 via the conveying turret 121 and the transfer turret 150.
  • the air blow mechanism continuously blows air, blowing the can body C from the open end side toward the bottom side, and the bottom B is attracted to the conveying surface 132 of the circulating conveyor 131.
  • the can body C is transferred from the transfer turret 140 to the circulating conveyor 131.
  • the can bodies C attracted to the circulating conveyor 131 pass through an ascending path 131a and a parallel path 131b along the transport path, and are dropped into a chute 135 at the rear end of the parallel path 131b.
  • the can bodies C dropped into the chute 135 are moved by a guide in the internal space so as to approach the open end in the axial direction of the cylinder, and the amount of displacement of the open end of the can body C toward the bottom in the axial direction is returned to its original position at the transfer position of the transfer turret 140.
  • the can bodies C are supplied to the second pocket P of the processing turret 120 of the upstream neck processing unit via the re-supply turret group 136 and the most upstream transport turret 121.
  • the can body C supplied to the second pocket P of the processing turret 120 of the upstream neck processing unit undergoes the first stage of the second round (seventh stage overall) of neck processing before being transferred to the adjacent transport turret 121 on the downstream side in the transport direction.
  • the can body C undergoes multiple neck processing rounds (six times in this embodiment) in stages in the second pocket P of each of the adjacent neck processing units on the downstream side via the transport turret 121, and when it moves to the discharge position of the downstream neck processing unit on the most downstream side, it is transferred to the discharge mechanism 170 via the most downstream transport turret 121 and transfer turret 150, where other processing is performed as necessary, and the can body C is transported outside the bottomed tubular body processing apparatus 100 for the next process.
  • Each of the turrets constituting the supply mechanism 160, the multi-stage neck processing section 110, the transfer turret 150, the transfer turret 140 and the discharge mechanism 170 is rotated directly by an appropriate drive source or mechanically via a transmission mechanism, and their rotational speeds, i.e., the pocket movement speeds, and the interlocking timing of each pocket are designed to be adjustable so that the can body C can be smoothly transferred between each turret.
  • the bottomed tubular body processing apparatus 100 has been described above, the bottomed tubular body processing apparatus of the present invention is not limited to the above embodiment.
  • the multi-stage neck processing section has six neck processing units, and the first and second rounds pass through all the neck processing units to perform neck processing 12 times, but as long as the transport start point and transport end point of the circulating conveyor are set on the downstream and upstream sides of the multi-stage neck processing section, respectively, the configuration is not limited to the above.
  • the first round may pass through up to the fifth processing unit and be resupplied to the first processing unit by the circulating conveyor
  • the second round may pass through all six processing units, or the first round may start from the first processing unit, pass through up to the sixth processing unit, be resupplied to the second processing unit by the circulating conveyor, and pass through five processing units in the second round, or other configurations may be used.
  • the neck processing unit performs all the neck processing, but other processes may be provided instead of neck processing.
  • Examples of other processes include flanging to form a flange for tightening the can lid, a trimming process to cut off unnecessary parts such as ears at the opening end, a thread processing process to form a threaded portion for tightening the cap, and a curling process to round the opening end.
  • the cans may be transported without processing by simply passing through the processing turret 120.
  • the number of cycles is set to two in the above embodiment, but the device can also be configured with a number of cycles of three or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

Provided is a closed-bottom cylindrical body processing device that can perform numerous iterations of neck processing on closed-bottom cylindrical bodies without a great enlargement of installation space and that can be used in common for closed-bottom cylindrical bodies of different heights without complex setting actions. This closed-bottom cylindrical body processing device (100) is characterized by comprising: a multi-stage neck processing section (110) that performs a plurality of iterations of neck processing on open ends of closed-bottom cylindrical bodies and in which a plurality of neck processing units are disposed in sequence; a circulation conveyor (131) that supplies the closed-bottom cylindrical bodies discharged from a downstream-side neck processing unit back to an upstream-side neck processing unit; a transfer turret (140) that retains the closed-bottom cylindrical bodies and moves same to a delivery position that faces the circulation conveyor; and an axial-direction movement mechanism that moves the closed-bottom cylindrical bodies at the delivery position toward the circulation conveyor in a cylinder-axis direction.

Description

有底筒状体加工装置Bottomed cylindrical body processing device

 本発明は、有底筒状体を搬送経路に沿って搬送しながら当該有底筒状体の開口端に複数回のネック加工を施す有底筒状体加工装置に関する。 The present invention relates to a bottomed cylindrical body processing device that performs neck processing multiple times on the open end of a bottomed cylindrical body while transporting the bottomed cylindrical body along a transport path.

 従来、飲料缶等に用いられる缶は、円形状に打ち抜いた金属製の板材に対して絞り・しごき加工などを施して有底円筒形状の缶胴を成形し、さらに缶胴の開口端に所定のネッキング、トリミング、必要に応じてねじ部成形やカール部成形などの口部成形工程を行うことによって製造される。
 いわゆるネッキングと称される絞り加工は、缶胴を構成する金属材料が過度のストレスを受けないように、通常、複数工程に分けて段階的に行われる。このような段階的に複数回のネック加工を行う装置としては、例えば加工ターレットを複数、直列的に連結し、缶胴を順次搬送しながら1つの加工ターレットにつき1段階のネック加工を行い、1巡で複数工程のネック加工を施す装置がある。
 しかしながら、このような装置には、所望のネック加工数と同数の加工ターレットを設ける必要があるので、多数回のネック加工を要する缶胴を製造する場合には装置や設備が長大化、極大化してより多くの設置スペースが必要になる、という問題がある。
Conventionally, cans used for beverage cans and the like are manufactured by forming a cylindrical can body with a bottom by drawing and ironing a metal plate punched into a circular shape, and then performing a predetermined necking and trimming process on the open end of the can body and, as necessary, a mouth forming process such as threading or curling.
The drawing process, known as necking, is usually divided into a number of steps and carried out in stages so as not to subject the metal material constituting the can body to excessive stress. An example of an apparatus that carries out such necking multiple times in stages is an apparatus that connects multiple process turrets in series, carries out one stage of necking per process turret while sequentially transporting the can body, and carries out multiple necking processes in one round.
However, such an apparatus must be provided with processing turrets in the same number as the desired number of necks to be processed. This creates a problem in that, when manufacturing can bodies that require multiple neck processing, the apparatus and facilities must become long and large, requiring more installation space.

 このような問題を解決するために、例えば特許文献1には、複数の加工ターレットが直列的に配置され、一端側に缶胴が供給される供給位置が設けられるとともに他端側に缶胴が排出される排出位置が設けられた装置において、供給位置から搬送されて各加工ターレットにおいて1巡目の複数工程の加工が順に施され、排出位置から排出された半加工状態の缶胴を、循環コンベアによって供給位置まで戻して、再度、複数の加工ターレットに搬送されて2巡目の複数加工を施す装置が開示されている。
 このような循環コンベアを利用した装置においては、水平方向に並設される加工ターレット数を減少させることができ、設置スペース当たり施すことができる加工数を増大させることができる。
In order to solve such problems, for example, Patent Document 1 discloses an apparatus in which multiple processing turrets are arranged in series, with a supply position at one end where can bodies are supplied and a discharge position at the other end where can bodies are discharged, in which the can bodies are transported from the supply position and subjected to a first round of multiple processing steps in each processing turret in sequence, and the semi-processed can bodies discharged from the discharge position are returned to the supply position by a circulating conveyor and transported again to the multiple processing turrets where they are subjected to a second round of multiple processing steps.
In an apparatus utilizing such a circulating conveyor, the number of processing turrets arranged in parallel in the horizontal direction can be reduced, and the number of processing operations that can be performed per installation space can be increased.

欧州特許第2001617号明細書European Patent No. 2001617

 一方、上記の循環コンベアを利用した装置においては、高さ(ハイト)が異なる飲料缶の製造に転用する、いわゆる型替えをする場合に、加工ターレットから循環コンベアへの移載が困難となる、という問題がある。
 各加工ターレットは、缶胴の開口端を加工するものであるために缶胴の開口端が確実に加工に供されるように位置合わせされて順に搬送されるところ、循環コンベアはその担持および搬送のしやすさから缶胴の底部を吸着して搬送させる構造であるため、ある高さの缶胴のみに対応した装置であれば初期設計として循環コンベアの搬送面が缶胴の底部に近接して対向するような位置に循環コンベアを配設すればよいが、同じ装置を高さが異なる缶胴のネッキングにそのまま転用すると、1巡目の加工が終了した缶胴を循環コンベアに移載することができないという問題が生じる。このような場合には、循環コンベア自体を移動させて搬送面の位置をずらすことによって対応することになるが、循環コンベアの大きさ上、大掛かりな設定となるため現実的ではなく、また、設定行為自体が煩雑化してしまう。
On the other hand, in the apparatus using the above-mentioned circulating conveyor, when converting to the production of beverage cans of a different height, i.e., when changing the mold, it becomes difficult to transfer the cans from the processing turret to the circulating conveyor.
Since each processing turret processes the open end of the can body, it is aligned and transported in order so that the open end of the can body is surely provided for processing, and since the circulating conveyor is structured to suck and transport the bottom of the can body for ease of carrying and transporting, if the device is only suitable for can bodies of a certain height, the circulating conveyor may be positioned in such a way that the transport surface of the circulating conveyor faces closely to the bottom of the can body in the initial design, but if the same device is directly used for necking can bodies of different heights, a problem occurs in that the can bodies that have completed the first round of processing cannot be transferred to the circulating conveyor. In such a case, it would be possible to address the issue by moving the circulating conveyor itself to shift the position of the transport surface, but due to the size of the circulating conveyor, this would be a complex setup and would be unrealistic, and the setup process itself would be complicated.

 本発明は、上記の問題点を解決するものであって、その目的は、設置スペースの極大化を伴うことなく有底筒状体に対して多数回のネック加工を施すことができ、しかも、簡単な構成で高さの異なる有底筒状体について煩雑な設定行為なしに共通して使用することができる有底筒状体加工装置を提供することにある。 The present invention aims to solve the above problems, and its purpose is to provide a bottomed cylindrical body processing device that can perform multiple necking operations on bottomed cylindrical bodies without maximizing the installation space, and that has a simple configuration and can be used commonly for bottomed cylindrical bodies of different heights without complicated setup procedures.

 本発明の有底筒状体加工装置は、有底筒状体を搬送経路に沿って搬送しながら当該有底筒状体の開口端に複数回のネック加工を施す有底筒状体加工装置であって、
 複数のネック加工ユニットが搬送経路に沿って順に配置された多段階ネック加工部と、
 前記多段階ネック加工部の下流側に設けられた下流側ネック加工ユニットから排出された有底筒状体を、前記多段階ネック加工部の上流側に設けられた上流側ネック加工ユニットに再び供給する循環用コンベアと、
 複数のポケットが周方向に配置され、前記ポケットに前記下流側ネック加工ユニットから排出された有底筒状体を保持した状態で、前記循環用コンベアと対向する受け渡し位置まで移動させる乗り換えターレットと、を備え、
 前記乗り換えターレットは、前記有底筒状体を保持した前記ポケットが前記循環用コンベアへの受け渡し位置にあるときに前記有底筒状体を筒軸方向に前記循環用コンベアに向かって移動させる軸方向移動機構を備えることにより、前記課題を解決するものである。
The present invention relates to an apparatus for processing a bottomed tubular body, the apparatus being configured to perform necking on an open end of a bottomed tubular body multiple times while transporting the bottomed tubular body along a transport path, the apparatus comprising:
a multi-stage neck processing section in which a plurality of neck processing units are sequentially arranged along a conveying path;
a circulation conveyor for resupplying the bottomed tubular body discharged from a downstream neck processing unit provided downstream of the multi-stage neck processing section to an upstream neck processing unit provided upstream of the multi-stage neck processing section;
a transfer turret having a plurality of pockets arranged in a circumferential direction, the transfer turret holding the bottomed cylindrical body discharged from the downstream neck processing unit in the pocket, the transfer turret moving the bottomed cylindrical body to a transfer position facing the circulating conveyor,
The transfer turret solves the above problem by being equipped with an axial movement mechanism that moves the bottomed cylindrical body in the tubular axial direction toward the circulating conveyor when the pocket holding the bottomed cylindrical body is in a transfer position to the circulating conveyor.

 本発明の有底筒状体加工装置においては、前記循環用コンベアは、搬送面を有し、当該搬送面が有底筒状体の底部と対面するように配設されており、
 前記搬送面に有底筒状体の底部を吸着して搬送する構成とすることができる。
In the processing apparatus for a bottomed cylindrical body of the present invention, the circulating conveyor has a conveying surface and is disposed so as to face the bottom of the bottomed cylindrical body,
The bottom of the bottomed cylindrical object may be attracted to the conveying surface and conveyed.

 また、本発明の有底筒状体加工装置においては、前記軸方向移動機構は、気体の噴出により前記有底筒状体を筒軸方向に移動させるエアブロー機構によって構成することができる。 In addition, in the bottomed cylindrical body processing device of the present invention, the axial movement mechanism can be configured as an air blow mechanism that moves the bottomed cylindrical body in the cylindrical axial direction by ejecting gas.

 また、本発明の有底筒状体加工装置においては、前記多段階ネック加工部の各ネック加工ユニットは、水平な一方向に直列的に配置され、
 前記循環用コンベアは、前記多段階ネック加工部の上方において前記一方向に沿って延び、
 前記循環用コンベアの搬送経路の後端から前記上流側ネック加工ユニットに前記有底筒状体を下方に移動させて供給するシュートが備えられ、
 前記シュートは、前記有底筒状体を筒軸方向に移動させるガイドを備える構成とすることができる。
In the bottomed tubular body processing apparatus of the present invention, each neck processing unit of the multi-stage neck processing section is arranged in series in one horizontal direction,
The circulating conveyor extends along the one direction above the multi-stage neck processing section,
a chute is provided for moving the bottomed cylindrical body downward from the rear end of the conveying path of the circulating conveyor to the upstream neck processing unit,
The chute may be configured to include a guide that moves the bottomed cylindrical body in the axial direction.

 本発明の有底筒状体加工装置によれば、下流側ネック加工ユニットから排出された有底筒状体を上流側ネック加工ユニットに再び供給する循環用コンベアを備えることにより、所期の一連の多数回のネック加工に対する加工ターレットの必要数を低減させることができるので、基本的に、設置スペースの極大化を伴うことなく有底筒状体に対して多数回のネック加工を施すことができる。しかも、乗り換えターレットによって有底筒状体が循環用コンベアと対向する受け渡し位置に搬送されたときに軸方向移動機構によって有底筒状体が筒軸方向に循環用コンベアに向かって移動される構成を有することにより、循環用コンベアと乗り換えターレットとの間の有底筒状体の筒軸方向の位置関係を、高さが相対的に高い有底筒状体を被処理体とした場合に合わせて初期設定しておけば、高さが相対的に低い有底筒状体のネッキングに転用(型替え)したとしても、何らの追加の煩雑な設定行為なしに、軸方向移動機構によって有底筒状体を自動的に循環用コンベアに移載することができる。従って本発明の有底筒状体加工装置によれば、高さの異なる有底筒状体について煩雑な設定行為なしに共通して使用することができ、高い利便性が得られる。  The bottomed tubular body processing device of the present invention is provided with a circulation conveyor that supplies the bottomed tubular bodies discharged from the downstream neck processing unit back to the upstream neck processing unit, thereby reducing the number of processing turrets required for the desired series of multiple neck processing operations, so that multiple neck processing operations can basically be performed on bottomed tubular bodies without maximizing the installation space. Moreover, when the bottomed tubular body is transported by the transfer turret to a transfer position opposite the circulating conveyor, the axial movement mechanism moves the bottomed tubular body in the axial direction toward the circulating conveyor. If the positional relationship in the axial direction of the bottomed tubular body between the circulating conveyor and the transfer turret is initially set according to the case where a bottomed tubular body with a relatively high height is used as the processed body, even if it is diverted (changed) to necking of a bottomed tubular body with a relatively low height, the axial movement mechanism can automatically transfer the bottomed tubular body to the circulating conveyor without any additional complicated setting action. Therefore, the bottomed cylindrical body processing device of the present invention can be used commonly for bottomed cylindrical bodies of different heights without complicated setting procedures, providing high convenience.

 また、本発明の有底筒状体加工装置によれば、循環用コンベアの搬送面に有底筒状体の底部を吸着して搬送するものであることにより、1巡目のネック加工が順に施されて排出位置から排出された半加工状態の有底筒状体であっても、底部の形状は変形されないために吸着による担持を確実に実現することができる。 In addition, according to the bottomed tubular body processing device of the present invention, the bottom of the bottomed tubular body is adsorbed to the transport surface of the circulating conveyor and transported, so even if the bottomed tubular body is in a semi-processed state after the first round of neck processing has been performed in sequence and discharged from the discharge position, the shape of the bottom is not deformed, and support by adsorption can be reliably achieved.

 また、本発明の有底筒状体加工装置によれば、軸方向移動機構が気体の噴出により有底筒状体を筒軸方向に移動させるエアブロー機構によって構成されることにより、高さが異なる有底筒状体のネッキングに型替えする場合に、型替え後の有底筒状体の重量等に基づいて気体の噴出量を変更するだけで有底筒状体の最適な移載を実行することができ、また、非接触で筒軸方向に移動できるため、有底筒状体の疵付きを防止することができる。 Furthermore, according to the bottomed cylindrical body processing device of the present invention, the axial movement mechanism is composed of an air blow mechanism that moves the bottomed cylindrical body in the axial direction by ejecting gas, so that when changing the shape to neck a bottomed cylindrical body of a different height, optimal transfer of the bottomed cylindrical body can be achieved simply by changing the amount of gas ejected based on the weight of the bottomed cylindrical body after the changeover, and since the bottomed cylindrical body can be moved in the axial direction without contact, scratches on the bottomed cylindrical body can be prevented.

 さらに、本発明の有底筒状体加工装置によれば、循環用コンベアの搬送経路の後端から上流側ネック加工ユニットに有底筒状体を下方に移動させて供給するシュートが備えられ、シュートには有底筒状体を筒軸方向に移動させるガイドを備えられていることにより、高さが異なる有底筒状体のネッキングに型替えした場合にも、何らの追加の煩雑な設定行為なしに、下方に移送される有底筒状体がガイドによって筒軸方向に開口端側に揃えられ、有底筒状体がネック加工可能な筒軸方向位置に戻されて上流側ネック加工ユニットに再供給されるので、高さの異なる有底筒状体について煩雑な設定行為なしに共通して使用することができ、高い利便性が得られる。 Furthermore, according to the bottomed tubular body processing device of the present invention, a chute is provided that moves the bottomed tubular body downward from the rear end of the transport path of the circulating conveyor to the upstream neck processing unit, and the chute is provided with a guide that moves the bottomed tubular body in the axial direction. Therefore, even when changing to necking of bottomed tubular bodies of different heights, the bottomed tubular body transferred downward is aligned in the axial direction of the tubular body by the guide to the open end side without any additional complicated setting action, and the bottomed tubular body is returned to an axial position where it can be necked and re-supplied to the upstream neck processing unit. Therefore, bottomed tubular bodies of different heights can be used in common without complicated setting action, resulting in high convenience.

本発明の一実施形態に係る有底筒状体加工装置の構成を正面側から示す説明図である。1 is an explanatory diagram showing the configuration of a bottomed cylindrical body processing device according to an embodiment of the present invention from the front side; 図1の有底筒状体加工装置を裏面側から示す説明図である。2 is an explanatory diagram showing the bottomed tubular body processing apparatus of FIG. 1 from the back side. FIG. 図1の有底筒状体加工装置における乗り換えターレットおよび循環用コンベアの構成の一例を示す説明図である。2 is an explanatory diagram showing an example of the configuration of a transfer turret and a circulating conveyor in the bottomed cylindrical body processing apparatus of FIG. 1 . FIG. 図3のA-A線断面図であって、高ハイト缶の移載時の状態を示す。4 is a cross-sectional view taken along line AA in FIG. 3, showing a state in which a high-height can is being transferred. 図3のA-A線断面図であって、低ハイト缶の移載時の状態を示す。4 is a cross-sectional view taken along line AA in FIG. 3, showing the state during transfer of the low-height can.

 以下、本発明について詳細に説明する。
 図1は、本発明の一実施形態に係る有底筒状体加工装置の構成を正面側(缶胴Cの底部側)から見た状態を示す説明図であり、図2は、図1の有底筒状体加工装置を裏面側(缶胴Cの開口端側)から見た状態を示す説明図である。
 本発明の一実施形態に係る有底筒状体加工装置100は、有底筒状体である缶胴Cを搬送経路に沿って巡回搬送させながら缶胴Cの開口端に複数回のネック加工を施すものである。有底筒状体加工装置100は、図1および図2に示すように、複数(図1においては6つ)のネック加工ユニットが搬送経路に沿って順に配置された多段階ネック加工部110と、多段階ネック加工部110のうち搬送方向の下流側に設けられた下流側ネック加工ユニットから排出された缶胴Cを、多段階ネック加工部110のうち搬送方向の上流側に設けられた上流側ネック加工ユニットに再び供給する循環用コンベア131を有する再供給機構130と、下流側ネック加工ユニットから排出された缶胴Cを循環用コンベア131に移載するための乗り換えターレット140とを備える。
The present invention will be described in detail below.
FIG. 1 is an explanatory diagram showing the configuration of a bottomed tubular body processing apparatus according to one embodiment of the present invention as viewed from the front side (the bottom side of the can body C), and FIG. 2 is an explanatory diagram showing the bottomed tubular body processing apparatus of FIG. 1 as viewed from the back side (the opening end side of the can body C).
The bottomed tubular body processing apparatus 100 according to one embodiment of the present invention performs neck processing multiple times on the open end of the can body C, which is a bottomed tubular body, while circulating the can body C along a conveying path. As shown in Figures 1 and 2, the bottomed tubular body processing apparatus 100 includes a multi-stage neck processing section 110 in which multiple (six in Figure 1) neck processing units are arranged in sequence along the conveying path, a re-supply mechanism 130 having a circulation conveyor 131 that re-supplies the can body C discharged from a downstream neck processing unit provided downstream in the conveying direction of the multi-stage neck processing section 110 to an upstream neck processing unit provided upstream in the conveying direction of the multi-stage neck processing section 110, and a transfer turret 140 for transferring the can body C discharged from the downstream neck processing unit to the circulation conveyor 131.

 ネック加工ユニットは、各々、外周部に缶胴Cを個別収容して搬送するポケットPが複数、周方向に略等間隔で設けられた回転可能な加工ターレット120と、ポケットPに収容された缶胴Cに対してネック加工を行う加工装置(図示せず)とを有する。
 多段階ネック加工部110においては、ネック加工ユニットの加工ターレット120と、隣接する2つの加工ターレット120間において缶胴Cを搬送する搬送ターレット121とが交互に配置されている。加工ターレット120の各ポケットPに収容された缶胴Cは、搬送方向の下流側の搬送ターレット121に受け渡されるまでの間に1段階のネック加工が施される。
 加工ターレット120のポケットPは、交互に、1巡目に保持される第1のポケットおよび2巡目に保持される第2のポケットとされており、第1のポケットに保持された缶胴Cには1巡目のn段階目のネック加工が施されるとともに、第2のポケットに保持された缶胴Cには2巡目のn段階目(すなわち通しでn+x段階目)のネック加工がそれぞれ施される。nは、上流側から数えたネック加工ユニットの配置順、xはネック加工ユニットの総数である。
 搬送ターレット121も、各々、外周に缶胴Cを保持するポケットを複数有し、上流側に隣接配置されるネック加工ユニットによって加工された缶胴Cを受け取って下流側に隣接配置される加工ターレット120の同じ位相のポケットPに供給する回転可能なターレットよりなる。
Each neck processing unit has a rotatable processing turret 120 having multiple pockets P on its outer periphery that are arranged at approximately equal intervals in the circumferential direction for individually storing and transporting can bodies C, and a processing device (not shown) that performs neck processing on the can bodies C stored in the pockets P.
In the multi-stage neck processing section 110, processing turrets 120 of the neck processing units and transport turrets 121 that transport the can bodies C between two adjacent processing turrets 120 are arranged alternately. The can bodies C accommodated in each pocket P of the processing turrets 120 are subjected to one stage of neck processing before being transferred to the transport turret 121 downstream in the transport direction.
The pockets P of the processing turret 120 are alternately designated as a first pocket held in the first round and a second pocket held in the second round, and the can bodies C held in the first pocket are subjected to the nth stage of neck processing in the first round, while the can bodies C held in the second pocket are subjected to the nth stage of neck processing in the second round (i.e., the n+xth stage in total), where n is the arrangement order of the neck processing units counted from the upstream side, and x is the total number of neck processing units.
The conveying turrets 121 also each have a plurality of pockets on their outer periphery that hold the can bodies C, and are rotatable turrets that receive the can bodies C that have been processed by the neck processing unit located adjacent to them on the upstream side and supply them to pockets P of the same phase of the processing turret 120 located adjacent to them on the downstream side.

 加工ターレット120のポケットPには、ネック加工を行うための加工装置(図示せず)が配置されており、加工ターレット120の回転と同期して移動する。加工装置は、例えば、缶胴Cの底部を支持するボトムツールと、缶胴Cの開口端部の外周部に嵌合して縮径させる環状のアウターツールと、缶胴Cの開口端部に挿入される缶胴Cの開口端部の外径よりも1~2mm程度小径のインナーツールとを備え、図示しない駆動機構によりボトムツールおよびインナーツールが缶胴Cの筒軸方向に往復動可能に構成され、ボトムツールおよびインナーツールが接近方向に駆動され、さらにボトムツールおよびインナーツールがアウターツール方向に駆動されることにより、インナーツールとアウターツールの間に缶胴Cの開口端が挿入されることで、缶胴Cの開口端に1段階のネック加工を行う構成とされている。
 ネック加工装置の具体的構成は、上記構成に限定されず、公知の種々のネック加工装置の構成を採用することができる。
A processing device (not shown) for performing neck processing is disposed in the pocket P of the processing turret 120, and moves in synchronization with the rotation of the processing turret 120. The processing device includes, for example, a bottom tool that supports the bottom of the can body C, an annular outer tool that fits into the outer periphery of the open end of the can body C to reduce the diameter, and an inner tool that is inserted into the open end of the can body C and has a diameter smaller than the outer diameter of the open end of the can body C by about 1 to 2 mm, and is configured so that the bottom tool and the inner tool can be reciprocated in the cylindrical axial direction of the can body C by a drive mechanism (not shown), and the bottom tool and the inner tool are driven in the approaching direction and further driven in the outer tool direction, whereby the open end of the can body C is inserted between the inner tool and the outer tool, thereby performing one-stage neck processing on the open end of the can body C.
The specific configuration of the neck processing device is not limited to the above configuration, and various known neck processing device configurations can be adopted.

 本実施形態に係る有底筒状体加工装置100は、多段階ネック加工部110の各ネック加工ユニットの加工ターレット120が、これらの中心軸が水平方向(図1において紙面に垂直な方向)に伸びる状態で互いに水平な一方向(図1において左右方向)に並ぶように直列的に配置され、各搬送ターレット121も、これらの中心軸が加工ターレット120と同軸方向に伸びる状態で互いに水平な一方向に並ぶように直列的に配置されている。このように配置されることにより、鉛直方向(図1において上下方向)に加工ターレット120同士が重なって配置されることが回避されるので、優れたメンテナンス性が得られる。
 循環用コンベア131は、多段階ネック加工部110の上方空間において当該多段階ネック加工部110の設置方向と同じ一方向(図1において左右方向)に沿って延びる平行路131bを有し、担持された缶胴Cが多段階ネック加工部110において缶胴Cが搬送される方向(図1において右方向)とは逆の方向(図1において左方向)に移動するように配置されている。具体的には、循環用コンベア131は、乗り換えターレット140から受け渡された缶胴Cを上方に移動させる上昇路131aと、循環方向に移動させる平行路131bとを有するように曲がり角を有して延びている。平行路131bおよび上昇路131aは、図1に示されるような、それぞれ水平方向および垂直方向に直線的に延びた構成に限定されるものではなく、所定の角度を有して配置された構成や、曲線的に延びる構成であってもよい。また、平行路131bおよび上昇路131aの区別のない状態で曲線的に延びる構成であってもよい。循環用コンベア131が多段階ネック加工部110の上方空間において缶胴Cを再供給のために移動させる縦型の構成を有することにより、平面スペースの省スペース化を図ることができる。
In the bottomed tubular body processing apparatus 100 according to this embodiment, the processing turrets 120 of each neck processing unit of the multi-stage neck processing section 110 are arranged in series so that they are lined up in one horizontal direction (left-right direction in FIG. 1) with their central axes extending in the horizontal direction (direction perpendicular to the paper surface in FIG. 1), and each transport turret 121 is also arranged in series so that they are lined up in one horizontal direction with their central axes extending in the same axial direction as the processing turret 120. By arranging them in this manner, it is possible to avoid the processing turrets 120 being arranged so as to overlap each other in the vertical direction (up-down direction in FIG. 1), thereby achieving excellent maintainability.
The circulation conveyor 131 has a parallel path 131b extending in the space above the multi-stage neck processing section 110 in one direction (left-right direction in FIG. 1) that is the same as the installation direction of the multi-stage neck processing section 110, and is arranged so that the supported can bodies C move in a direction (left-right direction in FIG. 1) opposite to the direction in which the can bodies C are conveyed in the multi-stage neck processing section 110 (right-right direction in FIG. 1). Specifically, the circulation conveyor 131 extends with a bend so as to have an upward path 131a for moving the can bodies C transferred from the transfer turret 140 upward and a parallel path 131b for moving them in the circulation direction. The parallel path 131b and the upward path 131a are not limited to a configuration that extends linearly in the horizontal and vertical directions, respectively, as shown in FIG. 1, but may be configured to be disposed at a predetermined angle or to extend in a curved manner. Also, a configuration that extends in a curved manner without distinction between the parallel path 131b and the upward path 131a may be used. The circulating conveyor 131 has a vertical configuration for moving the can bodies C for resupply in the space above the multi-stage neck processing section 110, thereby making it possible to save planar space.

 循環用コンベア131は、缶胴Cの底部Bを搬送面132に吸着して搬送するいわゆるバキュームコンベアである。缶胴Cがスチール製である場合は磁力で吸着するマグネットコンベアであってもよい。循環用コンベア131は、搬送面132が缶胴Cの筒軸と垂直な平面に一致するように、かつ、乗り換えターレット140で受け渡し位置まで搬送されてきた缶胴Cの底部Bと筒軸方向に対向するように、配設されている。なお、搬送面132は、缶胴Cの筒軸と完全に垂直な平面に一致するように配設されることに限定されるものではなく、受け渡し位置において缶胴Cの底部Bと対面して所定の移載が可能であれば、缶胴Cの筒軸と垂直な平面と多少の角度をなすように配設されていてもよい。図1および図2において、133は循環用コンベア131を支持して搬送経路を維持する支持部材であり、134は支持部材133を多段階ネック加工部110の上方空間において支持する橋脚である。 The circulating conveyor 131 is a so-called vacuum conveyor that adsorbs the bottom B of the can body C to the conveying surface 132 and conveys it. If the can body C is made of steel, it may be a magnetic conveyor that adsorbs it by magnetic force. The circulating conveyor 131 is arranged so that the conveying surface 132 coincides with a plane perpendicular to the cylindrical axis of the can body C and faces the cylindrical axis direction of the bottom B of the can body C that has been conveyed to the transfer position by the transfer turret 140. Note that the conveying surface 132 is not limited to being arranged so that it coincides with a plane completely perpendicular to the cylindrical axis of the can body C, and may be arranged so that it forms a slight angle with the plane perpendicular to the cylindrical axis of the can body C as long as it is possible to face the bottom B of the can body C at the transfer position and perform the specified transfer. In Figures 1 and 2, 133 is a support member that supports the circulating conveyor 131 and maintains the transport path, and 134 is a pier that supports the support member 133 in the space above the multi-stage neck processing section 110.

 乗り換えターレット140は、図3に示すように、複数のポケットPが周方向に配置され、ポケットPは、下流側ネック加工ユニットから排出された缶胴Cを最下流に配置された搬送ターレット121および移送ターレット150を介して受け取る受け取り位置と、循環用コンベア131と対向する受け渡し位置とを回転によって通過するように構成されている。
 缶胴Cの搬送経路において、多段階ネック加工部110に供給されてから循環用コンベア131に移載されるまでの間、具体的には搬送ターレット121、加工ターレット120、移送ターレット150および乗り換えターレット140においては、すべて缶胴Cの開口端の筒軸方向位置が同じになる状態で搬送される。
 一方、循環用コンベア131の搬送面132は、図4に示されるように、例えば高さの高い缶胴C(高ハイト缶)の底部Bに適合した、すなわち高ハイト缶の底部Bと僅かな隙間を介して対向する筒軸方向位置にあり、缶胴Cが低ハイト缶である場合には、図5に示されるように、低ハイト缶の底部Bと循環用コンベア131の搬送面132との間に、ある程度の大きさの間隙Gが形成される。
 循環用コンベア131の搬送面132と缶胴Cの底部Bとの間隙Gの許容範囲は、軸方向移動機構の構成によっても異なるが、例えば80mm以下である。間隙Gは、被処理体とすることができる缶胴Cの高さの自由度の範囲でもあるので、間隙Gの許容範囲が上記範囲であることにより、基準となる高ハイト缶と比較して十分に広い範囲の低ハイト缶にネッキングを施すことができ、有底筒状体加工装置100の適用対象に高い自由度が得られる。
As shown in Figure 3, the transfer turret 140 has multiple pockets P arranged circumferentially, and the pockets P are configured to rotate between a receiving position where the can body C discharged from the downstream neck processing unit is received via the conveying turret 121 and the transfer turret 150 arranged at the most downstream side, and a delivery position opposite the circulating conveyor 131.
In the transport path of the can body C, from the time it is supplied to the multi-stage neck processing section 110 until it is transferred to the circulating conveyor 131, specifically in the transport turret 121, the processing turret 120, the transfer turret 150 and the transfer turret 140, the can body C is transported in such a manner that the opening end of the can body C is always positioned in the same axial direction.
On the other hand, as shown in FIG. 4, the conveying surface 132 of the circulating conveyor 131 is located in an axial direction that is adapted to, for example, the bottom B of a tall can body C (a high-height can), i.e., that faces the bottom B of the high-height can with a small gap therebetween. If the can body C is a low-height can, as shown in FIG. 5, a certain amount of gap G is formed between the bottom B of the low-height can and the conveying surface 132 of the circulating conveyor 131.
The allowable range of the gap G between the transport surface 132 of the circulating conveyor 131 and the bottom B of the can body C varies depending on the configuration of the axial movement mechanism, but is, for example, 80 mm or less. Since the gap G is also within the range of freedom for the height of the can body C that can be used as the object to be treated, by setting the allowable range of the gap G within the above range, necking can be performed on a sufficiently wide range of low-height cans compared to the standard high-height cans, and a high degree of freedom is obtained in the application of the bottomed tubular body processing apparatus 100.

 乗り換えターレット140は、缶胴Cを保持したポケットPが循環用コンベア131への受け渡し位置にあるときに、缶胴Cを筒軸方向に循環用コンベア131に向かう側(図1において手前側)に移動させる軸方向移動機構(図示せず)を備える。
 軸方向移動機構は、例えば、気体(エア)の噴出により缶胴Cを筒軸方向に移動させるエアブロー機構によって構成することができる。
 エアブロー機構は、例えばブローノズル、空気圧縮機および配管を有し、ブローノズルが乗り換えターレット140の側方(缶胴Cの開口端側)に配置されて移載方向(缶胴Cの底部側に向かう方向)にエアを噴出させることが可能な構成のものである。エアは連続的に噴出させることが好ましい。エアの噴出を連続して行う状態としておくことにより、受け渡し位置に搬送されてきた缶胴Cと同期させて都度噴出させる必要が生じないため、容易にかつ確実に缶胴Cを循環用コンベア131に移載することができる。
 軸方向移動機構は、筒軸方向の底部側に缶胴Cを移動させることができるものであれば、エアブロー機構によって構成されることに限定されず、例えば板バネ等の物理的接触によって移動させる構成や、磁力によって移動させる構成とされていてもよい。
The transfer turret 140 is equipped with an axial movement mechanism (not shown) that moves the can body C in the cylindrical axial direction toward the circulating conveyor 131 (the front side in Figure 1) when the pocket P holding the can body C is in a transfer position to the circulating conveyor 131.
The axial movement mechanism can be constituted, for example, by an air blow mechanism that moves the can body C in the cylindrical axial direction by blowing gas (air).
The air blow mechanism has, for example, a blow nozzle, an air compressor, and piping, and the blow nozzle is arranged to the side of the transfer turret 140 (the opening end side of the can body C) and is capable of blowing air in the transfer direction (towards the bottom side of the can body C). It is preferable to blow air continuously. By keeping the air blowing in a state where it is performed continuously, it is not necessary to blow air each time in synchronization with the can body C transported to the transfer position, so that the can body C can be easily and reliably transferred to the circulating conveyor 131.
The axial movement mechanism is not limited to being constituted by an air blow mechanism, as long as it is capable of moving the can body C toward the bottom side in the cylindrical axial direction, and may be configured to move the can body C by physical contact with a leaf spring or the like, or by magnetic force.

 循環用コンベア131を備える再供給機構130には、循環用コンベア131の搬送経路の後端から上流側ネック加工ユニットに缶胴Cを下方に移動させて供給するシュート135が備えられている。
 シュート135は、高さの高い缶胴C(高ハイト缶)に適合した内部空間を有し、それよりも高さの低い缶胴Cがシュート135に投入されたときに、内部空間において缶胴Cを筒軸方向の開口端側(図1において奥側)に寄るように移動させるガイド(図示せず)を備える。缶胴Cが低ハイト缶である場合にはシュート135にこのようなガイドを設置することにより、シュート135内を滑落する缶胴Cの筒軸方向の高さに関わらず、乗り換えターレット140の受け渡し位置において缶胴Cの開口端の筒軸方向位置を底部側にずらした分を、ネック加工に適した元の筒軸方向位置に復帰させることができる。この状態において缶胴Cが上流側ネック加工ユニットに再供給用ターレット群136および最上流側の搬送ターレット121を介して供給されることにより、別途筒軸方向の位置調整手段を設けることなく、2巡目のネック加工を行うことができる。
The resupply mechanism 130 equipped with the circulating conveyor 131 is provided with a chute 135 that moves the can bodies C downward from the rear end of the transport path of the circulating conveyor 131 to the upstream neck processing unit.
The chute 135 has an internal space suitable for a tall can body C (high-height can), and is provided with a guide (not shown) for moving the can body C in the internal space toward the open end in the axial direction (the rear side in FIG. 1) when a can body C of a lower height is fed into the chute 135. When the can body C is a low-height can, by providing such a guide in the chute 135, the axial position of the open end of the can body C, which is shifted toward the bottom at the transfer position of the transfer turret 140, can be returned to its original axial position suitable for necking, regardless of the axial height of the can body C sliding down inside the chute 135. In this state, the can body C is fed to the upstream necking unit via the re-supply turret group 136 and the most upstream conveying turret 121, so that a second round of necking can be performed without providing a separate means for adjusting the axial position.

 上記の有底筒状体加工装置100においては、例えば、低ハイト缶である缶胴Cのネッキング時は、以下のように複数回のネック加工を施される。まず、供給機構160から多段階ネック加工部110に供給された未加工の缶胴Cは、最上流の搬送ターレット121を介して上流側ネック加工ユニットの第1のポケットPに受け渡され、搬送方向下流側に隣接する搬送ターレット121に受け渡されるまでの間に1段階のネック加工が行われる。同様に搬送ターレット121を介して順次下流側に隣接するネック加工ユニットのそれぞれ第1のポケットPにおいて段階的に1巡目の複数回(本実施形態においては6回)のネック加工が行われ、最下流の下流側ネック加工ユニットの排出位置まで移動すると、搬送ターレット121および移送ターレット150を介して乗り換えターレット140のポケットPに受け渡される。乗り換えターレット140の回転に伴って缶胴Cを保持したポケットPが受け渡し位置まで移動されると、エアブロー機構による連続的なエアの噴出によって、缶胴Cが開口端側から底部側に向かって飛ばされ循環用コンベア131の搬送面132に底部Bが吸着される。これにより、缶胴Cが乗り換えターレット140から循環用コンベア131に移載される。
 循環用コンベア131に吸着された缶胴Cは、搬送経路に沿って上昇路131aおよび平行路131bを通って平行路131bの後端においてシュート135に投入される。シュート135内に投入された缶胴Cは、その内部空間においてガイドによって筒軸方向の開口端側に寄るように移動され、乗り換えターレット140の受け渡し位置において缶胴Cの開口端の筒軸方向位置を底部側にずらしたズレ分が戻される。この状態において缶胴Cが上流側ネック加工ユニットの加工ターレット120の第2のポケットPに再供給用ターレット群136および最上流側の搬送ターレット121を介して供給される。
 上流側ネック加工ユニットの加工ターレット120の第2のポケットPに供給された缶胴Cは、搬送方向下流側に隣接する搬送ターレット121に受け渡されるまでの間に2巡目の1段階目(通しで7段階目)のネック加工が行われる。同様に搬送ターレット121を介して順次下流側に隣接するネック加工ユニットのそれぞれ第2のポケットPにおいて段階的に2巡目の複数回(本実施形態においては6回)のネック加工が行われ、最下流の下流側ネック加工ユニットの排出位置まで移動すると、最下流の搬送ターレット121および移送ターレット150を介して排出機構170に受け渡され、必要に応じて他の加工が行われ、有底筒状体加工装置100の外部に搬出されて次工程に供される。
 供給機構160、多段階ネック加工部110、移送ターレット150、乗り換えターレット140および排出機構170を構成する各ターレットは、それぞれ、適宜の駆動源により直接あるいは機械的に伝動機構を介して回転駆動され、これらの回転速度すなわちポケットの移動速度、及び、各ポケットの連動タイミングは、各ターレット間で缶胴Cが円滑に受け渡されるように調整可能に設計されている。
In the above-mentioned bottomed tubular body processing apparatus 100, for example, when necking a can body C which is a low-height can, multiple neck processing steps are performed as follows. First, the unprocessed can body C supplied from the supply mechanism 160 to the multi-stage neck processing section 110 is transferred to the first pocket P of the upstream neck processing unit via the most upstream conveying turret 121, and one stage of neck processing is performed during the time until it is transferred to the adjacent conveying turret 121 on the downstream side in the conveying direction. Similarly, multiple first round neck processing steps (six times in this embodiment) are performed in stages in the first pocket P of each of the adjacent neck processing units on the downstream side via the conveying turret 121, and when it moves to the discharge position of the most downstream downstream neck processing unit, it is transferred to the pocket P of the transfer turret 140 via the conveying turret 121 and the transfer turret 150. When the pocket P holding the can body C is moved to the transfer position with the rotation of the transfer turret 140, the air blow mechanism continuously blows air, blowing the can body C from the open end side toward the bottom side, and the bottom B is attracted to the conveying surface 132 of the circulating conveyor 131. As a result, the can body C is transferred from the transfer turret 140 to the circulating conveyor 131.
The can bodies C attracted to the circulating conveyor 131 pass through an ascending path 131a and a parallel path 131b along the transport path, and are dropped into a chute 135 at the rear end of the parallel path 131b. The can bodies C dropped into the chute 135 are moved by a guide in the internal space so as to approach the open end in the axial direction of the cylinder, and the amount of displacement of the open end of the can body C toward the bottom in the axial direction is returned to its original position at the transfer position of the transfer turret 140. In this state, the can bodies C are supplied to the second pocket P of the processing turret 120 of the upstream neck processing unit via the re-supply turret group 136 and the most upstream transport turret 121.
The can body C supplied to the second pocket P of the processing turret 120 of the upstream neck processing unit undergoes the first stage of the second round (seventh stage overall) of neck processing before being transferred to the adjacent transport turret 121 on the downstream side in the transport direction. Similarly, the can body C undergoes multiple neck processing rounds (six times in this embodiment) in stages in the second pocket P of each of the adjacent neck processing units on the downstream side via the transport turret 121, and when it moves to the discharge position of the downstream neck processing unit on the most downstream side, it is transferred to the discharge mechanism 170 via the most downstream transport turret 121 and transfer turret 150, where other processing is performed as necessary, and the can body C is transported outside the bottomed tubular body processing apparatus 100 for the next process.
Each of the turrets constituting the supply mechanism 160, the multi-stage neck processing section 110, the transfer turret 150, the transfer turret 140 and the discharge mechanism 170 is rotated directly by an appropriate drive source or mechanically via a transmission mechanism, and their rotational speeds, i.e., the pocket movement speeds, and the interlocking timing of each pocket are designed to be adjustable so that the can body C can be smoothly transferred between each turret.

 以上、本発明の一実施形態に係る有底筒状体加工装置100について説明したが、本発明の有底筒状体加工装置は上記の実施形態に限定されるものではない。
 例えば、上記の実施形態においては、多段階ネック加工部においては6つのネック加工ユニットを有して1巡目も2巡目も全てのネック加工ユニットを通過して12回のネック加工をするものとして説明したが、循環用コンベアの搬送開始点と搬送終了点がそれぞれ多段階ネック加工部の下流側および上流側にそれぞれ設定されていれば、上記構成に限定されるものではない。例えば、1巡目は5つ目の加工ユニットまでを通過して循環用コンベアで1つ目の加工ユニットに再供給され、2巡目で6つの加工ユニット全てを通過する構成や、1巡目は1つ目の加工ユニットから開始されて6つ目の加工ユニットまで通過して循環用コンベアで2つ目の加工ユニットに再供給され、2巡目で5つの加工ユニットを通過する構成、その他の構成とすることができる。
 また例えば、上記の実施形態においては、ネック加工ユニットにおいてすべてネック加工を行うものとして説明したが、ネック加工の代わりに、他の工程を配することができる。他の工程としては、例えば缶蓋を巻き締めるためのフランジを成形するフランジング加工や、開口端において耳などの不要部分を切り落とすトリミング工程、キャップを巻き締めるネジ部を成形するネジ加工工程、開口端を丸めるカール工程などが挙げられる。また、加工ターレット120において通過するのみで無加工で搬送される構成としてもよい。
 さらに例えば、巡回数は2として構成したが、3以上の巡回数として装置を構成することもできる。
Although the bottomed tubular body processing apparatus 100 according to one embodiment of the present invention has been described above, the bottomed tubular body processing apparatus of the present invention is not limited to the above embodiment.
For example, in the above embodiment, the multi-stage neck processing section has six neck processing units, and the first and second rounds pass through all the neck processing units to perform neck processing 12 times, but as long as the transport start point and transport end point of the circulating conveyor are set on the downstream and upstream sides of the multi-stage neck processing section, respectively, the configuration is not limited to the above. For example, the first round may pass through up to the fifth processing unit and be resupplied to the first processing unit by the circulating conveyor, and the second round may pass through all six processing units, or the first round may start from the first processing unit, pass through up to the sixth processing unit, be resupplied to the second processing unit by the circulating conveyor, and pass through five processing units in the second round, or other configurations may be used.
In the above embodiment, the neck processing unit performs all the neck processing, but other processes may be provided instead of neck processing. Examples of other processes include flanging to form a flange for tightening the can lid, a trimming process to cut off unnecessary parts such as ears at the opening end, a thread processing process to form a threaded portion for tightening the cap, and a curling process to round the opening end. Also, the cans may be transported without processing by simply passing through the processing turret 120.
Furthermore, for example, the number of cycles is set to two in the above embodiment, but the device can also be configured with a number of cycles of three or more.

100 ・・・ 有底筒状体加工装置
110 ・・・ 多段階ネック加工部
120 ・・・ 加工ターレット
121 ・・・ 搬送ターレット
130 ・・・ 再供給機構
131 ・・・ 循環用コンベア
131a・・・ 上昇路
131b・・・ 平行路
132 ・・・ 搬送面
133 ・・・ 支持部材
134 ・・・ 橋脚
135 ・・・ シュート
136 ・・・ 再供給用ターレット群
140 ・・・ 乗り換えターレット
150 ・・・ 移送ターレット
160 ・・・ 供給機構
170 ・・・ 排出機構
 B  ・・・ 底部
 C  ・・・ 缶胴
 G  ・・・ 間隙
 P  ・・・ ポケット
 
DESCRIPTION OF SYMBOLS 100: Bottomed tubular body processing device 110: Multi-stage neck processing section 120: Processing turret 121: Transport turret 130: Re-supply mechanism 131: Circulating conveyor 131a: Ascending path 131b: Parallel path 132: Transport surface 133: Support member 134: Pier 135: Chute 136: Re-supply turret group 140: Transfer turret 150: Transfer turret 160: Supply mechanism 170: Discharge mechanism B: Bottom C: Can body G: Gap P: Pocket

Claims (4)

 有底筒状体を搬送経路に沿って搬送しながら当該有底筒状体の開口端に複数回のネック加工を施す有底筒状体加工装置であって、
 複数のネック加工ユニットが搬送経路に沿って順に配置された多段階ネック加工部と、
 前記多段階ネック加工部の下流側に設けられた下流側ネック加工ユニットから排出された有底筒状体を、前記多段階ネック加工部の上流側に設けられた上流側ネック加工ユニットに再び供給する循環用コンベアと、
 複数のポケットが周方向に配置され、前記ポケットに前記下流側ネック加工ユニットから排出された有底筒状体を保持した状態で、前記循環用コンベアと対向する受け渡し位置まで移動させる乗り換えターレットと、を備え、
 前記乗り換えターレットは、前記有底筒状体を保持した前記ポケットが前記循環用コンベアへの受け渡し位置にあるときに前記有底筒状体を筒軸方向に前記循環用コンベアに向かって移動させる軸方向移動機構を備えることを特徴とする有底筒状体加工装置。
A processing device for a bottomed tubular body, which performs necking on an open end of a bottomed tubular body multiple times while conveying the bottomed tubular body along a conveying path,
a multi-stage neck processing section in which a plurality of neck processing units are sequentially arranged along a conveying path;
a circulation conveyor for resupplying the bottomed tubular body discharged from a downstream neck processing unit provided downstream of the multi-stage neck processing section to an upstream neck processing unit provided upstream of the multi-stage neck processing section;
a transfer turret having a plurality of pockets arranged in a circumferential direction, the transfer turret holding the bottomed cylindrical body discharged from the downstream neck processing unit in the pocket, the transfer turret moving the bottomed cylindrical body to a transfer position facing the circulating conveyor,
The transfer turret is characterized in that it is equipped with an axial movement mechanism that moves the bottomed cylindrical body in the cylindrical axial direction toward the circulating conveyor when the pocket holding the bottomed cylindrical body is in a transfer position to the circulating conveyor.
 前記循環用コンベアは、搬送面を有し、当該搬送面が有底筒状体の底部と対面するように配設されており、
 前記搬送面に有底筒状体の底部を吸着して搬送するものであることを特徴とする請求項1に記載の有底筒状体加工装置。
the circulating conveyor has a conveying surface, and is disposed so that the conveying surface faces a bottom of the bottomed cylindrical body;
2. The apparatus for processing a cylindrical body with a bottom according to claim 1, wherein the bottom of the cylindrical body is attracted to the conveying surface and conveyed.
 前記軸方向移動機構は、気体の噴出により前記有底筒状体を筒軸方向に移動させるエアブロー機構によって構成されていることを特徴とする請求項1に記載の有底筒状体加工装置。 The bottomed cylindrical body processing device according to claim 1, characterized in that the axial movement mechanism is composed of an air blow mechanism that moves the bottomed cylindrical body in the cylindrical axial direction by blowing gas.  前記多段階ネック加工部の各ネック加工ユニットは、水平な一方向に直列的に配置され、
 前記循環用コンベアは、前記多段階ネック加工部の上方において前記一方向に沿って延び、
 前記循環用コンベアの搬送経路の後端から前記上流側ネック加工ユニットに前記有底筒状体を下方に移動させて供給するシュートが備えられ、
 前記シュートは、前記有底筒状体を筒軸方向に移動させるガイドを備えることを特徴とする請求項1に記載の有底筒状体加工装置。
 
 
The neck processing units of the multi-stage neck processing section are arranged in series in one horizontal direction,
The circulating conveyor extends along the one direction above the multi-stage neck processing section,
a chute is provided for moving the bottomed cylindrical body downward from the rear end of the conveying path of the circulating conveyor to the upstream neck processing unit,
2. The apparatus for processing a cylindrical body with a bottom according to claim 1, wherein the chute is provided with a guide for moving the cylindrical body in the axial direction.

PCT/JP2024/014473 2023-06-13 2024-04-10 Closed-bottom cylindrical body processing device WO2024257459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023097215A JP2024178795A (en) 2023-06-13 2023-06-13 Bottomed cylindrical body processing device
JP2023-097215 2023-06-13

Publications (1)

Publication Number Publication Date
WO2024257459A1 true WO2024257459A1 (en) 2024-12-19

Family

ID=93851846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014473 WO2024257459A1 (en) 2023-06-13 2024-04-10 Closed-bottom cylindrical body processing device

Country Status (3)

Country Link
JP (1) JP2024178795A (en)
TW (1) TW202506524A (en)
WO (1) WO2024257459A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214006A (en) * 1994-02-03 1995-08-15 Mitsubishi Materials Corp Can inspecting device
US20070251803A1 (en) * 2006-03-31 2007-11-01 Belvac Production Machinery, Inc. Method and apparatus for bottle recirculation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214006A (en) * 1994-02-03 1995-08-15 Mitsubishi Materials Corp Can inspecting device
US20070251803A1 (en) * 2006-03-31 2007-11-01 Belvac Production Machinery, Inc. Method and apparatus for bottle recirculation

Also Published As

Publication number Publication date
TW202506524A (en) 2025-02-16
JP2024178795A (en) 2024-12-25

Similar Documents

Publication Publication Date Title
RU2555064C2 (en) Fabrication of containers
CN112585081B (en) Apparatus and method for processing containers
EP2001617B1 (en) Method and apparatus for container recirculation
US20190084030A1 (en) Forming apparatus
US10369588B2 (en) Installation for producing containers having a wheel for bypassing a coating station
CN107207104B (en) Filling and seaming device and filling and seaming method for can body
EP2295350A1 (en) Apparatus for unscrambling and aligning preforms
EP2205510B1 (en) High speed selective can sorter
CN214347609U (en) Device for coating containers
EP2808277A1 (en) Transfer apparatus and method and internal lacquering system
RU2007137653A (en) DEVICE FOR CONTINUOUS PERFORMANCE OF LOCALIZED AND / OR EXTENDED DEFORMATION OF METAL CAPACITIES
EP1213241A1 (en) Feed mechanism for metal cans
EP2382146B1 (en) A conveyor for containers, such as bottles, to be processed and for processed containers for operating machines of the type with a rotary carrousel
CN112896953A (en) Equipment for realizing high-speed neck forming of pop-top can by multi-channel feeding
US11505351B2 (en) Machine and method for coating containers
WO2024257459A1 (en) Closed-bottom cylindrical body processing device
JPS6057409B2 (en) Processed product manufacturing equipment
JP6685210B2 (en) Bottle transport method, screw device, and transport device
EP2391466B1 (en) Necker infeed
JP7582398B1 (en) Bottomed cylindrical body processing device
JP2009173446A (en) Wheel for conveyance, can manufacturing device and can manufacturing method
JP6521868B2 (en) Feeder and method of sending continuously
EP2471648B1 (en) Method of aligning handles in rows for a rotating blow-molding machine for handled-bottles
JP3197598U (en) Product conveying device in forging machine
JP2008188657A (en) Apparatus and method for manufacturing bottle can

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24823082

Country of ref document: EP

Kind code of ref document: A1