[go: up one dir, main page]

WO2024254887A1 - Sensing mode switching - Google Patents

Sensing mode switching Download PDF

Info

Publication number
WO2024254887A1
WO2024254887A1 PCT/CN2023/100889 CN2023100889W WO2024254887A1 WO 2024254887 A1 WO2024254887 A1 WO 2024254887A1 CN 2023100889 W CN2023100889 W CN 2023100889W WO 2024254887 A1 WO2024254887 A1 WO 2024254887A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sensing mode
mode
switch
configuration information
Prior art date
Application number
PCT/CN2023/100889
Other languages
French (fr)
Inventor
Jianguo Liu
Yanni ZHOU
Wenjian Wang
Chaojun Xu
Fei Gao
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2023/100889 priority Critical patent/WO2024254887A1/en
Publication of WO2024254887A1 publication Critical patent/WO2024254887A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas

Definitions

  • Various example embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to methods, devices, apparatuses and computer readable storage medium of sensing mode switching.
  • a second apparatus comprising at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the second apparatus at least to: determine, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and transmit, to a first apparatus, at least one of the first or the second sensing configuration information.
  • a third apparatus comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the third apparatus at least to: determine second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; perform at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switch from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode
  • a method comprises: obtaining, at a first apparatus, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  • first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode
  • second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode
  • performing at least one sensing service in the first sensing mode based on the first and second sensing configuration information
  • a method comprises: determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
  • a method comprises: determining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  • a second apparatus comprises means for determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and means for transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
  • a third apparatus comprises means for obtaining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; means for performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, means for switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  • a computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the fourth aspect.
  • a computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the fifth aspect.
  • a computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the sixth aspect.
  • FIG. 1A illustrates an example communication environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure
  • FIGS. 3A to 3D illustrate flowcharts of methods implemented at a first apparatus according to some example embodiments of the present disclosure
  • FIGS. 4A and 4B illustrate flowcharts of methods implemented at a first apparatus according to some example embodiments of the present disclosure
  • FIG. 5 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of a method implemented at a first apparatus according to some example embodiments of the present disclosure
  • FIG. 8 illustrates a flowchart of a method implemented at a third apparatus according to some example embodiments of the present disclosure
  • FIG. 9 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • performing a step “in response to A” does not indicate that the step is performed immediately after “A” occurs and one or more intervening steps may be included.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , an NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and technology
  • radio access network (RAN) split architecture comprises a Centralized Unit (CU) and a Distributed Unit (DU) at an IAB donor node.
  • An IAB node comprises a Mobile Terminal (IAB-MT) part that behaves like a UE toward the parent node, and a DU part of an IAB node behaves like a base station toward the next-hop IAB node.
  • IAB-MT Mobile Terminal
  • ISAC joint communication and sensing
  • ISAC may be focused on NR based sensing and also may include non-3GPP type sensors (e.g., radar, camera) .
  • objectives about the ISAC include but are not limited to, identifying potential service requirements in the areas of collection and reporting of the sensing information and exposure of the sensing capabilities and information to the third party, identifying key performance indicators (KPIs) related to NR-based sensing (e.g., range, motion, velocity) and performance requirements for transferring sensing related data.
  • KPIs key performance indicators
  • aspects related to security, privacy, regulatory requirements, and charging, and gap analysis between the identified potential requirements and existing 5GS requirements or functionalities need to be further discussed.
  • ISAC has the potential to enable various sensing and communication-based application with the use of various communications spectrums (from 1GHz to 60+GHz) . So far, several sensing modes are proposed. With the proposed sensing modes, sensing service (s) maybe performed in suitable use cases.
  • different sensing mods may be suitable for different application scenarios, and may involve different network elements. If the related network elements may switch among the different sensing modes flexibly, the sensing efficiency may be increased accordingly.
  • the sensing efficiency may be increased accordingly.
  • sensing service As used herein, terms of “sensing service” , “sensing operation” and “sensing task” may be used interchangeably.
  • a terminal apparatus may be used as an example of a first apparatus
  • a network apparatus may be used as an example of a third apparatus
  • a sensing function may be used as an example of a second apparatus.
  • a sensing function may be implemented at a terminal apparatus, a network apparatus (such as, a gNB) or a core network apparatus (such as, a location management function, LMF, a sensing management function, SMF and so on) .
  • the third apparatus and the second apparatus may be implemented as two separately apparatuses.
  • the second apparatus may be implemented at the third apparatus.
  • sensing service discussed herein may be implemented among two terminal devices, two network devices, a terminal device and a network device, or an access point (AP) and a station (STA) .
  • AP access point
  • STA station
  • FIG. 1A illustrates an example communication environment 100A in which example embodiments of the present disclosure can be implemented.
  • the communication environment 100A includes a first apparatus 110 and a third apparatus 130.
  • the first apparatus 110 may be comprised in a terminal device/apparatus and the third apparatus 130 may be comprised in a network device/apparatus serving the terminal device/apparatus.
  • a link from the third apparatus 130 to the first apparatus 110 is referred to as a downlink (DL)
  • a link from the first apparatus 110 to the third apparatus 130 is referred to as an uplink (UL)
  • the third apparatus 130 is a transmitting (TX) apparatus (or a transmitter)
  • the first apparatus 110 is a receiving (RX) apparatus (or a receiver)
  • the first apparatus 110 is a TX apparatus (or a transmitter)
  • the third apparatus 130 is a RX apparatus (or a receiver) .
  • communication environment 100A also supports sensing function. Further, the apparatus at which sensing function is implemented is referred to as a second device.
  • the sensing function is implemented at the third apparatus 130, as the second apparatus 120-1 illustrated in the FIG. 1A.
  • the second apparatus is implemented at an apparatus separately from the third device 130, as the second apparatus 120-2 illustrated in the FIG. 1A.
  • the second apparatus 120-2 may be a terminal apparatus, an SF or an LMF, and other suitable apparatus.
  • the second apparatus 120-1 and the second apparatus 120-2 are collectively referred to as the second apparatus.
  • the first apparatus 110 may communicate with the second apparatus 120 and the third apparatus 130.
  • the first apparatus 110 may communicate with the third apparatus 130 via the Uu interface, and communicate with the second apparatus 120 via a tunnel with an LTE positioning protocol (LPP) or other protocol supporting sensing.
  • LTP LTE positioning protocol
  • the communication signallings among the first apparatus 110, second apparatus 120 and third apparatus 130 may be different according to different network deployments.
  • Communications in the communication environment 100A may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) , the fifth generation (5G) , the sixth generation (6G) , and the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) , the fifth generation (5G) , the sixth generation (6G) , and the like
  • wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiple
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • At least the following six sensing modes may be supported in FIG. 1A, including gNB-based mono-static sensing mode, gNB1-to-gNB2-based bi-static sensing mode, gNB-to-UE-based bi-static sensing mode, UE-to-gNB-based bi-static sensing mode, UE-based mono-static sensing mode, and UE1-to-UE2-based bi-static sensing mode. Further, the above sensing modes may be used in any combination or separately.
  • FIG. 1B illustrates example network deployments 100B of the above six sensing modes.
  • Table 1 further illustrates more details about the above example sensing modes.
  • the gNB-to-UE-based bi-static sensing mode (referred to as gNB-to-UE sensing mode for brevity sometimes) and UE-to-gNB-based bi-static sensing mode (referred to as UE-to-gNB sensing mode for brevity sometimes) are two typical bi-static sensing modes for ISAC.
  • the UE transmits UL RSs to the gNB, and the gNB measures the UL RSs for sensing. Moreover, in the UE-to-gNB sensing mode, the gNB processes the measured data. Because the gNB usually have a high computing ability, the UE-to-gNB sensing mode may support a sensing service with a high computing capability requirement. In the gNB-to-UE sensing mode, the gNB transmits DL RSs to the UE, and the UE measures the DL RSs for sensing.
  • the gNB-to-UE sensing mode may enable a larger sensing coverage and does not need to transmit dedicated sensing RSs.
  • the DL RSs may be one of common DL RSs (such as, CSI-RS, PSS and so on) .
  • the gNB can schedule UE (s) near the sensing target to participate in sensing so as to achieve better sensing performance, which can be considered for multiple use cases, such as intruder detection, and health monitoring at home or care facility.
  • the gNB-to-UE sensing mode may be considered for sensing. That is because the gNB-to-UE sensing mode may achieve larger coverage and less resource overhead for sensing in comparison with the UE-to-gNB sensing mode.
  • the gNB-to-UE sensing mode may utilize legacy communication signal (e.g., primary synchronization signal (PSS) /secondary synchronization signal (SSS) /channel state information reference signal (CSI-RS) ) to perform sensing sometimes (e.g., presence detection of sensing targets) and do not need to schedule dedicated UL sensing RS (e.g., sounding reference signal, SRS) for sensing.
  • legacy communication signal e.g., primary synchronization signal (PSS) /secondary synchronization signal (SSS) /channel state information reference signal (CSI-RS)
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI-RS channel state information reference signal
  • UE may be not able to complete complexity sensing service (e.g., artificial intelligence (AI) -powered sensing task, such as, behavior detection and target track of sensing target) due to the limitation of UE capability (e.g., computing complexity) .
  • AI artificial intelligence
  • UE capability e.g., computing complexity
  • UE to deal with a high-level AI-powered sensing task, it is required for UE to report the sensing measurement results (e.g., CSI, range-doppler profile) to the network sensing processing entity (e.g., gNB, SMF, SF, LMF) with powerful computing capability. Obviously, it would degrade network communication efficiency and further increase the sensing latency.
  • the network sensing processing entity with powerful computing capability can process complex sensing task for the UE-to-gNB sensing mode.
  • the network sensing processing entity would configure the UE to transmit UL sensing RS for sensing towards the sensing area.
  • FIG. 2 illustrates a signaling flow 200 of communication in accordance with some embodiments of the present disclosure.
  • the signaling flow 200 will be discussed with reference to FIG. 1A, for example, by using the first apparatus 110, the second apparatus 120 and the third apparatus 130.
  • first apparatus 110 the second apparatus 120 and the third apparatus 130 should be coordinated.
  • first apparatus 110, the second apparatus 120 and the third apparatus 130 should have common understanding about configurations, parameters and so on. Such common understanding may be implemented by any suitable interactions or by applying a same rule/policy/assumption.
  • message type such as system information (SI) , a radio resource control (RRC) signalling, a medium access control (MAC) control element (CE) , an LPP message
  • SI system information
  • RRC radio resource control
  • CE medium access control control element
  • LPP LPP message
  • the first apparatus 110 is described as a terminal apparatus
  • the second apparatus 120 is described as a sensing function
  • the third apparatus 130 is described as a network apparatus.
  • the first apparatus 110, the second apparatus 120 and the third apparatus 130 exchange 210 capability-related information and sensing configuration information, which will be discussed in detail as below.
  • any of the below discussed sensing configuration information related to at least one sensing event associated with one or more sensing modes and/or the first RS configuration may be defined as a default value by the communication organization (such as 3GPP) , or pre-defined by the network operator or service provider. In this way, no additional signaling for the sensing configuration information is needed.
  • any of the below discussed sensing configuration information may be configured by the second apparatus 120 and/or the third apparatus 130. In this way, the sensing configuration will be more flexible.
  • the first apparatus 110 may optionally provide capability-related information of the first apparatus 110.
  • the capability-related information may include at least one of:
  • any suitable capability-related information associated with the embodiments discussed herein may be proactively provided by the first apparatus 110, for example, in cases of a power-on of the first apparatus, a successful establishment procedure and so on.
  • the present disclosure is not limited in this regard.
  • a more suitable sensing configuration information may be determined for the first apparatus 110.
  • the first apparatus 110 may transmit the capability-related information on demand, for example, in respond to receiving a request from the second apparatus 120 and/or the third apparatus 130.
  • the first apparatus 110 may obtain first sensing configuration information and second sensing configuration information.
  • the first sensing configuration information may be related to at least one sensing event associated with a first sensing mode and a second sensing mode
  • the second sensing configuration information may be related to at least one of a first RS configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
  • the at least one sensing event may be any suitable event (s) that may be used for triggering a sensing mode switching.
  • One example event may be a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value.
  • Another example event may be detecting an object in a pre-defined area.
  • a further example event may be detecting a moving object.
  • the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the signallings interactions among the first apparatus 110, the second apparatus 120 and the third apparatus 130 may be different due to different network developments.
  • the first and second sensing configuration information may be received from a second apparatus 120.
  • the first sensing configuration information may be received from a second apparatus 120 and the second sensing configuration information may be received from a third apparatus 130.
  • FIGs. 3A to 3C illustrate signaling flows 300A, 300B and 300C of communication in accordance with some embodiments of the present disclosure, respectively.
  • the third apparatus 130 and the second apparatus 120 are two separate apparatuses.
  • the first apparatus 110 may optionally transmit 310 capability-related information.
  • the capability related information is transmitted to the third apparatus 130 or the second apparatus 120-2.
  • the second apparatus 120-2 may transmit 315 a request for configuring resources for the at least one sensing service to a third apparatus 130, and then may receive 320 the second sensing configuration information from the third apparatus 130.
  • the second sensing configuration information including the first RS configuration and the second RS configuration may be transmitted via one or more messages. For example, one message is used for the first RS configuration and another message is used for the second RS configuration, or the first and second RS configurations are comprised in a single message.
  • the second apparatus 120- 2 may transmit 325 the first and second sensing configuration information to the first apparatus 110 directly or via the third apparatus 130.
  • the first apparatus 110 may optionally transmit 330 capability-related information.
  • the capability related information is transmitted to the third apparatus 130 or to the second apparatus 120-2.
  • the second apparatus 120-2 may determine the first sensing configuration information based on the capability-related information and transmit 335 the first sensing configuration information to the first apparatus 110.
  • the second apparatus 120-2 may transmit 340 a request for configuring resources for the at least one sensing service to a third apparatus 130, and then may receive 345 the second sensing configuration information from the third apparatus 130 via one or more messages.
  • the second apparatus 120-2 may transmit 350 the second sensing configuration information to the first apparatus 110 directly or via the third apparatus 130.
  • the first apparatus 110 may optionally transmit 355 capability-related information to the second apparatus 120-2.
  • the second apparatus 120-2 may determine the first sensing configuration information based on the capability-related information and transmit 360 the first sensing configuration information to the first apparatus 110.
  • the second apparatus 120-2 may transmit 365 a request for configuring resources for the at least one sensing service to a third apparatus 130, and the third apparatus 130 may transmit 370 the second sensing configuration information to the first apparatus 110.
  • FIG. 3D illustrates a signaling flow 300D of communication in accordance with some embodiments of the present disclosure.
  • the second apparatus 120-1 is implemented at the third apparatus 130.
  • the first apparatus 110 may optionally transmit 380 capability-related information to the second apparatus 120-1/the third apparatus 130.
  • the second apparatus 120-1/the third apparatus 130 may transmit 385 the first and second sensing configuration information to the first apparatus 110 via one or more messages.
  • the example signaling flows 300A, 300B, 300C and 300D illustrated in FIG. 3A to FIG. 3D are given for illustrative purpose only.
  • the first RS configuration and the second RS configuration may be handled separately.
  • the third apparatus 130 may transmit the second RS configuration to the first apparatus 110 directly, and further may transmit the first RS configuration to the second apparatus 120-2 and the second apparatus 120-2 may transmit the first RS configuration to the first apparatus 110.
  • a flexible sending mode switching may be enabled as discussed below.
  • the first apparatus 110 performs 220 at least one sensing service in the first sensing mode based on the first and second sensing configuration information. Then the first apparatus 110 switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  • the first apparatus 110 may measure first RSs when the first apparatus 110 performs the at least one sensing service in the first sensing mode, and may transmit second RSs when the first apparatus 110 performs the at least one sensing service in the second sensing mode.
  • the first sensing mode may be a gNB-to-UE sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode. It should be understood that the above descriptions about the first and second sensing modes are given for illustrative purpose only.
  • the operations at the first apparatus 110, the second apparatus 120 and the third apparatus 130 should be coordinated. That is, when the first apparatus switches to the second sensing mode, the third apparatus 130 also needs to switch to the second sensing mode. In this event, the sensing mode switching at the first apparatus 110 should be informed 230 to the third apparatus 130. How to inform the third apparatus 130 about the sensing mode switching at the first apparatus 110 will be discussed as below.
  • sensing event information indicating the at least one sensing event
  • the first apparatus 110 may transmit the switch report to the second apparatus 120, and the second apparatus 120 may trigger the third apparatus 130 to switch to the second sensing mode.
  • the second apparatus 120 may transmit a second switch message to the third apparatus 130, where the second switch message indicates the third apparatus 130 to switch from the first sensing mode to the second sensing mode.
  • the third apparatus 130 determines second sensing configuration information related to at least one of a first RS configuration or a second RS configuration first. Then the third apparatus 130 performs at least one sensing service with a first apparatus 110 in the first sensing mode based on the second sensing configuration information. In the following, in response to receiving a switch report from the first apparatus 110 or a second switch message from a second apparatus 120, the third apparatus 130 switches from the first sensing mode to the second sensing mode.
  • FIG. 4A and FIG. 4B illustrate signaling flows 400A and 400B of communication in accordance with some embodiments of the present disclosure.
  • the second apparatus 120 may be implemented in the third apparatus 130, or separately from the third apparatus 130.
  • the first apparatus 110 may detect 410 the at least one event based on the sensing results in the first sensing mode, and may switch 415 from the first sensing mode to the second sensing mode. Then, the first apparatus 110 may transmit 420 the switch report to the third apparatus 130/the second apparatus 120-1. Upon this switch report, the third apparatus 130 may switch 425 from the first sensing mode to the second sensing mode.
  • the third apparatus 130 and the second apparatus 120 are two separate apparatuses.
  • the first apparatus 110 may detect 430 the at least one event based on the sensing results in the first sensing mode, and may switch 435 from the first sensing mode to the second sensing mode. Then, the first apparatus 110 may transmit 440 the switch report to the second apparatus 120-2. After that, the second apparatus 120- 2 may transmit 445 the second switch message to indicate the third apparatus 130 to switch from the first sensing mode to the second sensing mode. Upon receiving the second switch message, the third apparatus 130 switches 450 to the second sensing mode.
  • the sensing mode switching at the first apparatus 110 and the third apparatus 130 are coordinated.
  • the first apparatus 110 may transmit UL RSs to the third apparatus 130 based on the second sensing configuration information.
  • the third apparatus 130 may perform at least one of the following: activating the second RSs configuration, receiving and measuring the UL RSs from the first apparatus. Additionally, in some example embodiments, the third apparatus 130 may be triggered to stop transmitting DL RSs to the first apparatus 110 if necessary. In one example embodiment, if dedicated DL RSs is configured for the sensing service, the third apparatus 130 may stop the DL RSs transmission so as to reduce DL sensing resource overhead.
  • the second sensing mode also may be switched back to the first sensing mode if the at least one sensing event is detected.
  • the first apparatus 110, the second apparatus 120 and the third apparatus 130 may switch 250 from the second sensing mode to the first sensing mode, and then the first apparatus 110 and the third apparatus 130 may perform 260 the sending service in the first sensing mode, which will be discussed as below.
  • the third apparatus 130 and the second apparatus 120 are two separate apparatuses.
  • the second apparatus 120-2 may transmit a first switch message to the first apparatus 110 and the third apparatus 130, where the first switch message indicates the first apparatus 110 and third apparatus 130 to switch from the second sensing mode to the first sensing mode.
  • the second apparatus 120-1 is implemented at the third apparatus 130.
  • the second apparatus 120-1/the third apparatus 130 may transmit the first switch message to the first apparatus 110.
  • the first apparatus 110 and the third apparatus 130 upon receiving the first switch message, the first apparatus 110 and the third apparatus 130 may perform the sensing service in the first sensing mode. In this way, the sensing modes may be selected flexibly and the sensing efficiency may be improved.
  • the network based on the sensing-related capability information (i.e., capability-related information) of a first apparatus (such as, a UE) which participates in bi-static sensing along with a third apparatus 130 (such as, a gNB) , the network (e.g., SMF/gNB/LMF/SF) may determine a device-level sensing task for an advanced sensing task. That is, the network may establish an association among two sensing modes, for example, the first sensing mode is associated with the device-level sensing task and the second sensing mode is associated with the advanced sensing task.
  • the sensing-related capability information i.e., capability-related information
  • the network e.g., SMF/gNB/LMF/SF
  • the network may determine a device-level sensing task for an advanced sensing task. That is, the network may establish an association among two sensing modes, for example, the first sensing mode is associated with the device-level sensing task and the second sensing mode is associated with the advanced sens
  • the network may configure the UE to execute the device-level sensing task in the gNB-to-UE sensing mode based on a downlink sensing RS (i.e., performing the sensing the service in the first sensing mode based on the first RS configuration) .
  • the UE may switch the gNB-to-UE sensing mode to the UE-to-gNB sensing mode.
  • the UE may stop the device-level sensing task and transmits a switch report to the network (such as, gNB, SMF/SF, LMF or other entity performing sensing function) .
  • the UE may transmit UL sensing RSs to the gNB, where the UL sensing RSs are associated with the advanced sensing task and may be (pre-) configured by the network. After that, the network can execute the advanced sensing task in the UE-to-gNB sensing mode based on measurement of the UL sensing RSs.
  • the advanced sensing task may involve high computing capability requirement (e.g., AI-powered target tracking and behaviors analysis) whilst the device-level sensing task can be a low-complexity sensing task (e.g., channel fluctuation/variation detection, target presence and/or location) with low computing capability requirement.
  • the device-level sensing task is associated with the advanced task, which means the sensing event detected based on the device-level sensing task will trigger an execution of the advanced sensing task.
  • the DL sensing RSs may be the common/existing signal for communication (e.g., such as PSS/SSS, demodulation reference signal (DMRS) of common PDCCH, PRS for positioning UE, CSI-RS and so on) , which doesn’t cause additional resource overhead for sensing.
  • PSS/SSS demodulation reference signal
  • DMRS demodulation reference signal
  • the sensing function may be a function entity of the core network for sensing function management, a sensing management component at the network edge, a function entity of gNB, or a function entity of legacy LMF.
  • FIG. 5 illustrate a signaling flow 500 of communication in accordance with some embodiments of the present disclosure.
  • the second apparatus 120 may collect 510 the sensing-related capability information (i.e., capability-related information) from the first apparatus 110 (such as, a UE) , where the UE is one of sensing Tx/Rx node involved in a bi-static sensing procedure along with the third apparatus 130 (such as, a gNB) .
  • the sensing-related capability information i.e., capability-related information
  • the sensing-related capability information may include but not be limited to the following: the computing capability, AI/ML capability, supported sensing and/or measurement types, UE power classification/status and so on.
  • the supported sensing and/or measurement may include but not be limited to, range/angle/doppler measurement, line of sight (LOS) estimation, intrusion detection, proximity perception, channel fluctuation/variation detection and so on.
  • LOS line of sight
  • the UE may report the sensing-related capability to the network (e.g., SMF/gNB/LMF/SF) proactively or based on a request from the network.
  • the network e.g., SMF/gNB/LMF/SF
  • the second apparatus 120 may determine 520 first sensing configuration information, where the first sensing configuration information is related to at least one sensing event associated with a first sensing mode and a second sensing mode.
  • a device-level sensing task may be performed, where the device-level sensing task may be a low-complexity sensing task with a low computing capability requirement (e.g., channel fluctuation/variation detection, target presence and/or location) .
  • a high computing capability requirement e.g., AI-powered target tracking and behaviors analysis
  • the first apparatus 110 may perform the device-level sensing task first. And then, based on the sensing results of the device-level sensing task, the first apparatus 110 may determine whether the at least one sensing event is detected. If the at least one sensing event is detected, the first apparatus 110 may switch to the second sensing mode. In the second sensing mode, the advanced sensing task may be performed.
  • device-level sensing task may be a simple presence (/moving/intruder) detection of the sensing target, which may be implemented based on channel fluctuation (and/or range/angle/doppler measurement) using coarse-grained DL RS (e.g., PSS/SSS/CSI-RS/PRS) .
  • coarse-grained DL RS e.g., PSS/SSS/CSI-RS/PRS
  • the advanced sensing task is required to track and analyze the activity and/or behaviors of the sensing target, which would have high requirements on sensing resources and computing capability.
  • the second apparatus 120 may determine the device-level sensing task for the advanced sensing task.
  • the device-level sensing task is associated with the advanced task, which means the sensing event detected based on the device-level sensing task would trigger execution of the advanced sensing task.
  • the second apparatus 120 and/or the third apparatus 130 may determine 530 a DL sensing RS configuration (i.e., the first RS configuration) and an UL sensing RS configuration (i.e., the second RS configuration) for the device-level sensing task and the advance ed sensing task, respectively.
  • a DL sensing RS configuration i.e., the first RS configuration
  • an UL sensing RS configuration i.e., the second RS configuration
  • the sensing RS configuration may include at least one of the following:
  • sensing RS type indicating which type of RS shall be used for sensing
  • the type of the RS may be one of communication RSs (e.g., PSS/SSS, DMRS for common PDCCH and/or UE-specific PDCCH/PDSCH decoding, CSI-RS, PRS) , or the sensing dedicated RS, when the sensing RS type indicates the device level sensing task.
  • the RS can be one of communication RSs (e.g., UL SRS, UL PRS) , or the sensing dedicated UL RS, when the sensing RS type indicates the advanced sensing task.
  • the second apparatus 120 may negotiate the sensing RS configurations (i.e., the second sensing configuration information) with the third apparatus 130. For example, the second apparatus 120 may determine the sensing RS type and the sensing RS configuration requirement (e.g., the bandwidth, period, and density and so on) , and then send them to the gNB for determination of the sensing RS time/frequency resource configuration.
  • the sensing RS configurations i.e., the second sensing configuration information
  • the third apparatus 130 may determine the sensing RS type and the sensing RS configuration requirement (e.g., the bandwidth, period, and density and so on) , and then send them to the gNB for determination of the sensing RS time/frequency resource configuration.
  • the second apparatus 120 may deliver 540 a sensing assistance data (i.e., the first and/or second sensing configuration information) to the UE, where the sensing assistance data (i.e., the first and/or the second sensing configuration information) may include at least one of the following:
  • the DL and/or UL sensing RS configuration i.e., the second sensing configuration information
  • At least one sensing event associated with a first sensing mode and a second sensing mode the at least one sensing event may be detected by, such as, channel/CSI fluctuation detection, target presence and/or location detection and so on;
  • - Sensing approach and parameters how to make the sensing and the corresponding parameters, e.g., (1) ML or non-ML based sensing approach; (2) ML model and parameters for ML-based approach; or
  • a threshold can be configured to check if the CSI/channel fluctuation is qualified by comparing the difference between two measurements on CSI with the threshold; (2) a moving target is detected to trigger the device-level sensing event; or (3) a target is presented at a given location to trigger the device-level sensing event.
  • the gNB may transmit the DL sensing RS, and then the UE perform 550 the sensing measurement (e.g., CSI) based on the DL sensing RS configuration, i.e., performing the sending service in the first sensing mode.
  • the sensing measurement e.g., CSI
  • the UE may execute 560 the device-level sensing task based on the sensing measurement, and check if at least one of device-level sensing event is triggered.
  • the device-level sensing event may be configured to position if a sensing target is within a sensing area
  • the UE may perform CSI measurement, and then estimate whether a target is located within the configured area. If the target is located within the configured area, a device-level sensing event will be triggered, i.e., a switch from the first sensing mode to the second sensing mode is triggered.
  • the device-level sensing event is configured to detect if there is a moving target in the sensing area.
  • the UE will estimate the doppler shift of the sensing target based on the CSI measurement. If the moving target is detected based on observation of Doppler shift information for a target, and then the device-level sensing event will be triggered.
  • the UE switches the gNB-to-UE sensing mode to the UE-to-gNB sensing mode.
  • the UE may perform at least one of the following operations: stopping the device-level sensing task; and/or determining a switch report which may include at least one of a switching indication, a device-level event report, a sensing measurement report.
  • the UE may transmit the switch report to the gNB and then the gNB may switch 570 the gNB-to-UE sensing mode to the UE-to-gNB sensing mode after receiving the switch report.
  • the gNB may be triggered to reserve the UL sensing RS based on the UL sensing RS configuration if the UL sensing RS is pre-configured to the UE.
  • the second apparatus 120 may reserve the UL sensing RS configuration, and then activate the UL sensing RS configuration (such as, via the second sensing message) .
  • the gNB may be triggered to stop transmitting DL sensing RS for the device-level sensing task if necessary. In one example embodiment, if dedicated DL sensing RS is configured for device-level task, the gNB may stop the DL sensing RS transmission so as to reduce DL sensing resource overhead.
  • the UE may transmit 580 the UL sensing RS based on the UL sensing RS configuration associated with the advanced sensing task.
  • the gNB would perform sensing measurement based on the corresponding UL sensing RS transmitted from the UE.
  • the network e.g., gNB/SMF/LMF/SF
  • the network would execute the UL-based sensing task.
  • the network may execute 590 the advanced sensing task based on the measured data.
  • the sensing services may be re-configured, or may be performed by switching back to the first sensing mode.
  • an advanced sensing e.g., AI-based sensing
  • simple device-level sensing event e.g., the channel fluctuation
  • the first apparatus 110 does not need to always transmit the UL sensing RS for the advanced sensing task, which would further benefit the power saving of the first apparatus 110 and network interference reduction.
  • the third apparatus 130 also does not need to always perform UL sensing measurement and resource reservation, which would benefit sensing resource overhead reduction and network efficiency improvement.
  • the device-level sensing may utilize one or more the existing communication reference signals such as, the PSS/SSS, DMRS of common PDCCH, PRS for positioning UE, CSI-RS etc., which would not cause additional sensing resource overhead.
  • the existing communication reference signals such as, the PSS/SSS, DMRS of common PDCCH, PRS for positioning UE, CSI-RS etc.
  • FIG. 6 shows a flowchart of an example method 600 implemented at a first apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 600 will be described from the perspective of the first apparatus 110 in FIG. 1A.
  • the first apparatus obtains first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode.
  • the first apparatus obtains second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
  • the first apparatus performs at least one sensing service in the first sensing mode, based on the first and second sensing configuration information.
  • the first apparatus switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  • the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, detecting an object in a pre-defined area, or detecting a moving object.
  • the first apparatus may transmit a switch report to the second or the third apparatus after switching from the first sensing mode to the second sensing mode, the switch report including at least one of the following: switch information indicating a switch from the first sensing mode to the second sensing mode, sensing event information indicating the at least one sensing event, or sensing results of the at least one sensing event.
  • the first apparatus may transmit capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus.
  • a computing capability of the first apparatus e.g., a computing capability of the first apparatus
  • ML machine learning
  • the first apparatus may receive a first switch message indicating the first apparatus to switch from the second sensing mode to the first sensing mode; and perform the at least one sensing service in the first sensing mode.
  • the first apparatus may measure first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and transmit second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  • the first and second sensing configuration information may be received from a second apparatus.
  • the first sensing configuration information may be received from a second apparatus and the second sensing configuration information may be received from a third apparatus.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • FIG. 7 shows a flowchart of an example method 700 implemented at a second apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described from the perspective of the second apparatus 120 in FIG. 1A.
  • the second apparatus determines, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
  • first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode
  • the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
  • the second apparatus transmits to a first apparatus, at least one of the first or the second sensing configuration information.
  • the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, detecting an object in a pre-defined area, or detecting a moving object.
  • the second apparatus may transmit, to a third apparatus, a request for configuring resources for the at least one sensing service; and receive the second sensing configuration information from the third apparatus.
  • the second apparatus may receive, from the first apparatus, capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus; and generate at least one of the first or the second sensing configuration information based at least in part on the capability-related information.
  • ML machine learning
  • the second apparatus may receive a switch report from the first apparatus, the switch report indicating at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch from the first sensing mode to the second sensing mode, or sensing results of the at least one sensing service; and transmit, to a third apparatus, a second switch message to indicate the third apparatus to switch from the first sensing mode to the second sensing mode.
  • the second apparatus may transmit a first switch message to the first and third apparatuses, the first switch message indicating the first and third apparatuses to switch from the second sensing mode to the first sensing mode.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • FIG. 8 shows a flowchart of an example method 800 implemented at a third apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 800 will be described from the perspective of the third apparatus 130 in FIG. 1A.
  • the third apparatus determines second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode.
  • the third apparatus performs at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information.
  • the third apparatus switches from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the third apparatus may comprise: receive, from the second apparatus, a request for configuring resources for the at least one sensing service; and transmit, to at least one of the first apparatus or the second apparatus, the second sensing configuration information.
  • the third apparatus may receive, from the second apparatus, a first switch message indicating the third apparatuses to switch from the second sensing mode to the first sensing mode; and perform the at least one sensing service in the first sensing mode.
  • the third apparatus may transmit first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and measure second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • a first apparatus capable of performing any of the method 600 may comprise means for performing the respective operations of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the first apparatus 110 in FIG. 1A.
  • the first apparatus comprises means for obtaining, at a first apparatus, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; means for obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; means for performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and means for switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  • first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode
  • second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode
  • means for performing at least one sensing service in the first sensing mode based on the first and second sensing configuration
  • the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, means for detecting an object in a pre-defined area, or means for detecting a moving object.
  • the first apparatus further comprises: means for transmitting, a switch report to the second or the third apparatus after switching from the first sensing mode to the second sensing mode, the switch report including at least one of the following: switch information indicating a switch from the first sensing mode to the second sensing mode, means for sensing event information indicating the at least one sensing event, or means for sensing results of the at least one sensing event.
  • the first apparatus further comprises: means for transmitting capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus.
  • capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus.
  • ML machine learning
  • the first apparatus further comprises: means for receiving a first switch message indicating the first apparatus to switch from the second sensing mode to the first sensing mode; and means for performing the at least one sensing service in the first sensing mode.
  • the first apparatus further comprises: means for measuring first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and means for transmitting second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  • the first and second sensing configuration information may be received from a second apparatus.
  • the first sensing configuration information may be received from a second apparatus and the second sensing configuration information may be received from a third apparatus.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • the first apparatus further comprises means for performing other operations in some example embodiments of the method 600 or the first apparatus 110.
  • the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the first apparatus.
  • a second apparatus capable of performing any of the method 700 may comprise means for performing the respective operations of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the second apparatus may be implemented as or included in the second apparatus 120 in FIG. 1A.
  • the second apparatus comprises means for determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and means for transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
  • the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, means for detecting an object in a pre-defined area, or means for detecting a moving object.
  • the second apparatus further comprises: means for transmitting, to a third apparatus, a request for configuring resources for the at least one sensing service; and means for receiving the second sensing configuration information from the third apparatus.
  • the second apparatus further comprises: prior to transmitting the first sensing configuration information, means for receiving, from the first apparatus, capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus; and generate at least one of the first or the second sensing configuration information based at least in part on the capability-related information.
  • ML machine learning
  • the second apparatus further comprises: means for receiving a switch report from the first apparatus, the switch report indicating at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch from the first sensing mode to the second sensing mode, or means for sensing results of the at least one sensing service; and means for transmitting, to a third apparatus, a second switch message to indicate the third apparatus to switch from the first sensing mode to the second sensing mode.
  • the second apparatus further comprises: in according with a determination that the at least one event is no longer detected based on sensing results of the at least one sensing service in the second sensing mode, means for transmitting a first switch message to the first and third apparatuses, the first switch message indicating the first and third apparatuses to switch from the second sensing mode to the first sensing mode.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • the second apparatus further comprises means for performing other operations in some example embodiments of the method 700 or the second apparatus 120.
  • the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the second apparatus.
  • a third apparatus capable of performing any of the method 800 may comprise means for performing the respective operations of the method 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the third apparatus may be implemented as or included in the third apparatus 130 in FIG. 1A.
  • the third apparatus comprises means for determining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; means for performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, means for switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  • the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  • the third apparatus further comprises: means for receiving, from the second apparatus, a request for configuring resources for the at least one sensing service; and means for transmitting, to at least one of the first apparatus or the second apparatus, the second sensing configuration information.
  • the third apparatus further comprises: means for receiving, from the second apparatus, a first switch message indicating the third apparatuses to switch from the second sensing mode to the first sensing mode; and means for performing the at least one sensing service in the first sensing mode.
  • the third apparatus further comprises: means for transmitting first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and means for measuring second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  • the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode
  • the second sensing mode may be a UE-to-gNB sensing mode
  • the third apparatus further comprises means for performing other operations in some example embodiments of the method 800 or the third apparatus 130.
  • the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the third apparatus.
  • FIG. 9 is a simplified block diagram of a device 900 that is suitable for implementing example embodiments of the present disclosure.
  • the device 900 may be provided to implement a communication device, for example, the first apparatus 110, the second apparatus 120, or the third apparatus as shown in FIG. 1A.
  • the device 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910.
  • the one or more memories 920 includes instructions that are executed by the associated processor 910.
  • the communication module 940 is for bidirectional communications.
  • the communication module 940 has one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 940 may include at least one antenna.
  • the processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 920 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage.
  • ROM Read Only Memory
  • EPROM electrically programmable read only memory
  • flash memory a hard disk
  • CD compact disc
  • DVD digital video disk
  • optical disk a laser disk
  • RAM random access memory
  • a computer program 930 includes computer executable instructions that are executed by the associated processor 910.
  • the instructions of the program 930 may include instructions for performing operations/acts of some example embodiments of the present disclosure.
  • the program 930 may be stored in the memory, e.g., the ROM 924.
  • the processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
  • the example embodiments of the present disclosure may be implemented by means of the program 930 so that the device 900 may perform any process of the disclosure as discussed with reference to FIG. 2 to FIG. 8.
  • the example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 930 may be tangibly contained in a computer readable medium which may be included in the device 900 (such as in the memory 920) or other storage devices that are accessible by the device 900.
  • the device 900 may load the program 930 from the computer readable medium to the RAM 922 for execution.
  • the computer readable medium may include any types of non-transitory storage medium, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • the term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
  • FIG. 10 shows an example of the computer readable medium 1000 which may be in form of CD, DVD or other optical storage disk.
  • the computer readable medium 1000 has the program 930 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, and other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. Although various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • Some example embodiments of the present disclosure also provide at least one computer program product tangibly stored on a computer readable medium, such as a non-transitory computer readable medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target physical or virtual processor, to carry out any of the methods as described above.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages.
  • the program code may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program code, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Example embodiments of the present disclosure related to sensing mode switching. The first apparatus obtains first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode, and second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode. Further, the first apparatus performs at least one sensing service in the first sensing mode based on the first and second sensing configuration information, and switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.

Description

SENSING MODE SWITCHING
FIELDS
Various example embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to methods, devices, apparatuses and computer readable storage medium of sensing mode switching.
BACKGROUND
Technology of integrated sensing and communication (ISAC) has been agreed to be supported in the 5th generation mobile communication technology (5G) and is expected to play a crucial role in the future of many industries. Recently, more studies and discussions have been made about the use cases and potential requirements for enhancement of the 5G system to provide ISAC services addressing different target verticals/applications, e.g., autonomous/assisted driving, vehicle to everything (V2X) , aviation/unmanned aerial vehicles (UVA) , three-dimensional (3D) map reconstruction, smart city/factories, public sectors, healthcare, smart home, maritime sector and so on.
SUMMARY
In a first aspect of the present disclosure, there is provided a first apparatus. The first apparatus comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the first apparatus at least to: obtain first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; obtain second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; perform at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and switch from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In a second aspect of the present disclosure, there is provided a second apparatus.  The second apparatus comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the second apparatus at least to: determine, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and transmit, to a first apparatus, at least one of the first or the second sensing configuration information.
In a third aspect of the present disclosure, there is provided a third apparatus. The third apparatus comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the third apparatus at least to: determine second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; perform at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switch from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
In a fourth aspect of the present disclosure, there is provided a method. The method comprises: obtaining, at a first apparatus, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In a fifth aspect of the present disclosure, there is provided a method. The method comprises: determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
In a sixth aspect of the present disclosure, there is provided a method. The method comprises: determining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
In a seventh aspect of the present disclosure, there is provided a first apparatus. The first apparatus comprises means for obtaining, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; means for obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; means for performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and means for switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In an eighth aspect of the present disclosure, there is provided a second apparatus.  The second apparatus comprises means for determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and means for transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
In a ninth aspect of the present disclosure, there is provided a third apparatus. The third apparatus comprises means for obtaining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; means for performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, means for switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
In a tenth aspect of the present disclosure, there is provided a computer readable medium. The computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the fourth aspect.
In an eleventh aspect of the present disclosure, there is provided a computer readable medium. The computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the fifth aspect.
In a twelfth aspect of the present disclosure, there is provided a computer readable medium. The computer readable medium comprises instructions stored thereon for causing an apparatus to perform at least the method according to the sixth aspect.
It is to be understood that the Summary section is not intended to identify key  or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1A illustrates an example communication environment in which example embodiments of the present disclosure can be implemented;
FIG. 1B illustrates example network deployments of different sensing modes.
FIG. 2 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure;
FIGS. 3A to 3D illustrate flowcharts of methods implemented at a first apparatus according to some example embodiments of the present disclosure;
FIGS. 4A and 4B illustrate flowcharts of methods implemented at a first apparatus according to some example embodiments of the present disclosure;
FIG. 5 illustrates a signaling flow of communication in accordance with some embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of a method implemented at a first apparatus according to some example embodiments of the present disclosure;
FIG. 7 illustrates a flowchart of a method implemented at a second apparatus according to some example embodiments of the present disclosure;
FIG. 8 illustrates a flowchart of a method implemented at a third apparatus according to some example embodiments of the present disclosure;
FIG. 9 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
FIG. 10 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. Embodiments described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first, ” “second, ” …, etc. in front of noun (s) and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another and they do not limit the order of the noun (s) . For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list  of two or more elements are joined by “and” or “or” , mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
As used herein, unless stated explicitly, performing a step “in response to A” does not indicate that the step is performed immediately after “A” occurs and one or more intervening steps may be included.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term  circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , an NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device, and so forth, depending on the applied terminology and technology. In some example embodiments, radio access network (RAN) split architecture comprises a Centralized Unit (CU) and a Distributed Unit (DU) at an IAB donor node. An IAB node comprises a Mobile Terminal (IAB-MT) part that behaves  like a UE toward the parent node, and a DU part of an IAB node behaves like a base station toward the next-hop IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to a Mobile Termination (MT) part of an IAB node (e.g., a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As used herein, the term “resource, ” “transmission resource, ” “resource block, ” “physical resource block” (PRB) , “uplink resource, ” or “downlink resource” may refer to any resource for performing a communication, for example, a communication between a terminal device and a network device, such as a resource in time domain, a resource in frequency domain, a resource in space domain, a resource in code domain, or any other combination of the time, frequency, space and/or code domain resource enabling a communication, and the like. In the following, unless explicitly stated, a resource in both frequency domain and time domain will be used as an example of a transmission resource for describing some example embodiments of the present disclosure. It is noted that example embodiments of the present disclosure are equally applicable to other resources in other domains.
As described above, the technology of ISAC which is also known as joint communication and sensing (JCAS) has been discussed in 5G NR. Further, more studies and discussions have been made about the use cases (such as, behaviour recognition, gesture recognition, health monitor, fall detection, integration of automotive radar and localization and tracking) and potential requirements for enhancement of the 5G system to provide ISAC services addressing different target verticals/applications.
It is expected that the use cases of ISAC may be focused on NR based sensing and also may include non-3GPP type sensors (e.g., radar, camera) . Further, objectives about the ISAC, include but are not limited to, identifying potential service requirements in the areas of collection and reporting of the sensing information and exposure of the sensing capabilities and information to the third party, identifying key performance indicators (KPIs) related to NR-based sensing (e.g., range, motion, velocity) and performance requirements for transferring sensing related data. Further, aspects related to security, privacy, regulatory requirements, and charging, and gap analysis between the identified potential requirements and existing 5GS requirements or functionalities need to be further discussed.
From factories and traffic management to health monitoring and environmental sensing, ISAC has the potential to enable various sensing and communication-based application with the use of various communications spectrums (from 1GHz to 60+GHz) . So far, several sensing modes are proposed. With the proposed sensing modes, sensing service (s) maybe performed in suitable use cases.
Generally speaking, different sensing mods may be suitable for different application scenarios, and may involve different network elements. If the related network elements may switch among the different sensing modes flexibly, the sensing efficiency may be increased accordingly.
In view of the above discussions, it is desirable to propose a solution of sensing mode switching.
According to the present disclosure, the first apparatus (such as, a terminal device) obtains first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode, and second sensing configuration information related to at least one of a first RS configuration associated with the first sensing mode or a second RS configuration associated with the second  sensing mode. Further, the first apparatus performs at least one sensing service in the first sensing mode based on the first and second sensing configuration information, and switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In this way, by switching among the different sensing modes flexibly when performing the sensing service (s) , the sensing efficiency may be increased accordingly.
As used herein, terms of “sensing service” , “sensing operation” and “sensing task” may be used interchangeably.
In some example embodiments, a terminal apparatus may be used as an example of a first apparatus, a network apparatus may be used as an example of a third apparatus, and a sensing function may be used as an example of a second apparatus. Further, a sensing function may be implemented at a terminal apparatus, a network apparatus (such as, a gNB) or a core network apparatus (such as, a location management function, LMF, a sensing management function, SMF and so on) . In view of this, in some cases, the third apparatus and the second apparatus may be implemented as two separately apparatuses. Alternatively, the second apparatus may be implemented at the third apparatus.
Thus, although some example embodiments are discussed by referring to the scenario where the third apparatus and the second apparatus are implemented as two separately apparatuses, such embodiments are also suitable for the scenario where the second apparatus is implemented at the third apparatus. In this event, the interactions between the second apparatus and the third apparatus may be omitted or implemented as internal interactions. Merely for brevity, the same or similar contents are omitted.
It is to be understood that the sensing service discussed herein may be implemented among two terminal devices, two network devices, a terminal device and a network device, or an access point (AP) and a station (STA) .
Example Environments
FIG. 1A illustrates an example communication environment 100A in which example embodiments of the present disclosure can be implemented. The communication environment 100A includes a first apparatus 110 and a third apparatus 130.
In some example embodiments, the first apparatus 110 may be comprised in a terminal device/apparatus and the third apparatus 130 may be comprised in a network device/apparatus serving the terminal device/apparatus.
In the following, for the purpose of illustration, some example embodiments are described with the first apparatus 110 operating as a terminal apparatus and the third apparatus 130 operating as a network apparatus. However, in some example embodiments, operations described in connection with a terminal apparatus may be implemented at a network apparatus or other apparatus, and operations described in connection with a network apparatus may be implemented at a terminal apparatus or other apparatus.
In some example embodiments, if the first apparatus 110 is a terminal apparatus and the third apparatus 130 is a network apparatus, a link from the third apparatus 130 to the first apparatus 110 is referred to as a downlink (DL) , while a link from the first apparatus 110 to the third apparatus 130 is referred to as an uplink (UL) . In DL, the third apparatus 130 is a transmitting (TX) apparatus (or a transmitter) and the first apparatus 110 is a receiving (RX) apparatus (or a receiver) . In UL, the first apparatus 110 is a TX apparatus (or a transmitter) and the third apparatus 130 is a RX apparatus (or a receiver) .
Further, communication environment 100A also supports sensing function. Further, the apparatus at which sensing function is implemented is referred to as a second device.
In some example embodiments, the sensing function is implemented at the third apparatus 130, as the second apparatus 120-1 illustrated in the FIG. 1A. Alternatively, the second apparatus is implemented at an apparatus separately from the third device 130, as the second apparatus 120-2 illustrated in the FIG. 1A. In this event, the second apparatus 120-2 may be a terminal apparatus, an SF or an LMF, and other suitable apparatus. For the ease of discussion, the second apparatus 120-1 and the second apparatus 120-2 are collectively referred to as the second apparatus.
Further, the first apparatus 110 may communicate with the second apparatus 120 and the third apparatus 130. In some example embodiments, the first apparatus 110 may communicate with the third apparatus 130 via the Uu interface, and communicate with the second apparatus 120 via a tunnel with an LTE positioning protocol (LPP) or other protocol supporting sensing.
In view of the above, the communication signallings among the first apparatus 110, second apparatus 120 and third apparatus 130 may be different according to different network deployments.
Communications in the communication environment 100A may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) , the fifth generation (5G) , the sixth generation (6G) , and the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple (OFDM) , Discrete Fourier Transform spread OFDM (DFT-s-OFDM) and/or any other technologies currently known or to be developed in the future.
At least the following six sensing modes may be supported in FIG. 1A, including gNB-based mono-static sensing mode, gNB1-to-gNB2-based bi-static sensing mode, gNB-to-UE-based bi-static sensing mode, UE-to-gNB-based bi-static sensing mode, UE-based mono-static sensing mode, and UE1-to-UE2-based bi-static sensing mode. Further, the above sensing modes may be used in any combination or separately.
Reference is now made to FIG. 1B, which illustrates example network deployments 100B of the above six sensing modes. Below table 1 further illustrates more details about the above example sensing modes.
Table 1 example sensing modes

The gNB-to-UE-based bi-static sensing mode (referred to as gNB-to-UE sensing mode for brevity sometimes) and UE-to-gNB-based bi-static sensing mode (referred to as UE-to-gNB sensing mode for brevity sometimes) are two typical bi-static sensing modes for ISAC.
Further, in the UE-to-gNB sensing mode, the UE transmits UL RSs to the gNB, and the gNB measures the UL RSs for sensing. Moreover, in the UE-to-gNB sensing mode, the gNB processes the measured data. Because the gNB usually have a high computing ability, the UE-to-gNB sensing mode may support a sensing service with a high computing capability requirement. In the gNB-to-UE sensing mode, the gNB transmits DL RSs to the UE, and the UE measures the DL RSs for sensing. Because the gNB usually has a higher transmitter power, the gNB-to-UE sensing mode may enable a larger sensing coverage and does not need to transmit dedicated sensing RSs. In this case, the DL RSs may be one of common DL RSs (such as, CSI-RS, PSS and so on) .
Thanks to the UE diversity among the UEs in the network, the gNB can schedule UE (s) near the sensing target to participate in sensing so as to achieve better sensing performance, which can be considered for multiple use cases, such as intruder detection, and health monitoring at home or care facility.
For some use cases of ISAC (e.g., health monitoring at home and/or care facility) , the gNB-to-UE sensing mode may be considered for sensing. That is because the gNB-to-UE sensing mode may achieve larger coverage and less resource overhead for sensing in comparison with the UE-to-gNB sensing mode. For example, the gNB-to-UE sensing mode may utilize legacy communication signal (e.g., primary synchronization signal (PSS) /secondary synchronization signal (SSS) /channel state information reference signal (CSI-RS) ) to perform sensing sometimes (e.g., presence detection of sensing targets) and  do not need to schedule dedicated UL sensing RS (e.g., sounding reference signal, SRS) for sensing.
In some cases, if UE processes the measured data at local, UE may be not able to complete complexity sensing service (e.g., artificial intelligence (AI) -powered sensing task, such as, behavior detection and target track of sensing target) due to the limitation of UE capability (e.g., computing complexity) . Generally speaking, to deal with a high-level AI-powered sensing task, it is required for UE to report the sensing measurement results (e.g., CSI, range-doppler profile) to the network sensing processing entity (e.g., gNB, SMF, SF, LMF) with powerful computing capability. Obviously, it would degrade network communication efficiency and further increase the sensing latency.
On the contrary, the network sensing processing entity with powerful computing capability can process complex sensing task for the UE-to-gNB sensing mode. In this event, the network sensing processing entity would configure the UE to transmit UL sensing RS for sensing towards the sensing area.
However, if no certain condition is satisfied, it would not make sense to configure the UE to transmit the UL sensing RS. For an example of target tracking and/or behaviors analysis, if no sensing target is presented in the sensing area, it is unnecessary for the UE to transmit the UL sensing RS because it would cause unnecessary resource waste and network interference.
Through the above discussion, it may be clearly seen that if the related network elements may switch among the different sensing modes flexibly, the sensing efficiency may be improved.
Work Principle and Example Signaling for Communication
According to some example embodiments of the present disclosure, there is provided a solution of sensing mode switching. Reference is made to FIG. 2, which illustrates a signaling flow 200 of communication in accordance with some embodiments of the present disclosure. For the purposes of discussion, the signaling flow 200 will be discussed with reference to FIG. 1A, for example, by using the first apparatus 110, the second apparatus 120 and the third apparatus 130.
It is to be understood that the operations at the first apparatus 110, the second  apparatus 120 and the third apparatus 130 should be coordinated. In other words, the first apparatus 110, the second apparatus 120 and the third apparatus 130 should have common understanding about configurations, parameters and so on. Such common understanding may be implemented by any suitable interactions or by applying a same rule/policy/assumption.
In the following, although some operations are described from a perspective of the first apparatus 110, it is to be understood that the corresponding operations should be performed by the third apparatus 130 (and/or the second apparatus 120) . Similarly, although some operations are described from a perspective of the third apparatus 130, it is to be understood that the corresponding operations should be performed by the first apparatus 110 (and/or the second apparatus 120) . Merely for brevity, some of the same or similar contents are omitted here.
In addition, in the following description, examples of message type (such as system information (SI) , a radio resource control (RRC) signalling, a medium access control (MAC) control element (CE) , an LPP message) are only for the purpose of illustration without suggesting any limitations. In other example embodiments, any suitable message types may be used for the interaction between the first apparatus 110, the second apparatus 120 and the third apparatus 130.
Merely for a better understanding, in the example of FIG. 2, the first apparatus 110 is described as a terminal apparatus, the second apparatus 120 is described as a sensing function, and the third apparatus 130 is described as a network apparatus.
In operation, the first apparatus 110, the second apparatus 120 and the third apparatus 130 exchange 210 capability-related information and sensing configuration information, which will be discussed in detail as below.
It is to be clarified that any of the below discussed sensing configuration information related to at least one sensing event associated with one or more sensing modes and/or the first RS configuration may be defined as a default value by the communication organization (such as 3GPP) , or pre-defined by the network operator or service provider. In this way, no additional signaling for the sensing configuration information is needed.
Alternatively, any of the below discussed sensing configuration information may  be configured by the second apparatus 120 and/or the third apparatus 130. In this way, the sensing configuration will be more flexible.
In some embodiments, the first apparatus 110 may optionally provide capability-related information of the first apparatus 110. The capability-related information may include at least one of:
- a computing capability of the first apparatus 110,
- a machine learning (ML) capability of the first apparatus 110,
- at least one sensing service supported by the first apparatus 110,
- a power classification of the first apparatus 110, or
- a power status of the first apparatus 110.
It is to be understood that the above illustrated example capability-related information is given for illustrative purpose only. Any suitable capability-related information associated with the embodiments discussed herein may be proactively provided by the first apparatus 110, for example, in cases of a power-on of the first apparatus, a successful establishment procedure and so on. The present disclosure is not limited in this regard. With the above information, a more suitable sensing configuration information may be determined for the first apparatus 110. Alternatively, the first apparatus 110 may transmit the capability-related information on demand, for example, in respond to receiving a request from the second apparatus 120 and/or the third apparatus 130.
In the present disclosure, the first apparatus 110 may obtain first sensing configuration information and second sensing configuration information. The first sensing configuration information may be related to at least one sensing event associated with a first sensing mode and a second sensing mode, and the second sensing configuration information may be related to at least one of a first RS configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
Additionally, the at least one sensing event may be any suitable event (s) that may be used for triggering a sensing mode switching. One example event may be a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value. Another example event may be detecting an object in a  pre-defined area. A further example event may be detecting a moving object.
In some example embodiments, the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
As discussion above, the signallings interactions among the first apparatus 110, the second apparatus 120 and the third apparatus 130 may be different due to different network developments. In view of this, in some example embodiments, the first and second sensing configuration information may be received from a second apparatus 120. Alternatively, in some example embodiments, the first sensing configuration information may be received from a second apparatus 120 and the second sensing configuration information may be received from a third apparatus 130. Some signallings interactions will be discusses by referring to FIG. 3A to FIG. 3D.
Reference is made to FIGs. 3A to 3C, where FIG. 3A to FIG. 3C illustrate signaling flows 300A, 300B and 300C of communication in accordance with some embodiments of the present disclosure, respectively. In FIG. 3A to FIG. 3C, the third apparatus 130 and the second apparatus 120 are two separate apparatuses.
In FIG. 3A, the first apparatus 110 may optionally transmit 310 capability-related information. For example, the capability related information is transmitted to the third apparatus 130 or the second apparatus 120-2. The second apparatus 120-2 may transmit 315 a request for configuring resources for the at least one sensing service to a third apparatus 130, and then may receive 320 the second sensing configuration information from the third apparatus 130. The second sensing configuration information including the first RS configuration and the second RS configuration may be transmitted via one or more messages. For example, one message is used for the first RS configuration and another message is used for the second RS configuration, or the first and second RS configurations are comprised in a single message. In FIG. 3A, the second apparatus 120- 2 may transmit 325 the first and second sensing configuration information to the first apparatus 110 directly or via the third apparatus 130.
In FIG. 3B, the first apparatus 110 may optionally transmit 330 capability-related information. For example, the capability related information is transmitted to the third apparatus 130 or to the second apparatus 120-2. The second apparatus 120-2 may determine the first sensing configuration information based on the capability-related information and transmit 335 the first sensing configuration information to the first apparatus 110. After that, the second apparatus 120-2 may transmit 340 a request for configuring resources for the at least one sensing service to a third apparatus 130, and then may receive 345 the second sensing configuration information from the third apparatus 130 via one or more messages. Next, the second apparatus 120-2 may transmit 350 the second sensing configuration information to the first apparatus 110 directly or via the third apparatus 130.
In FIG. 3C, the first apparatus 110 may optionally transmit 355 capability-related information to the second apparatus 120-2. The second apparatus 120-2 may determine the first sensing configuration information based on the capability-related information and transmit 360 the first sensing configuration information to the first apparatus 110. After that, the second apparatus 120-2 may transmit 365 a request for configuring resources for the at least one sensing service to a third apparatus 130, and the third apparatus 130 may transmit 370 the second sensing configuration information to the first apparatus 110.
Reference is now made to FIG. 3D, which illustrates a signaling flow 300D of communication in accordance with some embodiments of the present disclosure. In FIG. 3D, the second apparatus 120-1 is implemented at the third apparatus 130.
In FIG. 3D, the first apparatus 110 may optionally transmit 380 capability-related information to the second apparatus 120-1/the third apparatus 130. Optionally, there may be some internal interactions among the second apparatus 120-1 and the third apparatus 130. Next, the second apparatus 120-1/the third apparatus 130 may transmit 385 the first and second sensing configuration information to the first apparatus 110 via one or more messages.
It should be understood that the example signaling flows 300A, 300B, 300C and 300D illustrated in FIG. 3A to FIG. 3D are given for illustrative purpose only. In some  other example embodiments, the first RS configuration and the second RS configuration may be handled separately. For example, the third apparatus 130 may transmit the second RS configuration to the first apparatus 110 directly, and further may transmit the first RS configuration to the second apparatus 120-2 and the second apparatus 120-2 may transmit the first RS configuration to the first apparatus 110.
Through the above procedure of exchanging the capability-related information and sensing configuration information, a flexible sending mode switching may be enabled as discussed below.
Still refer to FIG. 2, the first apparatus 110 performs 220 at least one sensing service in the first sensing mode based on the first and second sensing configuration information. Then the first apparatus 110 switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In some example embodiments, the first apparatus 110 may measure first RSs when the first apparatus 110 performs the at least one sensing service in the first sensing mode, and may transmit second RSs when the first apparatus 110 performs the at least one sensing service in the second sensing mode. In some example embodiments, the first sensing mode may be a gNB-to-UE sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode. It should be understood that the above descriptions about the first and second sensing modes are given for illustrative purpose only.
As discusses above, the operations at the first apparatus 110, the second apparatus 120 and the third apparatus 130 should be coordinated. That is, when the first apparatus switches to the second sensing mode, the third apparatus 130 also needs to switch to the second sensing mode. In this event, the sensing mode switching at the first apparatus 110 should be informed 230 to the third apparatus 130. How to inform the third apparatus 130 about the sensing mode switching at the first apparatus 110 will be discussed as below.
In some embodiments, the first apparatus 110 may transmit a switch report to the third apparatus 130, where the switch report may include at least one of the following:
- switch information indicating a switch from the first sensing mode to the second sensing mode,
- sensing event information indicating the at least one sensing event, or
- sensing results of the at least one sensing event.
Alternatively, in some embodiments, the first apparatus 110 may transmit the switch report to the second apparatus 120, and the second apparatus 120 may trigger the third apparatus 130 to switch to the second sensing mode. Specifically, in responding to receiving the switch report from the first apparatus 110, the second apparatus 120 may transmit a second switch message to the third apparatus 130, where the second switch message indicates the third apparatus 130 to switch from the first sensing mode to the second sensing mode.
As for the third apparatus 130, the third apparatus 130 determines second sensing configuration information related to at least one of a first RS configuration or a second RS configuration first. Then the third apparatus 130 performs at least one sensing service with a first apparatus 110 in the first sensing mode based on the second sensing configuration information. In the following, in response to receiving a switch report from the first apparatus 110 or a second switch message from a second apparatus 120, the third apparatus 130 switches from the first sensing mode to the second sensing mode.
Merely for a better understanding, reference is now made to FIG. 4A and FIG. 4B, which illustrate signaling flows 400A and 400B of communication in accordance with some embodiments of the present disclosure.
In FIG. 4A, the second apparatus 120 may be implemented in the third apparatus 130, or separately from the third apparatus 130. In operation, the first apparatus 110 may detect 410 the at least one event based on the sensing results in the first sensing mode, and may switch 415 from the first sensing mode to the second sensing mode. Then, the first apparatus 110 may transmit 420 the switch report to the third apparatus 130/the second apparatus 120-1. Upon this switch report, the third apparatus 130 may switch 425 from the first sensing mode to the second sensing mode.
In FIG. 4B, the third apparatus 130 and the second apparatus 120 are two separate apparatuses. In operation, the first apparatus 110 may detect 430 the at least one event based on the sensing results in the first sensing mode, and may switch 435 from the first sensing mode to the second sensing mode. Then, the first apparatus 110 may transmit 440 the switch report to the second apparatus 120-2. After that, the second apparatus 120- 2 may transmit 445 the second switch message to indicate the third apparatus 130 to switch from the first sensing mode to the second sensing mode. Upon receiving the second switch message, the third apparatus 130 switches 450 to the second sensing mode.
Through the above processes, the sensing mode switching at the first apparatus 110 and the third apparatus 130 are coordinated.
In some example embodiments, after switching to the second sending mode, the first apparatus 110 may transmit UL RSs to the third apparatus 130 based on the second sensing configuration information. As for the third apparatus, the third apparatus 130 may perform at least one of the following: activating the second RSs configuration, receiving and measuring the UL RSs from the first apparatus. Additionally, in some example embodiments, the third apparatus 130 may be triggered to stop transmitting DL RSs to the first apparatus 110 if necessary. In one example embodiment, if dedicated DL RSs is configured for the sensing service, the third apparatus 130 may stop the DL RSs transmission so as to reduce DL sensing resource overhead.
In addition to switching from the first sensing mode to the second sensing mode, according to some example embodiments of the present disclosure, the second sensing mode also may be switched back to the first sensing mode if the at least one sensing event is detected.
As illustrated in FIG. 2, the first apparatus 110, the second apparatus 120 and the third apparatus 130 may switch 250 from the second sensing mode to the first sensing mode, and then the first apparatus 110 and the third apparatus 130 may perform 260 the sending service in the first sensing mode, which will be discussed as below.
In some embodiments, the third apparatus 130 and the second apparatus 120 are two separate apparatuses. In this event, in according with a determination that the at least one event is no longer detected based on sensing results of the at least one sensing service in the second sensing mode, the second apparatus 120-2 may transmit a first switch message to the first apparatus 110 and the third apparatus 130, where the first switch message indicates the first apparatus 110 and third apparatus 130 to switch from the second sensing mode to the first sensing mode.
Alternatively, in some embodiments, the second apparatus 120-1 is implemented at the third apparatus 130. In this event, the second apparatus 120-1/the third apparatus  130 may transmit the first switch message to the first apparatus 110.
As for the first apparatus 110 and the third apparatus 130, upon receiving the first switch message, the first apparatus 110 and the third apparatus 130 may perform the sensing service in the first sensing mode. In this way, the sensing modes may be selected flexibly and the sensing efficiency may be improved.
Some further example operations will be discussed as below, which may help to achieve a more comprehensive understanding about the example method discussed with reference to FIG. 2.
In some example embodiments, based on the sensing-related capability information (i.e., capability-related information) of a first apparatus (such as, a UE) which participates in bi-static sensing along with a third apparatus 130 (such as, a gNB) , the network (e.g., SMF/gNB/LMF/SF) may determine a device-level sensing task for an advanced sensing task. That is, the network may establish an association among two sensing modes, for example, the first sensing mode is associated with the device-level sensing task and the second sensing mode is associated with the advanced sensing task.
In some example embodiments, the network may configure the UE to execute the device-level sensing task in the gNB-to-UE sensing mode based on a downlink sensing RS (i.e., performing the sensing the service in the first sensing mode based on the first RS configuration) . If the UE detects a device-level sensing event based on measurement results of the DL sensing RS, the UE may switch the gNB-to-UE sensing mode to the UE-to-gNB sensing mode. Specifically, the UE may stop the device-level sensing task and transmits a switch report to the network (such as, gNB, SMF/SF, LMF or other entity performing sensing function) . Further, the UE may transmit UL sensing RSs to the gNB, where the UL sensing RSs are associated with the advanced sensing task and may be (pre-) configured by the network. After that, the network can execute the advanced sensing task in the UE-to-gNB sensing mode based on measurement of the UL sensing RSs.
In some example embodiments, the advanced sensing task (e.g., health monitoring) may involve high computing capability requirement (e.g., AI-powered target tracking and behaviors analysis) whilst the device-level sensing task can be a low-complexity sensing task (e.g., channel fluctuation/variation detection, target presence and/or location) with low computing capability requirement. The device-level sensing task is associated with the advanced task, which means the sensing event detected based  on the device-level sensing task will trigger an execution of the advanced sensing task.
In some example embodiments, the DL sensing RSs may be the common/existing signal for communication (e.g., such as PSS/SSS, demodulation reference signal (DMRS) of common PDCCH, PRS for positioning UE, CSI-RS and so on) , which doesn’t cause additional resource overhead for sensing.
In some example embodiments, the sensing function may be a function entity of the core network for sensing function management, a sensing management component at the network edge, a function entity of gNB, or a function entity of legacy LMF.
Reference is now made to FIG. 5, which illustrate a signaling flow 500 of communication in accordance with some embodiments of the present disclosure.
In some example embodiments, the second apparatus 120 (i.e., sensing function) may collect 510 the sensing-related capability information (i.e., capability-related information) from the first apparatus 110 (such as, a UE) , where the UE is one of sensing Tx/Rx node involved in a bi-static sensing procedure along with the third apparatus 130 (such as, a gNB) .
In some example embodiments, the sensing-related capability information may include but not be limited to the following: the computing capability, AI/ML capability, supported sensing and/or measurement types, UE power classification/status and so on.
In some example embodiments, the supported sensing and/or measurement may include but not be limited to, range/angle/doppler measurement, line of sight (LOS) estimation, intrusion detection, proximity perception, channel fluctuation/variation detection and so on.
In some example embodiments, the UE may report the sensing-related capability to the network (e.g., SMF/gNB/LMF/SF) proactively or based on a request from the network.
In some example embodiments, based on sensing-related capability of UE, the second apparatus 120 may determine 520 first sensing configuration information, where the first sensing configuration information is related to at least one sensing event associated with a first sensing mode and a second sensing mode.
Further, when the sensing service is performed in the first sensing mode, a  device-level sensing task may be performed, where the device-level sensing task may be a low-complexity sensing task with a low computing capability requirement (e.g., channel fluctuation/variation detection, target presence and/or location) . And when the sensing services is performed in the second sensing mode, an advanced sensing task may be performed, where the advanced sensing task may involve a high computing capability requirement (e.g., AI-powered target tracking and behaviors analysis) .
In this way, the first apparatus 110 may perform the device-level sensing task first. And then, based on the sensing results of the device-level sensing task, the first apparatus 110 may determine whether the at least one sensing event is detected. If the at least one sensing event is detected, the first apparatus 110 may switch to the second sensing mode. In the second sensing mode, the advanced sensing task may be performed.
In some example embodiments, in the case of home health and safety sensing, device-level sensing task may be a simple presence (/moving/intruder) detection of the sensing target, which may be implemented based on channel fluctuation (and/or range/angle/doppler measurement) using coarse-grained DL RS (e.g., PSS/SSS/CSI-RS/PRS) . However, the advanced sensing task is required to track and analyze the activity and/or behaviors of the sensing target, which would have high requirements on sensing resources and computing capability.
In some example embodiments, if the sensing-related capability of the first apparatus 110 does not support the advanced sensing task, the second apparatus 120 may determine the device-level sensing task for the advanced sensing task. In addition, the device-level sensing task is associated with the advanced task, which means the sensing event detected based on the device-level sensing task would trigger execution of the advanced sensing task.
In some example embodiments, the second apparatus 120 and/or the third apparatus 130 may determine 530 a DL sensing RS configuration (i.e., the first RS configuration) and an UL sensing RS configuration (i.e., the second RS configuration) for the device-level sensing task and the advance ed sensing task, respectively.
In some example embodiments, the sensing RS configuration may include at least one of the following:
- A sensing RS type indicating which type of RS shall be used for sensing;
- Time/frequency resource allocation for RS transmission; or
- Measurement parameters such as period, occasions and so on.
The type of the RS may be one of communication RSs (e.g., PSS/SSS, DMRS for common PDCCH and/or UE-specific PDCCH/PDSCH decoding, CSI-RS, PRS) , or the sensing dedicated RS, when the sensing RS type indicates the device level sensing task. In addition, the RS can be one of communication RSs (e.g., UL SRS, UL PRS) , or the sensing dedicated UL RS, when the sensing RS type indicates the advanced sensing task.
In some example embodiments, the second apparatus 120 may negotiate the sensing RS configurations (i.e., the second sensing configuration information) with the third apparatus 130. For example, the second apparatus 120 may determine the sensing RS type and the sensing RS configuration requirement (e.g., the bandwidth, period, and density and so on) , and then send them to the gNB for determination of the sensing RS time/frequency resource configuration.
In some example embodiments, the second apparatus 120 may deliver 540 a sensing assistance data (i.e., the first and/or second sensing configuration information) to the UE, where the sensing assistance data (i.e., the first and/or the second sensing configuration information) may include at least one of the following:
- The DL and/or UL sensing RS configuration, i.e., the second sensing configuration information;
- At least one sensing event associated with a first sensing mode and a second sensing mode: the at least one sensing event may be detected by, such as, channel/CSI fluctuation detection, target presence and/or location detection and so on;
- Sensing approach and parameters: how to make the sensing and the corresponding parameters, e.g., (1) ML or non-ML based sensing approach; (2) ML model and parameters for ML-based approach; or
- Triggering condition for the at least one sensing event, e.g., (1) considering the channel/CSI fluctuation detection, a threshold can be configured to check if the CSI/channel fluctuation is qualified by comparing the difference between two measurements on CSI with the threshold; (2) a moving target is detected to trigger the device-level sensing event; or (3) a target is presented at a given location to  trigger the device-level sensing event.
In some example embodiments, the gNB may transmit the DL sensing RS, and then the UE perform 550 the sensing measurement (e.g., CSI) based on the DL sensing RS configuration, i.e., performing the sending service in the first sensing mode.
In some example embodiments, the UE may execute 560 the device-level sensing task based on the sensing measurement, and check if at least one of device-level sensing event is triggered.
In some example embodiments, assume that the device-level sensing event may be configured to position if a sensing target is within a sensing area, the UE may perform CSI measurement, and then estimate whether a target is located within the configured area. If the target is located within the configured area, a device-level sensing event will be triggered, i.e., a switch from the first sensing mode to the second sensing mode is triggered.
In some example embodiments, assume that the device-level sensing event is configured to detect if there is a moving target in the sensing area. The UE will estimate the doppler shift of the sensing target based on the CSI measurement. If the moving target is detected based on observation of Doppler shift information for a target, and then the device-level sensing event will be triggered.
In some example embodiments, if a device-level sensing event is triggered, the UE switches the gNB-to-UE sensing mode to the UE-to-gNB sensing mode. Specifically, the UE may perform at least one of the following operations: stopping the device-level sensing task; and/or determining a switch report which may include at least one of a switching indication, a device-level event report, a sensing measurement report.
In some example embodiments, the UE may transmit the switch report to the gNB and then the gNB may switch 570 the gNB-to-UE sensing mode to the UE-to-gNB sensing mode after receiving the switch report.
In some example embodiments, the gNB may be triggered to reserve the UL sensing RS based on the UL sensing RS configuration if the UL sensing RS is pre-configured to the UE.
In some example embodiments, the second apparatus 120 may reserve the UL sensing RS configuration, and then activate the UL sensing RS configuration (such as, via the second sensing message) .
In some example embodiments, the gNB may be triggered to stop transmitting DL sensing RS for the device-level sensing task if necessary. In one example embodiment, if dedicated DL sensing RS is configured for device-level task, the gNB may stop the DL sensing RS transmission so as to reduce DL sensing resource overhead.
In some example embodiments, the UE may transmit 580 the UL sensing RS based on the UL sensing RS configuration associated with the advanced sensing task.
In some example embodiments, the gNB would perform sensing measurement based on the corresponding UL sensing RS transmitted from the UE.
In some example embodiments, based on the sensing measurement data, the network (e.g., gNB/SMF/LMF/SF) would execute the UL-based sensing task.
In some example embodiments, the network (e.g., gNB/SMF/LMF/SF) may execute 590 the advanced sensing task based on the measured data.
In some example embodiments, if no sensing target is detected in the sensing area or the device-level sensing event is detected, the sensing services may be re-configured, or may be performed by switching back to the first sensing mode.
With the above procedure, an advanced sensing (e.g., AI-based sensing) may be executed only if the simple device-level sensing event (e.g., the channel fluctuation) with low computing requirement is triggered, which avoid unnecessary resource waste for advanced sensing.
Further, the first apparatus 110 does not need to always transmit the UL sensing RS for the advanced sensing task, which would further benefit the power saving of the first apparatus 110 and network interference reduction.
In addition, the third apparatus 130 also does not need to always perform UL sensing measurement and resource reservation, which would benefit sensing resource overhead reduction and network efficiency improvement.
Moreover, the device-level sensing may utilize one or more the existing communication reference signals such as, the PSS/SSS, DMRS of common PDCCH, PRS for positioning UE, CSI-RS etc., which would not cause additional sensing resource overhead.
Example Methods
FIG. 6 shows a flowchart of an example method 600 implemented at a first apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 600 will be described from the perspective of the first apparatus 110 in FIG. 1A.
At block 610, the first apparatus obtains first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode.
At block 620, the first apparatus obtains second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
At block 630, the first apparatus performs at least one sensing service in the first sensing mode, based on the first and second sensing configuration information.
At block 640, the first apparatus switches from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In some example embodiments, the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, detecting an object in a pre-defined area, or detecting a moving object.
In some example embodiments, the first apparatus may transmit a switch report to the second or the third apparatus after switching from the first sensing mode to the second sensing mode, the switch report including at least one of the following: switch information indicating a switch from the first sensing mode to the second sensing mode, sensing event information indicating the at least one sensing event, or sensing results of the at least one sensing event.
In some example embodiments, the first apparatus may transmit capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus.
In some example embodiments, the first apparatus may receive a first switch message indicating the first apparatus to switch from the second sensing mode to the first sensing mode; and perform the at least one sensing service in the first sensing mode.
In some example embodiments, the first apparatus may measure first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and transmit second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
In some example embodiments, the first and second sensing configuration information may be received from a second apparatus.
In some example embodiments, the first sensing configuration information may be received from a second apparatus and the second sensing configuration information may be received from a third apparatus.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
FIG. 7 shows a flowchart of an example method 700 implemented at a second apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described from the perspective of the second apparatus 120 in FIG. 1A.
At block 710, the second apparatus determines, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode.
At block 720, the second apparatus transmits to a first apparatus, at least one of the first or the second sensing configuration information.
In some example embodiments, the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, detecting an object in a pre-defined area, or detecting a moving object.
In some example embodiments, the second apparatus may transmit, to a third apparatus, a request for configuring resources for the at least one sensing service; and receive the second sensing configuration information from the third apparatus.
In some example embodiments, prior to transmitting the first sensing configuration information, the second apparatus may receive, from the first apparatus, capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power  status of the first apparatus; and generate at least one of the first or the second sensing configuration information based at least in part on the capability-related information.
In some example embodiments, the second apparatus may receive a switch report from the first apparatus, the switch report indicating at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch from the first sensing mode to the second sensing mode, or sensing results of the at least one sensing service; and transmit, to a third apparatus, a second switch message to indicate the third apparatus to switch from the first sensing mode to the second sensing mode.
In some example embodiments, in according with a determination that the at least one event is no longer detected based on sensing results of the at least one sensing service in the second sensing mode, the second apparatus may transmit a first switch message to the first and third apparatuses, the first switch message indicating the first and third apparatuses to switch from the second sensing mode to the first sensing mode.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
FIG. 8 shows a flowchart of an example method 800 implemented at a third apparatus in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 800 will be described from the perspective of the third apparatus 130 in FIG. 1A.
At block 810, the third apparatus determines second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode.
At block 820, the third apparatus performs at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information.
At block 830, in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, the third apparatus switches from the first sensing mode to the second sensing mode, wherein the switch report indicates at least  one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the third apparatus may comprise: receive, from the second apparatus, a request for configuring resources for the at least one sensing service; and transmit, to at least one of the first apparatus or the second apparatus, the second sensing configuration information.
In some example embodiments, the third apparatus may receive, from the second apparatus, a first switch message indicating the third apparatuses to switch from the second sensing mode to the first sensing mode; and perform the at least one sensing service in the first sensing mode.
In some example embodiments, the third apparatus may transmit first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and measure second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
Example Apparatus, Device and Medium
In some example embodiments, a first apparatus capable of performing any of the method 600 (for example, the first apparatus 110 in FIG. 1A may comprise means for performing the respective operations of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or  software module. The first apparatus may be implemented as or included in the first apparatus 110 in FIG. 1A.
In some example embodiments, the first apparatus comprises means for obtaining, at a first apparatus, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode; means for obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; means for performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and means for switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
In some example embodiments, the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, means for detecting an object in a pre-defined area, or means for detecting a moving object.
In some example embodiments, the first apparatus further comprises: means for transmitting, a switch report to the second or the third apparatus after switching from the first sensing mode to the second sensing mode, the switch report including at least one of the following: switch information indicating a switch from the first sensing mode to the second sensing mode, means for sensing event information indicating the at least one sensing event, or means for sensing results of the at least one sensing event.
In some example embodiments, the first apparatus further comprises: means for transmitting capability-related information of the first apparatus, the capability-related information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus.
In some example embodiments, the first apparatus further comprises: means for receiving a first switch message indicating the first apparatus to switch from the second sensing mode to the first sensing mode; and means for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the first apparatus further comprises: means for measuring first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and means for transmitting second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
In some example embodiments, the first and second sensing configuration information may be received from a second apparatus.
In some example embodiments, the first sensing configuration information may be received from a second apparatus and the second sensing configuration information may be received from a third apparatus.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
In some example embodiments, the first apparatus further comprises means for performing other operations in some example embodiments of the method 600 or the first apparatus 110. In some example embodiments, the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the first apparatus.
In some example embodiments, a second apparatus capable of performing any of the method 700 (for example, the second apparatus 120 in FIG. 1A may comprise means for performing the respective operations of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a  circuitry or software module. The second apparatus may be implemented as or included in the second apparatus 120 in FIG. 1A.
In some example embodiments, the second apparatus comprises means for determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and means for transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
In some example embodiments, the first RS configuration may indicate at least one of the following: a first type of first RSs associated with the first sensing mode, first recourses configured for the first RSs, or at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the at least one sensing event may comprise at least one of the following: a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value, means for detecting an object in a pre-defined area, or means for detecting a moving object.
In some example embodiments, the second apparatus further comprises: means for transmitting, to a third apparatus, a request for configuring resources for the at least one sensing service; and means for receiving the second sensing configuration information from the third apparatus.
In some example embodiments, the second apparatus further comprises: prior to transmitting the first sensing configuration information, means for receiving, from the first apparatus, capability-related information of the first apparatus, the capability-related  information indicating at least one of the following: a computing capability of the first apparatus, a machine learning (ML) capability of the first apparatus, at least one sensing service supported by the first apparatus, a power classification of the first apparatus, or a power status of the first apparatus; and generate at least one of the first or the second sensing configuration information based at least in part on the capability-related information.
In some example embodiments, the second apparatus further comprises: means for receiving a switch report from the first apparatus, the switch report indicating at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch from the first sensing mode to the second sensing mode, or means for sensing results of the at least one sensing service; and means for transmitting, to a third apparatus, a second switch message to indicate the third apparatus to switch from the first sensing mode to the second sensing mode.
In some example embodiments, the second apparatus further comprises: in according with a determination that the at least one event is no longer detected based on sensing results of the at least one sensing service in the second sensing mode, means for transmitting a first switch message to the first and third apparatuses, the first switch message indicating the first and third apparatuses to switch from the second sensing mode to the first sensing mode.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
In some example embodiments, the second apparatus further comprises means for performing other operations in some example embodiments of the method 700 or the second apparatus 120. In some example embodiments, the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the second apparatus.
In some example embodiments, a third apparatus capable of performing any of the method 800 (for example, the third apparatus 130 in FIG. 1A may comprise means for performing the respective operations of the method 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or  software module. The third apparatus may be implemented as or included in the third apparatus 130 in FIG. 1A.
In some example embodiments, the third apparatus comprises means for determining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode; means for performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, means for switching from the first sensing mode to the second sensing mode, wherein the switch report indicates at least one of the following: a switch indication indicating a switch from the first sensing mode to the second sensing mode, an event indication indicating at least one event that triggers the switch, or sensing results of the at least one sensing service, and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
In some example embodiments, the second RS configuration may indicate at least one of the following: a second type of second RSs associated with the second sensing mode, second resources configured for the second RSs, or at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
In some example embodiments, the third apparatus further comprises: means for receiving, from the second apparatus, a request for configuring resources for the at least one sensing service; and means for transmitting, to at least one of the first apparatus or the second apparatus, the second sensing configuration information.
In some example embodiments, the third apparatus further comprises: means for receiving, from the second apparatus, a first switch message indicating the third apparatuses to switch from the second sensing mode to the first sensing mode; and means for performing the at least one sensing service in the first sensing mode.
In some example embodiments, the third apparatus further comprises: means for transmitting first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and means for measuring second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
In some example embodiments, the first sensing mode may be a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode may be a UE-to-gNB sensing mode.
In some example embodiments, the third apparatus further comprises means for performing other operations in some example embodiments of the method 800 or the third apparatus 130. In some example embodiments, the means comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the performance of the third apparatus.
FIG. 9 is a simplified block diagram of a device 900 that is suitable for implementing example embodiments of the present disclosure. The device 900 may be provided to implement a communication device, for example, the first apparatus 110, the second apparatus 120, or the third apparatus as shown in FIG. 1A. As shown, the device 900 includes one or more processors 910, one or more memories 920 coupled to the processor 910, and one or more communication modules 940 coupled to the processor 910. The one or more memories 920 includes instructions that are executed by the associated processor 910.
The communication module 940 is for bidirectional communications. The communication module 940 has one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 940 may include at least one antenna.
The processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 920 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk  (DVD) , an optical disk, a laser disk, and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 922 and other volatile memories that will not last in the power-down duration.
A computer program 930 includes computer executable instructions that are executed by the associated processor 910. The instructions of the program 930 may include instructions for performing operations/acts of some example embodiments of the present disclosure. The program 930 may be stored in the memory, e.g., the ROM 924. The processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 922.
The example embodiments of the present disclosure may be implemented by means of the program 930 so that the device 900 may perform any process of the disclosure as discussed with reference to FIG. 2 to FIG. 8. The example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 930 may be tangibly contained in a computer readable medium which may be included in the device 900 (such as in the memory 920) or other storage devices that are accessible by the device 900. The device 900 may load the program 930 from the computer readable medium to the RAM 922 for execution. In some example embodiments, the computer readable medium may include any types of non-transitory storage medium, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
FIG. 10 shows an example of the computer readable medium 1000 which may be in form of CD, DVD or other optical storage disk. The computer readable medium 1000 has the program 930 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, and other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. Although various aspects of embodiments of the present disclosure are  illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
Some example embodiments of the present disclosure also provide at least one computer program product tangibly stored on a computer readable medium, such as a non-transitory computer readable medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target physical or virtual processor, to carry out any of the methods as described above. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. The program code may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program code, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor  system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, although operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, although several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Unless explicitly stated, certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, unless explicitly stated, various features that are described in the context of a single embodiment may also be implemented in a plurality of embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (30)

  1. A first apparatus comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the first apparatus at least to:
    obtain first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode;
    obtain second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode;
    perform at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and
    switch from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  2. The first apparatus of claim 1, wherein the first RS configuration indicates at least one of the following:
    a first type of first RSs associated with the first sensing mode,
    first recourses configured for the first RSs, or
    at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  3. The first apparatus of claim 1 or 2, wherein the second RS configuration indicates at least one of the following:
    a second type of second RSs associated with the second sensing mode,
    second resources configured for the second RSs, or
    at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  4. The first apparatus of any of claims 1 to 3, wherein the at least one sensing event comprises at least one of the following:
    a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value,
    detecting an object in a pre-defined area, or
    detecting a moving object.
  5. The first apparatus of any of claims 1 to 4, wherein the first apparatus is further caused to:
    transmit, a switch report to the second or the third apparatus after switching from the first sensing mode to the second sensing mode, the switch report including at least one of the following:
    switch information indicating a switch from the first sensing mode to the second sensing mode,
    sensing event information indicating the at least one sensing event, or
    sensing results of the at least one sensing event.
  6. The first apparatus of any of claims 1 to 5, wherein the first apparatus is further caused to:
    transmit capability-related information of the first apparatus, the capability-related information indicating at least one of the following:
    a computing capability of the first apparatus,
    a machine learning (ML) capability of the first apparatus,
    at least one sensing service supported by the first apparatus,
    a power classification of the first apparatus, or
    a power status of the first apparatus.
  7. The first apparatus of any of claims 1 to 6, wherein the first apparatus is further  caused to:
    receive a first switch message indicating the first apparatus to switch from the second sensing mode to the first sensing mode; and
    perform the at least one sensing service in the first sensing mode.
  8. The first apparatus of any of claims 1 to 7, wherein the first apparatus is further caused to:
    measure first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and
    transmit second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  9. The first apparatus of any of claims 1 to 8, wherein the first and second sensing configuration information are received from a second apparatus.
  10. The first apparatus of any of claims 1 to 8, wherein the first sensing configuration information is received from a second apparatus and the second sensing configuration information is received from a third apparatus.
  11. The first apparatus of any of claims 1 to 10, wherein the first sensing mode is a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode is a UE-to-gNB sensing mode.
  12. A second apparatus comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the second apparatus at least to:
    determine, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being  related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and
    transmit, to a first apparatus, at least one of the first or the second sensing configuration information.
  13. The second apparatus of claim 12, wherein the first RS configuration indicates at least one of the following:
    a first type of first RSs associated with the first sensing mode,
    first recourses configured for the first RSs, or
    at least one first measurement parameter for performing the at least one sensing service in the first sensing mode.
  14. The second apparatus of claim 12 or 13, wherein the second RS configuration indicates at least one of the following:
    a second type of second RSs associated with the second sensing mode,
    second resources configured for the second RSs, or
    at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  15. The second apparatus of any of claims 12 to 14, wherein the at least one sensing event comprises at least one of the following:
    a difference between two sensing results of the at least one sensing service being equal to or larger than a threshold value,
    detecting an object in a pre-defined area, or
    detecting a moving object.
  16. The second apparatus of any of claims 12 to 15, wherein the second apparatus is  further caused to:
    transmit, to a third apparatus, a request for configuring resources for the at least one sensing service; and
    receive the second sensing configuration information from the third apparatus.
  17. The second apparatus of any of claims 12 to 16, wherein the second apparatus is further caused to:
    prior to transmitting the first sensing configuration information, receive, from the first apparatus, capability-related information of the first apparatus, the capability-related information indicating at least one of the following:
    a computing capability of the first apparatus,
    a machine learning (ML) capability of the first apparatus,
    at least one sensing service supported by the first apparatus,
    a power classification of the first apparatus, or
    a power status of the first apparatus; and
    generate at least one of the first or the second sensing configuration information based at least in part on the capability-related information.
  18. The second apparatus of any of claims 12 to 17, wherein the second apparatus is further caused to:
    receive a switch report from the first apparatus, the switch report indicating at least one of the following:
    a switch indication indicating a switch from the first sensing mode to the second sensing mode,
    an event indication indicating at least one event that triggers the switch from the first sensing mode to the second sensing mode, or
    sensing results of the at least one sensing service; and
    transmit, to a third apparatus, a second switch message to indicate the third apparatus to switch from the first sensing mode to the second sensing mode.
  19. The second apparatus of claim 18, wherein the second apparatus is further caused to:
    in according with a determination that the at least one event is no longer detected based on sensing results of the at least one sensing service in the second sensing mode, transmit a first switch message to the first and third apparatuses, the first switch message indicating the first and third apparatuses to switch from the second sensing mode to the first sensing mode.
  20. The second apparatus of any of claims 12 to 19, wherein the first sensing mode is a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode is a UE-to-gNB sensing mode.
  21. A third apparatus comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the third apparatus at least to:
    determine second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode;
    perform at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and
    in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switch from the first sensing mode to the second sensing mode,
    wherein the switch report indicates at least one of the following:
    a switch indication indicating a switch from the first sensing mode to the second sensing mode,
    an event indication indicating at least one event that triggers the  switch, or
    sensing results of the at least one sensing service,
    and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  22. The third apparatus of claim 21, wherein the second RS configuration indicates at least one of the following:
    a second type of second RSs associated with the second sensing mode,
    second resources configured for the second RSs, or
    at least one second measurement parameter for performing the at least one sensing service in the second sensing mode.
  23. The third apparatus of claim 21 or 22, wherein the third apparatus is further caused to:
    receive, from the second apparatus, a request for configuring resources for the at least one sensing service; and
    transmit, to at least one of the first apparatus or the second apparatus, the second sensing configuration information.
  24. The third apparatus of any of claims 21 to 23, wherein the third apparatus is further caused to:
    receive, from the second apparatus, a first switch message indicating the third apparatuses to switch from the second sensing mode to the first sensing mode; and
    perform the at least one sensing service in the first sensing mode.
  25. The third apparatus of any of claims 21 to 24, wherein the third apparatus is further caused to:
    transmit first RSs when the first apparatus performs the at least one sensing service in the first sensing mode; and
    measure second RSs when the first apparatus performs the at least one sensing service in the second sensing mode.
  26. The third apparatus of any of claims 21 to 25, wherein the first sensing mode is a next generation nodeB (gNB) to user equipment (UE) (gNB-to-UE) sensing mode, and the second sensing mode is a UE-to-gNB sensing mode.
  27. A method comprising:
    obtaining, at a first apparatus, first sensing configuration information related to at least one sensing event associated with a first sensing mode and a second sensing mode;
    obtaining, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode;
    performing at least one sensing service in the first sensing mode, based on the first and second sensing configuration information; and
    switching from the first sensing mode to the second sensing mode when the at least one sensing event is detected in the first sensing mode.
  28. A method comprising:
    determining, at a second apparatus, at least one of first sensing configuration information or second sensing configuration information, the first sensing configuration information being related to at least one sensing event associated with a first sensing mode and a second sensing mode, the second sensing configuration information being related to at least one of a first reference signal, RS, configuration associated with the first sensing mode or a second RS configuration associated with the second sensing mode; and
    transmitting, to a first apparatus, at least one of the first or the second sensing configuration information.
  29. A method comprising:
    determining, at a third apparatus, second sensing configuration information related to at least one of a first reference signal, RS, configuration associated with a first sensing mode or a second RS configuration associated with a second sensing mode;
    performing at least one sensing service with a first apparatus in the first sensing mode based on the second sensing configuration information; and
    in response to receiving a switch report from the first apparatus or a second switch message from a second apparatus, switching from the first sensing mode to the second sensing mode,
    wherein the switch report indicates at least one of the following:
    a switch indication indicating a switch from the first sensing mode to the second sensing mode,
    an event indication indicating at least one event that triggers the switch, or
    sensing results of the at least one sensing service,
    and wherein the second switch message indicates the third apparatus to switch from the first sensing mode to the second sensing mode.
  30. A computer readable medium comprising instructions stored thereon for causing an apparatus at least to perform the method of any of claims 27-29.
PCT/CN2023/100889 2023-06-16 2023-06-16 Sensing mode switching WO2024254887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100889 WO2024254887A1 (en) 2023-06-16 2023-06-16 Sensing mode switching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/100889 WO2024254887A1 (en) 2023-06-16 2023-06-16 Sensing mode switching

Publications (1)

Publication Number Publication Date
WO2024254887A1 true WO2024254887A1 (en) 2024-12-19

Family

ID=93851186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100889 WO2024254887A1 (en) 2023-06-16 2023-06-16 Sensing mode switching

Country Status (1)

Country Link
WO (1) WO2024254887A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109772A1 (en) * 2020-11-24 2022-06-02 Qualcomm Incorporated Sensing mode configuration for wireless sensing
WO2022133951A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Integrated sensing and communication network
CN115706691A (en) * 2021-08-09 2023-02-17 维沃移动通信有限公司 Data transmission processing method, device, communication equipment and storage medium
WO2023098561A1 (en) * 2021-12-01 2023-06-08 华为技术有限公司 Communication method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109772A1 (en) * 2020-11-24 2022-06-02 Qualcomm Incorporated Sensing mode configuration for wireless sensing
WO2022133951A1 (en) * 2020-12-24 2022-06-30 Huawei Technologies Co., Ltd. Integrated sensing and communication network
CN115706691A (en) * 2021-08-09 2023-02-17 维沃移动通信有限公司 Data transmission processing method, device, communication equipment and storage medium
WO2023098561A1 (en) * 2021-12-01 2023-06-08 华为技术有限公司 Communication method and apparatus

Similar Documents

Publication Publication Date Title
JP7395575B2 (en) Signal transmission method and communication device
US20240204848A1 (en) Method and apparatus for partial csi reporting
EP4333516A1 (en) Positioning accuracy enhancements
WO2022027186A1 (en) Positioning reference signal design for low power tracking
CN117322018B (en) Enhancement of satellite positioning measurements
WO2024254887A1 (en) Sensing mode switching
WO2022227039A1 (en) Measurement gap enhancement
WO2024216609A1 (en) Determination of sensing beam
WO2024197911A1 (en) Reference signal configuration for target sensing
WO2024243834A1 (en) Mechanism for selecting devices for sensing objects
WO2025054764A1 (en) Assistance for sensing operation
US20250106813A1 (en) Dynamic configuration of measurement parameters for sidelink positioning
EP4376453A1 (en) Enhancement on device detection session
WO2024031457A1 (en) Resource reservation for a positioning reference signal
WO2024148545A1 (en) Measurement reporting for cell activation
US11800322B2 (en) Signalling for positioning latency control
WO2025010567A1 (en) Sensing coverage evaluation
WO2025039133A1 (en) Deferring transmission of signal
US20250048320A1 (en) Anchor selection in sl positioning
WO2025035334A1 (en) Positioning enhancements with cell dtx/drx
WO2024174246A1 (en) Devices, methods, and apparatuses for joint communication and sensing
US20250039846A1 (en) Direction aware radio resource selection for direct communication between wireless devices
WO2023044928A1 (en) Method, device and computer readable medium for communications
CN116530102B (en) Receiving data in RRC idle/inactive state
US20240224066A1 (en) Reconfigurable intelligent surface assisted communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23941120

Country of ref document: EP

Kind code of ref document: A1