WO2024253470A1 - Electrochemical device comprising high-capacity positive electrode - Google Patents
Electrochemical device comprising high-capacity positive electrode Download PDFInfo
- Publication number
- WO2024253470A1 WO2024253470A1 PCT/KR2024/007826 KR2024007826W WO2024253470A1 WO 2024253470 A1 WO2024253470 A1 WO 2024253470A1 KR 2024007826 W KR2024007826 W KR 2024007826W WO 2024253470 A1 WO2024253470 A1 WO 2024253470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrochemical device
- material layer
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrochemical device including a high-capacity cathode.
- the positive electrode active material layer becomes thicker, problems such as physical cracks or unevenness of the positive electrode material occur during the manufacturing process, and thus it is difficult to secure stable battery performance and life characteristics, so there is a practical limit to increasing the thickness.
- the above-mentioned thick-film type positive electrode has a fundamental problem that the positive electrode material is unevenly distributed. This causes uneven flow characteristics of lithium ions, and causes problems such as uneven charge/discharge characteristics in the thickness direction and polarization phenomena.
- the battery performance deteriorates due to the increase in the movement distance of lithium ions as the thickness of the positive electrode increases, and furthermore, such uneven flow characteristics of lithium ions further aggravate the problem of lithium metal precipitation and dendrite formation on the surface of lithium metal, graphite, and silicon negative electrodes, which not only shortens the life of the battery, but also lowers the stability of the battery.
- An electrochemical device comprises a cathode, an anode, and an electrolyte, wherein the cathode comprises a cathode current collector and a cathode active material layer, and the cathode active material layer formed on one surface of the cathode current collector has a capacity per area of 3 mAh/cm2 or more, and is characterized in that lithium metal is not deposited on the surface of the anode when charged at a charge rate of 2.0C.
- cathode active material layer comprises a porous binder scaffold and cathode active material particles.
- the anode may have a porosity of less than 25%.
- the cathode active material layer may be included in an amount of 50 wt% or more with respect to the total weight of the electrochemical device.
- the positive electrode may be a thick-film positive electrode having a capacity per area of a positive electrode active material layer formed on one surface of a positive electrode current collector of 3.5 to 10 mAh/cm2.
- the positive electrode active material particles may be included in an amount of 80 to 99 wt% with respect to the total weight of the positive electrode active material layer.
- the negative electrode may include a negative electrode active material layer containing 50 wt% or more of a graphite-based active material.
- the electrochemical device may further include a separator.
- the cathode active material layer may have cathode active material particles evenly dispersed therein, and a porous binder scaffold may be present in the empty spaces between the particles.
- the porous binder scaffold may be included in an amount of 0.01 to 40 parts by weight per 100 parts by weight of the cathode active material particles.
- the porous binder scaffold may further include a conductive material.
- a deviation of a conductive material concentration (C1) of a first active material layer corresponding to a point 1/3 of the thickness of the positive electrode active material layer from the boundary between the positive electrode current collector and the positive electrode active material layer, a conductive material concentration (C2) of a second active material layer corresponding to a point from the point 1/3 to the point 2/3 of the thickness of the positive electrode active material layer, and a conductive material concentration (C3) of a third active material layer from the point 2/3 of the thickness of the positive electrode active material layer to the surface may be 10% or less.
- the conductive material may be one or a combination of two or more selected from the group consisting of carbon black, carbon nanotubes, and VGCF.
- the porous binder scaffold may include one or two or more selected from the group consisting of a fluorine-based resin, a rubber-based material, a polyolefin-based resin, an acrylic-based resin, an imide-based resin, and a cellulose-based resin.
- the positive electrode active material layer may further include a metal salt.
- the metal salt may be included in an amount of 0.01 to 50 parts by weight based on 100 parts by weight of the positive electrode active material particles.
- the metal salt may be contained in or surface-adsorbed in at least one of a porous binder scaffold and positive electrode active material particles.
- the metal salt may be a sulfonyl group-containing metal salt selected from the following chemical formula 1 or chemical formula 2.
- n 1 or 2;
- A is a cation of valence n
- R 1 to R 3 are each independently a fluoro(C1-C7) alkyl or a fluoro group.
- A may be lithium, sodium, zinc, copper, aluminum, silver, gold, cesium, indium, magnesium or calcium.
- the electrochemical device may have a 0.1C discharge capacity realization ratio relative to the design capacity of 0.9 or more.
- the anode may have an electrode tortuosity ( ⁇ ) of 10 or less, calculated by the following relationship.
- K electrolyte represents the ionic conductivity of the electrolyte
- K electrode represents the ionic conductivity of the anode
- Porosity represents the porosity of the anode.
- the electrochemical device may have a capacity realization rate of 90% or more according to a charge rate of 1.5 C-rate.
- An electrochemical device comprises a high-capacity thick-film cathode in which a cathode material is uniformly distributed, and can satisfy excellent life characteristics and stability at the same time.
- the electrochemical device can effectively suppress the occurrence of a polarization phenomenon even when a thick-film type cathode is employed, and can implement uniform charge/discharge characteristics.
- the electrochemical device does not cause lithium metal to be precipitated on the surface of the anode even when fast-charging with a current amount twice or more of its self-capacity, and exhibits excellent capacity implementation rate and low overvoltage, so that stability and life characteristics can be secured at the same time.
- Units used herein, unless otherwise specified, are based on weight, and as an example, units of % or ratio mean weight% or weight ratio, and weight% means the weight % that any one component occupies in the composition among the entire composition, unless otherwise defined.
- the numerical range used in this specification includes the lower and upper limits and all values within that range, the increments logically derived from the shape and width of the defined range, all doubly defined values, and all possible combinations of the upper and lower limits of the numerical range defined in different shapes. Unless otherwise specifically defined herein, values outside the numerical range that may arise due to experimental error or rounding of values are also included in the defined numerical range.
- top ‘upper part’, ‘top surface’, ‘bottom’, ‘lower part’, ‘bottom’, and ‘side’ are based on the drawings, and may actually vary depending on the direction in which elements or components are arranged.
- porous binder scaffold refers to a structure in which a mesh structure is uniformly formed three-dimensionally by a binder, in which the binder forms a framework and pores are abundantly developed within the framework.
- the pores preferably have an open pore structure, and the porous mesh structure formed by the binder can act as a support in which positive electrode active material particles and a conductive material can be evenly distributed.
- the pores may have a diameter of 0.1 ⁇ m to 50 ⁇ m, and specifically, may have a diameter of 0.5 ⁇ m to 10 ⁇ m.
- the porous binder scaffold may be a support including fibers formed by self-assembly of an organic binder and a conductive material as a unit structure, and including a thin inner wall structure formed by secondary self-assembly of the fibrous unit structure.
- the binder scaffold is an open-cell foam formed by the inner wall structure, and the inner space can be partitioned by the inner wall structure.
- the inner wall structure can be a porous inner wall, and the inner space can include a large number of pores compared to the pores formed in the inner wall structure.
- Positive active material particles can be positioned in the inner space. More specifically, the positive active material particles can be positioned in the inner space and be fixed by contact with the porous inner wall structure.
- the binder scaffold structure can form a conductive network superior to a fibrous mesh structure, and can have excellent adhesion to the positive active material particles.
- an electrochemical device including such a conventional thick-film positive electrode still has a problem in that lithium metal precipitation and dendrite formation on the negative electrode surface are further accelerated during rapid charging accompanied by high current.
- an electrochemical device includes a thick-film type high-capacity cathode, and exhibits excellent capacity realization rate and low overvoltage by effectively suppressing lithium precipitation at a high charge rate, and can simultaneously satisfy excellent battery performance, high energy density, life characteristics, and stability.
- an electrochemical device includes a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode includes a positive electrode collector and a positive electrode active material layer, and the positive electrode active material layer formed on one surface of the positive electrode collector has a capacity per area of 3 mAh/cm2 or more, and is characterized in that lithium metal is not deposited on the surface of the negative electrode when charged at a charge rate of 2.0 C.
- whether lithium metal is deposited can be determined through direct observation with the naked eye or indirect observation using an optical microscope (or a scanning electron microscope). Alternatively, whether lithium metal is deposited can be determined through the negative electrode potential during the charging process when charging and discharging under constant current (CC) conditions. If the negative electrode potential drops below 0 V, it is considered that lithium plating has occurred, and in contrast, if it is above 0 V, it can be determined that lithium plating has not occurred.
- CC constant current
- the positive electrode may have a capacity per area of a positive electrode active material layer formed on one surface of a positive electrode current collector of 3 mAh/cm 2 or more, 3.5 mAh/cm 2 or more, and, but not limited to, 15 mAh/cm 2 or less, and may be a thick film positive electrode having a capacity of 3 to 15 mAh/cm 2 , 3.5 to 10 mAh/cm 2 , 3.5 to 9 mAh/cm 2 , or 3.8 to 8 mAh/cm 2 .
- the electrochemical device may include a cathode active material layer in an amount of 50 wt% or more, 55 wt% or more, or 60 wt% or more, or 95 wt% or less, or 90 wt% or less, or 88 wt% or less, or 50 to 90 wt%, or 60 to 90 wt%, or 60 to 85 wt%, based on the total weight.
- the positive electrode active material particles may be included in an amount of 70 to 99 wt%, 80 to 99 wt%, or 85 to 99 wt% with respect to the total weight of the positive electrode active material layer.
- the positive electrode may have a positive electrode active material layer thickness of 50 ⁇ m or more, or 100 ⁇ m or more, or 200 ⁇ m or more, or 2,000 ⁇ m or less, or 1,500 ⁇ m or less, or 1,000 ⁇ m or less, and may be a thick-film positive electrode having a thickness of 150 to 2,000 ⁇ m, or 100 to 2,000 ⁇ m, or 100 to 1,000 ⁇ m, or 100 to 500 ⁇ m, or 200 to 500 ⁇ m.
- the positive electrode may be a thick-film positive electrode having a positive electrode active material layer composite density (g/cc) of 2.0 to 4.5, or 3.0 to 4.0, or 3.2 to 4.0.
- g/cc positive electrode active material layer composite density
- the electrode may have an electrode tortuosity ( ⁇ ) calculated by the following relationship of 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less, and may be, but is not limited to, 1 or more.
- the electrode tortuosity may be 1 to 10, 2 to 9, 3 to 8, 4 to 7, or 5 to 6.
- K electrolyte represents the ionic conductivity of the electrolyte
- K electrode represents the ionic conductivity of the anode
- Porosity represents the porosity of the anode
- An electrochemical device including such a cathode has excellent ion conductivity due to a relatively short ion transfer path within the electrode, and can have excellent battery performance, for example, excellent rate characteristics.
- the electrochemical device may have a capacity realization rate according to a charge rate of 1.5 C-rate of 89.5% or more, 90% or more, 90.5% or more, 91% or more, and, but not limited to, 99.9% or less.
- the capacity realization rate according to the charge rate means the percentage of the discharge capacity according to the charge rate divided by the initial discharge capacity.
- the electrochemical device may have a 0.1C discharge capacity implementation ratio relative to the design capacity of 0.8 or more, 0.85 or more, 0.9 or more, 0.95 or more, and may be from 0.8 to 1.0, or from 0.9 to 1.0, or from 0.95 to 1.0.
- the design capacity means a theoretical value calculated from the total weight of the positive active material included in the cell and the reversible discharge capacity of the positive active material.
- the anode according to one embodiment may have a porosity of less than 25%, less than or equal to 20%, less than or equal to 15%, and, but not limited to, greater than or equal to 10%, specifically greater than or equal to 10% and less than 25%, from 15 to 24% or from 15 to 20%.
- porosity means the ratio of the volume occupied by pores to the total volume in a certain structure, and uses its unit vol%, and can be used interchangeably with terms such as porosity, porosity, etc.
- the measurement of porosity is not particularly limited. For example, it can be measured by the BET (Brunauer-Emmett-Teller) measurement method using nitrogen gas or the mercury penetration method (Hg porosimeter) and ASTM D-2873.
- the true density of the anode can be calculated from the density (apparent density) of the anode and the composition ratio of materials included in the anode and the density of each component, and the porosity of the anode can be calculated from the difference between the apparent density and the true density (net density).
- the positive electrode active material layer does not generate cracks at all even though it is high-density/high-loaded, and the positive electrode material can be very evenly distributed in the thickness direction, and the uniform flow characteristics of lithium ions and uniform charge/discharge characteristics in the thickness direction can be effectively maintained.
- the above positive electrode active material layer may include a porous binder scaffold and positive electrode active material particles.
- the porous binder scaffold means a mesh structure in which the binder forms a skeleton and pores are richly developed within the skeleton, and the porous mesh structure can serve as a support in which positive electrode materials such as positive electrode active material particles and conductive materials can be evenly distributed. That is, in the positive electrode according to one embodiment, cracks do not occur even when the positive electrode is thickened by making the binder component microporous, and the positive electrode material is very evenly distributed, so that excellent battery performance can be maintained.
- a cathode active material layer can realize excellent mechanical properties even using a small amount of binder since the binder forms a porous scaffold structure, and thus the content of cathode active material particles can be further increased, thereby realizing an even better energy density.
- the porous binder scaffold may be included in an amount of 0.01 to 40 parts by weight, or 0.01 to 20 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 5 parts by weight, or 0.01 to 1 part by weight, relative to 100 parts by weight of the positive electrode active material particles.
- the above porous binder scaffold may be any polymer binder commonly used in the relevant technical field, and either an aqueous polymer binder or a non-aqueous polymer binder may be used.
- the polymer binder may be a fluorine-based resin, a rubber-based material, a polyolefin-based resin, an acrylic resin, an imide-based resin, a cellulose-based resin, or the like.
- the polymer binder is selected from the group consisting of polyvinylidene fluoride, polytetrafluoroethylene, polyvinylidene fluoride-hexafluoropropylene, polyvinylpyrrolidone, polyacrylonitrile, polyvinylidene fluoride-trichloroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate, polyvinylacetate, ethylene-co-vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxyl methyl cellulose, acrylonitrile styrene butadiene copolymer, polyimide, polyvinyl alcohol, carboxymethyl cellulose, acryl
- the above cathode active material particles may use a compound capable of reversibly intercalating and deintercalating lithium (lithiated intercalation compound).
- one or more of a composite oxide of a metal selected from cobalt, manganese, nickel, and combinations thereof and lithium may be used, and a specific example thereof may be a compound represented by one of the following chemical formulas.
- Li a A 1-b B b D 2 (wherein 0.90 ⁇ a ⁇ 1.8, and 0 ⁇ b ⁇ 0.5); Li a E 1-b B b O 2-c D c (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2-b B b O 4 -c D c (wherein 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b B c D ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ ⁇ 2); Li a Ni 1-bc Co b B c O 2- ⁇ T ⁇ (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇
- the positive electrode active material layer may further include a conductive material, in which case the conductive material may be contained or adsorbed in the porous binder scaffold.
- the above conductive material is not particularly limited as long as it is commonly used in the relevant technical field, but as a non-limiting example, it may be a carbon-based conductive material, and the carbon-based conductive material may include a point-shaped carbon-based conductive material, a linear carbon-based conductive material, a plate-shaped carbon-based conductive material, or a mixture thereof.
- the point-shaped carbon-based conductive material may include acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, carbon black, etc.
- the linear carbon-based conductive material may include carbon nanotubes, conductive carbon fibers, etc.
- the plate-shaped carbon-based conductive material may include graphene, etc.
- the above-described challenging material may be one or a combination of two or more selected from the group consisting of carbon black, carbon nanotubes, and VGCF (Vapor Grown Carbon Fiber, VGCF).
- the positive electrode active material layer may further include a metal salt, and the metal salt may be contained in or surface-adsorbed to at least one of the porous binder scaffold and the positive electrode active material particles.
- the metal ion of the metal salt may be a metal ion (active ion) involved in an electrochemical reaction, and the salt may induce effective complexation of the carbon-based conductive material and the binder, and may remain contained in or surface-adsorbed to at least one of the porous binder scaffold structure and the positive electrode active material, and may remain in a crystal phase unique to the salt.
- the metal salt may be included in an amount of 0.01 to 50 parts by weight, or 0.01 to 30 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 1 part by weight, based on 100 parts by weight of the positive electrode active material particles.
- the weight ratio of the binder: metal salt is not particularly limited, but may be 1:0.1 to 1, 1:0.1 to 0.8, or 1:0.2 to 0.6.
- the above metal salt may be a metal salt containing a sulfonyl group, in which case it may remain in the positive electrode to further improve the electrochemical properties of the positive electrode and further improve wettability with respect to a liquid electrolyte.
- the molecular weight (g/mole) of the above sulfonyl group-containing metal salt may be 1000 or less, specifically 500 or less, more specifically 400 or less, and may have a molecular weight of 20 or more, 50 or more, or 100 or more.
- the number of anions per molecule of the above sulfonyl group-containing metal salt may be 1 to 4, specifically 1 to 3, more specifically 1 to 2.
- the metal salt may be selected from the following chemical formula 1 or chemical formula 2, but is not limited thereto.
- n 1 or 2;
- A is a cation of valence n
- R 1 to R 3 are each independently a fluoro(C1-C7) alkyl or a fluoro group.
- R 1 to R 3 can each independently be F, CFH 2 , CF 2 H, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 or C 5 H 11 .
- the above A is a monovalent cation or a divalent cation
- the monovalent cation may be an alkali metal ion
- the divalent cation may be an alkaline earth metal ion or a post-transition metal ion.
- the A may be lithium, sodium, zinc, copper, aluminum, silver, gold, cesium, indium, magnesium or calcium.
- the sulfonyl group-containing metal salt may be one or more selected from lithium trifluoromethanesulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(perfluoroethanesulfonyl)imide, zinc trifluoromethanesulfonate, zinc di[bis(trifluoromethylsulfonyl)imide], and the like.
- the deviation of the conductive material concentration (C 1 ) of the first active material layer corresponding to 1/3 of the thickness direction of the positive electrode active material layer from the boundary between the positive electrode current collector and the positive electrode active material layer, the conductive material concentration (C 2 ) of the second active material layer corresponding to 1/3 to 2/3 of the thickness direction of the positive electrode active material layer, and the conductive material concentration (C 3 ) of the third active material layer from 2/3 of the thickness direction of the positive electrode active material layer to the surface may be 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 1% or less, and, but not limited to, 0.1% or more.
- the deviation may be 0.1 to 10%, 0.1 to 7%, or 0.1 to 3%.
- the positive electrode active material layer is characterized by a positive electrode material such as a conductive material and positive electrode active material particles being very uniformly distributed in the thickness direction as the thickness of the positive electrode active material layer increases by forming a porous binder scaffold by microporousizing the binder component.
- the above cathode is not particularly limited as long as it is commonly used in electrochemical devices.
- the negative electrode includes a negative electrode active material layer containing a negative electrode active material
- the negative electrode active material may be a material commonly used in a negative electrode of a lithium secondary battery.
- the negative electrode active material may be a material capable of lithium intercalation.
- the negative electrode active material may be one or more selected from, but is not limited to, lithium (metallic lithium), graphitizable carbon, non-graphitizable carbon, graphite, silicon, Sn alloy, Si alloy, Sn oxide, Si oxide, Ti oxide, Ni oxide, Fe oxide (FeO), lithium-titanium oxide (LiTiO 2 , Li 4 Ti 5 O 12 ), mixtures thereof, or composites thereof.
- the negative electrode may include a negative electrode active material layer containing 50 wt% or more, 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, and not limited to 99 wt% or less of a graphite-based active material, specifically 50 to 99 wt%, 60 to 99 wt%, 70 to 99 wt%, 80 to 99 wt%, or 90 to 99 wt%.
- the graphite-based active material may be artificial graphite or natural graphite.
- the graphite-based active material may be natural graphite.
- the negative electrode may include a negative current collector, or a negative current collector and lithium metal.
- an electrochemical device may be a lithium metal battery including the above-described thick-film positive electrode; a negative electrode including a negative electrode current collector and lithium metal formed on the negative electrode current collector; and an electrolyte.
- an electrochemical device may be an anode-free lithium battery including the above-described thick-film positive electrode; a negative electrode current collector; and an electrolyte.
- the above positive and negative electrodes may be provided by forming the positive active material layer and the negative active material layer on a positive current collector and a negative current collector, respectively.
- the positive current collector and the negative current collector may be any positive current collector or negative current collector used in a typical lithium secondary battery.
- the positive current collector or the negative current collector may be any material that has excellent conductivity and is chemically stable during charge and discharge of the battery.
- the positive current collector or the negative current collector may be any material that is conductive, such as graphite, graphene, titanium, copper, platinum, aluminum, nickel, silver, gold, aluminum, or carbon nanotubes, but the present invention is not limited thereto.
- the above electrolyte may be a liquid electrolyte, a solid electrolyte or a combination thereof, and specifically may be a liquid electrolyte, and the liquid electrolyte may include a non-aqueous organic solvent and a lithium salt.
- the above non-aqueous organic solvent may be selected from a cyclic carbonate solvent, a linear carbonate solvent, and a mixed solvent thereof
- the cyclic carbonate solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, and mixtures thereof
- the linear carbonate solvent may be selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, and mixtures thereof.
- the non-aqueous organic solvent may be a mixed solvent of a cyclic carbonate solvent and a linear carbonate solvent, and a mixing volume ratio of the cyclic carbonate solvent: linear carbonate solvent may be mixed and used in a volume ratio of 1:1 to 9, or 1:1 to 4.
- the lithium salt may be one or a mixture of two or more selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI, but is not limited thereto.
- the concentration of the lithium salt may be included in a range of 0.6 M to 2.0 M.
- the liquid electrolyte may have a ratio of the amount of electrolyte injected to the capacity of the electrochemical device according to one embodiment (g/Ah) of less than 3.0, less than 2.0, less than 1.5, less than 1.2, or less than 1.1.
- the liquid electrolyte may be included in a weight ratio of 15 to 30, or a weight ratio of 15 to 25, or a weight ratio of 15 to 20, with respect to 100 parts by weight of the positive electrode.
- the positive electrode of the electrochemical device has excellent wettability with respect to the electrolyte, so that the amount of electrolyte used can be reduced while realizing a further improved energy density.
- the electrochemical device may further include a separator, and the separator is not limited to one commonly used in the relevant technical field, but as a non-limiting example, for example, may be selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoroethylene or a combination thereof, may be in the form of a non-woven fabric or a woven fabric, and may optionally be used in a single-layer or multi-layer structure.
- a separator is not limited to one commonly used in the relevant technical field, but as a non-limiting example, for example, may be selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoroethylene or a combination thereof, may be in the form of a non-woven fabric or a woven fabric, and may optionally be used in a single-layer or multi-layer structure.
- the means for forming a porous binder scaffold by microporousing the binder component is not particularly limited, but may be, for example, using a pore former when preparing a cathode material slurry, and the pore former may be, for example, a mixed solvent of two or more having different solubility parameters, a metal salt, or a combination thereof.
- the above mixed solvent may be, specifically, a mixed solvent of a first solvent and a second solvent having different solubility parameters, and the first solvent and the second solvent may have different solubilities with respect to the binder due to the different solubility parameters. Due to the different solubilities between the solvents, solidification of the binder may occur in a state where the solvent remains during the drying process of the cathode material slurry, and porosity of the binder component may occur in the cathode due to volatilization of the residual solvent during and/or after solidification of the binder.
- the difference in the solubility parameters between the first solvent and the second solvent may be 0.1 to 20, or 0.1 to 10, or 0.1 to 5, or 1 to 5, and specifically, may be 0.5 or more, 1 or more, 2 or more, 3 or more, or 4 or more, and may be 15 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
- the solubility parameter (based on 25°C) may be based on a known value through the Hansen solubility parameter for each substance (e.g., Charles Hansen, "Hansen Solubility Parameters: A User's Handbook” CRC Press (2007), “The CRC Handbook and Solubility Parameters and Cohesion Parameters,” Allan F. M. Barton (1999)), etc.) or a value calculated by commercial software such as Molecular Modeling Pro or Dynacomp Software, and the Hansen solubility parameter for each substance is a value that is already known to those skilled in the art or can be easily calculated.
- Hansen solubility parameter for each substance e.g., Charles Hansen, "Hansen Solubility Parameters: A User's Handbook” CRC Press (2007), “The CRC Handbook and Solubility Parameters and Cohesion Parameters,” Allan F. M. Barton (1999)), etc.
- commercial software such as Molecular Modeling Pro or Dynacomp Software
- the second solvent can act as a pore former, and the degree of porosity of the binder can be controlled by controlling the relative amounts of the first solvent and the second solvent.
- the weight ratio of the first solvent to the second solvent can be 1:0.1 to 10, 1:0.1 to 5, 1:0.1 to 1, or 1:0.1 to 0.5, but is not necessarily limited thereto.
- a method for manufacturing an electrochemical device comprising a positive electrode, an negative electrode, and an electrolyte, wherein the positive electrode includes a positive electrode collector and a positive electrode active material layer, and a positive electrode active material layer formed on one surface of the positive electrode collector has a capacity per area of 3 mAh/cm2 or more, and lithium metal is not deposited on the surface of the negative electrode when charged at a charge rate of 2.0C.
- the method for manufacturing the electrochemical device includes the steps of manufacturing a positive electrode including a current collector and a positive electrode active material layer on the current collector; the step of manufacturing a negative electrode; the step of assembling the positive electrode and the negative electrode; and the step of injecting an electrolyte. Since the positive electrode, the negative electrode, and the electrolyte are the same as those described above, a detailed description thereof will be omitted.
- the step of manufacturing the positive electrode may include a step of applying a positive electrode slurry including the positive electrode active material particles, a conductive material, a binder, and a metal salt as described above onto a current collector; and a step of drying the applied positive electrode slurry.
- the application of the cathode slurry may be performed by one or more methods selected from spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade, dispensing, inkjet printing, offset printing, stencil printing, screen printing, pad printing, gravure printing, reverse gravure printing, gravure offset printing, flexography printing, stencil printing, imprinting, xerography, slot die coating, bar coating, and roll-to-roll coating, but is not limited thereto.
- a step of drying the slurry application (the applied cathode slurry) can be performed.
- the drying can be performed by applying energy, or can be performed through natural drying or vacuum drying without separately applying energy.
- the applied energy can be thermal energy, light energy, or thermal and light energy, and the application of thermal and light energy can include sequential application or simultaneous application.
- the light can be near-infrared light, which is a heat ray.
- the above drying can be performed in a multi-stage manner, and the drying method of each stage can be the same or different.
- hot air drying can be performed first, followed by vacuum drying second.
- the above drying temperature is not particularly limited as long as it is a temperature capable of drying the cathode material slurry.
- the drying temperature may be performed at a temperature of 90 to 180° C., 100 to 160° C., 100 to 140° C., or 100 to 130° C.
- the drying time may be appropriately adjusted in proportion to the amount of the cathode material slurry applied.
- the cathode material slurry can be prepared by mixing the cathode active material particles, the conductive material, the organic binder, and the ionic material described above in the mixed solvent described above.
- the order of adding the cathode active material particles, the conductive material, the organic binder, and the ionic material is not particularly limited.
- the cathode material slurry can be prepared by simultaneously adding and mixing the cathode active material particles, the conductive material, the organic binder, and the ionic material to the solvent.
- the cathode material slurry can be prepared by first adding the cathode active material particles to a mixture in which the conductive material, the organic binder, and the ionic material are mixed.
- the cathode material slurry prepared in this way can form a more stable porous binder scaffold structure when dried later to form a cathode active material layer.
- the cathode material slurry preparation step may include a step of preparing an active material mixture by mixing an ionic material (metal salt) and cathode active material particles, a step of mixing the active material mixture, a conductive material, and a binder into the cathode material mixture described above in the mixed solvent.
- the step of preparing the above active material mixture may include a step of mixing an ionic material and positive electrode active material particles and then calcining them.
- the above mixing may mean mechanical mixing through a stirring device such as a rotary mixer, and the mixing speed (rpm) and mixing time may be appropriately adjusted according to the amount of ionic material and positive electrode active material particles introduced.
- the above-mentioned calcination can be performed at a temperature below the melting point of the ionic material, and is not particularly limited as long as it is a temperature higher than room temperature (20 ⁇ 5°C) and a temperature below the melting point (MP) of the ionic material.
- the temperature of the above-mentioned calcination may be 0.5 (MP) or more and less than 1 (MP), 0.5 (MP) to 0.9 (MP), or 0.6 (MP) to 0.8 (MP) with respect to the melting point (MP) of the ionic material.
- the above-mentioned calcination can be performed at a temperature of 150 to 300°C, 160 to 250°C, or 180 to 220°C.
- the heating rate during the firing may be, but is not limited to, 1 to 30°C/min, 1 to 15°C/min, 1 to 10°C/min, or 3 to 7°C/min.
- the time for which the above-mentioned calcination is performed can be appropriately adjusted depending on the amount of the active material mixture introduced, and can be performed for, but not limited to, 10 to 180 minutes, 20 to 150 minutes, or 30 to 90 minutes.
- lithium trifluorometal sulfonate and 95 wt% of positive electrode active material particles having an average particle size of 5 ⁇ m were pre-mixed using a rotary mixer at 2000 rpm for 3 minutes, placed in a furnace, and heated to 200 °C at a heating rate of 5 °C/min, then fired by maintaining it at that temperature for 1 hour, and then naturally cooling the fired product to room temperature (25 ⁇ 5 °C) to produce an active material mixture (96 wt%).
- the active material mixture was mixed with 2 wt% of carbon black (Super-P) having an average particle size of 40 nm as a conductive material and 2 wt% of polyvinylidene fluoride as a binder to produce a positive electrode material (total 100 wt%).
- a slurry of positive electrode material (total 100 wt%) was prepared by adding 60 wt% of the above-mentioned positive electrode material to a mixed solvent containing 32.5 wt% of N-methyl-2-pyrrolidone and 7.5 wt% of propylene carbonate.
- the positive electrode slurry was applied to a 20 ⁇ m thick aluminum thin film using a doctor blade, dried with hot air at 100 ° C., vacuum-dried at 130 ° C. for 24 hours, and rolled using a roll press to prepare a positive electrode including a 55 ⁇ m thick positive electrode active material layer in which positive electrode active material particles are evenly distributed within a porous binder scaffold structure.
- the positive electrode active material loading of the above positive electrode was 4.1 mAh/cm2, and the composite density was 3.6 g/cc.
- the anode material slurry was prepared by adding 60 wt% of the above anode material to 40 wt% of distilled water.
- the above anode material slurry was applied onto a 10 ⁇ m thick copper thin film using a doctor blade, dried with hot air at 100 ° C., vacuum dried at 130 ° C. for 24 hours, and rolled using a roll press to prepare an anode including an 80 ⁇ m thick anode active material layer.
- the negative active material loading of the above negative electrode was 4.5 mAh/cm2, and the composite density was 1.65 g/cc.
- the manufactured positive and negative electrodes and separator were laminated to manufacture a battery assembly, and an aluminum battery tab (0.1 T ⁇ 7 mm) was ultrasonically welded to the non-coated portion of the positive electrode assembly, and a nickel battery tab (0.1 T ⁇ 7 mm) was welded to the non-coated portion of the negative electrode assembly, respectively. Then, the battery assembly was placed in a formed battery pouch film (153 ⁇ m, DNP) and sealed. Thereafter, an electrochemical device was manufactured by injecting 2.72 g/Ah of a liquid electrolyte containing 1 mol of LiPF 6 dissolved in a solvent containing ethylene carbonate and dimethyl carbonate in a volume ratio of 1:1.
- Example 1 an electrochemical device was manufactured in the same manner as in the above Example 1, except that a mixture of trimethylolpropane ethoxylate triacrylate and lithium trifluoromethanesulfonate in a 50:50 mass% mixture was used instead of lithium trifluoromethanesulfonate when manufacturing the positive electrode.
- An electrochemical device was manufactured in the same manner as in Example 1, except that cesium bis(trifluoromethanesulfonyl)imide was used instead of lithium trifluoromethanesulfonate when manufacturing the positive electrode.
- Example 1 when manufacturing the positive electrode, 95 wt% of LiNi 0.9 Mn 0.05 Co 0.05 O 2 having an average particle size of 5 ⁇ m as a positive electrode active material, 2 wt% of carbon black (Super-P) having an average particle size of 40 nm as a conductive material, and 3 wt% of polyvinylidene fluoride as a binder were mixed (total 100 wt%) to form a positive electrode material, and an electrochemical device was manufactured in the same manner as in Example 1, except that the positive electrode material was added to 40 wt% of N-methyl-2-pyrrolidone to form 60 wt% to prepare a positive electrode material slurry.
- the positive electrode material was added to 40 wt% of N-methyl-2-pyrrolidone to form 60 wt% to prepare a positive electrode material slurry.
- the electrochemical devices of the examples and comparative examples were charged at 0.1 C-rate to 4.4 V under constant current/constant voltage (CC/CV) conditions at 25°C and then cut-off. Thereafter, they were discharged at 0.1 C-rate to 3.0 V (CC conditions).
- CC/CV constant current/constant voltage
- the percentage of the discharge capacity divided by the charge capacity was calculated and presented as the initial efficiency in Table 1 below.
- the capacity per unit area of the positive electrode was measured under 0.1C/0.1C conditions and in the voltage range of 3.0-4.4 V and presented in Table 1 below.
- the initial efficiency of the example was higher than the initial efficiency of the comparative example.
- the positive electrode according to the example was confirmed to have a capacity per area of about 4 mAh/cm2 under 0.1C/0.1C conditions and a voltage range of 3.0-4.4 V.
- the electrochemical devices of Examples and Comparative Examples were charged at different C-rates of 0.5, 1.0, 1.5, 2.0, and 3.0 under constant current (CC) conditions at 25°C up to 4.4 V, and then cut-off. Thereafter, they were discharged at 0.2 C-rate to 3.0 V (CC conditions).
- CC constant current
- the percentage of the discharge capacity according to each charge rate divided by the initial discharge capacity was calculated to calculate the capacity realization rate according to the charge rate, and the results are shown in Table 2 below.
- the initial discharge capacity is obtained by charging the electrochemical device at 0.2 C-rate up to 4.4 V under the constant current/constant voltage conditions, cut-off, and then discharging at 0.2 C-rate to 3.0 V.
- the electrochemical devices of the examples and comparative examples were charged at constant current (CC) conditions at 25°C up to 4.4 V at different C-rates of 0.5, 1.0, 1.5, 2.0, and 3.0, and then cut-off.
- the resulting charging graphs were integrated to calculate the charging energy, and the value obtained by dividing the charging energy by the charging capacity at each charging rate was calculated, and the average charging voltage according to the charging rate is shown in Table 3 below.
- the electrochemical device according to the present invention has high initial efficiency and exhibits excellent capacity realization at a high charging rate of 2.0C or higher, thereby realizing excellent battery performance and life characteristics.
- the electrochemical device has uniform lithium ion flow characteristics even when charged with a current more than twice its magnetic capacity, and lithium is not deposited on the surface of the negative electrode, effectively suppressing lithium plating, thereby providing a product with improved safety.
- the density (apparent density) of the anode was measured using a thickness gauge (equipment name: S-HITE, manufacturer: TESA) and a scale (equipment name: EX125, manufacturer: OHAUS), and the true density of the anode was calculated from the composition ratio of the materials included in the anode and the density of each component.
- the porosity of the anode was calculated from the difference between the apparent density and the true density (net density), which can be expressed by the following relationship, and is shown in Table 5 below.
- Porosity (%) 1 - (volume of active material in positive electrode + volume of conductive material in positive electrode + volume of binder in positive electrode + volume of additive in positive electrode) / measured apparent volume of positive electrode
- the appearance of the surfaces of the positive electrodes manufactured in Example 1 and Comparative Example 1 was evaluated using a scanning electron microscope (SEM) analysis.
- SEM scanning electron microscope
- the positive electrode manufactured in Comparative Example 1 it was confirmed that numerous cracks occurred on the electrode appearance due to uneven distribution of the conductive agent/binder during slurry coating and drying.
- no cracks occurred on the electrode appearance because the positive electrode active material coating layer was evenly applied on the current collector without mechanical deformation and a uniform binder scaffold structure was formed in the direction of the entire electrode thickness.
- the cross-sections of the positive electrodes manufactured in Example 1 and Comparative Example 1 were X-ray CT scanned to analyze the distribution of the conductive material, carbon black, in the thickness direction. It was confirmed that the positive electrode of Comparative Example 1 had an uneven distribution of the conductive material in the thickness direction. On the other hand, the positive electrode of Example 1 had a uniform distribution of the conductive material in the first active material layer corresponding to 1/3 of the thickness direction from the boundary between the positive electrode current collector and the positive electrode active material layer, the second active material layer from the 1/3 to the 2/3 point in the thickness direction, and the third active material layer from the 2/3 point in the thickness direction to the surface.
- the distribution of the conductive material content (vol%) in the first active material layer, the second active material layer, and the third active material layer according to the X-ray CT scan results was quantified, and the results are shown in Table 6 below.
- the positive electrode according to Example 1 showed a very low value of 0.57% or less in the deviation of the conductive material concentration according to Equation 1 below, and through this, it was confirmed that the positive electrode active material layer of Example 1 had the conductive material very uniformly distributed.
- C 0 is the average concentration (vol%) of the conductive material throughout the positive electrode active material layer
- C n is the conductive material concentration (vol%) of the nth active material layer.
- a symmetric cell was manufactured using the positive electrodes manufactured in the Examples and Comparative Examples, and a liquid electrolyte containing 1 mol of LiPF 6 dissolved in a solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1:1 was injected to manufacture a cell for measuring ionic conductivity.
- the ionic resistance was measured through impedance analysis of the cell for measuring ionic conductivity, and the ionic conductivity value inside the positive electrode was calculated, and the results are shown in Table 7 below.
- N m MacMullin number
- K electrolyte refers to the ionic conductivity of the liquid electrolyte
- K electrode refers to the ionic conductivity of the anode according to the examples and comparative examples measured at 25 °C.
- the liquid electrolyte was prepared by adding 1 M LiPF 6 to a cosolvent containing ethylene carbonate (EC)/diethyl carbonate (DEC) in a volume ratio of 1:1.
- the ionic conductivity of the anode was calculated by measuring the conductivity in the thickness direction of the electrode after filling the anode with a 1 M LiPF 6 EC/DEC solution.
- the porosity was measured using a mercury porosimeter (Mercury Porosimet, AutoPore V, Micromeritics) according to ASTM D 4284-83. Specifically, a pre-weighed anode sample was placed in a mercury porosimeter cell, and the cell was filled with mercury up to a given pressure range (30 psia to 60,000 psia) to measure the pore volume inside the anode. The final curvature was calculated from the measured porosity and McMullin number. The measured electrode curvature is shown in Table 7 below.
- the anode according to the example formed a uniform binder scaffold structure in the empty space between the particles, thereby reducing the curvature value within the electrode compared to the anode according to the comparative example.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 고용량 양극을 포함하는 전기화학소자에 관한 것이다.The present invention relates to an electrochemical device including a high-capacity cathode.
최근에는 요구되는 전지의 에너지 밀도가 급격히 커지면서, 고용량 리튬전지 개발이 절실해지고 있다. 이를 위해, 흑연 또는 실리콘 등 기존의 음극 소재를 리튬 금속으로 대체하거나 무음극(Anode-free) 전지에 대한 연구가 제안되고 있으나, 음극 소재의 변경만으로는 점차로 높아지는 전지 요구성능을 만족하기 어렵다. 이에, 음극 소재 변경에 더해 양극 활물질을 고밀도/고로딩화 하여 양극 활물질층의 두께가 증가된 후막형 양극에 대한 연구가 활발히 진행중이다.Recently, as the energy density of batteries required has increased rapidly, the development of high-capacity lithium batteries has become urgent. To this end, research on replacing existing anode materials such as graphite or silicon with lithium metal or on anode-free batteries has been proposed, but it is difficult to meet the increasingly increasing battery performance requirements by only changing the anode material. Accordingly, in addition to changing the anode material, research on thick-film anodes with increased thickness of the anode active material layer by increasing the density/high loading of the anode active material is actively being conducted.
그러나, 양극 활물질층이 두꺼워질수록 제조 과정에서 물리적 균열이나, 양극재의 불균일의 문제가 발생하고, 따라서 안정적인 전지 성능 및 수명 특성의 확보가 어렵기 때문에 실질적으로 그 두께 증가에 한계가 있는 실정이다.However, as the positive electrode active material layer becomes thicker, problems such as physical cracks or unevenness of the positive electrode material occur during the manufacturing process, and thus it is difficult to secure stable battery performance and life characteristics, so there is a practical limit to increasing the thickness.
구체적인 일 예로, 상기의 후막형 양극은 양극재가 불균일하게 분포하게 되는 근본적인 문제가 있다. 이는 리튬 이온의 불균일한 흐름 특성을 야기하고, 두께 방향으로의 불균일한 충방전 특성 및 분극 현상 등의 문제를 유발한다. 또한, 양극의 두께 증가에 따른 리튬이온의 이동거리 증가로 인해 전지 성능이 저하되며, 나아가, 이러한 리튬 이온의 불균일한 흐름 특성은 리튬 금속, 그라파이트 및 실리콘 음극 표면에 리튬 금속의 석출 및 덴드라이트 형성 문제를 더욱 가중시키고, 이는 전지의 수명 단축은 물론, 전지의 안정성을 저하시킨다.As a specific example, the above-mentioned thick-film type positive electrode has a fundamental problem that the positive electrode material is unevenly distributed. This causes uneven flow characteristics of lithium ions, and causes problems such as uneven charge/discharge characteristics in the thickness direction and polarization phenomena. In addition, the battery performance deteriorates due to the increase in the movement distance of lithium ions as the thickness of the positive electrode increases, and furthermore, such uneven flow characteristics of lithium ions further aggravate the problem of lithium metal precipitation and dendrite formation on the surface of lithium metal, graphite, and silicon negative electrodes, which not only shortens the life of the battery, but also lowers the stability of the battery.
또한, 최근 전기 자동차 시장이 빠르게 성장함에 따라 충전시간을 단축하여 운전자의 사용을 보다 활성화시키기 위해 급속 충전에 대한 연구개발이 집중되고 있다. 하지만, 고전류를 동반하는 급속 충전시 음극 표면에 리튬 금속의 석출 및 덴드라이트 형성이 더욱 가속화되어, 과전압이 높아지고 용량 구현율이 떨어져 전지 성능이 저하되며, 전지의 안정성을 확보할 수 없다는 문제가 여전히 존재한다.In addition, as the electric vehicle market has grown rapidly recently, research and development on rapid charging is being focused on shortening the charging time to make drivers more active. However, there is still a problem that when rapid charging with high current is performed, the precipitation of lithium metal and the formation of dendrites on the surface of the cathode are further accelerated, which increases the overvoltage and reduces the capacity realization rate, deteriorates the battery performance, and makes it difficult to secure the stability of the battery.
따라서, 고용량의 후막 양극을 포함하면서도, 급속충전시에도 리튬 금속 석출이나 리튬 플레이팅 및 리튬 덴드라이트의 형성이 효과적으로 억제되어 높은 용량 구현율 및 낮은 과전압을 갖고, 탁월한 전지 성능, 수명 특성 및 안정성을 동시에 확보할 수 있는 전기화학소자에 대한 연구개발이 절실히 요구되고 있다.Therefore, there is an urgent need for research and development of an electrochemical device that can simultaneously secure excellent battery performance, life characteristics, and stability by effectively suppressing lithium metal precipitation, lithium plating, and lithium dendrite formation during rapid charging while including a high-capacity thick-film cathode and having high capacity realization rate and low overvoltage.
본 발명의 하나의 측면에 따르면, 고속충전시에도 음극 표면에 리튬 금속이 석출되지 않아 탁월한 용량 구현율 및 낮은 과전압을 나타내며, 탁월한 전지 성능, 높은 에너지 밀도, 수명 특성 및 안정성을 동시에 만족할 수 있는 전기화학소자를 제공하는 것을 목적으로 한다.According to one aspect of the present invention, it is an object to provide an electrochemical device which exhibits excellent capacity realization rate and low overvoltage because lithium metal is not deposited on the surface of a cathode even during high-speed charging, and can simultaneously satisfy excellent battery performance, high energy density, life characteristics, and stability.
본 발명의 과제는 상술한 내용으로 한정되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The tasks of the present invention are not limited to the above-described contents. Those with ordinary knowledge in the technical field to which the present invention belongs will have no difficulty in understanding additional tasks of the present invention from the overall contents of this specification.
본 발명의 하나의 실시형태에 따른 전기화학소자는 양극, 음극 및 전해질을 포함하며, 상기 양극은 양극 집전체 및 양극 활물질층을 포함하고, 상기 양극 집전체의 일면에 형성된 양극 활물질층의 면적 당 용량이 3 mAh/㎠ 이상이고, 2.0C의 충전율으로 충전시 음극 표면에 리튬 금속이 석출되지 않는 것을 특징으로 한다.An electrochemical device according to one embodiment of the present invention comprises a cathode, an anode, and an electrolyte, wherein the cathode comprises a cathode current collector and a cathode active material layer, and the cathode active material layer formed on one surface of the cathode current collector has a capacity per area of 3 mAh/cm2 or more, and is characterized in that lithium metal is not deposited on the surface of the anode when charged at a charge rate of 2.0C.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질층은 다공성 바인더 스캐폴드 및 양극 활물질 입자를 포함하는, 전기화학소자.An electrochemical device according to one embodiment, wherein the cathode active material layer comprises a porous binder scaffold and cathode active material particles.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극은 공극률이 25% 미만일 수 있다.In an electrochemical device according to one embodiment, the anode may have a porosity of less than 25%.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 전기화학소자 총 중량에 대하여 양극 활물질층은 50 중량% 이상으로 포함되는 것일 수 있다.In an electrochemical device according to one embodiment, the cathode active material layer may be included in an amount of 50 wt% or more with respect to the total weight of the electrochemical device.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극은 양극 집전체의 일면에 형성된 양극 활물질층의 면적 당 용량이 3.5 내지 10 mAh/㎠인 후막형 양극일 수 있다.In an electrochemical device according to one embodiment, the positive electrode may be a thick-film positive electrode having a capacity per area of a positive electrode active material layer formed on one surface of a positive electrode current collector of 3.5 to 10 mAh/cm2.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질층 총 중량에 대하여 양극 활물질 입자는 80 내지 99 중량%로 포함되는 것일 수 있다.In an electrochemical device according to one embodiment, the positive electrode active material particles may be included in an amount of 80 to 99 wt% with respect to the total weight of the positive electrode active material layer.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 음극은 흑연계 활물질을 50 중량% 이상 함유하는 음극 활물질층을 포함하는 것일 수 있다.In an electrochemical device according to one embodiment, the negative electrode may include a negative electrode active material layer containing 50 wt% or more of a graphite-based active material.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 전기화학소자는 분리막을 더 포함할 수 있다.In an electrochemical device according to one embodiment, the electrochemical device may further include a separator.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질층은 양극 활물질 입자가 고르게 분산되어 존재하며, 상기 입자 간 빈 공간에 다공성 바인더 스캐폴드가 존재하는 것일 수 있다.In an electrochemical device according to one embodiment, the cathode active material layer may have cathode active material particles evenly dispersed therein, and a porous binder scaffold may be present in the empty spaces between the particles.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질 입자 100 중량부에 대하여 다공성 바인더 스캐폴드는 0.01 내지 40 중량부로 포함되는 것일 수 있다.In an electrochemical device according to one embodiment, the porous binder scaffold may be included in an amount of 0.01 to 40 parts by weight per 100 parts by weight of the cathode active material particles.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 다공성 바인더 스캐폴드는 도전재를 더 포함하는 것일 수 있다.In an electrochemical device according to one embodiment, the porous binder scaffold may further include a conductive material.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질층의 단면을 X-ray CT 촬영으로 분석하였을 때, 양극 활물질층의 도전재 평균 농도(C0)에 대하여, 양극 집전체와 양극 활물질층 경계면으로부터 양극 활물질층의 두께 방향 1/3 지점에 해당하는 제1활물질층의 도전재 농도(C1), 양극 활물질층의 두께 방향 1/3 지점부터 2/3 지점에 해당하는 제2활물질층의 도전재 농도(C2), 및 양극 활물질층의 두께 방향 2/3 지점부터 표면까지의 제3활물질층의 도전재 농도(C3)의 편차가 10% 이하일 수 있다.In an electrochemical device according to one embodiment, when a cross-section of the positive electrode active material layer is analyzed by X-ray CT, a deviation of a conductive material concentration (C1) of a first active material layer corresponding to a point 1/3 of the thickness of the positive electrode active material layer from the boundary between the positive electrode current collector and the positive electrode active material layer, a conductive material concentration (C2) of a second active material layer corresponding to a point from the point 1/3 to the point 2/3 of the thickness of the positive electrode active material layer, and a conductive material concentration (C3) of a third active material layer from the point 2/3 of the thickness of the positive electrode active material layer to the surface may be 10% or less.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 도전재는 카본블랙, 카본나노튜브 및 VGCF으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있다.In an electrochemical device according to one embodiment, the conductive material may be one or a combination of two or more selected from the group consisting of carbon black, carbon nanotubes, and VGCF.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 다공성 바인더 스캐폴드는 불소계 수지, 고무계 소재, 폴리올레핀계 수지, 아크릴계 수지, 이미드계 수지 및 셀룰로오스계 수지로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것일 수 있다.In an electrochemical device according to one embodiment, the porous binder scaffold may include one or two or more selected from the group consisting of a fluorine-based resin, a rubber-based material, a polyolefin-based resin, an acrylic-based resin, an imide-based resin, and a cellulose-based resin.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극 활물질층은 금속 염을 더 포함하는 것일 수 있다.In an electrochemical device according to one embodiment, the positive electrode active material layer may further include a metal salt.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 금속 염은 상기 양극 활물질 입자 100 중량부에 대하여 0.01 내지 50 중량부로 포함되는 것일 수 있다.In an electrochemical device according to one embodiment, the metal salt may be included in an amount of 0.01 to 50 parts by weight based on 100 parts by weight of the positive electrode active material particles.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 금속 염은 다공성 바인더 스캐폴드 및 양극 활물질 입자 중 적어도 하나 이상에 함유되거나 표면 흡착된 것일 수 있다.In an electrochemical device according to one embodiment, the metal salt may be contained in or surface-adsorbed in at least one of a porous binder scaffold and positive electrode active material particles.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 금속 염은 하기 화학식 1 또는 화학식 2에서 선택되는 설포닐기 함유 금속염일 수 있다.In an electrochemical device according to one embodiment, the metal salt may be a sulfonyl group-containing metal salt selected from the following chemical formula 1 or chemical formula 2.
[화학식 1][Chemical Formula 1]
[화학식 2][Chemical formula 2]
상기 화학식 1 및 2에서,In the above chemical formulas 1 and 2,
n은 1 또는 2이고;n is 1 or 2;
A는 n가의 양이온이며;A is a cation of valence n;
R1 내지 R3는 각각 독립적으로 플루오로(C1-C7)알킬 또는 플루오로기이다.R 1 to R 3 are each independently a fluoro(C1-C7) alkyl or a fluoro group.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 A는 리튬, 나트륨, 아연, 구리, 알루미늄, 실버, 골드, 세슘, 인듐, 마그네슘 또는 칼슘일 수 있다.In an electrochemical device according to one embodiment, A may be lithium, sodium, zinc, copper, aluminum, silver, gold, cesium, indium, magnesium or calcium.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 전기화학소자는 설계 용량 대비 0.1C 방전 용량 구현 비가 0.9 이상일 수 있다.In an electrochemical device according to one embodiment, the electrochemical device may have a 0.1C discharge capacity realization ratio relative to the design capacity of 0.9 or more.
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 양극은 하기 관계식으로 산출되는 전극내 굴곡도(Tortuosity,τ)가 10 이하일 수 있다.In an electrochemical device according to one embodiment, the anode may have an electrode tortuosity (τ) of 10 or less, calculated by the following relationship.
[관계식][Relationship]
τ (Tortuosity) = (Kelectrolyte/Kelectrode)×(Porosity) τ (Tortuosity) = (K electrolyte /K electrode )×(Porosity)
(상기 식에서, Kelectrolyte는 상기 전해질의 이온전도도, Kelectrode는 상기 양극의 이온전도도, Porosity는 상기 양극의 기공도를 의미한다.)(In the above formula, K electrolyte represents the ionic conductivity of the electrolyte, K electrode represents the ionic conductivity of the anode, and Porosity represents the porosity of the anode.)
하나의 실시형태에 따른 전기화학소자에 있어서, 상기 전기화학소자는 충전율 1.5 C-rate에 따른 용량 구현율이 90% 이상일 수 있다.In an electrochemical device according to one embodiment, the electrochemical device may have a capacity realization rate of 90% or more according to a charge rate of 1.5 C-rate.
본 발명의 하나의 실시형태에 따른 전기화학소자는 양극재가 균일하게 분포되어 있는 고용량의 후막 양극을 포함하며, 우수한 수명 특성 및 안정성을 동시에 만족할 수 있다. 구체적으로, 일 양태에 따른 전기화학소자는 후막형 양극을 채용함에도 분극 현상이 발생하는 것을 효과적으로 억제할 수 있으며, 균일한 충방전 특성을 구현할 수 있다. 또한, 상기 전기화학소자는 자기 용량의 2배 이상의 전류량으로 고속충전시에도 음극 표면에 리튬 금속이 석출되지 않으며, 탁월한 용량 구현율 및 낮은 과전압을 나타내, 안정성 및 수명특성을 동시에 확보할 수 있다.An electrochemical device according to one embodiment of the present invention comprises a high-capacity thick-film cathode in which a cathode material is uniformly distributed, and can satisfy excellent life characteristics and stability at the same time. Specifically, the electrochemical device according to one embodiment can effectively suppress the occurrence of a polarization phenomenon even when a thick-film type cathode is employed, and can implement uniform charge/discharge characteristics. In addition, the electrochemical device does not cause lithium metal to be precipitated on the surface of the anode even when fast-charging with a current amount twice or more of its self-capacity, and exhibits excellent capacity implementation rate and low overvoltage, so that stability and life characteristics can be secured at the same time.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 또는 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Unless otherwise defined, technical and scientific terms used in this specification have the meaning commonly understood by a person of ordinary skill in the art to which this invention belongs, and descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention in the following description or accompanying drawings are omitted.
본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. The embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the art. Therefore, the scope of the present invention is not limited to the embodiments described below.
본 발명의 설명에서 사용되는 용어는 단지 본 발명의 실시형태들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다.The terminology used in the description of the present invention is for the purpose of describing embodiments of the present invention only and should not be taken to be limiting. Unless clearly used otherwise, the singular form includes the plural form.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.The term "comprises," as used herein, is an open-ended description equivalent to the expressions "comprises," "contains," "has," or "characterized by," and does not exclude additional elements, materials, or processes not listed herein.
본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 하나의 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.Units used herein, unless otherwise specified, are based on weight, and as an example, units of % or ratio mean weight% or weight ratio, and weight% means the weight % that any one component occupies in the composition among the entire composition, unless otherwise defined.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in this specification includes the lower and upper limits and all values within that range, the increments logically derived from the shape and width of the defined range, all doubly defined values, and all possible combinations of the upper and lower limits of the numerical range defined in different shapes. Unless otherwise specifically defined herein, values outside the numerical range that may arise due to experimental error or rounding of values are also included in the defined numerical range.
본 명세서에서, '상', '상부', '상면', '하', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자나 구성요소가 배치되는 방향에 따라 달라질 수 있을 것이다.In this specification, terms such as ‘top’, ‘upper part’, ‘top surface’, ‘bottom’, ‘lower part’, ‘bottom’, and ‘side’ are based on the drawings, and may actually vary depending on the direction in which elements or components are arranged.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 요소를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다.Additionally, throughout the specification, when we say that a part is 'connected' to another part, this includes not only cases where it is 'directly connected', but also cases where it is 'indirectly connected' with other elements in between.
본 명세서에서, 본 발명에 따른 각 실시형태를 통하여 본 발명을 상세히 설명하지만, 명세서에 기재되어 있는 각 실시형태는 하나의 실시형태를 의미하는 것에 그치지 않고 다른 실시형태와의 조합도 의미하는 것으로 간주되어야 한다. 따라서 특허청구범위의 청구항 인용은 하나의 예시에 해당하는 것일 뿐 본 발명의 기술적 사상이 인용된 청구항과의 조합으로만 해석되어서는 안되며, 다양한 청구항과의 조합도 본 발명의 기술적 사상의 범주에 포함된다.In this specification, the present invention is described in detail through each embodiment according to the present invention, but each embodiment described in the specification should be considered not only to mean one embodiment but also to mean a combination with other embodiments. Therefore, the citation of a claim in the scope of the patent claims is only an example, and the technical idea of the present invention should not be interpreted only as a combination with the cited claim, and a combination with various claims is also included in the scope of the technical idea of the present invention.
본 명세서의 용어, "다공성 바인더 스캐폴드(scaffold)"는 바인더에 의해 3차원으로 균일하게 형성된 그물망 구조로, 바인더가 골격을 형성하고, 골격 내에 공극이 풍부하게 발달한 구조체를 의미한다. 상기 공극은 바람직하게 열린 기공(open pore) 구조를 가지며, 바인더에 의해 형성된 상기 다공성의 그물망 구조는 양극 활물질 입자 및 도전재가 고르게 분포할 수 있는 지지체 역할을 할 수 있다. 상기 공극은 0.1 ㎛ 내지 50 ㎛의 직경을 가질 수 있고, 구체적으로 0.5 ㎛ 내지 10 ㎛의 직경을 가질 수 있다. 보다 구체적으로, 상기 다공성 바인더 스캐폴드는 유기 바인더와 도전재의 자기조립에 의한 섬유를 단위 구조로 포함하고, 상기 섬유상 단위 구조의 2차적 자기조립에 의한 얇은 내벽 구조를 포함하는 지지체일 수 있다. 달리 서술하면, 바인더 스캐폴드는 상기 내벽 구조로 이루어진 오픈셀 구조체(open-cell foam)로, 내벽 구조에 의해 내부 공간이 구획될 수 있다. 보다 구체적으로, 상기 내벽 구조는 다공성 내벽일 수 있으며, 상기 내부 공간은 내벽 구조에 형성된 기공 대비 조대한 다수의 기공을 포함할 수 있다. 상기 내부공간에는 양극 활물질 입자가 위치할 수 있다. 더욱 상세하게, 양극 활물질 입자가 상기 내부공간에 위치하며 상기 다공성 내벽 구조가 접촉되어 고정될 수 있다. 상기 바인더 스캐폴드 구조에 의해 섬유상 그물망 구조에 비해 우수한 도전성 네트워크를 형성할 수 있으며, 양극 활물질 입자와 우수한 밀착성을 가질 수 있다.The term "porous binder scaffold" as used herein refers to a structure in which a mesh structure is uniformly formed three-dimensionally by a binder, in which the binder forms a framework and pores are abundantly developed within the framework. The pores preferably have an open pore structure, and the porous mesh structure formed by the binder can act as a support in which positive electrode active material particles and a conductive material can be evenly distributed. The pores may have a diameter of 0.1 ㎛ to 50 ㎛, and specifically, may have a diameter of 0.5 ㎛ to 10 ㎛. More specifically, the porous binder scaffold may be a support including fibers formed by self-assembly of an organic binder and a conductive material as a unit structure, and including a thin inner wall structure formed by secondary self-assembly of the fibrous unit structure. In other words, the binder scaffold is an open-cell foam formed by the inner wall structure, and the inner space can be partitioned by the inner wall structure. More specifically, the inner wall structure can be a porous inner wall, and the inner space can include a large number of pores compared to the pores formed in the inner wall structure. Positive active material particles can be positioned in the inner space. More specifically, the positive active material particles can be positioned in the inner space and be fixed by contact with the porous inner wall structure. The binder scaffold structure can form a conductive network superior to a fibrous mesh structure, and can have excellent adhesion to the positive active material particles.
차세대 리튬전지의 요구성능을 만족하기 위해서는 기존의 음극 소재를 리튬 금속으로 대체하거나 무음극(Anode-free)으로 하고, 이에 더해, 양극 활물질을 고밀도/고로딩화 하여 양극 활물질층의 두께가 증가된 후막형 양극을 조합하여 용량을 더욱 높일 필요성이 있다. In order to meet the performance requirements of next-generation lithium batteries, it is necessary to replace the existing anode material with lithium metal or make it anode-free, and in addition, to increase the thickness of the anode active material layer by increasing the density/high loading of the anode active material to combine it with a thick film anode to further increase the capacity.
그러나, 양극 활물질을 고밀도/고로딩화하여 양극활물질층의 두께가 증가된 후막형 양극은 양극 활물질층의 두께를 증가시킬수록 양극 활물질층을 이루는 성분이 불균일하게 분포됨에 따라, 양극 제조 공정 중 표면에 쉽게 크랙이 쉽게 발생할 뿐만 아니라, 양극 활물질층의 리튬이온의 전달이 원활하지 못하여 전기화학소자의 출력 성능, 수명 및 안전성을 저하시킨다. 또한, 이와 같은 종래 후막형 양극을 포함하는 전기화학소자는 고전류를 동반하는 급속 충전시 음극 표면에 리튬 금속의 석출 및 덴드라이트 형성이 더욱 가속화되는 문제가 여전히 존재한다.However, in the case of a thick-film positive electrode in which the thickness of the positive electrode active material layer is increased by making the positive electrode active material dense/loaded, as the thickness of the positive electrode active material layer increases, the components constituting the positive electrode active material layer are distributed unevenly, which easily causes cracks to occur on the surface during the positive electrode manufacturing process, and the transfer of lithium ions in the positive electrode active material layer is not smooth, which reduces the output performance, lifespan, and safety of the electrochemical device. In addition, an electrochemical device including such a conventional thick-film positive electrode still has a problem in that lithium metal precipitation and dendrite formation on the negative electrode surface are further accelerated during rapid charging accompanied by high current.
본 발명은 상기와 같은 종래 기술의 문제점을 해결한 것으로, 본 발명의 하나의 실시형태에 따른 전기화학소자는 후막형 고용량의 양극을 포함하며, 높은 충전율에서 리튬 석출이 효과적으로 억제되어 탁월한 용량 구현율 및 낮은 과전압을 나타내며, 탁월한 전지 성능, 높은 에너지 밀도, 수명 특성 및 안정성을 동시에 만족할 수 있다.The present invention has solved the problems of the prior art as described above, and an electrochemical device according to one embodiment of the present invention includes a thick-film type high-capacity cathode, and exhibits excellent capacity realization rate and low overvoltage by effectively suppressing lithium precipitation at a high charge rate, and can simultaneously satisfy excellent battery performance, high energy density, life characteristics, and stability.
본 발명의 하나의 실시형태에 따른 전기화학소자는 양극, 음극 및 전해질을 포함하며, 상기 양극은 양극 집전체 및 양극 활물질층을 포함하고, 상기 양극 집전체의 일면에 형성된 양극 활물질층의 면적 당 용량이 3 mAh/㎠ 이상이고, 2.0 C의 충전율으로 충전시 음극 표면에 리튬 금속이 석출되지 않는 것을 특징으로 한다. 이때, 리튬 금속의 석출 여부는 육안을 통한 직접 관찰 또는 광학현미경(또는 주사전자현미경)을 통한 간접 관찰을 통해 판단할 수 있다. 이와 달리, 리튬 금속의 석출 여부는 정전류 (CC) 조건으로 충방전 시, 충전 과정 중의 음극 전위를 통해 판단할 수 있다. 음극의 전위가 0V 이하로 내려간 경우 리튬 플레이팅이 발생한 것으로 보고, 이와 달리 OV 이상인 경우, 리튬 플레이팅이 발생하지 않은 것으로 판단할 수 있다. According to one embodiment of the present invention, an electrochemical device includes a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode includes a positive electrode collector and a positive electrode active material layer, and the positive electrode active material layer formed on one surface of the positive electrode collector has a capacity per area of 3 mAh/cm2 or more, and is characterized in that lithium metal is not deposited on the surface of the negative electrode when charged at a charge rate of 2.0 C. At this time, whether lithium metal is deposited can be determined through direct observation with the naked eye or indirect observation using an optical microscope (or a scanning electron microscope). Alternatively, whether lithium metal is deposited can be determined through the negative electrode potential during the charging process when charging and discharging under constant current (CC) conditions. If the negative electrode potential drops below 0 V, it is considered that lithium plating has occurred, and in contrast, if it is above 0 V, it can be determined that lithium plating has not occurred.
구체적으로, 상기 양극은 양극 집전체의 일면에 형성된 양극 활물질층의 면적 당 용량이 3 mAh/㎝2 이상, 3.5 mAh/㎝2 이상 및 비한정적으로 15 mAh/㎝2 이하일 수 있으며, 3 내지 15 mAh/㎝2, 3.5 내지 10 mAh/㎝2, 3.5 내지 9 mAh/㎝2, 또는 3.8 내지 8 mAh/㎝2 인 후막형 양극일 수 있다. Specifically, the positive electrode may have a capacity per area of a positive electrode active material layer formed on one surface of a positive electrode current collector of 3 mAh/cm 2 or more, 3.5 mAh/cm 2 or more, and, but not limited to, 15 mAh/cm 2 or less, and may be a thick film positive electrode having a capacity of 3 to 15 mAh/cm 2 , 3.5 to 10 mAh/cm 2 , 3.5 to 9 mAh/cm 2 , or 3.8 to 8 mAh/cm 2 .
하나의 실시형태에 따른 상기 전기화학소자는 총 중량에 대하여 양극 활물질층을 50 중량% 이상, 55 중량% 이상, 또는 60 중량% 이상, 또는 95 중량% 이하, 또는 90 중량% 이하, 또는 88 중량% 이하로 포함할 수 있고, 또는 50 내지 90 중량%, 또는 60 내지 90 중량%, 또는 60 내지 85 중량%로 포함할 수 있다.According to one embodiment, the electrochemical device may include a cathode active material layer in an amount of 50 wt% or more, 55 wt% or more, or 60 wt% or more, or 95 wt% or less, or 90 wt% or less, or 88 wt% or less, or 50 to 90 wt%, or 60 to 90 wt%, or 60 to 85 wt%, based on the total weight.
또한, 상기 양극 활물질층 총 중량에 대하여 양극 활물질 입자는 70 내지 99 중량%, 80 내지 99 중량%, 또는 85 내지 99 중량%로 포함될 수 있다.Additionally, the positive electrode active material particles may be included in an amount of 70 to 99 wt%, 80 to 99 wt%, or 85 to 99 wt% with respect to the total weight of the positive electrode active material layer.
또한, 상기 양극은 양극 활물질층 두께가 50 ㎛ 이상, 또는 100 ㎛ 이상, 또는 200 ㎛ 이상일 수 있으며, 또는 2,000 ㎛ 이하, 또는 1,500 ㎛ 이하, 또는 1,000 ㎛이하일 수 있으며, 150 내지 2,000 ㎛, 또는 100 내지 2,000 ㎛, 또는 100 내지 1,000 ㎛, 또는 100 내지 500 ㎛, 또는 200 내지 500 ㎛의 후막형 양극일 수 있다.In addition, the positive electrode may have a positive electrode active material layer thickness of 50 ㎛ or more, or 100 ㎛ or more, or 200 ㎛ or more, or 2,000 ㎛ or less, or 1,500 ㎛ or less, or 1,000 ㎛ or less, and may be a thick-film positive electrode having a thickness of 150 to 2,000 ㎛, or 100 to 2,000 ㎛, or 100 to 1,000 ㎛, or 100 to 500 ㎛, or 200 to 500 ㎛.
또한, 상기 양극은 양극 활물질층 합제 밀도(g/cc)가 2.0 내지 4.5, 또는 3.0 내지 4.0, 또는 3.2 내지 4.0의 후막형 양극일 수 있다.Additionally, the positive electrode may be a thick-film positive electrode having a positive electrode active material layer composite density (g/cc) of 2.0 to 4.5, or 3.0 to 4.0, or 3.2 to 4.0.
또한, 상기 양극은 하기 관계식으로 산출되는 전극내 굴곡도(Tortuosity,τ)가 10 이하, 9 이하, 8 이하, 7 이하 또는 6 이하일 수 있으며 비한정적으로 1 이상일 수 있다. 구체적으로, 상기 전극내 굴곡도는 1 내지 10, 2 내지 9, 3 내지 8, 4 내지 7 또는 5 내지 6일 수 있다. In addition, the electrode may have an electrode tortuosity ( τ ) calculated by the following relationship of 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less, and may be, but is not limited to, 1 or more. Specifically, the electrode tortuosity may be 1 to 10, 2 to 9, 3 to 8, 4 to 7, or 5 to 6.
[관계식][Relationship]
τ (Tortuosity) = (Kelectrolyte/Kelectrode)×(Porosity) τ (Tortuosity) = (K electrolyte /K electrode )×(Porosity)
상기 식에서, Kelectrolyte는 상기 전해질의 이온전도도, Kelectrode는 상기 양극의 이온전도도, Porosity는 상기 양극의 기공도를 의미한다.In the above formula, K electrolyte represents the ionic conductivity of the electrolyte, K electrode represents the ionic conductivity of the anode, and Porosity represents the porosity of the anode.
이와 같은 양극을 포함하는 전기화학소자는 전극내 이온전달 경로가 비교적 짧아 우수한 이온전도도를 가지며 우수한 전지성능, 일 예로, 우수한 율속 특성을 가질 수 있다.An electrochemical device including such a cathode has excellent ion conductivity due to a relatively short ion transfer path within the electrode, and can have excellent battery performance, for example, excellent rate characteristics.
구체적으로, 하나의 실시형태에 따른 전기화학소자는 충전율 1.5 C-rate에 따른 용량 구현율이 89.5% 이상, 90% 이상, 90.5% 이상, 91% 이상, 및 비한정적으로 99.9% 이하일 수 있다. 여기서, 충전율에 따른 용량 구현율은 충전율에 따른 방전용량을 초기 방전용량으로 나눈 값의 백분율을 의미한다.Specifically, the electrochemical device according to one embodiment may have a capacity realization rate according to a charge rate of 1.5 C-rate of 89.5% or more, 90% or more, 90.5% or more, 91% or more, and, but not limited to, 99.9% or less. Here, the capacity realization rate according to the charge rate means the percentage of the discharge capacity according to the charge rate divided by the initial discharge capacity.
또한, 하나의 실시형태에 따른 상기 전기화학소자는 설계 용량 대비 0.1C 방전 용량 구현 비가 0.8 이상, 0.85 이상, 0.9 이상, 0.95 이상일 수 있으며, 0.8 내지 1.0, 또는 0.9 내지 1.0, 또는 0.95 내지 1.0일 수 있다. 여기서, 설계 용량은 셀에 포함된 양극 활물질 총 무게와 해당 양극 활물질의 가역 방전 용량으로부터 계산된 이론 값을 의미한다.In addition, the electrochemical device according to one embodiment may have a 0.1C discharge capacity implementation ratio relative to the design capacity of 0.8 or more, 0.85 or more, 0.9 or more, 0.95 or more, and may be from 0.8 to 1.0, or from 0.9 to 1.0, or from 0.95 to 1.0. Here, the design capacity means a theoretical value calculated from the total weight of the positive active material included in the cell and the reversible discharge capacity of the positive active material.
하나의 실시형태에 따른 상기 양극은 공극률이 25 % 미만, 20 % 이하, 15 % 이하, 및 비한정적으로 10 % 이상일 수 있으며, 구체적으로, 10 % 이상 및 25 % 미만, 15 내지 24% 또는 15 내지 20 %일 수 있다. The anode according to one embodiment may have a porosity of less than 25%, less than or equal to 20%, less than or equal to 15%, and, but not limited to, greater than or equal to 10%, specifically greater than or equal to 10% and less than 25%, from 15 to 24% or from 15 to 20%.
상기 "공극률(porosity)"는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위 vol%를 사용하며, 기공도, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 기공도의 측정은 특별히 한정되지 않는다. 일 예로, 질소 기체를 사용한 BET(Brunauer-Emmett- Teller) 측정법 또는 수은 침투법 (Hg porosimeter) 및 ASTM D-2873에 따라 측정될 수 있다. 또는 양극의 밀도(겉보기 밀도)와 양극에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 양극의 진밀도를 계산하고 겉보기 밀도(apparent density)와 진밀도(net density)의 차이로부터 양극의 기공도를 계산할 수 있다.The above "porosity" means the ratio of the volume occupied by pores to the total volume in a certain structure, and uses its unit vol%, and can be used interchangeably with terms such as porosity, porosity, etc. The measurement of porosity is not particularly limited. For example, it can be measured by the BET (Brunauer-Emmett-Teller) measurement method using nitrogen gas or the mercury penetration method (Hg porosimeter) and ASTM D-2873. Alternatively, the true density of the anode can be calculated from the density (apparent density) of the anode and the composition ratio of materials included in the anode and the density of each component, and the porosity of the anode can be calculated from the difference between the apparent density and the true density (net density).
즉 하나의 실시형태에 따른 상기 양극 활물질층은 고밀도/고로딩화 됨에도 크랙이 전혀 발생하지 않으며 두께 방향으로 양극재가 매우 고르게 분산될 수 있고, 리튬 이온의 균일한 흐름 특성, 두께 방향으로의 균일한 충방전 특성을 효과적으로 유지할 수 있다.That is, the positive electrode active material layer according to one embodiment does not generate cracks at all even though it is high-density/high-loaded, and the positive electrode material can be very evenly distributed in the thickness direction, and the uniform flow characteristics of lithium ions and uniform charge/discharge characteristics in the thickness direction can be effectively maintained.
상기 양극 활물질층은 다공성 바인더 스캐폴드 및 양극 활물질 입자를 포함할 수 있다.The above positive electrode active material layer may include a porous binder scaffold and positive electrode active material particles.
여기서, 상기 다공성 바인더 스캐폴드는 바인더가 골격을 형성하고, 골격 내에 공극이 풍부하게 발달한 그물망 구조를 의미하며, 상기 다공성의 그물망 구조는 양극 활물질 입자 및 도전재 등의 양극재가 고르게 분포할 수 있는 지지체 역할을 할 수 있다. 즉, 일 양태에 따른 양극은 바인더 성분을 미세 다공화함으로써 양극의 후막화 시에도 크랙이 발생하지 않으며, 양극재가 매우 고르게 분포하여 전지 성능을 우수하게 유지할 수 있다.Here, the porous binder scaffold means a mesh structure in which the binder forms a skeleton and pores are richly developed within the skeleton, and the porous mesh structure can serve as a support in which positive electrode materials such as positive electrode active material particles and conductive materials can be evenly distributed. That is, in the positive electrode according to one embodiment, cracks do not occur even when the positive electrode is thickened by making the binder component microporous, and the positive electrode material is very evenly distributed, so that excellent battery performance can be maintained.
하나의 실시형태에 따른 양극 활물질층은 바인더가 다공성 스캐폴드 구조를 형성함에 따라 미량의 바인더를 사용하여도 우수한 기계적 물성을 구현할 수 있고, 이에 따라 양극 활물질 입자의 함량을 더욱 높일 수 있어 더욱 우수한 에너지밀도를 구현할 수 있다.According to one embodiment, a cathode active material layer can realize excellent mechanical properties even using a small amount of binder since the binder forms a porous scaffold structure, and thus the content of cathode active material particles can be further increased, thereby realizing an even better energy density.
하나의 실시형태에 따르면, 상기 양극 활물질 입자 100 중량부에 대하여 다공성 바인더 스캐폴드는 0.01 내지 40 중량부, 또는 0.01 내지 20 중량부, 또는 0.01 내지 10 중량부, 또는 0.01 내지 5 중량부, 또는 0.01 내지 1 중량부로 포함되는 것일 수 있다.According to one embodiment, the porous binder scaffold may be included in an amount of 0.01 to 40 parts by weight, or 0.01 to 20 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 5 parts by weight, or 0.01 to 1 part by weight, relative to 100 parts by weight of the positive electrode active material particles.
상기 다공성 바인더 스캐폴드는 해당 기술 분야에서 통상적으로 사용되는 고분자 바인더이면 무방하며, 수계 고분자 바인더 또는 비수계 고분자 바인더 모두 사용할 수 있다. 구체적으로, 상기 고분자 바인더는 불소계 수지, 고무계 소재, 폴리올레핀계 수지, 아크릴계 수지, 이미드계 수지, 셀룰로오스계 수지 등일 수 있다. 더욱 구체적으로, 상기 고분자 바인더는 폴리비닐리덴플루오라이드, 폴리테트라플루오루에틸렌, 폴리비닐리덴 플로라이드-헥사플루오로프로필렌, 폴리비닐피롤리돈, 폴리아크릴로니트릴, 폴리비닐리덴플로라이드-트리클로로에틸렌, 폴리비닐리덴플로라이드-클로로트리플로로에틸렌, 폴리메틸메타크릴레이트, 폴리비닐아세테이트, 에틸렌-코-비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸 폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복실 메틸 셀룰로오스, 아크리로니트릴스티렌부타디엔 공중합체, 폴리이미드, 폴리비닐알코올, 카르복시메틸셀룰로우즈, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 터폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 또는 이들의 혼합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The above porous binder scaffold may be any polymer binder commonly used in the relevant technical field, and either an aqueous polymer binder or a non-aqueous polymer binder may be used. Specifically, the polymer binder may be a fluorine-based resin, a rubber-based material, a polyolefin-based resin, an acrylic resin, an imide-based resin, a cellulose-based resin, or the like. More specifically, the polymer binder is selected from the group consisting of polyvinylidene fluoride, polytetrafluoroethylene, polyvinylidene fluoride-hexafluoropropylene, polyvinylpyrrolidone, polyacrylonitrile, polyvinylidene fluoride-trichloroethylene, polyvinylidene fluoride-chlorotrifluoroethylene, polymethyl methacrylate, polyvinylacetate, ethylene-co-vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxyl methyl cellulose, acrylonitrile styrene butadiene copolymer, polyimide, polyvinyl alcohol, carboxymethyl cellulose, starch, hydroxypropyl cellulose, Examples include, but are not limited to, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluoroelastomer, or mixtures thereof.
상기 양극 활물질 입자는 리튬을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. The above cathode active material particles may use a compound capable of reversibly intercalating and deintercalating lithium (lithiated intercalation compound).
구체적으로는 코발트, 망간, 니켈 및 이들의 조합으로부터 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다Specifically, one or more of a composite oxide of a metal selected from cobalt, manganese, nickel, and combinations thereof and lithium may be used, and a specific example thereof may be a compound represented by one of the following chemical formulas.
LiaA1-bBbD2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1-bBbO2-cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2-bBbO4-cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1-b-cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cCobBcO2-αTα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cCobBcO2-αT2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1-b-cMnbBcO2-αTα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbBcO2-αT2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiV2O5; LiIO2; 및 LiNiVO4; 앞선 화학식에서, A는 Ni, Co, Mn 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; T는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti, Mo, Mn 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합일 수 있다. Li a A 1-b B b D 2 (wherein 0.90 ≤ a ≤ 1.8, and 0 ≤ b ≤ 0.5); Li a E 1-b B b O 2-c D c (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); LiE 2-b B b O 4 -c D c (wherein 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05); Li a Ni 1-bc Co b B c D α (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2); Li a Ni 1-bc Co b B c O 2-α T α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α <2); Li a Ni 1-bc Co b B c O 2-α T 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α <2); Li a Ni 1-bc Mn b B c D α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2); Li a Ni 1-bc Mn b B c O 2-α T α (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α <2); Li a Ni 1-bc Mn b B c O 2-α T 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α <2); Li a Ni b E c G d O 2 (in the above formula, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1); Li a Ni b Co c Mn d GeO 2 (wherein 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, 0.001 ≤ e ≤ 0.1); Li a NiG b O 2 (wherein 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a CoG b O 2 (wherein 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a MnG b O 2 (wherein 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a Mn 2 G b O 4 (wherein 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); LiV 2 O 5 ; LiIO 2 ; and LiNiVO 4 ; In the above chemical formulas, A is Ni, Co, Mn or a combination thereof; B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element or a combination thereof; D is O, F, S, P, or a combination thereof; E is Co, Mn or a combination thereof; T is F, S, P or a combination thereof; G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or a combination thereof; Q is Ti, Mo, Mn or a combination thereof; I is Cr, V, Fe, Sc, Y or a combination thereof; and J may be V, Cr, Mn, Co, Ni, Cu or a combination thereof.
또한, 하나의 실시형태에 따른 상기 양극 활물질층은 도전재를 더 포함할 수 있으며, 이 경우, 도전재는 상기 다공성 바인더 스캐폴드에 함유 또는 흡착되어 존재할 수 있다.Additionally, the positive electrode active material layer according to one embodiment may further include a conductive material, in which case the conductive material may be contained or adsorbed in the porous binder scaffold.
상기 도전재는 해당 기술분야에서 통상적으로 사용되는 것이라면 특별히 제한되지 않으나, 비한정적인 일 예로, 탄소계 도전재일 수 있으며, 상기 탄소계 도전재는 점형 탄소계 도전재, 선형 탄소계 도전재, 판형 탄소계 도전재 또는 이들의 혼합물을 포함할 수 있다. 점형 탄소계 도전재로 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 카본 블랙 등을 들 수 있으며, 선형 탄소계 도전재로 카본나노튜브, 전도성 탄소섬유등을 들 수 있고, 판형 탄소계 도전재로 그래핀 등을 들 수 있다.The above conductive material is not particularly limited as long as it is commonly used in the relevant technical field, but as a non-limiting example, it may be a carbon-based conductive material, and the carbon-based conductive material may include a point-shaped carbon-based conductive material, a linear carbon-based conductive material, a plate-shaped carbon-based conductive material, or a mixture thereof. The point-shaped carbon-based conductive material may include acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, carbon black, etc., the linear carbon-based conductive material may include carbon nanotubes, conductive carbon fibers, etc., and the plate-shaped carbon-based conductive material may include graphene, etc.
하나의 실시형태에 따른 상기 도전재는 카본블랙, 카본나노튜브 및 VGCF(Vapor Grown Carbon Fiber, VGCF)으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있다. According to one embodiment, the above-described challenging material may be one or a combination of two or more selected from the group consisting of carbon black, carbon nanotubes, and VGCF (Vapor Grown Carbon Fiber, VGCF).
또한, 하나의 실시형태에 따른 상기 양극 활물질층은 금속 염을 더 포함할 수 있으며, 상기 금속 염은 다공성 바인더 스캐폴드 및 양극 활물질 입자 중 적어도 하나 이상에 함유되거나 표면 흡착된 것일 수 있다. 구체적으로, 상기 금속 염의 금속 이온은 전기화학반응에 관여하는 금속 이온(활성 이온)일 수 있고, 염은 탄소계 도전재와 바인더의 효과적인 복합화를 유도하고, 다공성 바인더 스캐폴드 구조 및 양극 활물질 중 적어도 하나 이상에 함유되거나 표면 흡착된 상태로 잔류할 수 있으며, 염 고유의 결정 상으로 잔류할 수 있다. In addition, the positive electrode active material layer according to one embodiment may further include a metal salt, and the metal salt may be contained in or surface-adsorbed to at least one of the porous binder scaffold and the positive electrode active material particles. Specifically, the metal ion of the metal salt may be a metal ion (active ion) involved in an electrochemical reaction, and the salt may induce effective complexation of the carbon-based conductive material and the binder, and may remain contained in or surface-adsorbed to at least one of the porous binder scaffold structure and the positive electrode active material, and may remain in a crystal phase unique to the salt.
상기 양극 활물질 입자 100 중량부에 대하여 금속 염은 0.01 내지 50 중량부, 또는 0.01 내지 30 중량부, 또는 0.01 내지 10 중량부, 또는 0.01 내지 10 중량부, 또는 0.01 내지 1 중량부로 포함될 수 있다.The metal salt may be included in an amount of 0.01 to 50 parts by weight, or 0.01 to 30 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 10 parts by weight, or 0.01 to 1 part by weight, based on 100 parts by weight of the positive electrode active material particles.
또한, 상기 바인더 : 금속염의 중량비는 특별히 한정되지 않으나, 1 : 0.1~1, 1 : 0.1~0.8 또는 1 : 0.2~0.6일 수 있다.In addition, the weight ratio of the binder: metal salt is not particularly limited, but may be 1:0.1 to 1, 1:0.1 to 0.8, or 1:0.2 to 0.6.
상기 금속 염은 설포닐기를 함유하는 금속염일 수 있으며, 이 경우 양극 내에 잔류하여 양극의 전기화학 특성을 더욱 우수하게 할 수 있으며, 액체 전해질에 대한 젖음성을 더욱 향상시킬 수 있다.The above metal salt may be a metal salt containing a sulfonyl group, in which case it may remain in the positive electrode to further improve the electrochemical properties of the positive electrode and further improve wettability with respect to a liquid electrolyte.
상기 설포닐기 함유 금속염의 분자량(g/mole)은 1000 이하, 구체적으로 500 이하, 보다 구체적으로 400 이하 일 수 있으며, 20 이상, 50 이상 또는 100 이상의 분자량을 가질 수 있다. 또한, 상기 설포닐기 함유 금속염은, 금속 염의 분자당 음이온의 수가 1 내지 4개, 구체적으로 1 내지 3개, 보다 구체적으로 1 내지 2개일 수 있다.The molecular weight (g/mole) of the above sulfonyl group-containing metal salt may be 1000 or less, specifically 500 or less, more specifically 400 or less, and may have a molecular weight of 20 or more, 50 or more, or 100 or more. In addition, the number of anions per molecule of the above sulfonyl group-containing metal salt may be 1 to 4, specifically 1 to 3, more specifically 1 to 2.
구체적으로, 상기 금속 염은 하기 화학식 1 또는 화학식 2에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the metal salt may be selected from the following chemical formula 1 or chemical formula 2, but is not limited thereto.
[화학식 1][Chemical Formula 1]
[화학식 2][Chemical formula 2]
(상기 화학식 1 및 2에서,(In the above chemical formulas 1 and 2,
n은 1 또는 2이고;n is 1 or 2;
A는 n가의 양이온이며;A is a cation of valence n;
R1 내지 R3는 각각 독립적으로 플루오로(C1-C7)알킬 또는 플루오로기이다.)R 1 to R 3 are each independently a fluoro(C1-C7) alkyl or a fluoro group.)
일 예로, 상기 R1 내지 R3는 각각 독립적으로 F, CFH2, CF2H, CF3, C2F5, C3F7, C4F9 또는 C5H11일 수 있다.For example, R 1 to R 3 can each independently be F, CFH 2 , CF 2 H, CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 or C 5 H 11 .
일 예로, 상기 A는 1가의 양이온 또는 2가의 양이온이며, 상기 1가의 양이온은 알칼리금속 이온일 수 있으며, 2가의 양이온은 알칼리 토금속 이온 또는 전이후 금속(post-transition metal) 이온에서 선택되는 것일 수 있다. 구체적으로, 상기 A는 리튬, 나트륨, 아연, 구리, 알루미늄, 실버, 골드, 세슘, 인듐, 마그네슘 또는 칼슘일 수 있다.For example, the above A is a monovalent cation or a divalent cation, and the monovalent cation may be an alkali metal ion, and the divalent cation may be an alkaline earth metal ion or a post-transition metal ion. may be selected. Specifically, the A may be lithium, sodium, zinc, copper, aluminum, silver, gold, cesium, indium, magnesium or calcium.
일 예로, 설포닐기 함유 금속염은 리튬 트리플루오로메탄설포네이트, 리튬 비스(플루오로설포닐)이미드, 리튬 비스(트리플루오로메탄설포닐)이미드, 리튬 비스(퍼플루오로에탄설포닐)이미드, 징크 트리플루오로메탄설포네이트, 징크 다이[비스(트리플루오로메틸설포닐)이미드] 등에서 선택되는 어느 하나 또는 둘 이상인 것일 수 있다.For example, the sulfonyl group-containing metal salt may be one or more selected from lithium trifluoromethanesulfonate, lithium bis(fluorosulfonyl)imide, lithium bis(trifluoromethanesulfonyl)imide, lithium bis(perfluoroethanesulfonyl)imide, zinc trifluoromethanesulfonate, zinc di[bis(trifluoromethylsulfonyl)imide], and the like.
하나의 실시형태에 따른 상기 양극 활물질층의 단면을 X-ray CT 촬영으로 분석하였을 때, 양극 활물질층 전체의 도전재 평균 농도(C0)에 대하여, 양극 집전체와 양극 활물질층 경계면으로부터 양극 활물질층의 두께 방향 1/3 지점에 해당하는 제1활물질층의 도전재 농도(C1), 양극 활물질층의 두께 방향 1/3 지점부터 2/3 지점에 해당하는 제2활물질층의 도전재 농도(C2), 및 양극 활물질층의 두께 방향 2/3 지점부터 표면까지의 제3활물질층의 도전재 농도(C3)의 편차가 10% 이하, 9% 이하, 8% 이하. 7% 이하, 6% 이하, 5% 이하, 1% 이하 및 비한정적으로 0.1% 이상일 수 있다. 구체적으로, 상기 편차는 0.1 내지 10%, 0.1 내지 7% 또는 0.1 내지 3%일 수 있다. When a cross-section of the positive electrode active material layer according to one embodiment is analyzed by X-ray CT, the deviation of the conductive material concentration (C 1 ) of the first active material layer corresponding to 1/3 of the thickness direction of the positive electrode active material layer from the boundary between the positive electrode current collector and the positive electrode active material layer, the conductive material concentration (C 2 ) of the second active material layer corresponding to 1/3 to 2/3 of the thickness direction of the positive electrode active material layer, and the conductive material concentration (C 3 ) of the third active material layer from 2/3 of the thickness direction of the positive electrode active material layer to the surface may be 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 1% or less, and, but not limited to, 0.1% or more. Specifically, the deviation may be 0.1 to 10%, 0.1 to 7%, or 0.1 to 3%.
즉, 상기 양극 활물질층은 바인더 성분을 미세 다공화하여 다공성 바인더 스캐폴드를 형성함에 따라, 양극 활물질층의 두께가 증가함에도 도전재, 양극 활물질 입자 등의 양극재가 두께 방향으로 매우 균일하게 분포하는 것을 특징으로 한다.That is, the positive electrode active material layer is characterized by a positive electrode material such as a conductive material and positive electrode active material particles being very uniformly distributed in the thickness direction as the thickness of the positive electrode active material layer increases by forming a porous binder scaffold by microporousizing the binder component.
상기 음극은 통상 전기화학소자에 사용되는 것이라면 특별히 한정되지 않는다. The above cathode is not particularly limited as long as it is commonly used in electrochemical devices.
하나의 실시형태에 있어서, 상기 음극은 음극 활물질을 함유하는 음극 활물질층을 포함하며, 음극 활물질은 리튬 이차전지의 음극에 통상적으로 사용되는 물질이면 사용 가능하다. 구체적으로, 음극 활물질은 리튬 인터칼레이션 가능한 물질이면 족하다. 더욱 구체적으로, 음극 활물질은 리튬(금속 리튬), 이흑연화성 탄소, 난흑연화성 탄소, 그라파이트, 실리콘, Sn 합금, Si 합금, Sn 산화물, Si 산화물, Ti 산화물, Ni 산화물, Fe 산화물(FeO), 리튬-티타늄 산화물(LiTiO2, Li4Ti5O12), 이들의 혼합물 또는 이들의 복합체등에서 하나 또는 둘 이상 선택된 물질일 수 있으나, 이에 한정되는 것은 아니다.In one embodiment, the negative electrode includes a negative electrode active material layer containing a negative electrode active material, and the negative electrode active material may be a material commonly used in a negative electrode of a lithium secondary battery. Specifically, the negative electrode active material may be a material capable of lithium intercalation. More specifically, the negative electrode active material may be one or more selected from, but is not limited to, lithium (metallic lithium), graphitizable carbon, non-graphitizable carbon, graphite, silicon, Sn alloy, Si alloy, Sn oxide, Si oxide, Ti oxide, Ni oxide, Fe oxide (FeO), lithium-titanium oxide (LiTiO 2 , Li 4 Ti 5 O 12 ), mixtures thereof, or composites thereof.
하나의 실시형태에 따른 음극은 흑연계 활물질을 50 중량% 이상, 60 중량% 이상, 70 중량% 이상, 80 중량% 이상, 90 중량% 이상 및 비한정적으로 99 중량%이하, 구체적으로 50 내지 99 중량%, 60 내지 99 중량%, 70 내지 99 중량%, 80 내지 99 중량% 또는 90 내지 99 중량% 함유하는 음극 활물질층을 포함하는 것일 수 있다. According to one embodiment, the negative electrode may include a negative electrode active material layer containing 50 wt% or more, 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, and not limited to 99 wt% or less of a graphite-based active material, specifically 50 to 99 wt%, 60 to 99 wt%, 70 to 99 wt%, 80 to 99 wt%, or 90 to 99 wt%.
이때, 상기 흑연계 활물질은 인조흑연 또는 천연흑연일 수 있다. 비한정적인 예로, 상기 흑연계 활물질은 천연흑연일 수 있다. At this time, the graphite-based active material may be artificial graphite or natural graphite. As a non-limiting example, the graphite-based active material may be natural graphite.
다른 하나의 실시형태에 따른 음극은 음극 집전체, 또는 음극 집전체 및 리튬 금속을 포함하는 것 일 수 있다.According to another embodiment, the negative electrode may include a negative current collector, or a negative current collector and lithium metal.
즉, 하나의 실시형태에 따른 전기화학소자는 상술한 후막형 양극; 음극 집전체 및 상기 음극 집전체 상에 형성된 리튬 금속을 포함하는 음극; 및 전해질;을 포함하는 리튬금속전지일 수 있다.That is, an electrochemical device according to one embodiment may be a lithium metal battery including the above-described thick-film positive electrode; a negative electrode including a negative electrode current collector and lithium metal formed on the negative electrode current collector; and an electrolyte.
또한, 하나의 실시형태에 따른 전기화학소자는 상술한 후막형 양극; 음극 집전체; 및 전해질;을 포함하는 무음극(Anode-free) 리튬전지일 수 있다.In addition, an electrochemical device according to one embodiment may be an anode-free lithium battery including the above-described thick-film positive electrode; a negative electrode current collector; and an electrolyte.
상기 양극 및 음극은 각각 양극 집전체 및 음극 집전체 상에 상기 양극 활물질층과 상기 음극 활물질층이 형성되어 구비될 수 있다. 상기 양극 집전체 및 음극 집전체는 통상의 리튬 이차전지에서 사용되는 양극 집전체 또는 음극 집전체이면 족하다. 상세하게, 양극 집전체 또는 음극 집전체는 전도도가 우수하며 전지의 충방전시 화학적으로 안정한 물질이면 무방하다. 구체적으로, 양극 집전체 또는 음극 집전체는 그라파이트, 그래핀, 티타늄, 구리, 플래티늄, 알루미늄, 니켈, 은, 금, 알루미늄 또는 카본나노튜브등의 전도성 물질일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.The above positive and negative electrodes may be provided by forming the positive active material layer and the negative active material layer on a positive current collector and a negative current collector, respectively. The positive current collector and the negative current collector may be any positive current collector or negative current collector used in a typical lithium secondary battery. In detail, the positive current collector or the negative current collector may be any material that has excellent conductivity and is chemically stable during charge and discharge of the battery. Specifically, the positive current collector or the negative current collector may be any material that is conductive, such as graphite, graphene, titanium, copper, platinum, aluminum, nickel, silver, gold, aluminum, or carbon nanotubes, but the present invention is not limited thereto.
상기 전해질은 액체 전해질, 고체 전해질 또는 이들의 조합일 수 있으며, 구체적으로 액체 전해질일 수 있고, 상기 액체 전해질은 비수성 유기용매 및 리튬염을 포함할 수 있다.The above electrolyte may be a liquid electrolyte, a solid electrolyte or a combination thereof, and specifically may be a liquid electrolyte, and the liquid electrolyte may include a non-aqueous organic solvent and a lithium salt.
상기 비수성 유기용매는 환형 카보네이트계 용매, 선형 카보네이트계 용매 및 이들의 혼합용매로부터 선택되는 것일 수 있으며, 상기 환형 카보네이트계 용매는 에틸렌카보네이트, 프로필렌카보네이트이트, 부틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트, 플루오르에틸렌카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있고, 상기 선형 카보네이트계 용매는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보 네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 구체적으로, 상기 비수성 유기 용매는 환형 카보네이트계 용매와 선형 카보네이트계 용매의 혼합용매일 수 있고, 환형 카보네이트 용매 : 선형 카보네이트 용매의 혼합 부피비가 1:1 내지 9, 또는 1:1 내지 4의 부피비로 혼합하여 사용할 수 있다.The above non-aqueous organic solvent may be selected from a cyclic carbonate solvent, a linear carbonate solvent, and a mixed solvent thereof, and the cyclic carbonate solvent may be selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, and mixtures thereof, and the linear carbonate solvent may be selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, and mixtures thereof. Specifically, the non-aqueous organic solvent may be a mixed solvent of a cyclic carbonate solvent and a linear carbonate solvent, and a mixing volume ratio of the cyclic carbonate solvent: linear carbonate solvent may be mixed and used in a volume ratio of 1:1 to 9, or 1:1 to 4.
상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC(SO2CF3)3, LiN(SO3CF3)2, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI 로 이루어진 군에서 선택되는 1종 또는 2종 이상을 혼합하여 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 리튬염의 농도는 0.6 M 내지 2.0 M로 포함될 수 있다.The lithium salt may be one or a mixture of two or more selected from the group consisting of LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 3 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI, but is not limited thereto. The concentration of the lithium salt may be included in a range of 0.6 M to 2.0 M.
일 예로, 상기 액체 전해질은 하나의 실시형태에 따른 전기화학소자의 용량 대비 전해질 주입양의 비 (g/Ah)가 3.0 미만, 2.0 미만, 1.5 미만, 1.2 미만, 또는 1.1 미만일 수 있다. 또한, 상기 액체 전해질은 양극 100 중량부에 대하여 15 내지 30 중량비, 또는 15 내지 25 중량비, 또는 15 내지 20 중량비로 포함되는 것일 수 있다.For example, the liquid electrolyte may have a ratio of the amount of electrolyte injected to the capacity of the electrochemical device according to one embodiment (g/Ah) of less than 3.0, less than 2.0, less than 1.5, less than 1.2, or less than 1.1. In addition, the liquid electrolyte may be included in a weight ratio of 15 to 30, or a weight ratio of 15 to 25, or a weight ratio of 15 to 20, with respect to 100 parts by weight of the positive electrode.
즉, 하나의 실시형태에 따른 전기화학소자의 양극은 전해액에 대한 젖음성이 매우 우수하여 전해질 사용량을 줄이면서 더욱 향상된 에너지 밀도를 구현할 수 있다.That is, the positive electrode of the electrochemical device according to one embodiment has excellent wettability with respect to the electrolyte, so that the amount of electrolyte used can be reduced while realizing a further improved energy density.
또한, 하나의 실시형태에 따른 전기화학소자는 분리막을 더 포함할 수 있으며, 상기 분리막은 해당 기술분야에서 통상적으로 사용되는 것이면 제한되지 않으나, 비한정적인 일 예로, 예를 들어, 유리 섬유, 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌 또는 이들의 조합물 중에서 선택된 것일 수 있으며, 부직포 또는 직포 형태일 수 있고, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.In addition, the electrochemical device according to one embodiment may further include a separator, and the separator is not limited to one commonly used in the relevant technical field, but as a non-limiting example, for example, may be selected from glass fiber, polyester, polyethylene, polypropylene, polytetrafluoroethylene or a combination thereof, may be in the form of a non-woven fabric or a woven fabric, and may optionally be used in a single-layer or multi-layer structure.
본 발명의 하나의 실시형태에 따르면, 상기 바인더 성분을 미세 다공화하여 다공성 바인더 스캐폴드를 형성하는 수단은 특별히 한정되는 것은 아니지만, 예를 들어, 양극재 슬러리 제조 시 기공 형성제를 사용하는 것일 수 있으며, 상기 기공 형성제는 예를 들어, 용해도 파라미터가 상이한 2종 이상의 혼합 용매, 금속 염, 또는 이들의 조합일 수 있다.According to one embodiment of the present invention, the means for forming a porous binder scaffold by microporousing the binder component is not particularly limited, but may be, for example, using a pore former when preparing a cathode material slurry, and the pore former may be, for example, a mixed solvent of two or more having different solubility parameters, a metal salt, or a combination thereof.
상기 혼합 용매는, 구체적으로, 용해도 파라미터가 상이한 제1용매과 제2용매의 혼합용매 일 수 있고, 제1용매과 제2용매는 상이한 용해도 파라미터에 의해 바인더에 대해 상이한 용해성을 가질 수 있다. 용매 간의 상이한 용해성에 의해, 양극재 슬러리의 건조 과정 중 용매가 잔류하는 상태에서 바인더의 고화 (solidification)가 발생할 수 있으며, 바인더의 고화 중 및/또는 고화 후 잔류 용매의 휘발에 의해 양극에서 바인더 성분의 다공화가 발생할 수 있다.The above mixed solvent may be, specifically, a mixed solvent of a first solvent and a second solvent having different solubility parameters, and the first solvent and the second solvent may have different solubilities with respect to the binder due to the different solubility parameters. Due to the different solubilities between the solvents, solidification of the binder may occur in a state where the solvent remains during the drying process of the cathode material slurry, and porosity of the binder component may occur in the cathode due to volatilization of the residual solvent during and/or after solidification of the binder.
상기 제1용매와 제2용매의 용해도 파라미터 차이는 0.1 내지 20, 또는 0.1 내지 10, 또는 0.1 내지 5, 또는 1 내지 5일 수 있으며, 구체적으로, 0.5 이상, 1 이상, 2 이상, 3 이상 또는 4 이상일 수 있으며, 15 이하, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하 또는 5 이하일 수 있다.The difference in the solubility parameters between the first solvent and the second solvent may be 0.1 to 20, or 0.1 to 10, or 0.1 to 5, or 1 to 5, and specifically, may be 0.5 or more, 1 or more, 2 or more, 3 or more, or 4 or more, and may be 15 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
여기서, 용해도 파라미터(25℃ 기준)는 해당 물질별 공지된 한센 용해도 파라미터(일 예로, Charles Hansen, "Hansen Solubility Parameters: A User's Handbook" CRC Press (2007), "The CRC Handbook and Solubility Parameters and Cohesion Parameters," Allan F. M. Barton (1999)등)를 통해 알려진 값 또는 분자 모델링 프로(Molecular Modeling Pro)나 다이나 콤프 소프트웨어(Dynacomp Software)등 상용화 소프트웨어에 의해 계산된 값에 기반할 수 있으며, 물질별 한센 용해도 파라미터는 당업자에게 기 공지되거나 용이 산출될 수 있는 값이다.Here, the solubility parameter (based on 25°C) may be based on a known value through the Hansen solubility parameter for each substance (e.g., Charles Hansen, "Hansen Solubility Parameters: A User's Handbook" CRC Press (2007), "The CRC Handbook and Solubility Parameters and Cohesion Parameters," Allan F. M. Barton (1999)), etc.) or a value calculated by commercial software such as Molecular Modeling Pro or Dynacomp Software, and the Hansen solubility parameter for each substance is a value that is already known to those skilled in the art or can be easily calculated.
일 예로, 바인더에 대해 우수한 용해도를 가지는 용매는 제1용매, 바인더에 대한 용해도가 떨어지는 용매를 제2용매라고 할 때, 상기 제2용매는 기공 형성제 역할을 할 수 있으며, 제1용매와 제2용매의 용매간 상대적 양을 조절하여 바인더의 다공화 정도를 조절할 수 있다. 일 예로, 상기 제1용매와 제2용매의 중량비는 1:0.1 내지 10, 1:0.1 내지 5, 1:0.1 내지 1 또는 1:0.1 내지 0.5 일 수 있으나, 반드시 이에 한정되는 것은 아니다.For example, when a solvent having excellent solubility in the binder is referred to as a first solvent and a solvent having poor solubility in the binder is referred to as a second solvent, the second solvent can act as a pore former, and the degree of porosity of the binder can be controlled by controlling the relative amounts of the first solvent and the second solvent. For example, the weight ratio of the first solvent to the second solvent can be 1:0.1 to 10, 1:0.1 to 5, 1:0.1 to 1, or 1:0.1 to 0.5, but is not necessarily limited thereto.
본 발명의 하나의 실시형태에 따르면, 양극, 음극 및 전해질을 포함하고, 상기 양극은 양극 집전체 및 양극 활물질층을 포함하며, 상기 양극 집전체의 일면에 형성된 양극 활물질층의 면적 당 용량이 3 mAh/㎠ 이상이고, 2.0C의 충전율으로 충전시 음극 표면에 리튬 금속이 석출되지 않는 것을 특징으로 하는 전기화학소자의 제조방법이 제공된다. According to one embodiment of the present invention, a method for manufacturing an electrochemical device is provided, comprising a positive electrode, an negative electrode, and an electrolyte, wherein the positive electrode includes a positive electrode collector and a positive electrode active material layer, and a positive electrode active material layer formed on one surface of the positive electrode collector has a capacity per area of 3 mAh/cm2 or more, and lithium metal is not deposited on the surface of the negative electrode when charged at a charge rate of 2.0C.
하나의 실시형태에 따르면, 상기 전기화학소자의 제조방법은 집전체 및집전체 상에 양극 활물질층을 포함하는 양극을 제조하는 단계; 음극을 제조하는 단계; 상기 양극과 음극을 조립하는 단계; 및 전해질을 주입하는 단계를 포함하며, 상기 양극, 음극 및 전해질은 전술한 바와 동일하므로 구체적인 설명은 생략한다.According to one embodiment, the method for manufacturing the electrochemical device includes the steps of manufacturing a positive electrode including a current collector and a positive electrode active material layer on the current collector; the step of manufacturing a negative electrode; the step of assembling the positive electrode and the negative electrode; and the step of injecting an electrolyte. Since the positive electrode, the negative electrode, and the electrolyte are the same as those described above, a detailed description thereof will be omitted.
하나의 실시형태에 따르면, 상기 양극의 제조 단계는 집전체 상에 상술한 양극 활물질 입자, 도전재, 바인더 및 금속염을 포함하는 양극재 슬러리를 도포하는 단계; 및 상기 도포된 양극 슬러리를 건조하는 단계;를 포함할 수 있다. According to one embodiment, the step of manufacturing the positive electrode may include a step of applying a positive electrode slurry including the positive electrode active material particles, a conductive material, a binder, and a metal salt as described above onto a current collector; and a step of drying the applied positive electrode slurry.
양극재 슬러리의 도포는 스핀(spin) 코팅, 롤(roll) 코팅, 스프레이 코팅, 딥(dip) 코팅, 플로(flow) 코팅, 닥터 블레이드(doctor blade), 디스펜싱(dispensing), 잉크젯 프린팅, 옵셋 프린팅, 스텐실 프린팅, 스크린 프린팅, 패드(pad) 프린팅, 그라비아 프린팅, 리버스 그라비아 프린팅, 그라비아 옵셋 프린팅, 플렉소(flexography) 프린팅, 스텐실 프린팅, 임프린팅(imprinting), 제로그라피(xerography), 슬롯다이코팅, 바코팅 및 롤투롤 코팅등에서 하나 이상 선택된 방법으로 수행될 수 있으나, 이에 한정되는 것은 아니다.The application of the cathode slurry may be performed by one or more methods selected from spin coating, roll coating, spray coating, dip coating, flow coating, doctor blade, dispensing, inkjet printing, offset printing, stencil printing, screen printing, pad printing, gravure printing, reverse gravure printing, gravure offset printing, flexography printing, stencil printing, imprinting, xerography, slot die coating, bar coating, and roll-to-roll coating, but is not limited thereto.
양극재 슬러리의 도포가 수행된 후, 슬러리 도포물(도포된 양극재 슬러리 )을 건조하는 단계가 수행될 수 있다. 상기 건조는 에너지를 인가하여 수행하거나, 별도로 인가되는 에너지 없이 자연건조 또는 진공건조를 통해 수행될 수 있다. 인가되는 에너지는 열 에너지, 광 에너지 또는 열과 광 에너지일 수 있으며, 열과 광 에너지의 인가는 순차적 인가 또는 동시 인가를 포함할 수 있다. 광 에너지가 인가되는 경우, 광은 열선인 근적외선 광일 수 있다.After the application of the cathode slurry is performed, a step of drying the slurry application (the applied cathode slurry) can be performed. The drying can be performed by applying energy, or can be performed through natural drying or vacuum drying without separately applying energy. The applied energy can be thermal energy, light energy, or thermal and light energy, and the application of thermal and light energy can include sequential application or simultaneous application. When light energy is applied, the light can be near-infrared light, which is a heat ray.
상기 건조는 다단 방식으로 수행될 수 있으며, 각 단계의 건조 방법은 동일하거나 상이할 수 있다. 비한정적인 예로, 1차로 열풍 건조 후 2차로 진공 건조가 수행될 수 있다. The above drying can be performed in a multi-stage manner, and the drying method of each stage can be the same or different. As a non-limiting example, hot air drying can be performed first, followed by vacuum drying second.
상기 건조 온도는 상기 양극재 슬러리를 건조시킬 수 있는 온도라면 특별히 한정되지 않는다. 비한정적인 예로, 상기 건조 온도는 90 내지 180 ℃, 100 내지 160 ℃, 100 내지 140 ℃, 또는 100 내지 130 ℃의 온도에서 수행될 수 있다. 건조 시간은 도포되는 양극재 슬러리의 양에 비례하여 적절히 조절될 수 있다.The above drying temperature is not particularly limited as long as it is a temperature capable of drying the cathode material slurry. As a non-limiting example, the drying temperature may be performed at a temperature of 90 to 180° C., 100 to 160° C., 100 to 140° C., or 100 to 130° C. The drying time may be appropriately adjusted in proportion to the amount of the cathode material slurry applied.
양극재 슬러리는 상술한 양극 활물질 입자, 도전재, 유기 바인더 및 이온성 물질을 상술한 혼합용매에 혼합하여 제조될 수 있다. 양극재 슬러리 제조시, 양극 활물질 입자, 도전재, 유기 바인더 및 이온성 물질의 투입 순서는 특별히 한정되진 않는다. 일 예로, 양극재 슬러리는 양극 활물질 입자, 도전재, 유기 바인더 및 이온성 물질이 동시에 용매에 투입 및 혼합될 수 있다. 또 다른 일 예로, 양극재 슬러리는 도전재, 유기 바인더 및 이온성 물질을 먼저 혼합한 혼합물에 양극 활물질 입자가 투입되어 제조될 수 있다. 이와 같은 방법으로 제조된 양극재 슬러리는 추후 건조되어 양극 활물질층을 형성할 시 보다 안정적인 다공성 바인더 스캐폴드 구조를 형성할 수 있다. The cathode material slurry can be prepared by mixing the cathode active material particles, the conductive material, the organic binder, and the ionic material described above in the mixed solvent described above. When preparing the cathode material slurry, the order of adding the cathode active material particles, the conductive material, the organic binder, and the ionic material is not particularly limited. For example, the cathode material slurry can be prepared by simultaneously adding and mixing the cathode active material particles, the conductive material, the organic binder, and the ionic material to the solvent. As another example, the cathode material slurry can be prepared by first adding the cathode active material particles to a mixture in which the conductive material, the organic binder, and the ionic material are mixed. The cathode material slurry prepared in this way can form a more stable porous binder scaffold structure when dried later to form a cathode active material layer.
하나의 실시형태에 있어서, 상기 양극재 슬러리 제조 단계;는 이온성 물질(금속염)과 양극 활물질 입자를 혼합하여 활물질 혼합물을 제조하는 단계, 상기 활물질 혼합물, 도전재 및 바인더를 혼합한 양극재를 상술한 혼합용매에 혼합하는 단계,를 포함할 수 있다.In one embodiment, the cathode material slurry preparation step may include a step of preparing an active material mixture by mixing an ionic material (metal salt) and cathode active material particles, a step of mixing the active material mixture, a conductive material, and a binder into the cathode material mixture described above in the mixed solvent.
상기 활물질 혼합물을 제조하는 단계는, 이온성 물질과 양극 활물질 입자를 믹싱한 후 소성하는 단계를 포함할 수 있다. The step of preparing the above active material mixture may include a step of mixing an ionic material and positive electrode active material particles and then calcining them.
상기 믹싱은 공자전믹서와 같은 교반장치를 통해 기계적 혼합되는 것을 의미할 수 있으며, 혼합속도(rpm) 및 혼합시간은 투입되는 이온성 물질 및 양극 활물질 입자의 양에 따라 적절히 조절될 수 있다.The above mixing may mean mechanical mixing through a stirring device such as a rotary mixer, and the mixing speed (rpm) and mixing time may be appropriately adjusted according to the amount of ionic material and positive electrode active material particles introduced.
상기 소성은 상기 이온성 물질의 녹는점 이하의 온도에서 수행될 수 있으며, 상온(20±5℃) 초과의 온도 및 이온성 물질의 녹는점(MP) 이하의 온도라면 특별히 한정되지 않는다. 비한정적으로 상기 소성의 온도는 이온성 물질의 녹는점(MP)에 대하여, 0.5(MP)이상 1(MP) 미만, 0.5(MP) 내지 0.9(MP), 또는 0.6(MP) 내지 0.8(MP) 일 수 있다. 비한정적인 예로, 상기 이온성 물질이 리튬 트리플루오로메탄설포네이트일 시, 상기 소성은 150 내지 300 ℃, 160 내지 250 ℃ 또는 180 내지 220 ℃ 온도 하에 수행될 수 있다. The above-mentioned calcination can be performed at a temperature below the melting point of the ionic material, and is not particularly limited as long as it is a temperature higher than room temperature (20±5°C) and a temperature below the melting point (MP) of the ionic material. Non-limitingly, the temperature of the above-mentioned calcination may be 0.5 (MP) or more and less than 1 (MP), 0.5 (MP) to 0.9 (MP), or 0.6 (MP) to 0.8 (MP) with respect to the melting point (MP) of the ionic material. As a non-limiting example, when the ionic material is lithium trifluoromethanesulfonate, the above-mentioned calcination can be performed at a temperature of 150 to 300°C, 160 to 250°C, or 180 to 220°C.
여기서, 상기 소성 시 승온 속도는 1 내지 30 ℃/min, 1 내지 15 ℃/min, 1 내지 10 ℃/min 또는 3 내지 7℃/min일 수 있으나 이에 한정되진 않는다.Here, the heating rate during the firing may be, but is not limited to, 1 to 30°C/min, 1 to 15°C/min, 1 to 10°C/min, or 3 to 7°C/min.
상기 소성이 수행되는 시간은 투입되는 활물질 혼합물의 양에 따라 적절히 조절될 수 있으며, 비한정적으로 10 분 내지 180 분, 20 분 내지 150 분, 또는 30분 내지 90분 동안 수행될 수 있다.The time for which the above-mentioned calcination is performed can be appropriately adjusted depending on the amount of the active material mixture introduced, and can be performed for, but not limited to, 10 to 180 minutes, 20 to 150 minutes, or 30 to 90 minutes.
이하, 실시예를 통하여 본 발명을 구체적으로 설명한다. 단, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 그로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be specifically described through examples. However, it should be noted that the examples described below are only intended to illustrate and concretize the present invention, and are not intended to limit the scope of the rights of the present invention. This is because the scope of the rights of the present invention is determined by the matters described in the patent claims and matters reasonably inferred therefrom.
[실시예 1][Example 1]
1)양극의 제조1) Manufacturing of positive electrode
리튬 트리플루오로메탈설포네이트 1 중량% 와 평균입경이 5 ㎛LiNi0.9Mn0.05Co0.05O2 양극 활물질 입자 95 중량%를 공자전믹서를 이용하여 2000 rpm 조건으로 3분 동안 선믹싱한 후 소성로 (Furnace)에 넣고 5 ℃/분의 승온 속도로 200 ℃까지 승온한 후, 이 온도에서 1 시간 동안 유지하여 소성한 다음, 소성물을 상온(25±5 ℃)까지 자연 냉각하여 활물질 혼합물(96 중량%)을 제조하였다. 상기 활물질 혼합물과, 도전재로 평균입경 40 ㎚의 카본블랙(Super-P) 2 중량% 및 바인더로 폴리비닐리덴플루오라이드 2 중량% 혼합하여 양극재(총 100 중량%)를 제조하였다. N-메틸-2-피롤리돈에 32.5 중량%와 프로필렌카보네이트 7.5 중량%를 혼합한 혼합 용매에, 상기 양극재가 60 중량%가 되도록 첨가하여 양극재 슬러리(총 100 중량%)를 제조하였다. 상기 양극재 슬러리를 두께가 20 ㎛인 알루미늄 박막에 닥터블레이드를 이용하여 도포하고, 100 ℃에서 열풍 건조한 후, 130 ℃에서 24 시간 동안 진공 건조하고 롤 프레스로 압연하여 다공성 바인더 스캐폴드 구조내에 양극 활물질 입자가 고르게 분포된 55 ㎛ 두께의 양극 활물질층을 포함하는 양극을 제조하였다. 1 wt% of lithium trifluorometal sulfonate and 95 wt% of positive electrode active material particles having an average particle size of 5 ㎛ (LiNi 0.9 Mn 0.05 Co 0.05 O 2 ) were pre-mixed using a rotary mixer at 2000 rpm for 3 minutes, placed in a furnace, and heated to 200 ℃ at a heating rate of 5 ℃/min, then fired by maintaining it at that temperature for 1 hour, and then naturally cooling the fired product to room temperature (25±5 ℃) to produce an active material mixture (96 wt%). The active material mixture was mixed with 2 wt% of carbon black (Super-P) having an average particle size of 40 nm as a conductive material and 2 wt% of polyvinylidene fluoride as a binder to produce a positive electrode material (total 100 wt%). A slurry of positive electrode material (total 100 wt%) was prepared by adding 60 wt% of the above-mentioned positive electrode material to a mixed solvent containing 32.5 wt% of N-methyl-2-pyrrolidone and 7.5 wt% of propylene carbonate. The positive electrode slurry was applied to a 20 ㎛ thick aluminum thin film using a doctor blade, dried with hot air at 100 ° C., vacuum-dried at 130 ° C. for 24 hours, and rolled using a roll press to prepare a positive electrode including a 55 ㎛ thick positive electrode active material layer in which positive electrode active material particles are evenly distributed within a porous binder scaffold structure.
상기 양극의 양극 활물질 로딩량은 4.1 mAh/㎠ 이었으며, 합제밀도는 3.6 g/cc이었다.The positive electrode active material loading of the above positive electrode was 4.1 mAh/cm2, and the composite density was 3.6 g/cc.
2)음극의 제조2) Manufacturing of cathode
음극 활물질로 평균입경이 20 ㎛인 천연흑연 96 중량%, 도전재로 평균입경 40 ㎚의 카본블랙(Super-P) 1 중량%, 바인더로 CMC(카르복시메틸셀룰로오스)와 SBR(스티렌-부타디엔고무)을 각각 1.5 중량%씩 혼합한 것(총 100중량%)을 음극재로 하였다. 증류수 40 중량%에 상기 음극재가 60 중량%가 되도록 첨가하여 음극재 슬러리를 제조하였다. 상기 음극재 슬러리를 두께가 10 ㎛인 구리 박막에 닥터블레이드를 이용하여 도포하고, 100 ℃에서 열풍 건조한 후, 130 ℃에서 24시간 동안 진공 건조하고 롤 프레스로 압연하여 80 ㎛ 두께의 음극 활물질층을 포함하는 음극을 제조하였다.A mixture of 96 wt% of natural graphite with an average particle size of 20 ㎛ as an anode active material, 1 wt% of carbon black (Super-P) with an average particle size of 40 nm as a conductive material, and 1.5 wt% of CMC (carboxymethyl cellulose) and SBR (styrene-butadiene rubber) as a binder (total 100 wt%) was used as the anode material. The anode material slurry was prepared by adding 60 wt% of the above anode material to 40 wt% of distilled water. The above anode material slurry was applied onto a 10 ㎛ thick copper thin film using a doctor blade, dried with hot air at 100 ° C., vacuum dried at 130 ° C. for 24 hours, and rolled using a roll press to prepare an anode including an 80 ㎛ thick anode active material layer.
상기 음극의 음극 활물질 로딩량은 4.5 mAh/㎠ 이었으며, 합제밀도는 1.65 g/cc이었다.The negative active material loading of the above negative electrode was 4.5 mAh/cm2, and the composite density was 1.65 g/cc.
3)전기화학소자의 제조3) Manufacturing of electrochemical devices
상기 제조된 양극 및 음극과 분리막(두께 13 ㎛, SC13-D4-BP, Gellec)을 적층하여 전지 조립체를 제조하고, 양극 조립체의 무지부에 알루미늄 전지탭(0.1 T × 7 ㎜), 음극 조립체의 무지부에 니켈 전지탭(0.1 T × 7 ㎜)을 각각 초음파 용접(Welding) 한 후, 전지 조립체에 맞춰 성형(Forming)된 전지 파우치필름(153 ㎛, DNP)에 넣고 밀봉하였다. 이후, 에틸렌카보네이트와 디메틸카보네이트를 1:1 부피비로 혼합한 용매에 1몰의 LiPF6가 녹아있는 액체 전해질 2.72 g/Ah를 주입하여 전기화학소자를 제조하였다.The manufactured positive and negative electrodes and separator (thickness 13 ㎛, SC13-D4-BP, Gelec) were laminated to manufacture a battery assembly, and an aluminum battery tab (0.1 T × 7 mm) was ultrasonically welded to the non-coated portion of the positive electrode assembly, and a nickel battery tab (0.1 T × 7 mm) was welded to the non-coated portion of the negative electrode assembly, respectively. Then, the battery assembly was placed in a formed battery pouch film (153 ㎛, DNP) and sealed. Thereafter, an electrochemical device was manufactured by injecting 2.72 g/Ah of a liquid electrolyte containing 1 mol of LiPF 6 dissolved in a solvent containing ethylene carbonate and dimethyl carbonate in a volume ratio of 1:1.
[실시예 2][Example 2]
상기 실시예 1에 있어서, 양극 제조 시, 리튬 트리플루오로메탈설포네이트 대신 리튬 폴리(1-에틸-3-메틸이미다졸리움)비스(트리플루오로메탄설포닐)이미드 (PVIm[TFSI])를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학소자를 제조하였다.In the above Example 1, an electrochemical device was manufactured in the same manner as in the above Example 1, except that lithium poly(1-ethyl-3-methylimidazolium)bis(trifluoromethanesulfonyl)imide (PVIm[TFSI]) was used instead of lithium trifluorometalsulfonate when manufacturing the positive electrode.
[실시예 3][Example 3]
상기 실시예 1에 있어서, 양극 제조 시, 리튬 트리플루오로메탄설포네이트 대신 트리메틸올프로판 에톡시레이트 트리아크릴레이트 및 리튬 트리플루오로메탄설포네이트를 50:50 질량%로 혼합한 혼합물을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학소자를 제조하였다.In the above Example 1, an electrochemical device was manufactured in the same manner as in the above Example 1, except that a mixture of trimethylolpropane ethoxylate triacrylate and lithium trifluoromethanesulfonate in a 50:50 mass% mixture was used instead of lithium trifluoromethanesulfonate when manufacturing the positive electrode.
[실시예 4][Example 4]
상기 실시예 1에 있어서, 양극 제조 시 리튬 트리플루오로메탄설포네이트 대신 세슘 비스(트리플루오로메탄설포닐)이미드를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 전기화학소자를 제조하였다. An electrochemical device was manufactured in the same manner as in Example 1, except that cesium bis(trifluoromethanesulfonyl)imide was used instead of lithium trifluoromethanesulfonate when manufacturing the positive electrode.
[비교예 1][Comparative Example 1]
상기 실시예 1에 있어서, 상기 양극 제조 시 양극 활물질로 평균입경이 5㎛인 LiNi0.9Mn0.05Co0.05O2 95 중량%, 도전재로 평균입경 40nm의 카본블랙(Super-P) 2 중량%, 바인더로 폴리비닐리덴플루오라이드 3 중량%를 혼합한 것(총 100중량%)을 양극재로 하였으며, N-메틸-2-피롤리돈 40 중량%에, 상기 양극재가 60 중량%가 되도록 첨가하여 양극재 슬러리를 제조한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전기화학소자를 제조하였다. In the above Example 1, when manufacturing the positive electrode, 95 wt% of LiNi 0.9 Mn 0.05 Co 0.05 O 2 having an average particle size of 5 μm as a positive electrode active material, 2 wt% of carbon black (Super-P) having an average particle size of 40 nm as a conductive material, and 3 wt% of polyvinylidene fluoride as a binder were mixed (total 100 wt%) to form a positive electrode material, and an electrochemical device was manufactured in the same manner as in Example 1, except that the positive electrode material was added to 40 wt% of N-methyl-2-pyrrolidone to form 60 wt% to prepare a positive electrode material slurry.
<평가 1. 전기화학소자 성능 평가><Evaluation 1. Electrochemical device performance evaluation>
1-1. 초기 효율(%)1-1. Initial efficiency (%)
실시예 및 비교예의 전기화학소자를 25℃에서 정전류/정전압(CC/CV) 조건으로 4.4V까지 0.1 C-rate로 충전한 후 컷오프(cut-off)하였다. 이후, 3.0V까지 0.1 C-rate로 방전(CC조건)하였다. 상기 방전용량을 충전용량으로 나눈 값의 백분율을 계산하여 하기 표 1에 초기 효율로 나타내었다. 또한, 0.1C/0.1C 조건 및 3.0-4.4V의 전압 범위에서 양극의 면적 당 용량을 측정하여, 하기 표 1에 나타내었다.The electrochemical devices of the examples and comparative examples were charged at 0.1 C-rate to 4.4 V under constant current/constant voltage (CC/CV) conditions at 25°C and then cut-off. Thereafter, they were discharged at 0.1 C-rate to 3.0 V (CC conditions). The percentage of the discharge capacity divided by the charge capacity was calculated and presented as the initial efficiency in Table 1 below. In addition, the capacity per unit area of the positive electrode was measured under 0.1C/0.1C conditions and in the voltage range of 3.0-4.4 V and presented in Table 1 below.
상기 표 1을 참고하면, 실시예의 초기 효율이 비교예의 초기 효율에 비해 높음을 확인할 수 있었다. 또한, 상기 실시예에 따른 양극은 0.1C/0.1C 조건 및 3.0-4.4V의 전압 범위에서 면적 당 용량이 약 4 mAh/㎠으로 확인되었다.Referring to Table 1 above, it was confirmed that the initial efficiency of the example was higher than the initial efficiency of the comparative example. In addition, the positive electrode according to the example was confirmed to have a capacity per area of about 4 mAh/cm2 under 0.1C/0.1C conditions and a voltage range of 3.0-4.4 V.
1-2.1-2. 충전율에 따른 용량 구현율(%) 및 평균 충전전압(V)Capacity realization rate (%) and average charging voltage (V) according to charging rate
(1) 용량 구현율(%)(1) Capacity implementation rate (%)
실시예 및 비교예의 전기화학소자를 25℃에서 정전류(CC) 조건으로 4.4V까지 0.5, 1.0, 1.5, 2.0 및 3.0 C-rate로 충전율을 다르게 하여 충전한 후 컷오프(cut-off)하였다. 이후, 3.0V까지 0.2 C-rate로 방전(CC조건)하였다. 각 충전율에 따른 방전용량을 초기 방전용량으로 나눈 값의 백분율을 계산하여 충전율에 따른 용량 구현율을 계산하여 하기 표 2에 나타내었다. 상기 초기 방전용량은 전기화학소자를 상기 정전류/정전압 조건으로 4.4 V까지 0.2 C-rate로 충전한 후 컷오프한 후, 3.0V까지 0.2C-rate로 방전한 것이다.The electrochemical devices of Examples and Comparative Examples were charged at different C-rates of 0.5, 1.0, 1.5, 2.0, and 3.0 under constant current (CC) conditions at 25°C up to 4.4 V, and then cut-off. Thereafter, they were discharged at 0.2 C-rate to 3.0 V (CC conditions). The percentage of the discharge capacity according to each charge rate divided by the initial discharge capacity was calculated to calculate the capacity realization rate according to the charge rate, and the results are shown in Table 2 below. The initial discharge capacity is obtained by charging the electrochemical device at 0.2 C-rate up to 4.4 V under the constant current/constant voltage conditions, cut-off, and then discharging at 0.2 C-rate to 3.0 V.
(2) 평균 충전전압(V)(2) Average charging voltage (V)
실시예 및 비교예의 전기화학소자를 25℃에서 정전류(CC) 조건으로 4.4V까지 0.5, 1.0, 1.5, 2.0 및 3.0 C-rate로 충전율을 다르게 하여 충전한 후 컷오프(cut-off)하였다. 얻어진 충전 그래프를 적분하여 충전 에너지를 계산한 뒤, 상기 충전 에너지를 각 충전율에서의 충전 용량으로 나눈 값을 계산하여, 하기 표 3에 충전율에 따른 평균 충전전압으로 나타내었다. The electrochemical devices of the examples and comparative examples were charged at constant current (CC) conditions at 25°C up to 4.4 V at different C-rates of 0.5, 1.0, 1.5, 2.0, and 3.0, and then cut-off. The resulting charging graphs were integrated to calculate the charging energy, and the value obtained by dividing the charging energy by the charging capacity at each charging rate was calculated, and the average charging voltage according to the charging rate is shown in Table 3 below.
상기 표 2 및 표 3을 참조하면, 비교예에 비해 상기 실시예의 전기화학소자는 1.5, 2.0 및 3.0의 충전율에서 용량 구현율이 더 높게 나타나며, 평균 충전전압에서 더 낮은 과전압을 나타냄을 확인하였다. Referring to Tables 2 and 3 above, it was confirmed that the electrochemical device of the above example exhibited a higher capacity implementation rate at charge rates of 1.5, 2.0, and 3.0, and a lower overvoltage at the average charge voltage, compared to the comparative example.
1-3.1-3. 리튬-플레이팅(Li-Plating) 평가Lithium-Plating Evaluation
실시예 및 비교예의 전기화학소자를 25℃에서 정전류(CC) 조건으로 4.4V까지 0.5, 1.0, 1.5 및 2.0 C-rate로 충전율을 다르게 하여 충전한 후 컷오프(cut-off)하였다. 완전 충전상태의 셀을 분해하여 음극 표면에 석출된 Li을 주사전자현미경(Scanning Electron Microscopy)을 통해 관찰한 결과를 하기 표 4에 나타내었다.The electrochemical devices of Examples and Comparative Examples were charged at different C-rates of 0.5, 1.0, 1.5 and 2.0 up to 4.4 V under constant current (CC) conditions at 25°C, and then cut-off was performed. The fully charged cells were disassembled, and the Li deposited on the cathode surface was observed using a scanning electron microscope. The results are shown in Table 4 below.
표 4를 참고하면, 비교예에 비해 상기 실시예의 전기화학소자는 2.0C의 충전율로 평가한 리튬 이차전지를 평가완료 후에 주사전자현미경으로 음극의 표면을 관찰한 결과 리튬이 석출되지 않았고, 반면, 비교예의 경우, 리튬 금속이 석출됨을 확인하였다. 이를 통해 실시예에 따른 전기화학소자는 2.0C 이상의 높은 충전율에서 비교예에 비해 탁월한 용량 구현율 및 낮은 과전압을 동시에 구현할 수 있음을 확인하였다. 즉, 본 발명에 따른 전기화학소자는 급속충전 시, 음극의 리튬 석출 현상을 억제하여 우수한 수명 특성을 유지할 수 있음을 알 수 있다.Referring to Table 4, in the case of the electrochemical device of the above example, compared to the comparative example, when the lithium secondary battery was evaluated at a charge rate of 2.0C, the surface of the negative electrode was observed with a scanning electron microscope and lithium was not precipitated. On the other hand, in the case of the comparative example, lithium metal was confirmed to be precipitated. Through this, it was confirmed that the electrochemical device according to the example can simultaneously implement excellent capacity implementation rate and low overvoltage compared to the comparative example at a high charge rate of 2.0C or higher. That is, it can be seen that the electrochemical device according to the present invention can maintain excellent life characteristics by suppressing the lithium precipitation phenomenon of the negative electrode during rapid charging.
상기 평가결과 본 발명에 따른 전기화학소자는 높은 초기 효율을 갖고, 2.0C 이상의 높은 충전율에서 우수한 용량 구현율을 나타내어, 뛰어난 전지 성능 및 수명 특성을 구현할 수 있음을 확인하였다. As a result of the above evaluation, it was confirmed that the electrochemical device according to the present invention has high initial efficiency and exhibits excellent capacity realization at a high charging rate of 2.0C or higher, thereby realizing excellent battery performance and life characteristics.
나아가 상기 전기화학소자는 자기 용량의 두배 이상의 전류량으로 충전하여도, 리튬이온의 균일한 흐름특성을 가지며, 음극 표면에 리튬이 석출되지 않아 리튬-플레이팅을 효과적으로 억제할 수 있어 안전성이 향상된 제품을 제공할 수 있다. Furthermore, the electrochemical device has uniform lithium ion flow characteristics even when charged with a current more than twice its magnetic capacity, and lithium is not deposited on the surface of the negative electrode, effectively suppressing lithium plating, thereby providing a product with improved safety.
<평가 2. 양극 물성 평가><Evaluation 2. Bipolar property evaluation>
2-1. 양극 공극률 2-1. Bipolar porosity
두께측정기(장비명: ㅅ-HITE, 제조사: TESA) 및 저울(장비명: EX125, 제조사: OHAUS)의 을 통해 측정한 양극의 밀도(겉보기 밀도)와 양극에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 양극의 진밀도를 계산하고, 하기 관계식으로 나타낼 수 있는 겉보기 밀도(apparent density)와 진밀도(net density)의 차이로부터 양극의 기공도를 계산하여, 하기 표 5에 기재하였다.The density (apparent density) of the anode was measured using a thickness gauge (equipment name: S-HITE, manufacturer: TESA) and a scale (equipment name: EX125, manufacturer: OHAUS), and the true density of the anode was calculated from the composition ratio of the materials included in the anode and the density of each component. The porosity of the anode was calculated from the difference between the apparent density and the true density (net density), which can be expressed by the following relationship, and is shown in Table 5 below.
[관계식][Relationship]
양극 내 각 구성 성분의 부피(cc) = 측정된 양극의 무게(g) * 소재의 조성(%)/소재의 진밀도(g/cc)Volume of each component in the anode (cc) = measured weight of the anode (g) * composition of the material (%) / true density of the material (g/cc)
기공도(%) = 1 - (양극 내 활물질의 부피 + 양극 내 도전재의 부피 + 양극 내 바인더의 부피 + 양극 내 첨가제의 부피)/측정된 양극의 겉보기 부피Porosity (%) = 1 - (volume of active material in positive electrode + volume of conductive material in positive electrode + volume of binder in positive electrode + volume of additive in positive electrode) / measured apparent volume of positive electrode
2-2. 양극 외관 평가 2-2. Bipolar Appearance Evaluation
주사전자현미경(Scanning Electron Microscope, SEM)분석을 통해, 상기 실시예 1 및 비교예 1에서 제조된 양극 표면의 외관을 평가하였다. 비교예 1에서 제조된 양극의 경우 슬러리 코팅 및 건조시 불균일한 도전재/바인더 분포로 인해 전극 외관상 다수의 크랙이 발생한 것을 확인할 수 있었다. 반면, 실시예 1의 양극은 양극 활물질 코팅층이 기계적 변형이 없이 집전체 위에 고르게 도포된 것과, 전체 전극 두께 방향으로 균일한 바인더 스캐폴드 구조를 형성함으로써 전극 외관상 크랙이 발생하지 않은 것을 확인하였다. The appearance of the surfaces of the positive electrodes manufactured in Example 1 and Comparative Example 1 was evaluated using a scanning electron microscope (SEM) analysis. In the case of the positive electrode manufactured in Comparative Example 1, it was confirmed that numerous cracks occurred on the electrode appearance due to uneven distribution of the conductive agent/binder during slurry coating and drying. On the other hand, in the case of the positive electrode of Example 1, it was confirmed that no cracks occurred on the electrode appearance because the positive electrode active material coating layer was evenly applied on the current collector without mechanical deformation and a uniform binder scaffold structure was formed in the direction of the entire electrode thickness.
또한, 주사전자현미경으로 실시예 1에서 제조된 양극의 단면을 관찰한 결과, 양극 활물질 입자가 전체적으로 고르게 분포해 있으며 입자들 사이의 빈 공간 안에 바인더가 균일한 스캐폴드 구조를 형성하고 있는 것을 확인하였다. 반면, 비교예에서 제조된 양극의 경우 바인더들이 뭉치며 불균일한 미세구조와 기공 분포를 가지는 것을 알 수 있다.In addition, when observing the cross-section of the positive electrode manufactured in Example 1 using a scanning electron microscope, it was confirmed that the positive electrode active material particles were evenly distributed throughout and that the binder formed a uniform scaffold structure in the empty spaces between the particles. On the other hand, in the case of the positive electrode manufactured in the comparative example, it was found that the binders were clumped together and had an uneven microstructure and pore distribution.
2-3. 양극 X-ray CT 분석 2-3. Bipolar X-ray CT analysis
상기 실시예 1 및 비교예 1에서 제조된 양극의 단면을 X-ray CT 촬영하여 도전재인 카본블랙의 분포를 분석하였으며, 비교예 1의 양극은 두께 방향으로 도전재 분포가 불균일함을 확인할 수 있었다. 반면, 실시예 1의 양극은 양극 집전체와 양극 활물질층 경계면으로부터 양극 활물질층의 두께 방향 1/3 지점에 해당하는 제1활물질층, 두께 방향 1/3 지점부터 2/3 지점에 해당하는 제2활물질층, 및 두께 방향 2/3 지점부터 표면까지의 제3활물질층의 도전재 분포가 모두 균일한 것을 확인하였다. 또한, X-ray CT 촬영 결과에 따른 제1활물질층, 제2활물질층 및 제3활물질층에서의 도전재 함량(vol%) 분포를 정량화하여, 그 결과를 하기 표 6에 기재하였다. 표 6을 참조하면, 상기 실시예 1에 따른 양극은 하기 식 1에서 따른 도전재 농도의 편차가 모두 0.57% 이하로 매우 낮은 수치로 나타났으며, 이를 통해, 실시예 1의 양극 활물질층은 도전재가 매우 균일하게 분포되어 있다는 것을 확인하였다.The cross-sections of the positive electrodes manufactured in Example 1 and Comparative Example 1 were X-ray CT scanned to analyze the distribution of the conductive material, carbon black, in the thickness direction. It was confirmed that the positive electrode of Comparative Example 1 had an uneven distribution of the conductive material in the thickness direction. On the other hand, the positive electrode of Example 1 had a uniform distribution of the conductive material in the first active material layer corresponding to 1/3 of the thickness direction from the boundary between the positive electrode current collector and the positive electrode active material layer, the second active material layer from the 1/3 to the 2/3 point in the thickness direction, and the third active material layer from the 2/3 point in the thickness direction to the surface. In addition, the distribution of the conductive material content (vol%) in the first active material layer, the second active material layer, and the third active material layer according to the X-ray CT scan results was quantified, and the results are shown in Table 6 below. Referring to Table 6, the positive electrode according to Example 1 showed a very low value of 0.57% or less in the deviation of the conductive material concentration according to Equation 1 below, and through this, it was confirmed that the positive electrode active material layer of Example 1 had the conductive material very uniformly distributed.
[식 1][Formula 1]
(|C0 - Cn|/C0) × 100(|C 0 - C n |/C 0 ) × 100
상기 식 1에서,In the above equation 1,
C0는 양극 활물질층 전체 도전재 평균 농도(vol%)이고;C 0 is the average concentration (vol%) of the conductive material throughout the positive electrode active material layer;
Cn은 제n활물질층의 도전재 농도(vol%)이다.C n is the conductive material concentration (vol%) of the nth active material layer.
2-4. 양극 내 이온전도도 평가2-4. Evaluation of ionic conductivity within the anode
실시예 및 비교예에서 제조한 양극을 사용하여 대칭 셀 (symmetric cell)을 제조하고, 에틸렌카보네이트(Ethylene carbonate, EC)와 디메틸카보네이트 (Diethyl carbonate, DEC)를 1:1 부피비로 혼합한 용매에 1몰의 LiPF6가 녹아있는 액체 전해질을 주입하여 이온전도도 측정용 셀을 제조하였다. 이온전도도 측정용 셀의 임피던스 분석을 통해 이온저항을 측정하여 양극 내 이온전도도 값을 계산하고, 하기 표 7에 결과를 기재하였다.A symmetric cell was manufactured using the positive electrodes manufactured in the Examples and Comparative Examples, and a liquid electrolyte containing 1 mol of LiPF 6 dissolved in a solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1:1 was injected to manufacture a cell for measuring ionic conductivity. The ionic resistance was measured through impedance analysis of the cell for measuring ionic conductivity, and the ionic conductivity value inside the positive electrode was calculated, and the results are shown in Table 7 below.
2-5. 양극의 전극 굴곡도 (Tortuosity) 평가2-5. Evaluation of the electrode tortuosity of the anode
측정된 양극내 이온전도도 값을 맥멀린수 (MacMullin number, Nm) 공식을 이용하여 양극의 전극 굴곡도를 계산하였다. Nm은 다음과 같이 정의할 수 있다.The measured ionic conductivity values in the anode were used to calculate the electrode curvature of the anode using the MacMullin number (N m ) formula. N m can be defined as follows:
Nm = Kelectrolyte / Kelectrode = Tortuosity / PorosityN m = K electrolyte / K electrode = Tortuosity / Porosity
Kelectrolyte는 액체 전해질의 이온전도도, Kelectrode는 실시예 및 비교예에 따른 양극을 25 ℃에서 측정한 이온전도도를 의미한다. 상기 액체 전해질은 Ethylene carbonate(EC)/Diethyl carbonate(DEC)를 1:1 부피 비율로 혼합한 공용매에 1M의 농도로 LiPF6를 투입하였다. 상기 양극의 이온전도도는 양극을 1 M LiPF6의 EC/DEC 용액으로 충전한 후, 전극의 두께 방향으로 전도도를 측정하여 산출하였다. 기공율(Porosity)는 ASTM D 4284-83에 의거하여 수은 기공률 측정기(Mercury Porosimet, AutoPore V, Micromeritics)를 통해 측정하였다. 구체적으로, 사전에 무게를 측정한 양극 샘플을 수은 기공률 측정기 셀에 넣고, 수은으로 셀을 주어진 압력 범위 (30 psia ~ 60,000 psia)까지 충전하여 양극내 기공 부피를 측정하였다. 측정된 기공율 및 맥멀린수로부터 최종적으로 굴곡도를 계산하였다. 측정된 전극 굴곡도는 하기 표 7에 기재하였다.K electrolyte refers to the ionic conductivity of the liquid electrolyte, and K electrode refers to the ionic conductivity of the anode according to the examples and comparative examples measured at 25 ℃. The liquid electrolyte was prepared by adding 1 M LiPF 6 to a cosolvent containing ethylene carbonate (EC)/diethyl carbonate (DEC) in a volume ratio of 1:1. The ionic conductivity of the anode was calculated by measuring the conductivity in the thickness direction of the electrode after filling the anode with a 1 M LiPF 6 EC/DEC solution. The porosity was measured using a mercury porosimeter (Mercury Porosimet, AutoPore V, Micromeritics) according to ASTM D 4284-83. Specifically, a pre-weighed anode sample was placed in a mercury porosimeter cell, and the cell was filled with mercury up to a given pressure range (30 psia to 60,000 psia) to measure the pore volume inside the anode. The final curvature was calculated from the measured porosity and McMullin number. The measured electrode curvature is shown in Table 7 below.
상기 표 7과 같이 실시예에 따른 양극은 입자들 사이의 빈 공간에 균일한 바인더 스캐폴드 구조를 형성함으로써, 비교예에 따른 양극과 비교하여 전극 내 굴곡도 값이 감소하였음을 확인하였다. As shown in Table 7 above, it was confirmed that the anode according to the example formed a uniform binder scaffold structure in the empty space between the particles, thereby reducing the curvature value within the electrode compared to the anode according to the comparative example.
이상과 같이 본 발명에서는 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Although the present invention has been described by limited embodiments, this has only been provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and those with ordinary skill in the art to which the present invention pertains can make various modifications and variations from this description. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all things that are equivalent or equivalent to the following claims, as well as variations equivalent to the claims, are considered to fall within the scope of the spirit of the present invention.
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20230072890 | 2023-06-07 | ||
KR10-2023-0072890 | 2023-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024253470A1 true WO2024253470A1 (en) | 2024-12-12 |
Family
ID=93796273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/007826 WO2024253470A1 (en) | 2023-06-07 | 2024-06-07 | Electrochemical device comprising high-capacity positive electrode |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240174067A (en) |
WO (1) | WO2024253470A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070094156A (en) * | 2006-03-16 | 2007-09-20 | 주식회사 엘지화학 | Electrode with high capacitance characteristics and manufacturing method thereof |
KR20170009097A (en) * | 2015-07-15 | 2017-01-25 | 주식회사 엘지화학 | Cathode improved conductivity and electrochemical device including the same |
KR20180071106A (en) * | 2016-12-19 | 2018-06-27 | 울산과학기술원 | Surface-treated positive active material, method for surface-treating positive active material, and electrochemical devices including the same surface-treated positive active material |
CN111095453A (en) * | 2017-11-14 | 2020-05-01 | 旭化成株式会社 | Nonaqueous lithium-type storage element |
JP2021048146A (en) * | 2015-03-24 | 2021-03-25 | 日本電気株式会社 | High safety and high energy density battery |
-
2024
- 2024-06-07 KR KR1020240074495A patent/KR20240174067A/en active Pending
- 2024-06-07 WO PCT/KR2024/007826 patent/WO2024253470A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070094156A (en) * | 2006-03-16 | 2007-09-20 | 주식회사 엘지화학 | Electrode with high capacitance characteristics and manufacturing method thereof |
JP2021048146A (en) * | 2015-03-24 | 2021-03-25 | 日本電気株式会社 | High safety and high energy density battery |
KR20170009097A (en) * | 2015-07-15 | 2017-01-25 | 주식회사 엘지화학 | Cathode improved conductivity and electrochemical device including the same |
KR20180071106A (en) * | 2016-12-19 | 2018-06-27 | 울산과학기술원 | Surface-treated positive active material, method for surface-treating positive active material, and electrochemical devices including the same surface-treated positive active material |
CN111095453A (en) * | 2017-11-14 | 2020-05-01 | 旭化成株式会社 | Nonaqueous lithium-type storage element |
Also Published As
Publication number | Publication date |
---|---|
KR20240174067A (en) | 2024-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020122497A1 (en) | Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same | |
WO2013172646A1 (en) | Negative electrode for lithium battery | |
WO2020080831A1 (en) | Three-dimensional structure electrode and electrochemical element including same | |
WO2018135915A1 (en) | Method for manufacturing lithium secondary battery with improved high-temperature storage characteristics | |
WO2019164319A1 (en) | Anode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising anode for lithium secondary battery | |
WO2018038501A1 (en) | Composite cathode active material for lithium ion battery, manufacturing method therefor, and lithium ion battery containing cathode comprising same | |
WO2021025349A1 (en) | Anode, manufacturing method therefor, and secondary battery comprising same | |
WO2022154309A1 (en) | Method for charging and discharging secondary battery | |
WO2020197278A1 (en) | Lithium secondary battery | |
WO2020180125A1 (en) | Lithium secondary battery | |
WO2021251663A1 (en) | Anode and secondary battery comprising same | |
WO2017074109A1 (en) | Cathode for secondary battery, method for preparing same, and lithium secondary battery comprising same | |
WO2020213962A1 (en) | Non-aqueous electrolytic solution additive for lithium secondary battery, and non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery, comprising same | |
WO2022250324A1 (en) | Positive electrode additive and positive electrode for lithium secondary battery containing same | |
WO2018236046A1 (en) | Lithium-sulfur battery | |
WO2022255816A1 (en) | Positive electrode for lithium secondary battery and lithium secondary battery comprising same | |
WO2024253470A1 (en) | Electrochemical device comprising high-capacity positive electrode | |
WO2022149740A1 (en) | Electrolyte for lithium battery, and lithium battery comprising same | |
WO2024253469A1 (en) | High-energy-density electrochemical device containing lithium iron phosphate | |
WO2021034130A1 (en) | Ion conductive polymer, and lithium secondary battery electrode and lithium secondary battery which comprise same | |
WO2024253471A1 (en) | High-energy density electrochemical device comprising silicon-based particles | |
WO2020091448A1 (en) | Lithium secondary battery | |
WO2024144255A1 (en) | Acid or moisture reducing agent for non-aqueous electrolyte, non-aqueous electrolyte comprising same, lithium secondary battery containing non-aqueous electrolyte, and method for reducing acid or moisture in non-aqueous electrolyte | |
WO2017171433A1 (en) | Method for producing secondary battery | |
WO2022255636A1 (en) | Positive electrode for lithium secondary battery and lithium secondary battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24819621 Country of ref document: EP Kind code of ref document: A1 |