[go: up one dir, main page]

WO2024253202A1 - Composition for ammonia storage, ammonia bonding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method - Google Patents

Composition for ammonia storage, ammonia bonding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method Download PDF

Info

Publication number
WO2024253202A1
WO2024253202A1 PCT/JP2024/020942 JP2024020942W WO2024253202A1 WO 2024253202 A1 WO2024253202 A1 WO 2024253202A1 JP 2024020942 W JP2024020942 W JP 2024020942W WO 2024253202 A1 WO2024253202 A1 WO 2024253202A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
composition
binding
ammonia storage
formula
Prior art date
Application number
PCT/JP2024/020942
Other languages
French (fr)
Japanese (ja)
Inventor
益揮 川本
嘉浩 伊藤
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2024253202A1 publication Critical patent/WO2024253202A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/16Halides

Definitions

  • the present invention relates to an ammonia storage composition using a material capable of chemically storing ammonia, an ammonia storage device using the same, an ammonia storage method, and a method for removing ammonia molecules.
  • Ammonia (NH 3 ) is an important chemical substance that is widely used as a raw material for fertilizers, medicines, fibers, food, etc., and about 200 million tons are produced annually worldwide. On the other hand, it has a large hydrogen mass density (17.8 wt%) and hydrogen volume density (0.107 kg/L), and is also attracting attention as a so-called hydrogen carrier. Another advantage is that it does not contain carbon and does not emit carbon dioxide when burned.
  • ammonia is a highly corrosive gas at room temperature and pressure, making it difficult to handle and store, so it is often liquefied to maximize storage density at low temperatures (such as -33°C) or stored in pressurized vessels at high pressures (16-18 bar). Therefore, a safer and easier method of storing ammonia is desired.
  • porous materials have been investigated as a storage medium for ammonia.
  • materials such as activated carbon, zeolites, polymers, or metal-organic frameworks (porous metal complexes) can physically adsorb ammonia in their pores.
  • US Pat. No. 5,999,633 discloses zeolite frameworks for gas separation, gas storage, catalysis and sensors.
  • the document discloses a zeolite framework (ZIF) that comprises any number of transition metals or a homogeneous transition metal composition.
  • ZIF zeolite framework
  • the zeolite framework is capable of adsorbing chemical species, including ammonia, and is intended to be used to obtain a gas storage device, etc.
  • Storage media using porous materials such as those described in Patent Document 1 can store ammonia under mild conditions close to room temperature and pressure. However, all of these storage media have limited functionality, such as low storage capacity and irreversible uptake.
  • the present invention has been made in consideration of the above circumstances, and its purpose is to provide an ammonia storage composition, an ammonia binding composition, an ammonia storage device using the same, an ammonia storage method, and a method for removing ammonia molecules, which allow ammonia to be stored relatively easily under mild conditions and with a high degree of safety.
  • R represents ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted
  • X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number
  • the ammonia storage compound is R 1 NH 3 PbI 3 ...
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.
  • the ammonia storage composition according to [1], [3] An ammonia-binding composition comprising the ammonia storage composition according to [1], wherein an ammonia molecule and a water molecule are further bound to the compound.
  • An ammonia storage device comprising the ammonia storage composition according to [1] or [2], A first retention member for retaining the ammonia storage composition; The ammonia storage composition held in the first holding member is contacted with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1, The ammonia storage device further comprises a means for further binding ammonia molecules and water molecules to the at least one ammonia storage compound to obtain an ammonia-binding composition.
  • a second holding member for holding the ammonia-binding composition for holding the ammonia-binding composition;
  • the ammonia-binding composition held in the second holding member is treated under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to desorb ammonia molecules from the ammonia-binding composition to obtain at least one ammonia storage compound;
  • the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
  • the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2 ⁇ P1.
  • a method for storing ammonia comprising: Any of the following formulas (I-a) to (I-c): PbI 2 ... (I-a) RPbX 3 ... (I-b) R n+1 Pb n X 3n+1 ...
  • R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted
  • X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.
  • An ammonia storage method comprising: an ammonia storage step of contacting ammonia molecules and water molecules under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to cause a chemical reaction.
  • the ammonia storage compound is R 1 NH 3 PbI 3 ...
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.
  • the ammonia storage method according to [7], [9] The ammonia storage method according to [7], comprising an ammonia desorption step of treating the ammonia-binding composition under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to liberate ammonia molecules from the ammonia-binding composition. [10]
  • the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
  • the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2 ⁇ P1.
  • a method for removing ammonia molecules comprising: contacting a gas phase containing at least ammonia molecules and water molecules with an ammonia storage composition containing at least one ammonia storage compound represented by the formula: [12] The ammonia storage compound, R 1 NH 3 PbI 3 ... (I-d) (In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which
  • the present invention provides an ammonia storage composition that allows ammonia to be stored relatively easily under mild conditions and with a high degree of safety, an ammonia storage device that uses the composition, an ammonia storage method, and a method for removing ammonia molecules.
  • FIG. 1 is a photograph of the appearance of the synthesized EAPbI3 and the test of ammonia uptake.
  • FIG. 1 is a schematic diagram of the crystal structures of EAPbI3 and Pb(OH)I.
  • FIG . 1 is a photograph of EAPbI3 and Pb(OH)I observed by optical microscope.
  • FIG. 1 is a schematic diagram showing the arrangement of EAPbI3 crystals.
  • FIG. 2 is another schematic diagram showing the arrangement of Pb(OH)I crystals.
  • FIG. 2 is a graph showing the adsorption isotherm and TG-MS results of EAPbI3.
  • FIG. 2 is a photograph of the sample of this embodiment when subjected to X-ray analysis.
  • FIG. 1 is a schematic diagram of the crystal structures of EAPbI3 and Pb(OH)I.
  • FIG . 1 is a photograph of EAPbI3 and Pb(OH)I observed by optical microscope.
  • FIG. 1 is a schematic diagram showing the
  • FIG. 2 is a graph showing the change in the XRD pattern of EAPbI3.
  • FIG. 2 is a graph showing the X-ray diffraction pattern of EAPbI3.
  • FIG. 2 is a schematic diagram showing the spacings of d001 and d002 in a crystal structure.
  • FIG. 1 is a photographic diagram showing repeated NH3 uptake/extraction of EAPbI3.
  • FIG. 12 is a graph showing XRD patterns of EAPbI3 in the states (i), (iii), and (v) in FIG.
  • FIG. 1 is a schematic diagram showing a putative mechanism of NH3 storage proposed to explain the reversible structural changes upon NH3 uptake/extraction.
  • FIG. 1 is a schematic diagram showing a putative mechanism of NH3 storage proposed to explain the reversible structural changes upon NH3 uptake/extraction.
  • FIG. 2 is a graph showing NMR spectra of EAPbI3 before and after NH3 incorporation.
  • FIG. 2 is a graph showing XRD patterns of PbI 2 and EAI.
  • FIG. 2 is a graph showing an XRD pattern of Pb(OH)I.
  • 2 is a schematic diagram showing the action of an ammonia storage compound contained in the ammonia storage composition of the present embodiment.
  • FIG. FIG. 1 is a photograph showing the vapor discoloration behavior of EAPbI3 crystals stamped on paper to NH3 vapor.
  • Figure 2 shows a scanning electron microscope (SEM) image of EAPbI3 crystals layered on paper.
  • FIG. 2 is a graph showing the change in diffuse reflectance spectrum of EAPbI3 immersed in paper at 25° C.
  • SEM scanning electron microscope
  • FIG. 1 is a graph showing the Tauc plot of EAPbI3.
  • FIG. 2 is a graph showing the fluorescence spectrum of EAPbI3 immersed in paper at 25 °C.
  • FIG. 1 is a graph showing the change in the fluorescence spectrum of paper-soaked samples at various concentrations of NH3 .
  • FIG. 1 is a graph showing the relationship between the rate of change of fluorescence intensity at 545 nm and NH3 concentration.
  • FIG. 1 is a graph showing the change in response time depending on the sample thickness of EAPbI3.
  • FIG. 1 is a photographic diagram showing the adsorption behavior of various solutions onto soaked EAPbI3 crystals on paper.
  • FIG. 2 is a graph showing the NMR spectrum of CH 3 CH 2 NH 3 I.
  • FIG. 2 is a graph showing the NMR spectrum of CH3CH2NH3PbI3 .
  • FIG. 1 is a schematic diagram of an ammonia storage device according to an embodiment of the present invention.
  • FIG. 1 is a photograph showing the adsorption behavior of various solutions onto crystals of other compounds.
  • FIG. 2 is a graph showing adsorption isotherms for other compounds.
  • FIG. 2 is another graph showing adsorption isotherms for other compounds.
  • FIG. 2 is another graph showing adsorption isotherms for other compounds.
  • FIG. 1 is a graph showing the results of thermogravimetric mass spectrometry for other compounds.
  • FIG. 11 is another graph showing the results of thermogravimetric mass spectrometry for other compounds.
  • FIG. 11 is another graph showing the results of thermogravimetric mass spectrometry for other compounds.
  • ammonia storage composition according to the present invention, and the ammonia storage device and ammonia storage method using the same, with reference to the following embodiments.
  • the present invention is not limited to the following embodiments.
  • ammonia storage composition The ammonia storage composition of the present embodiment is Any of the following formulas (I-a) to (I-c): PbI 2 ... (I-a) RPbX 3 ... (I-b) R n+1 Pb n X 3n+1 ...
  • R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted
  • X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.
  • the compound includes at least one compound represented by the formula (hereinafter, sometimes referred to as "ammonia storage compound").
  • n represents a natural number, and the number is not particularly limited, but is, for example, 1 to 20, preferably 1 to 10 or 1 to 7, and more preferably 1 to 5.
  • Examples of the compound represented by formula (I-c) include layered perovskite. When the compound represented by formula (I-c) is a layered perovskite, n may be equal to the number of layers.
  • the optionally substituted hydrocarbon group represented by R may be chain-like, and in the case of chain-like, it may be either linear or branched, or a combination thereof, or it may be cyclic (i.e., a cycloalkyl group).
  • R may have aromaticity, or may be a combination of an aromatic hydrocarbon group (e.g., a phenyl group) and an aliphatic hydrocarbon group (e.g., an alkyl group).
  • R is preferably an alkyl group or araalkyl group (e.g., a phenylalkyl group) having 1 to 10 carbon atoms which may be substituted.
  • R is a hydrocarbon group which may be substituted, and examples of the substituent include both hydrophilic and hydrophobic substituents. Examples of the hydrophilic substituent include an amino group and a hydroxyl group. Examples of the hydrophobic substituent include a halogen atom (e.g., a fluorine atom).
  • R may be a guanidinium or formamidinium represented by the following formula (C1) or (C2).
  • the compound represented by formula (I-c) contains two or more R.
  • the two or more R may be the same or different.
  • formula (I-a) is a metal halide
  • formula (I-b) is obtained by partially substituting formula (I-a)
  • formula (I-c) is obtained by partially substituting formula (I-a), which form a layered perovskite compound (where n generally indicates the layered structure of perovskite).
  • the ammonia storage compound is R 1 NH 3 PbI 3 ... (I-d)
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.
  • the compound is represented by the formula: The structure and substituents of R 1 can be selected from those similar to those of R described above.
  • Ring ammonia refers to a use in which a compound or composition can be used to bind with ammonia through a chemical reaction or the like and stably retain ammonia.
  • “Storing stably” preferably means that the compound is almost chemically stable in the state bound to ammonia at normal temperature, normal pressure, etc.
  • ammonia storage compound and composition can be bonded to ammonia by a certain operation such as by chemical reaction, and can be dissociated from ammonia by another certain operation.
  • a composition containing at least one type of compound obtained by, for example, chemically reacting an ammonia storage compound with ammonia is referred to as an ammonia-binding composition. That is, at least one of the compounds of formulae (I-a) to (I-d) may be bound to an ammonia molecule and a water molecule by a chemical reaction.
  • An example of this embodiment is an ammonia-binding composition obtained by chemically reacting PbI2 and RPbX (e.g., R1NH3I ) that are in chemical equilibrium with the ammonia storage compound, for example, a compound of formula (I- b ), with a water molecule and an ammonia molecule, respectively.
  • the ammonia-binding composition includes at least one of R1NH2 and NH4I that are generated by chemically reacting an ammonia molecule with at least one of R1NH3I , and includes Pb(OH)I and HI that are obtained by reacting PbI2 with a water molecule.
  • ammonia uptake the state in which a material containing an ammonia storage composition contains ammonia as a result of an ammonia storage compound or composition chemically reacting with ammonia and bonding with it is sometimes referred to as ammonia uptake.
  • ammonia extraction the state in which a material containing an ammonia storage composition changes from a state in which it contains ammonia to a state in which it does not contain ammonia as a result of an ammonia storage compound or composition dissociating from ammonia, or the removal of ammonia from the material is sometimes referred to as ammonia extraction.
  • R is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, and may be either linear or branched, and any of the hydrogen atoms may be substituted with other elements. However, from the perspective of the crystal structure of the ammonia storage compound described below, it is preferable that the carbon number is 1 to 5.
  • Formula (Id) is a compound of formula (Ib) in which R has a specific structure, and R has a hydrocarbon group R1 , one of which is substituted with an amino group.
  • R 1 is more preferably an ethyl group having two carbon atoms (CH 3 CH 2 --). That is, it is more preferable that the ammonia storage compound is of formula (II): CH 3 CH 2 NH 3 PbI 3 (when R 1 is an ethyl group, this is also called ethylammonium lead iodide: EAPbI 3 ).
  • ammonia storage compound is preferably a compound of the following formulas (II) to (XI):
  • Diphenylethylammonium lead tetraiodide (PEA) 2 PbI 4 ) Diphenylethylammonium lead tetrabromide ((PEA) 2 PbBr 4 ) Dibutylammonium methylammonium lead heptaiodide ((BA) 2 (MA)Pb 2 I 7 )
  • Dibutylammonium dimethylammonium lead decaiodide (BA) 2 (MA) 2 Pb 3 I 10 )
  • Dibutylammonium trimethylammonium lead tridecaiodide (BA) 2 (MA) 3 Pb4I 13 )
  • Dibutylammonium tetramethylammonium lead hexadecaiodide (BA) 2 (MA) 4 Pb 5 I 16 )
  • the ammonia storage compound is a compound of formula (Ib) or (Id), it is preferable that the compound has a one-dimensional (1D) columnar structure at room temperature and normal pressure.
  • the ammonia storage compound is CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 )
  • CH 3 CH 2 NH 3 + cations are molecular-packed between 1D columnar structures of [PbI 6 ] 4- octahedrons.
  • perovskite materials made of compounds containing an organic substance (R, ammonia), an inorganic substance (Pb), and a halide (e.g., I (iodine)), including the ammonia storage compound of this embodiment, are also referred to as organic-inorganic halide perovskite (organic-inorganic halide perovskite, organometallic halide perovskite) materials, etc.
  • organic-inorganic halide perovskite organic-inorganic halide perovskite, organometallic halide perovskite
  • ammonia-binding Composition is a composition containing a chemical species obtained by binding ammonia molecules and water molecules to the ammonia storage compound through a chemical reaction or the like.
  • a chemical species obtained by binding ammonia molecules and water molecules to the ammonia storage compound through a chemical reaction or the like.
  • an ammonia-binding composition obtained as a result of water molecules and ammonia molecules being bound to each of compounds in chemical equilibrium with the ammonia storage compound (for example, PbI 2 and R 1 NH 3 I in the case of formula (I-d)) through chemical reaction.
  • the ammonia-binding composition contains at least one of RNH 2 and NH 4 I that are generated by the chemical reaction of ammonia molecules with at least one of RNH 3 I, and Pb(OH)I and HI that are obtained by the reaction of PbI 2 with water molecules.
  • the ammonia-binding composition holds ammonia molecules in a state in which they can be released by chemical reaction or the like.
  • the chemical reaction is the reverse reaction of the reaction that occurs when the ammonia storage compound bonds with ammonia molecules (and water molecules).
  • the ammonia storage composition takes in ammonia by chemical reaction, and the ammonia-binding composition obtained thereby releases ammonia by chemical reaction.
  • ammonia storage compound R 1 NH 3 PbI 3 of formula (Id) when the ammonia storage compound R 1 NH 3 PbI 3 of formula (Id) is exposed to NH 3 (aq) vapor under certain conditions, Pb(OH)I containing OH- anions becomes an ammonia - binding compound in which ammonia is incorporated between the molecules.
  • the ammonia storage compound is CH 3 CH 2 NH 3 PbI 3 (also called EAPbI 3 )
  • EAPbI 3 also called EAPbI 3
  • a chemical structure change occurs from the one-dimensional (1D) columnar structure CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 ) to the two-dimensional (2D) layered structure Pb(OH)I, and NH 3 is incorporated between the layers.
  • ammonia storage device The ammonia storage device of the present embodiment includes the ammonia storage composition described above. 29 is a schematic diagram of the ammonia storage device 100 of this embodiment. As shown in the figure, the ammonia storage device 100 of this embodiment includes a first holding member 11 for holding an ammonia storage composition 1, and a means for contacting the ammonia storage composition 1 held in the first holding member 11 with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to obtain an ammonia-bound composition 2 containing a chemical species obtained by further binding ammonia molecules and water molecules to the at least one ammonia storage compound.
  • the ammonia storage device 100 is a device that stores ammonia in the ammonia storage composition 1 by bringing ammonia molecules into contact with the ammonia storage composition 1 .
  • the ammonia storage composition 1 may be in any form as long as it can be held in the first holding member 11.
  • the first holding member 11 is a container
  • the ammonia storage composition 1 may be in any form as long as it can be placed in the container.
  • the first holding member 11 is a member that holds the ammonia storage composition 1 and is configured to allow ammonia molecules and water to come into contact with the ammonia storage composition 1 under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 within the bonding treatment member 12 described below.
  • a member is preferably a member that allows gas to pass through, for example, by having one or more surfaces open or being communicable.
  • water is preferably water vapor, so it is sufficient that the member is capable of passing gas.
  • An example of the first holding member 11 is a container that can hold the ammonia storage composition 1 and that can be stored in the bonding treatment member 12.
  • the binding treatment member 12 is a means for contacting the ammonia storage composition 1 held in the first holding member 11 with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to obtain an ammonia-binding composition containing a chemical species generated by further binding ammonia molecules and water molecules to the ammonia storage compound.
  • the binding treatment member 12 is a container capable of containing the first holding member 11.
  • the binding processing member 12 is a container that can be opened to accommodate and remove the first holding member 11, and can also be sealed.
  • the inside of the container of the binding processing member 12 can be kept under the conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1, and ammonia molecules and water can be brought into contact with the ammonia storage composition 1 for a certain period of time under certain conditions (such as a certain vapor pressure).
  • the bonding processing member 12 includes a pressure control means (not shown) capable of maintaining the inside of the container at an ammonia bonding pressure P1, a temperature control means (not shown) capable of maintaining the inside of the container at an ammonia bonding temperature T1, an ammonia supply means (not shown) capable of supplying ammonia molecules into the container, and a water supply means (not shown) capable of supplying water (water vapor) into the container.
  • a pressure control means capable of maintaining the inside of the container at an ammonia bonding pressure P1
  • a temperature control means capable of maintaining the inside of the container at an ammonia bonding temperature T1
  • an ammonia supply means capable of supplying ammonia molecules into the container
  • a water supply means capable of supplying water (water vapor) into the container.
  • the ammonia storage device preferably further comprises a second holding member 21 for holding the ammonia-binding composition 2, a means for treating the ammonia-binding composition 2 held in the second holding member 21 under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to desorb ammonia molecules from the ammonia-binding composition 2 and convert them into at least one compound of formula (I), and a means for collecting the ammonia molecules liberated from the ammonia-binding composition 2.
  • the second holding member 21 and the release processing member 22 described below are members that have the function of releasing (extracting) ammonia from the ammonia-binding composition 2 and extracting the ammonia.
  • the ammonia storage composition 1 is bound to ammonia by the first holding member 11 and the binding processing member 12 to become the ammonia-binding composition 2, they are members that extract ammonia from the ammonia-binding composition 2.
  • the second holding member 21 has the same configuration as the first holding member 11. That is, it is a member that is capable of holding the ammonia-binding composition 2 and is configured so that the held ammonia-binding composition 2 can be placed under the conditions of ammonia binding pressure P1 and the ammonia desorption pressure P2 in the desorption treatment member 22 described below.
  • a container that allows gas to pass through is used.
  • the desorption processing member 22 is a member equipped with a means for treating the ammonia-binding composition 2 held in the second holding member 21 under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to liberate ammonia from the ammonia-binding composition and obtain the liberated ammonia molecules.
  • the desorption processing member 22 is a container capable of containing the second holding member 21.
  • the desorption processing member 22 is a container that can be opened to accommodate and remove the second holding member 21, and can also be sealed. By being able to be sealed, the inside of the container of the desorption processing member 22 can be maintained under the conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2.
  • the desorption processing member 22 is provided with a pressure control means (not shown) capable of maintaining the inside of the container at an ammonia desorption pressure P2, and a temperature control means (not shown) capable of maintaining the inside of the container at an ammonia desorption temperature T2.
  • the desorption processing member 22 is provided with an ammonia storage means for storing the ammonia recovered from the ammonia-binding composition 2.
  • the pressure control means provided in the desorption processing member 22 is a negative pressure device
  • the negative pressure device may be connected to the ammonia storage means.
  • the ammonia desorption pressure P2 and the ammonia desorption temperature T2 will be described later in the ammonia storage method.
  • the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1, and the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2 ⁇ P1.
  • the ammonia storage method of this embodiment includes a process (hereinafter sometimes referred to as the "ammonia storage process") of contacting the ammonia storage compound with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to cause a chemical reaction.
  • An example of this embodiment includes a process in which water and ammonia molecules are reacted with PbI2 and RNH3I , respectively, which are in chemical equilibrium with at least one compound of formula (I).
  • the ammonia molecules react with at least one RNH3I to produce at least one RNH2 and NH4I
  • the PbI2 reacts with water molecules to produce Pb(OH)I and HI.
  • the ammonia molecules are stored by forming at least one or both of RNH2 and NH4I molecules.
  • the ammonia storage method of this embodiment is preferably carried out using the ammonia storage device described above.
  • the ammonia storage compound may be any of those described above.
  • the ammonia bonding pressure P1 must be 80 mbar or more at room temperature (25° C.), and is preferably normal pressure (1 bar) or less.
  • the bonding between the ammonia storage compound and ammonia does not necessarily require high pressure, but bonding is difficult to occur if the pressure is below the lower limit.
  • the ammonia binding temperature T1 is preferably equal to or higher than room temperature (25° C.), and more preferably equal to or higher than 40° C. Even at room temperature, the ammonia storage compound and ammonia will bind together at the above-mentioned high pressure, but the higher the temperature, the more efficient the binding.
  • the ammonia binding temperature T1 must be equal to or lower than 90° C. The binding efficiency reaches a maximum at 90° C., but decreases at temperatures higher than this.
  • the step of contacting molecular ammonia and water is preferably carried out by exposure to NH 3 (aq) vapor.
  • the content (partial pressure) of NH 3 (aq) vapor during exposure can be appropriately selected so long as it is contained in the exposure gas, but it is preferably 10% or more of the saturated vapor pressure, and it is more preferable to use saturated NH 3 (aq) vapor.
  • the exposure time is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 1 hour or more.
  • the ammonia storage method of the present embodiment may include a step of releasing ammonia after the storage step.
  • the release step is a step of treating an ammonia-binding composition containing a chemical species obtained by chemically reacting at least one compound of formula (I) (ammonia storage compound) with water molecules and ammonia molecules under conditions of an ammonia release pressure P2 and an ammonia release temperature T2 to liberate ammonia molecules from the ammonia-binding composition.
  • the ammonia-binding composition includes at least one of RNH2 and NH4I , which are produced by chemically reacting an ammonia molecule with at least one of RNH3I , and Pb(OH)I and HI, which are produced by reacting PbI2 with a water molecule, and ammonia molecules are liberated by the reverse reaction of the chemical reaction that occurs in the ammonia storage process.
  • the conditions of the ammonia desorption pressure P2 and the ammonia desorption temperature T2 are generally higher or lower than those in the ammonia storage step, and preferably higher and lower.
  • the ammonia desorption pressure P2 is preferably less than 300 mbar, more preferably less than or equal to 80 mbar, and even more preferably approximately a vacuum.
  • the ammonia desorption temperature T2 is preferably 40° C. or higher, and more preferably 50° C. or higher.
  • the duration of the ammonia desorption operation is preferably 10 minutes or more, more preferably 1 hour or more, and even more preferably 3 hours or more.
  • T1, T2, P1, and P2 are also preferable to select the values of T1, T2, P1, and P2 so that the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1, and the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2 ⁇ P1.
  • ammonia storage process and the ammonia desorption process can be carried out in any suitable combination.
  • ammonia can be stored in the ammonia storage composition in the ammonia storage process, and then ammonia can be obtained from the ammonia-bound composition at any time by the ammonia desorption process.
  • the method for removing ammonia molecules of this embodiment is a method for removing ammonia molecules, comprising the step of contacting an ammonia storage composition containing at least one compound (ammonia storage compound) represented by formula (I): RNH 3 PbI 3 (wherein R is a C 1 to C 10 hydrocarbon group) with a gas phase containing at least ammonia molecules and water molecules, thereby chemically reacting at least some of the ammonia molecules and water molecules in the gas phase with the at least one compound.
  • the ammonia storage composition and chemical reaction usable in this embodiment are similar to those in the above-mentioned embodiment.
  • the method for removing ammonia molecules according to the present embodiment is used, for example, to remove ammonia molecules floating in a room.
  • the degree of removal of ammonia can be known from the color change.
  • the color change can also be used to detect ammonia molecules present in a room or the like.
  • This method for removing ammonia molecules can also be applied to a deodorizing method, and a deodorizing member or device using the same.
  • the ammonia storage composition of this embodiment is easy and safe to operate, without requiring extreme conditions such as extremely high temperature and high pressure or low temperature and low pressure during storage and release operations.
  • the ammonia since the ammonia is chemically bonded to the ammonia storage compound, it is chemically stable in the bonded state and is safe during storage.
  • the inventors have discovered the first chemical NH3 storage in an organic-inorganic halide perovskite material through dynamic structure transformation.
  • the incorporation of NH3 into the one-dimensional (1D) columnar structure of ethylammonium lead iodide ( CH3CH2NH3PbI3 , EAPbI3 ) induces a structure transformation into the two-dimensional (2D) layered structure Pb(OH)I.
  • the incorporation of NH3 reaches 10.2 mmol/g at 1 bar and 25°C. Heating at 50°C under vacuum causes the extraction of NH3 , and the structure returns to the initial EAPbI3 structure.
  • the novelty of this approach is that it uses a chemical reaction to store NH3 . Unlike physical methods such as storage in pores, the chemical method has the potential to selectively store only NH3 from a gas mixture through a chemical reaction. This method of capturing and extracting NH3 is promising as a new type of NH3 storage method.
  • the key to this technology is that the structural change is achieved by steam annealing.
  • This is a property of organic-inorganic halide perovskite (organic inorganic halide perovskite, organometallic halide perovskite) materials.
  • steam annealing of methylammonium lead iodide known as a three-dimensional (3D) perovskite material, leads to improved photoelectric conversion efficiency, increased carrier mobility, and enables chemical detection.
  • Methylammonium lead iodide has the advantage that its structure is deformed in water vapor due to infiltration into the 3D structure, and therefore dimensional control of the chemical structure is important for steam annealing.
  • 1D perovskite materials are expected to prevent modulation of the chemical structure, since the reduction in the dimensionality of the structure promotes relaxation of the chemical structure.
  • the formation of molecular-sized spaces in the columnar structure can allow NH3 vapor to be incorporated into the 1D structure.
  • the present inventors have discovered an organic-inorganic halide perovskite material capable of chemically storing ammonia through dynamic structural transformation.
  • the material Upon uptake of ammonia, the material undergoes a chemical structural change from a one-dimensional columnar structure CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 ) to a two-dimensional layered structure Pb(OH)I.
  • the ammonia uptake of this material is estimated to be 10.2 mmol/g at 1 bar and 25° C.
  • ammonia extraction can be achieved by heating at 50° C. under vacuum.
  • Chemical ammonia storage has been realized by dynamic structural changes in organic-inorganic halide perovskite materials.
  • the chemical structure changed from 1D columnar EAPbI3 to 2D layered Pb(OH)I at 25 °C.
  • ammonia extraction occurred due to the structural change to the initial halide perovskite EAPbI3.
  • Single crystal XRD analysis revealed that the reversible change in chemical structure originated from cation/anion exchange reactions with ammonia uptake/extraction. Because perovskite materials can capture ammonia through chemical reactions, this uptake and extraction method is expected to be able to selectively store ammonia from gas mixtures.
  • metal halides which are precursors (materials) of perovskite, and layered perovskite, which are related substances of the perovskite material, have ammonia storage performance.
  • the uptake of NH3 was 7.1 mmol/g or more at 1 bar and 25°C, and reached 10.5 mmol/g in particularly excellent cases.
  • NH3 is extracted and the initial structure is restored.
  • the novelty of this approach is that it uses a chemical reaction to store NH3 . Unlike physical methods such as storage in pores, the chemical method has the potential to selectively store only NH3 from a gas mixture through a chemical reaction. This method of capturing and extracting NH3 is promising as a new type of NH3 storage method.
  • ammonia storage The uptake behavior of ammonia (NH 3 ) was investigated using a gas adsorption system (BELSORP-max II-HV, MicrotracBEL Co., Ltd., Osaka, Japan). EAPbI 3 (62 mg), preactivated at 60° C. for 3 h to remove any residual solvent, was transferred to a pre-weighed analysis tube. The tube containing the sample was weighed again to measure the mass of the sample. The tube was purged with nitrogen and transferred to the analysis port. Adsorption isotherms were measured at 25° C. using ammonia gas (99.9% purity, Sumitomo Seika Chemicals Co., Ltd., Osaka, Japan).
  • the sample (6.0 mg) in which ammonia was stored was placed on the TG sample holder.
  • Thermally evaporated species were detected by electron ionization spectroscopy under a helium gas flow of 200 mL/min at a heating rate of 5°C/min.
  • Ammonia extraction behavior was evaluated using a vacuum oven (VOM-1000A, EYELA Co., Ltd., Tokyo, Japan) at 50°C.
  • Ammonia solution (NH 3 (aq), 28% in water) was purchased from Junsei Chemical Co., Ltd. (Tokyo, Japan).
  • Deuterated dimethyl sulfoxide (DMSO-d 6 ) was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA).
  • Filter paper No. 6, diameter 21 mm, thickness 0.19 mm
  • Elastic carbon-coated copper grids (ELS-C10) were purchased from Oken Shoji Co., Ltd. (Tokyo, Japan).
  • EAI Ethylammonium iodide
  • EAPbI3 Ethylammonium lead iodide
  • PbI2 (0.60 g, 1.3 mmol) and EAI (0.23 g, 1.3 mmol) were dissolved separately in anhydrous DMF (1 mL), and then the solution was sonicated for 5 min.
  • the EAI solution was added to the PbI2 solution. After sonication, the mixture became a homogeneous yellow solution.
  • the resulting solution was dried on a glass substrate at 100 °C under nitrogen using a temperature controller (FP90 central processor with FP-82HT hot stage, Mettler Toledo, Columbus, OH, USA).
  • FIG. 27 is a graph showing the NMR spectrum of CH 3 CH 2 NH 3 I.
  • FIG. 28 is a graph showing the NMR spectrum of CH3CH2NH3PbI3 .
  • Preparation of PbI2 crystals from Pb(OH)I A single crystal of Pb(OH)I (20 mg, 0.06 mmol) was dissolved in HI (57% in water, 34 ⁇ L). The homogeneous solution was kept at 0 °C for 10 min. The solution was then heated under vacuum at 50 °C for 2 h to give yellow crystals of PbI2 (24 mg, 0.05 mmol).
  • EAI crystals from ethylamine NH4I (30 mg, 0.21 mmol) was dissolved in ethylamine (70% in water, 0.3 mL). The homogeneous solution was kept at 25° C. for 1 h. The solution was then heated under vacuum at 50° C. for 2 h to give white crystals of EAI (36 mg, 0.21 mmol).
  • EAI ethylammonium iodide
  • GBL gamma-butyrolactone
  • the EAPbI3 soaked in paper was placed in a sample holder (PSH-002, JASCO Corporation, Tokyo, Japan). The sample was sealed with a screw cap to avoid evaporation of NH3 .
  • Reflectance spectra were measured using a UV-visible spectrophotometer (V-550, JASCO) equipped with an integrating sphere attachment (ISV-469, JASCO). The diffuse reflectance spectra of the samples were obtained from the Kubelka-Munk function.
  • the fluorescence spectrum of the sample was measured using a spectrofluorophotometer (FP-6500, JASCO) equipped with a sample holder attachment (FPA-810, JASCO). The incident angle of the excitation light was set to 30°.
  • Software Spectra Manager II, JASCO was used to analyze the Eg values.
  • the EAPbI3 soaked on the paper was placed in a vial.
  • the sample was placed in a glove box under nitrogen atmosphere. The initial condition was performed after replacing the inside of the glove box with nitrogen for 20 minutes.
  • NH3 feed rate: 15 mL/min
  • the concentration was checked using an NH3 gas detector (AR8500, Smart Sensor Ltd., Dongguan, China). The distance between the sample and the detector was 8 cm.
  • the sample was stored in a sample holder in the glove box. To avoid evaporation of NH3 , the sample holder was sealed with a screw cap.
  • NH3 NH3 (aq), pyridine, triethylamine, and 4-fluoroaniline were prepared as follows: EAPbI3 on paper was placed in a small vial. This small vial was placed in a larger vial containing cotton on which nitrogen compounds were adsorbed. After the vial was capped, the sample was kept in saturated steam at 25 °C for 24 h.
  • EAPbI3 As an ammonia storage compound, EAPbI3 was synthesized from a precursor solution of ethylammonium iodide (EAI) and lead iodide ( PbI2 ) in N,N-dimethylformamide (DMF) with a molar ratio of 1:1 using the aforementioned reagents. The solution was dropped onto a glass substrate and dried at 100 °C under nitrogen. The resulting solid was placed in an agate mortar and ground with an agate pestle. The powder was then dried under vacuum at 70 °C for 3 h to obtain the dried EAPbI3 sample.
  • EAI ethylammonium iodide
  • PbI2 lead iodide
  • DMF N,N-dimethylformamide
  • Figure 1 shows the appearance of the synthesized EAPbI 3 and a photograph of the ammonia uptake test.
  • (a) shows an SEM image and the appearance (upper left) of the synthesized EAPbI 3.
  • (b) is a photograph showing the experimental setup for investigating the uptake behavior of NH 3 (aq) vapor by EAPbI 3.
  • (i) in (b) shows the sample before NH 3 exposure, and (ii) shows the sample after NH 3 exposure at 25°C for 10 minutes.
  • EAPbI3 exhibited a smooth surface without any amorphous or porous structure by scanning electron microscopy (SEM).
  • FIG. 2 is a schematic diagram of the crystal structures of EAPbI3 and Pb(OH)I, where (i) shows EAPbI3 and (ii) shows Pb(OH)I.
  • FIG. 3 is a photograph of EAPbI3 and Pb(OH)I observed by an optical microscope, (i) shows EAPbI3 , and (ii) shows Pb(OH)I.
  • Figure 4 is a schematic diagram showing the arrangement of EAPbI3 crystals, where (i) shows the view from the a-axis in Figure 2(i), (ii) shows the view from the b-axis, and (iii) shows the view from the c-axis.
  • 5 is another schematic diagram showing the arrangement of Pb(OH)I crystals, where (i) shows the view from the a-axis in FIG. 2(ii), (ii) shows the view from the b-axis, and (iii) shows the view from the c-axis.
  • Hexagonal EAPbI3 single crystals had been prepared by vapor diffusion, as shown in Fig. 3(a).
  • EAPbI3 showed molecular packing of CH3CH2NH3 + cations between 1D columnar structures of [ PbI6 ] 4- octahedra along the a-axis shown in Fig. 2(i) (Fig. 4).
  • the hexagonal EAPbI3 single crystals changed into needle-like single crystals after exposure to NH3 (aq) vapor, as shown in the above photograph.
  • the obtained single crystals were Pb(OH)I with OH- anions (Fig. 3(ii)).
  • This white crystal had a two-dimensional layered structure with [ PbI3 ] -ions perpendicular to the a-axis. Furthermore, [ OHPb3 ] tetrahedra stabilized the 2D layered structure with an interlayer distance of 4.18 ⁇ (Fig. 5).
  • FIG. 6 is a graph showing the adsorption isotherm and TG-MS results of EAPbI3.
  • (a) shows the adsorption isotherm of NH3 uptake by EAPbI3 at 25°C.
  • (b) shows the thermogravimetric mass spectrometry (TG-MS) results for NH3 extraction by EAPbI3 (heating rate 5°C/min).
  • TG-MS thermogravimetric mass spectrometry
  • FIG. 7 is a photograph of the sample of this embodiment taken during X-ray analysis. As shown in the figure, the samples were covered with an airtight cap to continue to maintain the same atmosphere.
  • FIG. 8 is a graph showing the change in the XRD pattern of EAPbI3 , (i) EAPbI3 before treatment, (ii) after NH3 (aq) incorporation, and (iii) after NH3 extraction under vacuum at 50° C. Unless otherwise stated, measurements were performed at room temperature.
  • FIG. 9 is a graph showing the X-ray diffraction pattern of EAPbI3 .
  • FIG. 10 is a schematic diagram showing the spacings of d001 and d002 in a crystal structure.
  • EAPbI3 showed a reversible structural change upon NH3 incorporation/extraction, as shown in Fig. 8.
  • EAPbI3 exhibited an orthorhombic crystal system with the space group of Pnma (i).
  • the 1D chains consisting of face-sharing octahedral units of [ PbI6 ] 4- were stretched along the a-axis.
  • the 1D columns were aligned in the [011] and [010] directions with spacings of 8.82 ⁇ and 8.75 ⁇ , respectively.
  • FIG. 11 is a photographic representation showing repeated NH3 uptake/extraction of EAPbI3 .
  • the chemical structure is changed repeatedly, the same color change (yellowing, whitening) is observed. That is, when NH3 is taken up, it becomes white (light color) in the first (ii) and second (iv) times, and when NH3 is extracted, it turns yellow again and almost returns to the color before NH3 is taken up. In other words, the reversible property of being able to repeat the structural change was revealed.
  • FIG. 13 is a schematic diagram showing a putative mechanism of NH3 storage proposed to explain the reversible structural change upon NH3 uptake/extraction.
  • CH3CH2NH2 was evaluated by 1H NMR spectroscopy.
  • Untreated EAPbI3 in deuterated dimethylsulfoxide showed chemical shifts of ethylammonium at 7.56 ppm (CH3CH2NH3+), 2.83 ppm ( CH3CH2NH3 + ) , and 1.14 ppm ( CH3CH2NH3 + ) (i).
  • Fig. 15 is a graph showing the XRD patterns of PbI2 and EAI.
  • (i) is the XRD pattern of Pb(OH)I
  • (ii) is the XRD pattern after reaction with HI
  • (iii) is the XRD pattern of PbI2 .
  • the vertical line under the graph in the figure indicates ICSD 68819.
  • the indices of the reflection peaks are shown in Table 2 below.
  • Pb(OH)I crystals underwent a condensation reaction with 57% hydroiodic acid (HI), and the change in the XRD pattern after drying at 50 °C was consistent with the XRD pattern of PbI2 .
  • HI hydroiodic acid
  • 16 is a graph showing the XRD patterns of Pb(OH)I (i) before washing with water, (ii) after washing, and (iii) after heating sample (ii) at 50° C. for 6 hours.
  • the vertical lines in the figure indicate ICSD 192169.
  • the water-soluble compounds HI, CH3CH2NH2 , and NH4I were removed from Pb(OH)I by washing with water.
  • the XRD pattern of the washed crystals was the same as that of the Pb(OH)I crystals. Furthermore, the XRD pattern did not change even when the washed crystals were heated at 50°C.
  • d1 indicates the lattice spacing of the product obtained by the reaction of Pb(OH)I with HI
  • d2 indicates the lattice spacing of PbI2 .
  • d1 represents the lattice spacing of the product obtained by the reaction of ethylamine with NH 4 I
  • d2 represents the lattice spacing of EAI. [a] represents unknown data.
  • Fig. 17 is a schematic diagram showing the action of the ammonia storage compound contained in the ammonia storage composition of this embodiment.
  • the ammonia storage compound has a 1D columnar structure when it does not incorporate ammonia (NH 3 ), and a 2D layered structure when it incorporates ammonia. These mutual changes of structures can be repeated reversibly under certain conditions, so that it can be used to incorporate and extract ammonia. Therefore, the ammonia storage compound of this embodiment can be used to store ammonia.
  • the soaked EAPbI 3 on paper was cut into rectangles (size: 5 mm ⁇ 20 mm).
  • the thickness of the samples was measured using a micrometer (CLM1-15QM with micrometer stand (MS-RB), Mitutoyo Corporation, Kawasaki, Japan).
  • the letter R was stamped onto paper using a solution of EAPbI3 in DMF as the "ink” (i), and when the sample was exposed to aqueous ammonia ( NH3 (aq)) vapor, the yellow lettering disappeared (ii), and after removal of the NH3 (aq) by treatment at 50 °C for 2 min, the lettering became visible again (iii).
  • aqueous ammonia NH3 (aq)
  • Figure 19 shows a scanning electron microscope (SEM) image of EAPbI3 crystals layered on paper. These crystals had plate-like structures with a diameter of 1-2 ⁇ m and a thickness of about 100 nm.
  • the optical properties, detection limits, response times, and chemical selectivity of this paper-layered sample of EAPbI3 crystals were investigated.
  • 20 is a graph showing the change in diffuse reflectance spectrum of EAPbI3 upon immersion in paper at 25° C.
  • (i) untreated EAPbI3 (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) at 100° C. under vacuum.
  • 21 is a graph showing the Tauc plots of EAPbI3 (i ) untreated, (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) at 100° C. under vacuum.
  • the energy band gaps (Eg) were (i) 2.39 eV, (ii) 2.96 eV, and (iii) 2.39 eV, respectively.
  • the diffuse reflectance spectrum of the paper sample showed a reversible change in the energy band gap (Eg) before and after exposure to NH 3 (aq) vapor.
  • the yellow EAPbI 3 crystals showed a broad spectrum between 250 and 550 nm. As determined from the Tauc plot, the Eg of this crystal was 2.39 eV.
  • the Eg of the white crystalline Pb(OH)I after exposure to NH 3 (aq) vapor was 2.96 eV. After removal of NH 3 (aq), the same initial value of Eg (2.39 eV) was obtained.
  • EAPbI3 is a graph showing the fluorescence spectra of EAPbI3 soaked in paper at 25° C. (i) untreated EAPbI3 , (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) under vacuum at 100° C. EAPbI3 also showed a reversible change in the fluorescence spectrum: upon optical excitation at 360 nm, a maximum wavelength of 545 nm was observed (i). After exposure to NH3 (aq) vapor, the fluorescence intensity decreased by 45% (ii). After removal of NH3 (aq), the intensity returned to the initial value (iii).
  • FIG. 23 is a graph showing the change in fluorescence spectrum of paper-soaked samples at various concentrations of NH3 . Monitoring the fluorescence intensity revealed that NH3 was detected at a concentration of 10 ppm.
  • FIG. 24 is a graph showing the rate of change of fluorescence intensity at 545 nm versus NH3 concentration.
  • IBefore and IAafter represent the fluorescence intensity at 545 nm before and after exposure to NH3 , respectively.
  • FIG. 25 is a graph showing the change in response time depending on the sample thickness of EAPbI3 .
  • the minimum response time was 48 s.
  • Figure 26 is a photograph showing the adsorption behavior of various solutions onto soaked EAPbI3 crystals on paper: (a) NH3 (aq), (b) pyridine, (c) triethylamine, and (d) 4-fluoroaniline, (i) before exposure and (ii) after 24 h exposure at 25 °C.
  • the chemoselectivity of the steam discoloration behavior was carried out using nitrogen-containing compounds: no color change of EAPbI3 crystals occurred even after 24 h of exposure to the aromatic compound pyridine, the aliphatic compound triethylamine, and the amine-substituted compound 4-fluoroaniline.
  • the ammonia storage compound of this embodiment selectively responds to ammonia water and ammonia vapor on a thin film such as paper and changes color, so it may be applicable to sensors and test papers that indicate the amount of ammonia stored by the color.
  • Figure 30 is a photograph showing the adsorption behavior of various solutions on the crystals of other compounds.
  • the adsorption behavior of NH 3 (aq) was examined for each compound shown in the figure, EAPbBr 3 , FEAPbI 3 , HOEAPbI 3 , PbI 2 , (PEA) 2 PbI 4 , (BA) 2 (MA) Pb 2 I 7 , (BA) 2 (MA) 2 Pb 3 I 10 , (BA ) 2 (MA) 3 Pb 4 I 13 , and (BA) 2 (MA) 4 Pb 5 I 16 , using the same method as in Figure 26 except that it was performed directly on the crystals.
  • HOEAI (Synthesis of HOEAPbI3 ) Under an argon atmosphere, HOEAI (8.29 g, 43.8 mmol, 1.00 eq) was added to dehydrated DMF (34 ml) and dissolved by ultrasonic treatment. Separately, under an argon atmosphere, lead iodide (20.2 g, 43.8 mmol, 1.00 eq) was added to dehydrated DMF (34 ml) and ultrasonicated for 5 minutes, and then a separately dissolved HOEAI/DMF solution was added. After ultrasonic treatment, the mixture was dried under reduced pressure at 70° C. for 5 hours and dried under reduced pressure at 80° C. for 4 hours to obtain 28.2 g (43.3 mmol) of yellow solid as HOEAPbI 3 .
  • PbI2 (L0279) was purchased from Tokyo Chemical Industry Co., Ltd., (PEA) 2PbI4 ( 910937 ), (BA) 2 (MA)Pb2I7 ( 912816), (BA)2(MA)2Pb3I10 (912557), (BA)2 ( MA )3Pb4I13 (914363), and (BA)2 ( MA ) 4Pb5I16 ( 912301 ) were purchased from Aldrich. The numbers in parentheses after the compound names indicate catalog numbers .
  • Adsorption isotherms were measured for each of the compounds in the same manner as in Fig. 6. The measurements were performed at room temperature (25°C). 31, 32 and 33 are graphs showing adsorption isotherms for further compounds.
  • FIG. 31(a) shows the adsorption isotherm of EAPbI 3
  • (b) shows the adsorption isotherm of EAPbBr 3
  • (c) shows the adsorption isotherm of FEAPbI 3
  • (d) shows the adsorption isotherm of HOEAPbI 3 .
  • FIG. 33(a) is (BA)2(MA)2Pb2I7
  • (b) is (BA)2(MA)2Pb3I10
  • ( c ) is ( BA ) 2 (MA) 3Pb4 .
  • I 13 (d) shows the adsorption isotherm of (BA) 2 (MA) 4 Pb 5 I 16 .
  • the uptake behavior of these compounds was such that no adsorption occurred at around 200 mbar, and the adsorption capacity gradually increased, or the adsorption capacity increased significantly at 800 to 1000 mbar (1 bar).
  • ammonia storage capacity additional compounds
  • 34, 35 and 36 are graphs showing the results of thermogravimetric mass spectrometry for further compounds.
  • FIG. 34(a) shows the thermogravimetric and mass spectrometry results of EAPbI 3 , (b) EAPbBr 3 , (c) FEAPbI 3 , and (d) HOEAPbI 3 .
  • FIG. 34(a) shows the thermogravimetric and mass spectrometry results of EAPbI 3 , (b) EAPbBr 3 , (c) FEAPbI 3 , and (d) HOEAPbI 3 .
  • 35(a) shows the thermogravimetric and mass spectrometry results of GuaPbI 3
  • (b) shows the thermogravimetric and mass spectrometry results of PbI 2
  • (c) shows the thermogravimetric and mass spectrometry results of (BA) 2 PbI 4
  • (d) shows the thermogravimetric and mass spectrometry results of (PEA) 2 PbI 4 .
  • Figure 36 ( a ) shows the thermogravimetric and mass analyses of (BA ) 2 ( MA ) 2Pb2I7 , (b) ( BA ) 2 (MA) 2Pb3I10 , (c) (BA) 2 (MA) 3Pb4I13 , and ( d ) (BA) 2 (MA) 4Pb5I16 .
  • BA ammonia adsorbed in each compound could be removed by heating, and that each compound showed a peak in the vicinity of 60-90°C.
  • the present invention provides an ammonia storage composition that allows ammonia to be stored relatively easily under mild conditions and with a high degree of safety, an ammonia storage device that uses the composition, an ammonia storage method, and a method for removing ammonia molecules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are: a composition for ammonia storage and an ammonia bonding composition, with which ammonia can be stored relatively easily under mild conditions and can be stored with high safety; and an ammonia storage device and an ammonia storage method, which use same. The composition for ammonia storage contains a compound for ammonia storage which is represented by any of specific formulae (I-a) to (I-c). In addition, the ammonia bonding composition contains said composition for ammonia storage and is obtained by bonding the compound to an ammonia molecule and a water molecule. In addition, the ammonia storage device, the ammonia storage method and an ammonia molecule removal method use the foregoing.

Description

アンモニア貯蔵用組成物、アンモニア結合組成物、アンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法Ammonia storage composition, ammonia binding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method

 本発明は、アンモニアを化学的に貯蔵できる材料を用いたアンモニア貯蔵用組成物、それを用いたアンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法に関する。
 本願は、2023年6月9日に米国に仮出願された米国特許出願番号63/471981号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an ammonia storage composition using a material capable of chemically storing ammonia, an ammonia storage device using the same, an ammonia storage method, and a method for removing ammonia molecules.
This application claims priority to U.S. Patent Application No. 63/471,981, provisionally filed in the United States on June 9, 2023, the contents of which are incorporated herein by reference.

 アンモニア(NH)は、肥料、医薬品、繊維、食品などの原料として広く利用されている重要な化学物質であり、世界で年間約2億トンが生産されている。一方で、大きな水素質量密度(17.8wt%)および水素体積密度(0.107kg/L)を持ち、いわゆる水素キャリアとしても注目されている。炭素を含まず、燃焼しても二酸化炭素を排出しないことも利点となっている。 Ammonia (NH 3 ) is an important chemical substance that is widely used as a raw material for fertilizers, medicines, fibers, food, etc., and about 200 million tons are produced annually worldwide. On the other hand, it has a large hydrogen mass density (17.8 wt%) and hydrogen volume density (0.107 kg/L), and is also attracting attention as a so-called hydrogen carrier. Another advantage is that it does not contain carbon and does not emit carbon dioxide when burned.

 その一方で、アンモニアは常温・常圧では腐食性の高いガスであり、取り扱いや保管が困難であるという側面を持つ。そのため、アンモニアはしばしば、低温(-33℃など)で貯蔵密度を最大化するために液化されるか、高圧(16~18bar)で加圧容器に貯蔵されている。
 したがって、アンモニアにはより安全かつ簡易な保管方法が望まれている。その例として、例えば多孔質材料がアンモニアの貯蔵媒体として研究されている。例として、活性炭、ゼオライト、ポリマー、または金属有機構造体(多孔性金属錯体)などの材料は、細孔内でアンモニアを物理的に吸着することができる。
However, ammonia is a highly corrosive gas at room temperature and pressure, making it difficult to handle and store, so it is often liquefied to maximize storage density at low temperatures (such as -33°C) or stored in pressurized vessels at high pressures (16-18 bar).
Therefore, a safer and easier method of storing ammonia is desired. For example, porous materials have been investigated as a storage medium for ammonia. For example, materials such as activated carbon, zeolites, polymers, or metal-organic frameworks (porous metal complexes) can physically adsorb ammonia in their pores.

 例えば、特許文献1は、ガス分離、ガス貯蔵、触媒反応及びセンサのためのゼオライト骨格を開示している。特に、ゼオライト骨格(ZIF)を開示し、このZIFは、任意の数の遷移金属又は同種の遷移金属の組成を具えている。このゼオライト骨格はアンモニアを含む化学種を吸着可能であり、それを用いたガス貯蔵装置などを得ようとするものである。 For example, US Pat. No. 5,999,633 discloses zeolite frameworks for gas separation, gas storage, catalysis and sensors. In particular, the document discloses a zeolite framework (ZIF) that comprises any number of transition metals or a homogeneous transition metal composition. The zeolite framework is capable of adsorbing chemical species, including ammonia, and is intended to be used to obtain a gas storage device, etc.

特表2009-528251号公報Special Publication No. 2009-528251

 特許文献1などの多孔質材料を用いた貯蔵媒体は、アンモニアを常温・常圧に近い温和な条件で保存することができる。しかし、これらの貯蔵媒体はいずれも貯蔵能力が低い、取り込みが不可逆であるなど、機能が限られている。 Storage media using porous materials such as those described in Patent Document 1 can store ammonia under mild conditions close to room temperature and pressure. However, all of these storage media have limited functionality, such as low storage capacity and irreversible uptake.

 また、アンモニアを細孔に取り込む原理では、化学的にはアンモニアのまま貯蔵するため、常温、常圧での保存ではアンモニアは腐食性を有するままであり、安全性の懸念もある。そのため、新たなアンモニア貯蔵材料は常に待望されている。 In addition, the principle of trapping ammonia in pores means that it is stored chemically as ammonia, so ammonia remains corrosive when stored at room temperature and pressure, raising safety concerns. For this reason, new ammonia storage materials are always desired.

 本発明は上記のような事情を鑑みてなされたものであり、その目的は、アンモニアを温和な条件で比較的簡易に貯蔵することができ、かつ安全性の高い貯蔵が可能であるアンモニア貯蔵用組成物、アンモニア結合組成物、それを用いたアンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法を提供することにある。 The present invention has been made in consideration of the above circumstances, and its purpose is to provide an ammonia storage composition, an ammonia binding composition, an ammonia storage device using the same, an ammonia storage method, and a method for removing ammonia molecules, which allow ammonia to be stored relatively easily under mild conditions and with a high degree of safety.

 上記課題を解決するため、本発明は以下の態様を有する。
[1] 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
 (前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を指す)で表される少なくとも一種のアンモニア貯蔵用化合物を含む、アンモニア貯蔵用組成物。
[2] 前記アンモニア貯蔵用化合物が、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、[1]に記載のアンモニア貯蔵用組成物。
[3] [1]に記載のアンモニア貯蔵用組成物を含み、前記化合物に対してアンモニア分子と水分子とがさらに結合することで得られるアンモニア結合組成物。
[4] [1]または[2]に記載のアンモニア貯蔵用組成物を含むアンモニア貯蔵装置であって、
 前記アンモニア貯蔵用組成物を保持するための第一保持部材と、
 前記第一保持部材に保持された前記アンモニア貯蔵用組成物に対して、アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、
 前記少なくとも一種のアンモニア貯蔵用化合物に対してアンモニア分子と水分子とがさらに結合することで得られるアンモニア結合組成物とする手段を備えた、アンモニア貯蔵装置。
[5] 前記アンモニア結合組成物を保持するための第二保持部材と、
 前記第二保持部材に保持された前記アンモニア結合組成物に対して、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、前記アンモニア結合組成物からアンモニア分子を離脱させ少なくとも一種の前記アンモニア貯蔵用化合物とし、
 前記アンモニア結合組成物から離脱したアンモニア分子を収集する手段をさらに備えた、[4]に記載のアンモニア貯蔵装置。
[6] 前記アンモニア結合温度T1および前記アンモニア離脱温度T2がT2>T1の関係にあり、
 前記アンモニア結合圧力P1および前記アンモニア離脱圧力P2がP2<P1の関係にある、
 [5]に記載のアンモニア貯蔵装置。
[7] アンモニア貯蔵方法であって、
 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
 (前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)
 で表される少なくとも一種のアンモニア貯蔵用化合物に対して、
 アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水分子を接触させて、化学反応させる工程であるアンモニア貯蔵工程を含む、アンモニア貯蔵方法。
[8] 前記アンモニア貯蔵用化合物が、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、[7]に記載のアンモニア貯蔵方法。
[9] 前記アンモニア結合組成物を、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、前記アンモニア結合組成物からアンモニア分子を遊離させるアンモニア離脱工程を含む、[7]に記載のアンモニア貯蔵方法。
[10] 前記アンモニア結合温度T1および前記アンモニア離脱温度T2がT2>T1の関係にあり、
 前記アンモニア結合圧力P1および前記アンモニア離脱圧力P2がP2<P1の関係にある、
 [9]に記載のアンモニア貯蔵方法。
[11] 下記式(I)~(III)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
 (前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)
 で表される少なくとも一種のアンモニア貯蔵用化合物を含む、アンモニア貯蔵用組成物を、少なくともアンモニア分子及び水分子を含む気相と接触させることによって、前記気相中の少なくとも一部のアンモニア分子及び水分子を前記少なくとも一種の化合物と化学反応させる工程、を含むアンモニア分子の除去方法。
[12] 前記アンモニア貯蔵用化合物が、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、[11]に記載のアンモニア分子の除去方法。
In order to solve the above problems, the present invention has the following aspects.
[1] Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and the formula (1-c), R represents ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number), comprising at least one ammonia storage compound represented by the formula (I-b) and the formula (1-c).
[2] The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
The ammonia storage composition according to [1],
[3] An ammonia-binding composition comprising the ammonia storage composition according to [1], wherein an ammonia molecule and a water molecule are further bound to the compound.
[4] An ammonia storage device comprising the ammonia storage composition according to [1] or [2],
A first retention member for retaining the ammonia storage composition;
The ammonia storage composition held in the first holding member is contacted with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1,
The ammonia storage device further comprises a means for further binding ammonia molecules and water molecules to the at least one ammonia storage compound to obtain an ammonia-binding composition.
[5] A second holding member for holding the ammonia-binding composition;
The ammonia-binding composition held in the second holding member is treated under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to desorb ammonia molecules from the ammonia-binding composition to obtain at least one ammonia storage compound;
The ammonia storage device according to [4], further comprising a means for collecting ammonia molecules released from the ammonia-binding composition.
[6] The ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
The ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.
The ammonia storage device according to [5].
[7] A method for storing ammonia, comprising:
Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and formula (1-c), R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.)
For at least one ammonia storage compound represented by
An ammonia storage method comprising: an ammonia storage step of contacting ammonia molecules and water molecules under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to cause a chemical reaction.
[8] The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
The ammonia storage method according to [7],
[9] The ammonia storage method according to [7], comprising an ammonia desorption step of treating the ammonia-binding composition under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to liberate ammonia molecules from the ammonia-binding composition.
[10] The ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
The ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.
The method for storing ammonia according to [9].
[11] Any of the following formulas (I) to (III):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and formula (1-c), R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.)
A method for removing ammonia molecules, comprising: contacting a gas phase containing at least ammonia molecules and water molecules with an ammonia storage composition containing at least one ammonia storage compound represented by the formula:
[12] The ammonia storage compound,
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
The method for removing ammonia molecules according to [11],

 本発明によれば、アンモニアを温和な条件で比較的簡易に貯蔵することができ、かつ安全性の高い貯蔵が可能であるアンモニア貯蔵用組成物、を用いたアンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法を提供することができる。 The present invention provides an ammonia storage composition that allows ammonia to be stored relatively easily under mild conditions and with a high degree of safety, an ammonia storage device that uses the composition, an ammonia storage method, and a method for removing ammonia molecules.

合成したEAPbIの外観およびアンモニア取り込みの試験の写真図である。FIG. 1 is a photograph of the appearance of the synthesized EAPbI3 and the test of ammonia uptake. EAPbIおよびPb(OH)Iの結晶構造の模式図である。 FIG. 1 is a schematic diagram of the crystal structures of EAPbI3 and Pb(OH)I. EAPbIおよびPb(OH)Iの光学顕微鏡による観察の写真図である。FIG . 1 is a photograph of EAPbI3 and Pb(OH)I observed by optical microscope. EAPbIの結晶の配置を示す模式図である。FIG. 1 is a schematic diagram showing the arrangement of EAPbI3 crystals. Pb(OH)Iの結晶の配置を示す別の模式図である。FIG. 2 is another schematic diagram showing the arrangement of Pb(OH)I crystals. EAPbIの吸着等温線およびTG-MS結果を示すグラフ図である。 FIG. 2 is a graph showing the adsorption isotherm and TG-MS results of EAPbI3. 本実施例のサンプルのX線解析の際の写真図である。FIG. 2 is a photograph of the sample of this embodiment when subjected to X-ray analysis. EAPbIのXRDパターンの変化を示すグラフ図である。FIG. 2 is a graph showing the change in the XRD pattern of EAPbI3. EAPbIのX線解析パターンを示すグラフ図である。FIG. 2 is a graph showing the X-ray diffraction pattern of EAPbI3. 結晶構造におけるd001およびd002の間隔を示す模式図である。FIG. 2 is a schematic diagram showing the spacings of d001 and d002 in a crystal structure. EAPbIのNH取り込み/抽出の繰り返しを示す写真図である。FIG. 1 is a photographic diagram showing repeated NH3 uptake/extraction of EAPbI3. 図11中の(i)、(iii)、(v)の状態におけるEAPbIのXRDパターンを示すグラフ図である。FIG. 12 is a graph showing XRD patterns of EAPbI3 in the states (i), (iii), and (v) in FIG. NHの取り込み/抽出による可逆的な構造変化を説明するために提案されるNH貯蔵のメカニズムの推定を示す模式図である。FIG. 1 is a schematic diagram showing a putative mechanism of NH3 storage proposed to explain the reversible structural changes upon NH3 uptake/extraction. EAPbIのNH取り込み前後のNMRスペクトルを示すグラフ図である。 FIG. 2 is a graph showing NMR spectra of EAPbI3 before and after NH3 incorporation. PbI、EAIのXRDパターンを示すグラフ図である。FIG. 2 is a graph showing XRD patterns of PbI 2 and EAI. Pb(OH)IのXRDパターンを示すグラフ図である。FIG. 2 is a graph showing an XRD pattern of Pb(OH)I. 本実施形態のアンモニア貯蔵用組成物が含むアンモニア貯蔵用化合物の作用を示す概略図である。2 is a schematic diagram showing the action of an ammonia storage compound contained in the ammonia storage composition of the present embodiment. FIG. 紙上でスタンプされたEAPbI結晶のNH蒸気に対する蒸気変色挙動を示す写真図である。FIG. 1 is a photograph showing the vapor discoloration behavior of EAPbI3 crystals stamped on paper to NH3 vapor. 紙上に積層されたEAPbI結晶の走査型電子顕微鏡(SEM)画像を示す。Figure 2 shows a scanning electron microscope (SEM) image of EAPbI3 crystals layered on paper. 25℃で紙に浸漬したEAPbIの拡散反射率スペクトルの変化を示すグラフ図である。FIG. 2 is a graph showing the change in diffuse reflectance spectrum of EAPbI3 immersed in paper at 25° C. EAPbIのTaucプロットを示すグラフ図である。FIG. 1 is a graph showing the Tauc plot of EAPbI3. 25℃で紙に浸したEAPbIの蛍光スペクトルを示すグラフ図である。FIG. 2 is a graph showing the fluorescence spectrum of EAPbI3 immersed in paper at 25 °C. NHのさまざまな濃度における、紙に浸したサンプルの蛍光スペクトルの変化を示すグラフ図である。FIG. 1 is a graph showing the change in the fluorescence spectrum of paper-soaked samples at various concentrations of NH3 . 545nmでの蛍光強度の変化率とNH濃度の関係を示すグラフ図である。FIG. 1 is a graph showing the relationship between the rate of change of fluorescence intensity at 545 nm and NH3 concentration. EAPbIのサンプル厚さによる応答時間の変化を示すグラフ図である。FIG. 1 is a graph showing the change in response time depending on the sample thickness of EAPbI3. 紙上の浸漬EAPbI結晶に対する様々な溶液の吸着挙動を示す写真図である。FIG. 1 is a photographic diagram showing the adsorption behavior of various solutions onto soaked EAPbI3 crystals on paper. CHCHNHIのNMRスペクトルを示すグラフ図である。FIG. 2 is a graph showing the NMR spectrum of CH 3 CH 2 NH 3 I. CHCHNHPbIのNMRスペクトルを示すグラフ図である。 FIG. 2 is a graph showing the NMR spectrum of CH3CH2NH3PbI3 . 本実施形態のアンモニア貯蔵装置の概略図である。FIG. 1 is a schematic diagram of an ammonia storage device according to an embodiment of the present invention. 他の化合物の結晶に対する様々な溶液の吸着挙動を示す写真図である。FIG. 1 is a photograph showing the adsorption behavior of various solutions onto crystals of other compounds. 他の化合物に対する吸着等温線を示すグラフ図である。FIG. 2 is a graph showing adsorption isotherms for other compounds. 他の化合物に対する吸着等温線を示す別のグラフ図である。FIG. 2 is another graph showing adsorption isotherms for other compounds. 他の化合物に対する吸着等温線を示すまた別のグラフ図である。FIG. 2 is another graph showing adsorption isotherms for other compounds. 他の化合物に対する熱重量質量分析の結果を示すグラフ図である。FIG. 1 is a graph showing the results of thermogravimetric mass spectrometry for other compounds. 他の化合物に対する熱重量質量分析の結果を示す別のグラフ図である。FIG. 11 is another graph showing the results of thermogravimetric mass spectrometry for other compounds. 他の化合物に対する熱重量質量分析の結果を示すまた別のグラフ図である。FIG. 11 is another graph showing the results of thermogravimetric mass spectrometry for other compounds.

 以下、本発明に係るアンモニア貯蔵用組成物、それを用いたアンモニア貯蔵装置およびアンモニア貯蔵方法について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。 The following describes the ammonia storage composition according to the present invention, and the ammonia storage device and ammonia storage method using the same, with reference to the following embodiments. However, the present invention is not limited to the following embodiments.

 (アンモニア貯蔵用組成物)
 本実施形態のアンモニア貯蔵用組成物は、
 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
(前記式(I-b)および式(I-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)
 で表される、少なくとも一種の化合物(本明細書において「アンモニア貯蔵用化合物」という場合がある。)を含む。
(Ammonia storage composition)
The ammonia storage composition of the present embodiment is
Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formulae (I-b) and (I-c), R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.)
The compound includes at least one compound represented by the formula (hereinafter, sometimes referred to as "ammonia storage compound").

 式(I-c)中、nは自然数を示し、数は特に制限はないが、例えば1~20であり、好ましくは1~10もしくは1~7であり、より好ましくは1~5である。式(I-c)で表される化合物の例には、層状ペロブスカイトを含む。式(I-c)で表される化合物が、層状ペロブスカイトである場合、nは層の数と一致していてもよい。
 式(I-b)及び(I-c)中、Rが表す置換されていてもよい炭化水素基は、鎖状であってもよく、鎖状の場合は直鎖、分岐のいずれであっても、その組み合わせであってもよく、環状(即ちシクロアルキル基)であってもよい。Rは芳香性を有していてもよく、芳香性炭化水素基(例えばフェニル)と、脂肪族炭化水素基(例えばアルキル基)との組み合わせであってもよい。中でも、Rは、置換されていてもよい、炭素数1~10のアルキル基又はアラアルキル基(例えばフェニルアルキル基)であるのが好ましい。
 Rは置換されていてもよい炭化水素基であり、置換基の例には、親水性置換基、疎水性置換基のいずれも含まれる。親水性の置換基の例としては、アミノ基、ヒドロキシ基が含まれる。疎水性の置換基としては、ハロゲン原子(例えばフッ素原子)が含まれる。
In formula (I-c), n represents a natural number, and the number is not particularly limited, but is, for example, 1 to 20, preferably 1 to 10 or 1 to 7, and more preferably 1 to 5. Examples of the compound represented by formula (I-c) include layered perovskite. When the compound represented by formula (I-c) is a layered perovskite, n may be equal to the number of layers.
In formulae (I-b) and (I-c), the optionally substituted hydrocarbon group represented by R may be chain-like, and in the case of chain-like, it may be either linear or branched, or a combination thereof, or it may be cyclic (i.e., a cycloalkyl group). R may have aromaticity, or may be a combination of an aromatic hydrocarbon group (e.g., a phenyl group) and an aliphatic hydrocarbon group (e.g., an alkyl group). Among these, R is preferably an alkyl group or araalkyl group (e.g., a phenylalkyl group) having 1 to 10 carbon atoms which may be substituted.
R is a hydrocarbon group which may be substituted, and examples of the substituent include both hydrophilic and hydrophobic substituents. Examples of the hydrophilic substituent include an amino group and a hydroxyl group. Examples of the hydrophobic substituent include a halogen atom (e.g., a fluorine atom).

 式(I-c)中、Rは、下記式(C1)または(C2)で表されるグアニジニウムまたはホルムアミジニウムであってもよい。

Figure JPOXMLDOC01-appb-C000001
In formula (Ic), R may be a guanidinium or formamidinium represented by the following formula (C1) or (C2).
Figure JPOXMLDOC01-appb-C000001

 前記式(I-c)で表される化合物は、Rを2以上含む。2以上のRは、互いに同一でも異なっていてもよい。 The compound represented by formula (I-c) contains two or more R. The two or more R may be the same or different.

 化学構造としては、式(I-a)はハロゲン化金属であり、式(I-b)は式(I-a)を一部置換して得られ、式(I-c)は式(I-a)を一部置換して得られる化合物が層状のペロブスカイト化合物(前記nが一般に、ペロブスカイトの層状を示す)を形成している。 In terms of chemical structure, formula (I-a) is a metal halide, formula (I-b) is obtained by partially substituting formula (I-a), and formula (I-c) is obtained by partially substituting formula (I-a), which form a layered perovskite compound (where n generally indicates the layered structure of perovskite).

 また、前記アンモニア貯蔵用化合物は、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 で表される化合物を特に含む。
 Rの構造および置換基は、前記したRと同様のものを選択することができる。
The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
In particular, the compound is represented by the formula:
The structure and substituents of R 1 can be selected from those similar to those of R described above.

 アンモニア貯蔵用とは、化合物や組成物等がアンモニアと化学反応等することにより結合し、アンモニアを安定的に保持する目的に使用することができる用途を指す。安定的に保持するとは、常温、常圧等ではアンモニアと結合した状態で化学的にほぼ安定であることが好ましい。 "Storing ammonia" refers to a use in which a compound or composition can be used to bind with ammonia through a chemical reaction or the like and stably retain ammonia. "Storing stably" preferably means that the compound is almost chemically stable in the state bound to ammonia at normal temperature, normal pressure, etc.

 アンモニア貯蔵用化合物及び組成物は、一定の操作によりアンモニアと化学反応等することにより結合し、また別の一定の操作により、アンモニアと乖離できることが好ましい。
 本実施形態では、アンモニア貯蔵用化合物がアンモニアと化学反応等することにより得られる化合物の少なくとも一種を含む組成物をアンモニア結合組成物と呼ぶ。
 すなわち、少なくとも一種の式(I-a)~(I-d)の化合物と、アンモニア分子及び水分子とは、化学反応によって結合してもよい。この態様の一例は、アンモニア貯蔵用化合物が例えば式(I-b)の化合物である場合、該化合物と化学的に平衡状態にあるPbI及びRPbX(例えばRNHI)それぞれに、水分子及びアンモニア分子がそれぞれ化学反応により結合した結果得られるアンモニア結合組成物である。この例では、アンモニア結合組成物は、アンモニア分子が少なくとも一種のRNHIと化学反応することで生じる少なくとも一種のRNH及びNHIを含み、且つPbIが水分子と反応することで得られるPb(OH)I及びHIを含む。
It is preferable that the ammonia storage compound and composition can be bonded to ammonia by a certain operation such as by chemical reaction, and can be dissociated from ammonia by another certain operation.
In this embodiment, a composition containing at least one type of compound obtained by, for example, chemically reacting an ammonia storage compound with ammonia is referred to as an ammonia-binding composition.
That is, at least one of the compounds of formulae (I-a) to (I-d) may be bound to an ammonia molecule and a water molecule by a chemical reaction. An example of this embodiment is an ammonia-binding composition obtained by chemically reacting PbI2 and RPbX (e.g., R1NH3I ) that are in chemical equilibrium with the ammonia storage compound, for example, a compound of formula (I- b ), with a water molecule and an ammonia molecule, respectively. In this example, the ammonia-binding composition includes at least one of R1NH2 and NH4I that are generated by chemically reacting an ammonia molecule with at least one of R1NH3I , and includes Pb(OH)I and HI that are obtained by reacting PbI2 with a water molecule.

 本明細書では、アンモニア貯蔵用化合物、組成物がアンモニアと化学反応等して結合することで、アンモニア貯蔵用組成物を含む材料がアンモニアを含む状態とすることを、アンモニアの取り込みと称することがある。また、アンモニア貯蔵用化合物、組成物がアンモニアと乖離することで、アンモニア貯蔵用組成物を含む材料がアンモニアを含む状態から含まない状態となること、又は前記材料からアンモニアを取り出すことを、アンモニアの抽出と称することがある。 In this specification, the state in which a material containing an ammonia storage composition contains ammonia as a result of an ammonia storage compound or composition chemically reacting with ammonia and bonding with it is sometimes referred to as ammonia uptake. In addition, the state in which a material containing an ammonia storage composition changes from a state in which it contains ammonia to a state in which it does not contain ammonia as a result of an ammonia storage compound or composition dissociating from ammonia, or the removal of ammonia from the material is sometimes referred to as ammonia extraction.

 式(I-b)、式(I-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基であり、直鎖、分岐鎖のいずれであってもよく、水素のいずれかが他の元素に置換されていてもよい。しかし、後述するアンモニア貯蔵用化合物の結晶構造の面から、炭素数は1~5であることが好ましい。 In formulas (I-b) and (I-c), R is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, and may be either linear or branched, and any of the hydrogen atoms may be substituted with other elements. However, from the perspective of the crystal structure of the ammonia storage compound described below, it is preferable that the carbon number is 1 to 5.

 式(I-d)は、式(I-b)の化合物について前記Rが特定の構成によるものであり、Rは炭化水素基Rを有し、その1箇所がアミノ基に置換されている。
 式(I-d)中、Rは炭素数2のエチル基(CHCH-)であることがより好ましい。すなわち、より好ましくは、アンモニア貯蔵用化合物が式(II):CHCHNHPbI(前記Rがエチル基である場合であり、エチルアンモニウムヨウ化鉛:EAPbIとも呼ぶ)であることが好ましい。
Formula (Id) is a compound of formula (Ib) in which R has a specific structure, and R has a hydrocarbon group R1 , one of which is substituted with an amino group.
In formula (I-d), R 1 is more preferably an ethyl group having two carbon atoms (CH 3 CH 2 --). That is, it is more preferable that the ammonia storage compound is of formula (II): CH 3 CH 2 NH 3 PbI 3 (when R 1 is an ethyl group, this is also called ethylammonium lead iodide: EAPbI 3 ).

 より具体的には、前記アンモニア貯蔵用化合物は、以下の式(II)~(XI)の化合物であることも好ましい。 More specifically, the ammonia storage compound is preferably a compound of the following formulas (II) to (XI):

 CHCHNHPbI ・・・ (II)
(Ethylammonium lead iodide、EAPbI
 CFCHNHPbI ・・・ (III)
(Trifluoroethylammonium lead iodide、FEAPbI
CH3CH2NH3PbI3 ... ( II )
(Ethylammonium lead iodide, EAPbI 3 )
CF3CH2NH3PbI3 ... ( III )
(Trifluoroethylammonium lead iodide, FEAPbI 3 )

Figure JPOXMLDOC01-appb-C000002
(Formamidinium lead bromide (FAPbBr))
Figure JPOXMLDOC01-appb-C000003
(Guanidinium lead iodide (GuaPbl))
Figure JPOXMLDOC01-appb-C000004
(Dibutylammonium lead tetraiodide ((BA)PbI))
Figure JPOXMLDOC01-appb-C000005
(Dibutylammonium lead tetrabromide ((BA)PbBr))
Figure JPOXMLDOC01-appb-C000002
(Formamidinium lead bromide ( FAPbBr3 ))
Figure JPOXMLDOC01-appb-C000003
(Guanidinium lead iodide (GuaPbl 3 ))
Figure JPOXMLDOC01-appb-C000004
(Dibutylammonium lead tetraiodide ((BA) 2 PbI 4 ))
Figure JPOXMLDOC01-appb-C000005
(Dibutylammonium lead tetrabromide ((BA) 2 PbBr 4 ))

Figure JPOXMLDOC01-appb-C000006
Diphenylethylammonium lead tetraiodide ((PEA)PbI
Figure JPOXMLDOC01-appb-C000007
Diphenylethylammonium lead tetrabromide ((PEA)PbBr
Figure JPOXMLDOC01-appb-C000008
Dibutylammonium methylammonium lead heptaiodide 
((BA)(MA)Pb
Figure JPOXMLDOC01-appb-C000006
Diphenylethylammonium lead tetraiodide ((PEA) 2 PbI 4 )
Figure JPOXMLDOC01-appb-C000007
Diphenylethylammonium lead tetrabromide ((PEA) 2 PbBr 4 )
Figure JPOXMLDOC01-appb-C000008
Dibutylammonium methylammonium lead heptaiodide
((BA) 2 (MA)Pb 2 I 7 )

Figure JPOXMLDOC01-appb-C000009
Dibutylammonium dimethylammonium lead decaiodide
((BA)(MA)Pb10
Figure JPOXMLDOC01-appb-C000010
Dibutylammonium trimethylammonium lead tridecaiodide
((BA)(MA)Pb4I13
Figure JPOXMLDOC01-appb-C000011
Dibutylammonium tetramethylammonium lead hexadecaiodide
((BA)(MA)Pb16
Figure JPOXMLDOC01-appb-C000009
Dibutylammonium dimethylammonium lead decaiodide
((BA) 2 (MA) 2 Pb 3 I 10 )
Figure JPOXMLDOC01-appb-C000010
Dibutylammonium trimethylammonium lead tridecaiodide
((BA) 2 (MA) 3 Pb4I 13 )
Figure JPOXMLDOC01-appb-C000011
Dibutylammonium tetramethylammonium lead hexadecaiodide
((BA) 2 (MA) 4 Pb 5 I 16 )

 CHCHNHPbBr ・・・ (XIV)
(Ethylammonium lead bromide、EAPbBr
 HOCHCHNHPbI ・・・ (XV)
((2-Hydroxyethyl)ammonium lead Iodide、HOEAPbI
CH3CH2NH3PbBr3 ... ( XIV )
(Ethylammonium lead bromide, EAPbBr 3 )
HOCH 2 CH 2 NH 3 PbI 3 ... (XV)
((2-Hydroxyethyl)ammonium lead Iodide, HOEAPbI 3 )

 アンモニア貯蔵用化合物は、式(I-b)、式(I-d)の化合物である場合、常温常圧の状態で一次元(1D)柱状構造をとることが好ましい。
 具体的には、アンモニア貯蔵用化合物がCHCHNHPbI(EAPbI)である場合、後述する実施例の図2(i)に示すように、[PbI4-八面体の1D柱状構造の間に、CHCHNH カチオンが分子パッキングされている状態となっている。
When the ammonia storage compound is a compound of formula (Ib) or (Id), it is preferable that the compound has a one-dimensional (1D) columnar structure at room temperature and normal pressure.
Specifically, when the ammonia storage compound is CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 ), as shown in FIG. 2(i) of the Example described later, CH 3 CH 2 NH 3 + cations are molecular-packed between 1D columnar structures of [PbI 6 ] 4- octahedrons.

 また、本明細書では、本実施形態のアンモニア貯蔵用化合物を含め、有機物(R、アンモニア)、無機物(Pb)、ハロゲン化物(例えばI(ヨウ素))を含む化合物からなるペロブスカイト材料を、有機-無機ハロゲン化物ペロブスカイト(有機無機ハライドペロブスカイト、有機金属ハライドペロブスカイト)材料等とも呼ぶ。 Furthermore, in this specification, perovskite materials made of compounds containing an organic substance (R, ammonia), an inorganic substance (Pb), and a halide (e.g., I (iodine)), including the ammonia storage compound of this embodiment, are also referred to as organic-inorganic halide perovskite (organic-inorganic halide perovskite, organometallic halide perovskite) materials, etc.

 (アンモニア結合組成物)
 本実施形態のアンモニア結合組成物は、前記アンモニア貯蔵用化合物に対してアンモニア分子と水分子とが化学反応等して結合することによって得られる化学種を含む組成物である。一例は、アンモニア貯蔵用化合物と化学的に平衡状態にある化合物(例えば、式(I-d)の場合はPbI及びRNHI)それぞれに、水分子及びアンモニア分子がそれぞれ化学反応により結合した結果得られるアンモニア結合組成物である。この例では、アンモニア結合組成物は、アンモニア分子が少なくとも一種のRNHIと化学反応することで生じる少なくとも一種のRNH及びNHIを含み、且つPbIが水分子と反応することで得られるPb(OH)I及びHIを含む。
Ammonia-binding Composition
The ammonia-binding composition of this embodiment is a composition containing a chemical species obtained by binding ammonia molecules and water molecules to the ammonia storage compound through a chemical reaction or the like. One example is an ammonia-binding composition obtained as a result of water molecules and ammonia molecules being bound to each of compounds in chemical equilibrium with the ammonia storage compound (for example, PbI 2 and R 1 NH 3 I in the case of formula (I-d)) through chemical reaction. In this example, the ammonia-binding composition contains at least one of RNH 2 and NH 4 I that are generated by the chemical reaction of ammonia molecules with at least one of RNH 3 I, and Pb(OH)I and HI that are obtained by the reaction of PbI 2 with water molecules.

 アンモニア結合組成物は、化学反応等によってアンモニア分子を遊離可能な状態で保持している。前記化学反応は、アンモニア貯蔵用化合物がアンモニア分子(及び水分子)と結合する際に進行する反応の逆反応である。すなわち、アンモニア貯蔵組成物は、化学反応によってアンモニアを取り込み、それによって得られたアンモニア結合組成物は、化学反応によってアンモニアを遊離させる。 The ammonia-binding composition holds ammonia molecules in a state in which they can be released by chemical reaction or the like. The chemical reaction is the reverse reaction of the reaction that occurs when the ammonia storage compound bonds with ammonia molecules (and water molecules). In other words, the ammonia storage composition takes in ammonia by chemical reaction, and the ammonia-binding composition obtained thereby releases ammonia by chemical reaction.

 具体的には、例えば式(I-d)のアンモニア貯蔵用化合物RNHPbIは、一定条件でNH(aq)蒸気に曝露すると、OHアニオンを含むPb(OH)Iが分子間にアンモニアを取り込んだアンモニア結合化合物となる。
 より好ましくは、アンモニア貯蔵用化合物がCHCHNHPbI(EAPbIとも呼ぶ)である場合、一次元(1D)の柱状構造CHCHNHPbI(EAPbI)から、二次元(2D)の層状構造Pb(OH)Iへの化学構造変化が起こり、この層間にNHが取り込まれる。
Specifically, for example, when the ammonia storage compound R 1 NH 3 PbI 3 of formula (Id) is exposed to NH 3 (aq) vapor under certain conditions, Pb(OH)I containing OH- anions becomes an ammonia - binding compound in which ammonia is incorporated between the molecules.
More preferably, when the ammonia storage compound is CH 3 CH 2 NH 3 PbI 3 (also called EAPbI 3 ), a chemical structure change occurs from the one-dimensional (1D) columnar structure CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 ) to the two-dimensional (2D) layered structure Pb(OH)I, and NH 3 is incorporated between the layers.

 (アンモニア貯蔵装置)
 本実施形態のアンモニア貯蔵装置は、前記したアンモニア貯蔵用組成物を含む。
 図29は、本実施形態のアンモニア貯蔵装置100の概略図である。図に示すように、本実施形態のアンモニア貯蔵装置100は、アンモニア貯蔵用組成物1を保持するための第一保持部材11と、第一保持部材11に保持された前記アンモニア貯蔵用組成物1に対して、アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、前記少なくとも1種のアンモニア貯蔵用化合物に対してアンモニア分子と水分子とがさらに結合することで得られる化学種を含むアンモニア結合組成物2とする手段を備えている。
(Ammonia storage device)
The ammonia storage device of the present embodiment includes the ammonia storage composition described above.
29 is a schematic diagram of the ammonia storage device 100 of this embodiment. As shown in the figure, the ammonia storage device 100 of this embodiment includes a first holding member 11 for holding an ammonia storage composition 1, and a means for contacting the ammonia storage composition 1 held in the first holding member 11 with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to obtain an ammonia-bound composition 2 containing a chemical species obtained by further binding ammonia molecules and water molecules to the at least one ammonia storage compound.

 アンモニア貯蔵装置100は、アンモニア貯蔵用組成物1に対してアンモニア分子を接触させることで、アンモニア貯蔵用組成物1にアンモニアを貯蔵させる装置である。
 アンモニア貯蔵用組成物1は、第一保持部材11に保持できる形態であればいかなる形態でも構わない。例えば第一保持部材11が容器であれば、アンモニア貯蔵用組成物1は容器に入り得る形態であればよい。
The ammonia storage device 100 is a device that stores ammonia in the ammonia storage composition 1 by bringing ammonia molecules into contact with the ammonia storage composition 1 .
The ammonia storage composition 1 may be in any form as long as it can be held in the first holding member 11. For example, if the first holding member 11 is a container, the ammonia storage composition 1 may be in any form as long as it can be placed in the container.

 第一保持部材11は、アンモニア貯蔵用組成物1を保持し、かつ、後述する結合処理部材12内でアンモニア貯蔵用組成物1にアンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触可能に構成されてなる部材である。このような部材としては、例えば1以上の面が空いている、連通可能であるなどで気体が通過可能である部材が好ましい。後述するように水は水蒸気であることが好ましいので、気体が通過可能であればよい。第一保持部材11としては、例えばアンモニア貯蔵用組成物1を収容可能であり、かつ、結合処理部材12に収納されることが可能な容器が挙げられる。 The first holding member 11 is a member that holds the ammonia storage composition 1 and is configured to allow ammonia molecules and water to come into contact with the ammonia storage composition 1 under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 within the bonding treatment member 12 described below. Such a member is preferably a member that allows gas to pass through, for example, by having one or more surfaces open or being communicable. As described below, water is preferably water vapor, so it is sufficient that the member is capable of passing gas. An example of the first holding member 11 is a container that can hold the ammonia storage composition 1 and that can be stored in the bonding treatment member 12.

 結合処理部材12は、第一保持部材11に保持された前記アンモニア貯蔵用組成物1に対して、アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、アンモニア貯蔵用化合物に対してアンモニア分子と水分子とがさらに結合して生じる化学種を含むアンモニア結合組成物とする手段である。本実施形態では、結合処理部材12は、第一保持部材11を収容可能な容器である。
 また、結合処理部材12は、解放して第一保持部材11の収容及び取出しが可能であるとともに、密閉が可能な容器である。密閉が可能なことで、結合処理部材12の容器内をアンモニア結合圧力P1及びアンモニア結合温度T1の条件下に保つことができ、アンモニア分子及び水をアンモニア貯蔵用組成物1に一定時間、一定条件(一定蒸気圧など)で接触させることができる。
The binding treatment member 12 is a means for contacting the ammonia storage composition 1 held in the first holding member 11 with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to obtain an ammonia-binding composition containing a chemical species generated by further binding ammonia molecules and water molecules to the ammonia storage compound. In this embodiment, the binding treatment member 12 is a container capable of containing the first holding member 11.
The binding processing member 12 is a container that can be opened to accommodate and remove the first holding member 11, and can also be sealed. By being able to seal, the inside of the container of the binding processing member 12 can be kept under the conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1, and ammonia molecules and water can be brought into contact with the ammonia storage composition 1 for a certain period of time under certain conditions (such as a certain vapor pressure).

 本実施形態では、結合処理部材12は、容器内をアンモニア結合圧力P1に保つことができる圧力制御手段(図示せず)、容器内をアンモニア結合温度T1に保つことができる温度制御手段(図示せず)、容器内にアンモニア分子を供給できるアンモニア供給手段(図示せず)、容器内に水(水蒸気)を供給できる水供給手段(図示せず)を備えている。
 アンモニア結合圧力P1、アンモニア結合温度T1、アンモニア及び水の接触の好ましい条件については、アンモニア貯蔵方法において後述する。
In this embodiment, the bonding processing member 12 includes a pressure control means (not shown) capable of maintaining the inside of the container at an ammonia bonding pressure P1, a temperature control means (not shown) capable of maintaining the inside of the container at an ammonia bonding temperature T1, an ammonia supply means (not shown) capable of supplying ammonia molecules into the container, and a water supply means (not shown) capable of supplying water (water vapor) into the container.
The preferred conditions for the ammonia binding pressure P1, the ammonia binding temperature T1, and the contact of ammonia with water will be described later in the ammonia storage method.

 本実施形態では、アンモニア貯蔵装置は、アンモニア結合組成物2を保持するための第二保持部材21と、第二保持部材21に保持されたアンモニア結合組成物2に対して、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、アンモニア結合組成物2からアンモニア分子を離脱させ、少なくとも一種の前記式(I)の化合物とする手段、前記アンモニア結合組成物2から遊離したアンモニア分子を収集する手段を、さらに備えていることが好ましい。 In this embodiment, the ammonia storage device preferably further comprises a second holding member 21 for holding the ammonia-binding composition 2, a means for treating the ammonia-binding composition 2 held in the second holding member 21 under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to desorb ammonia molecules from the ammonia-binding composition 2 and convert them into at least one compound of formula (I), and a means for collecting the ammonia molecules liberated from the ammonia-binding composition 2.

 この第二保持部材21および後述する離脱処理部材22は、アンモニア結合組成物2からアンモニアを離脱(抽出)させアンモニアを取り出す作用を有する部材である。すなわち、前記第一保持部材11と結合処理部材12によってアンモニア貯蔵用組成物1がアンモニアと結合してアンモニア結合組成物2となった後、アンモニア結合組成物2からアンモニアを取り出す部材である。 The second holding member 21 and the release processing member 22 described below are members that have the function of releasing (extracting) ammonia from the ammonia-binding composition 2 and extracting the ammonia. In other words, after the ammonia storage composition 1 is bound to ammonia by the first holding member 11 and the binding processing member 12 to become the ammonia-binding composition 2, they are members that extract ammonia from the ammonia-binding composition 2.

 第二保持部材21は、第一保持部材11と同様の構成を有する。すなわち、アンモニア結合組成物2を保持可能で、後述する離脱処理部材22内で、保持しているアンモニア結合組成物2をアンモニア結合圧力P1および前記アンモニア離脱圧力P2の条件下に置くことが可能なよう構成されてなる部材である。本実施形態では、気体が通過可能な容器を用いている。 The second holding member 21 has the same configuration as the first holding member 11. That is, it is a member that is capable of holding the ammonia-binding composition 2 and is configured so that the held ammonia-binding composition 2 can be placed under the conditions of ammonia binding pressure P1 and the ammonia desorption pressure P2 in the desorption treatment member 22 described below. In this embodiment, a container that allows gas to pass through is used.

 離脱処理部材22は、第二保持部材21に保持された前記アンモニア結合組成物2に対して、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、前記アンモニア結合組成物からアンモニアを遊離させ、その遊離させたアンモニア分子を得る手段を備えた部材である。本実施形態では、離脱処理部材22は、第二保持部材21を収容可能な容器である。
 離脱処理部材22は、解放して第二保持部材21の収容及び取出しが可能であるとともに、密閉が可能な容器である。密閉が可能なことで、離脱処理部材22の容器内をアンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下に保つことができる。
The desorption processing member 22 is a member equipped with a means for treating the ammonia-binding composition 2 held in the second holding member 21 under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to liberate ammonia from the ammonia-binding composition and obtain the liberated ammonia molecules. In this embodiment, the desorption processing member 22 is a container capable of containing the second holding member 21.
The desorption processing member 22 is a container that can be opened to accommodate and remove the second holding member 21, and can also be sealed. By being able to be sealed, the inside of the container of the desorption processing member 22 can be maintained under the conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2.

 本実施形態では、離脱処理部材22は、容器内をアンモニア離脱圧力P2に保つことができる圧力制御手段(図示せず)、容器内をアンモニア離脱温度T2に保つことができる温度制御手段(図示せず)を備えている。また、アンモニア結合組成物2から回収したアンモニアを収容するアンモニア収容手段を備えている。例えば、離脱処理部材22が備える圧力制御手段が陰圧装置である場合、該陰圧装置がアンモニア収容手段と連結されていてもよい。
 アンモニア離脱圧力P2、アンモニア離脱温度T2については、アンモニア貯蔵方法において後述する。ただし、アンモニア結合温度T1および前記アンモニア離脱温度T2がT2>T1の関係にあり、アンモニア結合圧力P1および前記アンモニア離脱圧力P2がP2<P1の関係にあることが好ましい。
In this embodiment, the desorption processing member 22 is provided with a pressure control means (not shown) capable of maintaining the inside of the container at an ammonia desorption pressure P2, and a temperature control means (not shown) capable of maintaining the inside of the container at an ammonia desorption temperature T2. Also, the desorption processing member 22 is provided with an ammonia storage means for storing the ammonia recovered from the ammonia-binding composition 2. For example, when the pressure control means provided in the desorption processing member 22 is a negative pressure device, the negative pressure device may be connected to the ammonia storage means.
The ammonia desorption pressure P2 and the ammonia desorption temperature T2 will be described later in the ammonia storage method. However, it is preferable that the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1, and the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.

 (アンモニア貯蔵方法)
 本実施形態のアンモニア貯蔵方法は、前記したアンモニア貯蔵用化合物に対して、アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、化学反応させる工程(以下、「アンモニア貯蔵工程」と呼ぶ場合がある)を含む。
 この態様の一例は、少なくとも一種の式(I)の化合物と化学的に平衡状態にあるPbI及びRNHIそれぞれに、水分子及びアンモニア分子がそれぞれ化学反応させる工程を含む。この例では、アンモニア分子が少なくとも一種のRNHIと化学反応することで生じる少なくとも一種のRNH及びNHIを生じ、且つPbIが水分子と反応することで得られるPb(OH)I及びHIを生じる。アンモニア分子は、RNH及びNHIの少なくとも一方ないしは双方の分子を構成することで、貯蔵される。
(Method of storing ammonia)
The ammonia storage method of this embodiment includes a process (hereinafter sometimes referred to as the "ammonia storage process") of contacting the ammonia storage compound with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to cause a chemical reaction.
An example of this embodiment includes a process in which water and ammonia molecules are reacted with PbI2 and RNH3I , respectively, which are in chemical equilibrium with at least one compound of formula (I). In this example, the ammonia molecules react with at least one RNH3I to produce at least one RNH2 and NH4I , and the PbI2 reacts with water molecules to produce Pb(OH)I and HI. The ammonia molecules are stored by forming at least one or both of RNH2 and NH4I molecules.

 本実施形態のアンモニア貯蔵方法は、前述のアンモニア貯蔵装置を用いて行うことが好ましい。アンモニア貯蔵用化合物は、前述のものを適宜使用できる。 The ammonia storage method of this embodiment is preferably carried out using the ammonia storage device described above. The ammonia storage compound may be any of those described above.

 (貯蔵条件)
 アンモニア結合圧力P1は、常温(25℃)において80mbar以上である必要があり、常圧(1bar)以下であることが好ましい。アンモニア貯蔵用化合物とアンモニアとの結合は必ずしも高圧を必要としないが、前記下限値を下回ると結合が起こりにくい。
(Storage conditions)
The ammonia bonding pressure P1 must be 80 mbar or more at room temperature (25° C.), and is preferably normal pressure (1 bar) or less. The bonding between the ammonia storage compound and ammonia does not necessarily require high pressure, but bonding is difficult to occur if the pressure is below the lower limit.

 アンモニア結合温度T1は、常温(25℃)以上であることが好ましく、40℃以上であることがより好ましい。常温であっても前記高圧であればアンモニア貯蔵用化合物とアンモニアとの結合が起こるが、より高温の方が高効率で結合する。
 アンモニア結合温度T1は、90℃以下である必要がある。90℃で結合効率が最大に達するが、それ以上では結合効率が減少する。
The ammonia binding temperature T1 is preferably equal to or higher than room temperature (25° C.), and more preferably equal to or higher than 40° C. Even at room temperature, the ammonia storage compound and ammonia will bind together at the above-mentioned high pressure, but the higher the temperature, the more efficient the binding.
The ammonia binding temperature T1 must be equal to or lower than 90° C. The binding efficiency reaches a maximum at 90° C., but decreases at temperatures higher than this.

 アンモニア分子および水を接触させる工程は、NH(aq)蒸気に曝露して行うことが好ましい。
 暴露時のNH(aq)蒸気は、暴露気体に含まれていれば含有量(分圧)は適宜選択できるが、飽和蒸気圧の10%以上であることが好ましく、飽和NH(aq)蒸気で行うことがより好ましい。
 暴露時間は5分以上であることが好ましく、10分以上であることがより好ましく、1時間以上であることがさらに好ましい。
The step of contacting molecular ammonia and water is preferably carried out by exposure to NH 3 (aq) vapor.
The content (partial pressure) of NH 3 (aq) vapor during exposure can be appropriately selected so long as it is contained in the exposure gas, but it is preferably 10% or more of the saturated vapor pressure, and it is more preferable to use saturated NH 3 (aq) vapor.
The exposure time is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 1 hour or more.

 (離脱条件)
 本実施形態のアンモニア貯蔵方法は、前記貯蔵工程の後に、アンモニアを離脱させる工程を含んでいてもよい。例えば、離脱工程は、少なくとも一種の前記式(I)の化合物(アンモニア貯蔵化合物)と水分子及びアンモニア分子とを化学反応することで得られる化学種を含むアンモニア結合組成物を、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、アンモニア結合組成物からアンモニア分子を遊離させる工程である。
 一例では、アンモニア結合組成物は、アンモニア分子が少なくとも一種のRNHIと化学反応することで生じる少なくとも一種のRNH及びNHIを含み、且つPbIが水分子と反応することで得られるPb(OH)IとHIを含み、前記アンモニア貯蔵工程において進行する化学反応の逆反応が進行することで、アンモニア分子が遊離する。
(Conditions for withdrawal)
The ammonia storage method of the present embodiment may include a step of releasing ammonia after the storage step. For example, the release step is a step of treating an ammonia-binding composition containing a chemical species obtained by chemically reacting at least one compound of formula (I) (ammonia storage compound) with water molecules and ammonia molecules under conditions of an ammonia release pressure P2 and an ammonia release temperature T2 to liberate ammonia molecules from the ammonia-binding composition.
In one example, the ammonia-binding composition includes at least one of RNH2 and NH4I , which are produced by chemically reacting an ammonia molecule with at least one of RNH3I , and Pb(OH)I and HI, which are produced by reacting PbI2 with a water molecule, and ammonia molecules are liberated by the reverse reaction of the chemical reaction that occurs in the ammonia storage process.

 アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件としては、一般に、前記アンモニア貯蔵工程よりも高温または低圧、好ましくは高温かつ低圧の条件で行う。
 アンモニア離脱圧力P2は、300mbar未満であることが好ましく、80mbar以下であることがより好ましく、ほぼ真空であることがさらに好ましい。
 アンモニア離脱温度T2は、40℃以上であることが好ましく、50℃以上であることがより好ましい。
 アンモニア離脱の操作の時間は10分以上であることが好ましく、1時間以上であることがより好ましく、3時間以上であることがさらに好ましい。
The conditions of the ammonia desorption pressure P2 and the ammonia desorption temperature T2 are generally higher or lower than those in the ammonia storage step, and preferably higher and lower.
The ammonia desorption pressure P2 is preferably less than 300 mbar, more preferably less than or equal to 80 mbar, and even more preferably approximately a vacuum.
The ammonia desorption temperature T2 is preferably 40° C. or higher, and more preferably 50° C. or higher.
The duration of the ammonia desorption operation is preferably 10 minutes or more, more preferably 1 hour or more, and even more preferably 3 hours or more.

 また、アンモニア結合温度T1およびアンモニア離脱温度T2がT2>T1の関係にあり、アンモニア結合圧力P1およびアンモニア離脱圧力P2がP2<P1の関係にあるように、T1、T2、P1、P2の各値を選択することがより好ましい。 It is also preferable to select the values of T1, T2, P1, and P2 so that the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1, and the ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.

 アンモニア貯蔵工程およびアンモニア離脱工程は、適宜組み合わせて行うことができる。例えば、アンモニア貯蔵工程でアンモニア貯蔵用組成物にアンモニアを貯蔵し、保存してから、任意のタイミングでアンモニア離脱工程によりアンモニア結合組成物からアンモニアを得てもよい。 The ammonia storage process and the ammonia desorption process can be carried out in any suitable combination. For example, ammonia can be stored in the ammonia storage composition in the ammonia storage process, and then ammonia can be obtained from the ammonia-bound composition at any time by the ammonia desorption process.

(アンモニア分子の除去方法)
 本実施形態のアンモニア分子の除去方法は、式(I):RNHPbI(前記式中、RはC~C10の炭化水素基)で表される少なくとも一種の化合物(アンモニア貯蔵用化合物)を含む、アンモニア貯蔵用組成物を、少なくともアンモニア分子及び水分子を含む気相と接触させることによって、前記気相中の少なくとも一部のアンモニア分子及び水分子を前記少なくとも一種の化合物と化学反応させる工程、を含むアンモニア分子の除去方法である。本実施形態に利用可能なアンモニア貯蔵用組成物、化学反応については、上述の実施形態の例と同様である。
(Method of Removing Ammonia Molecules)
The method for removing ammonia molecules of this embodiment is a method for removing ammonia molecules, comprising the step of contacting an ammonia storage composition containing at least one compound (ammonia storage compound) represented by formula (I): RNH 3 PbI 3 (wherein R is a C 1 to C 10 hydrocarbon group) with a gas phase containing at least ammonia molecules and water molecules, thereby chemically reacting at least some of the ammonia molecules and water molecules in the gas phase with the at least one compound. The ammonia storage composition and chemical reaction usable in this embodiment are similar to those in the above-mentioned embodiment.

 本実施形態のアンモニア分子の除去方法は、例えば、室内に浮遊しているアンモニア分子を除去するために利用される。上記化学反応が、色変化を伴う場合は、色変化によってアンモニアの除去の程度を知ることができる。また色変化によって、室内等に存在するアンモニア分子を検知することもできる。
 このアンモニア分子の除去方法は、消臭方法、それを用いた消臭部材や消臭装置等にも応用することができる。
The method for removing ammonia molecules according to the present embodiment is used, for example, to remove ammonia molecules floating in a room. When the above-mentioned chemical reaction is accompanied by a color change, the degree of removal of ammonia can be known from the color change. In addition, the color change can also be used to detect ammonia molecules present in a room or the like.
This method for removing ammonia molecules can also be applied to a deodorizing method, and a deodorizing member or device using the same.

 (本実施形態の効果)
 本実施形態によれば、アンモニアを温和な条件で比較的簡易に貯蔵することができ、かつ安全性の高い貯蔵が可能であるアンモニア貯蔵用組成物、それを用いたアンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法を提供することができる。
(Effects of this embodiment)
According to the present embodiment, it is possible to provide an ammonia storage composition that enables ammonia to be stored relatively easily under mild conditions and with high safety, an ammonia storage device using the same, an ammonia storage method, and a method for removing ammonia molecules.

 本実施形態のアンモニア貯蔵用組成物は、貯蔵時および離脱の操作のいずれも、極端な高温・高圧または低温・低圧のような激しい条件を要さず操作が容易かつ安全である。また、アンモニアは化学的にアンモニア貯蔵用化合物と結合しているので、結合している状態では化学的に安定で、保存中も安全である。 The ammonia storage composition of this embodiment is easy and safe to operate, without requiring extreme conditions such as extremely high temperature and high pressure or low temperature and low pressure during storage and release operations. In addition, since the ammonia is chemically bonded to the ammonia storage compound, it is chemically stable in the bonded state and is safe during storage.

 化学分野において一般に、化合物の次元的に秩序だった構造の構造変化は、化学的および物理的特性の変化のため、多くの注目を集めている。これらの化合物は外部刺激(光、イオン、pH、化学種など)に応答して、分子パッキングの変調を示すことが知られていた。化学構造の動的変調は、選択的反応部位、分子構造、分離、ガス吸着、作動、光触媒、超格子などの用途に役立つことが期待される。
 ただし、化学構造が大きく変化すると、機械的歪みによって構造が不安定になる。したがって、化学構造の構造的完全性と可逆性は、動的プロセスにおける重要な課題として残されていた。
In general, in the chemical field, structural changes of dimensionally ordered structures of compounds have attracted much attention due to the changes in their chemical and physical properties. These compounds have been known to show modulation of molecular packing in response to external stimuli (light, ions, pH, chemical species, etc.). Dynamic modulation of chemical structures is expected to be useful for applications such as selective reaction sites, molecular structure, separation, gas adsorption, actuation, photocatalysis, and superlattices.
However, large changes in the chemical structure can lead to structural instability due to mechanical strain, and therefore the structural integrity and reversibility of the chemical structure remain key challenges in dynamic processes.

 今回、発明者らは、動的構造変換による有機-無機ハロゲン化物ペロブスカイト材料における初めての化学的NH貯蔵について見出した。後述の実施例に示すように、エチルアンモニウムヨウ化鉛の一次元(1D)柱状構造(CHCHNHPbI,EAPbI)へのNHの取り込みは、二次元(2D)層状構造Pb(OH)Iへの構造変換を引き起こす。NHの取り込みは、1bar、25℃で10.2mmol/gに達した。真空下50℃で加熱するとNHの抽出が起こり、構造は初期のEAPbI構造に戻る。
 このアプローチの新規性は、化学反応を使用してNHを貯蔵することにある。細孔への貯蔵などの物理的方法とは異なり、化学的方法は、化学反応によってガス混合物からNHのみを選択的に貯蔵できる可能性がある。このNHの取り込み・抽出方法は、新しいタイプのNH貯蔵法として期待できる。
Here, the inventors have discovered the first chemical NH3 storage in an organic-inorganic halide perovskite material through dynamic structure transformation. As shown in the examples below, the incorporation of NH3 into the one-dimensional (1D) columnar structure of ethylammonium lead iodide ( CH3CH2NH3PbI3 , EAPbI3 ) induces a structure transformation into the two-dimensional (2D) layered structure Pb(OH)I. The incorporation of NH3 reaches 10.2 mmol/g at 1 bar and 25°C. Heating at 50°C under vacuum causes the extraction of NH3 , and the structure returns to the initial EAPbI3 structure.
The novelty of this approach is that it uses a chemical reaction to store NH3 . Unlike physical methods such as storage in pores, the chemical method has the potential to selectively store only NH3 from a gas mixture through a chemical reaction. This method of capturing and extracting NH3 is promising as a new type of NH3 storage method.

 この技術の重要な点は、構造変化が蒸気アニーリングによって達成されることである。これは、有機-無機ハロゲン化物ペロブスカイト(有機無機ハライドペロブスカイト、有機金属ハライドペロブスカイト)材料の特性である。たとえば、三次元(3D)ペロブスカイト材料として知られたメチルアンモニウムヨウ化鉛の蒸気アニーリングは、光電変換効率の向上につながり、キャリア移動度が増加し、化学物質の検出が可能となる。メチルアンモニウムヨウ化鉛には、3D構造への浸透により水蒸気中で構造が変形するという点があり、したがって、化学構造の寸法制御は蒸気アニールにとって重要となる。構造の次元性の減少により化学構造の緩和が促進されるため、1Dペロブスカイト材料は化学構造の変調を防止すると予想される。さらに、柱状構造内に分子サイズの空間が形成されると、NH蒸気が1D構造内に取り込まれる可能性がある。 The key to this technology is that the structural change is achieved by steam annealing. This is a property of organic-inorganic halide perovskite (organic inorganic halide perovskite, organometallic halide perovskite) materials. For example, steam annealing of methylammonium lead iodide, known as a three-dimensional (3D) perovskite material, leads to improved photoelectric conversion efficiency, increased carrier mobility, and enables chemical detection. Methylammonium lead iodide has the advantage that its structure is deformed in water vapor due to infiltration into the 3D structure, and therefore dimensional control of the chemical structure is important for steam annealing. 1D perovskite materials are expected to prevent modulation of the chemical structure, since the reduction in the dimensionality of the structure promotes relaxation of the chemical structure. In addition, the formation of molecular-sized spaces in the columnar structure can allow NH3 vapor to be incorporated into the 1D structure.

 本発明者らは、動的構造変換を通じてアンモニアを化学的に貯蔵できる有機-無機ハロゲン化物ペロブスカイト材料を見出した。この材料は、アンモニアが取り込まれると、一次元の柱状構造CHCHNHPbI(EAPbI)から二次元の層状構造Pb(OH)Iへの化学構造変化が起こる。この材料のアンモニアの取り込みは、1bar、25℃で10.2mmol/gと推定される。さらに、アンモニアの抽出は、真空下50℃で加熱することによって実行できる。X線回折分析により、可逆的なアンモニアの取り込み及び抽出は、[PbI4-八面体に配位したCHCHNH カチオンと[OHPb]四面体によって安定化されたOHアニオンの間のカチオン/アニオン交換反応に由来することが明らかとなった。
 この構造変化は、化学反応を通じてハイブリッドペロブスカイト材料への効率的な取り込みと抽出を統合できる可能性を示している。これらの発見は、アンモニアの化学貯蔵のための動的で可逆的で機能的に有用な材料のさらなる探索への道を開くことも期待される。
The present inventors have discovered an organic-inorganic halide perovskite material capable of chemically storing ammonia through dynamic structural transformation. Upon uptake of ammonia, the material undergoes a chemical structural change from a one-dimensional columnar structure CH 3 CH 2 NH 3 PbI 3 (EAPbI 3 ) to a two-dimensional layered structure Pb(OH)I. The ammonia uptake of this material is estimated to be 10.2 mmol/g at 1 bar and 25° C. Furthermore, ammonia extraction can be achieved by heating at 50° C. under vacuum. X-ray diffraction analysis reveals that the reversible uptake and extraction of ammonia originates from a cation/anion exchange reaction between CH 3 CH 2 NH 3 + cations coordinated to [PbI 6 ] 4- octahedra and OH - anions stabilized by [OHPb 3 ] tetrahedra.
This structural change indicates the possibility of integrating efficient uptake and extraction into hybrid perovskite materials through chemical reactions. These findings are also expected to pave the way for further exploration of dynamic, reversible and functionally useful materials for the chemical storage of ammonia.

 化学的アンモニア貯蔵は、有機-無機ハロゲン化物ペロブスカイト材料の動的構造変化によって実現されている。アンモニアの取り込みにより、25℃で化学構造が1D柱状EAPbIから2D層状Pb(OH)Iに変化していた。さらに、真空下で50℃で加熱すると、最初のハロゲン化物ペロブスカイトEAPbIへの構造変化によりアンモニア抽出が発生した。単結晶XRD分析により、化学構造の可逆的変化は、アンモニアの取り込み/抽出によるカチオン/アニオン交換反応に由来することが明らかになった。ペロブスカイト材料は化学反応によってアンモニアを捕捉できるため、この取り込みおよび抽出方法はガス混合物からアンモニアを選択的に貯蔵できると期待される。 Chemical ammonia storage has been realized by dynamic structural changes in organic-inorganic halide perovskite materials. Upon uptake of ammonia, the chemical structure changed from 1D columnar EAPbI3 to 2D layered Pb(OH)I at 25 °C. Furthermore, upon heating at 50 °C under vacuum, ammonia extraction occurred due to the structural change to the initial halide perovskite EAPbI3. Single crystal XRD analysis revealed that the reversible change in chemical structure originated from cation/anion exchange reactions with ammonia uptake/extraction. Because perovskite materials can capture ammonia through chemical reactions, this uptake and extraction method is expected to be able to selectively store ammonia from gas mixtures.

 また、本発明者らは、前記ペロブスカイト材料の関連物質である、ペロブスカイトの前駆体(材料)である金属ハロゲン化物、層状ペロブスカイトについても、アンモニアの貯蔵性能を見出した。後述の実施例に示すように、NHの取り込みは、1bar、25℃で7.1mmol/g以上、特に優れたものでは10.5mmol/gに達した。真空下で加熱するとNHの抽出が起こり、初期の構造に戻る。
 このアプローチの新規性は、化学反応を使用してNHを貯蔵することにある。細孔への貯蔵などの物理的方法とは異なり、化学的方法は、化学反応によってガス混合物からNHのみを選択的に貯蔵できる可能性がある。このNHの取り込み・抽出方法は、新しいタイプのNH貯蔵法として期待できる。
The inventors also found that metal halides, which are precursors (materials) of perovskite, and layered perovskite, which are related substances of the perovskite material, have ammonia storage performance. As shown in the examples below, the uptake of NH3 was 7.1 mmol/g or more at 1 bar and 25°C, and reached 10.5 mmol/g in particularly excellent cases. When heated under vacuum, NH3 is extracted and the initial structure is restored.
The novelty of this approach is that it uses a chemical reaction to store NH3 . Unlike physical methods such as storage in pores, the chemical method has the potential to selectively store only NH3 from a gas mixture through a chemical reaction. This method of capturing and extracting NH3 is promising as a new type of NH3 storage method.

 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されず種々の変更を行うことができる。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment and various modifications can be made.

 以下、実施例および比較例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例のみに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施できるものである。 The effects of the present invention will be made clearer by the following examples and comparative examples. Note that the present invention is not limited to the following examples, and can be modified as appropriate without departing from the gist of the present invention.

 [試験条件]
 各種測定や操作の条件は以下のように行った。
 (構造の同定)
 合成された化合物は、1H NMR分光法(JNM-ECZ400R、日本電子株式会社、東京、日本)、高分解能質量分析(QSTAR Elite、AB SCIEX、フラミンガム、マサチューセッツ州、米国)、および元素分析によって同定した。表面形態はSEM(Quattro ESEM、加速電圧 5kV、Thermo Fisher Scientific、ウォルサム、マサチューセッツ州、米国)によって調査した。熱特性はTG分析(TA-60WS、窒素下で昇温速度10℃/min、島津製作所、京都、日本)によって評価した。
[Test conditions]
The conditions for various measurements and operations were as follows:
(Structural Identification)
The synthesized compounds were identified by 1H NMR spectroscopy (JNM-ECZ400R, JEOL Ltd., Tokyo, Japan), high-resolution mass spectrometry (QSTAR Elite, AB SCIEX, Framingham, MA, USA), and elemental analysis. Surface morphology was investigated by SEM (Quattro ESEM, accelerating voltage 5 kV, Thermo Fisher Scientific, Waltham, MA, USA). Thermal properties were evaluated by TG analysis (TA-60WS, heating rate 10 °C/min under nitrogen, Shimadzu Corporation, Kyoto, Japan).

 (アンモニア貯蔵)
 アンモニア(NH)の取り込み挙動は、ガス吸着システム(BELSORP-max II-HV、MicrotracBEL Co., Ltd.、大阪、日本)を使用して調査した。残留溶媒をすべて除去するために60℃で3時間事前に活性化したEAPbI(62mg)を、事前に秤量した分析チューブに移した。サンプルの入ったチューブを再度秤量して、サンプルの質量を測定した。チューブ内を窒素で置換し、分析ポートに移した。吸着等温線は、アンモニアガス(純度99.9%、住友精化株式会社、大阪、日本)を使用して25℃で測定した。アンモニア抽出はTG-MS分析によって調査した(ThermoMass Photo、質量範囲m/z=1~300、株式会社リガク、東京、日本)。アンモニアが貯蔵されたサンプル(6.0mg)をTGサンプルホルダーに設置して行った。熱蒸発種は、200mL/minのヘリウムガス流下、5℃/minの加熱速度で電子イオン化分光計によって検出した。アンモニア抽出挙動は、真空オーブン(VOM-1000A、EYELA Co., Ltd.、東京、日本)を50℃で使用して評価した。
(Ammonia storage)
The uptake behavior of ammonia (NH 3 ) was investigated using a gas adsorption system (BELSORP-max II-HV, MicrotracBEL Co., Ltd., Osaka, Japan). EAPbI 3 (62 mg), preactivated at 60° C. for 3 h to remove any residual solvent, was transferred to a pre-weighed analysis tube. The tube containing the sample was weighed again to measure the mass of the sample. The tube was purged with nitrogen and transferred to the analysis port. Adsorption isotherms were measured at 25° C. using ammonia gas (99.9% purity, Sumitomo Seika Chemicals Co., Ltd., Osaka, Japan). Ammonia extraction was investigated by TG-MS analysis (ThermoMass Photo, mass range m/z = 1-300, Rigaku Co., Ltd., Tokyo, Japan). The sample (6.0 mg) in which ammonia was stored was placed on the TG sample holder. Thermally evaporated species were detected by electron ionization spectroscopy under a helium gas flow of 200 mL/min at a heating rate of 5°C/min. Ammonia extraction behavior was evaluated using a vacuum oven (VOM-1000A, EYELA Co., Ltd., Tokyo, Japan) at 50°C.

 (X線測定)
 粉末XRDデータは、Cu Kα(λ=1.5418Å)またはCu Kα1(λ=1.5405Å)放射線を使用してSmartLab回折計(株式会社リガク)で取得した。サンプルは、無反射シリコンサンプルホルダー(直径=14mm)上に配置した。内部雰囲気を維持するために、サンプルは気密キャップで覆った。EAPbIのアンモニア取り込み挙動を調べるために、NH3(aq)で湿らせた濾紙をサンプルホルダー内に置き、飽和条件下で測定を行った。PbI、EAI、およびPb(OH)IのシミュレートされたXRDパターンは、それぞれICSD68819、CCDC1318979、およびICSD192169から計算した。
(X-ray measurement)
Powder XRD data were acquired on a SmartLab diffractometer (Rigaku Corporation) using Cu Kα (λ = 1.5418 Å) or Cu Kα1 (λ = 1.5405 Å) radiation. Samples were placed on non-reflective silicon sample holders (diameter = 14 mm). To maintain the internal atmosphere, the samples were covered with airtight caps. To investigate the ammonia uptake behavior of EAPbI3 , a filter paper moistened with NH3(aq) was placed in the sample holder and measurements were performed under saturated conditions. The simulated XRD patterns of PbI2 , EAI, and Pb(OH)I were calculated from ICSD68819, CCDC1318979, and ICSD192169, respectively.

 単結晶XRDデータは、Saturn70電荷結合素子検出器(株式会社リガク)を備えたAFC-8回折計を使用し、Mo Kα(λ=0.71073Å)放射線を使用して300Kで測定した。すべての構造は、SHELXT-2018/2プログラムの二重空間法によって解析し、SHELXL-2018/3プログラムの全行列最小二乗法によって修正した。 Single crystal XRD data were measured at 300 K using Mo Kα (λ = 0.71073 Å) radiation using an AFC-8 diffractometer equipped with a Saturn70 charge-coupled device detector (Rigaku Corporation). All structures were solved by the dual-space method in the SHELXT-2018/2 program and corrected by the full-matrix least-squares method in the SHELXL-2018/3 program.

 結晶構造はVESTAを使用して描画した。なお、EAPbIおよびPb(OH)Iに関するCCDC 2077393およびCSD 2077394には、これらの補足的な結晶学的データが含まれ、これらのデータは、ケンブリッジ結晶学データセンター(www.ccdc.cam.ac.uk/data_request/cif)から参照できる。 The crystal structures were drawn using VESTA, and supplementary crystallographic data for EAPbI3 and Pb(OH)I are contained in CCDC 2077393 and CSD 2077394, which are available from the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif).

 (試薬等の材料)
 特に断りのない限り、化合物および溶媒は市販品を購入し、特に精製することなく使用した。無水DMF、エチルアミン溶液(水中70%)、ヨウ化水素酸(HI)(水中57%)、ヨウ化アンモニウム(NHI)、クロロホルム(CHCl)、およびジエチルエーテルは、富士フイルム和光純薬工業株式会社(大阪、日本)から購入した。ヨウ化鉛(II)(PbI)(純度99.99%)、ヨウ化メチルアンモニウム(純度>98%)、およびγ-ブチロラクトン(GBL)は、東京化成工業株式会社(東京、日本)から購入した。アンモニア溶液(NH(aq)、水中28%)は純正化学株式会社(東京、日本)から購入した。重水素化ジメチルスルホキシド(DMSO-d)は、Sigma-Aldrich Co., Ltd.(セントルイス、ミズーリ州、米国)から購入した。シリンジフィルター(GLCTD-PTFE1345、孔径=0.45μm)は島津製作所(京都、日本)から購入した。濾紙(No. 6、直径21mm、厚さ0.19mm)は桐山製作所(東京、日本)から購入した。シリコン基板(15mm×15mm、厚さ=0.5mm、(100)配向、n型抵抗<0.02Ωcm)は、ニラコ株式会社(東京、日本)から購入した。エラスチックカーボンコーティング銅グリッド(ELS-C10)は応研商事株式会社(東京、日本)から購入した。
(Reagents and other materials)
Unless otherwise stated, compounds and solvents were purchased commercially and used without further purification. Anhydrous DMF, ethylamine solution (70% in water), hydroiodic acid (HI) (57% in water), ammonium iodide (NH 4 I), chloroform (CHCl 3 ), and diethyl ether were purchased from Fujifilm Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Lead(II) iodide (PbI 2 ) (99.99% purity), methylammonium iodide (>98% purity), and γ-butyrolactone (GBL) were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Ammonia solution (NH 3 (aq), 28% in water) was purchased from Junsei Chemical Co., Ltd. (Tokyo, Japan). Deuterated dimethyl sulfoxide (DMSO-d 6 ) was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Syringe filters (GLCTD-PTFE1345, pore size = 0.45 μm) were purchased from Shimadzu Corporation (Kyoto, Japan). Filter paper (No. 6, diameter 21 mm, thickness 0.19 mm) was purchased from Kiriyama Seisakusho Co., Ltd. (Tokyo, Japan). Silicon substrates (15 mm × 15 mm, thickness = 0.5 mm, (100) orientation, n-type resistance < 0.02 Ω cm) were purchased from Nilaco Corporation (Tokyo, Japan). Elastic carbon-coated copper grids (ELS-C10) were purchased from Oken Shoji Co., Ltd. (Tokyo, Japan).

 (合成)
 ヨウ化エチルアンモニウム(EAI):HI(2.5mL、18.9mmol)を70%エチルアミン(2.5mL、26.4mmol)に0℃で滴下した。2時間撹拌した後、得られた溶液を減圧下60℃で蒸発させた。粗生成物をジエチルエーテルで洗浄することにより精製した。固体を真空下25℃で乾燥させて、EAIを白色固体として得た(3.7g、81%)。1H-NMR(400MHz、DMSO-d):δ=1.14(t、3H、J=7.2Hz、CHCHNHI)、2.84(q、2H、CHCHNHI、J=7.3Hz)、7.58(s、3H、CHCHNHI)。HRMS計算はC([M]+):46.0651で、測定値は46.0651であった。
 エチルアンモニウムヨウ化鉛(EAPbI):PbI(0.60g、1.3mmol)およびEAI(0.23g、1.3mmol)を別々に無水DMF(1mL)に溶解し、次いで溶液を5分間超音波処理した。EAI溶液をPbI溶液に添加した。超音波処理後、混合物は均一な黄色の溶液になった。得られた溶液を、温度コントローラー(FP-82HTホットステージを備えたFP90中央処理装置、Mettler Toledo、コロンバス、オハイオ州、米国)を使用して、窒素下100℃でガラス基板上で乾燥させた。減圧下、70℃で3時間乾燥させた後、EAPbIを黄色固体として得た(0.83g、定量的)。1H-NMR(400MHz、DMSO-d):δ=1.14(t、3H、J=7.2Hz、CHCHNHPbI)、2.83(q、2H、J=7.2Hz、CHCHNHPbI)、7.56(s、3H、CH3CH2NH3PbI3)。10%重量減少温度:251℃。計算値はCNPb:C、3.79;H、1.27;N、2.21、測定値は3.81;H、1.19;N、2.18であった。
 図27は、CHCHNHIのNMRスペクトルを示すグラフ図である。
 図28は、CHCHNHPbIのNMRスペクトルを示すグラフ図である。
(Synthesis)
Ethylammonium iodide (EAI): HI (2.5 mL, 18.9 mmol) was added dropwise to 70% ethylamine (2.5 mL, 26.4 mmol) at 0° C. After stirring for 2 h, the resulting solution was evaporated under reduced pressure at 60° C. The crude product was purified by washing with diethyl ether. The solid was dried under vacuum at 25° C. to give EAI as a white solid (3.7 g, 81%). 1H-NMR (400 MHz, DMSO-d 6 ): δ=1.14 (t, 3H, J=7.2 Hz, CH 3 CH 2 NH 3 I), 2.84 (q, 2H, CH 3 CH 2 NH 3 I, J=7.3 Hz), 7.58 (s, 3H, CH 3 CH 2 NH 3 I). HRMS calculated for C2H8N + ([M]+): 46.0651, found: 46.0651 .
Ethylammonium lead iodide ( EAPbI3 ): PbI2 (0.60 g, 1.3 mmol) and EAI (0.23 g, 1.3 mmol) were dissolved separately in anhydrous DMF (1 mL), and then the solution was sonicated for 5 min. The EAI solution was added to the PbI2 solution. After sonication, the mixture became a homogeneous yellow solution. The resulting solution was dried on a glass substrate at 100 °C under nitrogen using a temperature controller (FP90 central processor with FP-82HT hot stage, Mettler Toledo, Columbus, OH, USA). After drying at 70 °C under reduced pressure for 3 h, EAPbI3 was obtained as a yellow solid (0.83 g, quantitative). 1H-NMR (400 MHz, DMSO- d6 ): δ = 1.14 (t, 3H, J = 7.2 Hz , CH3CH2NH3PbI3 ), 2.83 ( q , 2H, J = 7.2 Hz, CH3CH2NH3PbI3 ) , 7.56 (s, 3H, CH3CH2NH3PbI3 ) . 10 % weight loss temperature: 251 ° C . Calculated for C2H8I3NPb : C, 3.79; H, 1.27; N, 2.21, found: 3.81 ; H , 1.19; N, 2.18.
FIG. 27 is a graph showing the NMR spectrum of CH 3 CH 2 NH 3 I.
FIG. 28 is a graph showing the NMR spectrum of CH3CH2NH3PbI3 .

 (サンプルの準備)
 EAPbIの単結晶:単結晶成長の詳細な条件を表1に示す。単結晶成長に最適な条件は次のとおりである(表1中、Entry9):PbI(0.23g、0.5mmol)およびEAI(0.13g、0.75mmol)をGBL(1mL)に溶解した。溶液を5分間超音波処理し、次いでシリンジフィルターを使用して溶液を濾過した。得られた溶液を穴あき蓋付きの小さなバイアルに入れた。次いで、この小さなバイアルを、CHCl(5mL)が入っている大きなバイアルに入れた。サンプルは冷却ステージ(NDC-100、日伸理化株式会社、東京、日本)上で15℃に保たれた。72時間後、六角形と針状の結晶の混合物が形成された。この混合物を25℃で1週間放置すると、六角形の結晶のみが得られた(平均サイズ=0.1mm×0.1mm×0.07mm)。
 Pb(OH)Iの単結晶:EAPbIの単結晶(7mg、0.01mmol)をバイアルに入れた。この単結晶を25℃で20時間、NH(aq)蒸気に曝露した。X線結晶構造解析に用いることができる針状の白色結晶(平均サイズ=0.5mm×0.06mm×0.05mm)が得られた。
 Pb(OH)IからPbI結晶の調製:Pb(OH)Iの単結晶(20mg、0.06mmol)をHI(水中57%、34μL)に溶解した。均一な溶液を0℃で10分間保持した。次いで、溶液を真空下で50℃で2時間加熱し、PbIの黄色結晶(24mg、0.05mmol)を得た。
 エチルアミンからEAI結晶の調製:NHI(30mg、0.21mmol)をエチルアミン(水中70%、0.3mL)に溶解した。均質な溶液を25℃で1時間維持した。次いで、溶液を真空下で50℃で2時間加熱し、EAIの白色結晶(36mg、0.21mmol)を得た。
(Sample preparation)
Single crystal of EAPbI3 : The detailed conditions for single crystal growth are shown in Table 1. The optimal conditions for single crystal growth are as follows (Entry 9 in Table 1): PbI2 (0.23 g, 0.5 mmol) and EAI (0.13 g, 0.75 mmol) were dissolved in GBL (1 mL). The solution was sonicated for 5 min, and then the solution was filtered using a syringe filter. The resulting solution was placed in a small vial with a perforated lid. The small vial was then placed in a larger vial containing CHCl3 (5 mL). The sample was kept at 15 °C on a cooling stage (NDC-100, Nisshin Rika Co., Ltd., Tokyo, Japan). After 72 h, a mixture of hexagonal and needle-like crystals was formed. When the mixture was left at 25 °C for 1 week, only hexagonal crystals were obtained (average size = 0.1 mm × 0.1 mm × 0.07 mm).
Single crystal of Pb(OH)I: A single crystal of EAPbI3 (7 mg, 0.01 mmol) was placed in a vial. The single crystal was exposed to NH3 (aq) vapor for 20 h at 25 °C. Needle-like white crystals (average size = 0.5 mm × 0.06 mm × 0.05 mm) were obtained that could be used for X-ray crystallography.
Preparation of PbI2 crystals from Pb(OH)I: A single crystal of Pb(OH)I (20 mg, 0.06 mmol) was dissolved in HI (57% in water, 34 μL). The homogeneous solution was kept at 0 °C for 10 min. The solution was then heated under vacuum at 50 °C for 2 h to give yellow crystals of PbI2 (24 mg, 0.05 mmol).
Preparation of EAI crystals from ethylamine: NH4I (30 mg, 0.21 mmol) was dissolved in ethylamine (70% in water, 0.3 mL). The homogeneous solution was kept at 25° C. for 1 h. The solution was then heated under vacuum at 50° C. for 2 h to give white crystals of EAI (36 mg, 0.21 mmol).

 (特性評価)
 EAPbIの結晶データ(CCDC 2077393):CNPb、M=633.98、斜方晶系、Pnma、a=8.16401(13)Å、b=8.75265(15)Å、c=15.1541(3)Å、V=1082.86(3)Å、T=300K、Z=4、λ=0.71073Å、μ(Mo Kα)=24.061mm-1、F(000)=1072、結晶色=黄色、結晶形状=板、結晶サイズ=0.112mm×0.097mm×0.068mm、1864回の独立反射(Rint=0.0299)。回折角範囲:2.834°~31.486°。最終的なR=0.0419、I>2σ(I)およびすべてのデータのwR=0.1050。Fでの適合度:1.178。
 Pb(OH)Iの結晶データ(CSD 2077394):HIOPb、M=351.10、斜方晶系、Pnma、a=7.8332(3)Å、b=4.2187(4)Å、c=10.48750(17)Å、V=346.57(4)Å、T=300K、Z=4、λ=0.71073Å、μ(Mo Kα)=57.320mm-1、F(000)=576、結晶色=無色、結晶形状=針状、結晶サイズ=0.472mm×0.062mm×0.046mm、独立反射450回(Rint=0.1576)。回折角範囲:3.246°~27.479°。最終的なR=0.0374、I>2σ(I)およびすべてのデータのwR=0.0901。Fでの適合度:1.188。
(Characteristics evaluation)
Crystal data of EAPbI 3 (CCDC 2077393): C 2 H 8 I 3 NPb, M = 633.98, orthorhombic, Pnma, a = 8.16401 (13) Å, b = 8.75265 (15) Å, c = 15.1541 (3) Å, V = 1082.86 (3) Å 3 , T = 300 K, Z = 4, λ = 0.71073 Å, μ (Mo Kα) = 24.061 mm -1 , F (000) = 1072, crystal color = yellow, crystal shape = plate, crystal size = 0.112 mm x 0.097 mm x 0.068 mm, 1864 independent reflections (R int = 0.0299). Diffraction angle range: 2.834° to 31.486°. Final R 1 =0.0419, I>2σ(I) and wR 2 =0.1050 for all data. Goodness of fit with F 2 : 1.178.
Crystal data of Pb(OH)I (CSD 2077394): HIOPb, M=351.10, orthorhombic, Pnma, a=7.8332(3) Å, b=4.2187(4) Å, c=10.48750(17) Å, V=346.57(4) Å 3 , T = 300K, Z = 4, λ = 0.71073 Å, μ (Mo Kα) = 57.320 mm -1 , F (000) = 576, crystal color = colorless, crystal shape = acicular, crystal size = 0.472 mm x 0.062 mm x 0.046 mm, 450 independent reflections (R int =0.1576). Diffraction angle range: 3.246° to 27.479°. Final R 1 =0.0374, I>2σ(I) and wR 2 =0.0901 for all data. Goodness of fit with F 2 : 1.188.

Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

 (表1中、EAIはヨウ化エチルアンモニウム、GBLはγ-ブチロラクトンを示す。) (In Table 1, EAI stands for ethylammonium iodide, and GBL stands for gamma-butyrolactone.)

 (光学特性)
 紙に浸したEAPbIをサンプルホルダー(PSH-002、日本分光株式会社、東京、日本)に設置した。NHの蒸発を避けるために、サンプルはスクリューキャップで密閉した。積分球アタッチメント(ISV-469、日本分光)を備えた紫外可視分光光度計(V-550、日本分光)を使用して反射スペクトルを測定した。
 サンプルの拡散反射率スペクトルは、Kubelka-Munk関数から取得した。
 サンプルの蛍光スペクトルは、試料ホルダー用アタッチメント(FPA-810、日本分光)を備えた分光蛍光光度計(FP-6500、日本分光)を用いて測定した。励起光の入射角は30°とした。
(Optical properties)
The EAPbI3 soaked in paper was placed in a sample holder (PSH-002, JASCO Corporation, Tokyo, Japan). The sample was sealed with a screw cap to avoid evaporation of NH3 . Reflectance spectra were measured using a UV-visible spectrophotometer (V-550, JASCO) equipped with an integrating sphere attachment (ISV-469, JASCO).
The diffuse reflectance spectra of the samples were obtained from the Kubelka-Munk function.
The fluorescence spectrum of the sample was measured using a spectrofluorophotometer (FP-6500, JASCO) equipped with a sample holder attachment (FPA-810, JASCO). The incident angle of the excitation light was set to 30°.

 (エネルギーバンドギャップ)
 エネルギーバンドギャップ(Eg)は、αhν=(hν-Eg)1/2の式から、Tauc プロットから決定した。ここで、αは吸収係数、hνは光子エネルギーである。ソフトウェア(Spectra Manager II、日本分光)を使用してEg値を分析した。
(Energy Band Gap)
The energy band gap (Eg) was determined from the Tauc plots according to the equation αhν=(hν−Eg)1/2, where α is the absorption coefficient and hν is the photon energy. Software (Spectra Manager II, JASCO) was used to analyze the Eg values.

 (検出限界、応答時間、および化学選択性)
 紙の上に浸したEAPbIをバイアルに入れた。このサンプルを窒素雰囲気下のグローブボックスに設置した。初期条件はグローブボックス内を窒素で20分間置換してから行った。NH(供給量:15mL/min)をグローブボックス内に供給した後、NHガス検出器 (AR8500、Smart Sensor Ltd.、東莞、中国)を使用して濃度をチェックした。サンプルと検出器の間の距離は8cmであった。所定の濃度のNHに曝露した後、サンプルをグローブボックス内のサンプルホルダーに保管した。NHの蒸発を避けるために、サンプルホルダーはスクリューキャップで密閉した。NHの検出限界と応答時間は、分光蛍光光度計(FP-6500、日本分光)を使用して評価した。
 化学選択性をチェックするために、NH(aq)、ピリジン、トリエチルアミン、および4-フルオロアニリンの吸着サンプルを次のように調製した:紙上のEAPbIを小さなバイアルにセットした。この小さなバイアルを、窒素化合物を吸着させた綿の入った大きなバイアルに入れた。バイアルの蓋を閉めた後、サンプルを飽和蒸気中に25℃で24時間保持した。
(Detection limit, response time, and chemical selectivity)
The EAPbI3 soaked on the paper was placed in a vial. The sample was placed in a glove box under nitrogen atmosphere. The initial condition was performed after replacing the inside of the glove box with nitrogen for 20 minutes. After NH3 (feed rate: 15 mL/min) was fed into the glove box, the concentration was checked using an NH3 gas detector (AR8500, Smart Sensor Ltd., Dongguan, China). The distance between the sample and the detector was 8 cm. After exposure to a predetermined concentration of NH3 , the sample was stored in a sample holder in the glove box. To avoid evaporation of NH3 , the sample holder was sealed with a screw cap. The detection limit and response time of NH3 were evaluated using a spectrofluorometer (FP-6500, JASCO).
To check the chemical selectivity, adsorption samples of NH3 (aq), pyridine, triethylamine, and 4-fluoroaniline were prepared as follows: EAPbI3 on paper was placed in a small vial. This small vial was placed in a larger vial containing cotton on which nitrogen compounds were adsorbed. After the vial was capped, the sample was kept in saturated steam at 25 °C for 24 h.

 [EAPbIの合成および構造解析]
 アンモニア貯蔵用化合物として、EAPbIは、前述の試薬を用いてN,N-ジメチルホルムアミド(DMF)中のヨウ化エチルアンモニウム(EAI)とヨウ化鉛(PbI)のモル比1:1の前駆体溶液から合成した。溶液をガラス基板上に滴下し、窒素下、100℃で乾燥させた。得られた固体を瑪瑙乳鉢に入れ、瑪瑙乳棒で粉砕した。次に粉末を真空下70℃で3時間乾燥させ、乾燥したEAPbIサンプルを得た。
[Synthesis and structural analysis of EAPbI3 ]
As an ammonia storage compound, EAPbI3 was synthesized from a precursor solution of ethylammonium iodide (EAI) and lead iodide ( PbI2 ) in N,N-dimethylformamide (DMF) with a molar ratio of 1:1 using the aforementioned reagents. The solution was dropped onto a glass substrate and dried at 100 °C under nitrogen. The resulting solid was placed in an agate mortar and ground with an agate pestle. The powder was then dried under vacuum at 70 °C for 3 h to obtain the dried EAPbI3 sample.

 図1は、合成したEAPbIの外観およびアンモニア取り込みの試験の写真図である。(a)は合成したEAPbIのSEMイメージおよび外観(左上)を示す。(b)はEAPbIのNH(aq)蒸気の取り込み挙動を調査するための実験セットアップの様子を示す写真図で、(b)中の(i)はNH暴露の前、(ii)は25℃10分間NH暴露を行った後を示す。 Figure 1 shows the appearance of the synthesized EAPbI 3 and a photograph of the ammonia uptake test. (a) shows an SEM image and the appearance (upper left) of the synthesized EAPbI 3. (b) is a photograph showing the experimental setup for investigating the uptake behavior of NH 3 (aq) vapor by EAPbI 3. (i) in (b) shows the sample before NH 3 exposure, and (ii) shows the sample after NH 3 exposure at 25°C for 10 minutes.

 図の(a)に示すように、EAPbIは、走査型電子顕微鏡(SEM)により、不定形で多孔質構造のない滑らかな表面を示した。 As shown in (a) of the figure, EAPbI3 exhibited a smooth surface without any amorphous or porous structure by scanning electron microscopy (SEM).

 ついで、EAPbIの構造変化をNH(aq)蒸気に曝露することによって調査した。(b)(i)に示すように、EAPbIを小さなバイアルにセットし、その小さなバイアルをNH(aq)を吸着させた綿の入った大きなバイアル中に設置した。バイアルの蓋を閉めた後、サンプルを飽和NH(aq)蒸気中に保持した。
 (b)(ii)に示すように、EAPbIの黄色は、10分間の曝露後に白色に変化した。その後は、蓋を閉めたままにしておくと、それ以上の色の変化は観察されなかった。
 単結晶X線回折(XRD)分析により、構造変換がカチオン/アニオン交換反応によって起こったことが示された。
 図2は、EAPbIおよびPb(OH)Iの結晶構造の模式図である。(i)はEAPbI、(ii)はPb(OH)Iを示す。
The structural change of EAPbI3 was then investigated by exposure to NH3 (aq) vapor. As shown in (b)(i), EAPbI3 was placed in a small vial, which was then placed in a larger vial containing cotton with NH3 (aq) adsorbed on it. After the vial was capped, the sample was kept in saturated NH3 (aq) vapor.
As shown in (b)(ii), the yellow color of EAPbI3 changed to white after 10 min of exposure, after which no further color change was observed if the lid was kept closed.
Single crystal X-ray diffraction (XRD) analysis indicated that the structural transformation occurred via a cation/anion exchange reaction.
Figure 2 is a schematic diagram of the crystal structures of EAPbI3 and Pb(OH)I, where (i) shows EAPbI3 and (ii) shows Pb(OH)I.

 図3は、EAPbIおよびPb(OH)Iの光学顕微鏡による観察の写真図である。(i)はEAPbI、(ii)はPb(OH)Iを示す。
 図4は、EAPbIの結晶の配置を示す模式図である。(i)は図2(i)でのa軸、(ii)はb軸、(iii)はc軸からの視点を示している。
 図5は、Pb(OH)Iの結晶の配置を示す別の模式図である。(i)は図2(i i)でのa軸、(ii)はb軸、(iii)はc軸からの視点を示している。
 図3(a)に示すように、蒸気拡散によって、六角形のEAPbI単結晶が調製されていた。EAPbIは、図2(i)に示すa軸に沿った[PbI4-八面体の1D柱状構造間のCHCHNH カチオンの分子パッキングを示した(図4)。六方晶系のEAPbI単結晶は、上記写真図に示すように、NH(aq)蒸気に曝露した後、針状の単結晶に変化した。得られた単結晶は、OHアニオンを含むPb(OH)Iであった(図3(ii))。この白色結晶は、[PbIイオンがa軸に垂直な2次元層状構造を持っていた。さらに、[OHPb]四面体は層間距離4.18Åで2D層状構造を安定化していた(図5)。
3 is a photograph of EAPbI3 and Pb(OH)I observed by an optical microscope, (i) shows EAPbI3 , and (ii) shows Pb(OH)I.
Figure 4 is a schematic diagram showing the arrangement of EAPbI3 crystals, where (i) shows the view from the a-axis in Figure 2(i), (ii) shows the view from the b-axis, and (iii) shows the view from the c-axis.
5 is another schematic diagram showing the arrangement of Pb(OH)I crystals, where (i) shows the view from the a-axis in FIG. 2(ii), (ii) shows the view from the b-axis, and (iii) shows the view from the c-axis.
Hexagonal EAPbI3 single crystals had been prepared by vapor diffusion, as shown in Fig. 3(a). EAPbI3 showed molecular packing of CH3CH2NH3 + cations between 1D columnar structures of [ PbI6 ] 4- octahedra along the a-axis shown in Fig. 2(i) (Fig. 4). The hexagonal EAPbI3 single crystals changed into needle-like single crystals after exposure to NH3 (aq) vapor, as shown in the above photograph. The obtained single crystals were Pb(OH)I with OH- anions (Fig. 3(ii)). This white crystal had a two-dimensional layered structure with [ PbI3 ] -ions perpendicular to the a-axis. Furthermore, [ OHPb3 ] tetrahedra stabilized the 2D layered structure with an interlayer distance of 4.18 Å (Fig. 5).

 [EAPbIのNH貯蔵能の検証]
 さらに、発明者らは、EAPbIの構造変換がNHの貯蔵に適用できることを見出した。
 図6は、EAPbIの吸着等温線およびTG-MS結果を示すグラフ図である。(a)は、EAPbIのNHの取り込みの25℃における吸着等温線を示す。(b)は、EAPbIのNHの抽出(昇温速度=5℃/分)についての熱重量質量分析(TG-MS)結果を示す。
 (a)に示すように、吸着等温線は、1bar、25℃で10.2mmol/gの総NH取り込みを示した。この取り込み挙動は、80mbarまで起こらず、NH取り込みの閾値が存在することを示す。また、TG-MS分析によってNHの抽出挙動も調査すると、(b)に示すように、サンプルの重量が40℃から減少し始めると、[NHについてはm/z=17、[HO]についてはm/z=18が観察され、これはNH(aq)蒸気の抽出に対応する。NH抽出は90℃で最大に達し、それ以上の温度では減少した。
[Verification of NH3 storage capacity of EAPbI3 ]
Furthermore, the inventors found that the structural transformation of EAPbI3 can be applied to the storage of NH3 .
6 is a graph showing the adsorption isotherm and TG-MS results of EAPbI3. (a) shows the adsorption isotherm of NH3 uptake by EAPbI3 at 25°C. (b) shows the thermogravimetric mass spectrometry (TG-MS) results for NH3 extraction by EAPbI3 (heating rate = 5°C/min).
As shown in (a), the adsorption isotherm showed a total NH3 uptake of 10.2 mmol/g at 1 bar and 25 °C. This uptake behavior did not occur until 80 mbar, indicating the existence of a threshold for NH3 uptake. The NH3 extraction behavior was also investigated by TG-MS analysis, and as the weight of the sample started to decrease from 40 °C, m/z = 17 for [ NH3 ] + and m/z = 18 for [ H2O ] + were observed, which correspond to the extraction of NH3 (aq) vapor, as shown in (b). The NH3 extraction reached a maximum at 90 °C and decreased at higher temperatures.

 さらに、発明者らは詳細な調査により、サンプルを真空中に50℃で3時間保持すると、NHが完全に抽出できることを見出した。
 図7は、本実施例のサンプルのX線解析の際の写真図である。
 図に示すように、サンプルは、同じ雰囲気を維持し続けるために気密キャップで覆って行った。
Furthermore, through detailed investigation, the inventors found that NH3 could be completely extracted by keeping the sample in vacuum at 50°C for 3 hours.
FIG. 7 is a photograph of the sample of this embodiment taken during X-ray analysis.
As shown in the figure, the samples were covered with an airtight cap to continue to maintain the same atmosphere.

 図8は、EAPbIのXRDパターンの変化を示すグラフ図である。(i)は処置前のEAPbI、(ii)はNH(aq)上記の取り込みを行った後、(iii)は50℃で真空下に置いてNHの抽出を行った後の図である。特記しない場合、また測定時は室温で行った。
 図9は、EAPbIのX線解析パターンを示すグラフ図である。
 図10は、結晶構造におけるd001およびd002の間隔を示す模式図である。
8 is a graph showing the change in the XRD pattern of EAPbI3 , (i) EAPbI3 before treatment, (ii) after NH3 (aq) incorporation, and (iii) after NH3 extraction under vacuum at 50° C. Unless otherwise stated, measurements were performed at room temperature.
FIG. 9 is a graph showing the X-ray diffraction pattern of EAPbI3 .
FIG. 10 is a schematic diagram showing the spacings of d001 and d002 in a crystal structure.

 図8に示すように、XRDは、NHの取り込み/抽出による可逆的な構造変化を示した。NH取り込み前、EAPbIはPnmaの空間群を持つ斜方晶系を示していた(i)。
 図9、図10に示すように、[PbI4-の面を共有する八面体ユニットからなる1D鎖は、a軸に沿って伸びていた。1Dカラムは[011]方向と[010]方向に、それぞれ8.82Åと8.75Åの間隔で整列していた。さらに、EAPbIのXRDは、2θ=11.7°で011および002反射に対応する強いピークを示していた。平面間隔d011とd002は、1D列が整列した平面と一致していた。XRDパターンはNH(aq)蒸気の取り込み後に大きく変化し、Pb(OH)I XRDパターンを示した(図8(ii))。
 NH(aq)を真空下50℃で3時間抽出した後、XRDパターンはEAPbIのXRDパターンに戻った。ピーク位置の変化は2θで0.13%未満であった(図8(iii))。
XRD showed a reversible structural change upon NH3 incorporation/extraction, as shown in Fig. 8. Before NH3 incorporation, EAPbI3 exhibited an orthorhombic crystal system with the space group of Pnma (i).
As shown in Figures 9 and 10, the 1D chains consisting of face-sharing octahedral units of [ PbI6 ] 4- were stretched along the a-axis. The 1D columns were aligned in the [011] and [010] directions with spacings of 8.82 Å and 8.75 Å, respectively. Furthermore, the XRD of EAPbI3 showed strong peaks at 2θ = 11.7° corresponding to the 011 and 002 reflections. The planar spacings d011 and d002 were consistent with the planes along which the 1D columns were aligned. The XRD pattern changed significantly after incorporation of NH3 (aq) vapor, showing the Pb(OH)I XRD pattern (Figure 8(ii)).
After extraction with NH3 (aq) under vacuum at 50 °C for 3 h, the XRD pattern reverted to that of EAPbI3 . The change in peak position was less than 0.13% in 2θ (Figure 8(iii)).

 図11は、EAPbIのNH取り込み/抽出の繰り返しを示す写真図である。
 図に示すように、化学構造の変化を繰り返すと、同様の色の変化(黄色化、白色化)が見られる。すなわち、NHを取り込むと、1回目(ii)と2回目(iv)では白色(薄色)となり、NHを抽出すると再度黄色化し、NHを取り込む前の色にほぼ戻る。すなわち、構造変化を繰り返すことができる可逆的な特性が明らかとなった。
FIG. 11 is a photographic representation showing repeated NH3 uptake/extraction of EAPbI3 .
As shown in the figure, when the chemical structure is changed repeatedly, the same color change (yellowing, whitening) is observed. That is, when NH3 is taken up, it becomes white (light color) in the first (ii) and second (iv) times, and when NH3 is extracted, it turns yellow again and almost returns to the color before NH3 is taken up. In other words, the reversible property of being able to repeat the structural change was revealed.

 図12は、図11中の(i)、(iii)、(v)の状態におけるEAPbIのXRDパターンを示すグラフ図である。
 図より、2θ=11.7°でのピークのシフトは0.06°未満であり、1D柱状構造が状態(i)と(v)の間でほとんど変化していないことを示している。
FIG. 12 is a graph showing XRD patterns of EAPbI3 in the states (i), (iii), and (v) in FIG.
As can be seen, the shift of the peak at 2θ=11.7° is less than 0.06°, indicating that the 1D columnar structure is almost unchanged between states (i) and (v).

 図13は、NHの取り込み/抽出による可逆的な構造変化を説明するために提案されるNH貯蔵のメカニズムの推定を示す模式図である。 FIG. 13 is a schematic diagram showing a putative mechanism of NH3 storage proposed to explain the reversible structural change upon NH3 uptake/extraction.

 ついで、NH(aq)蒸気(NH3+O)の取り込み後の正反応により、加水分解によりPb(OH)Iが生成され、付加反応によりエチルアミン(CHCHNH)が生成されることを示した。
 図14は、EAPbIのNH取り込み前後のNMRスペクトルを示すグラフ図である。重水素化ジメチルスルホキシド(DMSO-d)中の1H NMRスペクトルであり、(i)未処理のEAPbI、(ii)EAPbIをNH(aq)蒸気に曝露後、および(iii)NH(aq)の除去後を示した(TMS=テトラメチルシラン)。
It was then shown that the forward reaction after uptake of NH 3 (aq) vapor (NH 3 + H 2 O) gave Pb(OH)I by hydrolysis and ethylamine (CH 3 CH 2 NH 2 ) by addition reaction.
14 is a graphical representation showing NMR spectra of EAPbI 3 before and after NH 3 incorporation. 1H NMR spectra in deuterated dimethylsulfoxide (DMSO-d 6 ) show (i) untreated EAPbI 3 , (ii) after exposure of EAPbI 3 to NH 3 (aq) vapor, and (iii) after removal of NH 3 (aq) (TMS = tetramethylsilane).

 CHCHNHの形成は1H NMR分光法によって評価された。重水素化ジメチルスルホキシド中の未処理のEAPbIは、7.56ppm(CH3CH2NH3+)、2.83ppm(CHCHNH )、および1.14ppm(CHCHNH )でエチルアンモニウムの化学シフトを示した(i)。NH(aq)蒸気の取り込み後、過剰なNHにより、化学シフトは2.74ppm(CHCHNH)および1.08ppm(CHCHNH)で存在していた(ii)。さらに重要なことは、アンモニウムのピークがNHの取り込み後に消失したことである。これは、プロトン化されていないCHCHNHアミンが形成されたことを示している。NH抽出により、CHCHNH のピークシフトとブロード化が発生し、一方で、再度EAPbIの積分値が特定された(iii)。 The formation of CH3CH2NH2 was evaluated by 1H NMR spectroscopy. Untreated EAPbI3 in deuterated dimethylsulfoxide showed chemical shifts of ethylammonium at 7.56 ppm (CH3CH2NH3+), 2.83 ppm ( CH3CH2NH3 + ) , and 1.14 ppm ( CH3CH2NH3 + ) (i). After uptake of NH3 ( aq) vapor, due to excess NH3 , chemical shifts were present at 2.74 ppm ( CH3CH2NH2 ) and 1.08 ppm ( CH3CH2NH2 ) (ii). More importantly, the ammonium peak disappeared after uptake of NH3 , indicating that unprotonated CH3CH2NH2 amine was formed. NH3 extraction caused a peak shift and broadening of CH3CH2NH3+ , while again identifying the integral of EAPbI3 (iii).

 次に、逆反応を明らかにするためにXRD測定を行った。
 図15は、PbI、EAIのXRDパターンを示すグラフ図である。図15の(a)のうち(i)はPb(OH)I、(ii)はHIとの反応後、および(iii)はPbIのXRD パターンであり、図中のグラフ下の縦線はICSD 68819を示す。また、反射ピークの指数を後述の表2に示した。
 図によると、Pb(OH)I結晶は57%ヨウ化水素酸(HI)との間で縮合反応を生じ、50℃で乾燥した後のXRDパターンの変化は、PbIのXRDパターンと一致した。
Next, XRD measurements were carried out to clarify the reverse reaction.
Fig. 15 is a graph showing the XRD patterns of PbI2 and EAI. In Fig. 15(a), (i) is the XRD pattern of Pb(OH)I, (ii) is the XRD pattern after reaction with HI, and (iii) is the XRD pattern of PbI2 . The vertical line under the graph in the figure indicates ICSD 68819. The indices of the reflection peaks are shown in Table 2 below.
According to the figure, Pb(OH)I crystals underwent a condensation reaction with 57% hydroiodic acid (HI), and the change in the XRD pattern after drying at 50 °C was consistent with the XRD pattern of PbI2 .

 また、70%CHCHNHとヨウ化アンモニウム(NHI)の反応も調査した。
 図15の(b)のうち(i)はNHI、(ii)はCHCHNHとの反応後、および(iii)はEAIのXRDパターンであり、図中のグラフ下の縦線はCCDC 1318979を示す。また、反射ピークの指数を後述の表3に示した。
 脱離反応の後に50℃で乾燥した生成物のXRDパターンは、EAIのXRDパターンとよく一致した。これらの実験結果は、すべての化合物はPb(OH)IからEAPbIへの逆反応に必要と推論させた。
The reaction of 70% CH3CH2NH2 with ammonium iodide ( NH4I ) was also investigated.
In Fig. 15(b), (i) is the XRD pattern of NH4I , (ii) is the pattern after the reaction with CH3CH2NH2 , and (iii) is the XRD pattern of EAI, and the vertical line under the graph in the figure indicates CCDC 1318979. In addition, the indices of the reflection peaks are shown in Table 3 described later.
The XRD pattern of the product dried at 50 °C after the elimination reaction was in good agreement with that of EAI. These experimental results led us to infer that all the compounds are necessary for the reverse reaction of Pb(OH)I to EAPbI3 .

 上記の現象を解明するために、対照実験を行った。
 図16は、Pb(OH)IのXRDパターンを示すグラフ図である。(i)は水で洗浄する前、(ii)は洗浄後、および(iii)はサンプル(ii)を50℃で6時間加熱した後を示す。図中の縦線はICSD 192169を示す。
 水溶性化合物HI、CHCHNH、およびNHIは、水で洗浄することによってPb(OH)Iから除去された。洗浄した結晶のXRDパターンは、Pb(OH)I結晶のXRDパターンと同じであった。さらに、洗浄した結晶を50℃で加熱してもXRDパターンは変化しなかった。これらの結果は、水溶性化合物の存在が逆反応にとって重要であることを示唆した。
To elucidate the above phenomenon, a control experiment was carried out.
16 is a graph showing the XRD patterns of Pb(OH)I (i) before washing with water, (ii) after washing, and (iii) after heating sample (ii) at 50° C. for 6 hours. The vertical lines in the figure indicate ICSD 192169.
The water-soluble compounds HI, CH3CH2NH2 , and NH4I were removed from Pb(OH)I by washing with water. The XRD pattern of the washed crystals was the same as that of the Pb(OH)I crystals. Furthermore, the XRD pattern did not change even when the washed crystals were heated at 50°C. These results suggested that the presence of water-soluble compounds was important for the reverse reaction.

Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

 (表2中、dはPb(OH)IとHIの反応によって得られた生成物の格子面間隔、dはPbIの格子面間隔を示す。) (In Table 2, d1 indicates the lattice spacing of the product obtained by the reaction of Pb(OH)I with HI, and d2 indicates the lattice spacing of PbI2 .)

Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

 (表3中、dはエチルアミンとNHIの反応によって得られた生成物の格子面間隔、dはEAIの格子面間隔を示す。[a]は不明データを示す。) (In Table 3, d1 represents the lattice spacing of the product obtained by the reaction of ethylamine with NH 4 I, and d2 represents the lattice spacing of EAI. [a] represents unknown data.)

 図17は、本実施形態のアンモニア貯蔵用組成物が含むアンモニア貯蔵用化合物の作用を示す概略図である。図に示すように、アンモニア貯蔵用化合物は、アンモニア(NH)を取り込まない状態で1D柱状構造をとり、アンモニアを取り込むと2D層状構造をとり、これらの構造の相互の変化を一定条件で可逆的に繰り返すことができるので、アンモニアの取り込み及び抽出に用いることができる。そのため、本実施形態のアンモニア貯蔵用化合物はアンモニアの貯蔵に用いることができる。 Fig. 17 is a schematic diagram showing the action of the ammonia storage compound contained in the ammonia storage composition of this embodiment. As shown in the figure, the ammonia storage compound has a 1D columnar structure when it does not incorporate ammonia (NH 3 ), and a 2D layered structure when it incorporates ammonia. These mutual changes of structures can be repeated reversibly under certain conditions, so that it can be used to incorporate and extract ammonia. Therefore, the ammonia storage compound of this embodiment can be used to store ammonia.

 [蒸気変色挙動]
 紙に印刷されたEAPbI結晶の蒸気変色挙動を調べた。
 スタンプを用いて、結晶による紙への印刷を行った。EAPbIの無水N,N-ジメチルホルムアミド(DMF)溶液(830mg/mL)に金属スタンプを浸し、紙にRの文字を印刷した。サンプルを真空下100℃で3時間乾燥させた。紙に浸したEAPbIのサンプルも調べた。紙を25℃のDMF溶液に60秒間浸漬した。DMF中のEAPbIの濃度は19.8~634mg/mLの間で変化させた。湿ったサンプルを真空下100℃で3時間乾燥させた。乾燥後、紙上に浸漬したEAPbIを長方形(サイズ:5mm×20mm)に切り出した。サンプルの厚さは、マイクロメーター(マイクロメータースタンド(MS-RB)を備えたCLM1-15QM、ミツトヨ株式会社、川崎、日本)を使用して測定した。
[Steam discoloration behavior]
The steam discoloration behavior of EAPbI3 crystals printed on paper was investigated.
Printing on paper with crystals was performed using a stamp. A metal stamp was dipped into an anhydrous N,N-dimethylformamide (DMF) solution of EAPbI 3 (830 mg/mL) to print the letter R on paper. The sample was dried at 100 °C under vacuum for 3 h. Samples of EAPbI 3 soaked on paper were also investigated. The paper was dipped into the DMF solution at 25 °C for 60 s. The concentration of EAPbI 3 in DMF was varied between 19.8 and 634 mg/mL. The wet samples were dried at 100 °C under vacuum for 3 h. After drying, the soaked EAPbI 3 on paper was cut into rectangles (size: 5 mm × 20 mm). The thickness of the samples was measured using a micrometer (CLM1-15QM with micrometer stand (MS-RB), Mitutoyo Corporation, Kawasaki, Japan).

 図18は、紙上でスタンプされたEAPbI結晶のNH蒸気に対する蒸気変色挙動を示す写真図である。(i)は未処理のEAPbI、(ii)はNH(aq)上記への曝露後、(iii)はNH(aq)の除去後を示す。真空下50℃で、刻印文字の厚みは7μmである。
 図に示すように、EAPbIのDMF溶液を「インク」として使用し、文字Rを紙にスタンプし(i)、このサンプルをアンモニア水(NH(aq))蒸気にさらすと、黄色の文字が消えた(ii)。NH(aq)を50℃で2分間処理して除去すると、文字が再び見えるようになった(iii)。
18 is a photograph showing the steam discoloration behavior of EAPbI3 crystals stamped on paper in response to NH3 vapor. (i) Untreated EAPbI3 , (ii) after exposure to NH3 (aq), and (iii) after removal of NH3 (aq). The thickness of the imprinted characters is 7 μm at 50° C. under vacuum.
As shown in the figure, the letter R was stamped onto paper using a solution of EAPbI3 in DMF as the "ink" (i), and when the sample was exposed to aqueous ammonia ( NH3 (aq)) vapor, the yellow lettering disappeared (ii), and after removal of the NH3 (aq) by treatment at 50 °C for 2 min, the lettering became visible again (iii).

 図19は、紙上に積層されたEAPbI結晶の走査型電子顕微鏡(SEM)画像を示す。これらの結晶は直径1~2μm、厚さ約100nmの板状構造であった。 Figure 19 shows a scanning electron microscope (SEM) image of EAPbI3 crystals layered on paper. These crystals had plate-like structures with a diameter of 1-2 μm and a thickness of about 100 nm.

 この紙上に積層されたEAPbI結晶のサンプルについて、光学特性、検出限界、応答時間、および化学選択性を調査した。
 図20は、25℃で紙に浸漬したEAPbIの拡散反射スペクトルの変化を示すグラフ図である。(i)は未処理のEAPbI、(ii)はNH(aq)蒸気への曝露後、(iii)はNH(aq)の真空下100℃での除去後を示す。
 図21はEAPbIのTaucプロットを示すグラフ図である。(i)は未処理のEAPbI、(ii)はNH(aq)蒸気への曝露後、(iii)NH(aq)の真空下100℃での除去後を示す。それぞれ、エネルギーバンドギャップ(Eg)は(i)2.39eV、(ii)2.96eV、(iii)2.39eVであった。
The optical properties, detection limits, response times, and chemical selectivity of this paper-layered sample of EAPbI3 crystals were investigated.
20 is a graph showing the change in diffuse reflectance spectrum of EAPbI3 upon immersion in paper at 25° C. (i) untreated EAPbI3 , (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) at 100° C. under vacuum.
21 is a graph showing the Tauc plots of EAPbI3 (i ) untreated, (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) at 100° C. under vacuum. The energy band gaps (Eg) were (i) 2.39 eV, (ii) 2.96 eV, and (iii) 2.39 eV, respectively.

 紙サンプルの拡散反射スペクトルは、NH(aq)蒸気への曝露前後のエネルギーバンドギャップ(Eg)の可逆的な変化を示した。黄色のEAPbI結晶は、250~550nmの間で広いスペクトルを示した。Taucプロットから求められるように、この結晶のEgは2.39eVであった。NH(aq)蒸気への曝露後の白色結晶Pb(OH)IのEgは2.96eVであった。NH(aq)の除去後は同じ初期値のEg(2.39eV)であった。 The diffuse reflectance spectrum of the paper sample showed a reversible change in the energy band gap (Eg) before and after exposure to NH 3 (aq) vapor. The yellow EAPbI 3 crystals showed a broad spectrum between 250 and 550 nm. As determined from the Tauc plot, the Eg of this crystal was 2.39 eV. The Eg of the white crystalline Pb(OH)I after exposure to NH 3 (aq) vapor was 2.96 eV. After removal of NH 3 (aq), the same initial value of Eg (2.39 eV) was obtained.

 図22は、25℃で紙に浸したEAPbIの蛍光スペクトルを示すグラフ図である。(i)は未処理のEAPbI、(ii)はNH(aq)蒸気への曝露後、(iii)はNH(aq)の真空下100℃で除去後を示す。
 EAPbIは、蛍光スペクトルの可逆的な変化も示した。360nmで光励起すると、545nmの最大波長が観察された(i)。NH(aq)蒸気への曝露後は蛍光強度が45%減少した(ii)。NH(aq)除去後は、強度は初期値に戻った(iii)。
22 is a graph showing the fluorescence spectra of EAPbI3 soaked in paper at 25° C. (i) untreated EAPbI3 , (ii) after exposure to NH3 (aq) vapor, and (iii) after removal of NH3 (aq) under vacuum at 100° C.
EAPbI3 also showed a reversible change in the fluorescence spectrum: upon optical excitation at 360 nm, a maximum wavelength of 545 nm was observed (i). After exposure to NH3 (aq) vapor, the fluorescence intensity decreased by 45% (ii). After removal of NH3 (aq), the intensity returned to the initial value (iii).

 図23は、NHのさまざまな濃度における、紙に浸したサンプルの蛍光スペクトルの変化を示すグラフ図である。
 蛍光強度をモニタリングすると、10ppmの濃度でNHが検出されたことが明らかになった。
FIG. 23 is a graph showing the change in fluorescence spectrum of paper-soaked samples at various concentrations of NH3 .
Monitoring the fluorescence intensity revealed that NH3 was detected at a concentration of 10 ppm.

 図24は、545nmでの蛍光強度の変化率とNH濃度の関係を示すグラフ図である。IBeforeとIAfterは、それぞれNHへの曝露前と曝露後の545nmでの蛍光強度を示す。
 545nmでの蛍光強度の変化率とNH濃度の間には、決定係数R2=0.986で線形関係が観察された。
24 is a graph showing the rate of change of fluorescence intensity at 545 nm versus NH3 concentration. IBefore and IAafter represent the fluorescence intensity at 545 nm before and after exposure to NH3 , respectively.
A linear relationship was observed between the rate of change of fluorescence intensity at 545 nm and NH3 concentration with a coefficient of determination R2 = 0.986.

 図25は、EAPbIのサンプル厚さによる応答時間の変化を示すグラフ図である。
 サンプルの厚みが薄いほど、より速い応答が示された。サンプル厚さ19μmの場合、応答までに10分かかった。この遅い応答は、EAPbIのバルク部分へのNHの浸透が弱いためであった。対照的に、厚さが5μmの場合、最小応答時間は48秒であった。
FIG. 25 is a graph showing the change in response time depending on the sample thickness of EAPbI3 .
The thinner the sample, the faster the response was. For a sample with a thickness of 19 μm, it took 10 min to respond. This slow response was due to the weak penetration of NH3 into the bulk part of EAPbI3 . In contrast, for a thickness of 5 μm, the minimum response time was 48 s.

 図26は、紙上の浸漬EAPbI結晶に対する様々な溶液の吸着挙動を示す写真図である。(a)NH(aq)、(b)ピリジン、(c)トリエチルアミン、および(d)4-フルオロアニリンの吸着挙動である。それぞれ、(i)は暴露する前、(ii)は25℃で24時間暴露後である。
 蒸気変色挙動の化学選択性は、窒素含有化合物を使用して実行した。EAPbI結晶の色の変化は、芳香族化合物であるピリジン、脂肪族化合物であるトリエチルアミン、およびアミン置換化合物である4-フルオロアニリンに24時間曝露した後でも起こらなかった。
Figure 26 is a photograph showing the adsorption behavior of various solutions onto soaked EAPbI3 crystals on paper: (a) NH3 (aq), (b) pyridine, (c) triethylamine, and (d) 4-fluoroaniline, (i) before exposure and (ii) after 24 h exposure at 25 °C.
The chemoselectivity of the steam discoloration behavior was carried out using nitrogen-containing compounds: no color change of EAPbI3 crystals occurred even after 24 h of exposure to the aromatic compound pyridine, the aliphatic compound triethylamine, and the amine-substituted compound 4-fluoroaniline.

 本実施形態のアンモニア貯蔵用化合物は、紙などの薄膜上で選択的にアンモニア水、アンモニア蒸気に対して応答し、呈色を示すので、色によってアンモニアの貯蔵量がわかるセンサや試験紙などに応用できる可能性がある。 The ammonia storage compound of this embodiment selectively responds to ammonia water and ammonia vapor on a thin film such as paper and changes color, so it may be applicable to sensors and test papers that indicate the amount of ammonia stored by the color.

 [蒸気変色挙動:追加化合物]
 図30は、さらに他の化合物の結晶に対する様々な溶液の吸着挙動を示す写真図である。図中に示す各化合物、EAPbBr、FEAPbI、HOEAPbI、PbI、(PEA)PbI、(BA)(MA)Pb、(BA)(MA)Pb10、(BA)(MA)Pb13、および(BA)(MA)Pb16について、結晶に対して直接行った他は図26と同様の手法を用いて、NH(aq)の吸着挙動を調べた。
[Vapor discoloration behavior: additional compounds]
Figure 30 is a photograph showing the adsorption behavior of various solutions on the crystals of other compounds. The adsorption behavior of NH 3 (aq) was examined for each compound shown in the figure, EAPbBr 3 , FEAPbI 3 , HOEAPbI 3 , PbI 2 , (PEA) 2 PbI 4 , (BA) 2 (MA) Pb 2 I 7 , (BA) 2 (MA) 2 Pb 3 I 10 , (BA ) 2 (MA) 3 Pb 4 I 13 , and (BA) 2 (MA) 4 Pb 5 I 16 , using the same method as in Figure 26 except that it was performed directly on the crystals.

 EAPbBr、FEAPbI、HOEAPbIについては、iケミカルラボ株式会社に委託して化学合成を行った。概要としては、以下のように合成した。 Chemical synthesis of EAPbBr 3 , FEAPbI 3 , and HOEAPbI 3 was outsourced to i Chemical Lab Co., Ltd. In summary, the synthesis was carried out as follows.

(EAPbBrの合成)
 アルゴン雰囲気下、EABr(7.67g、60.9mmol、1.00eq)を脱水DMF(45ml)に入れて、超音波処理にて溶解させた。別途、アルゴン雰囲気下、臭化鉛(22.3g、60.8mmol、1.00eq)を脱水DMF(45ml)に入れて、5分間の超音波処理後、別途溶解させておいたEABr/DMF溶液を加えた。これを超音波処理後、70℃下、5時間減圧乾燥および80℃下、7.5時間減圧乾燥を行いEAPbBrとして29.6g(60.1mmol)の黄色固体を得た。
(Synthesis of EAPbBr3 )
Under an argon atmosphere, EABr (7.67 g, 60.9 mmol, 1.00 eq) was added to dehydrated DMF (45 ml) and dissolved by ultrasonic treatment. Separately, under an argon atmosphere, lead bromide (22.3 g, 60.8 mmol, 1.00 eq) was added to dehydrated DMF (45 ml) and ultrasonically treated for 5 minutes, and then a separately dissolved EABr/DMF solution was added. After ultrasonic treatment, the mixture was dried under reduced pressure at 70° C. for 5 hours and dried under reduced pressure at 80° C. for 7.5 hours to obtain 29.6 g (60.1 mmol) of a yellow solid as EAPbBr 3 .

(FEAPbIの合成)
 アルゴン雰囲気下、FEA(4.94g、48.3mmol、1.03eq)を氷冷却撹拌した。そこに57%ヨウ化水素酸(10.8g、48.3mmol、1.03eq)を4分かけて滴下した。氷冷のまま2時間撹拌した後、50℃で溶媒を減圧留去した。粗体として11.7gの黄色固体を得た。粗体はジエチルエーテル(60ml)で懸濁撹拌して、30分後、固体を吸引ろ過、ジエチルエーテル洗浄した。FEAIとして6.80g(30mmol)の白色固体を得た。アルゴン雰囲気下、FEAI(11.8g、51.9mmol、1.00eq)を脱水DMF(40ml)に入れて、超音波処理にて溶解させた。アルゴン雰囲気下、ヨウ化鉛(23.9g、51.9mmol、1.00eq)を脱水DMF(40ml)に入れて、5分間の超音波処理後、別途溶解させておいたFEA
I/DMF溶液を加えた。これを超音波処理後、70℃下、7時間減圧乾燥を行った。更に乳鉢ですり潰した後、80℃下、3時間減圧乾燥を行いFEAPbIとして36.9g(53.6mmol)の黄色固体を得た。
(Synthesis of FEAPbI3 )
Under an argon atmosphere, FEA (4.94 g, 48.3 mmol, 1.03 eq) was ice-cooled and stirred. 57% hydroiodic acid (10.8 g, 48.3 mmol, 1.03 eq) was added dropwise thereto over 4 minutes. After stirring for 2 hours while ice-cooled, the solvent was distilled off under reduced pressure at 50°C. 11.7 g of a yellow solid was obtained as a crude product. The crude product was suspended and stirred in diethyl ether (60 ml), and after 30 minutes, the solid was suction filtered and washed with diethyl ether. 6.80 g (30 mmol) of a white solid was obtained as FEAI. Under an argon atmosphere, FEAI (11.8 g, 51.9 mmol, 1.00 eq) was placed in dehydrated DMF (40 ml) and dissolved by ultrasonic treatment. In an argon atmosphere, lead iodide (23.9 g, 51.9 mmol, 1.00 eq) was added to dehydrated DMF (40 ml) and subjected to ultrasonic treatment for 5 minutes.
The mixture was treated with ultrasonic waves and then dried under reduced pressure at 70° C. for 7 hours. The mixture was then ground in a mortar and dried under reduced pressure at 80° C. for 3 hours to obtain 36.9 g (53.6 mmol) of a yellow solid as FEAPbI3 .

(HOEAPbIの合成)
 アルゴン雰囲気下、HOEAI(8.29g、43.8mmol、1.00eq)を脱水DMF(34ml)に入れて、超音波処理にて溶解させた。別途、アルゴン雰囲気下、ヨウ化鉛(20.2g、43.8mmol、1.00eq)を脱水DMF(34ml)に入れて、5分間の超音波処理後、別途溶解させておいたHOEAI/DMF溶液を加えた。これを超音波処理後、70℃下、5時間減圧乾燥および80℃下、4時間減圧乾燥を行いHOEAPbIとして28.2g(43.3mmol)の黄色固体を得た。
(Synthesis of HOEAPbI3 )
Under an argon atmosphere, HOEAI (8.29 g, 43.8 mmol, 1.00 eq) was added to dehydrated DMF (34 ml) and dissolved by ultrasonic treatment. Separately, under an argon atmosphere, lead iodide (20.2 g, 43.8 mmol, 1.00 eq) was added to dehydrated DMF (34 ml) and ultrasonicated for 5 minutes, and then a separately dissolved HOEAI/DMF solution was added. After ultrasonic treatment, the mixture was dried under reduced pressure at 70° C. for 5 hours and dried under reduced pressure at 80° C. for 4 hours to obtain 28.2 g (43.3 mmol) of yellow solid as HOEAPbI 3 .

 PbI(L0279)については東京化成工業、(PEA)PbI(910937)、(BA)(MA)Pb(912816)、(BA)(MA)Pb10(912557)、(BA)(MA)Pb13(914363)、および(BA)(MA)Pb16(912301)についてはAldrichより購入した。前記化合物名の後の括弧内はカタログ番号を示す。 PbI2 (L0279) was purchased from Tokyo Chemical Industry Co., Ltd., (PEA) 2PbI4 ( 910937 ), (BA) 2 (MA)Pb2I7 ( 912816), (BA)2(MA)2Pb3I10 (912557), (BA)2 ( MA )3Pb4I13 (914363), and (BA)2 ( MA ) 4Pb5I16 ( 912301 ) were purchased from Aldrich. The numbers in parentheses after the compound names indicate catalog numbers .

 図中、それぞれ、(i)は暴露する前、(ii)は25℃で20時間暴露後である。蒸気変色挙動の化学選択性は、窒素含有化合物を使用して実行した。
 いずれの化合物の結晶についても、NHに暴露すると白色(薄色)となり、吸着が起こることが示された。
In the figures, (i) is before exposure and (ii) is after 20 hours exposure at 25° C. The chemoselectivity of the steam discoloration behavior was carried out using nitrogen-containing compounds.
Crystals of both compounds turned white (light colored) when exposed to NH3 , indicating that adsorption occurred.

 [吸着等温線:追加化合物]
 前記各化合物について、図6と同様の手法により吸着等温線を測定した。測定条件は常温(25℃)で行った。
 図31、図32、図33は、さらに他の化合物に対する吸着等温線を示すグラフ図である。
 図31(a)はEAPbI、(b)はEAPbBr、(c)はFEAPbI、(d)はHOEAPbIの吸着等温線を示した。
 図32(a)はGuaPbI、(b)はPbI、(c)は(BA)PbI、(d)は(PEA)PbIの吸着等温線を示した。
 図33(a)は(BA)(MA)Pb27、(b)は(BA)(MA)Pb10、(c)は(BA)(MA)Pb13、(d)は(BA)(MA)Pb16の吸着等温線を示した。
 これらの化合物の取り込み挙動は、いずれも200mbar前後では吸着が起こらず、次第に吸着能が上がってゆくか、または800~1000mbar(1bar)で大きく吸着能が上がった。
[Adsorption isotherm: additional compound]
Adsorption isotherms were measured for each of the compounds in the same manner as in Fig. 6. The measurements were performed at room temperature (25°C).
31, 32 and 33 are graphs showing adsorption isotherms for further compounds.
FIG. 31(a) shows the adsorption isotherm of EAPbI 3 , (b) shows the adsorption isotherm of EAPbBr 3 , (c) shows the adsorption isotherm of FEAPbI 3 , and (d) shows the adsorption isotherm of HOEAPbI 3 .
FIG. 32(a) shows the adsorption isotherms of GuaPbI 3 , (b) shows the adsorption isotherms of PbI 2 , (c) shows the adsorption isotherms of (BA) 2 PbI 4 , and (d) shows the adsorption isotherms of (PEA) 2 PbI 4 .
FIG . 33(a) is (BA)2(MA)2Pb2I7 , (b) is (BA)2(MA)2Pb3I10 , and ( c ) is ( BA ) 2 (MA) 3Pb4 . I 13 , (d) shows the adsorption isotherm of (BA) 2 (MA) 4 Pb 5 I 16 .
The uptake behavior of these compounds was such that no adsorption occurred at around 200 mbar, and the adsorption capacity gradually increased, or the adsorption capacity increased significantly at 800 to 1000 mbar (1 bar).

 [アンモニア貯蔵能:追加化合物]
 また、前記吸着等温線から、前記各化合物について常温常圧(25℃、1bar)におけるアンモニア貯蔵能(mmоl/g)を表4に示した。
[Ammonia storage capacity: additional compounds]
From the adsorption isotherms, the ammonia storage capacity (mmol/g) at room temperature and normal pressure (25° C., 1 bar) of each compound is shown in Table 4.

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

 前記いずれの化合物についても、6.6以上、より優れたものでは9以上、特に優れたものでは10以上のアンモニア貯蔵能が得られており、有効な性能が示された。 All of the above compounds achieved an ammonia storage capacity of 6.6 or more, with even better ones achieving 9 or more, and particularly good ones achieving 10 or more, demonstrating effective performance.

 [アンモニア取出し挙動の測定:追加化合物]
 上記各化合物について、TG-MSを用いてアンモニア取出し挙動の測定を行った。
 図6と同様の手法により、各化合物についてNHの抽出(昇温速度=5℃/分)についての熱重量質量分析(TG-MS)を行った。
 図34、図35、図36は、さらに他の化合物に対する熱重量質量分析の結果を示すグラフ図である。
 図34(a)はEAPbI、(b)はEAPbBr、(c)はFEAPbI、(d)はHOEAPbIの熱重量質量分析を示した。
 図35(a)はGuaPbI、(b)はPbI、(c)は(BA)PbI、(d)は(PEA)PbIの熱重量質量分析を示した。
 図36(a)は(BA)(MA)Pb27、(b)は(BA)(MA)Pb10、(c)は(BA)(MA)Pb13、(d)は(BA)(MA)Pb16の熱重量質量分析を示した。
 図に示すように、いずれの化合物についても吸着したアンモニアは加熱により取出しが可能であり、また、いずれも60-90℃付近にピークを示すことが明らかとなった。
[Measurement of ammonia removal behavior: additional compounds]
The ammonia removal behavior of each of the above compounds was measured using TG-MS.
Using the same method as in FIG. 6, thermogravimetric mass spectrometry (TG-MS) was performed on each compound for NH3 extraction (heating rate = 5°C/min).
34, 35 and 36 are graphs showing the results of thermogravimetric mass spectrometry for further compounds.
FIG. 34(a) shows the thermogravimetric and mass spectrometry results of EAPbI 3 , (b) EAPbBr 3 , (c) FEAPbI 3 , and (d) HOEAPbI 3 .
FIG. 35(a) shows the thermogravimetric and mass spectrometry results of GuaPbI 3 , (b) shows the thermogravimetric and mass spectrometry results of PbI 2 , (c) shows the thermogravimetric and mass spectrometry results of (BA) 2 PbI 4 , and (d) shows the thermogravimetric and mass spectrometry results of (PEA) 2 PbI 4 .
Figure 36 ( a ) shows the thermogravimetric and mass analyses of (BA ) 2 ( MA ) 2Pb2I7 , (b) ( BA ) 2 (MA) 2Pb3I10 , (c) (BA) 2 (MA) 3Pb4I13 , and ( d ) (BA) 2 (MA) 4Pb5I16 .
As shown in the figure, it was clear that the ammonia adsorbed in each compound could be removed by heating, and that each compound showed a peak in the vicinity of 60-90°C.

 ついで、アンモニア貯蔵のサイクルを繰り返した際の貯蔵能の維持について試験を行った。繰り返しサイクルの確認は以下のように行った。
 密閉容器内に、化合物(結晶)を収納した解放容器と、アンモニア水を吸収させた綿を入れ、25℃で20時間安置した。その後、前記化合物を収納した解放容器を取出し、ホットプレート上で50℃、3時間陰圧を加えた。この操作を1サイクルとし、15サイクルまで行った。
 表5に、各化合物についての15サイクル後の初期(Initial)および15サイクル後のアンモニア貯蔵能を示した。
Next, a test was conducted to confirm the maintenance of storage capacity when ammonia storage cycles were repeated. The repeated cycles were confirmed as follows.
The open container containing the compound (crystal) and cotton soaked in ammonia water were placed in a sealed container and left to stand at 25° C. for 20 hours. After that, the open container containing the compound was taken out and negative pressure was applied on a hot plate at 50° C. for 3 hours. This operation was counted as one cycle, and 15 cycles were performed.
Table 5 shows the initial and post-15 cycle ammonia storage capacities for each compound.

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

 いずれの化合物についても、アンモニア貯蔵と放出のサイクルを15サイクル繰り返した前後において、一定のアンモニア貯蔵量が維持された。特に、EAPBI、FEAPBI、(BA)(MA)PB10では、貯蔵能の減少は見られなかった。 For all compounds, a constant ammonia storage capacity was maintained before and after 15 cycles of ammonia storage and release. In particular, no decrease in storage capacity was observed for EAPBI 3 , FEAPBI 3 , and (BA) 2 (MA) 2 PB 3 I 10 .

 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are within the scope of the invention and its equivalents set forth in the claims, as well as the scope and gist of the invention.

 本発明によれば、アンモニアを温和な条件で比較的簡易に貯蔵することができ、かつ安全性の高い貯蔵が可能であるアンモニア貯蔵用組成物、それを用いたアンモニア貯蔵装置、アンモニア貯蔵方法およびアンモニア分子の除去方法を提供することができる。 The present invention provides an ammonia storage composition that allows ammonia to be stored relatively easily under mild conditions and with a high degree of safety, an ammonia storage device that uses the composition, an ammonia storage method, and a method for removing ammonia molecules.

 1 アンモニア貯蔵用組成物
 2 アンモニア結合組成物
 11 第一保持部材
 12 結合処理部材
 21 第二保持部材
 22 離脱処理部材
 100 アンモニア貯蔵装置
Reference Signs List 1 Ammonia storage composition 2 Ammonia binding composition 11 First holding member 12 Bonding treatment member 21 Second holding member 22 Release treatment member 100 Ammonia storage device

Claims (12)

 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
(前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)で表される少なくとも一種のアンモニア貯蔵用化合物を含む、アンモニア貯蔵用組成物。
Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and the formula (1-c), R represents ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number), comprising at least one ammonia storage compound represented by the formula (I-b) and the formula (1-c).
 前記アンモニア貯蔵用化合物が、
 RNHPbI・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、請求項1に記載のアンモニア貯蔵用組成物。
The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
2. The ammonia storage composition according to claim 1,
 請求項1に記載のアンモニア貯蔵用組成物を含み、前記アンモニア貯蔵用化合物に対してアンモニア分子と水分子とがさらに結合したアンモニア結合化合物を含む、アンモニア結合組成物。 An ammonia-binding composition comprising the ammonia storage composition according to claim 1 and an ammonia-binding compound in which an ammonia molecule and a water molecule are further bound to the ammonia storage compound.  請求項1に記載のアンモニア貯蔵用組成物を含むアンモニア貯蔵装置であって、
 前記アンモニア貯蔵用組成物を保持するための第一保持部材と、
 前記第一保持部材に保持された前記アンモニア貯蔵用組成物に対して、アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、
 少なくとも1種の前記アンモニア貯蔵用化合物に対してアンモニア分子と水分子とがさらに結合することで得られるアンモニア結合組成物とする手段を備えた、アンモニア貯蔵装置。
13. An ammonia storage device comprising the ammonia storage composition of claim 1,
A first retention member for retaining the ammonia storage composition;
The ammonia storage composition held in the first holding member is contacted with ammonia molecules and water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1,
The ammonia storage device further comprises a means for further binding ammonia molecules and water molecules to the at least one ammonia storage compound to obtain an ammonia-binding composition.
 前記アンモニア結合組成物を保持するための第二保持部材と、
 前記第二保持部材に保持された前記アンモニア結合組成物に対して、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、前記アンモニア結合組成物からアンモニア分子を離脱させ少なくとも一種の前記アンモニア貯蔵用化合物とし、
 前記アンモニア結合組成物から離脱したアンモニア分子を収集する手段をさらに備えた、請求項4に記載のアンモニア貯蔵装置。
a second retention member for retaining the ammonia-binding composition;
The ammonia-binding composition held in the second holding member is treated under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to desorb ammonia molecules from the ammonia-binding composition to obtain at least one ammonia storage compound;
5. The ammonia storage device of claim 4, further comprising means for collecting ammonia molecules disengaged from the ammonia-binding composition.
 前記アンモニア結合温度T1および前記アンモニア離脱温度T2がT2>T1の関係にあり、
 前記アンモニア結合圧力P1および前記アンモニア離脱圧力P2がP2<P1の関係にある、
 請求項5に記載のアンモニア貯蔵装置。
the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
The ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.
6. The ammonia storage device of claim 5.
 アンモニア貯蔵方法であって、
 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
 (前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)
 で表される少なくとも一種のアンモニア貯蔵用化合物に対して、
 アンモニア結合圧力P1及びアンモニア結合温度T1の条件下でアンモニア分子及び水を接触させて、化学反応させる工程であるアンモニア貯蔵工程を含む、アンモニア貯蔵方法。
1. A method for storing ammonia, comprising:
Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and formula (1-c), R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.)
For at least one ammonia storage compound represented by
An ammonia storage method comprising: an ammonia storage step of contacting ammonia molecules with water under conditions of an ammonia binding pressure P1 and an ammonia binding temperature T1 to cause a chemical reaction.
 前記アンモニア貯蔵用化合物が、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、請求項7に記載のアンモニア貯蔵方法。
The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
The method for storing ammonia according to claim 7,
 前記アンモニア結合組成物を、アンモニア離脱圧力P2及びアンモニア離脱温度T2の条件下で処理して、前記アンモニア結合組成物からアンモニア分子を遊離させるアンモニア離脱工程を含む、請求項7に記載のアンモニア貯蔵方法。 The method for storing ammonia according to claim 7, further comprising an ammonia desorption step of treating the ammonia-bound composition under conditions of an ammonia desorption pressure P2 and an ammonia desorption temperature T2 to liberate ammonia molecules from the ammonia-bound composition.  前記アンモニア結合温度T1および前記アンモニア離脱温度T2がT2>T1の関係にあり、
 前記アンモニア結合圧力P1および前記アンモニア離脱圧力P2がP2<P1の関係にある、
 請求項9に記載のアンモニア貯蔵方法。
the ammonia binding temperature T1 and the ammonia desorption temperature T2 have a relationship of T2>T1,
The ammonia binding pressure P1 and the ammonia desorption pressure P2 have a relationship of P2<P1.
The method for storing ammonia according to claim 9.
 下記式(I-a)~(I-c)のいずれか、
 PbI2 ・・・ (I-a)
 RPbX・・・ (I-b)
 Rn+1Pb3n+1・・・ (I-c)
 (前記式(I-b)および式(1-c)中、Rは置換されていてもよい炭素数1~10の炭化水素基を含むアンモニウム、グアニジニウムまたはホルムアミジニウムを表し、Xはハロゲン元素を表し、前記式中Rを2以上含む場合は互いに同一でも異なっていてもよく、nは自然数を示す)
 で表される少なくとも一種のアンモニア貯蔵用化合物を含む、アンモニア貯蔵用組成物を、少なくともアンモニア分子及び水分子を含む気相と接触させることによって、前記気相中の少なくとも一部のアンモニア分子及び水分子を前記アンモニア貯蔵用化合物と化学反応させる工程、を含むアンモニア分子の除去方法。
Any of the following formulas (I-a) to (I-c):
PbI 2 ... (I-a)
RPbX 3 ... (I-b)
R n+1 Pb n X 3n+1 ... (I-c)
(In the formula (I-b) and formula (1-c), R represents an ammonium, guanidinium or formamidinium containing a hydrocarbon group having 1 to 10 carbon atoms which may be substituted, X represents a halogen element, and when the formula contains two or more Rs, they may be the same or different, and n represents a natural number.)
A method for removing ammonia molecules, comprising: contacting an ammonia storage composition containing at least one ammonia storage compound represented by the formula (I) with a gas phase containing at least ammonia molecules and water molecules, thereby chemically reacting at least a portion of the ammonia molecules and water molecules in the gas phase with the ammonia storage compound.
 前記アンモニア貯蔵用化合物が、
 RNHPbI ・・・ (I-d)
(前記式(I-d)中、Rは置換されていてもよい炭素数1~10の炭化水素基)
 である、請求項11に記載のアンモニア分子の除去方法。
The ammonia storage compound is
R 1 NH 3 PbI 3 ... (I-d)
(In the formula (I-d), R 1 is a hydrocarbon group having 1 to 10 carbon atoms which may be substituted.)
The method for removing ammonia molecules according to claim 11,
PCT/JP2024/020942 2023-06-09 2024-06-07 Composition for ammonia storage, ammonia bonding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method WO2024253202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363471981P 2023-06-09 2023-06-09
US63/471,981 2023-06-09

Publications (1)

Publication Number Publication Date
WO2024253202A1 true WO2024253202A1 (en) 2024-12-12

Family

ID=93795538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/020942 WO2024253202A1 (en) 2023-06-09 2024-06-07 Composition for ammonia storage, ammonia bonding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method

Country Status (1)

Country Link
WO (1) WO2024253202A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270622A1 (en) * 2021-06-25 2022-12-29 株式会社ダイセキ Method for recycling ammonia from ammonia-containing gas or ammonia-containing liquid, ammonia recycling device, and ammonia gas storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270622A1 (en) * 2021-06-25 2022-12-29 株式会社ダイセキ Method for recycling ammonia from ammonia-containing gas or ammonia-containing liquid, ammonia recycling device, and ammonia gas storage device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURALIDHAR JYORTHANA RAJAPPA, SALIKOLIMI KRISHNACHARY, ADACHI KIYOHIRO, HASHIZUME DAISUKE, KODAMA KOICHI, HIROSE TAKUJI, ITO YOSHI: "Chemical Storage of Ammonia through Dynamic Structural Transformation of a Hybrid Perovskite Compound", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 145, no. 31, 9 August 2023 (2023-08-09), pages 16973 - 16977, XP093246253, ISSN: 0002-7863, DOI: 10.1021/jacs.3c04181 *

Similar Documents

Publication Publication Date Title
Zhang et al. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition
Lee et al. Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives
Esrafili et al. The targeted design of dual-functional metal–organic frameworks (DF-MOFs) as highly efficient adsorbents for Hg 2+ ions: Synthesis for purpose
US20200353439A1 (en) Porous materials
CN106029674B (en) Acid, solvent, and heat resistant metal organic framework
KR20220002405A (en) Mixed-Metal Mixed-Organic Framework System for Selective CO2 Capture
JP2022508231A (en) Multi-component metal-organic frameworks and other metal-organic frameworks and how to use them
JP2024526059A (en) Simple metal-organic frameworks for selective adsorption of carbon dioxide from flue gases
Bagherian et al. Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture
KR20230038269A (en) Methods for synthesis and recycling of metal-organic framework systems
Iyi et al. Deintercalation of carbonate ions and anion exchange of an Al-rich MgAl-LDH (layered double hydroxide)
CN114096592A (en) Metal organic framework with localized defects for gas separation
Wang et al. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2
Maponya et al. Selective adsorption of palladium ions from wastewater by ion-imprinted MIL-101 (Cr) derived from waste polyethylene terephthalate: Isotherms and kinetics
KR100562816B1 (en) Coordination Polymer Compounds Having Porous Metal-Organic Skeletal Structures and Their Solvents
WO2024253202A1 (en) Composition for ammonia storage, ammonia bonding composition, ammonia storage device, ammonia storage method, and ammonia molecule removal method
JP2010022886A (en) Method for removing tetrafluoroborate ion
US10272384B2 (en) Reversible and irreversible chemisorption in nonporous, crystalline hybrid structures
Chen et al. Pyrazole-directed functionalization of activated collagen fiber for highly specific capture of iodine vapor
WO2009110499A1 (en) Method for water purification, equipment for water purification, and water purification set
Pang et al. A hydrolytically stable metal–organic framework for simultaneous desulfurization and dehydration of wet flue gas
Habuka et al. Selective recognition and reversible encapsulation of tetrameric alcohol clusters via hydrogen bonds using a perfluorinated dinuclear nickel (II) complex
US8389755B2 (en) Gas adsorption material, precursor of same, and method of producing gas adsorption material
Zhao et al. Preparation, characterization, and application of stable naphthalenediimide‐based metal–organic framework for cooperative capture low concentration uranium from wastewater
US12263465B2 (en) Tailoring new covalent organic framework for highly efficient iodine capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24819429

Country of ref document: EP

Kind code of ref document: A1