[go: up one dir, main page]

WO2024252603A1 - Solenoid valve mechanism and fuel pump - Google Patents

Solenoid valve mechanism and fuel pump Download PDF

Info

Publication number
WO2024252603A1
WO2024252603A1 PCT/JP2023/021301 JP2023021301W WO2024252603A1 WO 2024252603 A1 WO2024252603 A1 WO 2024252603A1 JP 2023021301 W JP2023021301 W JP 2023021301W WO 2024252603 A1 WO2024252603 A1 WO 2024252603A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable core
core
valve mechanism
fuel
rod
Prior art date
Application number
PCT/JP2023/021301
Other languages
French (fr)
Japanese (ja)
Inventor
智 飯塚
裕貴 中居
淳司 高奥
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2023/021301 priority Critical patent/WO2024252603A1/en
Publication of WO2024252603A1 publication Critical patent/WO2024252603A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Definitions

  • the present invention relates to an electromagnetic valve mechanism and a fuel pump equipped with the electromagnetic valve mechanism.
  • the electromagnetic valve mechanism described in Patent Document 1 includes a fixed core and a movable core that is attracted to the fixed core by a magnetic attraction force generated between the fixed core and the movable core when electricity is passed through a coil.
  • the fixed core has a first abutment portion that abuts against the movable core
  • the movable core has a second abutment portion that abuts against the fixed core, and is characterized in that at least one of the first abutment portion or the second abutment portion is harder than the base material that forms the fixed core or the movable core.
  • the objective of this study is to take the above problems into consideration and provide an electromagnetic valve mechanism and fuel pump that can suppress cavitation erosion that occurs between the fixed core and the movable core.
  • the solenoid valve mechanism includes a valve body, a rod that engages with the valve body, a movable core with which the rod engages, a fixed core that generates a magnetic attraction force between the movable core and the fixed core, and a rod biasing spring that biases the rod in a direction away from the fixed core.
  • the movable core is formed with a through hole that passes through in the direction in which the movable core moves.
  • a recess is formed on the collision surface of the fixed core that comes into contact with the movable core. The recess is also positioned opposite the through hole of the movable core.
  • the fuel pump also includes a body with a pressurized chamber, a plunger that is supported by the body so that it can reciprocate and that increases or decreases the volume of the pressurized chamber by reciprocating motion, and the above-mentioned solenoid valve mechanism that discharges fuel into the pressurized chamber.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel pump according to a first embodiment
  • 1 is a vertical sectional view (part 1) of a high-pressure fuel pump according to a first embodiment
  • FIG. 1 is a horizontal cross-sectional view of a high-pressure fuel pump according to a first embodiment, as viewed from above
  • FIG. 2 is a vertical sectional view (part 2) of the high-pressure fuel pump according to the first embodiment
  • 2 is an enlarged cross-sectional view showing an electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment
  • FIG. FIG. 1 is a diagram showing the cavitation generation operation.
  • FIG. 1 is a diagram showing the cavitation generation operation.
  • 8A and 8B are enlarged views showing the cavitation generation operation.
  • FIG. 2 is an enlarged cross-sectional view showing a fixed core and a movable core of the electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment
  • FIG. 3 is an enlarged cross-sectional view showing the operation of the electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment
  • FIG. 8 is an enlarged cross-sectional view showing a fixed core and a movable core of an electromagnetic valve mechanism of a high-pressure fuel pump according to a second embodiment.
  • FIG. FIG. 13 is a plan view showing a movable core of an electromagnetic valve mechanism of a high-pressure fuel pump according to a third embodiment.
  • FIG. 1 is a diagram showing the overall configuration of a fuel supply system using a high-pressure fuel pump according to this embodiment.
  • the fuel supply system includes a high-pressure fuel pump 100, an ECU (Engine Control Unit) 27, a fuel tank 20, a common rail 23, and multiple injectors 24.
  • the components of the high-pressure fuel pump 100 are integrally assembled into the pump body 1.
  • Fuel in the fuel tank 20 is pumped up by a feed pump 21 that is driven based on a signal from the ECU 27.
  • the pumped up fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent through a fuel pipe 28 to a low-pressure fuel intake port 10a provided at an intake joint 51 of the high-pressure fuel pump 100.
  • the high-pressure fuel pump 100 pressurizes the fuel supplied from the fuel tank 20 and sends it to the common rail 23.
  • the common rail 23 is equipped with multiple injectors 24 and a fuel pressure sensor 26.
  • the multiple injectors 24 are installed in accordance with the number of cylinders (combustion chambers), and inject fuel according to a drive current output from an ECU 27.
  • the fuel supply system of this embodiment is a so-called direct injection engine system in which the injectors 24 inject fuel directly into the cylinders of the engine.
  • the fuel pressure sensor 26 outputs the detected pressure data to the ECU 27.
  • the ECU 27 calculates the appropriate fuel injection amount (target fuel injection length) and appropriate fuel pressure (target fuel pressure) based on engine state quantities (e.g. crank angle, throttle opening, engine speed, fuel pressure, etc.) obtained from various sensors.
  • the ECU 27 also controls the operation of the high-pressure fuel pump 100 and the multiple injectors 24 based on the calculation results of the fuel pressure (target fuel pressure) and the like. That is, the ECU 27 has a pump control unit that controls the high-pressure fuel pump 100 and an injector control unit that controls the injectors 24.
  • the high-pressure fuel pump 100 has a plunger 2, a pressure pulsation reduction mechanism 9, a solenoid valve mechanism 300 which is a variable capacity mechanism, a relief valve mechanism 200, and a discharge valve mechanism 8.
  • the fuel flowing in from the low-pressure fuel intake port 10a reaches the intake port 31b of the solenoid valve mechanism 300 via the pressure pulsation reduction mechanism 9 and the low-pressure fuel intake passage 10d.
  • the fuel that flows into the solenoid valve mechanism 300 passes through the suction valve 30 and flows into the pressurized chamber 11 formed in the pump body 1.
  • the pump body 1 holds the plunger 2 in a slidable manner.
  • the plunger 2 reciprocates when power is transmitted by the engine cam 93 (see Figure 2).
  • One end of the plunger 2 is inserted into the pressurized chamber 11, and increases or decreases the volume of the pressurized chamber 11.
  • Fig. 2 is a first longitudinal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the horizontal direction.
  • Fig. 3 is a horizontal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the vertical direction.
  • Fig. 4 is a second longitudinal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the horizontal direction.
  • the pump body 1 of the high-pressure fuel pump 100 is provided with a mounting flange 1a (see Figure 3).
  • This mounting flange 1a is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine).
  • a threaded hole 1b is formed in the flange 1a.
  • the pump body 1 is fixed to the fuel pump mounting portion 90 by fastening a number of bolts (screws) (not shown) into the threaded holes 1b formed in the flange 1a.
  • an O-ring 61 is interposed between the fuel pump mounting portion 90 and the pump body 1. This O-ring 61 prevents engine oil from leaking between the fuel pump mounting portion 90 and the pump body 1 to the outside of the engine (internal combustion engine).
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the pump body 1 of the high-pressure fuel pump 100.
  • the cylinder 6 is formed in a cylindrical shape, and its outer periphery is press-fitted into the pump body 1.
  • the pump body 1 and the cylinder 6 form a pressurizing chamber 11 together with the solenoid valve mechanism 300, the plunger 2, and the discharge valve mechanism 8 (see FIG. 3).
  • the pump body 1 has an insertion hole for inserting the cylinder 6 from below.
  • the lower end of the insertion hole in the pump body 1 has an inner circumferential convex portion that is deformed inwardly so as to come into contact with the lower surface of the fixing portion 6a provided on the cylinder 6.
  • the upper surface of the inner circumferential convex portion of the pump body 1 presses the fixing portion 6a of the cylinder 6 upward in the figure, and the upper end surface of the cylinder 6 seals the pressurized fuel in the pressurized chamber 11 so that it does not leak to the low pressure side.
  • a tappet 92 is provided at the lower end of the plunger 2.
  • the tappet 92 converts the rotational motion of a cam 93 attached to the engine's camshaft into vertical motion and transmits it to the plunger 2.
  • the plunger 2 is biased toward the cam 93 by a spring 4 via a retainer 15, and is pressed against the tappet 92.
  • the plunger 2 reciprocates together with the tappet 92, changing the volume of the pressurized chamber 11.
  • a seal holder 7 is also disposed between the cylinder 6 and the retainer 15.
  • the seal holder 7 is formed in a cylindrical shape into which the plunger 2 is inserted.
  • An auxiliary chamber 7a is formed at the upper end of the seal holder 7 on the cylinder 6 side.
  • the lower end of the seal holder 7 on the retainer 15 side holds the plunger seal 13.
  • the plunger 2 reciprocates up and down.
  • the volume of the pressurized chamber 11 expands, and when the plunger 2 ascends, the volume of the pressurized chamber 11 decreases.
  • the plunger 2 is arranged to reciprocate in a direction that expands and reduces the volume of the pressurized chamber 11.
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
  • the large diameter portion 2a and the small diameter portion 2b are located in the auxiliary chamber 7a. Therefore, the volume of the auxiliary chamber 7a increases and decreases due to the reciprocating motion of the plunger 2.
  • the auxiliary chamber 7a is connected to the low-pressure fuel chamber 10.
  • fuel flows from the auxiliary chamber 7a to the low-pressure fuel chamber 10, and when the plunger 2 ascends, fuel flows from the low-pressure fuel chamber 10 to the auxiliary chamber 7a. This reduces the amount of fuel flowing into and out of the pump during the intake stroke or return stroke of the high-pressure fuel pump 100, and reduces the pressure pulsation that occurs inside the high-pressure fuel pump 100.
  • the pump body 1 is also provided with a relief valve mechanism 200 that communicates with the pressurizing chamber 11.
  • the relief valve mechanism 200 has a seat member 201, a relief valve 202, a relief valve holder 203, a relief spring 204, and a spring support member 205.
  • the seat member 201 contains the relief spring 204 and forms a relief valve chamber.
  • One end of the relief spring 204 abuts against the spring support member 205, and the other end abuts against the relief valve holder 203.
  • the relief valve holder 203 engages with the relief valve 202.
  • the urging force of the relief spring 204 acts on the relief valve 202 via the relief valve holder 203.
  • the relief valve 202 is pressed by the force of the relief spring 204, blocking the fuel passage of the seat member 201.
  • the fuel passage of the seat member 201 is connected to the discharge passage 12b (see FIG. 3). The movement of fuel between the pressurized chamber 11 (upstream side) and the seat member 201 (downstream side) is blocked by the relief valve 202 coming into contact (close contact) with the seat member 201.
  • the fuel on the seat member 201 side presses against the relief valve 202, moving the relief valve 202 against the biasing force of the relief spring 204.
  • the relief valve 202 opens, and the fuel in the discharge passage 12b returns to the pressurized chamber 11 through the fuel passage of the seat member 201. Therefore, the pressure that opens the relief valve 202 is determined by the biasing force of the relief spring 204.
  • the relief valve mechanism 200 in this embodiment is connected to the pressurized chamber 11, this is not limited thereto, and it may be connected to, for example, a low pressure passage.
  • an intake joint 51 is attached to the side of the pump body 1.
  • the intake joint 51 is connected to a fuel pipe 28 through which fuel supplied from the fuel tank 20 passes.
  • the fuel in the fuel tank 20 is supplied from the intake joint 51 to the inside of the high-pressure fuel pump 100.
  • the intake joint 51 forms the low-pressure fuel intake port 10a.
  • the fuel that passes through the intake joint 51 reaches the intake port 31b (see FIG. 5) of the solenoid valve mechanism 300 via the pressure pulsation reduction mechanism 9 provided in the low-pressure fuel chamber 10 and the low-pressure fuel intake passage 10d (see FIG. 2).
  • An intake filter 52 is disposed in the fuel passage of the intake joint 51. The intake filter 52 removes foreign matter present between the fuel tank 20 and the low-pressure fuel intake port 10a, preventing foreign matter from entering the high-pressure fuel pump 100.
  • the pump body 1 of the high-pressure fuel pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10.
  • This low-pressure fuel chamber 10 is covered by a damper cover 14.
  • the damper cover 14 is formed, for example, in a cylindrical (cup-shaped) shape with one side closed.
  • the low-pressure fuel chamber 10 is divided vertically into an upper damper portion 10b and a lower damper portion 10c by the pressure pulsation reduction mechanism 9.
  • the pressure pulsation reduction mechanism 9 is supported from below by a retaining member 9a arranged on the upper end surface of the pump body 1.
  • the pressure pulsation reduction mechanism 9 is a metal damper composed of two metal diaphragms stacked on top of each other. Gas of 0.3 MPa to 0.6 MPa is sealed inside the pressure pulsation reduction mechanism 9, and the outer periphery is fixed by welding. For this reason, the outer periphery is thin and is configured to become thicker toward the inner periphery.
  • a convex portion is formed on the upper surface of the retaining member 9a for fixing the outer peripheral edge of the pressure pulsation reduction mechanism 9 from below. Meanwhile, a convex portion is formed on the lower surface of the damper cover 14 for fixing the outer peripheral edge of the pressure pulsation reduction mechanism 9 from above.
  • These convex portions are formed in a circular shape, and the pressure pulsation reduction mechanism 9 is fixed by being sandwiched between these convex portions.
  • the damper cover 14 is fixed by being pressed into the outer peripheral edge of the pump body 1, and at this time the retaining member 9a elastically deforms to support the pressure pulsation reduction mechanism 9.
  • the pressure pulsation reduction mechanism 9 divides the low-pressure fuel chamber 10 into an upper damper portion 10b and a lower damper portion 10c.
  • a passage is formed in the retaining member 9a that connects the upper and lower sides of the pressure pulsation reduction mechanism 9.
  • the suction port 31b is formed in vertical communication with the suction valve seat member 31 that forms the suction valve seat 31a.
  • the discharge valve mechanism 8 is connected to the outlet side of the pressurizing chamber 11.
  • the discharge valve mechanism 8 includes a discharge valve seat member 8a and a discharge valve 8b that moves toward and away from the discharge valve seat member 8a.
  • the discharge valve mechanism 8 also includes a discharge valve spring 8c that biases the discharge valve 8b toward the discharge valve seat member 8a, and a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.
  • the discharge valve seat member 8a, discharge valve 8b, discharge valve spring 8c, and discharge valve stopper 8d are housed in a discharge valve chamber 12a formed in the pump body 1.
  • the discharge valve chamber 12a is a substantially cylindrical space extending horizontally.
  • One end of the discharge valve chamber 12a is connected to the pressurizing chamber 11 via a fuel passage.
  • the other end of the discharge valve chamber 12a opens to the side of the pump body 1.
  • An abutment portion 8e is formed at the end of the discharge valve stopper 8d.
  • the discharge valve chamber 12a and the discharge valve stopper 8d are fixed by welding at the abutment portion 8e. Therefore, the opening at the other end of the discharge valve chamber 12a is sealed by the discharge valve stopper 8d.
  • a discharge joint 12 is joined to the pump body 1 by welding.
  • the discharge joint 12 has a fuel discharge port.
  • the fuel discharge port is connected to the discharge valve chamber 12a via a discharge passage 12b that extends horizontally inside the pump body 1.
  • the fuel discharge port of the discharge joint 12 is connected to the common rail 23.
  • the discharge valve 8b When the fuel pressure in the pressurized chamber 11 is lower than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat member 8a by the differential pressure acting on the discharge valve 8b and the biasing force of the discharge valve spring 8c. As a result, the discharge valve mechanism 8 is in a closed state. On the other hand, when the fuel pressure in the pressurized chamber 11 becomes greater than the fuel pressure in the discharge valve chamber 12a and the differential pressure acting on the discharge valve 8b becomes greater than the biasing force of the discharge valve spring 8c, the discharge valve 8b is pushed by the fuel and moves away from the discharge valve seat member 8a. As a result, the discharge valve mechanism 8 is in an open state.
  • the discharge valve mechanism 8 When the discharge valve mechanism 8 opens and closes, fuel is let in and out of the discharge valve chamber 12a. The fuel that leaves the discharge valve chamber 12a is then discharged from the discharge valve mechanism 8 into the discharge passage 12b. As a result, the high-pressure fuel in the pressurized chamber 11 is discharged through the discharge valve chamber 12a, the discharge passage 12b, and the fuel discharge port of the discharge joint 12 into the common rail 23 (see Figure 1). With this configuration, the discharge valve mechanism 8 functions as a check valve that limits the direction of fuel flow.
  • FIG. 5 is an enlarged cross-sectional view of the solenoid valve mechanism 300.
  • the solenoid valve mechanism 300 is inserted into a lateral hole formed in the pump body 1.
  • the solenoid valve mechanism 300 includes an intake valve seat member 31 press-fitted into a lateral hole formed in the pump body 1, an intake valve 30 which is an example of a valve body, a stopper 32, an intake valve biasing spring 33, a rod 35, and a movable core 36.
  • the solenoid valve mechanism 300 also includes a rod guide 37, an outer core 38, a fixed core 39, a rod biasing spring 40, an anchor biasing spring 41, and an electromagnetic coil (solenoid) 43.
  • the suction valve seat member 31 is formed in a cylindrical shape, with a suction valve seat 31a provided on the inner circumference.
  • the suction valve seat member 31 is also formed with a suction port 31b that reaches from the outer circumference to the inner circumference. This suction port 31b is connected to the low-pressure fuel suction passage 10d in the low-pressure fuel chamber 10 described above.
  • the suction valve seat member 31 is also formed with an opening 31c that opens when the suction valve 30 opens. The fuel passes through the opening 31c and flows into the pressurized chamber 11 via a hole 1c formed laterally in the pump body 1. The hole 1c also constitutes part of the pressurized chamber 11.
  • a stopper 32 is disposed in a horizontal hole formed in the pump body 1, facing the suction valve seat 31a of the suction valve seat member 31.
  • the suction valve 30 is disposed between the stopper 32 and the suction valve seat 31a.
  • a suction valve biasing spring 33 is disposed between the stopper 32 and the suction valve 30. The suction valve biasing spring 33 biases the suction valve 30 toward the suction valve seat 31a.
  • the suction valve 30 abuts against the suction valve seat 31a, thereby closing the communication between the suction port 31b and the pressurized chamber 11. This places the solenoid valve mechanism 300 in a closed state.
  • the suction valve 30 abuts against the stopper 32, thereby opening the communication between the suction port 31b and the pressurized chamber 11. This places the solenoid valve mechanism 300 in an open state.
  • the rod 35 passes through the suction valve seat member 31. One end of the rod 35 abuts against the suction valve 30.
  • the rod biasing spring 40 biases the suction valve 30 in the valve opening direction toward the stopper 32 via the rod 35.
  • One end of the rod biasing spring 40 engages with a flange portion 35a provided on the outer periphery of the rod 35.
  • the other end of the rod biasing spring 40 engages with a fixed core 39 arranged to surround the rod biasing spring 40.
  • the fixed core 39 is configured to come into contact with a second yoke 44 that covers an electromagnetic coil chamber in which an electromagnetic coil 43 is arranged.
  • the electromagnetic coil 43 is formed by winding a conducting wire around a bobbin 45. Both ends of the conducting wire of the electromagnetic coil 43 are electrically connected to a terminal member 46 (see FIG. 2).
  • the terminal member 46 is molded integrally with a connector 47 (see FIG. 2), and the remaining end can be connected to the engine control unit.
  • the outer circumference of the electromagnetic coil 43 is surrounded by the first yoke 42, the second yoke 44, and the outer core 38.
  • the first yoke 42 and the second yoke 44 are arranged to surround the electromagnetic coil 43.
  • the first yoke 42 and the second yoke 44 are then molded and fixed together with a connector, which is a resin member.
  • the outer core 38 is pressed into and fixed in a hole in the center of the first yoke 42.
  • the outer core 38 is fixed to the pump body 1 by welding or the like.
  • the inner diameter side of the second yoke 44 is configured to be in contact with the fixed core 39 or to be adjacent to it with a small clearance.
  • the outer diameter side of the second yoke 44 is configured to be in contact with the inner circumference of the first yoke 42 or to be adjacent to it with a small clearance.
  • a fixed pin 832 is fixed to the fixed core 39, and generates a biasing force to press the second yoke 44 against the fixed core 39.
  • the fixed pin 832 may be inserted into the fixed core 39 at a corner on the inner circumference side, or may be fixed by welding or the like.
  • the first yoke 42 and the second yoke 44 are both made of magnetic stainless steel material to form a magnetic circuit and to provide corrosion resistance.
  • the bobbin 45 and the connector 47 are made of high-strength, heat-resistant resin to provide strength and heat resistance.
  • a seal ring 48 is welded to the outer core 38 on the inner circumference of the electromagnetic coil 43, and its opposite end is welded to the fixed core 39.
  • the movable core 36 and rod 35 which are the movable parts, and the rod guide 37, rod biasing spring 40, and anchor biasing spring 41, which are the fixed parts, are arranged.
  • the rod 35 is held on the inner circumference side of the rod guide 37 so that it can slide freely in the axial direction, and also holds the movable core 36 so that it can slide freely.
  • the movable core 36 faces the end face of the fixed core 39. This movable core 36 engages with a flange portion 35a provided on the outer periphery of the rod 35.
  • one end of an anchor biasing spring 41 abuts against the movable core 36 on the side opposite the fixed core 39. The other end of the anchor biasing spring 41 abuts against the rod guide 37.
  • the movable core 36 When a current is passed through the electromagnetic coil 43, the movable core 36 is attracted toward the fixed core 39 by the magnetic attraction force that is generated.
  • the movable core 36 also has multiple through holes 36a.
  • the through holes 36a are formed along the direction of movement of the movable core 36.
  • the rod guide 37 has a bearing portion 37b.
  • the bearing portion 37b is inserted into the anchor bias spring 41.
  • the end of the anchor bias spring 41 abuts against the rod guide 37.
  • the rod guide 37 is also provided with a fuel passage 37a, which allows fuel to flow in and out of the space in which the movable core 36 is located.
  • the anchor biasing spring 41 also biases the movable core 36 toward the flange portion 35a of the rod 35.
  • the amount of movement 36e of the movable core 36 is set to be greater than the amount of movement (valve opening stroke) 30e of the suction valve 30. This allows the suction valve 30 to be reliably abutted (seated) against the suction valve seat 31a, ensuring that the solenoid valve mechanism 300 is in a closed state.
  • the solenoid valve mechanism 300 is of a normally open type, which opens in a non-energized state.
  • the movable core 36 When the movable core 36 is attracted to the fixed core 39 and moves, the flange portion 35a of the rod 35 engages with the movable core 36, and the rod 35 moves in the valve closing direction together with the movable core 36.
  • the suction valve 30 moves in the valve opening direction (away from the suction valve seat 31a) by the amount of the gap of the valve opening stroke 30e, and the valve is opened, and fuel is supplied from the low-pressure fuel suction passage 10d to the pressurized chamber 11.
  • the suction valve 30 stops moving when it collides with a stopper 32 that is pressed and fixed inside the housing (rod guide 37) of the solenoid valve mechanism 300.
  • the rod 35 and the suction valve 30 are separate and independent structures.
  • the suction valve 30 closes the flow path to the pressurized chamber 11 by contacting the suction valve seat 31a of the suction valve seat member 31 arranged on the suction side, and opens the flow path to the pressurized chamber 11 by moving away from the suction valve seat 31a of the suction valve seat member 31.
  • the outer core 38 also has an inner circumferential surface against which the outer circumferential surface of the movable core 36 slides.
  • the seal ring 48 is made of a material with low hardness (e.g., austenitic stainless steel). This makes it possible to reduce the impact load described below.
  • the seal ring 48 is formed to have greater elongation than the fixed core 39 and the movable core 36.
  • the seal ring 48 has an elongation rate of, for example, 35% or more.
  • the seal ring 48 is also formed of a non-magnetic material (non-magnetic material) for magnetic performance. Specifically, austenitic stainless steel is preferable for the seal ring 48. Austenitic stainless steel is generally non-magnetic and can ensure an elongation rate of 35 to 45% or more.
  • the seal ring 48 is formed into a cylinder.
  • the fixed core 39 and the outer core 38 have insertion portions 39ins, 38ins that are inserted into the seal ring 48.
  • the fixed core 39 and the outer core 38 have outer circumferential surfaces that are flush with the outer circumferential surface CS of the seal ring 48 when inserted into the seal ring 48. This makes it easy to attach other parts, such as the bobbin 45.
  • the solenoid valve mechanism 300 As described above, if the solenoid valve mechanism 300 is closed during the compression stroke, the fuel sucked into the pressurized chamber 11 during the intake stroke is pressurized and discharged to the common rail 23. On the other hand, if the solenoid valve mechanism 300 is open during the compression stroke, the fuel in the pressurized chamber 11 is not discharged to the common rail 23. In this way, the discharge of fuel by the high-pressure fuel pump 100 is controlled by opening and closing the solenoid valve mechanism 300. The opening and closing of the solenoid valve mechanism 300 is controlled by the ECU 27.
  • the volume of the pressurized chamber 11 increases and the fuel pressure in the pressurized chamber 11 decreases.
  • the fuel pressure in the pressurized chamber 11 becomes lower than the pressure in the intake port 31b (see Figure 2), and when the biasing force due to the pressure difference between the two exceeds the biasing force of the intake valve biasing spring 33, the intake valve 30 moves away from the intake valve seat 31a and the solenoid valve mechanism 300 opens. As a result, fuel flows between the intake valve 30 and the intake valve seat 31a and through multiple holes in the stopper 32 into the pressurized chamber 11.
  • the high-pressure fuel pump 100 moves to the compression stroke.
  • the electromagnetic coil 43 remains in a non-energized state, and no magnetic attraction force acts between the movable core 36 and the fixed core 39.
  • the rod biasing spring 40 is set to have a necessary and sufficient biasing force to maintain the intake valve 30 in an open position away from the intake valve seat 31a in the non-energized state.
  • the biasing force of the intake valve biasing spring 33 and the fluid force caused by the fuel flowing into the low-pressure fuel intake passage 10d seat the intake valve 30 on the intake valve seat 31a, and the solenoid valve mechanism 300 is in a closed state.
  • the fuel in the pressurized chamber 11 is pressurized as the plunger 2 rises, and when the pressure exceeds the pressure at the fuel discharge port, it passes through the discharge valve mechanism 8 and is discharged into the common rail 23 (see Figure 1).
  • This stroke is called the discharge stroke.
  • the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke.
  • the amount of high-pressure fuel discharged can be controlled by controlling the timing of energization of the electromagnetic coil 43 of the solenoid valve mechanism 300.
  • the timing of energizing the electromagnetic coil 43 If the timing of energizing the electromagnetic coil 43 is advanced, the proportion of the return stroke during the compression stroke will be smaller and the proportion of the discharge stroke will be larger. As a result, less fuel will be returned to the low-pressure fuel intake passage 10d and more fuel will be discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 43 is delayed, the proportion of the return stroke during the compression stroke will be larger and the proportion of the discharge stroke will be smaller. As a result, more fuel will be returned to the low-pressure fuel intake passage 10d and less fuel will be discharged at high pressure. In this way, by controlling the timing of energizing the electromagnetic coil 43, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
  • FIGS. 6 to 8 are diagrams showing the cavitation generation operation.
  • the sucked movable core 36 collides with the fixed core 39 and comes into contact with it. Furthermore, as the movable core 36 stops, the flow of fluid into the spring insertion portion 39e of the fixed core 39 also stops. As a result, the fluid in the spring insertion portion 39e of the fixed core 39, which had been under high pressure, flows out from the spring insertion portion 39e toward the through hole 36a of the movable core 36.
  • the end of the through hole 36a of the movable core 36 facing the fixed core 39 is in a severe environment for cavitation erosion.
  • the collision points of the movable core 36 and the fixed core 39 are hard chrome plated. Therefore, in the conventional technology, in order to apply hard chrome plating, it is necessary to carry out pre-plating and plating, which not only increases the cost of manufacturing the solenoid valve mechanism but also requires labor in manufacturing.
  • FIGS. 9 and 10 are enlarged cross-sectional views showing the fixed core 39 and the movable core 36 of the solenoid valve mechanism 300.
  • FIG. 9 is enlarged cross-sectional views showing the fixed core 39 and the movable core 36 of the solenoid valve mechanism 300.
  • a recess 39b is formed on the collision surface 39a of the fixed core 39 that collides with the movable core 36.
  • the recess 39b is formed concentrically with the spring insertion portion 39e at the corner of the spring insertion portion 39e on the collision surface 39a side of the fixed core 39.
  • the recess 39b is also located at a position on the collision surface 39a of the fixed core 39 that faces the through hole 36a of the movable core 36, a location where cavitation is likely to occur.
  • the recess 39b is an annular recess that is recessed one step from the collision surface 39a in a direction away from the movable core 36.
  • FIG. 11 is an enlarged cross-sectional view showing a fixed core and a movable core of the solenoid valve mechanism.
  • the solenoid valve mechanism according to the second embodiment has a similar configuration to solenoid valve mechanism 300 according to the first embodiment.
  • the solenoid valve mechanism according to the second embodiment differs from solenoid valve mechanism 300 according to the first embodiment in the shape of the recess in the fixed core. Therefore, here, the fixed core will be described, and a description of the configuration common to solenoid valve mechanism 300 according to the first embodiment will be omitted.
  • the fixed core 39B has a spring insertion portion 39e into which the rod biasing spring 40 is inserted, a collision surface 39a against which the movable core 36 collides, and a recess 39c.
  • the recess 39c is formed in a corner of the spring insertion portion 39e on the collision surface 39a side.
  • the recess 39c is disposed in a position on the collision surface 39a of the fixed core 39 facing the through hole 36a of the movable core 36.
  • the recess 39c is also formed by chamfering the corner of the spring insertion portion 39e on the collision surface 39a side.
  • the volume between the through hole 36a and the collision surface 39a can be increased.
  • the pressure fluctuation of the fluid flowing into the through hole 36a can be mitigated by the space formed by the recess 39c.
  • the occurrence of cavitation erosion can be suppressed.
  • FIG. 12 is a plan view of the movable core as viewed from the front, that is, from the fixed core side.
  • the solenoid valve mechanism according to the third embodiment has a similar configuration to the solenoid valve mechanism 300 according to the first embodiment.
  • the solenoid valve mechanism according to the third embodiment differs from the solenoid valve mechanism 300 according to the first embodiment in the shape of the movable core. Therefore, the movable core will be described here, and a description of the configuration common to the solenoid valve mechanism 300 according to the first embodiment will be omitted.
  • multiple through holes 36a are formed in the movable core 36C.
  • the multiple through holes 36a are formed at approximately equal intervals along the circumferential direction of the movable core 36C.
  • a connection recess 36c is formed in the movable core side collision surface 36b of the movable core 36C that abuts against the fixed core 39.
  • the connection recess 36c is a recess that is recessed from the movable core side collision surface 36b in a direction away from the fixed core 39.
  • the connection recess 36c is formed continuously along the circumferential direction of the movable core 36C, and connects the multiple through holes 36a.
  • connection recess 36c makes it possible to increase the volume between the through hole 36a and the collision surface 39a. As a result, when the movable core 36 approaches the fixed core 39B, the pressure fluctuation of the fluid flowing into the through hole 36a can be mitigated by the space formed by the connection recess 36c. As a result, the occurrence of cavitation erosion can be suppressed.
  • the fixed core used is either the fixed core 39 in the first embodiment or the fixed core 39B in the second embodiment.
  • the recesses 39b, 39c are formed only at the corners of the spring insertion portion 39e and at positions facing the through hole 36a, but this is not limited to the above.
  • the recesses may be multiple radial grooves extending from the corners of the spring insertion portion 39e toward the outside in the radial direction of the fixed core, or may have various other shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The present invention comprises: a valve plug (30); a rod (35) engaging with the valve plug (30); a movable core (36) with which the rod (35) engages; a fixed core (39) that generates a magnetic attraction force with respect to the movable core (36); and a rod biasing spring (40) that biases the rod (35) in the direction away from the fixed core (39). A through-hole (36a) penetrating in the direction in which the movable core (36) moves is formed in the movable core (36). A recess (39b) is formed in a collision surface (39a) of the fixed core (39) that contacts the movable core (36). The recess (39b) is located at a position facing the through-hole (36a) in the movable core (36).

Description

電磁弁機構及び燃料ポンプSolenoid valve mechanism and fuel pump

 本発明は、電磁弁機構、及び電磁弁機構を備える燃料ポンプに関する。 The present invention relates to an electromagnetic valve mechanism and a fuel pump equipped with the electromagnetic valve mechanism.

 近年、内燃機関の高出力・低排気化とともに、グローバル展開が進められている。直噴エンジンに燃料を供給する燃料ポンプ(高圧燃料供給ポンプ)においては、簡易な構成で、低コストに製造することが重要な課題である。現在、市場で広く普及している燃料ポンプには、電磁弁機構を備えたピストン式ポンプがある。 In recent years, internal combustion engines have become more powerful and have lower emissions, and are expanding globally. For fuel pumps (high-pressure fuel supply pumps) that supply fuel to direct injection engines, it is important to manufacture them with a simple structure and at low cost. Currently, the most common fuel pumps on the market are piston-type pumps equipped with an electromagnetic valve mechanism.

 燃料ポンプの電磁弁機構としては、例えば、特許文献1に記載されているようなものがある。特許文献1に記載された電磁弁機構は、固定コアと、コイルへの通電によって固定コアとの間に発生する磁気吸引力により固定コアに吸引される可動コアとを備えている。そして、固定コアは可動コアと突き当たる第一突き当て部を有し、可動コアは固定コアと突き当たる第二突き当て部を有し、第一突き当て部または第二突き当て部の少なくともいずれか一方は、固定コアまたは可動コアを形成する母材よりも硬いことを特徴としている。 An example of an electromagnetic valve mechanism for a fuel pump is described in Patent Document 1. The electromagnetic valve mechanism described in Patent Document 1 includes a fixed core and a movable core that is attracted to the fixed core by a magnetic attraction force generated between the fixed core and the movable core when electricity is passed through a coil. The fixed core has a first abutment portion that abuts against the movable core, and the movable core has a second abutment portion that abuts against the fixed core, and is characterized in that at least one of the first abutment portion or the second abutment portion is harder than the base material that forms the fixed core or the movable core.

特開2004-270490号公報JP 2004-270490 A

 また、可動コアが固定コアに接近する際、可動コアと固定コアとの間の空間には急激な圧力変動が生じ、キャビテーション・エロージョンの発生が発生する。しかしながら、特許文献1に記載された技術では、キャビテーション・エロージョンの発生を抑制できなかった。 In addition, when the movable core approaches the fixed core, a sudden pressure fluctuation occurs in the space between the movable core and the fixed core, causing cavitation erosion. However, the technology described in Patent Document 1 was unable to suppress the occurrence of cavitation erosion.

 本目的は、上記の問題点を考慮し、固定コアと可動コアの間に発生するキャビテーション・エロージョンを抑制することが可能な電磁弁機構及び燃料ポンプを提供することにある。 The objective of this study is to take the above problems into consideration and provide an electromagnetic valve mechanism and fuel pump that can suppress cavitation erosion that occurs between the fixed core and the movable core.

 上記課題を解決し、目的を達成するため、電磁弁機構は、弁体と、弁体に係合するロッドと、ロッドが係合する可動コアと、可動コアとの間に磁気吸引力を発生させる固定コアと、ロッドを固定コアから離れる方向に付勢するロッド付勢ばねと、を備えている。そして、可動コアには、可動コアが移動する方向に沿って貫通する貫通孔が形成される。固定コアの可動コアと接触する衝突面には、凹部が形成される。また、凹部は、可動コアの貫通孔と対向する位置に配置される。 In order to solve the above problems and achieve the object, the solenoid valve mechanism includes a valve body, a rod that engages with the valve body, a movable core with which the rod engages, a fixed core that generates a magnetic attraction force between the movable core and the fixed core, and a rod biasing spring that biases the rod in a direction away from the fixed core. The movable core is formed with a through hole that passes through in the direction in which the movable core moves. A recess is formed on the collision surface of the fixed core that comes into contact with the movable core. The recess is also positioned opposite the through hole of the movable core.

 また、燃料ポンプは、加圧室を備えたボディと、ボディに往復運動可能に支持され、往復運動により加圧室の容量を増減させるプランジャと、加圧室へ燃料を吐出する上記電磁弁機構とを備える。 The fuel pump also includes a body with a pressurized chamber, a plunger that is supported by the body so that it can reciprocate and that increases or decreases the volume of the pressurized chamber by reciprocating motion, and the above-mentioned solenoid valve mechanism that discharges fuel into the pressurized chamber.

 上記構成の電磁弁機構及び燃料ポンプによれば、固定コアと可動コアの間に発生するキャビテーション・エロージョンを抑制することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the solenoid valve mechanism and fuel pump having the above configuration, it is possible to suppress cavitation erosion occurring between the fixed core and the movable core.
Problems, configurations and effects other than those described above will become apparent from the following description of the embodiments.

第1の実施の形態例に係る高圧燃料ポンプを用いた燃料供給システムの全体構成図である。1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel pump according to a first embodiment; 第1の実施の形態例に係る高圧燃料ポンプの縦断面図(その1)である。1 is a vertical sectional view (part 1) of a high-pressure fuel pump according to a first embodiment; FIG. 第1の実施の形態例に係る高圧燃料ポンプの上方から見た水平方向断面図である。1 is a horizontal cross-sectional view of a high-pressure fuel pump according to a first embodiment, as viewed from above; 第1の実施の形態例に係る高圧燃料ポンプの縦断面図(その2)である。FIG. 2 is a vertical sectional view (part 2) of the high-pressure fuel pump according to the first embodiment; 第1の実施の形態例に係る高圧燃料ポンプの電磁弁機構を拡大して示す断面図である。2 is an enlarged cross-sectional view showing an electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment; FIG. キャビテーションの発生動作を示す図である。FIG. 1 is a diagram showing the cavitation generation operation. キャビテーションの発生動作を示す図である。FIG. 1 is a diagram showing the cavitation generation operation. 図8A及び図8Bはキャビテーションの発生動作を示す拡大図である。8A and 8B are enlarged views showing the cavitation generation operation. 第1の実施の形態例に係る高圧燃料ポンプの電磁弁機構の固定コアと可動コアを拡大して示す断面図である。2 is an enlarged cross-sectional view showing a fixed core and a movable core of the electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment; FIG. 第1の実施の形態例に係る高圧燃料ポンプの電磁弁機構の動作を拡大して示す断面図である。3 is an enlarged cross-sectional view showing the operation of the electromagnetic valve mechanism of the high-pressure fuel pump according to the first embodiment; FIG. 第2の実施の形態例に係る高圧燃料ポンプの電磁弁機構の固定コアと可動コアを拡大して示す断面図である。8 is an enlarged cross-sectional view showing a fixed core and a movable core of an electromagnetic valve mechanism of a high-pressure fuel pump according to a second embodiment. FIG. 第3の実施の形態例に係る高圧燃料ポンプの電磁弁機構の可動コアを正面から示す平面図である。FIG. 13 is a plan view showing a movable core of an electromagnetic valve mechanism of a high-pressure fuel pump according to a third embodiment.

1.第1の実施の形態例
 以下、本発明の第1の実施の形態例(以下、本例という)に係る電磁弁機構及び燃料ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
1. First embodiment Hereinafter, a solenoid valve mechanism and a fuel pump according to a first embodiment of the present invention (hereinafter, referred to as this embodiment) will be described. Note that the same reference numerals are used to designate the same members in each drawing.

[燃料供給システム]
 まず、本例の高圧燃料ポンプを用いた燃料供給システムについて、図1を用いて説明する。
 図1は、本例の高圧燃料ポンプを用いた燃料供給システムの全体構成図である。
[Fuel supply system]
First, a fuel supply system using the high-pressure fuel pump of this embodiment will be described with reference to FIG.
FIG. 1 is a diagram showing the overall configuration of a fuel supply system using a high-pressure fuel pump according to this embodiment.

 図1に示すように、燃料供給システムは、高圧燃料ポンプ100と、ECU(Engine Control Unit)27と、燃料タンク20と、コモンレール23と、複数のインジェクタ24とを備えている。高圧燃料ポンプ100の部品は、ポンプボディ1に一体に組み込まれている。 As shown in FIG. 1, the fuel supply system includes a high-pressure fuel pump 100, an ECU (Engine Control Unit) 27, a fuel tank 20, a common rail 23, and multiple injectors 24. The components of the high-pressure fuel pump 100 are integrally assembled into the pump body 1.

 燃料タンク20の燃料は、ECU27からの信号に基づいて駆動するフィードポンプ21によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、燃料配管28を通して高圧燃料ポンプ100の吸入ジョイント51に設けた低圧燃料吸入口10aに送られる。 Fuel in the fuel tank 20 is pumped up by a feed pump 21 that is driven based on a signal from the ECU 27. The pumped up fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent through a fuel pipe 28 to a low-pressure fuel intake port 10a provided at an intake joint 51 of the high-pressure fuel pump 100.

 高圧燃料ポンプ100は、燃料タンク20から供給された燃料を加圧して、コモンレール23に圧送する。コモンレール23には、複数のインジェクタ24と、燃料圧力センサ26が装着されている。複数のインジェクタ24は、気筒(燃焼室)数にあわせて装着されており、ECU27から出力される駆動電流に従って燃料を噴射する。本実施の形態例の燃料供給システムは、インジェクタ24がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。 The high-pressure fuel pump 100 pressurizes the fuel supplied from the fuel tank 20 and sends it to the common rail 23. The common rail 23 is equipped with multiple injectors 24 and a fuel pressure sensor 26. The multiple injectors 24 are installed in accordance with the number of cylinders (combustion chambers), and inject fuel according to a drive current output from an ECU 27. The fuel supply system of this embodiment is a so-called direct injection engine system in which the injectors 24 inject fuel directly into the cylinders of the engine.

 燃料圧力センサ26は、検出した圧力データをECU27に出力する。ECU27は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。 The fuel pressure sensor 26 outputs the detected pressure data to the ECU 27. The ECU 27 calculates the appropriate fuel injection amount (target fuel injection length) and appropriate fuel pressure (target fuel pressure) based on engine state quantities (e.g. crank angle, throttle opening, engine speed, fuel pressure, etc.) obtained from various sensors.

 また、ECU27は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料ポンプ100や複数のインジェクタ24の駆動を制御する。すなわち、ECU27は、高圧燃料ポンプ100を制御するポンプ制御部と、インジェクタ24を制御するインジェクタ制御部を有する。 The ECU 27 also controls the operation of the high-pressure fuel pump 100 and the multiple injectors 24 based on the calculation results of the fuel pressure (target fuel pressure) and the like. That is, the ECU 27 has a pump control unit that controls the high-pressure fuel pump 100 and an injector control unit that controls the injectors 24.

 高圧燃料ポンプ100は、プランジャ2と、圧力脈動低減機構9と、容量可変機構である電磁弁機構300と、リリーフ弁機構200と、吐出弁機構8とを有している。低圧燃料吸入口10aから流入した燃料は、圧力脈動低減機構9、低圧燃料吸入通路10dを介して電磁弁機構300の吸入ポート31bに到達する。 The high-pressure fuel pump 100 has a plunger 2, a pressure pulsation reduction mechanism 9, a solenoid valve mechanism 300 which is a variable capacity mechanism, a relief valve mechanism 200, and a discharge valve mechanism 8. The fuel flowing in from the low-pressure fuel intake port 10a reaches the intake port 31b of the solenoid valve mechanism 300 via the pressure pulsation reduction mechanism 9 and the low-pressure fuel intake passage 10d.

 電磁弁機構300に流入した燃料は、吸入弁30を通過し、ポンプボディ1に形成された加圧室11に流入する。ポンプボディ1は、プランジャ2を摺動可能に保持する。プランジャ2は、エンジンのカム93(図2参照)により動力が伝えられて往復運動する。プランジャ2の一端部は、加圧室11に挿入されており、加圧室11の容積を増減させる。 The fuel that flows into the solenoid valve mechanism 300 passes through the suction valve 30 and flows into the pressurized chamber 11 formed in the pump body 1. The pump body 1 holds the plunger 2 in a slidable manner. The plunger 2 reciprocates when power is transmitted by the engine cam 93 (see Figure 2). One end of the plunger 2 is inserted into the pressurized chamber 11, and increases or decreases the volume of the pressurized chamber 11.

 加圧室11では、プランジャ2の下降行程において電磁弁機構300から燃料が吸入され、プランジャ2の上昇行程において燃料が加圧される。加圧室11の燃料圧力が設定値を超えると、吐出弁機構8が開弁し、吐出ジョイント12の燃料吐出口を経てコモンレール23へ高圧燃料が圧送される。高圧燃料ポンプ100による燃料の吐出は、電磁弁機構300の開閉によって操作される。そして、電磁弁機構300の開閉は、ECU27によって制御される。 In the pressurized chamber 11, fuel is sucked in through the solenoid valve mechanism 300 during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke of the plunger 2. When the fuel pressure in the pressurized chamber 11 exceeds a set value, the discharge valve mechanism 8 opens, and the high-pressure fuel is pumped through the fuel discharge port of the discharge joint 12 to the common rail 23. The discharge of fuel by the high-pressure fuel pump 100 is controlled by opening and closing the solenoid valve mechanism 300. The opening and closing of the solenoid valve mechanism 300 is controlled by the ECU 27.

 インジェクタ24の故障等によりコモンレール23等に異常高圧が発生した場合に、コモンレール23に連通する吐出ジョイント12の燃料吐出口(図2参照)と加圧室11との差圧がリリーフ弁機構200の開弁圧力(所定値)以上になると、リリーフ弁機構200が開弁する。これにより、異常高圧となった燃料は、リリーフ弁機構200内を通って加圧室11へと戻される。その結果、コモンレール23等の配管が保護される。 If abnormally high pressure occurs in the common rail 23 etc. due to a malfunction of the injector 24, etc., and the pressure difference between the fuel discharge port (see Figure 2) of the discharge joint 12 that communicates with the common rail 23 and the pressurized chamber 11 exceeds the opening pressure (predetermined value) of the relief valve mechanism 200, the relief valve mechanism 200 opens. As a result, the abnormally high pressure fuel passes through the relief valve mechanism 200 and is returned to the pressurized chamber 11. As a result, the piping of the common rail 23 etc. is protected.

[高圧燃料ポンプ]
 次に、高圧燃料ポンプ100の構成について、図2~図4を用いて説明する。
 図2は、高圧燃料ポンプ100の水平方向に直交する断面で見た縦断面図(その1)である。図3は、高圧燃料ポンプ100の垂直方向に直交する断面で見た水平方向断面図である。図4は、高圧燃料ポンプ100の水平方向に直交する断面で見た縦断面図(その2)である。
[High-pressure fuel pump]
Next, the configuration of the high-pressure fuel pump 100 will be described with reference to FIGS.
Fig. 2 is a first longitudinal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the horizontal direction. Fig. 3 is a horizontal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the vertical direction. Fig. 4 is a second longitudinal sectional view of the high-pressure fuel pump 100 taken along a cross section perpendicular to the horizontal direction.

 図2及び図3に示すように、高圧燃料ポンプ100のポンプボディ1には、取付けフランジ1a(図3参照)が設けられている。この取付けフランジ1aは、エンジン(内燃機関)の燃料ポンプ取付け部90に密着する。そして、フランジ1aには、ねじ穴1bが形成されている。そして、フランジ1aに形成したねじ穴1bに不図示の複数のボルト(ねじ)を締結することで、ポンプボディ1は、燃料ポンプ取付け部90に固定されている。 As shown in Figures 2 and 3, the pump body 1 of the high-pressure fuel pump 100 is provided with a mounting flange 1a (see Figure 3). This mounting flange 1a is in close contact with a fuel pump mounting portion 90 of an engine (internal combustion engine). A threaded hole 1b is formed in the flange 1a. The pump body 1 is fixed to the fuel pump mounting portion 90 by fastening a number of bolts (screws) (not shown) into the threaded holes 1b formed in the flange 1a.

 図2に示すように、燃料ポンプ取付け部90とポンプボディ1との間には、Oリング61が介在されている。このOリング61は、エンジンオイルが燃料ポンプ取付け部90とポンプボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。 As shown in FIG. 2, an O-ring 61 is interposed between the fuel pump mounting portion 90 and the pump body 1. This O-ring 61 prevents engine oil from leaking between the fuel pump mounting portion 90 and the pump body 1 to the outside of the engine (internal combustion engine).

 また、高圧燃料ポンプ100のポンプボディ1には、プランジャ2の往復運動をガイドするシリンダ6が取り付けられている。シリンダ6は、筒状に形成されており、その外周側においてポンプボディ1に圧入されている。ポンプボディ1及びシリンダ6は、電磁弁機構300、プランジャ2、吐出弁機構8(図3参照)と共に加圧室11を形成している。 In addition, a cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the pump body 1 of the high-pressure fuel pump 100. The cylinder 6 is formed in a cylindrical shape, and its outer periphery is press-fitted into the pump body 1. The pump body 1 and the cylinder 6 form a pressurizing chamber 11 together with the solenoid valve mechanism 300, the plunger 2, and the discharge valve mechanism 8 (see FIG. 3).

 ポンプボディ1には、シリンダ6を下側から挿入するための挿入穴が形成されている。また、ポンプボディ1の挿入穴の下端部には、シリンダ6に設けた固定部6aの下面と接触するように内周側に変形させた内周凸部が形成されている。ポンプボディ1の内周凸部の上面がシリンダ6の固定部6aを図中上方向へ押圧し、シリンダ6の上端面で加圧室11にて加圧された燃料が低圧側に漏れないようシールしている。 The pump body 1 has an insertion hole for inserting the cylinder 6 from below. The lower end of the insertion hole in the pump body 1 has an inner circumferential convex portion that is deformed inwardly so as to come into contact with the lower surface of the fixing portion 6a provided on the cylinder 6. The upper surface of the inner circumferential convex portion of the pump body 1 presses the fixing portion 6a of the cylinder 6 upward in the figure, and the upper end surface of the cylinder 6 seals the pressurized fuel in the pressurized chamber 11 so that it does not leak to the low pressure side.

 プランジャ2の下端には、タペット92が設けられている。タペット92は、エンジンのカムシャフトに取り付けられたカム93の回転運動を上下運動に変換し、プランジャ2に伝達する。プランジャ2は、リテーナ15を介してばね4によりカム93側に付勢されており、タペット92に圧着されている。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。 A tappet 92 is provided at the lower end of the plunger 2. The tappet 92 converts the rotational motion of a cam 93 attached to the engine's camshaft into vertical motion and transmits it to the plunger 2. The plunger 2 is biased toward the cam 93 by a spring 4 via a retainer 15, and is pressed against the tappet 92. The plunger 2 reciprocates together with the tappet 92, changing the volume of the pressurized chamber 11.

 また、シリンダ6とリテーナ15との間には、シールホルダ7が配置されている。シールホルダ7は、プランジャ2が挿入される筒状に形成されている。シールホルダ7のシリンダ6側である上端部には、副室7aが形成されている。一方、シールホルダ7のリテーナ15側である下端部は、プランジャシール13を保持している。 A seal holder 7 is also disposed between the cylinder 6 and the retainer 15. The seal holder 7 is formed in a cylindrical shape into which the plunger 2 is inserted. An auxiliary chamber 7a is formed at the upper end of the seal holder 7 on the cylinder 6 side. On the other hand, the lower end of the seal holder 7 on the retainer 15 side holds the plunger seal 13.

 プランジャシール13は、プランジャ2の外周に摺動可能に接触している。プランジャシール13は、プランジャ2が往復動したとき、副室7aの燃料をシールし、副室7aの燃料がエンジン内部へ流入しないようにしている。また、プランジャシール13は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプボディ1の内部に流入することを防止している。 The plunger seal 13 is in slidable contact with the outer periphery of the plunger 2. When the plunger 2 reciprocates, the plunger seal 13 seals the fuel in the auxiliary chamber 7a, preventing the fuel from flowing into the inside of the engine. The plunger seal 13 also prevents the lubricating oil (including engine oil) that lubricates the sliding parts inside the engine from flowing into the inside of the pump body 1.

 図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。 In FIG. 2, the plunger 2 reciprocates up and down. When the plunger 2 descends, the volume of the pressurized chamber 11 expands, and when the plunger 2 ascends, the volume of the pressurized chamber 11 decreases. In other words, the plunger 2 is arranged to reciprocate in a direction that expands and reduces the volume of the pressurized chamber 11.

 プランジャ2は、大径部2aと小径部2bを有している。プランジャ2が往復動すると、大径部2a及び小径部2bは、副室7aに位置する。したがって、副室7aの体積は、プランジャ2の往復動によって増減する。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b. When the plunger 2 reciprocates, the large diameter portion 2a and the small diameter portion 2b are located in the auxiliary chamber 7a. Therefore, the volume of the auxiliary chamber 7a increases and decreases due to the reciprocating motion of the plunger 2.

 副室7aは、低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ燃料の流れが発生し、プランジャ2の上昇時は、低圧燃料室10から副室7aへ燃料の流れが発生する。これにより、高圧燃料ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料ポンプ100内部で発生する圧力脈動を低減することができる。 The auxiliary chamber 7a is connected to the low-pressure fuel chamber 10. When the plunger 2 descends, fuel flows from the auxiliary chamber 7a to the low-pressure fuel chamber 10, and when the plunger 2 ascends, fuel flows from the low-pressure fuel chamber 10 to the auxiliary chamber 7a. This reduces the amount of fuel flowing into and out of the pump during the intake stroke or return stroke of the high-pressure fuel pump 100, and reduces the pressure pulsation that occurs inside the high-pressure fuel pump 100.

 また、ポンプボディ1には、加圧室11に連通するリリーフ弁機構200が設けられている。リリーフ弁機構200は、シート部材201と、リリーフ弁202と、リリーフ弁ホルダ203と、リリーフばね204と、ばね支持部材205と、を有している。 The pump body 1 is also provided with a relief valve mechanism 200 that communicates with the pressurizing chamber 11. The relief valve mechanism 200 has a seat member 201, a relief valve 202, a relief valve holder 203, a relief spring 204, and a spring support member 205.

 シート部材201は、リリーフばね204を内包しリリーフ弁室を形成する。リリーフばね204は、一端部がばね支持部材205に当接し、他端部がリリーフ弁ホルダ203に当接している。リリーフ弁ホルダ203は、リリーフ弁202に係合している。リリーフ弁202には、リリーフばね204の付勢力がリリーフ弁ホルダ203を介して作用する。 The seat member 201 contains the relief spring 204 and forms a relief valve chamber. One end of the relief spring 204 abuts against the spring support member 205, and the other end abuts against the relief valve holder 203. The relief valve holder 203 engages with the relief valve 202. The urging force of the relief spring 204 acts on the relief valve 202 via the relief valve holder 203.

 リリーフ弁202は、リリーフばね204の付勢力により押圧され、シート部材201の燃料通路を塞いでいる。シート部材201の燃料通路は、吐出通路12b(図3参照)に連通している。加圧室11(上流側)とシート部材201(下流側)との間における燃料の移動は、リリーフ弁202がシート部材201に接触(密着)することにより遮断されている。 The relief valve 202 is pressed by the force of the relief spring 204, blocking the fuel passage of the seat member 201. The fuel passage of the seat member 201 is connected to the discharge passage 12b (see FIG. 3). The movement of fuel between the pressurized chamber 11 (upstream side) and the seat member 201 (downstream side) is blocked by the relief valve 202 coming into contact (close contact) with the seat member 201.

 コモンレール23やその先の部材内の圧力が高くなると、シート部材201側の燃料がリリーフ弁202を押圧して、リリーフばね204の付勢力に抗してリリーフ弁202を移動させる。その結果、リリーフ弁202が開弁し、吐出通路12b内の燃料が、シート部材201の燃料通路を通って加圧室11に戻る。したがって、リリーフ弁202を開弁させる圧力は、リリーフばね204の付勢力によって決定される。 When the pressure in the common rail 23 and the components beyond it increases, the fuel on the seat member 201 side presses against the relief valve 202, moving the relief valve 202 against the biasing force of the relief spring 204. As a result, the relief valve 202 opens, and the fuel in the discharge passage 12b returns to the pressurized chamber 11 through the fuel passage of the seat member 201. Therefore, the pressure that opens the relief valve 202 is determined by the biasing force of the relief spring 204.

 なお、本実施の形態例のリリーフ弁機構200は、加圧室11に連通しているが、これに限定されるものではなく、例えば、低圧通路に連通するようにしてもよい。 In addition, although the relief valve mechanism 200 in this embodiment is connected to the pressurized chamber 11, this is not limited thereto, and it may be connected to, for example, a low pressure passage.

 図3及び図4に示すように、ポンプボディ1の側面部には、吸入ジョイント51が取り付けられている。吸入ジョイント51は、燃料タンク20から供給された燃料を通す燃料配管28に接続されている。燃料タンク20の燃料は、吸入ジョイント51から高圧燃料ポンプ100の内部に供給される。 As shown in Figures 3 and 4, an intake joint 51 is attached to the side of the pump body 1. The intake joint 51 is connected to a fuel pipe 28 through which fuel supplied from the fuel tank 20 passes. The fuel in the fuel tank 20 is supplied from the intake joint 51 to the inside of the high-pressure fuel pump 100.

 吸入ジョイント51は、低圧燃料吸入口10aを形成している。吸入ジョイント51を通過した燃料は、低圧燃料室10に設けた圧力脈動低減機構9及び低圧燃料吸入通路10d(図2参照)を介して電磁弁機構300の吸入ポート31b(図5参照)に到達する。吸入ジョイント51の燃料通路内には、吸入フィルタ52が配置されている。吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を除去し、高圧燃料ポンプ100内に異物が進入することを防ぐ。 The intake joint 51 forms the low-pressure fuel intake port 10a. The fuel that passes through the intake joint 51 reaches the intake port 31b (see FIG. 5) of the solenoid valve mechanism 300 via the pressure pulsation reduction mechanism 9 provided in the low-pressure fuel chamber 10 and the low-pressure fuel intake passage 10d (see FIG. 2). An intake filter 52 is disposed in the fuel passage of the intake joint 51. The intake filter 52 removes foreign matter present between the fuel tank 20 and the low-pressure fuel intake port 10a, preventing foreign matter from entering the high-pressure fuel pump 100.

 図2及び図4に示すように、高圧燃料ポンプ100のポンプボディ1には、低圧燃料室(ダンパ室)10が設けられている。この低圧燃料室10は、ダンパーカバー14によって覆われている。ダンパーカバー14は、例えば、一方側が閉塞された筒状(カップ状)に形成されている。 As shown in Figures 2 and 4, the pump body 1 of the high-pressure fuel pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10. This low-pressure fuel chamber 10 is covered by a damper cover 14. The damper cover 14 is formed, for example, in a cylindrical (cup-shaped) shape with one side closed.

 図2に示すように、低圧燃料室10は、圧力脈動低減機構9により、上下にダンパ上部10bと、ダンパ下部10cに分けられている。圧力脈動低減機構9は、ポンプボディ1の上端面に配置された保持部材9aにより下側から支持される。具体的には、圧力脈動低減機構9は、2枚の金属ダイアフラムが重ね合わせて構成される金属ダンパである。圧力脈動低減機構9の内部には0.3MPa~0.6MPaのガスが封入され、外周縁部が溶接で固定される。そのために外周縁部は薄く、内周側に向かって厚くなるように構成される。 As shown in Figure 2, the low-pressure fuel chamber 10 is divided vertically into an upper damper portion 10b and a lower damper portion 10c by the pressure pulsation reduction mechanism 9. The pressure pulsation reduction mechanism 9 is supported from below by a retaining member 9a arranged on the upper end surface of the pump body 1. Specifically, the pressure pulsation reduction mechanism 9 is a metal damper composed of two metal diaphragms stacked on top of each other. Gas of 0.3 MPa to 0.6 MPa is sealed inside the pressure pulsation reduction mechanism 9, and the outer periphery is fixed by welding. For this reason, the outer periphery is thin and is configured to become thicker toward the inner periphery.

 そして、図2に示すように、保持部材9aの上面には、圧力脈動低減機構9の外周縁部を下側から固定するための凸部が形成される。一方でダンパーカバー14の下面には圧力脈動低減機構9の外周縁部を上側から固定するための凸部が形成される。これらの凸部は円形状に形成されており、これらの凸部により挟まれることで圧力脈動低減機構9が固定される。なお、ダンパーカバー14はポンプボディ1の外縁部に対して圧入されて固定されるが、この際に保持部材9aが弾性変形して、圧力脈動低減機構9を支持する。 As shown in FIG. 2, a convex portion is formed on the upper surface of the retaining member 9a for fixing the outer peripheral edge of the pressure pulsation reduction mechanism 9 from below. Meanwhile, a convex portion is formed on the lower surface of the damper cover 14 for fixing the outer peripheral edge of the pressure pulsation reduction mechanism 9 from above. These convex portions are formed in a circular shape, and the pressure pulsation reduction mechanism 9 is fixed by being sandwiched between these convex portions. The damper cover 14 is fixed by being pressed into the outer peripheral edge of the pump body 1, and at this time the retaining member 9a elastically deforms to support the pressure pulsation reduction mechanism 9.

 このようにして、圧力脈動低減機構9は、低圧燃料室10をダンパ上部10bとダンパ下部10cに分ける。なお、図には表れていないが、保持部材9aには圧力脈動低減機構9の上側と下側とを連通する通路が形成されている。 In this way, the pressure pulsation reduction mechanism 9 divides the low-pressure fuel chamber 10 into an upper damper portion 10b and a lower damper portion 10c. Although not shown in the figure, a passage is formed in the retaining member 9a that connects the upper and lower sides of the pressure pulsation reduction mechanism 9.

 低圧燃料室10のダンパ上部10b及びダンパ下部10cを通った燃料は、次にポンプボディ1に上下方向に連通して形成された低圧燃料吸入通路10dを介して電磁弁機構300の吸入ポート31bに至る。なお、吸入ポート31bは、吸入弁シート31aを形成する吸入弁シート部材31に上下方向に連通して形成される。 The fuel that passes through the upper damper portion 10b and the lower damper portion 10c of the low-pressure fuel chamber 10 then reaches the suction port 31b of the solenoid valve mechanism 300 via a low-pressure fuel suction passage 10d that is formed in vertical communication with the pump body 1. The suction port 31b is formed in vertical communication with the suction valve seat member 31 that forms the suction valve seat 31a.

 次に、吐出弁機構8について図3を参照して説明する。
 図3に示すように、吐出弁機構8は、加圧室11の出口側に接続されている。この吐出弁機構8は、吐出弁シート部材8aと、吐出弁シート部材8aと接離する吐出弁8bを備える。また、吐出弁機構8は、吐出弁8bを吐出弁シート部材8a側へ付勢する吐出弁ばね8cと、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dとを備える。
Next, the discharge valve mechanism 8 will be described with reference to FIG.
3, the discharge valve mechanism 8 is connected to the outlet side of the pressurizing chamber 11. The discharge valve mechanism 8 includes a discharge valve seat member 8a and a discharge valve 8b that moves toward and away from the discharge valve seat member 8a. The discharge valve mechanism 8 also includes a discharge valve spring 8c that biases the discharge valve 8b toward the discharge valve seat member 8a, and a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.

 吐出弁シート部材8a、吐出弁8b、吐出弁ばね8c、及び吐出弁ストッパ8dは、ポンプボディ1に形成された吐出弁室12aに収納されている。吐出弁室12aは、水平方向に延びる略円柱状の空間である。吐出弁室12aの一端は、燃料通路を介して加圧室11に連通している。吐出弁室12aの他端は、ポンプボディ1の側面に開口している。吐出弁ストッパ8dの端部には、当接部8eが形成されている。そして、吐出弁室12aと吐出弁ストッパ8dは、当接部8eにおいて、溶接により固定されている。そのため、吐出弁室12aの他端部の開口は、吐出弁ストッパ8dにより封止されている。 The discharge valve seat member 8a, discharge valve 8b, discharge valve spring 8c, and discharge valve stopper 8d are housed in a discharge valve chamber 12a formed in the pump body 1. The discharge valve chamber 12a is a substantially cylindrical space extending horizontally. One end of the discharge valve chamber 12a is connected to the pressurizing chamber 11 via a fuel passage. The other end of the discharge valve chamber 12a opens to the side of the pump body 1. An abutment portion 8e is formed at the end of the discharge valve stopper 8d. The discharge valve chamber 12a and the discharge valve stopper 8d are fixed by welding at the abutment portion 8e. Therefore, the opening at the other end of the discharge valve chamber 12a is sealed by the discharge valve stopper 8d.

 また、ポンプボディ1には、吐出ジョイント12が溶接部により接合されている。吐出ジョイント12は、燃料吐出口を有している。燃料吐出口は、ポンプボディ1の内部において水平方向に延びる吐出通路12bを介して吐出弁室12aに連通している。また、吐出ジョイント12の燃料吐出口は、コモンレール23に接続されている。 In addition, a discharge joint 12 is joined to the pump body 1 by welding. The discharge joint 12 has a fuel discharge port. The fuel discharge port is connected to the discharge valve chamber 12a via a discharge passage 12b that extends horizontally inside the pump body 1. In addition, the fuel discharge port of the discharge joint 12 is connected to the common rail 23.

 加圧室11の燃料圧力が吐出弁室12aの燃料圧力より低い状態では、吐出弁8bに作用する差圧力及び吐出弁ばね8cによる付勢力により、吐出弁8bが吐出弁シート部材8aに圧着されている。その結果、吐出弁機構8は閉弁状態となる。一方、加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなり、吐出弁8bに作用する差圧力が吐出弁ばね8cの付勢力よりも大きくなると、吐出弁8bが燃料に押されて吐出弁シート部材8aから離れる。その結果、吐出弁機構8は開弁状態となる。 When the fuel pressure in the pressurized chamber 11 is lower than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat member 8a by the differential pressure acting on the discharge valve 8b and the biasing force of the discharge valve spring 8c. As a result, the discharge valve mechanism 8 is in a closed state. On the other hand, when the fuel pressure in the pressurized chamber 11 becomes greater than the fuel pressure in the discharge valve chamber 12a and the differential pressure acting on the discharge valve 8b becomes greater than the biasing force of the discharge valve spring 8c, the discharge valve 8b is pushed by the fuel and moves away from the discharge valve seat member 8a. As a result, the discharge valve mechanism 8 is in an open state.

 吐出弁機構8が開閉弁動作をすると、吐出弁室12aに燃料が出し入れされる。そして、吐出弁室12aから出た燃料は、吐出弁機構8から吐出通路12bへ吐出される。その結果、加圧室11内の高圧の燃料は、吐出弁室12a、吐出通路12b、吐出ジョイント12の燃料吐出口を経てコモンレール23(図1参照)へと吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。 When the discharge valve mechanism 8 opens and closes, fuel is let in and out of the discharge valve chamber 12a. The fuel that leaves the discharge valve chamber 12a is then discharged from the discharge valve mechanism 8 into the discharge passage 12b. As a result, the high-pressure fuel in the pressurized chamber 11 is discharged through the discharge valve chamber 12a, the discharge passage 12b, and the fuel discharge port of the discharge joint 12 into the common rail 23 (see Figure 1). With this configuration, the discharge valve mechanism 8 functions as a check valve that limits the direction of fuel flow.

 次に、図5を参照して電磁弁機構300について説明する。
 図5は、電磁弁機構300を拡大して示す断面図である。
 図5に示すように、電磁弁機構300は、ポンプボディ1に形成された横穴に挿入されている。電磁弁機構300は、ポンプボディ1に形成された横穴に圧入された吸入弁シート部材31と、弁体の一例を示す吸入弁30と、ストッパ32と、吸入弁付勢ばね33と、ロッド35と、可動コア36と、を備えている。また、電磁弁機構300は、ロッドガイド37と、アウターコア38と、固定コア39と、ロッド付勢ばね40と、アンカー付勢ばね41と、電磁コイル(ソレノイド)43と、を有している。
Next, the electromagnetic valve mechanism 300 will be described with reference to FIG.
FIG. 5 is an enlarged cross-sectional view of the solenoid valve mechanism 300. As shown in FIG.
5, the solenoid valve mechanism 300 is inserted into a lateral hole formed in the pump body 1. The solenoid valve mechanism 300 includes an intake valve seat member 31 press-fitted into a lateral hole formed in the pump body 1, an intake valve 30 which is an example of a valve body, a stopper 32, an intake valve biasing spring 33, a rod 35, and a movable core 36. The solenoid valve mechanism 300 also includes a rod guide 37, an outer core 38, a fixed core 39, a rod biasing spring 40, an anchor biasing spring 41, and an electromagnetic coil (solenoid) 43.

 吸入弁シート部材31は、筒状に形成されており、内周部に吸入弁シート31aが設けられている。また、吸入弁シート部材31には、外周部から内周部に到達する吸入ポート31bが形成されている。この吸入ポート31bは、上述した低圧燃料室10における低圧燃料吸入通路10dに連通している。また、吸入弁シート部材31には、吸入弁30が開弁することで開口する開口部31cが形成されている。燃料は、開口部31cを通り、ポンプボディ1に横方向に形成された穴1cを介して加圧室11に流入する。なお、穴1cも加圧室11の一部を構成する。 The suction valve seat member 31 is formed in a cylindrical shape, with a suction valve seat 31a provided on the inner circumference. The suction valve seat member 31 is also formed with a suction port 31b that reaches from the outer circumference to the inner circumference. This suction port 31b is connected to the low-pressure fuel suction passage 10d in the low-pressure fuel chamber 10 described above. The suction valve seat member 31 is also formed with an opening 31c that opens when the suction valve 30 opens. The fuel passes through the opening 31c and flows into the pressurized chamber 11 via a hole 1c formed laterally in the pump body 1. The hole 1c also constitutes part of the pressurized chamber 11.

 ポンプボディ1に形成された横穴には、吸入弁シート部材31の吸入弁シート31aに対向するストッパ32が配置されている。そして、吸入弁30は、ストッパ32と吸入弁シート31aとの間に配置されている。また、ストッパ32と吸入弁30との間には、吸入弁付勢ばね33が介在されている。吸入弁付勢ばね33は、吸入弁30を吸入弁シート31a側に付勢する。 A stopper 32 is disposed in a horizontal hole formed in the pump body 1, facing the suction valve seat 31a of the suction valve seat member 31. The suction valve 30 is disposed between the stopper 32 and the suction valve seat 31a. A suction valve biasing spring 33 is disposed between the stopper 32 and the suction valve 30. The suction valve biasing spring 33 biases the suction valve 30 toward the suction valve seat 31a.

 吸入弁30は、吸入弁シート31aに当接することにより、吸入ポート31bと加圧室11との連通部を閉鎖する。これにより、電磁弁機構300は、閉弁状態になる。一方、吸入弁30は、ストッパ32に当接することにより、吸入ポート31bと加圧室11との連通部を開放する。これにより、電磁弁機構300は、開弁状態になる。 The suction valve 30 abuts against the suction valve seat 31a, thereby closing the communication between the suction port 31b and the pressurized chamber 11. This places the solenoid valve mechanism 300 in a closed state. On the other hand, the suction valve 30 abuts against the stopper 32, thereby opening the communication between the suction port 31b and the pressurized chamber 11. This places the solenoid valve mechanism 300 in an open state.

 ロッド35は、吸入弁シート部材31を貫通している。ロッド35の一端は、吸入弁30に当接している。ロッド付勢ばね40は、ロッド35を介して吸入弁30をストッパ32側である開弁方向に付勢する。ロッド付勢ばね40の一端は、ロッド35の外周部に設けられたフランジ部35aに係合している。ロッド付勢ばね40の他端は、ロッド付勢ばね40を囲うように配置された固定コア39に係合している。固定コア39は、電磁コイル43が配置された電磁コイル室を覆う第2ヨーク44と接触するように構成される。 The rod 35 passes through the suction valve seat member 31. One end of the rod 35 abuts against the suction valve 30. The rod biasing spring 40 biases the suction valve 30 in the valve opening direction toward the stopper 32 via the rod 35. One end of the rod biasing spring 40 engages with a flange portion 35a provided on the outer periphery of the rod 35. The other end of the rod biasing spring 40 engages with a fixed core 39 arranged to surround the rod biasing spring 40. The fixed core 39 is configured to come into contact with a second yoke 44 that covers an electromagnetic coil chamber in which an electromagnetic coil 43 is arranged.

 電磁コイル43は、ボビン45に導線を巻回することで形成されている。電磁コイル43の導線の両端は、端子部材46(図2参照)に通電可能に接続される。端子部材46はコネクタ47(図2記載)と一体にモールドされ残りの方端がエンジン制御ユニット側と接続可能となっている。 The electromagnetic coil 43 is formed by winding a conducting wire around a bobbin 45. Both ends of the conducting wire of the electromagnetic coil 43 are electrically connected to a terminal member 46 (see FIG. 2). The terminal member 46 is molded integrally with a connector 47 (see FIG. 2), and the remaining end can be connected to the engine control unit.

 電磁コイル43の外周は、第1ヨーク42、第2ヨーク44、アウターコア38によって取り囲まれている。第1ヨーク42と第2ヨーク44は、電磁コイル43を取り囲む形で配置される。そして、第1ヨーク42と第2ヨーク44は、樹脂部材であるコネクタと一体にモールドされ固定される。第1ヨーク42の中心部の穴部に、アウターコア38が圧入され固定される。アウターコア38は、ポンプボディ1に溶接等により固定されている。 The outer circumference of the electromagnetic coil 43 is surrounded by the first yoke 42, the second yoke 44, and the outer core 38. The first yoke 42 and the second yoke 44 are arranged to surround the electromagnetic coil 43. The first yoke 42 and the second yoke 44 are then molded and fixed together with a connector, which is a resin member. The outer core 38 is pressed into and fixed in a hole in the center of the first yoke 42. The outer core 38 is fixed to the pump body 1 by welding or the like.

 第2ヨーク44の内径側は、固定コア39と接触もしくは僅かなクリアランスで近接する構成とする。また、第2ヨーク44の外径側は、第1ヨーク42の内周と接触もしくは僅かなクリアランスで近接する構成とする。固定コア39には固定ピン832が固定されており、第2ヨーク44を固定コア39に押し当てるように付勢力を発生する。固定ピン832は内周側の角部で固定コア39に食い込ませてもよいが、溶接等により固定してもよい。 The inner diameter side of the second yoke 44 is configured to be in contact with the fixed core 39 or to be adjacent to it with a small clearance. The outer diameter side of the second yoke 44 is configured to be in contact with the inner circumference of the first yoke 42 or to be adjacent to it with a small clearance. A fixed pin 832 is fixed to the fixed core 39, and generates a biasing force to press the second yoke 44 against the fixed core 39. The fixed pin 832 may be inserted into the fixed core 39 at a corner on the inner circumference side, or may be fixed by welding or the like.

 第1ヨーク42及び第2ヨーク44は共に、磁気回路を構成するために、また耐食性を考慮し磁性ステンレス材料が適用される。ボビン45、コネクタ47は、強度特性、耐熱特性を考慮し、高強度耐熱樹脂が用いられる。 The first yoke 42 and the second yoke 44 are both made of magnetic stainless steel material to form a magnetic circuit and to provide corrosion resistance. The bobbin 45 and the connector 47 are made of high-strength, heat-resistant resin to provide strength and heat resistance.

 電磁コイル43の内周には、シールリング48がアウターコア38に溶接固定され、その反対側の端で固定コア39に溶接固定される。シールリング48またはアウターコア38の内周には、可動部である可動コア36とロッド35、固定部であるロッドガイド37、ロッド付勢ばね40、アンカー付勢ばね41が配置されている。ロッド35は、ロッドガイド37の内周側で軸方向に摺動自在に保持され、且つ、可動コア36を摺動自在に保持する。 A seal ring 48 is welded to the outer core 38 on the inner circumference of the electromagnetic coil 43, and its opposite end is welded to the fixed core 39. On the inner circumference of the seal ring 48 or the outer core 38, the movable core 36 and rod 35, which are the movable parts, and the rod guide 37, rod biasing spring 40, and anchor biasing spring 41, which are the fixed parts, are arranged. The rod 35 is held on the inner circumference side of the rod guide 37 so that it can slide freely in the axial direction, and also holds the movable core 36 so that it can slide freely.

 可動コア36は、固定コア39の端面に対向している。この可動コア36は、ロッド35の外周部に設けられたフランジ部35aに係合している。また、可動コア36の固定コア39と反対側には、アンカー付勢ばね41の一端が当接している。アンカー付勢ばね41の他端は、ロッドガイド37に当接している。 The movable core 36 faces the end face of the fixed core 39. This movable core 36 engages with a flange portion 35a provided on the outer periphery of the rod 35. In addition, one end of an anchor biasing spring 41 abuts against the movable core 36 on the side opposite the fixed core 39. The other end of the anchor biasing spring 41 abuts against the rod guide 37.

 また、可動コア36は、電磁コイル43に電流が流されると、発生する磁気吸引力によって固定コア39の方向へ引き寄せられる。また、可動コア36には、複数の貫通孔36aを有している。貫通孔36aは、可動コア36の移動方向に沿って形成している。貫通孔36aを設けることで、可動コア36の移動方向の前後の圧力差による動きの制限を極力排除している。 When a current is passed through the electromagnetic coil 43, the movable core 36 is attracted toward the fixed core 39 by the magnetic attraction force that is generated. The movable core 36 also has multiple through holes 36a. The through holes 36a are formed along the direction of movement of the movable core 36. By providing the through holes 36a, restrictions on movement due to pressure differences between the front and rear of the movable core 36 in the direction of movement are eliminated as much as possible.

 ロッドガイド37は、軸受部37bを有している。軸受部37bは、アンカー付勢ばね41に挿入される。そして、ロッドガイド37には、アンカー付勢ばね41の端部が当接する。また、ロッドガイド37には燃料通路37aが設けられており、可動コア36が配置された空間への燃料の流入出を可能にしている。 The rod guide 37 has a bearing portion 37b. The bearing portion 37b is inserted into the anchor bias spring 41. The end of the anchor bias spring 41 abuts against the rod guide 37. The rod guide 37 is also provided with a fuel passage 37a, which allows fuel to flow in and out of the space in which the movable core 36 is located.

 また、アンカー付勢ばね41は、可動コア36をロッド35のフランジ部35a側に付勢している。可動コア36の移動量36eは、吸入弁30の移動量(開弁ストローク)30eよりも大きく設定される。これにより、吸入弁30を吸入弁シート31aに確実に当接(着座)させることができ、電磁弁機構300を確実に閉弁状態にすることができる。 The anchor biasing spring 41 also biases the movable core 36 toward the flange portion 35a of the rod 35. The amount of movement 36e of the movable core 36 is set to be greater than the amount of movement (valve opening stroke) 30e of the suction valve 30. This allows the suction valve 30 to be reliably abutted (seated) against the suction valve seat 31a, ensuring that the solenoid valve mechanism 300 is in a closed state.

 電磁コイル43に電流が流れていない無通電状態において、ロッド35がロッド付勢ばね40による付勢力によって開弁方向に付勢され、吸入弁30を開弁方向に押圧している。その結果、吸入弁30が吸入弁シート31aから離れてストッパ32に当接し、電磁弁機構300が開弁状態になっている。すなわち、電磁弁機構300は、無通電状態において開弁するノーマルオープン式となっている。 In a non-energized state where no current flows through the electromagnetic coil 43, the rod 35 is urged in the valve-opening direction by the force of the rod-urging spring 40, pressing the suction valve 30 in the valve-opening direction. As a result, the suction valve 30 moves away from the suction valve seat 31a and abuts against the stopper 32, and the solenoid valve mechanism 300 is in an open state. In other words, the solenoid valve mechanism 300 is of a normally open type, which opens in a non-energized state.

 電磁弁機構300の開弁状態において、吸入ポート31bの燃料は、吸入弁30と吸入弁シート31aとの間を通り、ストッパ32の複数の燃料通過孔(不図示)及び加圧室11に流入する。電磁弁機構300の開弁状態では、吸入弁30は、ストッパ32と接触するため、吸入弁30の開弁方向の位置が規制される。そして、電磁弁機構300の開弁状態において、吸入弁30と吸入弁シート31aの間に存在する隙間は、吸入弁30の可動範囲であり、これが開弁ストローク30eとなる。 When the solenoid valve mechanism 300 is in an open state, fuel in the suction port 31b passes between the suction valve 30 and the suction valve seat 31a and flows into the multiple fuel passage holes (not shown) in the stopper 32 and into the pressurized chamber 11. When the solenoid valve mechanism 300 is in an open state, the suction valve 30 comes into contact with the stopper 32, restricting the position of the suction valve 30 in the opening direction. When the solenoid valve mechanism 300 is in an open state, the gap between the suction valve 30 and the suction valve seat 31a is the movable range of the suction valve 30, which is the valve opening stroke 30e.

 ECU27からの制御信号が電磁弁機構300に印加されると、電磁コイル43には端子部材46を介して電流が流れる。電磁コイル43に電流が流れることにより、磁気吸引面Sにおいて可動コア36が固定コア39の磁気吸引力により閉弁方向に引き寄せられる。 When a control signal from the ECU 27 is applied to the solenoid valve mechanism 300, a current flows through the electromagnetic coil 43 via the terminal member 46. When a current flows through the electromagnetic coil 43, the movable core 36 is attracted in the valve closing direction by the magnetic attraction force of the fixed core 39 at the magnetic attraction surface S.

 可動コア36が固定コア39に吸引されて移動する際に、ロッド35のフランジ部35aと可動コア36が係合して可動コア36とともにロッド35が閉弁方向に移動する。吸入弁30は、ロッド35の移動に伴って開弁ストローク30eの隙間の分だけ開弁方向(吸入弁シート31aから離れる方向)に移動することにより開弁状態となり、低圧燃料吸入通路10dから加圧室11に燃料が供給される。 When the movable core 36 is attracted to the fixed core 39 and moves, the flange portion 35a of the rod 35 engages with the movable core 36, and the rod 35 moves in the valve closing direction together with the movable core 36. As the rod 35 moves, the suction valve 30 moves in the valve opening direction (away from the suction valve seat 31a) by the amount of the gap of the valve opening stroke 30e, and the valve is opened, and fuel is supplied from the low-pressure fuel suction passage 10d to the pressurized chamber 11.

 また、吸入弁30は、電磁弁機構300のハウジング(ロッドガイド37)内部に圧入されて固定されたストッパ32に衝突することにより動きを停止する。ロッド35と吸入弁30とは別体で独立した構造である。吸入弁30は、吸入側に配置された吸入弁シート部材31の吸入弁シート31aに接触することで加圧室11への流路を閉じ、また吸入弁シート部材31の吸入弁シート31aから離れることで加圧室11への流路を開く。 The suction valve 30 stops moving when it collides with a stopper 32 that is pressed and fixed inside the housing (rod guide 37) of the solenoid valve mechanism 300. The rod 35 and the suction valve 30 are separate and independent structures. The suction valve 30 closes the flow path to the pressurized chamber 11 by contacting the suction valve seat 31a of the suction valve seat member 31 arranged on the suction side, and opens the flow path to the pressurized chamber 11 by moving away from the suction valve seat 31a of the suction valve seat member 31.

 また、アウターコア38は、可動コア36の外周面が摺動する内周面を有する。なお、シールリング48は、硬度が低い材料(例えば、オーステナイト系ステンレス)で形成される。これにより、後述する衝撃荷重を緩和することができる。 The outer core 38 also has an inner circumferential surface against which the outer circumferential surface of the movable core 36 slides. The seal ring 48 is made of a material with low hardness (e.g., austenitic stainless steel). This makes it possible to reduce the impact load described below.

 続いて、固定コア39及び可動コア36による磁気吸引面Sでの衝突について詳細に説明する。固定コア39に可動コア36が衝突した直後に、接触部位近傍に衝突応力が発生する(図7参照)。衝突応力の発生期間中にシールリング48が弾性変形する。これにより、固定コア39及び第1ヨーク42、第2ヨーク44、固定ピン832が衝撃力を受ける方向(図5左方向)に移動し、固定コア39及び可動コア36に発生する衝撃荷重を緩和することができる。 Next, the collision of the fixed core 39 and the movable core 36 at the magnetic attraction surface S will be described in detail. Immediately after the movable core 36 collides with the fixed core 39, collision stress occurs near the contact site (see Figure 7). The seal ring 48 elastically deforms during the period when the collision stress is occurring. This causes the fixed core 39, the first yoke 42, the second yoke 44, and the fixed pin 832 to move in the direction in which they receive the impact force (to the left in Figure 5), and the impact load generated in the fixed core 39 and the movable core 36 can be alleviated.

 また、シールリング48は、薄肉で大規模に変形可能(=伸びが大きい)に構成されている。ここで、シールリング48は、固定コア39及び可動コア36よりも伸びが大きく形成されている。シールリング48は、例えば、35%以上の伸び率を有する。また、シールリング48は、磁気性能のために非磁性(非磁性体)で形成されている。シールリング48としては、具体的には、オーステナイト系ステンレスが好ましい。一般的にオーステナイト系ステンレスは非磁性で、伸び率35~45%以上を確保できる。 The seal ring 48 is thin and configured to be largely deformable (= have large elongation). Here, the seal ring 48 is formed to have greater elongation than the fixed core 39 and the movable core 36. The seal ring 48 has an elongation rate of, for example, 35% or more. The seal ring 48 is also formed of a non-magnetic material (non-magnetic material) for magnetic performance. Specifically, austenitic stainless steel is preferable for the seal ring 48. Austenitic stainless steel is generally non-magnetic and can ensure an elongation rate of 35 to 45% or more.

 さらに、シールリング48は、円筒に形成されている。そして、固定コア39とアウターコア38は、シールリング48へ挿入される挿入部39ins、38insを有している。固定コア39とアウターコア38は、シールリング48に挿入された状態でシールリング48の外周面CSと面一の外周面を有する。これにより、例えば、ボビン45等の他の部品の取り付けが容易となる。 Furthermore, the seal ring 48 is formed into a cylinder. The fixed core 39 and the outer core 38 have insertion portions 39ins, 38ins that are inserted into the seal ring 48. The fixed core 39 and the outer core 38 have outer circumferential surfaces that are flush with the outer circumferential surface CS of the seal ring 48 when inserted into the seal ring 48. This makes it easy to attach other parts, such as the bobbin 45.

1-2.燃料ポンプの動作
 次に、本例の高圧燃料ポンプ100の動作について説明する。
 図1に示すプランジャ2が下降した場合に、電磁弁機構300が開弁していると、加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁弁機構300が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁機構8を通過してコモンレール23(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。
1-2. Operation of the Fuel Pump Next, the operation of the high-pressure fuel pump 100 of this embodiment will be described.
1, if the solenoid valve mechanism 300 is open, fuel flows into the pressurizing chamber 11. Hereinafter, the stroke in which the plunger 2 descends will be referred to as the suction stroke. On the other hand, if the solenoid valve mechanism 300 is closed, the fuel in the pressurizing chamber 11 will be pressurized and will pass through the discharge valve mechanism 8 and be pumped to the common rail 23 (see FIG. 1). Hereinafter, the process in which the plunger 2 ascends will be referred to as the compression stroke.

 上述したように、圧縮行程中に電磁弁機構300が閉弁していれば、吸入行程中に加圧室11に吸入された燃料が加圧され、コモンレール23側へ吐出される。一方、圧縮行程中に電磁弁機構300が開弁していれば、加圧室11内の燃料はコモンレール23側へ吐出されない。このように、高圧燃料ポンプ100による燃料の吐出は、電磁弁機構300の開閉によって操作される。そして、電磁弁機構300の開閉は、ECU27によって制御される。 As described above, if the solenoid valve mechanism 300 is closed during the compression stroke, the fuel sucked into the pressurized chamber 11 during the intake stroke is pressurized and discharged to the common rail 23. On the other hand, if the solenoid valve mechanism 300 is open during the compression stroke, the fuel in the pressurized chamber 11 is not discharged to the common rail 23. In this way, the discharge of fuel by the high-pressure fuel pump 100 is controlled by opening and closing the solenoid valve mechanism 300. The opening and closing of the solenoid valve mechanism 300 is controlled by the ECU 27.

 吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。この吸入行程において、加圧室11の燃料圧力が吸入ポート31b(図2参照)の圧力よりも低くなり、両者の差圧による付勢力が吸入弁付勢ばね33による付勢力を超えると、吸入弁30は吸入弁シート31aから離れ、電磁弁機構300が開弁状態になる。その結果、燃料は、吸入弁30と吸入弁シート31aとの間を通り、ストッパ32に設けられた複数の孔を通って加圧室11に流入する。 During the intake stroke, the volume of the pressurized chamber 11 increases and the fuel pressure in the pressurized chamber 11 decreases. During this intake stroke, the fuel pressure in the pressurized chamber 11 becomes lower than the pressure in the intake port 31b (see Figure 2), and when the biasing force due to the pressure difference between the two exceeds the biasing force of the intake valve biasing spring 33, the intake valve 30 moves away from the intake valve seat 31a and the solenoid valve mechanism 300 opens. As a result, fuel flows between the intake valve 30 and the intake valve seat 31a and through multiple holes in the stopper 32 into the pressurized chamber 11.

 高圧燃料ポンプ100は、吸入行程を終了した後に、圧縮行程に移る。このとき、電磁コイル43は、無通電状態を維持したままであり、可動コア36と固定コア39との間に磁気吸引力は作用していない。ロッド付勢ばね40は、無通電状態において吸入弁30を吸入弁シート31aから離れた開弁位置で維持するのに必要十分な付勢力を有するよう設定されている。 After completing the intake stroke, the high-pressure fuel pump 100 moves to the compression stroke. At this time, the electromagnetic coil 43 remains in a non-energized state, and no magnetic attraction force acts between the movable core 36 and the fixed core 39. The rod biasing spring 40 is set to have a necessary and sufficient biasing force to maintain the intake valve 30 in an open position away from the intake valve seat 31a in the non-energized state.

 この状態において、プランジャ2が上昇運動をしても、ロッド35が開弁位置に留まるため、ロッド35により付勢された吸入弁30も同様に開弁位置に留まる。したがって、加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の電磁弁機構300を通して低圧燃料吸入通路10dへ戻されることになり、加圧室11内部の圧力が上昇することは無い。この行程を戻し行程と称する。 In this state, even if the plunger 2 moves upward, the rod 35 remains in the open position, so the suction valve 30 biased by the rod 35 also remains in the open position. Therefore, the volume of the pressurized chamber 11 decreases as the plunger 2 moves upward, but in this state, the fuel that was once sucked into the pressurized chamber 11 is returned to the low-pressure fuel suction passage 10d again through the solenoid valve mechanism 300, which is in an open state, and the pressure inside the pressurized chamber 11 does not increase. This stroke is called the return stroke.

 戻し工程において、ECU27(図1参照)からの制御信号が電磁弁機構300に印加されると、電磁コイル43には、端子部材46を介して電流が流れる。電磁コイル43に電流が流れると、固定コア39と可動コア36の磁気吸引面Sにおいて磁気吸引力が作用し、可動コア36が固定コア39に引き寄せられる。そして、磁気吸引力がロッド付勢ばね40の付勢力よりも大きくなると、可動コア36は、ロッド付勢ばね40の付勢力に抗して固定コア39側へ移動し、可動コア36と係合するロッド35が吸入弁30から離れる方向に移動する。その結果、吸入弁付勢ばね33による付勢力と燃料が低圧燃料吸入通路10dに流れ込むことによる流体力により吸入弁30が吸入弁シート31aに着座し、電磁弁機構300が閉弁状態になる。 During the return stroke, when a control signal from the ECU 27 (see FIG. 1) is applied to the solenoid valve mechanism 300, a current flows through the solenoid coil 43 via the terminal member 46. When a current flows through the solenoid coil 43, a magnetic attraction force acts on the magnetic attraction surface S of the fixed core 39 and the movable core 36, and the movable core 36 is attracted to the fixed core 39. When the magnetic attraction force becomes greater than the biasing force of the rod biasing spring 40, the movable core 36 moves toward the fixed core 39 against the biasing force of the rod biasing spring 40, and the rod 35 engaged with the movable core 36 moves in a direction away from the intake valve 30. As a result, the biasing force of the intake valve biasing spring 33 and the fluid force caused by the fuel flowing into the low-pressure fuel intake passage 10d seat the intake valve 30 on the intake valve seat 31a, and the solenoid valve mechanism 300 is in a closed state.

 電磁弁機構300が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧され、燃料吐出口の圧力以上になると、吐出弁機構8を通過してコモンレール23(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下死点から上死点までの間の圧縮行程は、戻し行程と吐出行程からなる。そして、電磁弁機構300の電磁コイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。 After the solenoid valve mechanism 300 is closed, the fuel in the pressurized chamber 11 is pressurized as the plunger 2 rises, and when the pressure exceeds the pressure at the fuel discharge port, it passes through the discharge valve mechanism 8 and is discharged into the common rail 23 (see Figure 1). This stroke is called the discharge stroke. In other words, the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke. The amount of high-pressure fuel discharged can be controlled by controlling the timing of energization of the electromagnetic coil 43 of the solenoid valve mechanism 300.

 電磁コイル43へ通電するタイミングを早くすれば、圧縮行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、低圧燃料吸入通路10dに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル43へ通電するタイミングを遅くすれば、圧縮行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、低圧燃料吸入通路10dに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。 If the timing of energizing the electromagnetic coil 43 is advanced, the proportion of the return stroke during the compression stroke will be smaller and the proportion of the discharge stroke will be larger. As a result, less fuel will be returned to the low-pressure fuel intake passage 10d and more fuel will be discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 43 is delayed, the proportion of the return stroke during the compression stroke will be larger and the proportion of the discharge stroke will be smaller. As a result, more fuel will be returned to the low-pressure fuel intake passage 10d and less fuel will be discharged at high pressure. In this way, by controlling the timing of energizing the electromagnetic coil 43, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).

1-3.固定コアと可動コアの衝突部に生じるキャビテーションについて
 次に、固定コア39と可動コア36の衝突部に生じるキャビテーションの発生メカニズムについて図6から図8を参照して説明する。
 図6から図8は、キャビテーションの発生動作を示す図である。
1-3 Cavitation Occurring at the Collision Portion Between the Fixed Core and the Movable Core Next, the mechanism by which cavitation occurs at the collision portion between the fixed core 39 and the movable core 36 will be described with reference to FIGS.
6 to 8 are diagrams showing the cavitation generation operation.

 図6に示すように、電磁コイル43が通電されることにより、固定コア39と可動コア36の磁気吸引面Sに磁気吸引力が発生し、可動コア36が固定コア39へ接近する向きに移動する。この可動コア36の移動に伴い、可動コア36と固定コア39との間に存在する燃料(流体)は、可動コア36に設けた貫通孔36aに流れると共に、固定コア39におけるロッド付勢ばね40が挿入されるばね挿入部39eにも流れる。そして、固定コア39のばね挿入部39eの領域は、流体の逃げ場がないため高圧となる。 As shown in FIG. 6, when the electromagnetic coil 43 is energized, a magnetic attraction force is generated on the magnetic attraction surface S of the fixed core 39 and the movable core 36, and the movable core 36 moves in a direction approaching the fixed core 39. As the movable core 36 moves, the fuel (fluid) present between the movable core 36 and the fixed core 39 flows into the through hole 36a provided in the movable core 36 and also into the spring insertion portion 39e in the fixed core 39 into which the rod biasing spring 40 is inserted. The area of the spring insertion portion 39e of the fixed core 39 becomes high pressure because there is no place for the fluid to escape.

 次に、図7に示すように、吸引された可動コア36は、固定コア39と衝突することにより当接状態となる。また、可動コア36が停止することにより、固定コア39のばね挿入部39eに流入する流体の流れも停止する。これにより、高圧となっていた固定コア39のばね挿入部39eの流体は、ばね挿入部39eから可動コア36の貫通孔36aに向かって流出していく。 Next, as shown in FIG. 7, the sucked movable core 36 collides with the fixed core 39 and comes into contact with it. Furthermore, as the movable core 36 stops, the flow of fluid into the spring insertion portion 39e of the fixed core 39 also stops. As a result, the fluid in the spring insertion portion 39e of the fixed core 39, which had been under high pressure, flows out from the spring insertion portion 39e toward the through hole 36a of the movable core 36.

 また、図8Aに示すように、可動コア36が固定コア39に接近することで、可動コア36と固定コア39との間の圧力が急激に変動し、可動コア36と固定コア39との間には、気泡(キャビテーション)Q1が発生する。さらに、ばね挿入部39eから貫通孔36aに向かう流体の流れは、可動コア36が固定コア39に近づくにつれて流速が速くなる。これにより、貫通孔36aにおける固定コア39と対向する端部と、固定コア39における貫通孔36aと対向する面との間に、流体剥離が発生する。その結果、キャビテーションQ1が発生し、崩壊することでエロージョンT1が発生する。 Also, as shown in FIG. 8A, as the movable core 36 approaches the fixed core 39, the pressure between the movable core 36 and the fixed core 39 changes suddenly, and air bubbles (cavitation) Q1 are generated between the movable core 36 and the fixed core 39. Furthermore, the flow rate of the fluid from the spring insertion portion 39e toward the through hole 36a increases as the movable core 36 approaches the fixed core 39. This causes fluid separation between the end of the through hole 36a facing the fixed core 39 and the surface of the fixed core 39 facing the through hole 36a. As a result, cavitation Q1 occurs, and collapses, causing erosion T1.

 このように、可動コア36の貫通孔36aにおける固定コア39と対向する端部は、キャビテーション・エロージョンに対して厳しい環境下となることが分かる。このキャビテーション・エロージョンによる損傷の対策として、従来技術では、可動コア36や固定コア39の衝突箇所に、硬質クロムメッキを施していた。そのため、従来技術では、硬質クロムメッキを施すために、メッキ前処理とメッキ処理を行う必要があり、電磁弁機構を製造するコストがかかるだけでなく、製造の手間がかかっていた。 As such, it can be seen that the end of the through hole 36a of the movable core 36 facing the fixed core 39 is in a severe environment for cavitation erosion. As a countermeasure against damage caused by this cavitation erosion, in the conventional technology, the collision points of the movable core 36 and the fixed core 39 are hard chrome plated. Therefore, in the conventional technology, in order to apply hard chrome plating, it is necessary to carry out pre-plating and plating, which not only increases the cost of manufacturing the solenoid valve mechanism but also requires labor in manufacturing.

1-4.固定コアの構成
 次に、本例の電磁弁機構300の固定コア39の詳細な構成について図9及び図10を参照して説明する。
 図9及び図10は、電磁弁機構300の固定コア39と可動コア36を拡大して示す断面図である。図10は、可動コア36が固定コア39に接近する状態を示す図である。
1-4. Structure of the Fixed Core Next, the detailed structure of the fixed core 39 of the solenoid valve mechanism 300 of this embodiment will be described with reference to FIGS.
9 and 10 are enlarged cross-sectional views showing the fixed core 39 and the movable core 36 of the solenoid valve mechanism 300. FIG.

 図9及び図10に示すように、固定コア39における可動コア36と衝突する衝突面39aには、凹部39bが形成されている。凹部39bは、固定コア39に設けたばね挿入部39eにおける衝突面39a側の角部において、ばね挿入部39eと同心円上に形成されている。また、凹部39bは、固定コア39の衝突面39aにおける可動コア36の貫通孔36aと対向する位置、キャビテーションが発生しやすい箇所に配置されている。本例では、凹部39bは、衝突面39aから可動コア36とは離反する向きに一段凹んだ環状の凹部である。 As shown in Figures 9 and 10, a recess 39b is formed on the collision surface 39a of the fixed core 39 that collides with the movable core 36. The recess 39b is formed concentrically with the spring insertion portion 39e at the corner of the spring insertion portion 39e on the collision surface 39a side of the fixed core 39. The recess 39b is also located at a position on the collision surface 39a of the fixed core 39 that faces the through hole 36a of the movable core 36, a location where cavitation is likely to occur. In this example, the recess 39b is an annular recess that is recessed one step from the collision surface 39a in a direction away from the movable core 36.

 図10に示すように、可動コア36が固定コア39に接近する際、貫通孔36aだけでなく、凹部39b側に、すなわち、固定コア39及び可動コア36の半径方向の外側を向く流路も発生する。したがって、流体が流路を絞られることなく、貫通孔36aに流れ込むため、貫通孔36aに流入する流体の速度を緩和させることができる。これにより、貫通孔36a及び固定コア39の衝突面39aに流体剥離が発生することを抑制できる。その結果、可動コア36が固定コア39に接近する際、キャビテーションの発生を抑制することが可能となり、可動コア36や固定コア39に硬質クロムメッキを施す必要がなくなる。そのため、電磁弁機構300を製造するコスト削減を図ることができるだけでなく、製造を容易に行うことができる。 As shown in FIG. 10, when the movable core 36 approaches the fixed core 39, not only the through hole 36a but also a flow path is generated on the recess 39b side, i.e., a flow path facing radially outward of the fixed core 39 and the movable core 36. Therefore, the fluid flows into the through hole 36a without being narrowed, and the speed of the fluid flowing into the through hole 36a can be reduced. This makes it possible to suppress the occurrence of fluid separation at the through hole 36a and the collision surface 39a of the fixed core 39. As a result, it is possible to suppress the occurrence of cavitation when the movable core 36 approaches the fixed core 39, and there is no need to apply hard chrome plating to the movable core 36 and the fixed core 39. Therefore, not only can the cost of manufacturing the solenoid valve mechanism 300 be reduced, but the manufacturing can be easily performed.

2.第2の実施の形態例
 次に、本発明の第2の実施の形態例に係る電磁弁機構について、図11を参照して説明する。
 図11は、電磁弁機構の固定コアと可動コアを拡大して示す断面図である。
2. Second Embodiment Next, a solenoid valve mechanism according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 11 is an enlarged cross-sectional view showing a fixed core and a movable core of the solenoid valve mechanism.

 第2の実施の形態例に係る電磁弁機構は、第1の実施の形態例に係る電磁弁機構300と同様の構成を有している。第2の実施の形態例に係る電磁弁機構が第1の実施の形態例に係る電磁弁機構300と異なる点は、固定コアの凹部の形状である。そのため、ここでは、固定コアについて説明し、第1の実施の形態例にかかる電磁弁機構300と共通の構成についての説明を省略する。 The solenoid valve mechanism according to the second embodiment has a similar configuration to solenoid valve mechanism 300 according to the first embodiment. The solenoid valve mechanism according to the second embodiment differs from solenoid valve mechanism 300 according to the first embodiment in the shape of the recess in the fixed core. Therefore, here, the fixed core will be described, and a description of the configuration common to solenoid valve mechanism 300 according to the first embodiment will be omitted.

 図11に示すように、固定コア39Bは、ロッド付勢ばね40が挿入されるばね挿入部39eと、可動コア36が衝突する衝突面39aと、凹部39cとを有している。凹部39cは、ばね挿入部39eにおける衝突面39a側の角部に形成さている。そして、凹部39cは、固定コア39の衝突面39aにおける可動コア36の貫通孔36aと対向する位置に配置されている。また、凹部39cは、ばね挿入部39eにおける衝突面39a側の角部を面取りすることで形成される。 As shown in FIG. 11, the fixed core 39B has a spring insertion portion 39e into which the rod biasing spring 40 is inserted, a collision surface 39a against which the movable core 36 collides, and a recess 39c. The recess 39c is formed in a corner of the spring insertion portion 39e on the collision surface 39a side. The recess 39c is disposed in a position on the collision surface 39a of the fixed core 39 facing the through hole 36a of the movable core 36. The recess 39c is also formed by chamfering the corner of the spring insertion portion 39e on the collision surface 39a side.

 このような凹部39cを形成することで、貫通孔36aと衝突面39aとの間の体積を大きくすることができる。これにより、可動コア36が固定コア39Bに接近する際に、貫通孔36aに流入する流体の圧力変動を、凹部39cによって形成された空間により、緩和することができる。その結果、キャビテーション・エロ―ジョンが発生することを抑制することができる。 By forming such a recess 39c, the volume between the through hole 36a and the collision surface 39a can be increased. As a result, when the movable core 36 approaches the fixed core 39B, the pressure fluctuation of the fluid flowing into the through hole 36a can be mitigated by the space formed by the recess 39c. As a result, the occurrence of cavitation erosion can be suppressed.

 その他の構成は、上述した第1の実施の形態例にかかる電磁弁機構300と同様であるため、それらの説明は省略する。このような固定コア39Bを有する電磁弁機構においても、上述した第1の実施の形態例にかかる電磁弁機構300と同様の作用及び効果を得ることができる。 The rest of the configuration is the same as that of the solenoid valve mechanism 300 according to the first embodiment described above, so a description thereof will be omitted. Even with a solenoid valve mechanism having such a fixed core 39B, it is possible to obtain the same action and effect as that of the solenoid valve mechanism 300 according to the first embodiment described above.

3.第3の実施の形態例
 次に、本発明の第3実施の形態例に係る電磁弁機構について、図12を参照して説明する。
 図12は、可動コアを正面、すなわち固定コア側から見た平面図である。
3. Third Embodiment Next, a solenoid valve mechanism according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 12 is a plan view of the movable core as viewed from the front, that is, from the fixed core side.

 第3の実施の形態例に係る電磁弁機構は、第1の実施の形態例に係る電磁弁機構300と同様の構成を有している。第3の実施の形態例に係る電磁弁機構が第1の実施の形態例に係る電磁弁機構300と異なる点は、可動コアの形状である。そのため、ここでは、可動コアについて説明し、第1の実施の形態例にかかる電磁弁機構300と共通の構成についての説明を省略する。 The solenoid valve mechanism according to the third embodiment has a similar configuration to the solenoid valve mechanism 300 according to the first embodiment. The solenoid valve mechanism according to the third embodiment differs from the solenoid valve mechanism 300 according to the first embodiment in the shape of the movable core. Therefore, the movable core will be described here, and a description of the configuration common to the solenoid valve mechanism 300 according to the first embodiment will be omitted.

 図12に示すように、可動コア36Cには、複数の貫通孔36aが形成されている。複数の貫通孔36aは、可動コア36Cの周方向に沿って略等間隔に形成されている。また、可動コア36Cにおける固定コア39と当接する可動コア側衝突面36bには、接続凹部36cが形成されている。接続凹部36cは、可動コア側衝突面36bから固定コア39から離反する向きに凹んだ凹部である。また、接続凹部36cは、可動コア36Cの周方向に沿って連続して形成されており、複数の貫通孔36aを連通している。 As shown in FIG. 12, multiple through holes 36a are formed in the movable core 36C. The multiple through holes 36a are formed at approximately equal intervals along the circumferential direction of the movable core 36C. In addition, a connection recess 36c is formed in the movable core side collision surface 36b of the movable core 36C that abuts against the fixed core 39. The connection recess 36c is a recess that is recessed from the movable core side collision surface 36b in a direction away from the fixed core 39. In addition, the connection recess 36c is formed continuously along the circumferential direction of the movable core 36C, and connects the multiple through holes 36a.

 この接続凹部36cにより、貫通孔36aと衝突面39aとの間の体積を大きくすることができる。これにより、可動コア36が固定コア39Bに接近する際に、貫通孔36aに流入する流体の圧力変動を、接続凹部36cによって形成された空間により、緩和することができる。その結果、キャビテーション・エロ―ジョンが発生することを抑制することができる。 The connection recess 36c makes it possible to increase the volume between the through hole 36a and the collision surface 39a. As a result, when the movable core 36 approaches the fixed core 39B, the pressure fluctuation of the fluid flowing into the through hole 36a can be mitigated by the space formed by the connection recess 36c. As a result, the occurrence of cavitation erosion can be suppressed.

 その他の構成は、上述した第1の実施の形態例にかかる電磁弁機構300と同様であるため、それらの説明は省略する。このような可動コア36Cを有する電磁弁機構においても、上述した第1の実施の形態例にかかる電磁弁機構300と同様の作用及び効果を得ることができる。 The rest of the configuration is the same as that of the solenoid valve mechanism 300 according to the first embodiment described above, so a description thereof will be omitted. With a solenoid valve mechanism having such a movable core 36C, it is possible to obtain the same actions and effects as the solenoid valve mechanism 300 according to the first embodiment described above.

 なお、固定コアとしては、第1の実施の形態例に係る固定コア39又は第2の実施の形態例に係る固定コア39Bが適用される。 The fixed core used is either the fixed core 39 in the first embodiment or the fixed core 39B in the second embodiment.

 以上、本発明の電磁弁機構及び燃料ポンプの実施の形態例について、その作用効果も含めて説明した。しかしながら、本発明の電磁弁機構及び燃料ポンプは、上述の実施の形態例に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 The above describes the embodiments of the solenoid valve mechanism and fuel pump of the present invention, including their effects. However, the solenoid valve mechanism and fuel pump of the present invention are not limited to the above-described embodiments, and various modifications are possible without departing from the spirit of the invention as set forth in the claims.

 また、上述した実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態例の構成の一部を他の実施の形態例の構成に置き換えることが可能であり、また、ある実施の形態例の構成に他の実施の形態例の構成を加えることも可能である。また、各実施の形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above-mentioned embodiment examples have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment example with the configuration of another embodiment example, and it is also possible to add the configuration of another embodiment example to the configuration of one embodiment example. It is also possible to add, delete, or replace part of the configuration of each embodiment example with other configurations.

 さらに、上述した実施の形態例では、凹部39b、39cをばね挿入部39eの角部で、かつ貫通孔36aと対向する位置にのみ形成した例を説明したが、これに限定されるものではない。例えば、凹部をばね挿入部39eの角部から、固定コアの半径方向の外側に向けて延在する放射状の複数の溝部としてもよく、その他各種の形状であってもよい。 Furthermore, in the above-mentioned embodiment, the recesses 39b, 39c are formed only at the corners of the spring insertion portion 39e and at positions facing the through hole 36a, but this is not limited to the above. For example, the recesses may be multiple radial grooves extending from the corners of the spring insertion portion 39e toward the outside in the radial direction of the fixed core, or may have various other shapes.

 なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。 In this specification, the words "parallel" and "orthogonal" are used, but these do not mean only "parallel" and "orthogonal" in the strict sense, but also include "parallel" and "orthogonal" and may also mean a "nearly parallel" or "nearly orthogonal" state within a range in which the functions can be exerted.

 1…ポンプボディ、 2…プランジャ、 4…ばね、 6…シリンダ、 7…シールホルダ、 7a…副室、 8…吐出弁機構、 9…圧力脈動低減機構、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 12a…吐出弁室、 12b…吐出通路、 15…リテーナ、 20…燃料タンク、 21…フィードポンプ、 23…コモンレール、 24…インジェクタ、 26…燃料圧力センサ、 27…ECU、 28…燃料配管、 30…吸入弁(弁体)、 31…吸入弁シート部材、 32…ストッパ、 33…吸入弁付勢ばね、 35…ロッド、 36、36C…可動コア、 36a…貫通孔、 36b…可動コア側衝突面、 36c…接続凹部、 37…ロッドガイド、 39、39B…固定コア、 39a…衝突面、 39b、39c…凹部、 39e…ばね挿入部、 40…ロッド付勢ばね、 41…アンカー付勢ばね、 92…タペット、 93…カム、 100…高圧燃料ポンプ、 200…リリーフ弁機構、 300…電磁弁機構 1...pump body, 2...plunger, 4...spring, 6...cylinder, 7...seal holder, 7a...auxiliary chamber, 8...discharge valve mechanism, 9...pressure pulsation reduction mechanism, 10...low pressure fuel chamber, 11...pressurizing chamber, 12...discharge joint, 12a...discharge valve chamber, 12b...discharge passage, 15...retainer, 20...fuel tank, 21...feed pump, 23...common rail, 24...injector, 26...fuel pressure sensor, 27...ECU, 28...fuel piping, 30...suction valve (valve body), 31 ...suction valve seat member, 32...stopper, 33...suction valve spring, 35...rod, 36, 36C...movable core, 36a...through hole, 36b...movable core side collision surface, 36c...connection recess, 37...rod guide, 39, 39B...fixed core, 39a...collision surface, 39b, 39c...recess, 39e...spring insertion portion, 40...rod spring, 41...anchor spring, 92...tappet, 93...cam, 100...high pressure fuel pump, 200...relief valve mechanism, 300...solenoid valve mechanism

Claims (7)

 弁体と、
 前記弁体に係合するロッドと、
 前記ロッドが係合する可動コアと、
 前記可動コアとの間に磁気吸引力を発生させる固定コアと、
 前記ロッドを前記固定コアから離れる方向に付勢するロッド付勢ばねと、を備え、
 前記可動コアには、前記可動コアが移動する方向に沿って貫通する貫通孔が形成され、
 前記固定コアの前記可動コアと接触する衝突面には、凹部が形成され、
 前記凹部は、前記可動コアの前記貫通孔と対向する位置に配置される
 電磁弁機構。
A valve body,
A rod that engages with the valve body;
A movable core with which the rod is engaged;
a fixed core that generates a magnetic attraction force between itself and the movable core;
a rod biasing spring that biases the rod in a direction away from the fixed core,
The movable core is formed with a through hole passing through in a direction in which the movable core moves,
A recess is formed on a collision surface of the fixed core that comes into contact with the movable core,
The recess is disposed at a position facing the through hole of the movable core.
 前記固定コアには、前記ロッド付勢ばねが挿入されるばね挿入部が形成され、
 前記凹部は、前記ばね挿入部における前記衝突面側の角部に形成される
 請求項1に記載の電磁弁機構。
The fixed core is formed with a spring insertion portion into which the rod biasing spring is inserted,
The solenoid valve mechanism according to claim 1 , wherein the recess is formed at a corner of the spring insertion portion on the side of the impact surface.
 前記凹部は、前記ばね挿入部と同心円状に形成され、かつ前記衝突面から前記可動コアとは離反する向きに一段凹んだ環状の凹部である
 請求項1に記載の電磁弁機構。
The electromagnetic valve mechanism according to claim 1 , wherein the recess is an annular recess that is formed concentrically with the spring insertion portion and is recessed from the collision surface in a direction away from the movable core.
 前記凹部は、前記ばね挿入部における前記衝突面側の角部を面取りすることで形成される
 請求項2に記載の電磁弁機構。
The solenoid valve mechanism according to claim 2 , wherein the recess is formed by chamfering a corner of the spring insertion portion on the side of the collision surface.
 前記可動コアには、前記貫通孔が複数形成され、
 前記可動コアにおける前記固定コアと当接する可動コア側衝突面には、複数の前記貫通孔を接続する接続凹部が形成される
 請求項1に記載の電磁弁機構。
The movable core has a plurality of through holes formed therein,
The solenoid valve mechanism according to claim 1 , wherein a connecting recess is formed on a movable core side collision surface of the movable core that abuts against the fixed core, the connecting recess connecting the plurality of through holes.
 複数の前記貫通孔は、前記可動コアの周方向に沿って間隔を空けて形成され、
 前記接続凹部は、前記可動コアの周方向に沿って連続して形成される
 請求項5に記載の電磁弁機構。
The through holes are formed at intervals along a circumferential direction of the movable core,
The solenoid valve mechanism according to claim 5 , wherein the connection recess is formed continuously along a circumferential direction of the movable core.
 加圧室を備えたボディと、
 前記ボディに往復運動可能に支持され、往復運動により前記加圧室の容量を増減させるプランジャと、
 前記加圧室へ燃料を吐出する電磁弁機構と、を備え、
 前記電磁弁機構は、
 弁体と、
 前記弁体に係合するロッドと、
 前記ロッドが係合する可動コアと、
 前記可動コアとの間に磁気吸引力を発生させる固定コアと、
 前記ロッドを前記固定コアから離れる方向に付勢するロッド付勢ばねと、を備え、
 前記可動コアには、前記可動コアが移動する方向に沿って貫通する貫通孔が形成され、
 前記固定コアの前記可動コアと接触する衝突面には、凹部が形成され、
 前記凹部は、前記可動コアの前記貫通孔と対向する位置に配置される
 燃料ポンプ。
A body having a pressurized chamber;
a plunger supported by the body so as to be capable of reciprocating motion, the plunger increasing or decreasing the volume of the pressurizing chamber by reciprocating motion;
an electromagnetic valve mechanism that discharges fuel into the pressurizing chamber,
The solenoid valve mechanism includes:
A valve body,
A rod that engages with the valve body;
A movable core with which the rod is engaged;
a fixed core that generates a magnetic attraction force between itself and the movable core;
a rod biasing spring that biases the rod in a direction away from the fixed core,
The movable core is formed with a through hole passing through in a direction in which the movable core moves,
A recess is formed on a collision surface of the fixed core that comes into contact with the movable core,
the recess is disposed at a position facing the through hole of the movable core.
PCT/JP2023/021301 2023-06-08 2023-06-08 Solenoid valve mechanism and fuel pump WO2024252603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/021301 WO2024252603A1 (en) 2023-06-08 2023-06-08 Solenoid valve mechanism and fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/021301 WO2024252603A1 (en) 2023-06-08 2023-06-08 Solenoid valve mechanism and fuel pump

Publications (1)

Publication Number Publication Date
WO2024252603A1 true WO2024252603A1 (en) 2024-12-12

Family

ID=93795620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021301 WO2024252603A1 (en) 2023-06-08 2023-06-08 Solenoid valve mechanism and fuel pump

Country Status (1)

Country Link
WO (1) WO2024252603A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517141A (en) * 1999-12-16 2003-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump
JP2019015274A (en) * 2017-07-10 2019-01-31 ヤンマー株式会社 Fuel injection pump
DE102018208909A1 (en) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Electromagnetically operated suction valve and high-pressure fuel pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517141A (en) * 1999-12-16 2003-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
WO2016208359A1 (en) * 2015-06-25 2016-12-29 日立オートモティブシステムズ株式会社 Flow rate control valve and high-pressure fuel supply pump
JP2019015274A (en) * 2017-07-10 2019-01-31 ヤンマー株式会社 Fuel injection pump
DE102018208909A1 (en) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Electromagnetically operated suction valve and high-pressure fuel pump

Similar Documents

Publication Publication Date Title
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
JP6689178B2 (en) High pressure fuel supply pump
US10982638B2 (en) Device for controlling high-pressure fuel supply pump, and high-pressure fuel supply pump
JP7198363B2 (en) Electromagnetic intake valve and high pressure fuel supply pump
CN111971470B (en) Solenoid valves, high pressure pumps and engine systems
JP7421646B2 (en) Fuel pump
WO2024252603A1 (en) Solenoid valve mechanism and fuel pump
CN114651123B (en) Solenoid valve mechanism and high-pressure fuel supply pump
JP7178504B2 (en) Fuel pump
WO2019003719A1 (en) High-pressure fuel supply pump
JP2019167897A (en) Fuel supply pump
JP2019100268A (en) Fuel supply pump
JP2019090365A (en) Fuel supply pump
JP7139265B2 (en) High-pressure fuel supply pump and relief valve mechanism
CN110678642B (en) High-pressure fuel supply pump
WO2019097990A1 (en) Relief valve mechanism and fuel supply pump comprising same
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
US12140113B2 (en) Electromagnetic valve mechanism and fuel pump
JP7518980B2 (en) Fuel pump
JP7024071B2 (en) Fuel supply pump
CN112243474B (en) Electromagnetic valve and high-pressure fuel supply pump
EP3786442B1 (en) Fuel supply pump and method for manufacturing fuel supply pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
WO2024084567A1 (en) Fuel pump
JP2018150911A (en) Relief valve mechanism and fuel feed pump including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23940704

Country of ref document: EP

Kind code of ref document: A1