WO2024250678A1 - 功率模块和充电设备 - Google Patents
功率模块和充电设备 Download PDFInfo
- Publication number
- WO2024250678A1 WO2024250678A1 PCT/CN2024/071412 CN2024071412W WO2024250678A1 WO 2024250678 A1 WO2024250678 A1 WO 2024250678A1 CN 2024071412 W CN2024071412 W CN 2024071412W WO 2024250678 A1 WO2024250678 A1 WO 2024250678A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- current
- switch tube
- diode
- absolute value
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 242
- 239000003990 capacitor Substances 0.000 claims description 53
- 230000002457 bidirectional effect Effects 0.000 description 34
- 230000005284 excitation Effects 0.000 description 31
- 238000010586 diagram Methods 0.000 description 23
- 229920006395 saturated elastomer Polymers 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 9
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4233—Arrangements for improving power factor of AC input using a bridge converter comprising active switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
- H02J7/04—Regulation of charging current or voltage
- H02J7/06—Regulation of charging current or voltage using discharge tubes or semiconductor devices
Definitions
- the present application relates to the field of new energy technology, and in particular to a power module and a charging device.
- High-power AC-DC power modules generally use interleaved parallel power factor correction (PFC) circuits to achieve high-power output.
- PFC parallel power factor correction
- an autotransformer is generally added to the circuit topology.
- the volt-second product of the autotransformer will exceed the allowable value of the core, causing the core of the autotransformer to saturate, which in turn will cause the switching devices in the circuit to fail due to the saturation of the core of the autotransformer.
- the embodiments of the present application provide a power module and a charging device, which can dynamically adjust the excitation current in the autotransformer, thereby solving the problem of core saturation of the autotransformer and protecting the devices in the circuit from failure due to core saturation of the autotransformer.
- an embodiment of the present application provides an AC-DC power module, which includes N groups of interleaved parallel PFC circuits and a controller.
- Each group of interleaved parallel PFC circuits is used to convert one phase of the AC power supply into DC power and output it to the DC bus, 1 ⁇ N ⁇ 3, and N is an integer.
- Each group of interleaved parallel PFC circuits includes a PFC inductor, an autotransformer, a first rectifier bridge arm, and a second rectifier bridge arm.
- the autotransformer includes a first winding and a second winding that are coupled to each other.
- One end of the PFC inductor is used to receive AC power, and the other end of the PFC inductor is used to connect one end of the first winding and one end of the second winding.
- the other end of the first winding is used to connect the first rectifier bridge arm, and the other end of the second winding is used to connect the second rectifier bridge arm.
- the controller is used to: in response to the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, adjust the duty cycle of the driving signal of the switch tube of the first rectifier bridge arm or the second rectifier bridge arm in the next switching cycle.
- the operating frequency of the switch tube is greater than the frequency of the alternating current.
- the preset value is the current intensity when the magnetic core of the autotransformer reaches magnetic saturation, that is, the saturation current of the autotransformer.
- the AC-DC power module includes a group of interleaved parallel PFC circuits, and one end of the PFC inductor is used to receive single-phase alternating current.
- the AC-DC power module includes two groups of interleaved parallel PFC circuits, one end of the PFC inductor of each group of interleaved parallel PFC circuits is used to receive one phase of the three-phase AC power, and the PFC inductors of the two groups of interleaved parallel PFC circuits are used to receive AC power of different phases.
- the AC-DC power module includes three groups of interleaved parallel PFC circuits, one end of the PFC inductor of each group of interleaved parallel PFC circuits is used to receive one phase of the three-phase AC power, and the PFC inductors of the three groups of interleaved parallel PFC circuits are used to receive one phase of the three-phase AC power. For receiving alternating current of different phases.
- the controller is used to: in response to the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the first winding current being greater than the absolute value of the second winding current, reduce the duty cycle of the drive signal of the switching tube of the first rectifier bridge arm in the next switching cycle.
- the excitation current of the first winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is greater than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the switch tube of the first rectifier bridge arm in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the controller is used to: in response to the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the second winding current being greater than the absolute value of the first winding current, reduce the duty cycle of the drive signal of the switching tube of the second rectifier bridge arm in the next switching cycle.
- the excitation current of the second winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the second winding is greater than the absolute value of the current of the first winding, the controller will continue to reduce the duty cycle of the drive signal of the switch tube of the second rectifier bridge arm in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- each group of interleaved parallel PFC circuits includes a bus capacitor, and the bus capacitor includes a positive bus capacitor and a negative bus capacitor connected in series.
- One end of the positive bus capacitor is connected to the positive DC bus, and the other end of the negative bus capacitor is connected to the negative DC bus.
- the first rectifier bridge arm includes a first diode, a second diode, a third diode, a fourth diode, a first switch tube and a second switch tube.
- the first diode, the second diode, the third diode and the fourth diode are connected in series with each other, the cathode of the first diode is connected to the positive DC bus, and the anode of the fourth diode is connected to the negative DC bus.
- One end of the first switch tube is connected to the midpoint of the series connection of the first diode and the second diode, and the other end of the first switch tube is connected to the midpoint of the bus capacitor.
- One end of the second switch tube is connected to the midpoint of the series connection of the third diode and the fourth diode, and the other end of the second switch tube is connected to the midpoint of the bus capacitor.
- the second rectifier bridge arm includes a fifth diode, a sixth diode, a seventh diode, an eighth diode, a third switch tube and a fourth switch tube.
- the fifth diode, the sixth diode, the seventh diode and the eighth diode are connected in series with each other, the cathode of the fifth diode is connected to the positive DC bus, and the anode of the eighth diode is connected to the negative DC bus.
- One end of the third switch tube is connected to the midpoint of the series connection of the fifth diode and the sixth diode, and the other end of the third switch tube is connected to the midpoint of the bus capacitor.
- One end of the fourth switch tube is connected to the midpoint of the series connection of the seventh diode and the eighth diode, and the other end of the fourth switch tube is connected to the midpoint of the bus capacitor.
- the controller is used to: in response to the phase voltage of the alternating current being in a positive half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being greater than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the first switching tube in the next switching cycle.
- the excitation current of the first winding can be reduced. If the absolute value of the difference between the current and the current of the second winding is still greater than or equal to the preset value and the absolute value of the current of the first winding is greater than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the first switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer is not saturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the controller is used to: in response to the phase voltage of the alternating current being in a positive half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being less than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the third switch tube in the next switching cycle.
- the excitation current of the second winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is less than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the third switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the controller is used to: in response to the phase voltage of the alternating current being in a negative half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being greater than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the second switch tube in the next switching cycle.
- the excitation current of the first winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is greater than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the second switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the controller is used to: in response to the phase voltage of the alternating current being in a negative half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being less than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the fourth switch tube in the next switching cycle.
- the excitation current of the second winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is less than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the fourth switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the first rectifier bridge arm includes a first diode, a second diode and a first bidirectional switch tube.
- the first diode and the second diode are connected in series, the cathode of the first diode is connected to the positive DC bus, and the anode of the second diode is connected to the negative DC bus.
- One end of the first bidirectional switch tube is connected to the midpoint of the series connection of the first diode and the second diode, and the other end of the first bidirectional switch tube is connected to the midpoint of the bus capacitor.
- the second rectifier bridge arm includes a third diode, a fourth diode and a second bidirectional switch tube.
- the third diode and the fourth diode are connected in series, the cathode of the third diode is connected to the positive DC bus, and the anode of the fourth diode is connected to the negative DC bus.
- One end of the second bidirectional switch tube is connected to the midpoint of the series connection of the third diode and the fourth diode, and the other end of the second bidirectional switch tube is connected to the midpoint of the bus capacitor.
- the controller is configured to: in response to an absolute value of a difference between a current of the first winding and a current of the second winding being greater than or equal to a preset value, and an absolute value of the current of the first winding being greater than an absolute value of the current of the second winding, The duty cycle of the driving signal of the first bidirectional switch tube in the next switching cycle is reduced.
- the excitation current of the first winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is greater than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the first bidirectional switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the controller is used to: in response to the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being less than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the second bidirectional switch tube in the next switching cycle.
- the excitation current of the second winding can be reduced. If in the next switching cycle, the absolute value of the difference between the current of the first winding and the current of the second winding is still greater than or equal to the preset value, and the absolute value of the current of the first winding is less than the absolute value of the current of the second winding, the controller will continue to reduce the duty cycle of the drive signal of the second bidirectional switch tube in the next switching cycle until the absolute value of the difference between the current of the first winding and the current of the second winding is less than the preset value. In this way, the magnetic core of the autotransformer can be unsaturated, so that the switching device in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- the first rectifier bridge arm includes a first switch tube and a second switch tube connected in series, one end of the first switch tube is used to connect the positive DC bus, and one end of the second switch tube is used to connect the negative DC bus.
- the second rectifier bridge arm includes a third switch tube and a fourth switch tube connected in series, one end of the third switch tube is used to connect the positive DC bus, and one end of the fourth switch tube is used to connect the negative DC bus.
- the other end of the first winding is used to connect the midpoint of the series connection of the first switch tube and the second switch tube, and the other end of the second winding is used to connect the midpoint of the series connection of the third switch tube and the fourth switch tube.
- the controller is used to: in response to the phase voltage of the alternating current being in a positive half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being greater than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the second switch tube in the next switching cycle.
- the controller is used to: in response to the phase voltage of the alternating current being in a positive half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being less than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the fourth switch tube in the next switching cycle.
- the controller is used to: in response to the phase voltage of the alternating current being in a negative half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being greater than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the first switch tube in the next switching cycle.
- the controller is used to: in response to the phase voltage of the alternating current being in a negative half-cycle, the absolute value of the difference between the current of the first winding and the current of the second winding being greater than or equal to a preset value, and the absolute value of the current of the first winding being less than the absolute value of the current of the second winding, reduce the duty cycle of the drive signal of the third switch tube in the next switching cycle.
- the controller can adjust the excitation current of the first winding and the excitation current of the second winding of the autotransformer in real time to make the magnetic core of the autotransformer unsaturated, so that the switching devices in the circuit will not be damaged due to the saturation of the magnetic core of the autotransformer, thereby improving the working reliability of the circuit.
- an embodiment of the present application provides a charging device.
- the charging device includes at least one AC-DC power module, a power distribution unit, and at least one charging interface as provided in the first aspect and any one of the possible implementations of the first aspect.
- the input end of the AC-DC power module is used to receive alternating current
- the output end of the AC-DC power module is connected to the input end of the power distribution unit
- the output end of the power distribution unit is connected to the input end of the charging interface
- the output end of the charging interface is used to output direct current.
- an embodiment of the present application provides a charging device.
- the charging device includes at least one AC-DC power module as provided in the first aspect and any one of the possible implementations of the first aspect, at least one DC-DC power module, a power distribution unit, and at least one charging interface.
- the input end of the AC-DC power module is used to receive alternating current
- the output end of the AC-DC power module is connected to the DC bus of the charging device
- the input end of the DC-DC power module is connected to the DC bus of the charging device
- the output end of the DC-DC power module is connected to the input end of the power distribution unit
- the output end of the power distribution unit is connected to the input end of the charging interface
- the output end of the charging interface is used to output direct current.
- FIG1 is a schematic diagram of a charging pile provided in an embodiment of the present application.
- FIG2 is a circuit connection diagram of an AC-DC power module provided in an embodiment of the present application.
- FIG3 is a connection diagram of the interleaved parallel PFC circuit in FIG2 ;
- FIG4 is a working state table of the circuit shown in FIG3 within a switching cycle
- FIG5 is a schematic diagram of an equivalent circuit of the circuit shown in FIG3 in a working state
- FIG6 is a schematic diagram of an equivalent circuit of the circuit shown in FIG3 in another working state
- FIG7 is a schematic diagram of an equivalent circuit of the circuit shown in FIG3 in another working state
- FIG8 is a schematic diagram of an equivalent circuit of the circuit shown in FIG3 in another working state
- FIG9 is another connection diagram of the interleaved parallel PFC circuit in FIG2 ;
- FIG10 is another connection diagram of the interleaved parallel PFC circuit in FIG2 ;
- FIG11 is another connection diagram of the interleaved parallel PFC circuit in FIG2 ;
- FIG12 is a schematic diagram of a charging device provided in an embodiment of the present application.
- FIG. 13 is a schematic diagram of another charging device provided in an embodiment of the present application.
- connection should be understood in a broad sense.
- a and B are connected, which can be either direct or indirect through an intermediary.
- first”, “second”, etc. in the description are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the features.
- FIG. 1 a schematic diagram of a charging pile provided in an embodiment of the present application is shown, and the charging pile 10 includes multiple AC-DC power modules, a power distribution unit and a charging interface.
- the AC-DC power module is used to convert alternating current into direct current;
- the power distribution unit is used to connect one of the multiple AC-DC power modules to one of the charging interfaces, or to connect at least two of the multiple AC-DC power modules in parallel or in series to one of the charging interfaces;
- the charging interface is used to connect the electric vehicle to charge the electric vehicle.
- the AC-DC power module inside the charging pile 10 achieves high power output by adopting an interleaved parallel PFC circuit.
- the AC-DC power module 20 includes N groups of interleaved parallel PFC circuits 201, where 1 ⁇ N ⁇ 3, and N is an integer.
- Each group of interleaved parallel PFC circuits 201 includes a PFC inductor 205, an autotransformer 207, a first rectifier bridge arm 209, and a second rectifier bridge arm 211.
- the autotransformer 207 includes a first winding 207-1 and a second winding 207-2.
- One end of the PFC inductor 205 is used to receive AC power, and the other end of the PFC inductor is used to connect one end of the first winding 207-1 and one end of the second winding 207-2.
- the other end of the first winding 207-1 is connected to the first rectifier bridge arm 209, and the other end of the second winding 207-2 is connected to the second rectifier bridge arm 211.
- the number of turns of the first winding 207-1 and the second winding 207-2 are equal, and the windings are wound on the same magnetic core.
- the circuit topology of the first rectifier bridge arm 209 and the second rectifier bridge arm 211 are the same, and the driving signal of the first rectifier bridge arm 209 and the driving signal of the second rectifier bridge arm 211 are phase-shifted by a certain angle. Based on such a setting, the output voltage ripples of the two rectifier bridge arms connected to the same phase of alternating current can offset each other to reduce the influence of the voltage ripple on the circuit.
- the volt-second product of the autotransformer 207 will exceed the allowable value of the magnetic core, causing the magnetic core of the autotransformer 207 to saturate, which will in turn cause the switching devices in the circuit to fail due to the saturation of the magnetic core of the autotransformer.
- an embodiment of the present application provides an AC-DC power module, which includes N groups of staggered parallel PFC circuits and a controller as shown in FIG2.
- the controller can determine whether the magnetic core of the autotransformer is saturated based on the difference between the current flowing through the first winding and the current flowing through the second winding of the autotransformer. If it is saturated, the controller adjusts the conduction time of the switch tubes in the two rectifier bridge arms to reduce the excitation current in the autotransformer, thereby solving the problem of magnetic core saturation of the autotransformer to protect the devices in the circuit from failure due to the saturation of the magnetic core of the autotransformer.
- FIG2 above takes the AC-DC power module including 3 groups of interleaved parallel PFC circuits as an example to illustrate the connection method of the circuit.
- Three groups of interleaved parallel PFC circuits are connected to a three-phase AC power supply to achieve a large current output.
- the number of interleaved parallel PFC circuits can be set according to the power demand of the load. If the power required by the load is small, the input end of the AC-DC power module 20 only needs to be connected to a single-phase AC power supply, that is, the AC-DC power module 20 only needs to include 1 group of interleaved parallel PFC circuits.
- the input end of the AC-DC power module 20 is connected to a three-phase AC power supply, that is, the AC-DC power module 20 includes 3 groups of interleaved parallel PFC circuits, each group of interleaved parallel PFC circuits is connected to one phase of the three-phase AC power supply, and different groups of interleaved parallel PFC circuits are connected to AC power supplies of different phases.
- This application does not limit the number of interleaved parallel PFC circuits, which can be set according to actual load requirements.
- the interleaved parallel PFC circuit 301 includes a PFC inductor La, an autotransformer Ta, a first rectifier bridge arm Ra1, a second rectifier bridge arm Ra2 and a bus capacitor.
- the bus capacitor includes a positive bus capacitor C1 and a negative bus capacitor C2 connected in series, one end of the positive bus capacitor C1 is connected to the positive DC bus Bus+, and one end of the negative bus capacitor is connected to the negative DC bus Bus-.
- the first rectifier bridge arm Ra1 includes a first diode Da1, a second diode Da2, a third diode Da3, a fourth diode Da4, a first switch tube Sa1, and a second switch tube Sa2.
- the first diode Da1, the second diode Da2, the third diode Da3, and the fourth diode Da4 are connected in series, the cathode of the first diode Da1 is connected to the positive DC bus, and the anode of the fourth diode Da4 is connected to the negative DC bus.
- One end of the first switch tube Sa1 is connected to the midpoint of the series connection of the first diode Da1 and the second diode Da2, and the other end of the first switch tube Sa1 is connected to the midpoint O of the bus capacitors C1 and C2.
- One end of the second switch tube Sa2 is connected to the midpoint of the series connection of the third diode Da3 and the fourth diode Da4, and the other end of the second switch tube Sa2 is connected to the midpoint O of the bus capacitors C1 and C2.
- the second rectifier bridge arm Ra2 includes a fifth diode Da5, a sixth diode Da6, a seventh diode Da7, an eighth diode Da8, a third switch tube Sa3 and a fourth switch tube Sa4.
- the fifth diode Da5, the sixth diode Da6, the seventh diode Da7 and the eighth diode Da8 are connected in series
- the cathode of the fifth diode Da5 is connected to the positive DC bus
- the anode of the eighth diode Da8 is connected to the negative DC bus.
- One end of the third switch tube Sa3 is connected to the fifth diode Da5 and the sixth diode Da6.
- the other end of the third switch tube Sa3 is connected to the midpoint O of the bus capacitors C1 and C2.
- One end of the fourth switch tube Sa4 is connected to the midpoint of the series connection of the seventh diode Da7 and the eighth diode Da8, and the other end of the fourth switch tube Sa4 is connected to the midpoint O of the bus capacitors C1 and C2.
- midpoint O of the bus capacitors C1 and C2 refers to any point between the two connected bus capacitors.
- the midpoint of two series-connected diodes refers to any point between the two connected diodes.
- the autotransformer includes a first winding Ta1 and a second winding Ta2, and the number of turns of the first winding Ta1 is equal to the number of turns of the second winding Ta2.
- One end of the PFC inductor La is used to receive AC power, and the other end of the PFC inductor La is connected to one end of the first winding Ta1 and one end of the second winding Ta2.
- the other end of the first winding Ta1 is connected to the midpoint of the series connection of the second diode Da2 and the third diode Da3, and the other end of the second winding Ta2 is connected to the midpoint of the series connection of the sixth diode Da6 and the seventh diode Da7.
- FIG4 is a working state table of the interleaved parallel PFC circuit 301 in a switching cycle T when the phase voltage of the AC power output by the AC power source Ua is in the positive half cycle.
- the switching cycle T is the period of the driving signal of the switch tube in the circuit.
- the interleaved parallel PFC circuit 301 has four working states: in the first time period T1, Sa1 is turned on and Sa2 is turned off; in the second time period T2, Sa1 is turned on and Sa2 is turned on; in the third time period T3, Sa1 is turned off and Sa2 is turned on; in the fourth time period T4, Sa1 is turned off and Sa2 is turned off.
- the current Ia1 flowing through the first winding Ta1 detected by the current sensor 303 is greater than or equal to 0, and the current Ia2 flowing through the second winding Ta2 detected by the current sensor 304 is greater than or equal to 0; when the phase voltage of the AC power output by the AC power supply Ua is in the negative half cycle, the Ia1 detected by the current sensor 303 is less than or equal to 0, and the Ia2 detected by the current sensor 304 is less than or equal to 0.
- FIG. 5 is a schematic diagram of an equivalent circuit when the first switch tube Sa1 and the third switch tube Sa3 are turned on at the same time.
- FIG6 is a schematic diagram of an equivalent circuit when the first switch tube Sa1 is turned on and the third switch tube Sa3 is turned off.
- the voltage Va1 at the midpoint of the first rectifier bridge arm is 0V
- the voltage Va2 at the midpoint of the second rectifier bridge arm is VBus
- FIG7 is a schematic diagram of an equivalent circuit when the first switch tube Sa1 is turned off and the third switch tube Sa3 is turned on.
- the voltage Va1 at the midpoint of the first rectifier bridge arm is VBus
- the voltage Va2 at the midpoint of the second rectifier bridge arm is 0V
- FIG8 is a schematic diagram of an equivalent circuit when both the first switch tube Sa1 and the third switch tube Sa3 are turned off.
- the voltage Va1 at the midpoint of the first rectifier bridge arm VBus
- the voltage Va2 at the midpoint of the second rectifier bridge arm VBus
- the duty cycle of the drive signal of the first switch tube Sa1 and the third switch tube Sa3 can be adjusted to adjust the magnitude of the excitation current of the autotransformer Ta, so that the autotransformer does not operate in a saturated state.
- the second switch tube Sa2 and the fourth switch tube Sa4 are alternately turned on, and the working principle of the circuit is the same as the above analysis, which will not be repeated here.
- the duty cycle of the drive signal of the second switch tube Sa2 and the fourth switch tube Sa4 the magnitude of the excitation current of the autotransformer Ta can be adjusted, so that the autotransformer does not work in a saturated state.
- the difference in the conduction time of the switch tubes in the two rectifier bridge arms can be determined, so that the excitation current of the autotransformer Ta can be reduced by adjusting the duty cycle of the drive signal of the switch tube in the next switching cycle, thereby solving the problem of core saturation of the autotransformer Ta.
- the first current detection module 303 is used to collect the current Ia1 of the first winding Ta1
- the second current detection module 304 is used to collect the current Ia2 flowing through the second winding Ta2.
- the controller 302 is used to obtain the currents Ia1 and Ia2, and based on the difference between the currents of the two windings, determine whether it is necessary to adjust the duty cycle of the switch tube in the next switching cycle.
- the position of the current detection module shown in FIG. 3 is only an example, and the current detection module can be located at any position of the two autocoupler branches as long as it can detect the current Ia1 flowing through the first winding Ta1 and the current Ia2 flowing through the second winding Ta2.
- the controller 302 in response to the absolute value of the difference between the two winding currents being less than a preset value Imax, the controller 302 does not adjust the duty cycle of the drive signal of the switch tube in the next switching cycle; in response to the absolute value of the difference between the two winding currents being greater than or equal to the preset value Imax, the controller 302 adjusts the duty cycle of the drive signal of the switch tube in the next switching cycle to reduce the difference between the two winding currents.
- the preset value is the current intensity when the magnetic core of the autotransformer Ta reaches magnetic saturation, that is, the saturation current of the autotransformer.
- the controller 302 starts to adjust the duty cycle of the driving signal of the switch tube only when the difference between the currents of the two windings reaches a preset value, which can simplify the control strategy of the controller.
- the controller 302 in response to Ia1>0, Ia2>0 and Ia1-Ia2 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the first switch tube Sa1 in the next switching cycle.
- Ia1>0 and Ia2>0 indicate that the phase voltage of the AC power is in the positive half cycle, that is, in response to the phase voltage of the AC source Ua being in the positive half cycle and
- the excitation current of the first winding Ta1 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 302 in response to Ia1>0, Ia2>0 and Ia2-Ia1 ⁇ Imax, is configured to reduce the duty cycle of the drive signal of the third switch tube Sa3 in the next switching cycle.
- the controller 302 is configured to reduce the duty cycle of the drive signal of the third switch tube Sa3 in the next switching cycle.
- the excitation current of the second winding Ta2 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 302 in response to Ia1 ⁇ 0, Ia2 ⁇ 0 and Ia1-Ia2 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the fourth switch tube Sa4 in the next switching cycle.
- the controller 302 is configured to reduce the duty cycle of the drive signal of the fourth switch tube Sa4 in the next switching cycle.
- the excitation current of the second winding Ta2 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 302 in response to Ia1 ⁇ 0, Ia2 ⁇ 0 and Ia2-Ia1 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the second switch tube Sa2 in the next switching cycle.
- the controller 302 is configured to reduce the duty cycle of the drive signal of the second switch tube Sa2 in the next switching cycle.
- the excitation current of the first winding Ta1 can be reduced by this adjustment method. If in the next switching cycle,
- the operating frequency of the first switch tube Sa1 , the second switch tube Sa2 , the third switch tube Sa3 and the fourth switch tube Sa4 is greater than the operating frequency of the alternating current.
- FIG9 a connection diagram of another staggered parallel PFC circuit provided in an embodiment of the present application is provided.
- the working principle of the circuit shown in FIG9 is the same as the above analysis of the figure, and will not be repeated here.
- the third current detection module is used to detect the total current Iin flowing into the staggered parallel PFC circuit
- the third current detection module is used to detect the total current Iin flowing into the staggered parallel PFC circuit
- the interleaved parallel PFC circuit 1001 includes a PFC inductor La, an autotransformer Ta, a first rectifier bridge arm, a second rectifier bridge arm, and a bus capacitor.
- the bus capacitor includes a positive bus capacitor C1 and a negative bus capacitor C2 connected in series.
- One end of the positive bus capacitor C1 is connected to a positive bus capacitor C2.
- the other end of the positive bus capacitor C1 is connected to the midpoint O of the bus capacitor, one end of the negative bus capacitor C2 is connected to the midpoint O of the bus capacitor, and the other end of the negative bus capacitor is connected to the negative DC bus Bus-.
- the first rectifier bridge arm includes a first diode Da1, a second diode Da2 and a first bidirectional switch tube Sa1.
- the first diode Da1 and the second diode Da2 are connected in series, the cathode of the first diode Da1 is connected to the positive DC bus, and the anode of the second diode Da2 is connected to the negative DC bus.
- One end of the first bidirectional switch tube Sa1 is connected to the midpoint of the series connection of the first diode Da1 and the second diode Da2, and the other end of the first bidirectional switch tube Sa1 is connected to the midpoint O of the bus capacitors C1 and C2.
- the second rectifier bridge arm includes a third diode Da3, a fourth diode Da4 and a second bidirectional switch tube Sa2.
- the third diode Da3 and the fourth diode Da4 are connected in series, the cathode of the third diode Da3 is connected to the positive DC bus, and the anode of the fourth diode Da4 is connected to the negative DC bus.
- One end of the second bidirectional switch tube Sa2 is connected to the midpoint of the series connection of the third diode Da3 and the fourth diode Da4, and the other end of the second bidirectional switch tube Sa2 is connected to the midpoint O of the bus capacitors C1 and C2.
- the autotransformer includes a first winding Ta1 and a second winding Ta2, and the number of turns of the first winding Ta1 is equal to the number of turns of the second winding Ta2.
- One end of the PFC inductor La is used to receive AC power, and the other end of the PFC inductor La is connected to one end of the first winding Ta1 and one end of the second winding Ta2.
- the other end of the first winding Ta1 is connected to the midpoint of the series connection of the first diode Da1 and the second diode Da2, and the other end of the second winding Ta2 is connected to the midpoint of the series connection of the third diode Da3 and the fourth diode Da4.
- the first bidirectional switch tube Sa1 includes two switch tubes, and the driving timing of the two switch tubes is the same.
- the second bidirectional switch tube Sa2 includes two switch tubes, and the driving timing of the two switch tubes is the same.
- the working principle of this circuit is the same as the working principle of the above-mentioned staggered parallel PFC circuit.
- the autotransformer Ta will generate an excitation current.
- the controller 1003 in response to Ia1>0, Ia2>0 and Ia1-Ia2 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the first bidirectional switch tube Sa1 in the next switching cycle.
- the controller 1003 is configured to reduce the duty cycle of the drive signal of the first bidirectional switch tube Sa1 in the next switching cycle.
- the controller 1003 in response to Ia1 ⁇ 0, Ia2 ⁇ 0 and Ia2-Ia1 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the first bidirectional switch tube Sa1 in the next switching cycle.
- the controller 1003 in response to the phase voltage of the AC power being in the negative half cycle,
- the controller 1003 in response to
- the excitation current of the first winding Ta1 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 1003 in response to Ia1>0, Ia2>0 and Ia2-Ia1 ⁇ Imax, the controller 1003 is configured to reduce the duty cycle of the drive signal of the second bidirectional switch tube Sa2 in the next switching cycle.
- the controller 1003 is configured to reduce the duty cycle of the drive signal of the second bidirectional switch tube Sa2 in the next switching cycle.
- the controller 1003 in response to Ia1 ⁇ 0, Ia2 ⁇ 0 and Ia1-Ia2 ⁇ Imax, is configured to reduce the duty cycle of the driving signal of the second bidirectional switch tube Sa2 in the next switching cycle.
- the controller 302 is configured to reduce the duty cycle of the drive signal of the second bidirectional switch tube Sa2 in the next switching cycle.
- the controller 302 in response to
- the excitation current of the second winding Ta2 can be reduced by this adjustment method. If in the next switching cycle,
- the operating frequency of the first bidirectional switch tube Sa1 and the second bidirectional switch tube Sa2 is greater than the operating frequency of the AC source.
- the interleaved parallel PFC circuit 1101 includes a PFC inductor La, an autotransformer Ta, a first rectifier bridge arm Ra1, a second rectifier bridge arm Ra1 and a bus capacitor.
- the bus capacitor includes a positive bus capacitor C1 and a negative bus capacitor C2 connected in series, one end of the positive bus capacitor C1 is connected to the positive DC bus Bus+, and one end of the negative bus capacitor is connected to the negative DC bus Bus-.
- the first rectifier bridge arm Ra1 includes a first switch tube Sa1 and a second switch tube Sa2 connected in series. One end of the first switch tube Sa1 is used to connect the positive DC bus, and one end of the second switch tube Sa2 is used to connect the negative DC bus.
- the second rectifier bridge arm Ra2 includes a third switch tube Sa3 and a fourth switch tube Sa4 connected in series.
- One end of the third switch tube Sa3 is used to connect the positive DC bus, and one end of the fourth switch tube Sa4 is used to connect the negative DC bus.
- the autotransformer includes a first winding Ta1 and a second winding Ta2, and the number of turns of the first winding Ta1 is equal to the number of turns of the second winding Ta2.
- One end of the PFC inductor La is used to receive AC power, and the other end of the PFC inductor La is connected to one end of the first winding Ta1 and one end of the second winding Ta2.
- the other end of the first winding Ta1 is connected to the midpoint of the series connection of the first switch tube Sa1 and the second switch tube Sa2, and the other end of the second winding Ta2 is connected to the midpoint of the series connection of the third switch tube Sa3 and the fourth switch tube Sa4.
- the operating frequency of the switching tubes Sa1, Sa2, Sa3 and Sa4 is greater than the frequency of the alternating current Ua.
- the working principle of this circuit is the same as that of the above-mentioned staggered parallel PFC circuit.
- the autotransformer Ta When the first switch tube Sa1 and the third switch tube Sa3 are not turned on at the same time, the autotransformer Ta will generate an excitation current; or when the second switch tube Sa2 and the fourth switch tube Sa4 are not turned on at the same time, the autotransformer Ta will generate an excitation current.
- the controller 1103 in response to the phase voltage of the AC source Ua being in the positive half cycle and
- the excitation current of the first winding Ta1 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 1103 in response to the phase voltage of the AC power being in a positive half cycle,
- the excitation current of the second winding Ta2 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 1103 in response to the phase voltage of the AC power being in the negative half cycle,
- the excitation current of the second winding Ta2 can be reduced by this adjustment method. If in the next switching cycle,
- the controller 1103 in response to the phase voltage of the AC power being in the negative half cycle,
- the excitation current of the first winding Ta1 can be reduced by this adjustment method. If in the next switching cycle,
- an embodiment of the present application further provides a charging device, as shown in FIG12 , the charging device 120 includes at least one of the above-mentioned AC-DC power modules 1201, a power distribution unit 1203, and at least one charging interface 1205.
- the input end of the AC-DC power module 1201 is used to receive alternating current
- the output end of the AC-DC power module 1201 is connected to the input end of the power distribution unit 1203
- the output end of the power distribution unit 1203 is used to connect to the input end of the charging interface 1205, and the output end of the charging interface 1205 is used to output direct current.
- the AC-DC module 1201 is used to convert alternating current into direct current, and the power distribution unit 1203 is used to distribute the direct current output by the AC-DC power module 1201 to one of the charging interfaces 1205 , thereby charging the device to be charged.
- the charging device 130 includes at least one AC-DC power module 1301 as described above, at least one DC-DC power module 1303, a power distribution unit 1305, and at least one charging interface 1307.
- the input end of the AC-DC power module 1301 is used to receive alternating current
- the output end of the AC-DC power module 1301 is connected to the DC bus of the charging device
- the input end of the DC-DC power module 1303 is connected to the DC bus of the charging device
- the output end of the DC-DC power module 1303 is connected to the input end of the power distribution unit 1305
- the output end of the power distribution unit 1305 is connected to the input end of the charging interface 1307
- the output end of the charging interface 1307 is used to output direct current.
- the AC-DC power module provided in the embodiment of the present application can be applied not only to the above-mentioned charging equipment, but also to devices requiring rectification such as rectifiers or server power supplies, and the present application does not impose any restrictions on this.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Abstract
本申请提供一种功率模块和充电设备,功率模块包括N组交错并联PFC电路和控制器。其中,每组交错并联PFC电路包括PFC电感、自耦变压器、第一整流桥臂和第二整流桥臂。自耦变压器包括相互耦合的第一绕组和第二绕组。PFC电感的一端用于接收交流电,PFC电感的另一端用于连接第一绕组的一端和第二绕组的一端。第一绕组的另一端用于连接第一整流桥臂,第二绕组的另一端用于连接第二整流桥臂。控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值,调整第一整流桥臂或第二整流桥臂的开关管在下一开关周期的驱动信号的占空比。
Description
相关申请的交叉引用
本申请要求在2023年06月05日提交中国国家知识产权局、申请号为202310661298.X申请名称为“功率模块和充电设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及新能源技术领域,尤其涉及一种功率模块和充电设备。
大功率交流-直流(AC-DC)功率模块一般采用交错并联功率因数校正(PFC,Power Factor Correction)电路实现大功率输出。为了实现PFC电路良好的均流特性,一般会在电路拓扑中加入自耦变压器。但是由于开关器件参数的差异性、开关驱动延迟、死区时间不同等原因,会使自耦变压器的伏秒数乘积超出磁芯的允许值,导致自耦变压器的磁芯饱和,进而会导致电路中的开关器件因自耦变压器的磁芯饱和而失效。
发明内容
本申请实施例提供一种功率模块和充电设备,可以动态调节自耦变压器中的励磁电流,从而解决自耦变压器的磁芯饱和的问题,以保护电路中的器件不因自耦变压器的磁芯饱和而失效。
第一方面,本申请实施例提供一种AC-DC功率模块,该AC-DC功率模块包括N组交错并联PFC电路和控制器。其中,每组交错并联PFC电路用于将交流电源的其中一相交流电转化为直流电并输出至直流母线,1≤N≤3,且N为整数。每组交错并联PFC电路包括PFC电感、自耦变压器、第一整流桥臂和第二整流桥臂。自耦变压器包括相互耦合的第一绕组和第二绕组。PFC电感的一端用于接收交流电,PFC电感的另一端用于连接第一绕组的一端和第二绕组的一端。第一绕组的另一端用于连接第一整流桥臂,第二绕组的另一端用于连接第二整流桥臂。
控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值,调整第一整流桥臂或第二整流桥臂的开关管在下一开关周期的驱动信号的占空比。其中,开关管的工作频率大于所述交流电的频率。
其中,该预设值为使自耦变压器的磁芯达到磁饱和时的电流强度,也即为自耦变压器的饱和电流。
当N=1时,AC-DC功率模块包括一组交错并联PFC电路,PFC电感的一端用于接收单相交流电。
当N=2时,AC-DC功率模块包括两组交错并联PFC电路,每组交错并联PFC电路的PFC电感的一端用于接收三相交流电的其中一相交流电,且两组交错并联PFC电路的PFC电感用于接收不同相的交流电。
当N=3时,AC-DC功率模块包括三组交错并联PFC电路,每组交错并联PFC电路的PFC电感的一端用于接收三相交流电的其中一相交流电,且三组交错并联PFC电路的PFC电感用
于接收不同相的交流电。
基于这种设置方式,不仅可以解决因自耦变压器的磁芯饱和而导致电路中的开关器件受到损坏的问题,而且只有在两个绕组的电流的差值达到预设值时,控制器才开始调整开关管的驱动信号的占空比,从而可以简化控制器的控制策略。
在一种可能的实施方式中,控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组电流的绝对值大于第二绕组电流的绝对值,降低第一整流桥臂的开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第一绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组电流的绝对值大于第二绕组电流的绝对值,控制器会继续降低第一整流桥臂的开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第二绕组电流的绝对值大于第一绕组电流的绝对值,降低第二整流桥臂的开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第二绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第二绕组电流的绝对值大于第一绕组电流的绝对值,控制器会继续降低第二整流桥臂的开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,每组交错并联PFC电路包括母线电容,母线电容包括串联的正母线电容和负母线电容。正母线电容的一端连接正直流母线,负母线电容的另一端连接负直流母线。
第一整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第一开关管和第二开关管。其中,第一二极管、第二二极管、第三二极管和第四二极管相互串联,第一二极管的阴极连接正直流母线,第四二极管的阳极连接负直流母线。第一开关管的一端连接第一二极管和第二二极管的串联的中点,第一开关管的另一端连接母线电容的中点。第二开关管的一端连接第三二极管和第四二极管的串联的中点,第二开关管的另一端连接母线电容的中点。
第二整流桥臂包括第五二极管、第六二极管、第七二极管、第八二极管、第三开关管和第四开关管。其中,第五二极管、第六二极管、第七二极管、第八二极管相互串联,第五二极管的阴极连接正直流母线,第八二极管的阳极连接负直流母线。第三开关管的一端连接第五二极管和第六二极管的串联的中点,第三开关管的另一端连接所述母线电容的中点。第四开关管的一端连接第七二极管和第八二极管的的串联的中点,第四开关管的另一端连接母线电容的中点。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于正半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,降低第一开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第一绕组的励磁电流。若在下一开关周期内,第一绕组的
电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,控制器会继续降低第一开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于正半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,降低第三开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第二绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,控制器会继续降低第三开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于负半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,降低第二开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第一绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,控制器会继续降低第二开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于负半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,降低第四开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第二绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,控制器会继续降低第四开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,第一整流桥臂包括第一二极管、第二二极管和第一双向开关管。其中,第一二极管和第二二极管串联,第一二极管的阴极连接正直流母线,第二二极管的阳极连接负直流母线。第一双向开关管的一端连接第一二极管的和第二二极管的串联的中点,第一双向开关管的另一端连接母线电容的中点。第二整流桥臂包括第三二极管、第四二极管和第二双向开关管。其中,第三二极管和第四二极管串联,第三二极管的阴极连接正直流母线,第四二极管的阳极连接负直流母线。第二双向开关管的一端连接第三二极管和第四二极管的串联的中点,第二双向开关管的另一端连接母线电容的中点。
在一种可能的实施方式中,控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,
降低第一双向开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第一绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,控制器会继续降低第一双向开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,控制器用于:响应于第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,降低第二双向开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,可以减小第二绕组的励磁电流。若在下一开关周期内,第一绕组的电流和第二绕组的电流的差值的绝对值依旧大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,控制器会继续降低第二双向开关管在下一开关周期的驱动信号的占空比,直至第一绕组的电流和第二绕组的电流的差值的绝对值小于预设值。这样可以使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
在一种可能的实施方式中,第一整流桥臂包括串联的第一开关管和第二开关管,第一开关管的一端用于连接正直流母线,第二开关管的一端用于连接负直流母线。第二整流桥臂包括串联的第三开关管和第四开关管,第三开关管的一端用于连接正直流母线,第四开关管的一端用于连接负直流母线。第一绕组的另一端用于连接第一开关管和第二开关管的串联的中点,第二绕组的另一端用于连接第三开关管和第四开关管的串联的中点。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于正半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,降低第二开关管在下一开关周期的驱动信号的占空比。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于正半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,降低第四开关管在下一开关周期的驱动信号的占空比。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于负半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值大于第二绕组的电流的绝对值,降低第一开关管在下一开关周期的驱动信号的占空比。
在一种可能的实施方式中,控制器用于:响应于交流电的相电压处于负半周期、第一绕组的电流和第二绕组的电流的差值的绝对值大于或等于预设值、且第一绕组的电流的绝对值小于第二绕组的电流的绝对值,降低第三开关管在下一开关周期的驱动信号的占空比。
基于这种设置方式,控制器可以实时调整自耦变压器的第一绕组的励磁电流和第二绕组的励磁电流,使自耦变压器的磁芯不饱和,从而使电路中的开关器件不会因自耦变压器的磁芯饱和而发生损坏,提高了电路的工作可靠性。
第二方面,本申请实施例提供一种充电设备。充电设备包括至少一个如第一方面及第一方面可能的实施方式中任一种提供的AC-DC功率模块、功率分配单元和至少一个充电接口。其中,AC-DC功率模块的输入端用于接收交流电,AC-DC功率模块的输出端连接功率分配单元的输入端,功率分配单元的输出端连接充电接口的输入端,充电接口的输出端用于输出直流电。
第三方面,本申请实施例提供一种充电设备。充电设备包括至少一个如第一方面及第一方面可能的实施方式中任一种提供的AC-DC功率模块、至少一个DC-DC功率模块、功率分配单元和至少一个充电接口。其中,AC-DC功率模块的输入端用于接收交流电,AC-DC功率模块的输出端连接充电设备的直流母线,DC-DC功率模块的输入端连接充电设备的直流母线,DC-DC功率模块的输出端连接功率分配单元的输入端,功率分配单元的输出端连接充电接口的输入端,充电接口的输出端用于输出直流电。
图1是本申请实施例提供的一种充电桩的示意图;
图2是本申请实施例提供的一种AC-DC功率模块的电路连接示意图;
图3是图2中的交错并联PFC电路的一种连接示意图;
图4是图3所示的电路在一个开关周期内的工作状态表;
图5是图3所示的电路在一种工作状态下的等效电路示意图;
图6是图3所示的电路在另一种工作状态下的等效电路示意图;
图7是图3所示的电路在又一种工作状态下的等效电路示意图;
图8是图3所示的电路在又一种工作状态下的等效电路示意图;
图9是图2中的交错并联PFC电路的另一种连接示意图;
图10是图2中的交错并联PFC电路的又一种连接示意图;
图11是图2中的交错并联PFC电路的又一种连接示意图;
图12是本申请实施例提供的一种充电设备的示意图;
图13是本申请实施例提供的另一种充电设备的示意图。
为了方便理解,首先对本申请实施例所涉及的术语进行解释。
连接:应做广义理解,例如,A与B连接,可以是A与B直接相连,也可以是A与B通过中间媒介间接相连。
说明中“第一”、“第二”等用语仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
随着新能源技术的发展,电动汽车的数量也在不断增加,电动汽车充电速度慢一直是用户的痛点之一。为了解决这一问题,通常通过增加充电桩的输出功率,从而减小电动汽车的充电时长。如图1所示,为本申请实施例提供的一种充电桩的示意图,充电桩10包括多个AC-DC功率模块、功率分配单元和充电接口。其中,AC-DC功率模块用于将交流电转化为直流电;功率分配单元用于使多个AC-DC功率模块中的一个功率模块连接至其中一个充电接口,或使多个AC-DC功率模块中的至少两个功率模块并联或串联后连接至其中一个充电接口;充电接口用于连接电动汽车,以给电动车辆充电。
为了增加电动汽车的充电功率,充电桩10内部的AC-DC功率模块通过采用交错并联PFC电路实现了大功率输出。
如图2所示,为本申请实施例提供的一种AC-DC功率模块的电路连接示意图,AC-DC功率模块20包括N组交错并联PFC电路201,其中,1≤N≤3,且N为整数。每组交错并联PFC电路201包括PFC电感205、自耦变压器207、第一整流桥臂209和第二整流桥臂211。
自耦变压器207包括第一绕组207-1和第二绕组207-2。PFC电感205的一端用于接收交流电,PFC电感的另一端用于连接第一绕组207-1的一端和第二绕组207-2的一端。第一绕组207-1的另一端连接第一整流桥臂209,第二绕组207-2的另一端连接第二整流桥臂211。
其中,第一绕组207-1和第二绕组207-2的匝数相等,且绕组缠绕于同一磁芯上。第一整流桥臂209和第二整流桥臂211的电路拓扑结构相同,第一整流桥臂209的驱动信号和第二整流桥臂211的驱动信号之间相移一定的角度。基于这样的设置方式,可以使连接于同一相交流电的两个整流桥臂的输出电压纹波相互抵消,以减小电压纹波对电路的影响。
由于第一整流桥臂209中的开关器件和第二整流桥臂211中的开关器件的参数差异性、开关驱动延迟、死区时间不同等原因,会使自耦变压器207的伏秒数乘积超出磁芯的允许值,导致自耦变压器207的磁芯饱和,进而会导致电路中的开关器件因自耦变压器的磁芯饱和而失效。
基于此,本申请实施例提供一种AC-DC功率模块,该功率模块包括如图2所示的N组交错并联PFC电路和控制器。控制器可以基于流过自耦变压器的第一绕组的电流和第二绕组的电流的差值,判断自耦变压器的磁芯是否趋于饱和。若趋于饱和,控制器调整两个整流桥臂中开关管的导通时间,以减小自耦变压器中的励磁电流,从而解决自耦变压器的磁芯饱和的问题,以保护电路中的器件不因自耦变压器的磁芯饱和而失效。
上述图2以AC-DC功率模块包括3组交错并联PFC电路为示例,说明了电路的连接方式。三组交错并联PFC电路连接三相交流电源,从而实现大电流输出。实际应用时,可以根据负载的功率需求,设置交错并联PFC电路的数量。若负载所需的功率较小,则AC-DC功率模块20的输入端仅需连接单相交流电源即可,也即为,AC-DC功率模块20仅需包括1组交错并联PFC电路即可。若负载所需的功率较大,则AC-DC功率模块20的输入端连接三相交流电源,也即为,AC-DC功率模块20包括3组交错并联PFC电路,每组交错并联PFC电路连接三相交流电源的其中一相交流电源,且不同组交错并联PFC电路连接不同相的交流电源。本申请对交错并联PFC电路的数量不做限制,根据实际负载需求设置即可。
下面,以具体的电路为例,对本申请实施例提供的AC-DC功率模块的工作原理进行详细地说明。
如图3所示,为图2中的交错并联PFC电路的一种连接示意图。其中,交错并联PFC电路301包括PFC电感La、自耦变压器Ta、第一整流桥臂Ra1、第二整流桥臂Ra2和母线电容。母线电容包括串联的正母线电容C1和负母线电容C2,正母线电容C1的一端连接正直流母线Bus+,负母线电容的一端连接负直流母线Bus-。
第一整流桥臂Ra1包括第一二极管Da1、第二二极管Da2、第三二极管Da3、第四二极管Da4、第一开关管Sa1和第二开关管Sa2。其中,第一二极管Da1、第二二极管Da2、第三二极管Da3、第四二极管Da4串联,第一二极管Da1的阴极连接正直流母线,第四二极管Da4的阳极连接负直流母线。第一开关管Sa1的一端连接第一二极管Da1和第二二极管Da2的串联的中点,第一开关管Sa1的另一端连接母线电容C1和C2的中点O。第二开关管Sa2的一端连接第三二极管Da3和第四二极管Da4的串联的中点,第二开关管Sa2的另一端连接母线电容C1和C2的中点O。
同理,第二整流桥臂Ra2包括第五二极管Da5、第六二极管Da6、第七二极管Da7、第八二极管Da8、第三开关管Sa3和第四开关管Sa4。其中,第五二极管Da5、第六二极管Da6、第七二极管Da7、第八二极管Da8串联,第五二极管Da5的阴极连接正直流母线,第八二极管Da8的阳极连接负直流母线。第三开关管Sa3的一端连接第五二极管Da5和第六二极管
Da6的串联的中点,第三开关管Sa3的另一端连接母线电容C1和C2的中点O。第四开关管Sa4的一端连接第七二极管Da7和第八二极管Da8的串联的中点,第四开关管Sa4的另一端连接母线电容C1和C2的中点O。
需要说明的是,母线电容C1和C2的中点O是指相连接的两个母线电容之间的任意一点。两个串联的二极管的中点是指相连接的两个二极管之间的任意一点。
自耦变压器包括第一绕组Ta1和第二绕组Ta2,第一绕组Ta1的匝数和第二绕组Ta2的匝数相等。PFC电感La的一端用于接收交流电,PFC电感La的另一端连接第一绕组Ta1的一端和第二绕组Ta2的一端。第一绕组Ta1的另一端连接第二二极管Da2和第三二极管Da3的串联的中点,第二绕组Ta2的另一端连接第六二极管Da6和第七二极管Da7的串联的中点。
请参阅图4,为交流电源Ua输出的交流电的相电压处于正半周期时,交错并联PFC电路301在一个开关周期T内的工作状态表。其中,开关周期T为电路中开关管的驱动信号的周期。交错并联PFC电路301有四种工作状态:在第一时间段T1内,Sa1导通,Sa2关断;在第二时间段T2内,Sa1导通,Sa2导通;在第三时间段T3内,Sa1关断,Sa2导通;在第四时间段T4内,Sa1关断,Sa2关断。
交错并联PFC电路301在不同开关组合下的等效电路图如图5至图8所示。下面在对电路进行分析时,均以交流电源Ua输出的交流电的相电压处于正半周期时,电流在交错并联PFC电路的流动方向为正方向。也即为,当交流电源Ua的相电压处于正半周期时,电流传感器303检测的流过第一绕组Ta1的电流Ia1大于或等于0,电流传感器304检测的流过第二绕组Ta2的电流Ia2大于或等于0;当交流电源Ua输出的交流电的相电压处于负半周期时,电流传感器303检测的Ia1小于或等于0,电流传感器304检测的Ia2小于或等于0。
图5为第一开关管Sa1和第三开关管Sa3同时导通时的等效电路示意图。当第一开关管Sa1和第三开关管Sa3同时导通时,第一整流桥臂中点的电平Va1=0,第二整流桥臂中点的电压Va2=0V,桥臂端口的电压Vin=0.5*(Va1+Va2)=0V。
图6为第一开关管Sa1导通,第三开关管Sa3关断时的等效电路示意图。在此种情况下,第一整流器桥臂中点的电压Va1=0V,第二整流器桥臂中点的电压Va2=VBus,桥臂端口的电压Vin=0.5*(Va1+Va2)=0.5*VBus。第一绕组Ta1两端的电压VTa1=Vin-Va1=0.5*Vbus,第二绕组Ta2两端的电压VTa2=Vin-Va2=-0.5*Vbus。
图7为第一开关管Sa1关断,第三开关管Sa3导通时的等效电路示意图。在此种情况下,第一整流器桥臂中点的电压Va1=VBus,第二整流器桥臂中点的电压Va2=0V,桥臂端口的电压Vin=0.5*(Va1+Va2)=0.5*VBus。第二绕组Ta2两端的电压VTa2=Vin-Va2=0.5*Vbus,第一绕组Ta1两端的电压VTa1=Vin-Va1=-0.5*Vbus。
图8为第一开关管Sa1和第三开关管Sa3均关断时的等效电路示意图。在此种情况下,第一整流器桥臂中点的电压Va1=VBus,第二整流器桥臂中点的电压Va2=VBus,桥臂端口的电压Vin=0.5*(Va1+Va2)=VBus。第一绕组Ta1两端的电压VTa1=Vin-Va1=0V,第一绕组Ta1两端的电压VTa1=Vin-Va1=0V。
由上述分析可知,当交流电源Ua输出的交流电的相电压处于正半周期时,在第一开关管Sa1和第三开关管Sa3不同时导通的情况下,第一绕组Ta1和第二绕组Ta2两端会产生压差。以第一绕组Ta1为例,当第一开关管Sa1导通,第三开关管Sa3关断时,VTa1=Vin-Va1=0.5*Vbus,当第一开关管Sa1关断,第三开关管Sa3导通时,VTa1=Vin-Va1=-0.5*Vbus。
根据伏秒平衡原理,在一个开关周期T内,当电路工作在稳态时,自耦变压器Ta的伏秒积平衡,也即为,0.5*Vbus*T1-0.5*Vbus*T3=0。若在一个开关周期T内,Ta1的伏秒积不平
衡,Ta1中的励磁电流会不断累加,最终会导致自耦变压器Ta的磁芯饱和。由电感的电压公式U=L*di/dt可知,U*dt=L*di,因此,在一个开关周期内,调整励磁电流的大小,即可等效调节Ta1的伏秒积,进而实现Ta1的伏秒积平衡。
同理,若在一个开关周期T内,Ta2两端的电压积分在不为0,Ta2中的励磁电流会不断增加,最终会导致自耦变压器Ta的磁芯饱和。
因此,当交流电源Ua输出的交流电的相电压处于正半周期时,调整第一开关管Sa1和第三开关管Sa3的驱动信号的占空比,即可调整自耦变压器Ta的励磁电流的大小,从而使自耦变压器不工作在饱和状态下。
当Ia1>0、Ia2>0且Ia1-Ia2>0时,说明第一开关管Sa1的累计导通时间大于第三开关管Sa3的累计导通时间;当Ia1>0、Ia2>0且Ia1-Ia2<0时,说明第三开关管Sa3的累计导通时间大于第一开关管Sa1的累计导通时间。
当交流电源Ua输出的交流电的相电压处于负半周期时,第二开关管Sa2和第四开关管Sa4交替导通,电路的工作原理与上述分析相同,这里不再赘述。同理,调整第二开关管Sa2和第四开关管Sa4的驱动信号的占空比,即可调整自耦变压器Ta的励磁电流的大小,从而使自耦变压器不工作在饱和状态下。
当Ia1<0、Ia2<0且Ia1-Ia2>0时,说明第四开关管Sa4的累计导通时间大于第二开关管Sa2的累计导通时间;当Ia1<0、Ia2<0且Ia1-Ia2<0时,说明第二开关管Sa2的累计导通时间大于第四开关管Sa4的累计导通时间。
由上述分析可知,基于两个绕组的电流的差值,即可判断两个整流桥臂中开关管的导通时间的差异,从而可以通过调整下一开关周期内开关管的驱动信号的占空比,减小自耦变压器Ta的励磁电流,解决自耦变压器Ta的磁芯饱和的问题。
请参阅图3,第一电流检测模块303用于采集第一绕组Ta1的电流Ia1,第二电流检测模块304用于采集流过第二绕组Ta2的电流Ia2。控制器302用于获取电流Ia1和Ia2,基于两个绕组的电流的差值,判断是否需要调整下一个开关周期内的开关管的占空比。
需要说明的是,图3中所示的电流检测模块的位置仅仅示例,电流检测模块可以位于两条自耦支路的任意位置,只要能够检测流过第一绕组Ta1的电流Ia1和流过第二绕组Ta2的的电流Ia2即可。
在一种可能的实施方式中,响应于两个绕组电流的差值的绝对值小于预设值Imax,控制器302不调整下一个开关周期内的开关管的驱动信号的占空比;响应于两个绕组的电流的差值的绝对值大于或等于预设值Imax,控制器302调整下一个开关周期内的开关管的驱动信号的占空比,以减小两个绕组的电流的差值。
其中,该预设值为使自耦变压器Ta的磁芯达到磁饱和时的电流强度,也即为自耦变压器的饱和电流。
基于这种实施方式,不仅可以解决自耦变压器Ta的磁芯饱和的问题,而且只有在两个绕组的电流的差值达到预设值时,控制器302才开始调整开关管的驱动信号的占空比,可以简化控制器的控制策略。
在一种可能的实施方式中,响应于Ia1>0、Ia2>0且Ia1-Ia2≥Imax,控制器302用于在下一个开关周期内,降低第一开关管Sa1的驱动信号的占空比。
Ia1>0且Ia2>0说明交流电的相电压处于正半周期,也即为,响应于交流源Ua的相电压处于正半周期且|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器302用于在下一个开关周期内,降低第一开关管Sa1的驱动信号的占空比。
其中,|Ia1-Ia2|≥Imax代表Ia1-Ia2的差值的绝对值,|Ia1|代表Ia1的绝对值,|Ia2|代表Ia2的绝对值。
可以理解的是,通过这种调整方式可以减小第一绕组Ta1的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器302会继续降低第一开关管Sa1的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因自耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于Ia1>0、Ia2>0且Ia2-Ia1≥Imax,控制器302用于在下一个开关周期内,降低第三开关管Sa3的驱动信号的占空比。
也即为,响应于交流电的相电压处于正半周期、|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器302用于在下一个开关周期内,降低第三开关管Sa3的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第二绕组Ta2的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器302会继续降低第三开关管Sa3的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于Ia1<0、Ia2<0且Ia1-Ia2≥Imax,控制器302用于在下一个开关周期内,降低第四开关管Sa4的驱动信号的占空比。
也即为,响应于交流电的相电压处于负半周期、|Ia1-Ia2|≥Imax且|Ia1|<|Ia2|,控制器302用于在下一个开关周期内,降低第四开关管Sa4的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第二绕组Ta2的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器302会继续降低第四开关管Sa4的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于Ia1<0、Ia2<0且Ia2-Ia1≥Imax,控制器302用于在下一个开关周期内,降低第二开关管Sa2的驱动信号的占空比。
也即为,响应于交流电的相电压处于负半周期、|Ia1-Ia2|≥Imax且|Ia2|<|Ia1|,控制器302用于在下一个开关周期内,降低第二开关管Sa2的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第一绕组Ta1的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器302会继续降低第二开关管Sa2的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
需要说明的是,第一开关管Sa1、第二开关管Sa2、第三开关管Sa3和第四开关管Sa4的工作频率大于交流电的工作频率。
在一种可能的实施方式中,如图9所示,为本申请实施例提供的另一种交错并联PFC电路的连接示意图。图9中所示的电路的工作原理与图上述分析相同,这里不再赘述。与图3不同的是,第三电流检测模块用于检测流入交错并联PFC电路的总电流Iin,第四电流检测模块用于检测流过第一绕组Ta1的电流Ia1,则流过第二绕组Ta2的电流Ia2=Iin-Ia1。又或者,第三电流检测模块用于检测流入交错并联PFC电路的总电流Iin,第四电流检测模块用于检测流过第二绕组Ta2的电流Ia2,则流过第一绕组Ta1的电流Ia1=Iin-Ia2。
如图10所示,为本申请实施例提供的又一种交错并联PFC电路的连接示意图。交错并联PFC电路1001包括PFC电感La、自耦变压器Ta、第一整流桥臂、第二整流桥臂和母线电容。母线电容包括串联的正母线电容C1和负母线电容C2,正母线电容C1的一端连接正直
流母线Bus+,正母线电容C1的另一端连接母线电容的中点O,负母线电容C2的一端连接所述母线电容的中点O,负母线电容的另一端连接负直流母线Bus-。
第一整流桥臂包括第一二极管Da1、第二二极管Da2和第一双向开关管Sa1。其中,第一二极管Da1和第二二极管Da2串联,第一二极管Da1的阴极连接正直流母线,第二二极管Da2的阳极连接负直流母线。第一双向开关管Sa1的一端连接第一二极管Da1和第二二极管Da2的串联的中点,第一双向开关管Sa1的另一端连接母线电容C1和C2的中点O。
同理,第二整流桥臂包括第三二极管Da3、第四二极管Da4和第二双向开关管Sa2。其中,第三二极管Da3和第四二极管Da4串联,第三二极管Da3的阴极连接正直流母线,第四二极管Da4的阳极连接负直流母线。第二双向开关管Sa2的一端连接第三二极管Da3和第四二极管Da4的串联的中点,第二双向开关管Sa2的另一端连接母线电容C1和C2的中点O。
自耦变压器包括第一绕组Ta1和第二绕组Ta2,第一绕组Ta1的匝数和第二绕组Ta2的匝数相等。PFC电感La的一端用于接收交流电,PFC电感La的另一端连接第一绕组Ta1的一端和第二绕组Ta2的一端。第一绕组Ta1的另一端连接第一二极管Da1和第二二极管Da2的串联的中点,第二绕组Ta2的另一端连接第三二极管Da3和第四二极管Da4的串联的中点。
其中,第一双向开关管Sa1包括两个开关管,且两个开关管的驱动时序相同。第二双向开关管Sa2包括两个开关管,且两个开关管的驱动时序相同。
该电路的工作原理与上述交错并联PFC电路的工作原理相同。当第一双向开关管Sa1和第二双向开关管Sa2不同时导通时,自耦变压器Ta会产生励磁电流。
在一种可能的实施方式中,响应于Ia1>0、Ia2>0且Ia1-Ia2≥Imax,控制器1003用于在下一个开关周期内,降低第一双向开关管Sa1的驱动信号的占空比。
也即为,响应于交流电的相电压处于正半周期、|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1003用于在下一个开关周期内,降低第一双向开关管Sa1的驱动信号的占空比。
在一种可能的实施方式中,响应于Ia1<0、Ia2<0且Ia2-Ia1≥Imax,控制器1003用于在下一个开关周期内,降低第一双向开关管Sa1的驱动信号的占空比。
也即为,响应于交流电的相电压处于负半周期、|Ia2-Ia1|≥Imax且|Ia2|<|Ia1|,控制器1003用于在下一个开关周期内,降低第一双向开关管Sa1的驱动信号的占空比。
综上,响应于|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1003用于在下一个开关周期内,降低第一双向开关管Sa1的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第一绕组Ta1的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1003会继续降低第一双向开关管Sa1的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于Ia1>0、Ia2>0且Ia2-Ia1≥Imax,控制器1003用于在下一个开关周期内,降低第二双向开关管Sa2的驱动信号的占空比。
也即为,响应于交流电的相电压处于正半周期、|Ia2-Ia1|≥Imax且|Ia2|>|Ia1|,控制器1003用于在下一个开关周期内,降低第二双向开关管Sa2的驱动信号的占空比。
在一种可能的实施方式中,响应于Ia1<0、Ia2<0且Ia1-Ia2≥Imax,控制器1003用于在下一个开关周期内,降低第二双向开关管Sa2的驱动信号的占空比。
响应于交流电的相电压处于负半周期、|Ia1-Ia2|≥Imax且|Ia1|<|Ia2|,控制器302用于在下一个开关周期内,降低第二双向开关管Sa2的驱动信号的占空比。
综上,响应于|Ia1-Ia2|≥Imax且|Ia1|<|Ia2|,控制器302用于在下一个开关周期内,降低
第二双向开关管Sa2的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第二绕组Ta2的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|<|Ia2|,控制器1003会继续降低第二双向开关管Sa2的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因自耦变压器Ta的磁芯饱和而发生损坏。
需要说明的是,第一双向开关管Sa1和第二双向开关管Sa2工作频率大于交流源的工作频率。
如图11所示,为本申请实施例提供的又一种交错并联PFC电路的示意图。交错并联PFC电路1101包括PFC电感La、自耦变压器Ta、第一整流桥臂Ra1、第二整流桥臂Ra1和母线电容。母线电容包括串联的正母线电容C1和负母线电容C2,正母线电容C1的一端连接正直流母线Bus+,负母线电容的一端连接负直流母线Bus-。
第一整流桥臂Ra1包括串联的第一开关管Sa1和第二开关管Sa2。第一开关管Sa1的一端用于连接正直流母线,第二开关管Sa2的一端用于连接负直流母线。
第二整流桥臂Ra2包括串联的第三开关管Sa3和第四开关管Sa4。第三开关管Sa3的一端用于连接正直流母线,第四开关管Sa4的一端用于连接负直流母线。
自耦变压器包括第一绕组Ta1和第二绕组Ta2,第一绕组Ta1的匝数和第二绕组Ta2的匝数相等。PFC电感La的一端用于接收交流电,PFC电感La的另一端连接第一绕组Ta1的一端和第二绕组Ta2的一端。第一绕组Ta1的另一端连接第一开关管Sa1和第二开关管Sa2的串联的中点,第二绕组Ta2的另一端连接第三开关管Sa3和第四开关管Sa4的串联的中点。
其中,开关管Sa1、Sa2、Sa3和Sa4的工作频率大于交流电Ua的频率。
该电路的工作原理与上述交错并联PFC电路的工作原理相同。当第一开关管Sa1和第三开关管Sa3不同时导通时,自耦变压器Ta会产生励磁电流;或者,当第二开关管Sa2和第四开关管Sa4不同时导通时,自耦变压器Ta会产生励磁电流。
在一种可能的实施方式中,响应于交流源Ua的相电压处于正半周期且|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1103用于在下一个开关周期内,降低第二开关管Sa2的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第一绕组Ta1的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1103会继续降低第二开关管Sa2的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于交流电的相电压处于正半周期、|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器1103用于在下一个开关周期内,降低第四开关管Sa4的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第二绕组Ta2的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器1103会继续降低第四开关管Sa4的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于交流电的相电压处于负半周期、|Ia1-Ia2|≥Imax且|Ia1|<|Ia2|,控制器1103用于在下一个开关周期内,降低第三开关管Sa3的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第二绕组Ta2的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia2|>|Ia1|,控制器1103会继续降低第三开关管Sa3的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
在一种可能的实施方式中,响应于交流电的相电压处于负半周期、|Ia1-Ia2|≥Imax且|Ia2|<|Ia1|,控制器1103用于在下一个开关周期内,降低第一开关管Sa1的驱动信号的占空比。
可以理解的是,通过这种调整方式可以减小第一绕组Ta1的励磁电流。若在下一开关周期内,|Ia1-Ia2|≥Imax且|Ia1|>|Ia2|,控制器1103会继续降低第一开关管Sa1的驱动信号的占空比,直至|Ia1-Ia2|<Imax,以使自耦变压器Ta的磁芯不饱和,从而使电路中的电子器件不会因耦变压器Ta的磁芯饱和而发生损坏。
基于此,本申请实施例还提供一种充电设备,如图12所示,充电设备120包括至少一个上述的AC-DC功率模块1201、功率分配单元1203和至少一个充电接口1205。AC-DC功率模块1201的输入端用于接收交流电,AC-DC功率模块1201的输出端连接功率分配单元1203的输入端,功率分配单元1203的输出端用于连接充电接口1205的输入端,充电接口1205的输出端用于输出直流电。
其中,AC-DC模块1201用于将交流电转化为直流电,功率分配单元1203用于将AC-DC功率模块1201输出的直流电分配至其中一个充电接口1205,从而实现为待充电设备充电。
如图13所述,为本申请实施例提供的又一种充电设备。充电设备130包括至少一个上述的AC-DC功率模块1301、至少一个DC-DC功率模块1303、功率分配单元1305和至少一个充电接口1307。AC-DC功率模块1301的输入端用于接收交流电,AC-DC功率模块1301的输出端连接充电设备的直流母线,DC-DC功率模块1303的输入端连接充电设备的直流母线,DC-DC功率模块1303的输出端连接功率分配单元1305的输入端,功率分配单元1305的输出端连接充电接口1307的输入端,充电接口1307的输出端用于输出直流电。
需要说明的是,本申请实施例提供的AC-DC功率模块不仅可以应用于上述的充电设备,还可以应用于整流器或者服务器电源等需要整流的设备中,本申请对此不做限制。
以上所述,仅为本发明的具体实现方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种AC-DC功率模块,其特征在于,所述AC-DC功率模块包括控制器和N组交错并联PFC电路,其中,每组所述交错并联PFC电路用于将交流电源的其中一相交流电转化为直流电并输出至直流母线,其中,1≤N≤3,且N为整数;每组所述交错并联PFC电路包括PFC电感、自耦变压器、第一整流桥臂和第二整流桥臂,所述自耦变压器包括第一绕组和第二绕组,所述PFC电感的一端用于接收所述交流电,所述PFC电感的另一端用于连接所述第一绕组的一端和所述第二绕组的一端,所述第一绕组的另一端用于连接所述第一整流桥臂,所述第二绕组的另一端用于连接所述第二整流桥臂;所述控制器用于:响应于所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于预设值、且所述第一绕组电流的绝对值大于所述第二绕组电流的绝对值,降低所述第一整流桥臂中工作频率大于所述交流电的频率的开关管在下一开关周期的驱动信号的占空比;或者响应于所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于预设值、且所述第二绕组电流的绝对值大于所述第一绕组电流的绝对值,降低所述第二整流桥臂中工作频率大于所述交流电的频率的开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求1所述的功率模块,其特征在于,所述N组交错并联PFC电路包括母线电容,所述母线电容包括串联的正母线电容和负母线电容,所述正母线电容的一端连接正直流母线,所述负母线电容的另一端连接负直流母线。
- 根据权利要求2所述的功率模块,其特征在于,所述第一整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第一开关管和第二开关管,其中,所述第一二极管、所述第二二极管、所述第三二极管和所述第四二极管串联,所述第一二极管的阴极连接所述正直流母线,所述第四二极管的阳极连接所述负直流母线,所述第一开关管的一端连接,所述第一开关管的另一端连接所述母线电容的中点,所述第二开关管的一端连接所述第三二极管和所述第四二极管的串联的中点,所述第二开关管的另一端连接所述母线电容的中点;所述第二整流桥臂包括第五二极管、第六二极管、第七二极管、第八二极管、第三开关管和第四开关管,其中,所述第五二极管、所述第六二极管、所述第七二极管、所述第八二极管串联,所述第五二极管的阴极连接所述正直流母线,所述第八二极管的阳极连接所述负直流母线,所述第三开关管的一端连接所述第五二极管和所述第六二极管的串联的中点,所述第三开关管的另一端连接所述母线电容的中点,所述第四开关管的一端连接所述第七二极管和所述第八二极管的串联的中点,所述第四开关管的另一端连接所述母线电容的中点。
- 根据权利要求3所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于正半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值大于所述第二绕组的电流的绝对值,降低所述第一开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求3所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于正半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值小于所述第二绕组的电流的绝对值,降低所述第三开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求3所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于负半周期、所述第一绕组的电流和所述第二绕组的电流 的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值大于所述第二绕组的电流的绝对值,降低所述第二开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求3所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于负半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值小于所述第二绕组的电流的绝对值,降低所述第四开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求1所述的功率模块,其特征在于,所述第一整流桥臂包括串联的第一开关管和第二开关管,所述第一开关管的一端用于连接正直流母线,所述第二开关管的一端用于连接负直流母线;所述第二整流桥臂包括串联的第三开关管和第四开关管;所述第三开关管的一端用于连接正直流母线,所述第四开关管的一端用于连接负直流母线;所述第一绕组的另一端用于连接所述第一开关管和所述第二开关管的串联的中点,所述第二绕组的另一端用于连接所述第三开关管和所述第四开关管的串联的中点。
- 根据权利要求8所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于正半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值大于所述第二绕组的电流的绝对值,降低所述第二开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求8所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于正半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值小于所述第二绕组的电流的绝对值,降低所述第四开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求8所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于负半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值大于所述第二绕组的电流的绝对值,降低所述第一开关管在下一开关周期的驱动信号的占空比。
- 根据权利要求8所述的功率模块,其特征在于,所述控制器用于:响应于所述交流电的相电压处于负半周期、所述第一绕组的电流和所述第二绕组的电流的差值的绝对值大于或等于所述预设值、且所述第一绕组的电流的绝对值小于所述第二绕组的电流的绝对值,降低所述第三开关管在下一开关周期的驱动信号的占空比。
- 一种充电设备,其特征在于,所述充电设备包括如权利要求1-12任一所述的AC-DC功率模块、至少一个DC-DC功率模块、功率分配单元和至少一个充电接口,其中,所述AC-DC功率模块的输入端用于接收交流电,所述AC-DC功率模块的输出端连接所述充电设备的直流母线,所述DC-DC功率模块的输入端连接所述充电设备的直流母线,所述DC-DC功率模块的输出端连接所述功率分配单元的输入端,所述功率分配单元的输出端连接所述充电接口的输入端,所述充电接口的输出端用于输出直流电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310661298.X | 2023-06-05 | ||
CN202310661298.XA CN116800080A (zh) | 2023-06-05 | 2023-06-05 | 功率模块和充电设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024250678A1 true WO2024250678A1 (zh) | 2024-12-12 |
Family
ID=88047378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/071412 WO2024250678A1 (zh) | 2023-06-05 | 2024-01-09 | 功率模块和充电设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116800080A (zh) |
WO (1) | WO2024250678A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116800080A (zh) * | 2023-06-05 | 2023-09-22 | 华为数字能源技术有限公司 | 功率模块和充电设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105322776A (zh) * | 2014-06-30 | 2016-02-10 | 艾默生网络能源有限公司 | 一种多态功率因数校正电路和电力变换设备 |
CN106936306A (zh) * | 2015-12-30 | 2017-07-07 | 华为技术有限公司 | 多态图腾pfc电路 |
CN113938030A (zh) * | 2021-09-26 | 2022-01-14 | 华为数字能源技术有限公司 | 一种ac/dc变换器以及充电装置 |
WO2022017323A1 (zh) * | 2020-07-22 | 2022-01-27 | 广东美的制冷设备有限公司 | 图腾柱pfc电路、控制方法、线路板及空调器 |
CN115411928A (zh) * | 2022-08-18 | 2022-11-29 | 华为数字能源技术有限公司 | 功率因数校正pfc电路、控制方法、电动车辆和充电桩 |
CN116800080A (zh) * | 2023-06-05 | 2023-09-22 | 华为数字能源技术有限公司 | 功率模块和充电设备 |
-
2023
- 2023-06-05 CN CN202310661298.XA patent/CN116800080A/zh active Pending
-
2024
- 2024-01-09 WO PCT/CN2024/071412 patent/WO2024250678A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105322776A (zh) * | 2014-06-30 | 2016-02-10 | 艾默生网络能源有限公司 | 一种多态功率因数校正电路和电力变换设备 |
CN106936306A (zh) * | 2015-12-30 | 2017-07-07 | 华为技术有限公司 | 多态图腾pfc电路 |
WO2022017323A1 (zh) * | 2020-07-22 | 2022-01-27 | 广东美的制冷设备有限公司 | 图腾柱pfc电路、控制方法、线路板及空调器 |
CN113938030A (zh) * | 2021-09-26 | 2022-01-14 | 华为数字能源技术有限公司 | 一种ac/dc变换器以及充电装置 |
CN115411928A (zh) * | 2022-08-18 | 2022-11-29 | 华为数字能源技术有限公司 | 功率因数校正pfc电路、控制方法、电动车辆和充电桩 |
CN116800080A (zh) * | 2023-06-05 | 2023-09-22 | 华为数字能源技术有限公司 | 功率模块和充电设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116800080A (zh) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011526478A (ja) | 共振型電力コンバータ | |
JP5790889B2 (ja) | スイッチング電源装置およびac−dc電力変換システム | |
CN112436741B (zh) | 基于双开关电力电子移相变压器的精简型多脉波整流器 | |
WO2019136567A1 (en) | Power converter controlled capacitor circuits and methods | |
WO2024250678A1 (zh) | 功率模块和充电设备 | |
JP3530359B2 (ja) | 3相力率改善形コンバータ | |
Lee et al. | Design of a GaN totem-pole PFC converter using DC-link voltage control strategy for data center applications | |
TWI794329B (zh) | Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器 | |
CN100433513C (zh) | 一种功率因数校正电路的控制方法 | |
WO2022179564A1 (zh) | 无桥降压功率因素校正电路 | |
KR100420964B1 (ko) | 역률보상 단일단 컨버터 | |
CN114024448B (zh) | 双向直流变换器及系统 | |
Gangavarapu et al. | Analysis and design of three phase single stage isolated Cuk based PFC converter | |
CN205160389U (zh) | 具有功率因数校正功能的三相ac-dc非接触供电系统 | |
Lokesh et al. | Bridgeless isolated CUK converter using BLDC motor | |
JP7389642B2 (ja) | スイッチング電源装置 | |
JPH08126322A (ja) | 直流電源装置 | |
Khodabandeh et al. | A single-phase ac to three-phase ac converter with a small link capacitor | |
KR20060023221A (ko) | 브릿지리스 역률개선회로 | |
CN109412452B (zh) | 一种直流交流电源变换电路 | |
Anand et al. | Power factor correction in isolated SEPIC converter fed SRM drive | |
CN115514241B (zh) | 一种双极输出的电流源型双有源桥变换器的控制方法 | |
CN109412451A (zh) | 一种电源变换装置 | |
CN111130355B (zh) | 一种实现全范围软开关的全桥直流变换器 | |
EP4398473A1 (en) | Isolated bi-directional dc conversion circuit and method for controlling the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24818217 Country of ref document: EP Kind code of ref document: A1 |