WO2024248179A1 - Electrode-type electromyogram sensor and manufacturing method therefor - Google Patents
Electrode-type electromyogram sensor and manufacturing method therefor Download PDFInfo
- Publication number
- WO2024248179A1 WO2024248179A1 PCT/KR2023/007443 KR2023007443W WO2024248179A1 WO 2024248179 A1 WO2024248179 A1 WO 2024248179A1 KR 2023007443 W KR2023007443 W KR 2023007443W WO 2024248179 A1 WO2024248179 A1 WO 2024248179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromyography sensor
- sensor electrode
- conductive
- manufacturing
- electromyography
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 239000011231 conductive filler Substances 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000002904 solvent Substances 0.000 claims abstract description 20
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 19
- 238000000059 patterning Methods 0.000 claims abstract description 15
- 238000004528 spin coating Methods 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 238000002567 electromyography Methods 0.000 claims description 120
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 11
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 230000006355 external stress Effects 0.000 claims description 8
- 239000004814 polyurethane Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229920002379 silicone rubber Polymers 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 238000010146 3D printing Methods 0.000 claims description 2
- 230000035699 permeability Effects 0.000 abstract description 9
- 230000001965 increasing effect Effects 0.000 abstract description 4
- 210000003491 skin Anatomy 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 239000013013 elastic material Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229920005839 ecoflex® Polymers 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000013464 silicone adhesive Substances 0.000 description 3
- 230000035900 sweating Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- 206010049565 Muscle fatigue Diseases 0.000 description 1
- 206010049816 Muscle tightness Diseases 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/263—Bioelectric electrodes therefor characterised by the electrode materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/263—Bioelectric electrodes therefor characterised by the electrode materials
- A61B5/266—Bioelectric electrodes therefor characterised by the electrode materials containing electrolytes, conductive gels or pastes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/263—Bioelectric electrodes therefor characterised by the electrode materials
- A61B5/268—Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/296—Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
Definitions
- the present disclosure relates to an electrode type electromyography sensor and a method for manufacturing the same.
- EMG electromyography
- an electromyography sensor In order to manufacture an electromyography sensor, a separate human-friendly metal piece was attached to a specific substrate to manufacture an electromyography sensor.
- the electromyography sensor manufactured in this way was attached to the skin to measure biosignals.
- the electromyography sensor since the electromyography sensor includes a metal piece, it was inconvenient to attach it to the curved surface of the skin.
- the skin and the electromyography sensor were attached for a long time, there was no ventilation between the metal piece of the electromyography sensor and the surface attached to the skin, so it was difficult to measure biosignals due to the sweat secreted at this time.
- the electromyography sensor since the electromyography sensor must be manufactured in a small size because the metal piece must be attached to the substrate, it was difficult to obtain biosignals from a specific, extremely small area.
- US patent US20130056689A1 discloses the application of a reducing agent that reduces the fatty acid of silver salt present on the surface of silver flakes, induces sintering, and forms a nano-unit conductive path to reduce resistance. Accordingly, the resistance of the conductive adhesive is reduced by applying such a reducing agent.
- the adhesive is mainly intended for an RF antenna, not an electromyography sensor. Accordingly, the application target is different, and no improvement steps are disclosed to secure breathability, adhesiveness, and flexibility.
- ECSA electrically conductive silicone adhesive
- MQ organosiloxane resin MQ organosiloxane resin
- Ag silver
- Such silicone adhesive does not disclose the alignment of the silver filler dispersed therein.
- the silicone adhesive is utilized as an electromyography sensor electrode, if elasticity is required depending on the purpose, the conductivity may show a large difference depending on the alignment direction of the silver filler.
- the present disclosure aims to improve the problems of existing medical electrode-type electromyography sensors having low elasticity and water vapor permeability and being thick, making them unsuitable for skin stretching and sweating of the wearer due to exercise.
- the present disclosure proposes an electrode-type electromyography sensor having moisture permeability, thereby providing an electromyography sensor that can be reused for a long time.
- the present disclosure seeks to provide an electrode-type electromyography sensor capable of maintaining conductivity and elasticity by firing the conductive filler in a state in which it is arranged to align in a specific direction.
- the present disclosure provides a dry electromyography sensor by inducing alignment of fillers by mixing and then removing a solvent (133) to lower the viscosity of the polymer during the manufacturing step, and then sintering, while providing conductivity, retention, contact, and elasticity at levels similar to those of a wet sensor.
- the present disclosure provides an electromyography sensor electrode comprising: an elastic matrix; and a plurality of conductive fillers dispersed within the elastic matrix and including a two-dimensional surface; wherein 70 to 80 w% of the plurality of conductive fillers are included with respect to the electromyography sensor electrode, and a horizontal plane of the electromyography sensor electrode and a two-dimensional surface of the conductive fillers are aligned to be parallel.
- the above conductive filler may be at least one of silver (Ag) flakes, gold (Au) flakes, and copper (Cu) flakes.
- the above plurality of conductive fillers may have a longitudinal length of 2-10 ⁇ m.
- the above EMG sensor electrodes may have a thickness of 30-90 um.
- the above electromyography sensor electrode may have multiple holes formed on its surface.
- the above plurality of holes can be formed in a cylindrical or conical shape.
- the above plurality of pores may have a diameter of 50 to 400 um on the surface.
- the above elastic material may be a silicone elastomer or polyurethane (PU).
- the present disclosure provides a method for manufacturing an electromyography sensor electrode, including the steps of preparing a conductive ink by mixing 10 to 25 wt% of an elastic matrix, 30 to 50 wt% of a conductive filler, and 30 to 50 wt% of a hydrophobic solvent; applying the conductive ink to a substrate and performing spin coating at a predetermined speed or lower; sintering the conductive ink for a predetermined time or longer to remove the hydrophobic solvent and generate a conductive film; and creating a plurality of holes in the conductive film using a micro-patterning mold.
- the step of manufacturing the conductive ink may include stirring the conductive ink using a magnetic stirrer for 2 hours or longer at a predetermined speed or lower to induce the conductive filler in the conductive ink to be uniformly dispersed.
- the step of performing the above spin coating can apply the conductive ink to the substrate without external stress and perform low-speed spin coating for a short period of time.
- the conductive filler in the conductive ink can be aligned on the substrate so that a two-dimensional plane is parallel to the plane of the substrate.
- the step of producing the conductive film may include heating at a temperature range of 150 to 180 degrees for 30 minutes to 2 hours to evaporate the hydrophobic solvent and harden the elastic base material while sintering the conductive filler.
- the step of creating the above-mentioned through hole may include a step of manufacturing the micro-patterning mold using 3D printing; and a step of rolling the conductive film on the micro-patterning mold to form the through hole.
- the above conductive filler has a longitudinal length of 2-10 ⁇ m and may be at least one of silver (Ag) flakes, gold (Au) flakes, and copper (Cu) flakes.
- the above EMG sensor electrodes may have a thickness of 30-90 um.
- the above plurality of pores may be cylindrical or conical and have a diameter of 50 to 400 ⁇ m on the surface.
- the above elastic material may be a silicone elastomer or polyurethane (PU).
- the above hydrophobic solvent has a molecular weight of 60 g/mol or more and may be hexadecane or toluene.
- the electrode type electromyography sensor can increase user convenience and provide improved quality by showing elasticity (100% or more), low skin contact resistance ( ⁇ 50 k ⁇ at 100 Hz based on commercial electrode area), and stable signal-to-noise ratio (SNR) even after long-term use.
- the electromyography sensor of the present disclosure has excellent breathability, so that it can maintain a comfortable wearing feeling even when sweating due to exercise.
- the manufacturing cost and unit price are very low, it can be distributed to households as a low-cost model, and by applying it to an integrated measuring device with a belt marker, etc., exercise data and muscle data can be analyzed together to create a more accurate injury risk assessment index.
- FIG. 1A and FIG. 1B are cross-sectional views and top views of an electrode-type electromyography sensor according to the present disclosure.
- Figure 2 is a conceptual diagram illustrating an application example in which the electrode-type electromyography sensor of Figures 1a and 1bb is attached to the epidermis of a subject.
- FIG. 3 is a flowchart showing a method for manufacturing an electrode-type electromyography sensor according to the present disclosure of FIGS. 1a and 1b.
- Figure 4 is a drawing showing the stress-free low-speed spin process of Figure 3.
- FIGS 5a and 5b are drawings showing the curing and support film removal processes.
- FIG. 6a is a drawing showing a breathable patterning process according to the first embodiment
- FIG. 6b is a drawing showing a breathable patterning process according to the second embodiment.
- Figures 7a and 7b are drawings showing the product manufacturing process.
- FIG. 8a and FIG. 8b are cross-sectional photographs showing the breathability pattern of an electrode-type electromyography sensor manufactured by the manufacturing method of FIG. 3.
- Fig. 9a is a cross-sectional photograph of a flexible electrode according to a comparative example
- Fig. 9b is a photograph of an electrode-type electromyography sensor of the present disclosure.
- Fig. 10a is a conceptual diagram of a stretch according to a comparative example
- Fig. 10b is a conceptual diagram of a stretch according to the present disclosure.
- Fig. 11a is the front conductivity of the present disclosure and a comparative example, and Fig. 11b is the back conductivity.
- Fig. 12a shows the change in resistance according to the degree of elasticity of the present disclosure and the comparative example
- Fig. 12b shows the contact impedance according to the frequency of the present disclosure and the comparative example.
- Figure 13 is a photograph showing the expansion of the electrode-type electromyography sensor of the present disclosure.
- Figure 14 compares the adhesion of the electrode-type electromyography sensor of the present disclosure with that of a comparative example.
- each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of explanation.
- the size and area of each component do not entirely reflect the actual size or area.
- FIG. 1A and FIG. 1B are cross-sectional views and top views of an electrode-type electromyography sensor according to the present disclosure.
- an electromyography sensor may include a substrate (110) and an electromyography electrode (130).
- the above substrate (110) may be a flexible substrate (110), and may be manufactured and sold in various shapes.
- it may be manufactured in the form of a sports tape, and in this case, it may be manufactured using fibers formed from a resin having elasticity, such as polyurethane.
- the plurality of electromyography electrodes (130) When a plurality of electromyography electrodes (130) are placed on a substrate (110), the plurality of electromyography electrodes (130) can be placed spaced apart from each other, and can be connected to pads so that each can transmit a signal to an external controller (not shown) through a different wire (120).
- multiple electromyography electrodes (130) can be connected simultaneously and the pads can be connected in parallel to transmit signals to the controller through the same wire (120), and this can be selectively implemented depending on the function.
- a circuit portion can be formed between the substrate (110) and the electrode (130).
- circuit part is described as being implemented in its entirety in Fig. 1a, but may be described in only a part.
- the adhesion between the above-mentioned electromyography electrode (130) and the substrate (110) can be formed using a general adhesive (not shown) and is not particularly limited.
- the electromyography electrodes (130) of the present disclosure are individually formed and separately attached to the substrate (110) using an adhesive.
- the above electromyography electrode (130) includes an elastic material (131) and a conductive filler (132), as illustrated in FIG. 1A.
- the above elastic material (131) may be a silicone elastomer such as Ecoflex TM , Silbione TM , polydimethylsiloxane, etc., but may alternatively be an elastically deformable polymer resin such as polyurethane (PU).
- PU polyurethane
- the above elastic material (131) may be contained in an amount of 20 to 30 w%, preferably about 25 w%, relative to the electromyography electrode (130).
- the above elastic material (131) is elastically deformable and can easily come into contact with the curved surface of the skin, and has viscosity, so that skin adhesion can be improved.
- a plurality of conductive fillers (132) are dispersed within the elastic substrate (131).
- the conductive fillers (132) are connected to the pads and wires (120) below, and when in contact with the skin, the amount of change in the electric charge generated according to the muscle activity of the skin is detected and transmitted to the circuit unit (120) below as a signal.
- the above-described plurality of conductive fillers (132) each have a two-dimensional surface, and can satisfy a longitudinal length (d1) of 2-10 ⁇ m, preferably 4 to 10 ⁇ m.
- a longitudinal length (d1) of the two-dimensional surface of the conductive filler (132) exceeds the upper limit of the above-described range, the mechanical properties including the Young's modulus deteriorate, and when it is less than the lower limit, the electrical properties including the electrical conductivity deteriorate.
- the plurality of conductive fillers (132) may be arranged so that the two-dimensional surface is parallel to the bottom surface (110a), that is, the bottom surface (110a) of the electromyography electrode (130). That is, when the plurality of conductive fillers (132) have a two-dimensional surface, they are aligned in parallel, rather than standing at a predetermined angle with respect to the bottom surface (110a) within the elastic substrate (131).
- the above-described EMG sensor undergoes elongation and expansion, i.e., elastic deformation, and the elastic deformation progresses by increasing or decreasing the bottom surface (110a) of the EMG sensor, i.e., the plane formed by the X-axis and the Y-axis.
- the conductive filler (132) By aligning the conductive filler (132) as described above, the overlap between the two-dimensional surfaces of the conductive filler (132) can be maintained despite the elastic deformation of the EMG sensor.
- the electrical conductivity of the electromyography sensor can be maintained.
- the conductive filler (132) may be contained in an amount of about 70 to 80 w%, preferably about 75 w%, relative to the entire electromyography electrode (130).
- the above conductive filler (132) may be, but is not limited to, silver (Ag) flakes, gold (Au) flakes, or copper (Cu) flakes.
- the electromyography electrode (130) in which the conductive filler (132) is uniformly aligned and distributed may have a thickness (h1) of 30-90 um, preferably 40 to 80 um, but is not limited thereto.
- the above electromyography electrode (130) has a plurality of holes (135) formed on the upper surface (130a).
- the upper surface (130a) above is a surface that comes into contact with the user's skin, and the perforations (135) can be arranged uniformly as shown in Fig. 1b, but are not limited thereto.
- the above-mentioned hole (135) may be formed in a circular shape so that the diameter (d2) remains constant from the surface to the bottom surface, but alternatively, it may be formed in a cone shape in which the diameter (d2) decreases as it goes toward the bottom surface.
- the maximum value of the diameter (d2) of the hole (135) on the above surface may be 50 to 400 um, but is not limited thereto.
- the above-mentioned perforations (135) may be arranged on the upper surface (130a) in a matrix as shown in Fig. 1b, but may be formed so that the even and odd rows are misaligned.
- the electromyography electrode (130) when the electromyography electrode (130) is attached to the user's skin as shown in FIG. 2, the upper surface (130a) is attached to the user's skin and detects and transmits charge movement according to muscle activity of the user's skin.
- a plurality of conductive fillers (132) that form the electrical conductivity of the above-mentioned electromyography electrode (130) are arranged parallel to the bottom surface (110a) of the above-mentioned electromyography electrode (130), even if the bottom surface of the above-mentioned electromyography sensor, i.e. the plane formed by the X-axis and the Y-axis, is increased or decreased, the overlap between the two-dimensional surfaces of the conductive fillers (132) can be maintained.
- moisture generated by the user's skin sweating can pass through the multiple openings (135) of the upper surface (130a) and evaporate to the outside, thereby preventing the electromyography electrode (130) from falling off due to moisture.
- the EMG sensor has more than 100% elasticity, can maintain low skin contact resistance, and can maintain a stable signal-to-noise ratio (SNR) even after long-term use, thereby ensuring user convenience and quality.
- SNR signal-to-noise ratio
- FIG. 3 is a flowchart showing a method for manufacturing an electrode (130) type electromyography sensor according to the present disclosure of FIGS. 1a and 1b
- FIG. 4 is a drawing showing a stress-free low-speed spin process of FIG. 3
- FIGS. 5a and 5b are drawings showing a curing and support film removal process
- FIG. 6a is a drawing showing a breathable patterning process according to the first embodiment
- FIG. 6b is a drawing showing a breathable patterning process according to the second embodiment
- FIGS. 7a and 7b are drawings showing a product manufacturing process.
- the electromyography sensor of the present disclosure first produces conductive ink for forming electromyography electrodes (130) that constitute the electromyography sensor.
- the conductive ink includes a conductive filler (132), an elastic matrix (131), and a hydrophobic solvent (133).
- the above elastic material (131) may be a silicone elastomer such as Ecoflex TM , Silbione TM , polydimethylsiloxane, etc., but may alternatively be an elastically deformable polymer resin such as polyurethane (PU).
- PU polyurethane
- the elastic substrate (131) may be 10 to 25 w% of the entire conductive ink relative to the electromyography electrode (130).
- the above elastic material (131) is elastically deformable and can easily come into contact with the curved surface of the skin, and has viscosity, so that skin adhesion can be improved.
- the above-described plurality of conductive fillers (132) each have a two-dimensional surface, and the longitudinal length (d1) can satisfy 2 to 10 ⁇ m, preferably 4 to 10 ⁇ m.
- the length (d1) of the conductive filler (132) exceeds the upper limit of the above-described range, the mechanical properties including the Young's modulus deteriorate, and when it is less than the lower limit, the electrical properties including the electrical conductivity deteriorate.
- the plurality of conductive fillers (132) may be flakes of silver, gold, copper, etc., or graphene at 30-50 wt% with respect to the entire ink, but are not limited thereto.
- the conductive filler (132) can be used by mixing two conductive fillers (132) having different lengths (d1).
- the conductive ink further contains 30-50 w% of a hydrophobic solvent (133) (S10).
- the hydrophobic solvent (133) lowers the viscosity of the ink in the conductive ink to induce alignment of the conductive filler (132) and delays the curing time to facilitate processing.
- the above hydrophobic solvent (133) is a nonpolar solvent (133) having a molecular weight of 60 g/mol or more, and preferably hexadecane or toluene.
- the hydrophobic solvent (133) is less than the above weight ratio, the conductive filler (132) is not aligned, the curing time is short, and the time required for long-term uniform stirring of the ink cannot be secured, and if it exceeds the upper limit, the elasticity of the manufactured electrode (130) may be reduced.
- the conductive filler (132), elastic base material (131), and hydrophobic solvent (133) for the conductive ink are mixed according to the weight ratio, and then stirred at low speed using a magnetic stirrer for 2 hours or more (S20).
- the conductive filler (132), for example, silver flakes, in the ink (140) is maintained in a uniformly dispersed state.
- conductive ink (140) is applied on the substrate (20) as shown in Fig. 4 (S30).
- the step of applying conductive ink (140) on the substrate (20) is performed by applying it to the substrate (20) without any specific external stress and without any external stress on the substrate (110) at least, and preferably performing low-speed spin coating at 100 rpm for about 60 seconds.
- applying to the substrate (20) without a specific stress from the outside means that the coating is performed on the entire substrate (20) by pouring without a drop in the edge area or the center area and then rotating at a low speed for a short period of time, rather than applying to a wide area through a small area by applying pressure, such as a paste or injection method or a spray method such as a spray method.
- the two-dimensional plane of the conductive filler (132) is aligned parallel to the plane of the substrate (20).
- the conductive filler (132) is laid down parallel to the plane of the substrate (20) by the uniform distribution and dispersion of the hydrophobic solvent (133) without being affected by the centrifugal force caused by the spin.
- the elastic base material (131) is hardened while sintering the conductive filler (132) by heating in a temperature range of 150 to 180 degrees for 30 minutes to 2 hours to evaporate all of the hydrophobic solvent (133) (S40).
- the lower substrate (20) is removed to manufacture a film for the electromyography sensor electrode (130) as a single layer.
- a micro-patterning mold (50a, 50b) as shown in Figs. 6a and 6b can be applied (S50).
- the above micro patterning mold (50a) can be manufactured using a three-dimensional printer, and is formed with a plurality of needles (51, 52) formed.
- the above plurality of needles (51, 52) may be cylindrical needles (51) as shown in Fig. 6a, or may be conical needles (52) as shown in Fig. 6b.
- the film for the above-described electromyography sensor electrode (130) can form a circle pattern of FIG. 6a or a dot pattern of FIG. 6b on the surface, i.e., the upper surface (130a), by pressing or rolling it over the micro-patterning mold (50a, 50b).
- the above-mentioned permeable hole (135) can maintain a shape in which the diameter (d2) decreases from the upper surface (130a) to the lower surface or in a conical shape when forming a circular pattern or a dot pattern.
- the maximum value of the diameter (d2) on the upper surface (130a) may be 50 to 400 um, but is not limited thereto.
- the above-mentioned perforations (135) may be arranged on the upper surface (130a) in a matrix as shown in Fig. 1b, but may be formed so that the even and odd rows are misaligned.
- the electromyography sensor electrode (130) with the permeable hole (135) formed can be cut to a desired size and attached to a wearable device to be commercialized (S60).
- an electromyography sensor electrode (130) is attached to a main body or substrate (110) using an adhesive.
- the main body (110) is a fiber formed from an elastic resin such as polyurethane, and can be manufactured and sold in the form of a sports tape.
- a pattern (111) is printed in a band shape on the front surface facing the outside of the main body (110), and the electromyography sensor electrode (130) can be attached to a position corresponding to at least one specific part of the body on the inner surface that comes into contact with the body part, thereby manufacturing the body.
- the electromyography electrode (130) integrated into the medical tape body (110a) can transmit a detection signal to the pad (120a) at the end of the wire.
- a magnetic cover (150) is separately attached to protect the electromyography sensor area, but is not limited thereto.
- the electromyography sensor electrode (130) formed in this manner can secure electrical conductivity, reliability, and adhesiveness according to breathability and elasticity when applied to the wearable device.
- conductive ink (140) is prepared by mixing 43 wt% of silver paste, 14 wt% of Ecoflex TM , and 43 wt% of hexadecane.
- the above silver flakes each have a two-dimensional surface, and those with a longitudinal length (d1) of 4-8 ⁇ m and those with a length of 10 ⁇ m were used in combination.
- the conductive ink (140) After stirring the conductive ink (140) at low speed using a magnetic stirrer for more than 2 hours, and maintaining the state in which the silver flakes in the ink (140) are uniformly dispersed by the low-speed long-term stirring, it is applied to a substrate (110) without external stress, and low-speed spin coating is performed at 100 rpm for about 60 seconds to form a thin film with a thickness of 60 ⁇ m (h1).
- the two-dimensional plane of the silver flake is aligned parallel to the plane of the substrate (110).
- the hexadecane was completely evaporated by heating in a temperature range of 150 to 180 degrees for 30 minutes to 2 hours, and the elastic matrix (131) was hardened while sintering the silver flakes to form a thin film with a thickness of 40 to 50 ⁇ m (h1).
- FIGS. 8a and 8b are cross-sectional photographs showing the breathability pattern of an electrode (130)-type electromyography sensor manufactured using the manufacturing method of FIG. 3.
- moisture generated from the skin surface can be released to the outside through such a perforation (135), thereby improving water vapor permeability, as shown in the graph of Fig. 8c.
- the moisture permeability is 6 g/hm 2 or more, preferably 10 g/hm 2 or more, and particularly, in the case of the circle pattern of the experimental example, the moisture permeability is 12 g/hm 2 or more.
- the electromyography sensor electrode (130) of the above experimental example has the following characteristics.
- Fig. 9a is a cross-sectional photograph of a flexible electrode (130) according to the present disclosure
- Fig. 9b is a photograph of an electrode (130) type electromyography sensor of a comparative example
- Fig. 10a is a conceptual diagram of a stretchable electrode according to the present disclosure
- Fig. 10b is a conceptual diagram of a stretchable electrode of a comparative example.
- the plane of the two-dimensional conductive filler (132) is not arranged parallel to the elongated plane. Therefore, the arrangement becomes more disordered as it elongates and contracts.
- the plane of the two-dimensional conductive filler (132) is arranged mostly parallel to the elongated plane. As described above, this is implemented by dispersion by a hydrophobic solvent (133) and coating by ultra-low-speed rotation without external stress.
- Fig. 11a is the front conductivity of the present disclosure and a comparative example, and Fig. 11b is the back conductivity.
- the electrical conductivity of the electromyography electrode (130) according to the experimental example of the present disclosure and the electrical conductivity of the comparative example are slightly different at the front and back, but their patterns are similar.
- Figure 11a shows the front electrical conductivity
- Figure 11b shows the back electrical conductivity
- the electrical conductivity of the front side is higher than that of the back side, whether the conductive filler (132) is aligned or not.
- the electrical conductivity is a comparison of the electrical conductivity of Fig. 9b, which is a comparative example in which the silver flakes are not aligned, and the electrical conductivity of Fig. 9a, which is an experimental example in which the silver flakes are aligned.
- Figure 12a shows the change in resistance according to the degree of elasticity of the experimental example and comparative example of the present disclosure
- Figure 12b shows the contact impedance according to the frequency of the experimental example and comparative example of the present disclosure.
- FIG 12a it shows the change in resistance according to the degree of elasticity, that is, the ratio of the increased area to the initial area when the electromyography sensor electrode (130) is stretched in a plane.
- Fig. 12b shows the values of Fig. 12a in the frequency domain.
- Comparative Example 1 shows an electromyography sensor electrode (130) in a state where silver flakes are not aligned, as in the Comparative Example of Fig. 12a, and Comparative Example 2 shows an electromyography sensor electrode (130) of a commercially available Ag/AgCl wet electrode (130).
- the skin contact impedance of the experimental example of the present disclosure has a skin contact impedance at a level similar to that of a commercial wet electrode (130) when the electrode (130) area is 1.5 cm 2 , and has a higher value than that of Comparative Example 1 including non-aligned silver flakes.
- Figure 13 is a photograph showing an extension of an electrode (130) type electromyography sensor according to an experimental example of the present disclosure.
- the electromyography sensor electrode (130) of the experimental example when stretched, it has an elongation rate of 100% or more and can be stretched in any axis (x-axis or y-axis) on a plane. With such an elongation rate, attachment is possible along the curve of the skin.
- Figure 14 compares the adhesion of the electrode (130) type electromyography sensor of the present disclosure with that of a comparative example.
- the measurement conditions were an electrode (130) attachment area of 2*2cm, skin humidity of 30%, and a 90-degree peeling test.
- the electromyography sensor electrode (130) of the present disclosure had a skin adhesion strength of about 1.1 kPa, based on the commonly used medical tape having an adhesion strength of about 2.0 kPa.
- the thin film-type conductive electrode (130) of the present disclosure is suitable for use in a wearable electrophysiological signal sensor, as only about 15% of resistance change is observed in the maximum elastic range of the skin, and the skin contact impedance based on a circular electrode (130) having a diameter of 2.5 cm, which is a commonly used electrode (130) area, is 50 k ⁇ or less (@100Hz), which is the skin contact impedance recommended for high-quality biosignals.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
본 개시는 전극형 근전도 센서 및 그의 제조 방법에 대한 것이다.The present disclosure relates to an electrode type electromyography sensor and a method for manufacturing the same.
근전도검사 (Electromyography, EMG) 등의 생체신호를 측정하는 시스템은 이미 다양한 제품으로 시중에 나와 있다. 근전도검사는 근육의 피로도, 긴장 및 이완을 측정하는 방식으로 현재 대상자의 상태에 따른 근전도 신호 변화에 대한 밀접한 관련성이 많이 개시되어 있다.Systems for measuring bio-signals such as electromyography (EMG) are already available in a variety of products on the market. EMG is a method for measuring muscle fatigue, tension, and relaxation, and there are many reports of close relationships between changes in EMG signals according to the current subject's condition.
근전도 센서를 제작하기 위하여, 별도의 인체친화적 금속 조각을 특정 기판에 부착시켜 근전도 센서를 제작하였다. 이렇게 제작된 근전도 센서는 피부에 부착되어 생체 신호를 측정하였다. 하지만, 근전도 센서는 금속 조각을 포함하고 있어, 피부 곡면에 부착하는 것이 불편하였다. 그리고, 피부와 근전도 센서를 오랜 시간 부착하는 경우, 근전도 센서의 금속 조각 및 피부와 부착되는 면 사이에 통풍이 되지 않아, 이 때, 분비되는 땀에 의해 생체 신호를 측정하기 어려웠다. 또한, 근전도 센서는 금속 조각을 기판에 부착해야 되므로, 소형으로 제작되는 것이 어려워 특정 극소부위의 생체 신호를 획득하기 어려웠다. In order to manufacture an electromyography sensor, a separate human-friendly metal piece was attached to a specific substrate to manufacture an electromyography sensor. The electromyography sensor manufactured in this way was attached to the skin to measure biosignals. However, since the electromyography sensor includes a metal piece, it was inconvenient to attach it to the curved surface of the skin. In addition, when the skin and the electromyography sensor were attached for a long time, there was no ventilation between the metal piece of the electromyography sensor and the surface attached to the skin, so it was difficult to measure biosignals due to the sweat secreted at this time. In addition, since the electromyography sensor must be manufactured in a small size because the metal piece must be attached to the substrate, it was difficult to obtain biosignals from a specific, extremely small area.
이에 미국특허 US20130056689A1는 은 플레이크(Ag flake) 표면에 존재하는 은염의 지방산을 환원시키고 소결을 유발하며, 나노 단위의 전도성 경로를 형성하여 저항을 감소시키는 환원제의 적용을 개시하고 있다. 따라서, 이와 같은 환원제를 적용하여 전도성 접착제의 저항을 감소시키게 된다. 그러나, 해당 접착제는 RF 안테나를 주 목적으로 하는 것으로서, 근전도 센서를 위한 것이 아니다. 따라서, 그 적용 대상이 상이하고, 통기성, 부착력, 유연성을 확보하기 위한 개선의 단계가 개시되어 있지 않다.Here, US patent US20130056689A1 discloses the application of a reducing agent that reduces the fatty acid of silver salt present on the surface of silver flakes, induces sintering, and forms a nano-unit conductive path to reduce resistance. Accordingly, the resistance of the conductive adhesive is reduced by applying such a reducing agent. However, the adhesive is mainly intended for an RF antenna, not an electromyography sensor. Accordingly, the application target is different, and no improvement steps are disclosed to secure breathability, adhesiveness, and flexibility.
한편, 국제특허 WO2018111365A1에는 전기 전도도를 갖는 실리콘 접착체(ECSA) 및 그의 제조 방법, 활용 방법, 그를 이용한 소자가 개시되어 있다. ECSA는 활성 고분자 실리콘 수지로서, polydiorganosiloxane polymer, MQ organosiloxane resin, 은(Ag)을 금속 충전재로 포함하고 있다. Meanwhile, international patent WO2018111365A1 discloses an electrically conductive silicone adhesive (ECSA), a method for producing the same, a method for utilizing the same, and a device utilizing the same. ECSA is an active polymer silicone resin, and contains polydiorganosiloxane polymer, MQ organosiloxane resin, and silver (Ag) as a metal filler.
이와 같은 실리콘 접착제는 내부에 분산되어 있는 은 충전재의 정렬에 대하여는 개시하고 있지 않다. 상기 실리콘 접착제가 근전도 센서 전극으로 활용될 때, 용도에 따라 신축성이 필요한 경우, 상기 은 충전재의 정렬 방향에 따라 전도성에 큰 차이를 보일 수 있다.Such silicone adhesive does not disclose the alignment of the silver filler dispersed therein. When the silicone adhesive is utilized as an electromyography sensor electrode, if elasticity is required depending on the purpose, the conductivity may show a large difference depending on the alignment direction of the silver filler.
[선행기술문헌][Prior art literature]
미국특허 US20130056689A1, 공개일자 2013년 03월 07일 US Patent US20130056689A1, Publication Date March 7, 2013
국제특허 WO2018111365A1, 공개일자 2017년 02월 15일 International Patent WO2018111365A1, Publication Date February 15, 2017
본 개시는 기존 의료용 전극형 근전도 센서가 신축성과 수증기 투과성이 낮고 두께가 두꺼워 운동에 의한 착용자의 피부 신축과 발한에 적합하지 않은 문제점을 개선하고자 한다.The present disclosure aims to improve the problems of existing medical electrode-type electromyography sensors having low elasticity and water vapor permeability and being thick, making them unsuitable for skin stretching and sweating of the wearer due to exercise.
본 개시는 수분 투과성을 가지는 전극형 근전도 센서를 제시함으로써, 장시간 재사용이 가능한 근전도 센서를 제공하고자 한다.The present disclosure proposes an electrode-type electromyography sensor having moisture permeability, thereby providing an electromyography sensor that can be reused for a long time.
본 개시는 전도성 필러를 특정 방향으로 정렬하도록 배열한 상태로 소성함으로써 전도성 및 신축성을 유지할 수 있는 전극형 근전도 센서를 제공하고자 한다.The present disclosure seeks to provide an electrode-type electromyography sensor capable of maintaining conductivity and elasticity by firing the conductive filler in a state in which it is arranged to align in a specific direction.
또한, 본 개시는 제조 단계에서 폴리머의 점도를 낮추기 위한 용매(133)를 혼합한 후 제거함으로써 필러의 정렬을 유도한 후 소결하여 건식 근전도 센서를 제공하면서도 습식 센서와 유사한 수준의 전도성 및 유지력, 접촉력, 신축성을 제공할 수 있다.In addition, the present disclosure provides a dry electromyography sensor by inducing alignment of fillers by mixing and then removing a solvent (133) to lower the viscosity of the polymer during the manufacturing step, and then sintering, while providing conductivity, retention, contact, and elasticity at levels similar to those of a wet sensor.
본 개시는 탄성모재; 및 상기 탄성모재 내에 분산되어 있으며, 2차원의 면을 포함하는 복수의 전도성 필러; 를 포함하는 근전도 센서 전극으로서, 상기 근전도 센서 전극에 대하여 70 내지 80w%의 상기 복수의 전도성 필러가 포함되며, 상기 근전도 센서 전극의 수평면과 상기 전도성 필러의 2차원의 면이 평행하도록 정렬되어 있다. The present disclosure provides an electromyography sensor electrode comprising: an elastic matrix; and a plurality of conductive fillers dispersed within the elastic matrix and including a two-dimensional surface; wherein 70 to 80 w% of the plurality of conductive fillers are included with respect to the electromyography sensor electrode, and a horizontal plane of the electromyography sensor electrode and a two-dimensional surface of the conductive fillers are aligned to be parallel.
상기 탄성모재에 의해 상기 근전도 센서 전극이 상기 수평면 상에서 탄성 변형 발생할 때, 상기 도전성 필러의 정렬에 의해 전기전도도가 유지될 수 있다.When the electromyography sensor electrode is elastically deformed on the horizontal plane by the elastic substrate, electrical conductivity can be maintained by the alignment of the conductive filler.
상기 전도성 필러는 은(Ag) 플레이크(flake), 금(Au) 플레이크, 구리(Cu) 플레이크중 적어도 하나일 수 있다.The above conductive filler may be at least one of silver (Ag) flakes, gold (Au) flakes, and copper (Cu) flakes.
상기 복수의 전도성 필러는 장방향의 길이가 2-10 μm일 수 있다.The above plurality of conductive fillers may have a longitudinal length of 2-10 μm.
상기 근전도 센서 전극은 두께가 30-90 um일 수 있다.The above EMG sensor electrodes may have a thickness of 30-90 um.
상기 근전도 센서 전극은 표면에 복수의 통공이 형성될 수 있다.The above electromyography sensor electrode may have multiple holes formed on its surface.
상기 복수의 통공은 원통형 또는 원뿔형으로 형성될 수 있다.The above plurality of holes can be formed in a cylindrical or conical shape.
상기 복수의 통공은 표면에서의 직경이 50~400um일 수 있다.The above plurality of pores may have a diameter of 50 to 400 um on the surface.
상기 탄성 모재는 실리콘 엘라스토머 또는 폴리우레탄(polyurethane, PU)일 수 있다.The above elastic material may be a silicone elastomer or polyurethane (PU).
한편, 본 개시는 10 내지 25w%의 탄성모재, 30-50 wt%의 전도성 필러 및 30-50w%의 소수성 용매를 혼합하여 전도성 잉크를 제조하는 단계: 상기 전도성 잉크를 기판에 도포하고 소정 속도 이하로 스핀 코팅 수행하는 단계; 상기 소정 시간 이상 전도성 잉크를 소결하여 상기 소수성 용매를 제거하고 전도성 필름을 생성하는 단계; 및 마이크로 패터닝 몰드를 이용하여 상기 전도성 필름에 복수의 통공을 생성하는 단계를 포함하는 근전도 센서 전극의 제조 방법을 제공한다.Meanwhile, the present disclosure provides a method for manufacturing an electromyography sensor electrode, including the steps of preparing a conductive ink by mixing 10 to 25 wt% of an elastic matrix, 30 to 50 wt% of a conductive filler, and 30 to 50 wt% of a hydrophobic solvent; applying the conductive ink to a substrate and performing spin coating at a predetermined speed or lower; sintering the conductive ink for a predetermined time or longer to remove the hydrophobic solvent and generate a conductive film; and creating a plurality of holes in the conductive film using a micro-patterning mold.
상기 전도성 잉크를 제조하는 단계는, 상기 전도성 잉크를 2시간 이상 상기 소정 속도 이하로 자기교반기를 이용하여 교반하여 상기 전도성 잉크 내의 상기 전도성 필러가 균일하게 분산되도록 유도할 수 있다.The step of manufacturing the conductive ink may include stirring the conductive ink using a magnetic stirrer for 2 hours or longer at a predetermined speed or lower to induce the conductive filler in the conductive ink to be uniformly dispersed.
상기 스핀 코팅 수행하는 단계는, 외부 응력 없이 상기 기판에 상기 전도성 잉크를 도포하고, 단시간동안 저속 스핀 코팅을 수행할 수 있다.The step of performing the above spin coating can apply the conductive ink to the substrate without external stress and perform low-speed spin coating for a short period of time.
상기 저속 스핀 코팅에 의해 상기 기판 위에 상기 전도성 잉크 내의 상기 전도성 필러는 2차원 평면이 상기 기판의 평면과 평행하도록 정렬될 수 있다.By the low-speed spin coating, the conductive filler in the conductive ink can be aligned on the substrate so that a two-dimensional plane is parallel to the plane of the substrate.
상기 전도성 필름을 생성하는 단계는, 150도 내지 180도의 온도 범위에서 30분 내지 2시간 동안 가열하여 상기 소수성 용매를 증발시키고 상기 전도성 필러를 소결하면서 상기 탄성모재를 경화할 수 있다.The step of producing the conductive film may include heating at a temperature range of 150 to 180 degrees for 30 minutes to 2 hours to evaporate the hydrophobic solvent and harden the elastic base material while sintering the conductive filler.
상기 통공을 생성하는 단계는, 상기 마이크로 패터닝 몰드를 3d 프린팅을 이용하여 제조하는 단계; 및 상기 마이크로 패터닝 몰드에 상기 전도성 필름을 롤링하여 상기 통공을 형성하는 단계를 포함할 수 있다.The step of creating the above-mentioned through hole may include a step of manufacturing the micro-patterning mold using 3D printing; and a step of rolling the conductive film on the micro-patterning mold to form the through hole.
상기 전도성 필러는 장방향의 길이가 2-10 μm이며, 은(Ag) 플레이크(flake), 금(Au) 플레이크, 구리(Cu) 플레이크중 적어도 하나일 수 있다.The above conductive filler has a longitudinal length of 2-10 μm and may be at least one of silver (Ag) flakes, gold (Au) flakes, and copper (Cu) flakes.
상기 근전도 센서 전극은 두께가 30-90 um일 수 있다.The above EMG sensor electrodes may have a thickness of 30-90 um.
상기 복수의 통공은 원통형 또는 원뿔형이고, 표면에서의 직경이 50~400um일 수 있다.The above plurality of pores may be cylindrical or conical and have a diameter of 50 to 400 μm on the surface.
상기 탄성 모재는 실리콘 엘라스토머 또는 폴리우레탄(polyurethane, PU)일 수 있다.The above elastic material may be a silicone elastomer or polyurethane (PU).
상기 소수성 용매는 분자량이 60 g/mol 이상이며, 헥사데케인(Hexadecane) 또는 톨루엔(Toluene)일 수 있다.The above hydrophobic solvent has a molecular weight of 60 g/mol or more and may be hexadecane or toluene.
상기 해결 수단을 통해, 전극형 근전도 센서는 신축성(100% 이상), 낮은 피부 접촉저항(상용 전극 면적 기준 <50 kΩ at 100 Hz) 및 장기간 사용에도 안정적인 신호대 잡음비(SNR)을 보여 사용자의 편의성을 증대할 수 있으며, 향상된 품질을 제공할 수 있다.Through the above solution, the electrode type electromyography sensor can increase user convenience and provide improved quality by showing elasticity (100% or more), low skin contact resistance (<50 kΩ at 100 Hz based on commercial electrode area), and stable signal-to-noise ratio (SNR) even after long-term use.
또한, 본 개시의 근전도 센서는 통기성이 우수하여 운동으로 인한 발한에도 편안한 착용감을 유지할 수 있다.In addition, the electromyography sensor of the present disclosure has excellent breathability, so that it can maintain a comfortable wearing feeling even when sweating due to exercise.
또한, 제조 비용 및 단가가 매우 저렴하여 저가형 모델로 가정용 보급이 가능하며, 띠 마커 등과 함께 통합 측정 장치에 적용하여 운동 데이터와 근육데이터를 함께 분석함으로써 보다 정확한 부상 위험도 평가 지표를 만들 수 있다.In addition, since the manufacturing cost and unit price are very low, it can be distributed to households as a low-cost model, and by applying it to an integrated measuring device with a belt marker, etc., exercise data and muscle data can be analyzed together to create a more accurate injury risk assessment index.
도 1a 및 도 1b은 본 개시에 따른 전극형 근전도 센서의 단면도 및 상면도이다.FIG. 1A and FIG. 1B are cross-sectional views and top views of an electrode-type electromyography sensor according to the present disclosure.
도 2는 도 1a 및 도 1bb의 전극형 근전도 센서가 피검자의 표피에 부착되어있는 적용예를 도시한 개념도이다.Figure 2 is a conceptual diagram illustrating an application example in which the electrode-type electromyography sensor of Figures 1a and 1bb is attached to the epidermis of a subject.
도 3은 도 1a 및 도 1b의 본 개시에 따른 전극형 근전도 센서의 제조 방법을 나타내는 순서도이다.FIG. 3 is a flowchart showing a method for manufacturing an electrode-type electromyography sensor according to the present disclosure of FIGS. 1a and 1b.
도 4는 도 3의 무응력 저속 스핀 공정을 나타내는 도면이다.Figure 4 is a drawing showing the stress-free low-speed spin process of Figure 3.
도 5a 및 도 5b는 경화 및 지지필름 제거 공정을 나타내는 도면이다.Figures 5a and 5b are drawings showing the curing and support film removal processes.
도 6a는 제1 실시예에 따른 통기성 패터닝 공정을 나타내는 도면이고, 도 6b는 제2 실시예에 따른 통기성 패터닝 공정을 나타내는 도면이다.FIG. 6a is a drawing showing a breathable patterning process according to the first embodiment, and FIG. 6b is a drawing showing a breathable patterning process according to the second embodiment.
도 7a 및 도 7b는 제품화 공정을 나타내는 도면이다.Figures 7a and 7b are drawings showing the product manufacturing process.
도 8a 및 도 8b는 도 3의 제조 방법으로 제조된 전극형 근전도 센서의 통기성 패턴을 나타내는 단면사진이다.FIG. 8a and FIG. 8b are cross-sectional photographs showing the breathability pattern of an electrode-type electromyography sensor manufactured by the manufacturing method of FIG. 3.
도 9a는 비교예에 따른 신축성 전극의 단면 사진이고, 도 9b는 본 개시의 전극형 근전도 센서의 사진이다.Fig. 9a is a cross-sectional photograph of a flexible electrode according to a comparative example, and Fig. 9b is a photograph of an electrode-type electromyography sensor of the present disclosure.
도 10a는 비교예에 따른 신축시의 개념도이고, 도 10b는 본 개시의 신축시의 개념도이다.Fig. 10a is a conceptual diagram of a stretch according to a comparative example, and Fig. 10b is a conceptual diagram of a stretch according to the present disclosure.
도 11a는 본 개시와 비교예의 전면 전도도이고, 도 11b는 후면 전도도이다.Fig. 11a is the front conductivity of the present disclosure and a comparative example, and Fig. 11b is the back conductivity.
도 12a는 본 개시와 비교예의 신축도에 따른 저항 변화를 나타낸 것이고, 도 12b는 본 개시와 비교예의 주파수에 따른 접촉 임피던스를 나타낸 것이다.Fig. 12a shows the change in resistance according to the degree of elasticity of the present disclosure and the comparative example, and Fig. 12b shows the contact impedance according to the frequency of the present disclosure and the comparative example.
도 13은 본 개시의 전극형 근전도 센서를 신장하는 사진이다.Figure 13 is a photograph showing the expansion of the electrode-type electromyography sensor of the present disclosure.
도 14는 본 개시의 전극형 근전도 센서와 비교예의 부착력을 비교한 것이다.Figure 14 compares the adhesion of the electrode-type electromyography sensor of the present disclosure with that of a comparative example.
이하에서 언급되는 구성요소 앞에 ‘제1, 제2' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일 뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제1 구성요소 없이 제2 구성요소 만을 포함하는 발명도 구현 가능하다. The use of terms such as ‘first’, ‘second’, etc. before the components mentioned below is only intended to avoid confusion regarding the components referred to, and has nothing to do with the order, importance, or main-subordinate relationship between the components. For example, an invention can also be implemented that includes only the second component without the first component.
도면에서 각 구성의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다. In the drawings, the thickness or size of each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of explanation. In addition, the size and area of each component do not entirely reflect the actual size or area.
또한, 본 개시의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다. In addition, the angles and directions mentioned in the process of explaining the structure of the present disclosure are based on those described in the drawings. In the description of the structure in the specification, if the reference point and positional relationship for the angle are not clearly mentioned, refer to the relevant drawings.
도 1a 및 도 1b은 본 개시에 따른 전극형 근전도 센서의 단면도 및 상면도이다.FIG. 1A and FIG. 1B are cross-sectional views and top views of an electrode-type electromyography sensor according to the present disclosure.
도 1a 및 도 1b를 참고하면, 본 개시에 따른 근전도 센서는 기판(110)과 근전도 전극(130)을 포함할 수 있다. Referring to FIGS. 1A and 1B, an electromyography sensor according to the present disclosure may include a substrate (110) and an electromyography electrode (130).
상기 기판(110)은 유연한 성질을 띠는 기판(110)일 수 있으며, 다양한 형태로 변형되어 제조 판매 가능하다. 일 예로, 스포츠 테이프 형으로 제조 가능하며, 이와 같이 제조되는 경우, 폴리우레탄과 같이 탄성을 가지는 수지로 형성되는 섬유로 제조 가능하다.The above substrate (110) may be a flexible substrate (110), and may be manufactured and sold in various shapes. For example, it may be manufactured in the form of a sports tape, and in this case, it may be manufactured using fibers formed from a resin having elasticity, such as polyurethane.
기판(110) 위에 복수의 근전도 전극(130)이 배치되는 경우, 복수의 근전도 전극(130)은 서로 이격되어 배치 가능하며, 각각이 서로 다른 와이어(120)에 의해 외부의 컨트롤러(미도시)로 신호 전송 가능하도록 패드 연결 가능하다.When a plurality of electromyography electrodes (130) are placed on a substrate (110), the plurality of electromyography electrodes (130) can be placed spaced apart from each other, and can be connected to pads so that each can transmit a signal to an external controller (not shown) through a different wire (120).
이와 달리, 복수의 근전도 전극(130)이 동시에 연결되어 병렬로 동일한 와이어(120)를 통해 컨트롤러로 신호 전송 가능하도록 패드 연결 가능하며, 이는 기능에 따라 선택적으로 구현 가능하다.In contrast, multiple electromyography electrodes (130) can be connected simultaneously and the pads can be connected in parallel to transmit signals to the controller through the same wire (120), and this can be selectively implemented depending on the function.
이와 같은 패드 및 와이어(120)의 연결을 위해 회로부가 기판(110)과 전극(130) 사이에 형성 가능하다.For connection of such pads and wires (120), a circuit portion can be formed between the substrate (110) and the electrode (130).
상기 회로부는 도 1a에서는 전체에 구현되어 있는 것으로 기재하였으나 이와 달리 일부에만 기재되어 있을 수 있다.The above circuit part is described as being implemented in its entirety in Fig. 1a, but may be described in only a part.
상기 근전도 전극(130)과 기판(110)의 접착은 일반적인 접착제(미도시)에 의해 형성 가능하며, 특별히 한정되지 않는다.The adhesion between the above-mentioned electromyography electrode (130) and the substrate (110) can be formed using a general adhesive (not shown) and is not particularly limited.
본 개시의 근전도 전극(130)은 개별적으로 형성되어 상기 기판(110) 위에 접착제에 의해 별도로 부착된다.The electromyography electrodes (130) of the present disclosure are individually formed and separately attached to the substrate (110) using an adhesive.
상기 근전도 전극(130)은 도 1a에 도시되어 있는 것과 같이, 탄성모재(131) 및 전도성 필러(132)를 포함한다.The above electromyography electrode (130) includes an elastic material (131) and a conductive filler (132), as illustrated in FIG. 1A.
상기 탄성모재(131)는 에코플렉스(EcoflexTM), 실비온(SilbioneTM), 폴리디메틸실록산(polydimethylsiloxane) 등과 같은 실리콘 엘라스토머일 수 있으나, 이와 달리 폴리우레탄(polyurethane, PU)과 같은 탄성 변형 가능한 고분자 수지일 수 있다.The above elastic material (131) may be a silicone elastomer such as Ecoflex TM , Silbione TM , polydimethylsiloxane, etc., but may alternatively be an elastically deformable polymer resin such as polyurethane (PU).
상기 탄성모재(131)는 상기 근전도 전극(130)에 대하여 20 내지 30w%, 바람직하게는 25w%정도 함유되어 있을 수 있다.The above elastic material (131) may be contained in an amount of 20 to 30 w%, preferably about 25 w%, relative to the electromyography electrode (130).
상기 탄성모재(131)는 탄성 변형 가능하여 피부의 곡면에서 용이하게 접촉가능하며, 점성을 가짐으로써 피부 접착성이 향상될 수 있다.The above elastic material (131) is elastically deformable and can easily come into contact with the curved surface of the skin, and has viscosity, so that skin adhesion can be improved.
상기 탄성모재(131) 내에 복수의 전도성 필러(132)가 분산되어 있다. 상기 전도성 필러(132)는 하부의 패드 및 와이어(120)와 연결되고, 피부와 접촉할 때, 피부의근육활성도에 따라 대전된 전하의 변화량을 감지 신호로 하부의 회로부(120)로 전달한다.A plurality of conductive fillers (132) are dispersed within the elastic substrate (131). The conductive fillers (132) are connected to the pads and wires (120) below, and when in contact with the skin, the amount of change in the electric charge generated according to the muscle activity of the skin is detected and transmitted to the circuit unit (120) below as a signal.
상기 복수의 전도성 필러(132)는 각각이 2차원의 면을 가지며, 장방향의 길이(d1)가 2-10 μm, 바람직하게는 4 내지 10μm를 충족할 수 있다. 상기 전도성 필러(132)의 상기 2차원의 면에서 장방향의 길이(d1)가 상기 범위의 상한치 초과인 경우에는 영률을 포함한 기계적인 물성이 저하되며, 하한치 미만일 경우에는 전기 전도성을 포함한 전기적인 물성이 저하된다. The above-described plurality of conductive fillers (132) each have a two-dimensional surface, and can satisfy a longitudinal length (d1) of 2-10 μm, preferably 4 to 10 μm. When the longitudinal length (d1) of the two-dimensional surface of the conductive filler (132) exceeds the upper limit of the above-described range, the mechanical properties including the Young's modulus deteriorate, and when it is less than the lower limit, the electrical properties including the electrical conductivity deteriorate.
이때, 상기 복수의 전도성 필러(132)는 2차원의 면이 바닥면(110a), 즉, 근전도 전극(130)의 바닥면(110a)과 평행하도록 배열될 수 있다. 즉, 상기 복수의 전도성 필러(132)가 2차원의 면을 가질 때, 상기 탄성모재(131) 내에서 바닥면(110a)에 대하여 소정 각을 갖도록 서있지 않고, 평행하게 정렬되어 있다.At this time, the plurality of conductive fillers (132) may be arranged so that the two-dimensional surface is parallel to the bottom surface (110a), that is, the bottom surface (110a) of the electromyography electrode (130). That is, when the plurality of conductive fillers (132) have a two-dimensional surface, they are aligned in parallel, rather than standing at a predetermined angle with respect to the bottom surface (110a) within the elastic substrate (131).
상기 근전도 센서는 신장 및 신축, 즉 탄성 변형이 발생하며, 상기 탄성 변형은 상기 근전도 센서의 바닥면(110a), 즉 X축과 Y축이 이루는 평면을 늘리거나 줄이며 진행된다. 이와 같은 전도성 필러(132)의 정렬에 의해 근전도 센서의 탄성 변형에도 불구하고 상기 전도성 필러(132)의 2차원 면 사이의 중첩이 유지될 수 있다.The above-described EMG sensor undergoes elongation and expansion, i.e., elastic deformation, and the elastic deformation progresses by increasing or decreasing the bottom surface (110a) of the EMG sensor, i.e., the plane formed by the X-axis and the Y-axis. By aligning the conductive filler (132) as described above, the overlap between the two-dimensional surfaces of the conductive filler (132) can be maintained despite the elastic deformation of the EMG sensor.
따라서, 전도성 필러(132)의 정렬에 의해 탄성 변형이 발생하더라도 상기 근전도 센서의 전기 전도도가 유지될 수 있다.Accordingly, even if elastic deformation occurs due to alignment of the conductive filler (132), the electrical conductivity of the electromyography sensor can be maintained.
이를 위해 상기 전도성 필러(132)는 상기 근전도 전극(130) 전체에 대하여, 70 내지 80w%, 바람직하게는 75w%정도 함유되어 있을 수 있다. To this end, the conductive filler (132) may be contained in an amount of about 70 to 80 w%, preferably about 75 w%, relative to the entire electromyography electrode (130).
상기 전도성 필러(132)는 은(Ag) 플레이크(flake), 금(Au) 플레이크, 구리(Cu) 플레이크일 수 있으나, 이에 한정되는 것은 아니다. The above conductive filler (132) may be, but is not limited to, silver (Ag) flakes, gold (Au) flakes, or copper (Cu) flakes.
이와 같이 상기 전도성 필러(132)가 균일하게 정렬되어 분산되어 있는 근전도 전극(130)은 두께(h1)가 30-90 um일 수 있으며, 바람직하게는 40 내지 80um 일 수 있으나, 이에 한정되지 않는다.The electromyography electrode (130) in which the conductive filler (132) is uniformly aligned and distributed may have a thickness (h1) of 30-90 um, preferably 40 to 80 um, but is not limited thereto.
상기 근전도 전극(130)은 상면(130a)에 복수의 통공(135)이 형성되어 있다.The above electromyography electrode (130) has a plurality of holes (135) formed on the upper surface (130a).
상기 상면(130a)은 사용자의 피부와 접촉하는 표면으로서, 상기 통공(135)은 도 1b와 같이 균일하게 배열 가능하나, 이에 한정되지 않는다.The upper surface (130a) above is a surface that comes into contact with the user's skin, and the perforations (135) can be arranged uniformly as shown in Fig. 1b, but are not limited thereto.
상기 통공(135)은 원형으로 형성되어 표면으로부터 바닥면으로 갈수록 직경(d2)이 일정하게 유지될 수 있으나, 이와 달리 바닥면으로 갈수록 직경(d2)이 감소하는 원뿔형으로 형성될 수 있다.The above-mentioned hole (135) may be formed in a circular shape so that the diameter (d2) remains constant from the surface to the bottom surface, but alternatively, it may be formed in a cone shape in which the diameter (d2) decreases as it goes toward the bottom surface.
상기 표면에서의 통공(135)의 직경(d2)의 최대값은 50~400um일 수 있으나, 이에 한정되지 않는다.The maximum value of the diameter (d2) of the hole (135) on the above surface may be 50 to 400 um, but is not limited thereto.
상기 통공(135)은 도 1b와 같이 행렬을 이루며 상면(130a)에 배치될 수 있으나, 이와 달리 짝수번째 행과 홀수번째 행이 어긋나도록 형성될 수 있다.The above-mentioned perforations (135) may be arranged on the upper surface (130a) in a matrix as shown in Fig. 1b, but may be formed so that the even and odd rows are misaligned.
이와 같이, 근전도 전극(130)은 도 2와 같이 사용자의 피부에 부착될 때, 상기 상면(130a)이 상기 사용자의 피부에 부착되어 상기 사용자의 피부의 근육활성도에 따른 전하 이동을 감지하여 전달한다.In this way, when the electromyography electrode (130) is attached to the user's skin as shown in FIG. 2, the upper surface (130a) is attached to the user's skin and detects and transmits charge movement according to muscle activity of the user's skin.
상기 근전도 전극(130)의 전기전도성을 이루는 복수의 전도성 필러(132)가 근전도 전극(130)의 바닥면(110a)과 평행하도록 배열됨으로써, 상기 근전도 센서의 바닥면, 즉 X축과 Y축이 이루는 평면을 늘리거나 줄이더라도 상기 전도성 필러(132)의 2차원 면 사이의 중첩이 유지될 수 있다.Since a plurality of conductive fillers (132) that form the electrical conductivity of the above-mentioned electromyography electrode (130) are arranged parallel to the bottom surface (110a) of the above-mentioned electromyography electrode (130), even if the bottom surface of the above-mentioned electromyography sensor, i.e. the plane formed by the X-axis and the Y-axis, is increased or decreased, the overlap between the two-dimensional surfaces of the conductive fillers (132) can be maintained.
또한, 상면(130a)의 복수의 통공(135)에 의해 사용자의 피부 발한에 의해 발생하는 수분을 통과시켜 외부로 증발할 수 있어 수분에 의해 근전도 전극(130)이 탈락되는 것을 방지할 수 있다.In addition, moisture generated by the user's skin sweating can pass through the multiple openings (135) of the upper surface (130a) and evaporate to the outside, thereby preventing the electromyography electrode (130) from falling off due to moisture.
또한, 근전도 센서는 신축성이 100% 이상이며, 낮은 피부 접촉 저항을 유지할 수 있으며, 장기간 사용에도 안정적인 신호대 잡음비(SNR)를 유지할 수 있어 사용자의 편의성 및 품질을 보장할 수 있다.In addition, the EMG sensor has more than 100% elasticity, can maintain low skin contact resistance, and can maintain a stable signal-to-noise ratio (SNR) even after long-term use, thereby ensuring user convenience and quality.
이와 같은 근전도 센서를 제조하기 위한 공정을 이하 도 3 내지 도 7을 참고하여 설명한다.The process for manufacturing such an electromyography sensor is described below with reference to FIGS. 3 to 7.
도 3은 도 1a 및 도 1b의 본 개시에 따른 전극(130)형 근전도 센서의 제조 방법을 나타내는 순서도이고, 도 4는 도 3의 무응력 저속 스핀 공정을 나타내는 도면이고, 도 5a 및 도 5b는 경화 및 지지필름 제거 공정을 나타내는 도면이고, 도 6a는 제1 실시예에 따른 통기성 패터닝 공정을 나타내는 도면이고, 도 6b는 제2 실시예에 따른 통기성 패터닝 공정을 나타내는 도면이며, 도 7a 및 도 7b는 제품화 공정을 나타내는 도면이다. FIG. 3 is a flowchart showing a method for manufacturing an electrode (130) type electromyography sensor according to the present disclosure of FIGS. 1a and 1b, FIG. 4 is a drawing showing a stress-free low-speed spin process of FIG. 3, FIGS. 5a and 5b are drawings showing a curing and support film removal process, FIG. 6a is a drawing showing a breathable patterning process according to the first embodiment, FIG. 6b is a drawing showing a breathable patterning process according to the second embodiment, and FIGS. 7a and 7b are drawings showing a product manufacturing process.
본 개시의 근전도 센서는 근전도 센서를 이루는 근전도 전극(130)을 형성하기 위한 전도성 잉크를 먼저 제작한다.The electromyography sensor of the present disclosure first produces conductive ink for forming electromyography electrodes (130) that constitute the electromyography sensor.
먼저, 전도성 잉크는 도전성 필러(132), 탄성모재(131) 및 소수성 용매(133)를 포함한다.First, the conductive ink includes a conductive filler (132), an elastic matrix (131), and a hydrophobic solvent (133).
상기 탄성모재(131)는 에코플렉스(EcoflexTM), 실비온(SilbioneTM), 폴리디메틸실록산(polydimethylsiloxane) 등과 같은 실리콘 엘라스토머일 수 있으나, 이와 달리 폴리우레탄(polyurethane, PU)과 같은 탄성 변형 가능한 고분자 수지일 수 있다.The above elastic material (131) may be a silicone elastomer such as Ecoflex TM , Silbione TM , polydimethylsiloxane, etc., but may alternatively be an elastically deformable polymer resin such as polyurethane (PU).
상기 탄성모재(131)는 상기 전도성 잉크 전체에 대하여 근전도 전극(130)에 대하여 10 내지 25w%일 수 있다.The elastic substrate (131) may be 10 to 25 w% of the entire conductive ink relative to the electromyography electrode (130).
상기 탄성모재(131)는 탄성 변형 가능하여 피부의 곡면에서 용이하게 접촉가능하며, 점성을 가짐으로써 피부접착성이 향상될 수 있다.The above elastic material (131) is elastically deformable and can easily come into contact with the curved surface of the skin, and has viscosity, so that skin adhesion can be improved.
상기 복수의 전도성 필러(132)는 각각이 2차원의 면을 가지며, 장방향의 길이(d1)가 2 길이(d1)가 2-10 μm, 바람직하게는 4 내지 10μm를 충족할 수 있다. 상기 전도성 필러(132)의 길이(d1)가 상기 범위의 상한치 초과인 경우에는 영률을 포함한 기계적인 물성이 저하되며, 하한치 미만일 경우에는 전기 전도성을 포함한 전기적인 물성이 저하된다. The above-described plurality of conductive fillers (132) each have a two-dimensional surface, and the longitudinal length (d1) can satisfy 2 to 10 μm, preferably 4 to 10 μm. When the length (d1) of the conductive filler (132) exceeds the upper limit of the above-described range, the mechanical properties including the Young's modulus deteriorate, and when it is less than the lower limit, the electrical properties including the electrical conductivity deteriorate.
이때, 상기 복수의 전도성 필러(132)는 전체 잉크에 대하여 30-50 wt%의 은, 금, 구리 등의 플레이크, 또는 그래핀일 수 있으나, 이에 한정되지 않는다.At this time, the plurality of conductive fillers (132) may be flakes of silver, gold, copper, etc., or graphene at 30-50 wt% with respect to the entire ink, but are not limited thereto.
또한, 상기 전도성 필러(132)는 서로 길이(d1)가 다른 2개의 전도성 필러(132)를 혼합하여 사용 가능하다.In addition, the conductive filler (132) can be used by mixing two conductive fillers (132) having different lengths (d1).
한편, 상기 전도성 잉크는 30-50w%의 소수성 용매(133)를 더 포함한다(S10).Meanwhile, the conductive ink further contains 30-50 w% of a hydrophobic solvent (133) (S10).
상기 소수성 용매(133)는 상기 전도성 잉크 내에서 상기 잉크의 점성을 낮추어 상기 전도성 필러(132)가 정렬되도록 유도하고, 경화 시간을 늦추어 가공을 용이하게 유도한다.The hydrophobic solvent (133) lowers the viscosity of the ink in the conductive ink to induce alignment of the conductive filler (132) and delays the curing time to facilitate processing.
상기 소수성 용매(133)는 무극성 용매(133)로서, 분자량이 60 g/mol 이상으로서, 바람직하게는 헥사데케인(Hexadecane) 또는 톨루엔(Toluene)이 적용 가능하다.The above hydrophobic solvent (133) is a nonpolar solvent (133) having a molecular weight of 60 g/mol or more, and preferably hexadecane or toluene.
소수성 용매(133)가 상기 중량비 미만인 경우, 전도성 필러(132)가 정렬되지 않고, 경화 시간이 짧아 잉크의 장기간 균일한 교반에 필요한 시간을 확보할 수 없으며, 상한치 초과일 경우에는 제작된 전극(130)의 신축성이 저하될 수 있다. If the hydrophobic solvent (133) is less than the above weight ratio, the conductive filler (132) is not aligned, the curing time is short, and the time required for long-term uniform stirring of the ink cannot be secured, and if it exceeds the upper limit, the elasticity of the manufactured electrode (130) may be reduced.
이와 같이, 상기 전도성 잉크를 위한 전도성 필러(132), 탄성 모재(131) 및 상기 소수성 용매(133)를 중량비에 따라 혼합한 후, 2시간 이상 저속으로 자기교반기를 이용하여 교반한다(S20).In this way, the conductive filler (132), elastic base material (131), and hydrophobic solvent (133) for the conductive ink are mixed according to the weight ratio, and then stirred at low speed using a magnetic stirrer for 2 hours or more (S20).
이와 같은 저속 장시간 교반에 의해 잉크(140) 내의 상기 전도성 필러(132), 일 예로 은 플레이크가 균일하게 분산되는 상태를 유지한다.By this type of low-speed, long-term stirring, the conductive filler (132), for example, silver flakes, in the ink (140) is maintained in a uniformly dispersed state.
다음으로, 도 4와 같이 기판(20) 위에 전도성 잉크(140)를 도포한다(S30).Next, conductive ink (140) is applied on the substrate (20) as shown in Fig. 4 (S30).
상기 기판(20) 위에 전도성 잉크(140)가 도포되는 단계는 외부에서 특정 응력 없이, 기판(110)에 최소한의 어떠한 외부 응력 없이 기판(20)에 도포되며, 바람직하게 100 rpm으로 60초가량 저속 스핀 코팅을 수행한다.The step of applying conductive ink (140) on the substrate (20) is performed by applying it to the substrate (20) without any specific external stress and without any external stress on the substrate (110) at least, and preferably performing low-speed spin coating at 100 rpm for about 60 seconds.
이때, 외부에서 특정 응력 없이 기판(20)에 도포된다 함은 페이스트, 또는 인젝션등의 주사 방식이나 스프레이 등의 분무 방식 등과 같이 가압하여 작은 면적으로 통해 넓은 면적에 도포되는 방식이 아닌, 가장자리 영역, 또는 중심 영역에서 낙차없이 부은 후 짧은 시간동안 저속으로 회전하여 기판(20)의 전체에 코팅을 수행한다.At this time, applying to the substrate (20) without a specific stress from the outside means that the coating is performed on the entire substrate (20) by pouring without a drop in the edge area or the center area and then rotating at a low speed for a short period of time, rather than applying to a wide area through a small area by applying pressure, such as a paste or injection method or a spray method such as a spray method.
이와 같이 외부 응력을 최소화한 상태로 저속으로 단시간 스핀 코팅을 수행하면 상기 전도성 필러(132)의 2차원 평면이 기판(20) 평면과 평행하도록 정렬된다.When spin coating is performed at a low speed for a short time with external stress minimized in this way, the two-dimensional plane of the conductive filler (132) is aligned parallel to the plane of the substrate (20).
즉, 스핀에 의한 원심력에 영향을 받지 않고, 균일한 분포 및 소수성 용매(133)의 분산에 의해 상기 전도성 필러(132)가 기판(20) 평면과 평행하도록 눕혀진다.That is, the conductive filler (132) is laid down parallel to the plane of the substrate (20) by the uniform distribution and dispersion of the hydrophobic solvent (133) without being affected by the centrifugal force caused by the spin.
다음으로, 도 5a와 같이, 150도 내지 180도의 온도 범위에서 30분 내지 2시간동안 가열하여 소수성 용매(133)를 모두 증발함으로써 상기 전도성 필러(132)를 소결하면서 상기 탄성모재(131)를 경화한다(S40).Next, as shown in Fig. 5a, the elastic base material (131) is hardened while sintering the conductive filler (132) by heating in a temperature range of 150 to 180 degrees for 30 minutes to 2 hours to evaporate all of the hydrophobic solvent (133) (S40).
이와 같은 경화 후 도 5b와 같이, 하부 기판(20)을 제거함으로써 상기 근전도 센서 전극(130)을 위한 필름을 단층으로 제조한다.After curing as shown in Fig. 5b, the lower substrate (20) is removed to manufacture a film for the electromyography sensor electrode (130) as a single layer.
한편, 도 1b와 같이 근전도 센서 전극(130)의 표면에 통기성 통공(135)을 형성하기 위해, 도 6a 및 도 6b와 같이 마이크로 패터닝 몰드(50a, 50b)를 적용 가능하다(S50).Meanwhile, in order to form a breathable hole (135) on the surface of the electromyography sensor electrode (130) as shown in Fig. 1b, a micro-patterning mold (50a, 50b) as shown in Figs. 6a and 6b can be applied (S50).
상기 마이크로 패터닝 몰드(50a)는 3차원 입체 프린터를 이용하여 제작가능하며, 복수의 니들(51, 52)이 형성된 상태로 형성되어 있다.The above micro patterning mold (50a) can be manufactured using a three-dimensional printer, and is formed with a plurality of needles (51, 52) formed.
상기 복수의 니들(51, 52)은 도 6a와 같이 원통형 니들(51)일 수 있으며, 도 6b와 같이 원뿔형 니들(52)일 수 있다.The above plurality of needles (51, 52) may be cylindrical needles (51) as shown in Fig. 6a, or may be conical needles (52) as shown in Fig. 6b.
상기 근전도 센서 전극(130)을 위한 필름은 상기 마이크로 패터닝 몰드(50a, 50b) 위에 가압하거나, 롤링함으로써 표면, 즉 상면(130a)에 도 6a의 원형 패턴(circle pattern) 또는 도 6b의 도트 패턴(dot pattern)을 형성할 수 있다.The film for the above-described electromyography sensor electrode (130) can form a circle pattern of FIG. 6a or a dot pattern of FIG. 6b on the surface, i.e., the upper surface (130a), by pressing or rolling it over the micro-patterning mold (50a, 50b).
상기 투과성 통공(135)은 원형 패턴 또는 도트 패턴을 형성할 때, 각각 상면(130a)에서 하면으로 관통되거나 원뿔형으로 직경(d2)이 감소하는 형상을 유지할 수 있다. 상기 상면(130a)에서의 직경(d2)의 최대값은 통공(135)의 직경(d2)의 최대값은 50~400um일 수 있으나, 이에 한정되지 않는다.The above-mentioned permeable hole (135) can maintain a shape in which the diameter (d2) decreases from the upper surface (130a) to the lower surface or in a conical shape when forming a circular pattern or a dot pattern. The maximum value of the diameter (d2) on the upper surface (130a) may be 50 to 400 um, but is not limited thereto.
상기 통공(135)은 도 1b와 같이 행렬을 이루며 상면(130a)에 배치될 수 있으나, 이와 달리 짝수번째 행과 홀수번째 행이 어긋나도록 형성될 수 있다.The above-mentioned perforations (135) may be arranged on the upper surface (130a) in a matrix as shown in Fig. 1b, but may be formed so that the even and odd rows are misaligned.
이와 같이, 투과성 통공(135)이 형성된 근전도 센서 전극(130)은 원하는 크기로 절단하여 웨어러블 장치에 부착하여 제품화 가능하다(S60).In this way, the electromyography sensor electrode (130) with the permeable hole (135) formed can be cut to a desired size and attached to a wearable device to be commercialized (S60).
일 예로, 도 7a와 같이 본체, 또는 기판(110)에 접착제를 통해 근전도 센서 전극(130)을 부착한다.For example, as shown in Fig. 7a, an electromyography sensor electrode (130) is attached to a main body or substrate (110) using an adhesive.
이때, 상기 본체(110)는 폴리우레탄과 같이 탄성을 가지는 수지로 형성되는 섬유로서, 스포츠 테이프 형태로 제조 판매 가능하다.At this time, the main body (110) is a fiber formed from an elastic resin such as polyurethane, and can be manufactured and sold in the form of a sports tape.
상기 본체(110)의 외부를 향하는 전면에는 패턴(111)이 띠 형태를 이루며 인쇄되어 있으며, 신체 부위와 맞닿는 내측면의 신체의 적어도 하나의 특정 부위와 대응하는 위치에 상기 근전도 센서 전극(130)을 부착하여 제조 가능하다.A pattern (111) is printed in a band shape on the front surface facing the outside of the main body (110), and the electromyography sensor electrode (130) can be attached to a position corresponding to at least one specific part of the body on the inner surface that comes into contact with the body part, thereby manufacturing the body.
한편, 도 7b와 같이 의료용 테이프 본체(110a)에 와이어 일체형 근전도 전극(130)을 형성함으로써 부착 가능하다.Meanwhile, as shown in Fig. 7b, it is possible to attach the wire-integrated electromyography electrode (130) by forming it on the medical tape body (110a).
이와 같은 의료용 테이프 본체(110a)에 일체화된 근전도 전극(130)은 상기 와이어의 끝단에 패드(120a)로 감지 신호를 전송할 수 있다. 도 7b에서는 상기 근전도 센서 영역을 보호하기 위하여 마그네틱 커버(150)가 별도 부착되어 있으나, 이에 한정되지 않는다.The electromyography electrode (130) integrated into the medical tape body (110a) can transmit a detection signal to the pad (120a) at the end of the wire. In Fig. 7b, a magnetic cover (150) is separately attached to protect the electromyography sensor area, but is not limited thereto.
이와 같이 형성된 근전도 센서 전극(130)은 상기 웨어러블 장치에 적용될 때, 통기성, 신축성에 따른 전기전도성, 신뢰성 및 부착력을 확보할 수 있다.The electromyography sensor electrode (130) formed in this manner can secure electrical conductivity, reliability, and adhesiveness according to breathability and elasticity when applied to the wearable device.
이하에서는 본 개시의 일 실험예를 통해 제조된 근전도 센서 전극(130)을 통해 다양한 특성을 측정한 것이다.Below, various characteristics are measured using an electromyography sensor electrode (130) manufactured through an experimental example of the present disclosure.
실험예Experimental example
본 개시의 실험예에서는 전도성 잉크(140)로서, 은 페이스트 43w%, 에코플렉스(EcoflexTM) 14w%, 헥사데케인 43w%를 혼합하여 전도성 잉크(140)를 제조한다.In the experimental example of the present disclosure, conductive ink (140) is prepared by mixing 43 wt% of silver paste, 14 wt% of Ecoflex TM , and 43 wt% of hexadecane.
상기 은 플레이크는 각각이 2차원의 면을 가지며, 장방향의 길이(d1)가 4-8 μm인 것과 10μm 인 것을 혼합하여 사용하였다.The above silver flakes each have a two-dimensional surface, and those with a longitudinal length (d1) of 4-8 μm and those with a length of 10 μm were used in combination.
상기 전도성 잉크(140)를 2시간 이상 저속으로 자기교반기를 이용하여 교반한 후, 저속 장시간 교반에 의해 잉크(140) 내의 상기 은 플레이크가 균일하게 분산되는 상태를 유지하면, 외부 응력 없이 기판(110)에 도포하여, 100 rpm으로 60초가량 저속 스핀 코팅을 수행하여 60μm 두께(h1)의 박막을 형성하였다.After stirring the conductive ink (140) at low speed using a magnetic stirrer for more than 2 hours, and maintaining the state in which the silver flakes in the ink (140) are uniformly dispersed by the low-speed long-term stirring, it is applied to a substrate (110) without external stress, and low-speed spin coating is performed at 100 rpm for about 60 seconds to form a thin film with a thickness of 60 μm (h1).
이와 같이 외부 응력을 최소화한 상태로 저속으로 단시간 스핀 코팅을 수행하면 상기 은 플레이크의 2차원 평면이 기판(110) 평면과 평행하도록 정렬된다.When spin coating is performed at a low speed for a short time with external stress minimized in this way, the two-dimensional plane of the silver flake is aligned parallel to the plane of the substrate (110).
이후, 150도 내지 180도의 온도 범위에서 30분 내지 2시간 동안 가열하여 헥사데카인을 모두 증발시키고 상기 은 플레이크를 소결하면서 상기 탄성모재(131)를 경화하여 40 내지 50 μm 두께(h1)의 박막을 형성하였다.Thereafter, the hexadecane was completely evaporated by heating in a temperature range of 150 to 180 degrees for 30 minutes to 2 hours, and the elastic matrix (131) was hardened while sintering the silver flakes to form a thin film with a thickness of 40 to 50 μm (h1).
다음으로, 기판(110)을 제거한 후, 마이크로 패터닝 몰드에 롤링하여 통기성 통공(135)을 형성하여 본 개시의 실험예에 따른 도 8a 내지 도 8b의 근전도 센서 전극(130)을 형성하였다.Next, after removing the substrate (110), it was rolled on a micro patterning mold to form breathable holes (135) to form the electromyography sensor electrode (130) of FIGS. 8a to 8b according to the experimental example of the present disclosure.
도 8a 및 도 8b는 도 3의 제조 방법으로 제조된 전극(130)형 근전도 센서의 통기성 패턴을 나타내는 단면사진이다.FIGS. 8a and 8b are cross-sectional photographs showing the breathability pattern of an electrode (130)-type electromyography sensor manufactured using the manufacturing method of FIG. 3.
도 8a 및 도 8b의 확대 사진과 같이, 마이크로 스케일의 통기성 통공(135)을 전자현미경으로 촬영한 사진을 관찰하면, 근전도 센서 전극(130)을 관통하며 상기 통공(135)이 형성되어 있는 것을 확인할 수 있다.As shown in the enlarged photographs of FIGS. 8a and 8b, when observing photographs taken by an electron microscope of micro-scale breathable pores (135), it can be confirmed that the pores (135) are formed penetrating the electromyography sensor electrode (130).
상기 따라서, 이와 같은 통공(135)에 의해 피부 표면으로부터 발생하는 습기가 외부로방출될 수 있어 수증기 투과성이 향상될 수 있으며, 이는 도 8c의 그래프에서 나타나는 바와 같다.Accordingly, moisture generated from the skin surface can be released to the outside through such a perforation (135), thereby improving water vapor permeability, as shown in the graph of Fig. 8c.
도 8a와 같이 circle pattern 인 경우와 도 6b와 같이 dot pattern인 경우의 동일 면적에서의 수증기 투습성을 각각 측정하면, 전면 오픈되어 있는 경우의 투습성이 30 g/h.m2일 때, 통공(135)이 형성되어 있는 본 개시의 경우, 6 g/h.m2이상, 바람직하게는 10 g/h.m2 이상, 특히, 실험예의 circle pattern 인 경우 12 g/h.m2이상의 투습성을 보인다.When measuring the water vapor permeability in the same area in the case of a circle pattern as in Fig. 8a and in the case of a dot pattern as in Fig. 6b, when the moisture permeability in the case of the entire surface being open is 30 g/hm 2 , in the case of the present disclosure in which the through holes (135) are formed, the moisture permeability is 6 g/hm 2 or more, preferably 10 g/hm 2 or more, and particularly, in the case of the circle pattern of the experimental example, the moisture permeability is 12 g/hm 2 or more.
이는 패턴이 전혀 없는 경우에 대하여 의미있는 투습성을 나타낼 수 있다.This can provide meaningful penetration in cases where there is no pattern at all.
이와 같이 투습성이 확보되면 피부에 부착되어 피부에서 발한이 발생하여 습기가 발생하는 경우, 이와 같은 습기를 외부로 방출하여 부착력을 유지할 수 있다.When moisture permeability is secured in this way, when attached to the skin and sweat is generated from the skin and moisture is generated, the moisture can be released to the outside to maintain adhesion.
한편, 상기 실험예의 근전도 센서 전극(130)은 다음과 같은 특징을 가진다.Meanwhile, the electromyography sensor electrode (130) of the above experimental example has the following characteristics.
도 9a는 본 개시에 따른 신축성 전극(130)의 단면 사진이고, 도 9b는 비교예의 전극(130)형 근전도 센서의 사진이다. 도 10a는 본 개시에 따른 신축시의 개념도이고, 도 10b는 비교예의 신축시의 개념도이다.Fig. 9a is a cross-sectional photograph of a flexible electrode (130) according to the present disclosure, and Fig. 9b is a photograph of an electrode (130) type electromyography sensor of a comparative example. Fig. 10a is a conceptual diagram of a stretchable electrode according to the present disclosure, and Fig. 10b is a conceptual diagram of a stretchable electrode of a comparative example.
도 9b 및 도 10b와 같이 비교예의 근전도 센서 전극(130)의 경우, 2차원의 전도성 필러(132)의 평면이 신장되는 평면과 평행하게 배열하지 않는다. 따라서, 신장 및 신축에 따라 배열이 더욱 흐트러지게 된다.In the case of the electromyography sensor electrode (130) of the comparative example as shown in FIGS. 9b and 10b, the plane of the two-dimensional conductive filler (132) is not arranged parallel to the elongated plane. Therefore, the arrangement becomes more disordered as it elongates and contracts.
한편, 본 개시의 실험예는 도 9a 및 도 10a와 같이 2차원의 전도성 필러(132)의 평면이 신장되는 평면과 대부분 평행하게 배열되어 있다. 이는 앞서 설명한 바와 같이, 소수성 용매(133)에 의한 분산 및 외부 응력 없이 초저속도의 회전에 의한 코팅으로 구현된다.Meanwhile, in the experimental example of the present disclosure, as shown in FIGS. 9A and 10A, the plane of the two-dimensional conductive filler (132) is arranged mostly parallel to the elongated plane. As described above, this is implemented by dispersion by a hydrophobic solvent (133) and coating by ultra-low-speed rotation without external stress.
상기와 같은 배열에 의해 근전도 전극(130)의 신장 및 신축에 따라 배열이 흐트러지지 않고, 상하의 연결이 연속적으로 유지된다.With the arrangement as described above, the arrangement is not disturbed according to the elongation and expansion of the electromyography electrode (130), and the upper and lower connections are continuously maintained.
도 11a는 본 개시와 비교예의 전면 전도도이고, 도 11b는 후면 전도도이다.Fig. 11a is the front conductivity of the present disclosure and a comparative example, and Fig. 11b is the back conductivity.
이와 같은 본 개시의 실험예에 따른 근전도 전극(130)의 전기전도도와 비교예의 전기전도도는 전면과 후면에서 약간 상이하나 그 패턴은 유사하다.The electrical conductivity of the electromyography electrode (130) according to the experimental example of the present disclosure and the electrical conductivity of the comparative example are slightly different at the front and back, but their patterns are similar.
도 11a는 전면 전기전도도를 나타내고 도 11b는 후면 전기 전도도를 나타낸다.Figure 11a shows the front electrical conductivity, and Figure 11b shows the back electrical conductivity.
일반적으로, 전도성 필러(132)가 정렬된 상태나 정렬되지 않은 상태 모두 전면의 전기 전도도가 후면의 전기 전도도보다 높은 것을 관찰할 수 있다. 이때, 상기 전기 전도도는 비교예인 은 플레이크가 정렬되지 않은 도 9b의 전기 전도도와 실험예인 은 플레이크가 정렬된 도 9a의 전기전도도를 비교한 것이다.In general, it can be observed that the electrical conductivity of the front side is higher than that of the back side, whether the conductive filler (132) is aligned or not. At this time, the electrical conductivity is a comparison of the electrical conductivity of Fig. 9b, which is a comparative example in which the silver flakes are not aligned, and the electrical conductivity of Fig. 9a, which is an experimental example in which the silver flakes are aligned.
도 11a 및 도 11b를 참고하면, 전면과 후면인 피부부착면 모두에서 실험예의 전기전도도가 훨씬 높은 것을 확인할 수 있다.Referring to Figures 11a and 11b, it can be confirmed that the electrical conductivity of the experimental example is much higher on both the front and back skin-attached surfaces.
도 12a는 본 개시의 실험예와 비교예의 신축도에 따른 저항 변화를 나타낸 것이고, 도 12b는 본 개시의 실험예와 비교예의 주파수에 따른 접촉 임피던스를 나타낸 것이다.Figure 12a shows the change in resistance according to the degree of elasticity of the experimental example and comparative example of the present disclosure, and Figure 12b shows the contact impedance according to the frequency of the experimental example and comparative example of the present disclosure.
도 12a를 참고하면, 신축도, 즉 상기 근전도 센서 전극(130)을 면상으로 늘리는 경우, 처음 면적에 대한 늘어난 면적의 비율인 신축도에 따른 저항 변화를 나타낸 것이다.Referring to Figure 12a, it shows the change in resistance according to the degree of elasticity, that is, the ratio of the increased area to the initial area when the electromyography sensor electrode (130) is stretched in a plane.
상기 저항 변화가 클수록 전기전도도가 감소하는 것으로 해석 가능하다. 따라서, 도 12a에 따르면 은 플레이크가 정렬하고 있는 실험예의 경우, 저항 변화가 현저히 작은 것을 확인할 수 있어 전기전도도에 변화가 작은 것으로 해석할 수 있다.It can be interpreted that the greater the change in resistance, the lower the electrical conductivity. Therefore, according to Fig. 12a, in the case of the experimental example where the silver flakes are aligned, it can be confirmed that the change in resistance is significantly small, so it can be interpreted that the change in electrical conductivity is small.
한편, 도 12b는 도 12a의 값을 주파수 도메인에서 나타낸 것이다.Meanwhile, Fig. 12b shows the values of Fig. 12a in the frequency domain.
이때, 비교예 1은 도 12a의 비교예와 같이 은플레이크가 정렬하지 않은 상태의 근전도 센서 전극(130)을 나타낸 것이고, 비교예 2는 상용되는 Ag/AgCl 습식전극(130)의 근전도 센서 전극(130)을 나타낸 것이다.At this time, Comparative Example 1 shows an electromyography sensor electrode (130) in a state where silver flakes are not aligned, as in the Comparative Example of Fig. 12a, and Comparative Example 2 shows an electromyography sensor electrode (130) of a commercially available Ag/AgCl wet electrode (130).
도 12b를 검토하면, 본 개시의 실험예의 피부 접촉 임피던스는 전극(130)면적을 1.5cm2으로 할 때, 상용 습식 전극(130)과 유사한 수준의 피부 접촉 임피던스를 가지며, 이는 정렬하지 않은 은 플레이크를 포함하는 비교예 1보다는 높은 값을 가진다.When examining FIG. 12b, the skin contact impedance of the experimental example of the present disclosure has a skin contact impedance at a level similar to that of a commercial wet electrode (130) when the electrode (130) area is 1.5 cm 2 , and has a higher value than that of Comparative Example 1 including non-aligned silver flakes.
또한, 상용 습식 전극(130)과 유사한 수준의 신호대 잡음비를 가지며, 그에 따라 상용되는 습식 전극(130)과 유사 수준의 신호 전송 효율을 가질 수 있다. In addition, it has a signal-to-noise ratio similar to that of a commercial wet electrode (130), and accordingly, it can have a signal transmission efficiency similar to that of a commercial wet electrode (130).
도 13은 본 개시의 실험예에 따른 전극(130)형 근전도 센서를 신장하는 사진이다.Figure 13 is a photograph showing an extension of an electrode (130) type electromyography sensor according to an experimental example of the present disclosure.
도 13과 같이, 실험예의 근전도 센서 전극(130)을 신장하면 100% 이상의 신장율을 가지며 평면 상에서 어느 축(x축 또는 y축)으로든 신장 가능하다. 이와 같은 신장율을 가짐에 따라 피부의 굴곡을 따라 부착이 가능하다.As shown in Fig. 13, when the electromyography sensor electrode (130) of the experimental example is stretched, it has an elongation rate of 100% or more and can be stretched in any axis (x-axis or y-axis) on a plane. With such an elongation rate, attachment is possible along the curve of the skin.
도 14는 본 개시의 전극(130)형 근전도 센서와 비교예의 부착력을 비교한 것이다.Figure 14 compares the adhesion of the electrode (130) type electromyography sensor of the present disclosure with that of a comparative example.
도 14에서는 포스 게이지를 이용하여 본 개시의 실험예에 따른 근전도 센서 전극(130)과 대조예3의 부착력을 측정하였다.In Fig. 14, the adhesion force of the electromyography sensor electrode (130) according to the experimental example of the present disclosure and the control example 3 was measured using a force gauge.
측정 조건은 전극(130)의 부착 면적을 2*2cm, 피부 습도 30%, 90도 peeling test를 사용하였다.The measurement conditions were an electrode (130) attachment area of 2*2cm, skin humidity of 30%, and a 90-degree peeling test.
이때, 대조예3의 경우, 일반적으로 사용되는 의료용 테이프로서, 부착력이 2.0kPa 정도를 가지는 것을 기준으로 할 때, 본 개시의 근전도 센서 전극(130)의 경우, 1.1kPa 정도의 피부 부착력을 가지는 것을 확인하였다.At this time, in the case of Control Example 3, it was confirmed that the electromyography sensor electrode (130) of the present disclosure had a skin adhesion strength of about 1.1 kPa, based on the commonly used medical tape having an adhesion strength of about 2.0 kPa.
이와 같은 부착력의 경우, 일반적인 의료용 테이프보다는 낮으나, 특정 위치에 부착될 때 위치 고정을 유도할 정도의 부착력으로서 안정적으로 장기간 부착될 수 있어 웨어러블 장치의 전극(130)으로 활용하기에 적합하다.In the case of this type of adhesive strength, although lower than that of general medical tape, it is an adhesive strength that induces position fixation when attached to a specific location, and can be stably attached for a long period of time, making it suitable for use as an electrode (130) of a wearable device.
이와 같이, 본 개시의 박막형 전도성 전극(130)은 피부의 최대 신축 범위에서 약 15%의 저항 변화만이 관측되며, 보편적으로 사용되는 전극(130) 면적인 지름 2.5 cm의 원형 전극(130) 기준 피부 접촉 임피던스가 고품질의 생체 신호를 위해 권고하는 피부 접촉 임피던스인 50 kΩ 이하(@100Hz)로, 웨어러블 전기생리 신호 센서에 사용하기 적합하다. In this way, the thin film-type conductive electrode (130) of the present disclosure is suitable for use in a wearable electrophysiological signal sensor, as only about 15% of resistance change is observed in the maximum elastic range of the skin, and the skin contact impedance based on a circular electrode (130) having a diameter of 2.5 cm, which is a commonly used electrode (130) area, is 50 kΩ or less (@100Hz), which is the skin contact impedance recommended for high-quality biosignals.
또한, 이상에서는 본 개시의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.In addition, although the preferred embodiments of the present disclosure have been illustrated and described above, the present disclosure is not limited to the specific embodiments described above, and various modifications may be made by a person skilled in the art without departing from the gist of the present disclosure as claimed in the claims, and such modifications should not be individually understood from the technical idea or prospect of the present disclosure.
[부호의 설명][Explanation of symbols]
110: 기판 120: 와이어110: substrate 120: wire
130: 근전도 센서 전극130: EMG sensor electrodes
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2023/007443 WO2024248179A1 (en) | 2023-05-31 | 2023-05-31 | Electrode-type electromyogram sensor and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2023/007443 WO2024248179A1 (en) | 2023-05-31 | 2023-05-31 | Electrode-type electromyogram sensor and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024248179A1 true WO2024248179A1 (en) | 2024-12-05 |
Family
ID=93657851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/007443 WO2024248179A1 (en) | 2023-05-31 | 2023-05-31 | Electrode-type electromyogram sensor and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024248179A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0179939B1 (en) * | 1994-02-16 | 1999-04-01 | 노부찌까 우라까베 | Biometric Print Electrode |
KR101357671B1 (en) * | 2012-07-26 | 2014-02-04 | 인하대학교 산학협력단 | Structure and fabrication method of dry bio-electrode with super hydrophobic surface for measurement of living body signal |
US20190000337A1 (en) * | 2015-12-22 | 2019-01-03 | 3M Innovative Properties Company | Sensor for electrode and processes for production |
KR102055511B1 (en) * | 2016-03-03 | 2019-12-12 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Biological electrode and manufacturing method thereof |
JP2022501123A (en) * | 2018-09-21 | 2022-01-06 | スマートメディクス エスピー. ゼット オー. オー.Smartmedics Sp. Z O.O. | Electrode patch with multiple measurement points |
-
2023
- 2023-05-31 WO PCT/KR2023/007443 patent/WO2024248179A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0179939B1 (en) * | 1994-02-16 | 1999-04-01 | 노부찌까 우라까베 | Biometric Print Electrode |
KR101357671B1 (en) * | 2012-07-26 | 2014-02-04 | 인하대학교 산학협력단 | Structure and fabrication method of dry bio-electrode with super hydrophobic surface for measurement of living body signal |
US20190000337A1 (en) * | 2015-12-22 | 2019-01-03 | 3M Innovative Properties Company | Sensor for electrode and processes for production |
KR102055511B1 (en) * | 2016-03-03 | 2019-12-12 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Biological electrode and manufacturing method thereof |
JP2022501123A (en) * | 2018-09-21 | 2022-01-06 | スマートメディクス エスピー. ゼット オー. オー.Smartmedics Sp. Z O.O. | Electrode patch with multiple measurement points |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017069566A1 (en) | Dry electrode for detecting biosignal and method for manufacturing same | |
WO2013111985A1 (en) | Neural element comprising nanowires and support layer | |
US20250000419A1 (en) | Skin-mountable electronic devices and methods of using and fabricating the same | |
JP5883923B2 (en) | Fabric for acquiring physiological signals | |
Bihar et al. | Fully printed all-polymer tattoo/textile electronics for electromyography | |
WO2020036253A1 (en) | Pixel-type pressure sensor and manufacturing method therefor | |
ES2547205T3 (en) | Electronic textile assembly | |
WO2015083958A1 (en) | Electrical impedance tomography device | |
WO2003072185A3 (en) | Selectively detachable and wearable electrode/sensors | |
WO2018101786A1 (en) | Electrode belt device for measuring bio-signal | |
WO2017204514A1 (en) | Pressure detection sensor and pressure detection insole including same | |
CN101879059B (en) | Body surface bio-potential sensor having multi-electrode and apparatus having the same | |
US11918059B2 (en) | Textile product with skin-contact element and/or establishing external contact with the skin-contact element, and method for producing the same | |
EP1925718A2 (en) | Process for making a textile comprising integrated conductive areas and textile thereby obtained | |
WO2020159057A1 (en) | Soft sensor-embedded glove and method for manufacturing same | |
WO2020162698A1 (en) | Hand rehabilitation exercise device | |
WO2020204544A2 (en) | Nanofiber mesh bioelectrode and manufacturing method therefor | |
WO2019143019A1 (en) | Soft sensor and manufacturing method therefor, and hand-wearable device having soft sensor and manufacturing method therefor | |
WO2024248179A1 (en) | Electrode-type electromyogram sensor and manufacturing method therefor | |
WO2018093163A1 (en) | Neonatal apnea measuring device, operation method thereof, and neonatal apnea measuring system | |
WO2019112246A2 (en) | Balloon-type retinal stimulation device and method for manufacturing same | |
KR20200029432A (en) | Adhesive transparent electrode and method for manufacturing thereof | |
WO2020196975A1 (en) | Electrode for measuring biosignals | |
Takei et al. | Wearable muscle training and monitoring device | |
WO2019093773A1 (en) | Deformation sensor unit and skin sensor module comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23939819 Country of ref document: EP Kind code of ref document: A1 |