WO2024247809A1 - Holographic projector device and control method - Google Patents
Holographic projector device and control method Download PDFInfo
- Publication number
- WO2024247809A1 WO2024247809A1 PCT/JP2024/018634 JP2024018634W WO2024247809A1 WO 2024247809 A1 WO2024247809 A1 WO 2024247809A1 JP 2024018634 W JP2024018634 W JP 2024018634W WO 2024247809 A1 WO2024247809 A1 WO 2024247809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spatial light
- hologram
- image
- degradation
- light modulation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 77
- 238000012937 correction Methods 0.000 claims abstract description 148
- 230000006866 deterioration Effects 0.000 claims abstract description 20
- 230000015556 catabolic process Effects 0.000 claims description 170
- 238000006731 degradation reaction Methods 0.000 claims description 170
- 230000003287 optical effect Effects 0.000 claims description 54
- 239000004973 liquid crystal related substance Substances 0.000 claims description 33
- 230000004075 alteration Effects 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 21
- 230000008569 process Effects 0.000 description 37
- 238000004364 calculation method Methods 0.000 description 33
- 238000010586 diagram Methods 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 238000009826 distribution Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001093 holography Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
Definitions
- This technology relates to a holographic projector device that projects images using holography technology and a control method for the same, and in particular to a technology for correcting degradation in the resolution of a reproduced image.
- a holographic projector device that projects an image using holography technology, which makes it possible to display 2D (two-dimensional) images and 3D (three-dimensional) images.
- Some holographic projector devices are configured to form holograms using a spatial light modulator such as a liquid crystal panel.
- a spatial light modulator such as a liquid crystal panel.
- the spatial light modulation pattern in the spatial light modulator it is possible to change the hologram to be formed, and the displayed image can be changed.
- the spatial light modulation pattern in the spatial light modulator it is possible to switch still images to be displayed or to display moving images.
- Patent Document 1 can be cited as an example of related prior art.
- Patent Document 1 discloses technology for increasing the resolution of a hologram image at the user's gaze point.
- degradation in the resolution of the reconstructed image may occur along the projection path for projecting the reconstructed image.
- no technology has been established to correct the degradation of resolution that occurs in the projection path. For example, it may be possible to use a high-resolution spatial light modulator in anticipation of the degradation of resolution, but in that case, the spatial light modulator to be used becomes expensive, making it difficult to reduce the price.
- This technology was developed in light of the above circumstances, and aims to reduce the cost of holographic projector devices while suppressing degradation of resolution.
- a holographic projector device includes a light source, a spatial light modulation unit that performs spatial light modulation on light emitted from the light source, a projection unit that projects a reconstructed image generated by the spatial light modulation unit, and a control unit that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least resolution degradation elements of the reconstructed image that occur on the projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
- FIG. 1 is a diagram showing an example of the configuration of a holographic projector device according to a first embodiment of the present technology.
- 1 is an explanatory diagram of the principle of hologram formation by spatial light phase modulation.
- FIG. 11 is an explanatory diagram of a measure against disclination.
- FIG. 2 is an explanatory diagram of various functions for implementing a degradation correction method according to a first embodiment.
- FIG. 11 is an explanatory diagram of an example of shift multiplexing display.
- 4 is a flowchart showing an example of a specific processing procedure to be executed to realize a degradation correction method according to a first embodiment.
- FIG. 13 is a diagram showing an example of the configuration of a holographic projector device according to a second embodiment.
- FIG. 1 is an explanatory diagram of the principle of hologram formation by spatial light amplitude modulation.
- FIG. 13 is a diagram showing an example of the configuration of a holographic projector device according to a third embodiment.
- FIG. 13 is an explanatory diagram of a degradation correction method according to a third embodiment.
- FIG. 13 is an explanatory diagram of various functions for realizing a degradation correction method according to a third embodiment.
- 13 is a flowchart showing an example of a specific processing procedure to be executed to realize a degradation correction method according to a third embodiment.
- FIG. 11 is an explanatory diagram of problems that may occur when the playback surface is uneven.
- 13 is an explanatory diagram of a case where a correction hologram is calculated assuming a reproduction surface having projections and recesses.
- FIG. FIG. 13 is an explanatory diagram of a modified holographic projector device.
- FIG. 1 is a diagram showing an example of the configuration of a holographic projector device 1 according to a first embodiment of the present technology.
- a holographic projector device that displays a 2D (two-dimensional) image is illustrated.
- the holographic projector device 1 includes a light source 2, a beam expander 3, a collimator lens 4, a beam splitter 5, a spatial light modulation unit 6, a relay lens 7, a relay lens 8, an optical filter 9, a projection lens 10, a control unit 11, and a drive unit 12.
- Light source 2 is provided as a light source for generating a reconstructed image.
- a coherent light source it is preferable to use a coherent light source as the light source for the reconstructed image, and in this example, a semiconductor laser is used as light source 2.
- the light emitted from the light source 2 is converted into divergent light by the beam expander 3 , and then converted into parallel light by the collimator lens 4 , and enters the beam splitter 5 .
- the light incident on the beam splitter 5 from the light source 2 side in this manner is reflected by the selective reflection surface of the beam splitter 5 and enters the spatial light modulation unit 6 as shown in the figure.
- the spatial light modulation unit 6 has a spatial light modulator and performs spatial light modulation on the incident light by the spatial light modulator. This spatial light modulation is for holographic projection, and a reconstructed image for realizing image display is generated by the spatial light modulation.
- the spatial light modulator in the spatial light modulation unit 6 is a spatial light phase modulator (hereinafter sometimes abbreviated as "phase modulator") that performs spatial light phase modulation on incident light.
- phase modulator a spatial light phase modulator
- a liquid crystal panel is used as the phase modulator.
- the liquid crystal panel is configured by two-dimensionally arranging a plurality of pixels in which the orientation state of the liquid crystal can be adjusted, and it is possible to perform spatial light phase modulation on the incident light independently for each pixel.
- LCOS Liquid Crystal On Silicon
- the spatial light modulation unit 6 has a reflective spatial light modulator as the spatial light modulator. Therefore, the light that has been spatially modulated by the spatial light modulation unit 6 (spatial light phase modulation in this example) is emitted from the spatial light modulation unit 6 as reflected light from the reflective spatial light modulator (a reflective liquid crystal panel in this example).
- a polarizing beam splitter as the beam splitter 5, it is possible to reduce the light loss associated with the reflection of the incident light from the light source 2 side and the transmission of the incident light from the spatial light modulation unit 6, thereby improving the efficiency of light utilization.
- relay lens 7 As shown in the figure, the light incident on relay lens 7 is converted from parallel light to convergent light, focuses at a predetermined position, and then enters relay lens 8 in the form of diffused light.
- Relay lens 8 converts the incident diffused light into parallel light and emits it to projection lens 10.
- An optical filter 9 is disposed between the relay lenses 7 and 8.
- the optical filter 9 transmits the first-order diffracted light at the position where the light emitted from the relay lens 7 is focused, and blocks other light (zeroth-order diffracted light, higher-order diffracted light, etc.). This removes noise light.
- the projection lens 10 enlarges and projects the reproduced image incident via the relay lens 8 onto a projection target such as a screen S. This makes it possible to display a 2D image on a projection target such as a screen S.
- the control unit 11 is configured as a computer device equipped with a microcomputer having, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., and executes various processes related to image display in the holographic projector device 1.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the driving unit 12 is configured with a driving circuit for driving the spatial light modulator (in this example, a phase modulator) of the spatial light modulation unit 6.
- the driving unit 12 is configured to be able to individually drive each pixel of the spatial light modulator of the spatial light modulation unit 6.
- a target image (a 2D image in this example) that is a display target image is input to the control unit 11.
- the control unit 11 controls the drive unit 12 based on this target image, thereby causing the spatial light modulation unit 6 to perform spatial light modulation for image display.
- the control unit 11 calculates a hologram (CGH: Computer Generated Hologram) for obtaining a reproduced image corresponding to the target image based on the target image, calculates a spatial light modulation pattern for the spatial light modulation unit 6 so that the calculated hologram is formed by spatial light modulation by the spatial light modulation unit 6, and controls the drive unit 12 so that spatial light modulation according to the spatial light modulation pattern is performed.
- CGH Computer Generated Hologram
- the "spatial light modulation pattern” means information indicating the light modulation state for each pixel of the spatial light modulation unit 6 (spatial light modulator). Specifically, in this example, it is information indicating the drive signal value for each pixel of the spatial light modulation unit 6.
- control unit 11 controls the spatial light modulation pattern of the spatial light modulation unit 6 based on the target image, thereby realizing the display of a 2D image that reproduces the target image.
- the spatial light modulation unit 6 has pixels that modulate the phase of the incident light to a phase of 0 [rad] and pixels that modulate the phase to ⁇ [rad].
- spatial light phase modulation that imparts a phase distribution to the incident light in this way, spherical waves of different phases interfere with each other, and the interference causes the strengthening of light in a certain pattern. That is, an interference fringe (hologram) is formed in a certain pattern.
- the pattern of the hologram can be controlled by the pattern of the phase distribution given to the incident light in the phase modulator, that is, the spatial light modulation pattern of the phase modulator.
- a liquid crystal panel when used as the spatial light modulator, the resolution of the reproduced image deteriorates due to measures taken against disclination of the liquid crystal panel.
- the panel size increases, which reduces the number of pixels that can be produced during production and creates the issue of increased costs, making it difficult to increase the panel size.
- the number of pixels in the liquid crystal panel decreases, leading to a deterioration in the resolution of the reproduced image.
- the effective number of pixels decreases, resulting in degradation of the resolution of the reproduced image.
- a method is adopted in which degradation correction of the reproduced image is performed using degradation element information, which is information indicating at least the resolution degradation elements of the reproduced image that occur on the projection path from the light source 2 to the projection unit (the part including at least the projection lens 10).
- the process for this deterioration correction is executed by the control unit 11 .
- 4 shows the driving unit 12 shown in FIG. 1 together with the functional blocks of the control unit 11.
- the control unit 11 calculates a correction hologram for correcting the degradation of the reproduced image based on the target image and the above-mentioned degradation element information, and controls the spatial light modulation unit 6 to be driven by a spatial light modulation pattern based on the calculated correction hologram.
- the control unit 11 in this embodiment has functions as a deteriorated image estimation unit F1, a multiplexing image generation unit F2, a correction hologram generation unit F3, a modulation pattern generation unit F4, and an output control unit F5 shown in the figure.
- shift multiplexed display refers to a display method in which multiple reconstructed images are superimposed on the reconstruction surface, and involves a shift (displacement) in the display position between the reconstructed images that is less than the pixel pitch.
- FIG. Fig. 5A is a schematic diagram showing a plurality of reconstructed images used for the resolution degradation correction.
- Fig. 5A in this example, four reconstructed images are generated as the reconstructed images used for the resolution degradation correction.
- Fig. 5B these four reconstructed images are superimposed on the reconstruction surface, and at this time, a shift of less than the pixel pitch occurs in the image formation area between each reconstructed image. Specifically, in this example, a shift of half a pixel occurs.
- the image formation area of one of the four reconstructed images is used as a reference, and the remaining reconstructed image is shifted by half a pixel in the lateral direction (horizontal direction) (see the reconstructed image marked with ⁇ in the figure), the remaining reconstructed image is shifted by half a pixel in the vertical direction (see the reconstructed image marked with ⁇ in the figure), and the remaining remaining reconstructed image is shifted by half a pixel in the diagonal direction (see the reconstructed image marked with ⁇ in the figure), thereby causing a shift of half a pixel in the image formation area between each reconstructed image.
- the shift multiplexed display is performed by projecting the four reconstructed images as described above in a time-division manner.
- the control unit 11 in this embodiment calculates a plurality of correction holograms for the shift multiplexed display, and controls the spatial light modulation unit 6 so that the correction holograms are formed in a time-division manner.
- a plurality of correction holograms for shift multiplexed display in this manner in a time-division manner, it becomes possible to realize a shift of the reconstructed image for shift multiplexed display by using these correction holograms. Since the shifting of the reconstructed image is realized by time-division formation of the correction holograms, it becomes unnecessary to provide a shift device for shifting the position of the reconstructed image on the reconstruction surface when realizing shift multiplexed display.
- the functions from the degraded image estimation unit F1 to the correction hologram generation unit F3 are functions for generating multiple correction holograms to achieve the resolution degradation correction by the shift multiplexing display as described above.
- the degraded image estimation unit F1 estimates a degraded image as an image in which the degradation indicated by the degradation element information has been applied to the target image, based on the target image and the degradation element information.
- the specific procedure is as follows: first, a hologram that reproduces the target image is calculated as an undegraded hologram, then a degraded hologram is calculated based on the undegraded hologram and the degradation element information, and finally, the reconstructed image based on the degraded hologram is calculated as the degraded image.
- the undegraded hologram can be obtained by, for example, wavefront propagation calculation using the angular spectrum method. Specifically, it can be calculated as "Hologram” shown in the following [Equation 1].
- F denotes the Fourier transform
- F -1 denotes the inverse Fourier transform
- f x denotes the target wavefront
- ⁇ denotes the wavelength of light.
- the degradation of the reproduced image is corrected by correcting the degradation of resolution caused by the optical filter 9 and the degradation that occurs in the liquid crystal panel of the spatial light modulation unit 6, specifically the degradation of the reproduced image caused by the disclination described above. Furthermore, in this example, the degradation of the reproduced image caused by optical aberration is also corrected.
- the optical aberration here can be, for example, lens distortion caused by the projection lens 10.
- the degraded image is generated by reproducing the degradation of resolution caused by the optical filter 9, the degradation of the reconstructed image caused by disclination, and the degradation of the reconstructed image caused by optical aberration. Therefore, as the degradation element information, information on the degradation elements of the resolution caused by the optical filter 9, information on the degradation elements of the reconstructed image caused by disclination, and information on the degradation elements of the reconstructed image caused by optical aberration are prepared.
- the information indicating the various degradation factors may be obtained in advance experimentally or by simulation calculation.
- a degraded hologram is calculated based on the pre-degradation hologram and the degradation element information.
- the degraded hologram is calculated by using information on the resolution degradation elements caused by the optical filter 9, information on the degradation elements of the reconstructed image caused by disclinations, and information on the degradation elements of the reconstructed image caused by optical aberration, all of which are prepared in advance as degradation element information, and imparting degradation due to these degradation elements to the pre-degraded hologram.
- the amount of degradation caused by disclination can be calculated as a calculation to obtain "Hologram_Dl” in the following [Equation 2].
- A and “ ⁇ ” refer to the amplitude hologram and phase hologram of the pre-deterioration hologram as the complex amplitude hologram obtained by the calculation of [Equation 1].
- d refers to the band limitation of the display pattern caused by the disclination. This information on “d” corresponds to information on the degradation element of the reproduced image caused by the disclination.
- the calculation for imparting the degradation in resolution by the optical filter 9 can be performed as a calculation for obtaining "Hologram_Df" in the following [Equation 3].
- "Mask” represents the band limit of the hologram in frequency space. Note that for “A” and “ ⁇ ” in [Equation 3], the amplitude hologram and phase hologram in the complex amplitude hologram obtained as "Hologram_Dl” by [Equation 2] are used.
- the “Mask” information in [Equation 3] corresponds to information on the resolution degradation factor caused by the optical filter 9 .
- a calculation is performed to further add degradation of the reconstructed image due to optical aberration to the complex amplitude hologram as "Hologram_Df" obtained by [Equation 3].
- This calculation can be performed in a similar manner to [Equation 2] and [Equation 3], using information on degradation factors of the reconstructed image due to optical aberration that has been prepared in advance, such as information indicating degradation factors as lens distortion caused by the projection lens 10.
- a hologram obtained by adding various degradations indicated by the degradation element information to an undegraded hologram as described above is calculated as a degraded hologram.
- the degraded image estimation unit F1 calculates the reconstructed image from this degraded hologram as a degraded image.
- the degraded image can be obtained by performing a wavefront propagation calculation for the degraded hologram in the same manner as in [Equation 1].
- the order in which the degradation of the resolution caused by the optical filter 9, the degradation of the reconstructed image caused by disclination, and the degradation of the reconstructed image caused by optical aberration is applied is not limited to the above order, and it is also possible to adopt other orders, such as, for example, degradation of the reconstructed image caused by optical aberration ⁇ degradation of the resolution caused by the optical filter 9 ⁇ degradation of the reconstructed image caused by disclination.
- the degradation element information specifically in this example, information on the resolution degradation elements caused by the optical filter 9, information on the degradation elements of the reproduced image caused by disclination, and information on the degradation elements of the reproduced image caused by optical aberration, are stored in a memory (non-volatile memory) that can be read by the control unit 11.
- the memory may be provided within the holographic projector device 1. Alternatively, the memory may be provided in an external device (e.g., a cloud server, etc.).
- the multiplexing image generation unit F2 generates, by calculation, multiple (four in this example) multiplexing images to be used for the shift multiplexing display described above, based on the difference between the degraded image obtained by the degraded image estimation unit F1 and the target image. Specifically, by performing the shift multiplexing display described in FIG. 5, four images (having the same resolution as that of the target image) that can cancel the difference between the degraded image and the target image are calculated as images for multiplexing.
- a calculation method used in a general super-resolution technique can be used for calculating a plurality of multiplexing images to be used in shift multiplexing display for correcting resolution degradation based on the difference between a degraded image and a target image.
- Reference 1 “Image Enhancement in Projectors via Optical Pixel Shift and Overlay” Behzad Sajadi, Duy Qoc-Lai, Alex T.Ihler, M.Gopi, Aditi Majumder: Department of Computer Science University of Califronia, Irvine
- the correction hologram generating unit F3 generates, by calculation, a hologram for obtaining the multiplexing image as a reproduced image, as a correction hologram, for each multiplexing image calculated by the multiplexing image generating unit F2. Conversion from a multiplexed image to a correction hologram can be performed by wavefront propagation calculations such as those shown in the above [Equation 1], in the same manner as the conversion from a target image to an undegraded hologram described above.
- the modulation pattern generating unit F4 generates, by calculation, a spatial light modulation pattern for the spatial light modulating unit 6 for forming each correction hologram obtained by the correction hologram generating unit F3.
- spatial light phase modulation is performed as the spatial light modulation, only a phase hologram is extracted from the correction hologram as a complex amplitude hologram.
- the correction hologram is obtained as “ u2 (x' , y')” shown in the following [Equation 4]
- phase distribution information on the phase modulation surface of the spatial light modulation unit 6 is obtained by extracting “e i ⁇ (x', y') ” in [Equation 4].
- the modulation pattern generation unit F4 obtains the above-mentioned phase distribution information for each correction hologram, and then calculates, for each correction hologram, a drive signal value for each pixel of the phase modulator to realize the phase distribution indicated by the phase distribution information on the phase modulation plane.
- the drive signal value for each pixel of the phase modulator calculated in this way for each correction hologram is information on the spatial light modulation pattern for each correction hologram.
- the output control unit F5 outputs the information on the spatial light modulation pattern for each correction hologram generated by the modulation pattern generating unit F4 to the driving unit 12 in a time-division manner.
- This drives the phase modulator of the spatial light modulation unit 6 to form four correction holograms for shift multiplexing display in a time-division manner.
- reconstructed images corresponding to the four multiplexing images for correcting various degradations such as resolution are displayed in a time-division shift multiplexing manner, thereby achieving correction of various degradations in the displayed image.
- the display cycle of the multiplexing images is set to a sufficiently fast cycle that takes into account the visual integration effect.
- a phase modulator is used as a spatial light modulator for holographic projection, which can improve the efficiency of light utilization when displaying an image.
- a hologram can be formed by adjusting the phase of incident light, so there is no need to block the incident light, and the efficiency of light utilization can be improved.
- By improving the light utilization efficiency it is possible to achieve a higher contrast for the displayed image and a reduction in the power consumption of the light source 2 .
- a shift device for shifting pixel positions for example, a device for vibrating a spatial light modulator, etc.
- a transition period occurs until the pixel position is completely shifted, during which an image cannot be displayed, resulting in low efficiency.
- the pixel position is shifted by spatial light modulation as in this embodiment, such a transition period does not occur, improving efficiency.
- the shift device is not required, the width of the pixel position shift does not depend on the shift device, and the display density can be improved. Therefore, it is possible to realize high-precision correction of resolution degradation, such as a quarter-pixel shift.
- the deterioration caused by disclination of the liquid crystal panel is also corrected, which makes it possible to eliminate the need to use a liquid crystal panel with a large pixel pitch to deal with disclination, or to use a liquid crystal panel with a pixel number four or more times the number of pixels of the reproduced image. Therefore, the holographic projector device 1 can be made smaller and less expensive.
- the deterioration caused by optical aberrations such as lens distortion is also corrected, which eliminates the need to use expensive lenses with an aberration correction function, thereby enabling the holographic projector device 1 to be manufactured at a low price.
- FIG. 6 is a flowchart showing an example of a specific processing procedure to be executed by the control unit 11 in order to realize the degradation correction method according to the first embodiment described above.
- the control unit 11 executes the process shown in Fig. 6 for each frame image, which constitutes the moving image, as a target image.
- the control unit 11 may repeatedly execute the process shown in Fig. 6 for a common target image.
- step S101 the control unit 11 calculates a hologram that reproduces the target image as an undegraded hologram. That is, the undegraded hologram is calculated based on the target image using the above-mentioned [Equation 1].
- step S102 following step S101 the control unit 11 calculates a degraded hologram based on the pre-degraded hologram and the degradation element information.
- the control unit 11 calculates a degraded hologram based on the pre-degraded hologram and the degradation element information.
- the control unit 11 calculates a degraded hologram based on the pre-degraded hologram and the degradation element information.
- information on resolution degradation elements caused by the optical filter 9 the above-mentioned "Mask” stored in the memory as degradation element information
- information on degradation elements of the reproduced image caused by disclination the above-mentioned "d”
- a process is performed to impart resolution degradation caused by the optical filter 9, degradation of the reproduced image caused by disclination, and degradation of the reproduced image caused by optical aberration to the pre-degraded hologram, thereby calculating a degraded hologram.
- the specific calculation method for imparting deterioration has already been explained, so a duplicate
- step S103 the control unit 11 calculates the reconstructed image from the degraded hologram as the degraded image. That is, as described above, the degraded image is calculated from the degraded hologram by wavefront propagation calculation.
- step S104 the control unit 11 calculates a multiplexing image for degradation correction based on the difference between the calculated degraded image and the target image, and then in the following step S105, calculates a hologram (correction hologram) for each multiplexing image.
- a hologram corrected hologram
- step S106 the control unit 11 calculates a spatial light modulation pattern for forming a hologram for each correction hologram. That is, as described above, a phase hologram is extracted for each correction hologram to obtain information on the phase distribution on the phase modulation plane, and then the drive signal value for each pixel of the phase modulator to realize the phase distribution is calculated as the spatial light modulation pattern.
- step S107 following step S106 the control unit 11 outputs the calculated spatial light modulation pattern in a time-division manner. That is, information on the calculated spatial light modulation pattern for each correction hologram is output to the drive unit 12 in a time-division manner.
- control unit 11 After executing the process of step S107, the control unit 11 ends the series of processes shown in FIG.
- a hologram for displaying an image is formed by spatial light amplitude modulation rather than spatial light phase modulation.
- FIG. 7 is a diagram showing an example of the configuration of a holographic projector device 1A according to the second embodiment.
- parts that are similar to parts that have already been described will be given the same reference numerals and description thereof will be omitted.
- Holographic projector device 1A differs from holographic projector device 1 as the first embodiment in that spatial light modulation unit 6A is provided instead of spatial light modulation unit 6, and control unit 11A is provided instead of control unit 11.
- the spatial light modulation section 6A has a spatial light amplitude modulator (hereinafter sometimes abbreviated as "amplitude modulator”) as a spatial light modulator.
- amplitude modulator a spatial light amplitude modulator
- a reflective liquid crystal panel is used as the amplitude modulator.
- the liquid crystal panel is configured to be capable of adjusting the amplitude of incident light for each pixel.
- the liquid crystal panel is configured to be capable of adjusting the degree of blocking of incident light for each pixel.
- the figure shows an example in which the spatial light modulation section 6A has pixels that display white (lowest light blocking) and pixels that display black (highest light blocking).
- the spherical waves from pixels through which light is not blocked (white pixels) interfere with each other, and the interference creates a certain pattern of reinforcement of the light, forming interference fringes (hologram) in the required pattern.
- the hologram pattern can be controlled by the pattern of the amplitude distribution imparted to the incident light in the amplitude modulator, in other words, the spatial light modulation pattern of the amplitude modulator.
- the control unit 11A has functions similar to those of the degraded image estimation unit F1, the multiplexing image generation unit F2, the correction hologram generation unit F3, the modulation pattern generation unit F4, and the output control unit F5 of the control unit 11. However, the control unit 11A differs from the control unit 11 in that the modulation pattern generation unit F4 performs a conversion process corresponding to the case where an amplitude modulator is used to convert the correction hologram into a spatial light modulation pattern.
- amplitude distribution information on the amplitude modulation plane of the spatial light modulation unit 6A is obtained by extracting the amplitude hologram " a2 (x',y')".
- the modulation pattern generation unit F4 obtains the above-mentioned amplitude distribution information for each correction hologram, and then calculates, for each correction hologram, a drive signal value for each pixel of the amplitude modulator for realizing the amplitude distribution indicated by the amplitude distribution information on the amplitude modulation plane. This allows for obtaining information on the spatial light modulation pattern for each correction hologram that corresponds to the case where an amplitude modulator is used.
- the degraded image estimation unit F1 when correcting degradation caused by disclination of a liquid crystal panel, applies degradation to the pre-degraded hologram not according to the above-mentioned [Equation 2], but according to the following [Equation 5].
- the deterioration correction of the reconstructed image is performed only on a part of the image region, such as a region of interest as an image region that is attracting the user's attention.
- FIG. 9 is a diagram showing an example of the configuration of a holographic projector device 1B according to the third embodiment. The difference from the holographic projector device 1 shown in FIG. 1 is that a control unit 11B is provided instead of the control unit 11.
- the control unit 11B controls the spatial light modulation unit so that a correction hologram is formed only in a specified partial image area of the reconstructed image.
- attention area designation information is input to the control unit 11B.
- This attention area designation information is information that designates the user's attention area, that is, the image area in the displayed image that the user is paying attention to.
- the attention area may be determined based on the result of estimating the user's line of sight, face direction, etc. based on an image captured by a camera installed inside or outside the holographic projector device 1B.
- the attention area may be specified by a user operation.
- it is assumed that the process of estimating the user's gaze direction, face orientation, etc. and the process of setting the attention area based on the estimation result are performed outside the control unit 11B.
- information indicating the attention area set outside is input to the control unit 11B as attention area designation information.
- the above estimation process and the process of setting the area of interest based on the estimation result may be performed by the control unit 11B itself.
- the estimation process may be performed outside the control unit 11B, and the process of setting the area of interest based on the estimation result may be performed by the control unit 11B.
- the control unit 11B performs a process of setting the region of interest based on a user operation.
- information on the operation performed by the user to specify the region of interest is input to the control unit 11B as region of interest specification information.
- an artificial intelligence model that has undergone machine learning such as deep learning can be used to infer the region of interest from the input image.
- control unit 11B calculates multiple multiplexing images to be used for shift multiplexing display, and calculates a correction hologram for each multiplexing image, for only the attention area specified by the attention area designation information.
- FIG. 10 is an explanatory diagram of a degradation correction method according to the third embodiment.
- the control unit 11B calculates an entire hologram from the target image.
- This process is a process of calculating an undegraded hologram from the target image, similar to the process in step S101 above.
- the undegraded hologram for the entire target image is referred to as an entire hologram.
- control unit 11B generates a multiplexing image of the attention area based on the target image, as indicated by ⁇ 2> in the figure. Then, as shown by ⁇ 3> in the figure, the control unit 11B converts each multiplexing image for the region of interest into a hologram to obtain a plurality of correction holograms. Then, the control unit 11B synthesizes the correction hologram generated in ⁇ 3> with the whole hologram calculated in ⁇ 1> above. This synthesis with the whole hologram is performed for each correction hologram. Thereafter, each composite hologram is converted into a spatial light modulation pattern, and the spatial light modulation pattern for each composite hologram is output to the driving unit 12 in a time-division manner. This makes it possible to realize degradation correction limited to the region of interest.
- FIG. 11 is an explanatory diagram of the functions of the control unit 11B.
- control unit 11B differs from control unit 11 in that it has the function of a degraded image estimation unit F1B instead of the degraded image estimation unit F1, that it has the function of a multiplexing image generation unit F2B instead of the multiplexing image generation unit F2, and that it has the additional functions of an overall hologram calculation unit F6 and a synthesis unit F7.
- the degraded image estimation unit F1B generates a degraded image for the attention area based on the target image, the degradation element information, and the attention area designation information.
- the process performed by this deteriorated image estimation unit F1B is similar to the process performed by the deteriorated image estimation unit F1, except that the image region to be processed is limited to the region of interest, and therefore a duplicated description will be avoided.
- the multiplexing image generating unit F2B generates a multiplexing image of the attention area by calculation based on the deteriorated image for the attention area obtained by the deteriorated image estimating unit F1B, the target image, and the attention area designation information. Specifically, the image for multiplexing generating unit F2B generates an image for multiplexing of the region of interest based on the difference between the image of the region of interest in the target image and the deteriorated image of the region of interest obtained by the deteriorated image estimating unit F1B. This process is similar to the process of the image for multiplexing generating unit F2, except that the image region to be processed is limited to the region of interest, so a duplicated description will be avoided.
- the correction hologram generation unit F3 converts each multiplexing image of the area of interest generated by the multiplexing image generation unit F2B into a hologram, thereby obtaining each correction hologram for the area of interest (see ⁇ 3> in Figure 10).
- An overall hologram calculation unit F6 obtains an overall hologram by performing calculations to convert the target image into a hologram.
- the synthesis unit F7 synthesizes the correction hologram for the region of interest obtained by the correction hologram generation unit F3 with the whole hologram obtained by the whole hologram calculation unit F6. As described above, synthesis with the whole hologram is performed for each correction hologram. In other words, in this example, four correction holograms are generated, and four synthesized holograms, each of which has a different correction hologram, are obtained.
- the modulation pattern generating unit F4 converts each composite hologram obtained by the combining unit F7 into a spatial light modulation pattern.
- the output control unit F5 outputs the spatial light modulation pattern for each composite hologram obtained by the modulation pattern generation unit F4 to the drive unit 12 in a time-division manner.
- FIG. 12 is a flowchart showing an example of a specific processing procedure executed by the control unit 11B to realize the degradation correction method according to the third embodiment described above.
- the process shown in Figure 12 similar to the process shown in Figure 6 above, when a moving image is displayed, the frame images that make up the moving image are used as target images, and the process shown is executed for each frame image, and when a still image is displayed, the process shown is executed repeatedly for a common target image.
- control unit 11B calculates a hologram that reproduces the target image as a pre-deterioration hologram (whole hologram). This process corresponds to the process described above as whole hologram calculation unit F6.
- step S101 the control unit 11B advances the process to step S201.
- step S201 the control unit 11B calculates a degraded hologram for the attention area based on the undegraded hologram of the attention area, the degradation element information, and the attention area designation information. That is, based on the attention area designation information, an undegraded hologram of the attention area is obtained by converting the image of the attention area in the target image into a hologram, and a degraded hologram of the attention area is obtained by performing a process of adding various degradations to the undegraded hologram of the attention area using the degradation element information.
- step S202 the control unit 11B calculates a degraded image of the attention area based on the calculated degraded hologram. Then, in step S203 following step S202, the control unit 11B calculates a multiplexing image of the attention area based on the difference between the deteriorated image of the attention area and the image of the attention area in the target image, and further in the following step S204, calculates a hologram of the multiplexing image (correction hologram).
- the processes of steps S203 and S204 correspond to the processes of the multiplexing image generating unit F2B and the correction hologram generating unit F3 described above, respectively.
- step S205 the control unit 11B performs a synthesis process of the entire hologram (hologram before deterioration) and the correction hologram. That is, this is a process of synthesizing the entire hologram as the hologram before deterioration calculated in step S101 with each correction hologram calculated in step S204. As described above, synthesis with the entire hologram is performed for each correction hologram.
- step S206 the control unit 11B converts each composite hologram into a spatial light modulation pattern, and in the subsequent step S207, outputs the spatial light modulation patterns in a time-division manner.
- control unit 11B After executing the process of step S207, the control unit 11B ends the series of processes shown in FIG. 12.
- the technique of performing degradation correction only on a part of an image region as in the third embodiment can also be applied to the case where an amplitude modulator is used as the spatial light modulator as in the second embodiment.
- the actual playback surface may not be a two-dimensional plane indicated by "I" in the figure, but may instead be a surface with relatively large projections and recesses.
- a light diffusion element such as a microlens array, HOE (Holographic Optical Element), DOE (Diffractive Optical Element), etc.
- the imaging positions of the light rays of the playback image will not coincide with the positions of the diffusion elements, i.e., defocusing will occur with respect to the diffusion elements, and the diffusion elements will not properly diffuse the light, resulting in failure to improve the viewing angle characteristics.
- the correction hologram is calculated assuming that the reconstruction surface is an uneven surface. Specifically, three-dimensional information showing the uneven shape of the reconstruction surface is measured in advance, and the measured three-dimensional information is used as the three-dimensional information of the assumed reconstruction surface in the calculation of the correction hologram.
- FIG. 15 is a diagram for explaining holographic projector device 1C that calculates a correction hologram using three-dimensional information on the reproduction surface as described above. Specifically, it is a functional explanatory diagram of control unit 11C that holographic projector device 1C has. Note that the configuration of holographic projector device 1C other than control unit 11C is similar to that of holographic projector device 1 described in the first embodiment, for example, and therefore redundant explanation will be avoided.
- Control unit 11C differs from control unit 11 in that it has a correction hologram generating unit F3C instead of correction hologram generating unit F3.
- the three-dimensional information of the actually measured reproduction surface is input to the correction hologram generating unit F3C as the reproduction surface three-dimensional information.
- the reproduction surface three-dimensional information may be stored in a memory that can be read by the control unit 11C, similar to the degradation element information.
- the correction hologram generating unit F3C uses the coordinate information indicated by the reproduction plane three-dimensional information as the coordinate information of the reproduction plane assumed in the calculation of the correction hologram. This makes it possible to calculate an appropriate correction hologram for correcting degradation in resolution when the actual reconstruction surface has irregularities.
- the above-mentioned diffusion element is disposed on the reconstruction surface, it becomes possible to make the focusing position of each light beam of the reconstruction image coincide with the position of the diffusion element, thereby improving the viewing angle characteristics.
- the present technology can also be suitably applied to the display of color images.
- a possible configuration could be to provide a spatial light modulator for each of the colors R (red), G (green), and B (blue), generate a correction hologram for each color based on a target image and a degraded image, and perform shift multiplexing display using the generated correction holograms.
- a spatial light modulation area can be defined for each color, and each of these spatial light modulation areas can be regarded as a spatial light modulator for each color, and a correction hologram can be generated based on a target image and a degraded image for each color, and a shift multiplexed display can be performed using the generated correction hologram.
- a configuration for displaying a color image it becomes possible to simultaneously display the reconstructed images of the respective colors instead of in a time-division manner, thereby making it possible to suppress color breakup. If color breaks can be ignored, it is possible to adopt a configuration in which shift multiplexed display using correction holograms generated for each color is performed in a time-division manner.
- the correction hologram may be generated by, for example, calculating a blur function for each pixel of the degraded image, multiplying the pixel value for each pixel of the target image by the inverse function of the blur function to generate a correction image, and generating a hologram that reproduces the correction image.
- a semiconductor laser is used as the light source 2
- a light emitting element other than a semiconductor laser such as an LED (Light Emitting Diode), as the light source 2.
- a reflective liquid crystal panel is used as a spatial light modulator for forming a hologram, but it is also possible to use a reflective spatial light modulator other than a liquid crystal panel.
- a phase modulator as in the first embodiment, it is possible to use a mirror using MEMS (Micro Electro Mechanical Systems), specifically, a MEMS mirror configured so that the height of the mirror surface can be adjusted for each pixel.
- MEMS Micro Electro Mechanical Systems
- an amplitude modulator is used as in the second embodiment, it is possible to use a DMD (Digital Micro Mirror Device). It is also possible to use a transmissive spatial light modulator instead of a reflective spatial light modulator.
- the holographic projector device (1, 1A, 1B, 1C) as an embodiment includes a light source (2), a spatial light modulation unit (6, 6A) that performs spatial light modulation on light emitted from the light source, a projection unit (relay lenses 7, 8, projection lens 10) that projects a reconstructed image generated by the spatial light modulation unit, and a control unit (11, 11A, 11B, 11C) that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least resolution degradation elements of the reconstructed image that occur on the projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
- the holographic projector device includes an optical filter (9) that applies optical filtering to the reconstructed image, and the degradation element information includes information on resolution degradation elements caused by the optical filter. This makes it possible to correct the degradation in resolution in cases where the optical filter causes a degradation in resolution.
- the optical filter is an optical filter that removes noise light.
- An optical filter that removes noise light can cause degradation of the resolution of the reconstructed image. Therefore, it is preferable to perform the resolution degradation correction taking into consideration the resolution degradation factor caused by the optical filter.
- the spatial light modulation section performs spatial light modulation using a liquid crystal panel
- the degradation factor information includes information on degradation factors of the reproduced image that occur in the liquid crystal panel. This makes it possible to correct the degradation of the reconstructed image in the case where a degradation factor of the reconstructed image occurs in the liquid crystal panel used for spatial light modulation.
- the degradation factor information includes information on degradation factors of the reproduced image caused by disclinations in the liquid crystal panel. This makes it possible to correct the degradation of the reproduced image caused by disclination, and eliminates the need to use a liquid crystal panel with a large pixel pitch to deal with disclination, or to use a liquid crystal panel with a number of pixels four or more times the number of pixels of the reproduced image. Therefore, the holographic projector device can be made smaller and cheaper.
- the degradation element information includes information indicating degradation elements caused by optical aberrations occurring in the reconstructed image. This makes it possible to calculate a corrective hologram that can not only correct degradation in resolution, but also correct degradation in the reconstructed image caused by optical aberrations, such as lens distortion in a projection lens system. Therefore, the quality of the displayed image can be improved.
- control unit controls the spatial light modulation unit so that degradation is corrected by a method of shifting and multiplexing a plurality of reconstructed images to be displayed.
- shift multiplexing display it is possible to realize a high-resolution image display using a low-resolution reconstructed image, that is, it is possible to realize the correction of resolution degradation based on the so-called super-resolution technology.
- the control unit controls the spatial light modulation unit so that a plurality of correction holograms for shift multiplexed display are formed in a time-division manner.
- a plurality of correction holograms for shift multiplexed display in a time-division manner as described above, it is possible to realize a shift of the reconstructed image for shift multiplexed display by using these correction holograms. Since the shift of the reconstructed image is realized by time-division formation of the correction hologram, there is no need to provide a shift device for shifting the position of the reconstructed image on the reconstruction surface when realizing shift multiplexed display. This makes it possible to reduce the number of parts required to correct resolution degradation, and to reduce the size, weight, and cost of the holographic projector device.
- the control unit calculates a hologram that reproduces the target image as an undegraded hologram, calculates a degraded hologram based on the undegraded hologram and the degradation element information, calculates a reconstructed image from the degraded hologram as a degraded image, calculates a plurality of multiplexing images to be used for shift multiplexing display based on the difference between the calculated degraded image and the target image, calculates a hologram as a correction hologram for obtaining the multiplexing image as a reconstructed image, and controls the spatial light modulation unit so that the correction hologram for each calculated multiplexing image is formed in a time-division manner.
- the correction holograms realize the shifting of the reconstructed image for shift multiplexed display. Therefore, when realizing shift multiplexed display, there is no need to provide a shift device for shifting the position of the reproduced image on the reproduction surface, and the number of parts required to achieve resolution degradation correction can be reduced, making it possible to make the holographic projector device smaller, lighter, and less expensive.
- the spatial light modulation section performs spatial light phase modulation as the spatial light modulation.
- the control unit controls the spatial light modulation unit so that a correction hologram is formed only in a specified partial image area in the reproduced image.
- control unit (11C) calculates a correction hologram by assuming a reproduction surface having projections and recesses. This makes it possible to calculate an appropriate correction hologram for correcting degradation in resolution in cases where the actual reproduction surface has projections and recesses.
- control method as an embodiment is a control method for a holographic projector device that includes a light source, a spatial light modulation unit that performs spatial light modulation on the light emitted from the light source, and a projection unit that projects a reconstructed image generated by the spatial light modulation unit, and the control method calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least resolution degradation elements of the reconstructed image that occur on the projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
- a control method it is possible to obtain the same functions and effects as the holographic projector device according to the above-described embodiment.
- the present technology can also be configured as follows. (1) A light source; a spatial light modulation unit that performs spatial light modulation on the light emitted from the light source; a projection unit that projects a reproduced image generated by the spatial light modulation unit; a control unit that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
- the degradation element information includes information on a resolution degradation element caused by the optical filter.
- the optical filter is an optical filter that removes noise light.
- the spatial light modulation unit performs the spatial light modulation using a liquid crystal panel;
- the holographic projector device according to any one of (1) to (5), wherein the degradation element information includes information indicating a degradation element caused by optical aberration occurring in the reconstructed image.
- the control unit is The holographic projector device according to (1) above, wherein the spatial light modulation unit is controlled so that the deterioration is corrected by a method of shifting and multiplexing a plurality of reconstructed images to be displayed.
- the control unit is The holographic projector device according to (7) above, wherein the spatial light modulation unit is controlled so that a plurality of the correction holograms for the shift multiplexed display are formed in a time division manner.
- the control unit is Calculating a hologram that reproduces the target image as a pre-deterioration hologram; calculating a degraded hologram based on the pre-degraded hologram and the degradation element information; A reconstructed image based on the degraded hologram is calculated as a degraded image; calculating a plurality of multiplexing images to be used in the shift multiplexing display based on the calculated difference between the deteriorated image and the target image; calculating, for each of the calculated multiplexing images, a hologram for obtaining the multiplexing image as a reproduced image as the correction hologram;
- the holographic projector device according to (8) above, wherein the spatial light modulation unit is controlled so that the correction hologram for each of the calculated multiplexed images is formed in a time-division manner.
- the holographic projector device according to any one of (1) to (9), wherein the spatial light modulation unit performs spatial light phase modulation as the spatial light modulation.
- the control unit is The holographic projector device according to any one of (1) to (10), further comprising: controlling the spatial light modulation unit so that the correction hologram is formed only for a specified partial image region in the reconstructed image.
- the control unit is The holographic projector device according to any one of (1) to (11), wherein the calculation of the correction hologram is performed by assuming a reconstruction surface having projections and recesses.
- a control method for a holographic projector device including a light source, a spatial light modulation unit that performs spatial light modulation on light emitted from the light source, and a projection unit that projects a reproduced image generated by the spatial light modulation unit, comprising: A control method comprising: calculating a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information, which is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit; and controlling the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Holo Graphy (AREA)
Abstract
Description
本技術は、ホログラフィの技術を用いて像の投射を行うホログラフィックプロジェクタ装置とその制御方法に係るものであり、特には、再生像の解像度劣化を補正するための技術に関する。 This technology relates to a holographic projector device that projects images using holography technology and a control method for the same, and in particular to a technology for correcting degradation in the resolution of a reproduced image.
ホログラフィの技術を用いて像の投射を行うホログラフィックプロジェクタ装置が知られている。ホログラフィの技術を用いることで、2D(二次元)画像や3D(三次元)画像の表示を行うことが可能とされる。
ホログラフィックプロジェクタ装置には、ホログラムの形成を、例えば液晶パネル等の空間光変調器を用いて行うように構成されたものがある。この場合、空間光変調器における空間光変調パターンを変更することで、形成するホログラムを変化させることが可能となり、表示画像の変更が可能となる。つまりは、空間光変調器における空間光変調パターンの変更により、表示する静止画像を切り換えたり、動画像を表示したりすることが可能とされる。
There is known a holographic projector device that projects an image using holography technology, which makes it possible to display 2D (two-dimensional) images and 3D (three-dimensional) images.
Some holographic projector devices are configured to form holograms using a spatial light modulator such as a liquid crystal panel. In this case, by changing the spatial light modulation pattern in the spatial light modulator, it is possible to change the hologram to be formed, and the displayed image can be changed. In other words, by changing the spatial light modulation pattern in the spatial light modulator, it is possible to switch still images to be displayed or to display moving images.
なお、関連する従来技術については下記特許文献1を挙げることができる。下記特許文献1には、ユーザの注視点におけるホログラム像を高解像度化するための技術が開示されている。 Note that the following Patent Document 1 can be cited as an example of related prior art. Patent Document 1 below discloses technology for increasing the resolution of a hologram image at the user's gaze point.
ここで、ホログラフィックプロジェクタ装置においては、再生像を投射するための投射経路中において、再生像の解像度劣化が生じることがある。
しかしながら、従来のホログラフィックプロジェクタ装置において、そのような投射経路中において生じる解像度劣化を補正するための技術は確立されていない。例えば、解像度劣化が生じることを見越して、高解像度な空間光変調器を用いることも考えられるが、その場合には、用いるべき空間光変調器が高価となり、低価格化を図ることが困難となる。
Here, in a holographic projector device, degradation in the resolution of the reconstructed image may occur along the projection path for projecting the reconstructed image.
However, in conventional holographic projector devices, no technology has been established to correct the degradation of resolution that occurs in the projection path. For example, it may be possible to use a high-resolution spatial light modulator in anticipation of the degradation of resolution, but in that case, the spatial light modulator to be used becomes expensive, making it difficult to reduce the price.
本技術は上記事情に鑑み為されたものであり、ホログラフィックプロジェクタ装置について、低価格化を図りながら解像度劣化の抑制を図ることを目的とする。 This technology was developed in light of the above circumstances, and aims to reduce the cost of holographic projector devices while suppressing degradation of resolution.
本技術に係るホログラフィックプロジェクタ装置は、光源と、前記光源より発せられた光に対し空間光変調を施す空間光変調部と、前記空間光変調部により生成された再生像を投射する投射部と、目標画像と、前記光源から前記投射部までの投射経路において生じる前記再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、前記再生像の劣化を補正するための補正用ホログラムを計算し、計算した前記補正用ホログラムに基づく空間光変調パターンにより前記空間光変調部が駆動されるように制御する制御部と、を備えたものである。
上記構成によれば、投射経路において実際に生じる解像度劣化要素を考慮した解像度劣化補正を行うことが可能となり、適切な解像度劣化補正の実現化を図ることが可能となる。また、解像度劣化補正を行うことで、低解像度の空間光変調器を用いることが可能となる。
A holographic projector device according to the present technology includes a light source, a spatial light modulation unit that performs spatial light modulation on light emitted from the light source, a projection unit that projects a reconstructed image generated by the spatial light modulation unit, and a control unit that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least resolution degradation elements of the reconstructed image that occur on the projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
According to the above configuration, it is possible to perform resolution degradation correction taking into account the resolution degradation factors that actually occur in the projection path, and it is possible to realize appropriate resolution degradation correction. Furthermore, by performing resolution degradation correction, it is possible to use a spatial light modulator with a low resolution.
以下、添付図面を参照し、本技術に係る実施形態を次の順序で説明する。
<1.第一実施形態>
[1-1.装置構成例]
[1-2.第一実施形態としての劣化補正手法]
[1-3.処理手順]
<2.第二実施形態>
<3.第三実施形態>
<4.変形例>
<5.実施形態のまとめ>
<6.本技術>
Hereinafter, with reference to the accompanying drawings, embodiments of the present technology will be described in the following order.
1. First embodiment
[1-1. Device configuration example]
[1-2. Deterioration correction method as the first embodiment]
[1-3. Processing procedure]
<2. Second embodiment>
<3. Third embodiment>
4. Modifications
5. Summary of the embodiment
<6. This Technology>
<1.第一実施形態>
[1-1.装置構成例]
図1は、本技術に係る第一実施形態としてのホログラフィックプロジェクタ装置1の構成例を示した図である。
ここでは一例として、2D(二次元)画像の表示を行うホログラフィックプロジェクタ装置を例示する。
1. First embodiment
[1-1. Device configuration example]
FIG. 1 is a diagram showing an example of the configuration of a holographic projector device 1 according to a first embodiment of the present technology.
Here, as an example, a holographic projector device that displays a 2D (two-dimensional) image is illustrated.
図示のようにホログラフィックプロジェクタ装置1は、光源2、ビームエキスパンダ3、コリメートレンズ4、ビームスプリッタ5、空間光変調部6、リレーレンズ7、リレーレンズ8、光学フィルタ9、投射レンズ10、制御部11、及び駆動部12を備えている。
As shown in the figure, the holographic projector device 1 includes a
光源2は、再生像を生成するための光源として設けられる。ホログラフィックプロジェクタ装置において、再生像の光源にはコヒーレント光源が用いられることが望ましく、本例において光源2には、半導体レーザが用いられる。
光源2より発せられた光はビームエキスパンダ3により拡散光に変換された後、コリメートレンズ4により平行光に変換され、ビームスプリッタ5に入射する。
このように光源2側からビームスプリッタ5に入射された光は、ビームスプリッタ5の選択反射面で反射され、図示のように空間光変調部6に入射する。
The light emitted from the
The light incident on the
空間光変調部6は、空間光変調器を有し、入射光に対して該空間光変調器により空間光変調を施す。この空間光変調は、ホログラフィックプロジェクションのための空間光変調であり、該空間光変調によって画像表示を実現するための再生像が生成される。
本実施形態において、空間光変調部6における空間光変調器には、入射光に対して空間光位相変調を施す空間光位相変調器(以下「位相変調器」と略称することもある)が用いられる。具体的に、位相変調器としては、液晶パネルが用いられる。液晶パネルは、液晶の配向状態を調整可能な画素が二次元に複数配列されて構成され、入射光に対する空間光位相変調を画素ごとに独立して行うことが可能とされている。本例では、液晶パネルとして、例えばLCOS(Liquid Crystal On Silicon)が用いられる。
The spatial
In this embodiment, the spatial light modulator in the spatial
本例において、空間光変調部6は、空間光変調器として反射型の空間光変調器を有している。従って、空間光変調部6による空間光変調(本例では空間光位相変調)が施された光は、該反射型の空間光変調器(本例では反射型の液晶パネル)からの反射光として、空間光変調部6より出射される。
In this example, the spatial
空間光変調後の光としての空間光変調部6からの出射光は、ビームスプリッタ5の選択反射面に再度入射し、該選択反射面を透過して、リレーレンズ7及びリレーレンズ8で構成されたリレーレンズ系に入射する。
The light emitted from the spatial
なお、ビームスプリッタ5として例えば偏光ビームスプリッタを用いることで、光源2側からの入射光の反射、及び空間光変調部6からの入射光の透過に係る光のロスを低減でき、光の利用効率を高めることができる。
In addition, by using, for example, a polarizing beam splitter as the
図示のようにリレーレンズ7に入射した光は平行光から収束光に変換されて所定の位置で焦点を結んだ後、拡散光の状態でリレーレンズ8に入射する。リレーレンズ8は、入射した拡散光を平行光に変換して投射レンズ10に対して出射する。
As shown in the figure, the light incident on
リレーレンズ7、8の間には光学フィルタ9が配置されている。光学フィルタ9は、リレーレンズ7からの出射光が焦点を結ぶ位置において、一次回折光を透過し、それ以外の光(0次回折光や高次回折光等)を遮光する。これにより、ノイズ光を除去する。
An
投射レンズ10は、リレーレンズ8を介して入射する再生像をスクリーンS等の投射対象物に対して拡大投射する。
これにより、スクリーンS等の投射対象物上に2D画像を表示することができる。
The
This makes it possible to display a 2D image on a projection target such as a screen S.
制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータを備えたコンピュータ装置として構成され、ホログラフィックプロジェクタ装置1における画像表示に係る各種の処理を実行する。
The
駆動部12は、空間光変調部6が有する空間光変調器(本例では位相変調器)を駆動するための駆動回路を有して構成される。駆動部12は、空間光変調部6が有する空間光変調器の各画素を個別に駆動することが可能に構成されている。
The driving
図示のように制御部11には、表示目標の画像である目標画像(本例では2D画像)が入力される。制御部11は、この目標画像に基づいて駆動部12を制御することで、空間光変調部6に画像表示のための空間光変調を実行させる。
具体的に、制御部11は、目標画像に基づき、該目標画像に応じた再生像を得るためのホログラム(CGH:Computer Generated Hologram)を計算する。そして、この計算したホログラムが、空間光変調部6による空間光変調により形成されるようにするための、空間光変調部6の空間光変調パターンを計算し、該空間光変調パターンに従った空間光変調が行われるように駆動部12を制御する。
ここで、「空間光変調パターン」とは、空間光変調部6(空間光変調器)の画素ごとの光変調態様を示す情報を意味する。具体的に本例では、空間光変調部6の画素ごとの駆動信号値を示す情報である。
As shown in the figure, a target image (a 2D image in this example) that is a display target image is input to the
Specifically, the
Here, the "spatial light modulation pattern" means information indicating the light modulation state for each pixel of the spatial light modulation unit 6 (spatial light modulator). Specifically, in this example, it is information indicating the drive signal value for each pixel of the spatial
上記のように制御部11が目標画像に基づき空間光変調部6の空間光変調パターンを制御することで、目標画像を再現する2D画像の表示が実現される。
As described above, the
図2を参照し、空間光位相変調によるホログラムの形成原理について説明しておく。ここでは説明上、空間光変調部6における位相変調器として透過型の変調器を用いた場合を示しているが、反射型の変調器を用いた場合も原理的には同様である。
The principle of hologram formation by spatial light phase modulation will be explained with reference to Figure 2. For the sake of explanation, a case is shown here in which a transmissive modulator is used as the phase modulator in the spatial
図中では、空間光変調部6において、入射光の位相を位相0[rad]に変調する画素と位相π[rad]に変調する画素が存在している例を示している。このように入射光に対して位相分布を付与する空間光位相変調を行うことで、異なる位相の球面波が干渉を起こし、干渉による光の強め合いが或るパターンで生じる。すなわち、或るパターンによる干渉縞(ホログラム)が形成される。このとき、ホログラムのパターンは、位相変調器において入射光に与える位相分布のパターン、つまりは位相変調器の空間光変調パターンにより制御可能である。
In the figure, an example is shown in which the spatial
[1-2.第一実施形態としての劣化補正手法]
ここで、ホログラフィックプロジェクタ装置では、再生像を投射するための投射経路中において、再生像の解像度劣化が生じることが確認されている。特に、上記したホログラフィックプロジェクタ装置1のように、光学フィルタ9を用いてノイズ光除去を行う場合には、再生像の解像度劣化が生じ易いものとなる。具体的に、実空間上でノイズ光除去を行う場合には、本来の再生像の領域を絞りながらノイズ光を分離する手法を採るため、本来表示可能な解像度よりも少ない解像度での画像表示となり、解像度劣化が生じてしまう。また、空間周波数領域でフィルタを用いる場合には、再生像に寄与する角度解像度が制限されるため、その点に起因した再生像の解像度劣化が生じる。
[1-2. Deterioration correction method as the first embodiment]
Here, it has been confirmed that in the holographic projector device, the resolution of the reproduced image is degraded in the projection path for projecting the reproduced image. In particular, when the noise light is removed using the
また、空間光変調器として液晶パネルを用いる場合には、液晶パネルのディスクリネーション対策を採ることに起因した再生像の解像度劣化が生じる。
具体的に、空間光変調器として液晶パネルを用いる場合には、ディスクリネーションに起因した表示画質の劣化抑制のために、画素ピッチの大きい空間光変調器を用いるか、或いは図3Aのように本来は画素(図中「Px」と示す)単位で独立して情報を書き込むべきところ、図3Bに例示するように隣接する複数の画素(2×2=4画素以上)に同一の情報を書き込むことで擬似的に画素ピッチを大きくするという対策が採られる。
前者のように実際に画素ピッチを拡大する場合には、パネルサイズが大きくなるため、生産時の取り数が低下し、コストアップに繋がる課題も生じることから、パネルサイズを大きくすることが困難であり、結果、液晶パネルの画素数が減少して再生像の解像度劣化を招く。
また、後者のように擬似的に画素ピッチを拡大する場合には、実効的な画素数が低下し、再生像の解像度劣化を招来する。
Furthermore, when a liquid crystal panel is used as the spatial light modulator, the resolution of the reproduced image deteriorates due to measures taken against disclination of the liquid crystal panel.
Specifically, when a liquid crystal panel is used as a spatial light modulator, in order to suppress deterioration of the display image quality caused by disclination, a spatial light modulator with a large pixel pitch is used, or instead of writing information independently on a pixel-by-pixel basis (shown as "Px" in the figure) as in Figure 3A, a measure is taken in which the pixel pitch is artificially increased by writing the same information to multiple adjacent pixels (2 x 2 = 4 pixels or more) as illustrated in Figure 3B.
When the pixel pitch is actually increased as in the former case, the panel size increases, which reduces the number of pixels that can be produced during production and creates the issue of increased costs, making it difficult to increase the panel size. As a result, the number of pixels in the liquid crystal panel decreases, leading to a deterioration in the resolution of the reproduced image.
Moreover, in the latter case where the pixel pitch is artificially enlarged, the effective number of pixels decreases, resulting in degradation of the resolution of the reproduced image.
そこで、本実施形態では、光源2から投射部(少なくとも投射レンズ10を含む部分)までの投射経路において生じる再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報を用いて、再生像の劣化補正を行うという手法を採る。
本実施形態において、この劣化補正のための処理は、制御部11が実行する。
Therefore, in this embodiment, a method is adopted in which degradation correction of the reproduced image is performed using degradation element information, which is information indicating at least the resolution degradation elements of the reproduced image that occur on the projection path from the
In this embodiment, the process for this deterioration correction is executed by the
図4を参照し、第一実施形態としての劣化補正手法を実現するために制御部11が有する各種機能について説明する。
なお、図4では制御部11が有する機能ブロックと共に、図1に示した駆動部12を併せて示している。
With reference to FIG. 4, various functions that the
4 shows the driving
本実施形態において、制御部11は、目標画像と、上記した劣化要素情報とに基づき、再生像の劣化を補正するための補正用ホログラムを計算し、計算した補正用ホログラムに基づく空間光変調パターンにより空間光変調部6が駆動されるように制御する。
このために、本実施形態における制御部11は、図中に示す劣化画像推定部F1、多重化用画像生成部F2、補正用ホログラム生成部F3、変調パターン生成部F4、及び出力制御部F5としての機能を有する。
In this embodiment, the
For this purpose, the
ここで、本実施形態では、解像度の劣化補正のために、複数の再生像をシフト多重化表示するという手法を採る。
ここで、本明細書で言うシフト多重化表示とは、複数の再生像同士を再生面において重ねる表示手法であって、再生像間で画素ピッチ未満の表示位置のシフト(ずれ)を伴う表示手法を意味する。
このようなシフト多重化表示を行うことで、低解像の再生像を用いて高解像の画像表示を実現することができる。すなわち、いわゆる超解像技術に基づく解像度劣化補正を実現することができる。
Here, in this embodiment, a method is adopted in which a plurality of reconstructed images are shift-multiplexed and displayed in order to correct degradation in resolution.
Here, the term "shift multiplexed display" as used in this specification refers to a display method in which multiple reconstructed images are superimposed on the reconstruction surface, and involves a shift (displacement) in the display position between the reconstructed images that is less than the pixel pitch.
By performing such shift multiplexing display, it is possible to realize a high-resolution image display using a low-resolution reconstructed image, that is, it is possible to realize the correction of resolution degradation based on the so-called super-resolution technology.
図5を参照し、本例におけるシフト多重化表示の例について説明しておく。
図5Aは、解像度劣化補正に用いる複数の再生像を模式的に示している。図5Aに例示するように、本例では、解像度劣化補正に用いる再生像として、四つの再生像を生成する。
そして、図5Bに例示するように、これら四つの再生像を、再生面上において重ねるが、このとき、各再生像間で、像形成領域に画素ピッチ未満のずれが生じるようにする。具体的に本例では、半画素分のずれが生じるようにする。図示のように四つの再生像のうち一つの再生像の像形成領域を基準として、残りの一つの再生像は横方向(水平方向)に半画素分ずらし(図中、▲の再生像を参照)、残りのもう一つの再生像は縦方向(垂直方向)に半画素分ずらし(図中、■の再生像を参照)、残りのさらにもう一つの再生像は斜め方向に半画素分ずらす(図中、×の再生像を参照)という態様により、各再生像間で像形成領域に半画素分のずれが生じるようにする。
An example of shift multiplexing display in this embodiment will be described with reference to FIG.
Fig. 5A is a schematic diagram showing a plurality of reconstructed images used for the resolution degradation correction. As shown in Fig. 5A, in this example, four reconstructed images are generated as the reconstructed images used for the resolution degradation correction.
Then, as shown in Fig. 5B, these four reconstructed images are superimposed on the reconstruction surface, and at this time, a shift of less than the pixel pitch occurs in the image formation area between each reconstructed image. Specifically, in this example, a shift of half a pixel occurs. As shown in the figure, the image formation area of one of the four reconstructed images is used as a reference, and the remaining reconstructed image is shifted by half a pixel in the lateral direction (horizontal direction) (see the reconstructed image marked with ▲ in the figure), the remaining reconstructed image is shifted by half a pixel in the vertical direction (see the reconstructed image marked with ■ in the figure), and the remaining remaining reconstructed image is shifted by half a pixel in the diagonal direction (see the reconstructed image marked with × in the figure), thereby causing a shift of half a pixel in the image formation area between each reconstructed image.
本実施形態において、シフト多重化表示は、上記のような四つの再生像を時分割で投射することで行う。具体的に、本実施形態における制御部11は、シフト多重化表示のための複数の補正用ホログラムを計算し、それら補正用ホログラムが時分割で形成されるように空間光変調部6を制御する。
このようにシフト多重化表示のための複数の補正用ホログラムが時分割で形成されるようにすることで、それら補正用ホログラムにより、シフト多重化表示のための再生像のシフトが実現されるようにすることが可能となる。
補正用ホログラムの時分割形成によって再生像のシフトが実現されることで、シフト多重化表示を実現するにあたり、再生面上での再生像位置をシフトさせるためのシフトデバイスを設ける必要がなくなる。
In this embodiment, the shift multiplexed display is performed by projecting the four reconstructed images as described above in a time-division manner. Specifically, the
By forming a plurality of correction holograms for shift multiplexed display in this manner in a time-division manner, it becomes possible to realize a shift of the reconstructed image for shift multiplexed display by using these correction holograms.
Since the shifting of the reconstructed image is realized by time-division formation of the correction holograms, it becomes unnecessary to provide a shift device for shifting the position of the reconstructed image on the reconstruction surface when realizing shift multiplexed display.
なお、確認のため述べておくと、図5Bに示したように再生面上で各再生像の形成領域を異ならせるためには、各補正用ホログラムの計算において、再生面上のどの領域を再生像の形成目標領域とするかの設定を異ならせるものとすればよい。 For confirmation, in order to make the formation areas of each reconstructed image on the reconstruction surface different as shown in Figure 5B, the settings for which areas on the reconstruction surface are to be set as the target formation areas of the reconstructed images can be changed in the calculation of each correction hologram.
図4において、劣化画像推定部F1から補正用ホログラム生成部F3までの機能が、上記のようなシフト多重化表示による解像度劣化補正を実現するための複数の補正用ホログラムを生成する機能となる。 In FIG. 4, the functions from the degraded image estimation unit F1 to the correction hologram generation unit F3 are functions for generating multiple correction holograms to achieve the resolution degradation correction by the shift multiplexing display as described above.
劣化画像推定部F1は、目標画像と劣化要素情報とに基づき、目標画像に劣化要素情報が示す劣化が与えられた画像としての劣化画像を推定する。
具体的な手順としては、先ず、目標画像を再現するホログラムを劣化前ホログラムとして計算し、次いで、劣化前ホログラムと劣化要素情報とに基づき劣化ホログラムを計算し、その上で、劣化ホログラムによる再生像を劣化画像として計算する、という手順となる。
The degraded image estimation unit F1 estimates a degraded image as an image in which the degradation indicated by the degradation element information has been applied to the target image, based on the target image and the degradation element information.
The specific procedure is as follows: first, a hologram that reproduces the target image is calculated as an undegraded hologram, then a degraded hologram is calculated based on the undegraded hologram and the degradation element information, and finally, the reconstructed image based on the degraded hologram is calculated as the degraded image.
劣化前ホログラムは、例えば角スペクトル法による波面伝搬計算により求めることができる。具体的には、下記の[式1]に示す「Hologram」として計算することができる。
本実施形態では、再生像の劣化補正として、光学フィルタ9による解像度劣化と、空間光変調部6の液晶パネルにおいて生じる劣化、具体的には前述したディスクリネーションに起因した再生像の劣化についての補正を行う。さらに、本例では、再生像に生じる光学収差起因の劣化についての補正も併せて行う。ここでの、光学収差としては、例えば、投射レンズ10で生じるレンズ歪み等を挙げることができる。
In this embodiment, the degradation of the reproduced image is corrected by correcting the degradation of resolution caused by the
本例において、劣化画像としては、これら光学フィルタ9による解像度劣化と、ディスクリネーションに起因した再生像の劣化と、光学収差起因の再生像の劣化とを再現した画像を生成する。このため、上記した劣化要素情報としては、これら光学フィルタ9による解像度劣化要素の情報と、ディスクリネーションに起因した再生像の劣化要素の情報と、光学収差による再生像の劣化要素の情報とを用意しておく。
なお、各種劣化要素を示す情報は、予め実験的に、又はシミュレーション演算により求めておくことが考えられる。
In this example, the degraded image is generated by reproducing the degradation of resolution caused by the
The information indicating the various degradation factors may be obtained in advance experimentally or by simulation calculation.
先ずは、劣化前ホログラムと劣化要素情報とに基づき、劣化ホログラムを計算する。
本例において、劣化ホログラムの計算は、予め劣化要素情報として用意された、光学フィルタ9による解像度劣化要素の情報と、ディスクリネーションに起因した再生像の劣化要素の情報と、光学収差による再生像の劣化要素の情報とを用いて、劣化前ホログラムにこれら劣化要素による劣化を付与するようにして行う。
First, a degraded hologram is calculated based on the pre-degradation hologram and the degradation element information.
In this example, the degraded hologram is calculated by using information on the resolution degradation elements caused by the
具体的に、ディスクリネーションに起因した劣化付与の計算は、下記[式2]の「Hologram_Dl」を求める計算として行うことができる。
また、光学フィルタ9による解像度劣化を付与するための計算は、下記[式3]の「Hologram_Df」を求める計算として行うことができる。
[式3]における「Mask」の情報が、光学フィルタ9による解像度劣化要素の情報に相当する。
Furthermore, the calculation for imparting the degradation in resolution by the
The “Mask” information in [Equation 3] corresponds to information on the resolution degradation factor caused by the
また、本例では、[式3]で求めた「Hologram_Df」としての複素振幅ホログラムに対し、さらに光学収差による再生像の劣化を付与する計算を行う。この計算は、例えば投射レンズ10で生じるレンズ歪みとしての劣化要素を示す情報等、予め用意した光学収差による再生像の劣化要素の情報を用いて、[式2][式3]と同様の要領で行うことができる。
In addition, in this example, a calculation is performed to further add degradation of the reconstructed image due to optical aberration to the complex amplitude hologram as "Hologram_Df" obtained by [Equation 3]. This calculation can be performed in a similar manner to [Equation 2] and [Equation 3], using information on degradation factors of the reconstructed image due to optical aberration that has been prepared in advance, such as information indicating degradation factors as lens distortion caused by the
本例では、上記のように劣化前ホログラムに対して劣化要素情報が示す各種の劣化を付与したホログラムが、劣化ホログラムとして計算される。
劣化画像推定部F1は、この劣化ホログラムによる再生像を、劣化画像として計算する。劣化画像は、劣化ホログラムについて、[式1]と同様の要領で波面伝搬計算を行うことにより求めることができる。
In this example, a hologram obtained by adding various degradations indicated by the degradation element information to an undegraded hologram as described above is calculated as a degraded hologram.
The degraded image estimation unit F1 calculates the reconstructed image from this degraded hologram as a degraded image. The degraded image can be obtained by performing a wavefront propagation calculation for the degraded hologram in the same manner as in [Equation 1].
なお、光学フィルタ9による解像度劣化、ディスクリネーションに起因した再生像の劣化、及び光学収差による再生像の劣化について、劣化の付与の順番は上記の順番に限定されるものではなく、例えば、光学収差による再生像の劣化付与→光学フィルタ9による解像度劣化付与→ディスクリネーションに起因した再生像の劣化付与のような他の順番を採用することも可能である。
Note that the order in which the degradation of the resolution caused by the
ここで、劣化要素情報、具体的に本例では光学フィルタ9による解像度劣化要素の情報、ディスクリネーションに起因した再生像の劣化要素の情報、及び光学収差による再生像の劣化要素の情報は、制御部11が読み出し可能なメモリ(不揮発性メモリ)に記憶させておく。該メモリは、ホログラフィックプロジェクタ装置1内に設けることが考えられる。或いは、該メモリは、外部装置(例えば、クラウドサーバ等)に設けることも考えられる。
Here, the degradation element information, specifically in this example, information on the resolution degradation elements caused by the
多重化用画像生成部F2は、劣化画像推定部F1により得られた劣化画像と目標画像との差分に基づき、上述したシフト多重化表示に用いる複数(本例では四つ)の多重化用画像を計算により生成する。
具体的には、図5で説明したシフト多重化表示を行うことによって劣化画像と目標画像との差分をキャンセルすることができる四つの画像(解像度は、目標画像の解像度と同じである)を多重化用画像として計算により求めるものである。
なお、劣化画像と目標画像との差分に基づいて解像度劣化補正のためのシフト多重化表示に用いる複数の多重化用画像を計算する手法については、一般的な超解像技術で用いられる計算手法を流用することができる。一例としては、例えば下記参考文献1に開示される手法を流用することが考えられる。
・参考文献1:“Image Enhancement in Projectors via Optical Pixel Shift and Overlay”Behzad Sajadi, Duy Qoc-Lai, Alex T.Ihler, M.Gopi, Aditi Majumder:Department of Computer Science University of Califronia, Irvine
The multiplexing image generation unit F2 generates, by calculation, multiple (four in this example) multiplexing images to be used for the shift multiplexing display described above, based on the difference between the degraded image obtained by the degraded image estimation unit F1 and the target image.
Specifically, by performing the shift multiplexing display described in FIG. 5, four images (having the same resolution as that of the target image) that can cancel the difference between the degraded image and the target image are calculated as images for multiplexing.
In addition, a calculation method used in a general super-resolution technique can be used for calculating a plurality of multiplexing images to be used in shift multiplexing display for correcting resolution degradation based on the difference between a degraded image and a target image. For example, the method disclosed in Reference 1 below can be used.
・Reference 1: “Image Enhancement in Projectors via Optical Pixel Shift and Overlay” Behzad Sajadi, Duy Qoc-Lai, Alex T.Ihler, M.Gopi, Aditi Majumder: Department of Computer Science University of Califronia, Irvine
補正用ホログラム生成部F3は、多重化用画像生成部F2により計算された多重化用画像ごとに、多重化用画像を再生像として得るためのホログラムを補正用ホログラムとして計算により生成する。
多重化用画像から補正用ホログラムへの変換についても、前述した目標画像から劣化前ホログラムへの変換と同様、先の[式1]に示したような波面伝搬計算により行うことができる。
The correction hologram generating unit F3 generates, by calculation, a hologram for obtaining the multiplexing image as a reproduced image, as a correction hologram, for each multiplexing image calculated by the multiplexing image generating unit F2.
Conversion from a multiplexed image to a correction hologram can be performed by wavefront propagation calculations such as those shown in the above [Equation 1], in the same manner as the conversion from a target image to an undegraded hologram described above.
変調パターン生成部F4は、補正用ホログラム生成部F3により得られた各補正用ホログラムについて、それら補正用ホログラムを形成するための空間光変調部6の空間光変調パターンを計算により生成する。
ここで、本実施形態では空間光変調として空間光位相変調を行うため、複素振幅ホログラムとしての補正用ホログラムについて、位相ホログラムのみを抽出する。
具体的に、補正用ホログラムが下記[式4]に示す「u2(x’、y’)」として求められるものとすると、該[式4]における「eiφ(x’,y’)」を抽出することで、空間光変調部6の位相変調面における位相分布情報を得る。
In this embodiment, since spatial light phase modulation is performed as the spatial light modulation, only a phase hologram is extracted from the correction hologram as a complex amplitude hologram.
Specifically, assuming that the correction hologram is obtained as “ u2 (x' , y')” shown in the following [Equation 4], phase distribution information on the phase modulation surface of the spatial light modulation unit 6 is obtained by extracting “e iφ(x', y') ” in [Equation 4].
変調パターン生成部F4は、各補正用ホログラムについて、上記のような位相分布情報を得た上で、補正用ホログラムごとに、位相分布情報が示す位相分布を位相変調面において実現するための位相変調器の画素ごとの駆動信号値を計算する。このように補正用ホログラムごとに算出される、位相変調器の画素ごとの駆動信号値が、補正用ホログラムごとの空間光変調パターンの情報である。 The modulation pattern generation unit F4 obtains the above-mentioned phase distribution information for each correction hologram, and then calculates, for each correction hologram, a drive signal value for each pixel of the phase modulator to realize the phase distribution indicated by the phase distribution information on the phase modulation plane. The drive signal value for each pixel of the phase modulator calculated in this way for each correction hologram is information on the spatial light modulation pattern for each correction hologram.
出力制御部F5は、変調パターン生成部F4が生成した補正用ホログラムごとの空間光変調パターンの情報を駆動部12に対して時分割で出力する。
これにより、空間光変調部6の位相変調器は、シフト多重化表示のための四つの補正用ホログラムを時分割で形成するように駆動される。この結果、解像度等の各種劣化を補正するための四つの多重化用画像に対応したそれぞれの再生像が時分割でシフト多重化表示され、表示画像の各種劣化補正が実現される。
The output control unit F5 outputs the information on the spatial light modulation pattern for each correction hologram generated by the modulation pattern generating unit F4 to the driving
This drives the phase modulator of the spatial
確認のため述べておくと、本実施形態のように時分割でシフト多重化表示を行う場合、多重化用画像の表示周期は、視覚の積分効果を考慮した十分に速い周期に定める。 For confirmation, when performing shift multiplexing display in a time-division manner as in this embodiment, the display cycle of the multiplexing images is set to a sufficiently fast cycle that takes into account the visual integration effect.
ここで、本実施形態では、ホログラフィックプロジェクションのための空間光変調器として位相変調器を用いるものとしているが、これにより、画像表示の際の光の利用効率向上を図ることができる。先の図2を参照して説明したように、位相変調器を用いる場合は、ホログラムの形成を入射光の位相調整により実現できるため、入射光を遮光する必要がなく、光の利用効率向上が図られるものである。
光利用効率の向上が図られることで、表示画像の高コントラスト化、光源2の消費電力削減を図ることができる。
In this embodiment, a phase modulator is used as a spatial light modulator for holographic projection, which can improve the efficiency of light utilization when displaying an image. As described above with reference to Fig. 2, when a phase modulator is used, a hologram can be formed by adjusting the phase of incident light, so there is no need to block the incident light, and the efficiency of light utilization can be improved.
By improving the light utilization efficiency, it is possible to achieve a higher contrast for the displayed image and a reduction in the power consumption of the
また、本実施形態では、空間光変調によってシフト多重化表示における画素位置ずらしを行うため、画素位置ずらしのためのシフトデバイス(例えば、空間光変調器を振動させるデバイス等)を設ける必要がなくなる。
シフトデバイスを使用する場合には、画素位置が完全にずれるまでの遷移期間が生じ、該遷移期間中には画像表示を行うことができず低効率となる。本実施形態のように空間光変調によって画素位置ずらしを実現する場合には、そのような遷移期間は生じないものとなるため、効率向上が図られる。
また、シフトデバイスが不要となれば、画素位置ずらしの幅がシフトデバイスに依存せず、表示密度の向上が可能となる。従って、例えば1/4画素ずらし等の高精度な解像度劣化補正を実現することが可能である。
Furthermore, in this embodiment, since pixel position shifting in shift multiplexed display is performed by spatial light modulation, there is no need to provide a shift device for shifting pixel positions (for example, a device for vibrating a spatial light modulator, etc.).
When a shift device is used, a transition period occurs until the pixel position is completely shifted, during which an image cannot be displayed, resulting in low efficiency. When the pixel position is shifted by spatial light modulation as in this embodiment, such a transition period does not occur, improving efficiency.
In addition, if the shift device is not required, the width of the pixel position shift does not depend on the shift device, and the display density can be improved. Therefore, it is possible to realize high-precision correction of resolution degradation, such as a quarter-pixel shift.
また、本実施形態では、液晶パネルのディスクリネーションに起因した劣化の補正も行うようにしているが、これにより、ディスクリネーション対策のために画素ピッチの大きな液晶パネルを用いたり、再生像の画素数の4倍以上の画素数による液晶パネルを用いたりする必要を無くすことが可能となる。
従って、ホログラフィックプロジェクタ装置1の小型化や低価格化を図ることができる。
In addition, in this embodiment, the deterioration caused by disclination of the liquid crystal panel is also corrected, which makes it possible to eliminate the need to use a liquid crystal panel with a large pixel pitch to deal with disclination, or to use a liquid crystal panel with a pixel number four or more times the number of pixels of the reproduced image.
Therefore, the holographic projector device 1 can be made smaller and less expensive.
さらに、本実施形態では、レンズ歪み等の光学収差に起因した劣化の補正も行うようにしているが、これにより、収差補正機能を有する高価なレンズを用いる必要がなくなり、ホログラフィックプロジェクタ装置1の低価格化を実現できる。
Furthermore, in this embodiment, the deterioration caused by optical aberrations such as lens distortion is also corrected, which eliminates the need to use expensive lenses with an aberration correction function, thereby enabling the holographic projector device 1 to be manufactured at a low price.
[1-3.処理手順]
図6は、上記により説明した第一実施形態としての劣化補正手法を実現するために制御部11が実行すべき具体的な処理手順の例を示したフローチャートである。
なお、動画像の表示である場合、制御部11は、動画像を構成するフレーム画像を目標画像として、フレーム画像ごとに、図6に示す処理を実行する。静止画の表示である場合、制御部11は、共通の目標画像について、図6に示す処理を繰り返し実行すればよい。
[1-3. Processing procedure]
FIG. 6 is a flowchart showing an example of a specific processing procedure to be executed by the
When a moving image is displayed, the
先ず、制御部11はステップS101で、目標画像を再現するホログラムを劣化前ホログラムとして計算する。すなわち、目標画像に基づき、先の[式1]により劣化前ホログラムを計算する。
First, in step S101, the
ステップS101に続くステップS102で制御部11は、劣化前ホログラムと劣化要素情報とに基づき劣化ホログラムを計算する。具体的に本例では、劣化要素情報としてメモリに記憶された光学フィルタ9による解像度劣化要素の情報(前述した「Mask」)と、ディスクリネーションに起因した再生像の劣化要素の情報(前述した「d」)と、光学収差による再生像の劣化要素の情報に基づき、劣化前ホログラムに対し光学フィルタ9による解像度劣化、ディスクリネーションに起因した再生像の劣化、光学収差による再生像の劣化を付与する処理を行うことで、劣化ホログラムを計算する。
なお、具体的な劣化付与のための計算手法については既に説明済みであるため重複説明は避ける。
In step S102 following step S101, the
In addition, the specific calculation method for imparting deterioration has already been explained, so a duplicate explanation will be avoided.
ステップS102に続くステップS103で制御部11は、劣化ホログラムによる再生像を劣化画像として計算する。すなわち、前述したように波面伝搬計算により劣化ホログラムから劣化画像を計算する。
In step S103 following step S102, the
ステップS103に続くステップS104で制御部11は、計算した劣化画像と目標画像との差分に基づき、劣化補正のための多重化用画像を計算し、さらに、続くステップS105で、多重化用画像ごとのホログラム(補正用ホログラム)を計算する。多重化用画像の計算手法、及び補正用ホログラムの計算手法については既に説明済みであるため重複説明は避ける。
In step S104 following step S103, the
ステップS105に続くステップS106で制御部11は、補正用ホログラムごとに、ホログラム形成のための空間光変調パターンを計算する。すなわち、先に説明したように、補正用ホログラムごとに位相ホログラムを抽出して位相変調面における位相分布の情報を得た上で、該位相分布を実現するための位相変調器の画素ごとの駆動信号値を空間光変調パターンとして計算する。
In step S106 following step S105, the
ステップS106に続くステップS107で制御部11は、計算した空間光変調パターンを時分割で出力する。すなわち、計算した補正用ホログラムごとの空間光変調パターンの情報を時分割で駆動部12に出力する。
In step S107 following step S106, the
制御部11は、ステップS107の処理を実行したことに応じて、図6に示す一連の処理を終える。
After executing the process of step S107, the
<2.第二実施形態>
続いて、第二実施形態について説明する。
第二実施形態は、画像表示のためのホログラムの形成を空間光位相変調ではなく空間光振幅変調により行うものである。
<2. Second embodiment>
Next, a second embodiment will be described.
In the second embodiment, a hologram for displaying an image is formed by spatial light amplitude modulation rather than spatial light phase modulation.
図7は、第二実施形態としてのホログラフィックプロジェクタ装置1Aの構成例を示した図である。
なお以下の説明において、既に説明済みとなった部分と同様となる部分については同一符号を付して説明を省略する。
FIG. 7 is a diagram showing an example of the configuration of a
In the following description, parts that are similar to parts that have already been described will be given the same reference numerals and description thereof will be omitted.
ホログラフィックプロジェクタ装置1Aは、第一実施形態としてのホログラフィックプロジェクタ装置1と比較して、空間光変調部6に代えて空間光変調部6Aが設けられた点、及び制御部11に代えて制御部11Aが設けられた点が異なる。
空間光変調部6Aは、空間光変調器として空間光振幅変調器(以下「振幅変調器」と略称することもある)を有する。
本例では、振幅変調器としては、反射型の液晶パネルが用いられる。この場合の液晶パネルは、画素ごとに入射光の振幅を調整可能に構成されている。具体的には、画素ごとに入射光の遮光度合いを調整可能に構成されている。
The spatial
In this example, a reflective liquid crystal panel is used as the amplitude modulator. In this case, the liquid crystal panel is configured to be capable of adjusting the amplitude of incident light for each pixel. Specifically, the liquid crystal panel is configured to be capable of adjusting the degree of blocking of incident light for each pixel.
図8を参照し、空間光振幅変調によるホログラムの形成原理について説明しておく。ここでは説明上、空間光変調部6Aにおける振幅変調器として透過型の変調器を用いた場合を示しているが、反射型の変調器を用いた場合も原理的には同様である。
The principle of hologram formation by spatial light amplitude modulation will be explained with reference to Figure 8. For the sake of explanation, a case is shown in which a transmissive modulator is used as the amplitude modulator in the spatial
図中では、空間光変調部6Aにおいて、白表示(遮光度が最低)の画素と黒表示(遮光度が最大)の画素が存在している例を示しているが、このような空間光振幅変調を行うことで、光が遮光されずに透過した画素(白画素)からの球面波が干渉を起こし、干渉による光の強め合いが或るパターンで生じ、所要のパターンによる干渉縞(ホログラム)が形成される。このとき、ホログラムのパターンは、振幅変調器において入射光に対して付与する振幅分布のパターン、つまりは振幅変調器の空間光変調パターンにより制御可能である。
The figure shows an example in which the spatial
制御部11Aは、制御部11が有する劣化画像推定部F1、多重化用画像生成部F2、補正用ホログラム生成部F3、変調パターン生成部F4、及び出力制御部F5と同様の機能を有するが、変調パターン生成部F4において、補正用ホログラムから空間光変調パターンへの変換について、振幅変調器を用いる場合に対応した変換処理を行う点が制御部11とは異なる。
具体的には、先の[式4]に示す形態により得られる複素振幅ホログラムとしての補正用ホログラムについて、振幅ホログラムである「a2(x’,y’)」を抽出することで、空間光変調部6Aの振幅変調面における振幅分布情報を得る。この場合の変調パターン生成部F4は、各補正用ホログラムについて、上記のような振幅分布情報を得た上で、補正用ホログラムごとに、振幅分布情報が示す振幅分布を振幅変調面において実現するための振幅変調器の画素ごとの駆動信号値を計算する。これにより、振幅変調器を用いる場合に対応した補正用ホログラムごとの空間光変調パターンの情報が得られる。
The
Specifically, for a correction hologram as a complex amplitude hologram obtained by the form shown in [Equation 4] above, amplitude distribution information on the amplitude modulation plane of the spatial
また、第二実施形態において、液晶パネルのディスクリネーションに起因した劣化の補正を行う場合には、劣化画像推定部F1において、劣化前ホログラムに対する劣化付与として、先の[式2]による劣化付与を行うのではなく、下記[式5]による劣化付与を行う。
第二実施形態のようにホログラムの形成を空間光振幅変調により行う手法を採ることで、空間光変調器として画像表示のために一般的に用いられる振幅変調型の空間光変調器を用いることができる。
By employing a technique for forming a hologram by spatial light amplitude modulation as in the second embodiment, it is possible to use an amplitude modulation type spatial light modulator that is generally used for image display as the spatial light modulator.
<3.第三実施形態>
第三実施形態は、再生像の劣化補正を、例えばユーザが注目している画像領域としての注目領域等、一部の画像領域のみに絞って行うものである。
<3. Third embodiment>
In the third embodiment, the deterioration correction of the reconstructed image is performed only on a part of the image region, such as a region of interest as an image region that is attracting the user's attention.
図9は、第三実施形態としてのホログラフィックプロジェクタ装置1Bの構成例を示した図である。
図1に示したホログラフィックプロジェクタ装置1との相違点は、制御部11に代えて制御部11Bが設けられた点である。
FIG. 9 is a diagram showing an example of the configuration of a
The difference from the holographic projector device 1 shown in FIG. 1 is that a
制御部11Bは、再生像における指定された一部の画像領域のみについて補正用ホログラムが形成されるように空間光変調部を制御する。
具体的に、本例では、制御部11Bに対しては注目領域指定情報が入力される。この注目領域指定情報は、ユーザの注目領域、すなわち、表示画像中のユーザが注目している画像領域を指定する情報である。
The
Specifically, in this example, attention area designation information is input to the
ここで、注目領域は、ホログラフィックプロジェクタ装置1Bの内部又は外部に設けたカメラによりユーザを撮像して得られる撮像画像に基づき、ユーザの視線方向や顔の向き等を推定し、その結果に基づいて特定することが考えられる。或いは、注目領域は、ユーザ操作により指定させることも考えられる。
前者の場合、ユーザの視線方向や顔の向き等の推定処理及び推定結果に基づく注目領域の設定処理は、制御部11Bの外部で行われることを想定している。この場合、制御部11Bには、外部で設定された注目領域を示す情報が注目領域指定情報として入力される。
なお、上記の推定処理や推定結果に基づく注目領域の設定処理は、制御部11B自身で行うことも考えられる。或いは、推定処理のみを制御部11Bの外部で行い、推定結果に基づく注目領域の設定処理を制御部11Bで行う等といったことも考えられる。
また、後者の場合、ユーザ操作に基づく注目領域の設定処理を制御部11Bで行うことが考えられる。その場合、注目領域の指定のためにユーザが行った操作の情報が注目領域指定情報として制御部11Bに入力される。
Here, the attention area may be determined based on the result of estimating the user's line of sight, face direction, etc. based on an image captured by a camera installed inside or outside the
In the former case, it is assumed that the process of estimating the user's gaze direction, face orientation, etc. and the process of setting the attention area based on the estimation result are performed outside the
The above estimation process and the process of setting the area of interest based on the estimation result may be performed by the
In the latter case, it is possible that the
なお、注目領域の特定は、目標画像の画像解析により行うことも考えられる。例えば、入力画像から注目領域を推論するようにディープラーニング等の機械学習が行われた人工知能モデルを用いること等が考えられる。 In addition, it is possible to identify the region of interest by image analysis of the target image. For example, an artificial intelligence model that has undergone machine learning such as deep learning can be used to infer the region of interest from the input image.
本例における制御部11Bは、注目領域指定情報により指定された注目領域のみについて、シフト多重化表示に用いる複数の多重化用画像の計算、及び多重化用画像ごとの補正用ホログラムの計算を行う。
In this example, the
図10は、第三実施形態としての劣化補正手法の説明図である。
先ず、図中の<1>と示すように、制御部11Bは、目標画像から全体ホログラムを計算する。この処理は、先のステップS101の処理と同様に、目標画像から劣化前ホログラムを計算する処理である。第二実施形態では、目標画像全体についての劣化前ホログラムのことを全体ホログラムと表記する。
FIG. 10 is an explanatory diagram of a degradation correction method according to the third embodiment.
First, as indicated by <1> in the figure, the
また、制御部11Bは、図中<2>と示すように、目標画像に基づき注目領域の多重化用画像を生成する。
そして、制御部11Bは、図中<3>と示すように、注目領域についての各多重化用画像をホログラムに変換して複数の補正用ホログラムを得る。
その上で、制御部11Bは、上記の<1>で計算した全体ホログラムに対し、<3>で生成した補正用ホログラムを合成する。この全体ホログラムとの合成は、補正用ホログラムごとに行う。
以降は、それぞれの合成ホログラムを空間光変調パターンに変換し、合成ホログラムごとの空間光変調パターンを駆動部12に対して時分割で出力する。
これにより、注目領域に絞った劣化補正を実現することができる。
Furthermore, the
Then, as shown by <3> in the figure, the
Then, the
Thereafter, each composite hologram is converted into a spatial light modulation pattern, and the spatial light modulation pattern for each composite hologram is output to the driving
This makes it possible to realize degradation correction limited to the region of interest.
図11は、制御部11Bが有する機能の説明図である。
図示のように制御部11Bは、劣化画像推定部F1に代えて劣化画像推定部F1Bとしての機能を有する点、及び多重化用画像生成部F2に代えて多重化用画像生成部F2Bとしての機能を有する点、及び全体ホログラム計算部F6と合成部F7としての機能が追加された点が制御部11と異なる。
FIG. 11 is an explanatory diagram of the functions of the
As shown in the figure,
劣化画像推定部F1Bは、目標画像、劣化要素情報、及び注目領域指定情報に基づき、注目領域についての劣化画像を生成する。
この劣化画像推定部F1Bで行う処理は、処理対象とする画像領域が注目領域に限定される以外は、劣化画像推定部F1で行う処理と同様となるため重複説明を避ける。
The degraded image estimation unit F1B generates a degraded image for the attention area based on the target image, the degradation element information, and the attention area designation information.
The process performed by this deteriorated image estimation unit F1B is similar to the process performed by the deteriorated image estimation unit F1, except that the image region to be processed is limited to the region of interest, and therefore a duplicated description will be avoided.
多重化用画像生成部F2Bは、劣化画像推定部F1Bにより得られた注目領域についての劣化画像、目標画像、及び注目領域指定情報に基づき、注目領域の多重化用画像を計算により生成する。
具体的に、多重化用画像生成部F2Bは、目標画像における注目領域の画像と、劣化画像推定部F1Bにより得られた注目領域についての劣化画像との差分に基づき、注目領域の多重化用画像を生成する。この処理は、処理対象とする画像領域が注目領域に限定される以外は、多重化用画像生成部F2の処理と同様となることから重複説明を避ける。
The multiplexing image generating unit F2B generates a multiplexing image of the attention area by calculation based on the deteriorated image for the attention area obtained by the deteriorated image estimating unit F1B, the target image, and the attention area designation information.
Specifically, the image for multiplexing generating unit F2B generates an image for multiplexing of the region of interest based on the difference between the image of the region of interest in the target image and the deteriorated image of the region of interest obtained by the deteriorated image estimating unit F1B. This process is similar to the process of the image for multiplexing generating unit F2, except that the image region to be processed is limited to the region of interest, so a duplicated description will be avoided.
この場合の補正用ホログラム生成部F3は、多重化用画像生成部F2Bにより生成された注目領域の各多重化用画像をホログラムに変換することで、注目領域についての各補正用ホログラムを得る(図10の<3>参照)。 In this case, the correction hologram generation unit F3 converts each multiplexing image of the area of interest generated by the multiplexing image generation unit F2B into a hologram, thereby obtaining each correction hologram for the area of interest (see <3> in Figure 10).
全体ホログラム計算部F6は、目標画像をホログラムに変換する計算を行うことで全体ホログラムを得る。
合成部F7は、全体ホログラム計算部F6により得られた全体ホログラムに対し、補正用ホログラム生成部F3により得られた注目領域についての補正用ホログラムを合成する。前述のように、全体ホログラムとの合成は、補正用ホログラムごとに行う。つまり本例では、四つの補正用ホログラムが生成されるので、合成ホログラムとしては、それぞれ合成された補正用ホログラムが異なる四つのホログラムが得られるものである。
An overall hologram calculation unit F6 obtains an overall hologram by performing calculations to convert the target image into a hologram.
The synthesis unit F7 synthesizes the correction hologram for the region of interest obtained by the correction hologram generation unit F3 with the whole hologram obtained by the whole hologram calculation unit F6. As described above, synthesis with the whole hologram is performed for each correction hologram. In other words, in this example, four correction holograms are generated, and four synthesized holograms, each of which has a different correction hologram, are obtained.
この場合の変調パターン生成部F4は、合成部F7により得られた各合成ホログラムについて、空間光変調パターンへの変換を行う。
そして、この場合の出力制御部F5は、変調パターン生成部F4により得られた合成ホログラムごとの空間光変調パターンを、駆動部12に対して時分割で出力する。
In this case, the modulation pattern generating unit F4 converts each composite hologram obtained by the combining unit F7 into a spatial light modulation pattern.
In this case, the output control unit F5 outputs the spatial light modulation pattern for each composite hologram obtained by the modulation pattern generation unit F4 to the
図12は、上記により説明した第三実施形態としての劣化補正手法を実現するために制御部11Bが実行する具体的な処理手順の例を示したフローチャートである。
なお、図12に示す処理についても、先の図6に示した処理と同様、動画像の表示である場合には、動画像を構成するフレーム画像を目標画像として、フレーム画像ごとに、図示の処理を実行し、また、静止画の表示である場合には、共通の目標画像について図示の処理を繰り返し実行すればよい。
FIG. 12 is a flowchart showing an example of a specific processing procedure executed by the
In addition, with regard to the process shown in Figure 12, similar to the process shown in Figure 6 above, when a moving image is displayed, the frame images that make up the moving image are used as target images, and the process shown is executed for each frame image, and when a still image is displayed, the process shown is executed repeatedly for a common target image.
先ず、制御部11BはステップS101で、目標画像を再現するホログラムを劣化前ホログラム(全体ホログラム)として計算する。この処理は、前述した全体ホログラム計算部F6として説明した処理に相当する。
First, in step S101,
ステップS101の処理を実行したことに応じ、制御部11BはステップS201に処理を進める。
ステップS201で制御部11Bは、注目領域の劣化前ホログラム、劣化要素情報、及び注目領域指定情報に基づき、注目領域についての劣化ホログラムを計算する。すなわち、注目領域指定情報に基づき、目標画像における注目領域の画像をホログラムに変換することで注目領域の劣化前ホログラムを得ると共に、該注目領域の劣化前ホログラムに対して劣化要素情報を用いた各種劣化の付与処理を行うことで、注目領域の劣化ホログラムを得る。
In response to executing the process of step S101, the
In step S201, the
ステップS201に続くステップS202で制御部11Bは、計算した劣化ホログラムに基づき注目領域の劣化画像を計算する。
そして、ステップS202に続くステップS203で制御部11Bは、注目領域の劣化画像と目標画像における注目領域の画像との差分に基づき、注目領域の多重化用画像を計算し、さらに続くステップS204で、多重化用画像のホログラム(補正用ホログラム)を計算する。これらのステップS203、S204の処理は、それぞれ、前述した多重化用画像生成部F2Bに相当する処理、補正用ホログラム生成部F3に相当する処理である。
In step S202 following step S201, the
Then, in step S203 following step S202, the
ステップS204に続くステップS205で制御部11Bは、全体ホログラム(劣化前ホログラム)と補正用ホログラムの合成処理を行う。すなわち、ステップS101で計算した劣化前ホログラムとしての全体ホログラムと、ステップS204で計算した各補正用ホログラムとを合成する処理である。前述のように、全体ホログラムとの合成は、補正用ホログラムごとに行うものである。
In step S205 following step S204, the
ステップS205に続くステップS206で制御部11Bは、各合成ホログラムを空間光変調パターンに変換し、さらに続くステップS207で、空間光変調パターンを時分割で出力する。
In step S206 following step S205, the
制御部11Bは、ステップS207の処理を実行したことに応じて、図12に示す一連の処理を終える。
After executing the process of step S207, the
なお、第三実施形態のように劣化補正を一部の画像領域に絞って行う手法は、第二実施形態のように空間光変調器として振幅変調器を用いる場合にも適用することができる。
The technique of performing degradation correction only on a part of an image region as in the third embodiment can also be applied to the case where an amplitude modulator is used as the spatial light modulator as in the second embodiment.
<4.変形例>
以上、本技術に係る各種の実施形態について説明したが、本技術は上記で説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
例えば、上記では、補正用ホログラムの計算について、二次元平面による再生面を想定した計算を行う前提としたが、該再生面として、凹凸を有する再生面を想定した補正用ホログラムの計算を行うこともできる。
4. Modifications
Although various embodiments according to the present technology have been described above, the present technology is not limited to the specific examples described above, and various modified configurations may be adopted.
For example, in the above, the calculation of the correction hologram is based on the assumption that the reconstruction surface is a two-dimensional plane, but it is also possible to calculate the correction hologram based on the assumption that the reconstruction surface has projections and recesses.
例えば、図13に例示するように、実際の再生面は、図中に「I」と示す二次元平面ではなく、比較的大きな凹凸を有する面とされる場合がある。このとき、特に再生面上にマイクロレンズアレイやHOE(Holographic Optical Element:ホログラフィック回折素子)、DOE(Diffractive Optical Element:回折光学素子)等といった光の拡散素子を視野角特性の向上等のために配置することを想定すると、再生面として二次元平面を想定したホログラム計算を行ったのでは、再生像の各光線の結像位置が拡散素子の位置に一致しない、すなわち拡散素子に対するデフォーカスが生じてしまい、拡散素子による光の拡散が適切に行われず、視野角特性の向上が図られないものとなってしまう。 For example, as shown in FIG. 13, the actual playback surface may not be a two-dimensional plane indicated by "I" in the figure, but may instead be a surface with relatively large projections and recesses. In this case, particularly when it is assumed that a light diffusion element such as a microlens array, HOE (Holographic Optical Element), DOE (Diffractive Optical Element), etc. is placed on the playback surface to improve the viewing angle characteristics, if hologram calculations are performed assuming a two-dimensional plane as the playback surface, the imaging positions of the light rays of the playback image will not coincide with the positions of the diffusion elements, i.e., defocusing will occur with respect to the diffusion elements, and the diffusion elements will not properly diffuse the light, resulting in failure to improve the viewing angle characteristics.
そこで、図14に示すように、再生面として凹凸を有する面を想定して、補正用ホログラムの計算を行う。具体的には、再生面の凹凸形状を示す三次元情報を予め実測しておき、該実測の三次元情報を補正用ホログラムの計算における想定再生面の三次元情報として用いる。 As a result, as shown in Figure 14, the correction hologram is calculated assuming that the reconstruction surface is an uneven surface. Specifically, three-dimensional information showing the uneven shape of the reconstruction surface is measured in advance, and the measured three-dimensional information is used as the three-dimensional information of the assumed reconstruction surface in the calculation of the correction hologram.
図15は、上記のように再生面の三次元情報を用いて補正用ホログラムの計算を行うホログラフィックプロジェクタ装置1Cについての説明するための図である。具体的には、ホログラフィックプロジェクタ装置1Cが有する制御部11Cの機能説明図である。なお、ホログラフィックプロジェクタ装置1Cにおいて、制御部11C以外の構成は例えば第一実施形態で説明したホログラフィックプロジェクタ装置1と同様であり、重複説明は避ける。
FIG. 15 is a diagram for explaining holographic projector device 1C that calculates a correction hologram using three-dimensional information on the reproduction surface as described above. Specifically, it is a functional explanatory diagram of
制御部11Cは、制御部11と比較して、補正用ホログラム生成部F3に代えて補正用ホログラム生成部F3Cを有する点が異なる。
補正用ホログラム生成部F3Cには、実測された再生面の三次元情報が、再生面三次元情報として入力される。ここで、再生面三次元情報は、劣化要素情報と同様に、制御部11Cが読み出し可能なメモリに記憶させておくことが考えられる。
The three-dimensional information of the actually measured reproduction surface is input to the correction hologram generating unit F3C as the reproduction surface three-dimensional information. Here, the reproduction surface three-dimensional information may be stored in a memory that can be read by the
補正用ホログラム生成部F3Cは、補正用ホログラムの計算において想定する再生面の座標情報として、再生面三次元情報が示す座標情報を用いる。
これにより、実際の再生面が凹凸を有する面である場合に対応して、解像度劣化補正のための適切な補正用ホログラムを計算することができる。特に、再生面に上述した拡散素子を配置する構成を採る場合には、再生像の各光線の集光位置を拡散素子の位置に一致させることが可能となり、視野角特性の向上を図ることができる。
The correction hologram generating unit F3C uses the coordinate information indicated by the reproduction plane three-dimensional information as the coordinate information of the reproduction plane assumed in the calculation of the correction hologram.
This makes it possible to calculate an appropriate correction hologram for correcting degradation in resolution when the actual reconstruction surface has irregularities. In particular, when the above-mentioned diffusion element is disposed on the reconstruction surface, it becomes possible to make the focusing position of each light beam of the reconstruction image coincide with the position of the diffusion element, thereby improving the viewing angle characteristics.
ここで、これまでの説明では、2D画像の表示を行う例を挙げたが、本技術は、3D画像の表示を行う場合にも好適に適用することができる。 In the explanation so far, we have given an example of displaying 2D images, but this technology can also be suitably applied to displaying 3D images.
また、本技術は、カラー画像の表示を行う場合にも好適に適用することができる。
例えば、R(赤色)、G(緑色)、B(青色)の各色ごとの空間光変調器を設け、色ごとに目標画像と劣化画像とに基づく補正用ホログラムの生成、生成した補正用ホログラムを用いたシフト多重化表示を行う構成とすることが考えられる。
或いは、単板の空間光変調器について、色ごとの空間光変調領域を定義し、それら色ごとの空間光変調領域を色ごとの空間光変調器とみたてて、同様に色ごとの目標画像と劣化画像とに基づく補正用ホログラムの生成、生成した補正用ホログラムを用いたシフト多重化表示を行う構成とすることも考えられる。
カラー画像の表示のための構成として上記の構成を採るものとすれば、各色の再生像を時分割でなく同時表示することが可能となるため、カラーブレイクの抑制を図ることができる。
なお、カラーブレイクを無視できる場合等であれば、色ごとに生成した補正用ホログラムを用いたシフト多重化表示を、時分割で行う構成を採ることも考えられる。
Furthermore, the present technology can also be suitably applied to the display of color images.
For example, a possible configuration could be to provide a spatial light modulator for each of the colors R (red), G (green), and B (blue), generate a correction hologram for each color based on a target image and a degraded image, and perform shift multiplexing display using the generated correction holograms.
Alternatively, for a single-panel spatial light modulator, a spatial light modulation area can be defined for each color, and each of these spatial light modulation areas can be regarded as a spatial light modulator for each color, and a correction hologram can be generated based on a target image and a degraded image for each color, and a shift multiplexed display can be performed using the generated correction hologram.
If the above-described configuration is adopted as a configuration for displaying a color image, it becomes possible to simultaneously display the reconstructed images of the respective colors instead of in a time-division manner, thereby making it possible to suppress color breakup.
If color breaks can be ignored, it is possible to adopt a configuration in which shift multiplexed display using correction holograms generated for each color is performed in a time-division manner.
また、これまでの説明では、シフト多重化表示による解像度劣化補正を行う場合を例示したが、例えば、目標画像と劣化画像との差分をキャンセルする一つの補正用ホログラムを生成し、該補正用ホログラムを空間光変調部によって形成させることで、解像度劣化補正が実現されるようにすることも考えられる。この場合、補正用ホログラムとしては、例えば、劣化画像について画素ごとにボケ関数を計算し、目標画像の画素ごとにボケ関数の逆関数を画素値に乗じることで補正用の画像を生成し、該補正用の画像を再生するホログラムとして生成する等が考えられる。 In addition, in the explanation so far, an example has been given of a case where resolution degradation correction is performed using shift multiplexing display, but it is also possible to realize resolution degradation correction by, for example, generating a correction hologram that cancels the difference between the target image and the degraded image and forming the correction hologram using a spatial light modulation unit. In this case, the correction hologram may be generated by, for example, calculating a blur function for each pixel of the degraded image, multiplying the pixel value for each pixel of the target image by the inverse function of the blur function to generate a correction image, and generating a hologram that reproduces the correction image.
また、これまでの説明では、光源2として半導体レーザを用いる例を挙げたが、光源2としては例えばLED(Light Emitting Diode)等の半導体レーザ以外の発光素子を用いることも考えられる。
In addition, in the explanation so far, an example has been given in which a semiconductor laser is used as the
また、これまでの説明では、ホログラム形成のための空間光変調器として反射型の液晶パネルを用いる例を挙げたが、液晶パネル以外の反射型の空間光変調器を用いることも考えられる。
例えば、第一実施形態のように位相変調器を用いる場合には、MEMS(Micro Electro Mechanical Systems)によるミラー、具体的には、画素ごとにミラー面の高さ調整を行うことが可能に構成されたMEMSミラーを用いることが考えられる。
また、第二実施形態のように振幅変調器を用いる場合には、DMD(Digital Micro Mirror Device)を用いることが考えられる。
また、反射型の空間光変調器ではなく透過型の空間光変調器を用いることも可能である。
Furthermore, in the above explanation, an example has been given in which a reflective liquid crystal panel is used as a spatial light modulator for forming a hologram, but it is also possible to use a reflective spatial light modulator other than a liquid crystal panel.
For example, when using a phase modulator as in the first embodiment, it is possible to use a mirror using MEMS (Micro Electro Mechanical Systems), specifically, a MEMS mirror configured so that the height of the mirror surface can be adjusted for each pixel.
Furthermore, when an amplitude modulator is used as in the second embodiment, it is possible to use a DMD (Digital Micro Mirror Device).
It is also possible to use a transmissive spatial light modulator instead of a reflective spatial light modulator.
<5.実施形態のまとめ>
以上で説明したように実施形態としてのホログラフィックプロジェクタ装置(同1,1A,1B,1C)は、光源(同2)と、光源より発せられた光に対し空間光変調を施す空間光変調部(同6,6A)と、空間光変調部により生成された再生像を投射する投射部(リレーレンズ7,8,投射レンズ10)と、目標画像と、光源から投射部までの投射経路において生じる再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、再生像の劣化を補正するための補正用ホログラムを計算し、計算した補正用ホログラムに基づく空間光変調パターンにより空間光変調部が駆動されるように制御する制御部(同11,11A,11B,11C)と、を備えたものである。
上記構成によれば、投射経路において実際に生じる解像度劣化要素を考慮した解像度劣化補正を行うことが可能となり、適切な解像度劣化補正の実現化を図ることが可能となる。また、解像度劣化補正を行うことで、低解像度の空間光変調器を用いることが可能となる。
従って、ホログラフィックプロジェクタ装置について、低価格化を図りながら解像度劣化の抑制を図ることができる。
5. Summary of the embodiment
As described above, the holographic projector device (1, 1A, 1B, 1C) as an embodiment includes a light source (2), a spatial light modulation unit (6, 6A) that performs spatial light modulation on light emitted from the light source, a projection unit (
According to the above configuration, it is possible to perform resolution degradation correction that takes into account the resolution degradation factors that actually occur in the projection path, and it is possible to realize appropriate resolution degradation correction. Furthermore, by performing resolution degradation correction, it is possible to use a spatial light modulator with a low resolution.
Therefore, it is possible to suppress degradation of resolution while reducing the cost of the holographic projector device.
また、実施形態としてのホログラフィックプロジェクタ装置においては、再生像に光学的なフィルタ処理を施す光学フィルタ(同9)を備え、劣化要素情報は、光学フィルタによる解像度劣化要素の情報を含んでいる。
これにより、光学フィルタによって解像度劣化要素が生じる場合に対応して、解像度劣化の補正を行うことができる。
Furthermore, the holographic projector device according to the embodiment includes an optical filter (9) that applies optical filtering to the reconstructed image, and the degradation element information includes information on resolution degradation elements caused by the optical filter.
This makes it possible to correct the degradation in resolution in cases where the optical filter causes a degradation in resolution.
さらに、実施形態としてのホログラフィックプロジェクタ装置においては、光学フィルタは、ノイズ光を除去する光学フィルタとされている。
ノイズ光を除去する光学フィルタによっては再生像の解像度劣化が生じる。
従って、該光学フィルタによる解像度劣化要素を考慮して解像度劣化補正を行うことが好適である。
Furthermore, in the holographic projector device according to the embodiment, the optical filter is an optical filter that removes noise light.
An optical filter that removes noise light can cause degradation of the resolution of the reconstructed image.
Therefore, it is preferable to perform the resolution degradation correction taking into consideration the resolution degradation factor caused by the optical filter.
さらにまた、実施形態としてホログラフィックプロジェクタ装置においては、空間光変調部は、液晶パネルにより空間光変調を行い、劣化要素情報は、液晶パネルにおいて生じる再生像の劣化要素の情報を含んでいる。
これにより、空間光変調に用いる液晶パネルにおいて再生像の劣化要素が生じる場合に対応して、再生像の劣化補正を行うことができる。
Furthermore, in a holographic projector device as an embodiment, the spatial light modulation section performs spatial light modulation using a liquid crystal panel, and the degradation factor information includes information on degradation factors of the reproduced image that occur in the liquid crystal panel.
This makes it possible to correct the degradation of the reconstructed image in the case where a degradation factor of the reconstructed image occurs in the liquid crystal panel used for spatial light modulation.
また、実施形態としてのホログラフィックプロジェクタ装置においては、劣化要素情報は、液晶パネルのディスクリネーションに起因した再生像の劣化要素の情報を含んでいる。
これにより、ディスクリネーションに起因した再生像の劣化補正が実現され、ディスクリネーション対策のために画素ピッチの大きな液晶パネルを用いたり、再生像の画素数の4倍以上の画素数による液晶パネルを用いたりする必要を無くすことが可能となる。
従って、ホログラフィックプロジェクタ装置の小型化や低価格化を図ることができる。
In the holographic projector device according to the embodiment, the degradation factor information includes information on degradation factors of the reproduced image caused by disclinations in the liquid crystal panel.
This makes it possible to correct the degradation of the reproduced image caused by disclination, and eliminates the need to use a liquid crystal panel with a large pixel pitch to deal with disclination, or to use a liquid crystal panel with a number of pixels four or more times the number of pixels of the reproduced image.
Therefore, the holographic projector device can be made smaller and cheaper.
さらに、実施形態としてのホログラフィックプロジェクタ装置においては、劣化要素情報は、再生像に生じる光学収差起因の劣化要素を示す情報を含んでいる。
これにより、補正用ホログラムとして、解像度劣化の補正のみでなく、例えば投射レンズ系におけるレンズ歪み等といった再生像に生じる光学収差起因の劣化についての補正も行うことが可能なホログラムを計算することが可能となる。
従って、表示画像についての画質向上を図ることができる。
Furthermore, in the holographic projector device according to the embodiment, the degradation element information includes information indicating degradation elements caused by optical aberrations occurring in the reconstructed image.
This makes it possible to calculate a corrective hologram that can not only correct degradation in resolution, but also correct degradation in the reconstructed image caused by optical aberrations, such as lens distortion in a projection lens system.
Therefore, the quality of the displayed image can be improved.
さらにまた、実施形態としてホログラフィックプロジェクタ装置においては、制御部は、複数の再生像をシフト多重化表示する手法により劣化が補正されるように空間光変調部を制御している。
シフト多重化表示を行うことで、低解像の再生像を用いて高解像の画像表示を実現することができる。すなわち、いわゆる超解像技術に基づく解像度劣化補正を実現することができる。
Furthermore, in a holographic projector device as an embodiment, the control unit controls the spatial light modulation unit so that degradation is corrected by a method of shifting and multiplexing a plurality of reconstructed images to be displayed.
By performing shift multiplexing display, it is possible to realize a high-resolution image display using a low-resolution reconstructed image, that is, it is possible to realize the correction of resolution degradation based on the so-called super-resolution technology.
また、実施形態としてのホログラフィックプロジェクタ装置においては、制御部は、シフト多重化表示のための複数の補正用ホログラムが時分割で形成されるように空間光変調部を制御している。
上記のようにシフト多重化表示のための複数の補正用ホログラムが時分割で形成されるようにすることで、それら補正用ホログラムにより、シフト多重化表示のための再生像のシフトが実現されるようにすることが可能となる。
補正用ホログラムの時分割形成によって再生像のシフトが実現されることで、シフト多重化表示を実現するにあたり、再生面上での再生像位置をシフトさせるためのシフトデバイスを設ける必要がなくなる。従って、解像度劣化補正を実現する上での部品点数の削減を図ることができ、ホログラフィックプロジェクタ装置の小型軽量化、低価格化を図ることができる。
In the holographic projector device according to the embodiment, the control unit controls the spatial light modulation unit so that a plurality of correction holograms for shift multiplexed display are formed in a time-division manner.
By forming a plurality of correction holograms for shift multiplexed display in a time-division manner as described above, it is possible to realize a shift of the reconstructed image for shift multiplexed display by using these correction holograms.
Since the shift of the reconstructed image is realized by time-division formation of the correction hologram, there is no need to provide a shift device for shifting the position of the reconstructed image on the reconstruction surface when realizing shift multiplexed display. This makes it possible to reduce the number of parts required to correct resolution degradation, and to reduce the size, weight, and cost of the holographic projector device.
さらに、実施形態としてのホログラフィックプロジェクタ装置においては、制御部は、目標画像を再現するホログラムを劣化前ホログラムとして計算し、劣化前ホログラムと劣化要素情報とに基づき劣化ホログラムを計算し、劣化ホログラムによる再生像を劣化画像として計算し、計算した劣化画像と目標画像との差分に基づき、シフト多重化表示に用いる複数の多重化用画像を計算し、計算した多重化用画像ごとに、多重化用画像を再生像として得るためのホログラムを補正用ホログラムとして計算し、計算した多重化用画像ごとの補正用ホログラムが時分割で形成されるように空間光変調部を制御している。
上記のように多重化用画像ごとの補正用ホログラムが時分割で形成されるようにすることで、それら補正用ホログラムにより、シフト多重化表示のための再生像のシフトが実現される。
従って、シフト多重化表示を実現するにあたり再生面上での再生像位置をシフトさせるためのシフトデバイスを設ける必要がなくなり、解像度劣化補正を実現する上での部品点数の削減が図られ、ホログラフィックプロジェクタ装置の小型軽量化、低価格化を図ることができる。
Furthermore, in the holographic projector device of the embodiment, the control unit calculates a hologram that reproduces the target image as an undegraded hologram, calculates a degraded hologram based on the undegraded hologram and the degradation element information, calculates a reconstructed image from the degraded hologram as a degraded image, calculates a plurality of multiplexing images to be used for shift multiplexing display based on the difference between the calculated degraded image and the target image, calculates a hologram as a correction hologram for obtaining the multiplexing image as a reconstructed image, and controls the spatial light modulation unit so that the correction hologram for each calculated multiplexing image is formed in a time-division manner.
By forming a correction hologram for each multiplexed image in a time-division manner as described above, the correction holograms realize the shifting of the reconstructed image for shift multiplexed display.
Therefore, when realizing shift multiplexed display, there is no need to provide a shift device for shifting the position of the reproduced image on the reproduction surface, and the number of parts required to achieve resolution degradation correction can be reduced, making it possible to make the holographic projector device smaller, lighter, and less expensive.
さらにまた、実施形態としてホログラフィックプロジェクタ装置(同1,1B,1C)においては、空間光変調部は、空間光変調として空間光位相変調を行っている。
再生像の生成を空間光変調により行うことで、画像表示における光の利用効率向上を図ることができ、表示画像の高コントラスト化、光源の消費電力削減を図ることができる。
Furthermore, in the holographic projector devices (1, 1B, 1C) as the embodiments, the spatial light modulation section performs spatial light phase modulation as the spatial light modulation.
By generating a reconstructed image by spatial light modulation, it is possible to improve the efficiency of light utilization in image display, thereby enabling the contrast of the displayed image to be increased and the power consumption of the light source to be reduced.
また、実施形態としてのホログラフィックプロジェクタ装置(同1B)においては、制御部(同11B)は、再生像における指定された一部の画像領域のみについて補正用ホログラムが形成されるように空間光変調部を制御している。
これにより、例えばユーザが注目している画像領域等、特に補正が必要とされる一部の画像領域のみに絞って解像度劣化補正のための計算処理を行うようにすることが可能となる。
従って、解像度劣化補正に要する計算処理負担の軽減を図ることができる。
In addition, in the holographic projector device (same as 1B) as an embodiment, the control unit (same as 11B) controls the spatial light modulation unit so that a correction hologram is formed only in a specified partial image area in the reproduced image.
This makes it possible to perform calculation processing for correcting degradation in resolution only on a portion of the image area that particularly requires correction, such as an image area that the user is paying attention to.
Therefore, the calculation processing load required for correcting degradation in resolution can be reduced.
さらに、実施形態としてのホログラフィックプロジェクタ装置においては、制御部(同11C)は、補正用ホログラムの計算として、凹凸を有する再生面を想定したホログラムの計算を行っている。
これにより、実際の再生面が凹凸を有する面である場合に対応して、解像度劣化補正のための適切な補正用ホログラムを計算することができる。
Furthermore, in the holographic projector device according to the embodiment, the control unit (11C) calculates a correction hologram by assuming a reproduction surface having projections and recesses.
This makes it possible to calculate an appropriate correction hologram for correcting degradation in resolution in cases where the actual reproduction surface has projections and recesses.
また、実施形態としての制御方法は、光源と、光源より発せられた光に対し空間光変調を施す空間光変調部と、空間光変調部により生成された再生像を投射する投射部とを備えたホログラフィックプロジェクタ装置における制御方法であって、目標画像と、光源から投射部までの投射経路において生じる再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、再生像の劣化を補正するための補正用ホログラムを計算し、計算した補正用ホログラムに基づく空間光変調パターンにより空間光変調部が駆動されるように制御する制御方法である。
このような制御方法によっても、上記した実施形態としてのホログラフィックプロジェクタ装置と同様の作用及び効果を得ることができる。
In addition, the control method as an embodiment is a control method for a holographic projector device that includes a light source, a spatial light modulation unit that performs spatial light modulation on the light emitted from the light source, and a projection unit that projects a reconstructed image generated by the spatial light modulation unit, and the control method calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least resolution degradation elements of the reconstructed image that occur on the projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
With such a control method, it is possible to obtain the same functions and effects as the holographic projector device according to the above-described embodiment.
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
It should be noted that the effects described in this specification are merely examples and are not limiting, and other effects may also be obtained.
<6.本技術>
本技術は以下のような構成を採ることもできる。
(1)
光源と、
前記光源より発せられた光に対し空間光変調を施す空間光変調部と、
前記空間光変調部により生成された再生像を投射する投射部と、
目標画像と、前記光源から前記投射部までの投射経路において生じる前記再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、前記再生像の劣化を補正するための補正用ホログラムを計算し、計算した前記補正用ホログラムに基づく空間光変調パターンにより前記空間光変調部が駆動されるように制御する制御部と、を備えた
ホログラフィックプロジェクタ装置。
(2)
前記再生像に光学的なフィルタ処理を施す光学フィルタを備え、
前記劣化要素情報は、前記光学フィルタによる解像度劣化要素の情報を含む
前記(1)に記載のホログラフィックプロジェクタ装置。
(3)
前記光学フィルタは、ノイズ光を除去する光学フィルタである
前記(2)に記載のホログラフィックプロジェクタ装置。
(4)
前記空間光変調部は、液晶パネルにより前記空間光変調を行い、
前記劣化要素情報は、前記液晶パネルにおいて生じる再生像の劣化要素の情報を含む
前記(1)から(3)の何れかに記載のホログラフィックプロジェクタ装置。
(5)
前記劣化要素情報は、前記液晶パネルのディスクリネーションに起因した再生像の劣化要素の情報を含む
前記(4)に記載のホログラフィックプロジェクタ装置。
(6)
前記劣化要素情報は、前記再生像に生じる光学収差起因の劣化要素を示す情報を含む
前記(1)から(5)の何れかに記載のホログラフィックプロジェクタ装置。
(7)
前記制御部は、
複数の再生像をシフト多重化表示する手法により前記劣化が補正されるように前記空間光変調部を制御する
前記(1)に記載のホログラフィックプロジェクタ装置。
(8)
前記制御部は、
前記シフト多重化表示のための複数の前記補正用ホログラムが時分割で形成されるように前記空間光変調部を制御する
前記(7)に記載のホログラフィックプロジェクタ装置。
(9)
前記制御部は、
前記目標画像を再現するホログラムを劣化前ホログラムとして計算し、
前記劣化前ホログラムと前記劣化要素情報とに基づき劣化ホログラムを計算し、
前記劣化ホログラムによる再生像を劣化画像として計算し、
計算した前記劣化画像と前記目標画像との差分に基づき、前記シフト多重化表示に用いる複数の多重化用画像を計算し、
計算した前記多重化用画像ごとに、前記多重化用画像を再生像として得るためのホログラムを前記補正用ホログラムとして計算し、
計算した前記多重化用画像ごとの前記補正用ホログラムが時分割で形成されるように前記空間光変調部を制御する
前記(8)に記載のホログラフィックプロジェクタ装置。
(10)
前記空間光変調部は、前記空間光変調として空間光位相変調を行う
前記(1)から(9)の何れかに記載のホログラフィックプロジェクタ装置。
(11)
前記制御部は、
前記再生像における指定された一部の画像領域のみについて前記補正用ホログラムが形成されるように前記空間光変調部を制御する
前記(1)から(10)の何れかに記載のホログラフィックプロジェクタ装置。
(12)
前記制御部は、
前記補正用ホログラムの計算として、凹凸を有する再生面を想定したホログラムの計算を行う
前記(1)から(11)の何れかに記載のホログラフィックプロジェクタ装置。
(13)
光源と、前記光源より発せられた光に対し空間光変調を施す空間光変調部と、前記空間光変調部により生成された再生像を投射する投射部とを備えたホログラフィックプロジェクタ装置における制御方法であって、
目標画像と、前記光源から前記投射部までの投射経路において生じる前記再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、前記再生像の劣化を補正するための補正用ホログラムを計算し、計算した前記補正用ホログラムに基づく空間光変調パターンにより前記空間光変調部が駆動されるように制御する
制御方法。
<6. This Technology>
The present technology can also be configured as follows.
(1)
A light source;
a spatial light modulation unit that performs spatial light modulation on the light emitted from the light source;
a projection unit that projects a reproduced image generated by the spatial light modulation unit;
a control unit that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
(2)
an optical filter that performs optical filtering on the reconstructed image;
The holographic projector device according to (1), wherein the degradation element information includes information on a resolution degradation element caused by the optical filter.
(3)
The holographic projector device according to (2), wherein the optical filter is an optical filter that removes noise light.
(4)
the spatial light modulation unit performs the spatial light modulation using a liquid crystal panel;
The holographic projector device according to any one of (1) to (3), wherein the degradation factor information includes information on degradation factors of the reproduced image that occur in the liquid crystal panel.
(5)
The holographic projector device according to (4), wherein the degradation element information includes information on degradation elements of the reproduced image caused by disclinations of the liquid crystal panel.
(6)
The holographic projector device according to any one of (1) to (5), wherein the degradation element information includes information indicating a degradation element caused by optical aberration occurring in the reconstructed image.
(7)
The control unit is
The holographic projector device according to (1) above, wherein the spatial light modulation unit is controlled so that the deterioration is corrected by a method of shifting and multiplexing a plurality of reconstructed images to be displayed.
(8)
The control unit is
The holographic projector device according to (7) above, wherein the spatial light modulation unit is controlled so that a plurality of the correction holograms for the shift multiplexed display are formed in a time division manner.
(9)
The control unit is
Calculating a hologram that reproduces the target image as a pre-deterioration hologram;
calculating a degraded hologram based on the pre-degraded hologram and the degradation element information;
A reconstructed image based on the degraded hologram is calculated as a degraded image;
calculating a plurality of multiplexing images to be used in the shift multiplexing display based on the calculated difference between the deteriorated image and the target image;
calculating, for each of the calculated multiplexing images, a hologram for obtaining the multiplexing image as a reproduced image as the correction hologram;
The holographic projector device according to (8) above, wherein the spatial light modulation unit is controlled so that the correction hologram for each of the calculated multiplexed images is formed in a time-division manner.
(10)
The holographic projector device according to any one of (1) to (9), wherein the spatial light modulation unit performs spatial light phase modulation as the spatial light modulation.
(11)
The control unit is
The holographic projector device according to any one of (1) to (10), further comprising: controlling the spatial light modulation unit so that the correction hologram is formed only for a specified partial image region in the reconstructed image.
(12)
The control unit is
The holographic projector device according to any one of (1) to (11), wherein the calculation of the correction hologram is performed by assuming a reconstruction surface having projections and recesses.
(13)
A control method for a holographic projector device including a light source, a spatial light modulation unit that performs spatial light modulation on light emitted from the light source, and a projection unit that projects a reproduced image generated by the spatial light modulation unit, comprising:
A control method comprising: calculating a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information, which is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit; and controlling the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
1,1A,1B,1C ホログラフィックプロジェクタ装置
2 光源
3 ビームエキスパンダ
4 コリメートレンズ
5 ビームスプリッタ
6,6A 空間光変調部
7,8 リレーレンズ
9 光学フィルタ
10 投射レンズ
11,11A,11B,11C 制御部
12 駆動部
S スクリーン
F1,F1A 劣化画像推定部
F2,F2B 多重化用画像生成部
F3,F3C 補正用ホログラム生成部
F4 変調パターン生成部
F5 出力制御部
F6 全体ホログラム計算部
F7 合成部
1, 1A, 1B, 1C
Claims (13)
前記光源より発せられた光に対し空間光変調を施す空間光変調部と、
前記空間光変調部により生成された再生像を投射する投射部と、
目標画像と、前記光源から前記投射部までの投射経路において生じる前記再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、前記再生像の劣化を補正するための補正用ホログラムを計算し、計算した前記補正用ホログラムに基づく空間光変調パターンにより前記空間光変調部が駆動されるように制御する制御部と、を備えた
ホログラフィックプロジェクタ装置。 A light source;
a spatial light modulation unit that performs spatial light modulation on the light emitted from the light source;
a projection unit that projects a reproduced image generated by the spatial light modulation unit;
a control unit that calculates a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information that is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit, and controls the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
前記劣化要素情報は、前記光学フィルタによる解像度劣化要素の情報を含む
請求項1に記載のホログラフィックプロジェクタ装置。 an optical filter that performs optical filtering on the reconstructed image;
The holographic projector device according to claim 1 , wherein the degradation factor information includes information on a resolution degradation factor caused by the optical filter.
請求項2に記載のホログラフィックプロジェクタ装置。 The holographic projector device according to claim 2 , wherein the optical filter is an optical filter for removing noise light.
前記劣化要素情報は、前記液晶パネルにおいて生じる再生像の劣化要素の情報を含む
請求項1に記載のホログラフィックプロジェクタ装置。 the spatial light modulation unit performs the spatial light modulation using a liquid crystal panel;
2. The holographic projector device according to claim 1, wherein the degradation factor information includes information on degradation factors of the reproduced image that occur in the liquid crystal panel.
請求項4に記載のホログラフィックプロジェクタ装置。 The holographic projector device according to claim 4 , wherein the degradation element information includes information on degradation elements of the reproduced image caused by disclinations of the liquid crystal panel.
請求項1に記載のホログラフィックプロジェクタ装置。 The holographic projector device according to claim 1 , wherein the degradation element information includes information indicating a degradation element caused by optical aberration occurring in the reconstructed image.
複数の再生像をシフト多重化表示する手法により前記劣化が補正されるように前記空間光変調部を制御する
請求項1に記載のホログラフィックプロジェクタ装置。 The control unit is
The holographic projector according to claim 1 , wherein the spatial light modulation unit is controlled so that the deterioration is corrected by a method of shifting and multiplexing a plurality of reconstructed images to be displayed.
前記シフト多重化表示のための複数の前記補正用ホログラムが時分割で形成されるように前記空間光変調部を制御する
請求項7に記載のホログラフィックプロジェクタ装置。 The control unit is
The holographic projector device according to claim 7 , wherein the spatial light modulation unit is controlled so that a plurality of the correction holograms for the shift multiplexed display are formed in a time-division manner.
前記目標画像を再現するホログラムを劣化前ホログラムとして計算し、
前記劣化前ホログラムと前記劣化要素情報とに基づき劣化ホログラムを計算し、
前記劣化ホログラムによる再生像を劣化画像として計算し、
計算した前記劣化画像と前記目標画像との差分に基づき、前記シフト多重化表示に用いる複数の多重化用画像を計算し、
計算した前記多重化用画像ごとに、前記多重化用画像を再生像として得るためのホログラムを前記補正用ホログラムとして計算し、
計算した前記多重化用画像ごとの前記補正用ホログラムが時分割で形成されるように前記空間光変調部を制御する
請求項8に記載のホログラフィックプロジェクタ装置。 The control unit is
Calculating a hologram that reproduces the target image as a pre-deterioration hologram;
calculating a degraded hologram based on the pre-degraded hologram and the degradation element information;
A reconstructed image based on the degraded hologram is calculated as a degraded image;
calculating a plurality of multiplexing images to be used in the shift multiplexing display based on the calculated difference between the deteriorated image and the target image;
calculating, for each of the calculated multiplexing images, a hologram for obtaining the multiplexing image as a reproduced image as the correction hologram;
The holographic projector device according to claim 8 , wherein the spatial light modulation unit is controlled so that the correction hologram for each of the calculated multiplexed images is formed in a time-division manner.
請求項1に記載のホログラフィックプロジェクタ装置。 The holographic projector device according to claim 1 , wherein the spatial light modulation section performs spatial light phase modulation as the spatial light modulation.
前記再生像における指定された一部の画像領域のみについて前記補正用ホログラムが形成されるように前記空間光変調部を制御する
請求項1に記載のホログラフィックプロジェクタ装置。 The control unit is
2. The holographic projector device according to claim 1, wherein the spatial light modulation unit is controlled so that the correction hologram is formed only in a specified partial image region of the reproduced image.
前記補正用ホログラムの計算として、凹凸を有する再生面を想定したホログラムの計算を行う
請求項1に記載のホログラフィックプロジェクタ装置。 The control unit is
The holographic projector device according to claim 1 , wherein the correction hologram is calculated by assuming a reconstruction surface having projections and recesses.
目標画像と、前記光源から前記投射部までの投射経路において生じる前記再生像の少なくとも解像度劣化要素を示す情報である劣化要素情報とに基づき、前記再生像の劣化を補正するための補正用ホログラムを計算し、計算した前記補正用ホログラムに基づく空間光変調パターンにより前記空間光変調部が駆動されるように制御する
制御方法。 A control method for a holographic projector device including a light source, a spatial light modulation unit that performs spatial light modulation on light emitted from the light source, and a projection unit that projects a reproduced image generated by the spatial light modulation unit, comprising:
A control method comprising: calculating a correction hologram for correcting degradation of the reconstructed image based on a target image and degradation element information, which is information indicating at least a resolution degradation element of the reconstructed image that occurs on a projection path from the light source to the projection unit; and controlling the spatial light modulation unit to be driven by a spatial light modulation pattern based on the calculated correction hologram.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-090874 | 2023-06-01 | ||
JP2023090874 | 2023-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024247809A1 true WO2024247809A1 (en) | 2024-12-05 |
Family
ID=93657515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/018634 WO2024247809A1 (en) | 2023-06-01 | 2024-05-21 | Holographic projector device and control method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024247809A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000251603A (en) * | 1999-03-02 | 2000-09-14 | Seiko Epson Corp | Information processing device |
JP2008131099A (en) * | 2006-11-16 | 2008-06-05 | Ricoh Co Ltd | Image projection apparatus and image projection method |
JP2009510400A (en) * | 2005-09-26 | 2009-03-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | System, method and image processor for iterative image reconstruction with enhanced noise suppression filtering function |
JP2020046474A (en) * | 2018-09-14 | 2020-03-26 | キヤノン株式会社 | Projection control device and method, projection device |
WO2020203237A1 (en) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | Image processing device, image processing method, and program |
JP2021040261A (en) * | 2019-09-04 | 2021-03-11 | 株式会社Jvcケンウッド | Display system and display method |
JP2022077388A (en) * | 2020-11-11 | 2022-05-23 | ソニーグループ株式会社 | Signal processing device and signal processing method |
-
2024
- 2024-05-21 WO PCT/JP2024/018634 patent/WO2024247809A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000251603A (en) * | 1999-03-02 | 2000-09-14 | Seiko Epson Corp | Information processing device |
JP2009510400A (en) * | 2005-09-26 | 2009-03-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | System, method and image processor for iterative image reconstruction with enhanced noise suppression filtering function |
JP2008131099A (en) * | 2006-11-16 | 2008-06-05 | Ricoh Co Ltd | Image projection apparatus and image projection method |
JP2020046474A (en) * | 2018-09-14 | 2020-03-26 | キヤノン株式会社 | Projection control device and method, projection device |
WO2020203237A1 (en) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | Image processing device, image processing method, and program |
JP2021040261A (en) * | 2019-09-04 | 2021-03-11 | 株式会社Jvcケンウッド | Display system and display method |
JP2022077388A (en) * | 2020-11-11 | 2022-05-23 | ソニーグループ株式会社 | Signal processing device and signal processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102445475B1 (en) | Holographic Projection | |
JP6349282B2 (en) | How to calculate a hologram | |
JP5468537B2 (en) | Method for generating video holograms in real time to improve 3D rendering graphics pipeline | |
KR102241604B1 (en) | Pixel Mapping onto Display Device for Holographic Projection | |
KR102512258B1 (en) | Holographic Image Alignment | |
KR102453726B1 (en) | Holographic projector | |
KR20190014479A (en) | Holographic projector | |
JP6289194B2 (en) | Hologram data generation method, hologram image reproduction method, and hologram image reproduction apparatus | |
JP5015950B2 (en) | A method to compensate for non-uniform luminance perception in holographically reconstructed scenes | |
TWI437388B (en) | Method and holographic projection display with corrected phase encoding | |
CN112305887B (en) | Hologram display device and method for providing an extended viewing window | |
JP2010501905A (en) | Method for generating computer video holograms in real time using propagation | |
WO2012069811A2 (en) | Holographic systems | |
CN112558452A (en) | Holographic projection | |
GB2438472A (en) | Improving signal to noise ratio in holographic displays | |
JP2010008822A (en) | Hologram display device | |
CN112180615A (en) | Homogenizing Lens Arrays for Display Imaging | |
JP2009540353A (en) | Method for reducing effective pixel pitch in electroholographic display and electroholographic display including reduced effective pixel pitch | |
WO2024247809A1 (en) | Holographic projector device and control method | |
US20230400811A1 (en) | Hologram profile optimization method, hologram profile generation device, and holographic display device to which hologram profile optimization method is applied | |
JP2009036791A (en) | Hologram creation apparatus and hologram creation method | |
US20210191320A1 (en) | Conjugate Suppression | |
EP4495705A1 (en) | Holographic projection system | |
JP2024110391A (en) | How to calibrate a holographic projector | |
KR20240110486A (en) | Calibration of a picture generating unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24815293 Country of ref document: EP Kind code of ref document: A1 |