[go: up one dir, main page]

WO2024247508A1 - High-strength stainless steel seamless pipe for oil wells - Google Patents

High-strength stainless steel seamless pipe for oil wells Download PDF

Info

Publication number
WO2024247508A1
WO2024247508A1 PCT/JP2024/014699 JP2024014699W WO2024247508A1 WO 2024247508 A1 WO2024247508 A1 WO 2024247508A1 JP 2024014699 W JP2024014699 W JP 2024014699W WO 2024247508 A1 WO2024247508 A1 WO 2024247508A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
strength
contained
stainless steel
Prior art date
Application number
PCT/JP2024/014699
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 江口
信介 井手
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024545085A priority Critical patent/JPWO2024247508A1/ja
Publication of WO2024247508A1 publication Critical patent/WO2024247508A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to high-strength stainless steel seamless pipes for oil wells, which are suitable for use in crude oil or natural gas oil wells and gas wells (hereinafter simply referred to as "oil wells").
  • 13Cr martensitic stainless steel pipes have been widely used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide gas (CO 2 ), chlorine ions (Cl - ), etc. Furthermore, in recent years, the use of improved 13Cr martensitic stainless steel with a composition system in which the C content of 13Cr martensitic stainless steel is reduced and the Ni, Mo, etc. are increased has also become widespread.
  • Patent Documents 1 to 5 In response to such demands, there are technologies listed in Patent Documents 1 to 5, for example.
  • Patent Document 1 discloses a stainless steel pipe for oil wells that has improved corrosion resistance by having a steel composition that contains, by mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.20-1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-18.0%, Ni: 5.0-8.0%, Mo: 1.5-3.5%, Cu: 0.5-3.5%, Al: 0.05% or less, V: 0.20% or less, N: 0.01-0.15%, O: 0.006% or less, and satisfies a specified formula, with the remainder being Fe and unavoidable impurities.
  • Patent Document 2 also discloses a high-strength stainless steel seamless pipe for oil wells that contains, by mass%, C: 0.005-0.05%, Si: 0.05-0.50%, Mn: 0.20-1.80%, P: 0.030% or less, S: 0.005% or less, Cr: 12.0-17.0%, Ni: 4.0-7.0%, Mo: 0.5-3.0%, Al: 0.005-0.10%, V: 0.005-0.20%, Co: 0.01-1.0%, N: 0.005-0.15%, and O: 0.010% or less, and that satisfies a specific formula, with the remainder being Fe and unavoidable impurities, and thus has a yield strength of 655 MPa or more.
  • Patent Document 3 also describes the following composition by mass: C: 0.05% or less, Si: 0.50% or less, Mn: 0.10-1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-17.0%, Ni: 5.0-8.0%, Mo: 1.0-3.5%, Cu: 0.5-3.5%, Al: 0.05% or less, V: 0.20% or less, N: 0.03-0.15%, O: 0
  • a high-strength stainless steel pipe for oil wells is disclosed that has high strength and high corrosion resistance due to its composition containing 0.006% or less of C, one or two selected from 0.2% or less of Nb and 0.3% or less of Ti, the balance being Fe and unavoidable impurities, and having a structure in which MC-type carbonitrides in the precipitates account for 3.0% or more of the total precipitate amount by mass%.
  • Patent Document 4 also discloses a high-strength stainless steel pipe for oil wells that has a composition containing Cr and Ni and a structure with tempered martensite as the main phase, the composition of which satisfies Cr/Ni ⁇ 5.3, and has a surface structure in which a phase that turns white when etched with a Virela etching solution has a thickness of 10 ⁇ m to 100 ⁇ m from the outer surface of the pipe in the wall thickness direction and is dispersed in an area ratio of 50% or more of the outer surface of the pipe.
  • Patent Document 5 discloses a high-strength martensitic stainless steel seamless pipe for oil wells that contains, by mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 0.1-2.0%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-15.5%, Ni: 5.5-7.0%, Mo: 2.0-3.5%, Cu: 0.3-3.5%, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, with the balance being Fe and unavoidable impurities, and has a yield strength of 655-862 MPa and a yield ratio of 0.90 or more, and has improved resistance to carbon dioxide corrosion and sulfide stress corrosion cracking.
  • seawater is often used for water injection because it is abundant. Chloride ions, dissolved oxygen, microorganisms, etc. present in seawater increase corrosiveness, so they are sometimes removed, but due to the cost, untreated seawater is sometimes used for water injection. High corrosion resistance is required for seamless steel pipes used in such environments, and the technologies described in Patent Documents 1 to 5, although having good resistance to carbon dioxide corrosion, did not have sufficient crevice corrosion resistance in untreated seawater environments. Furthermore, low-temperature toughness is also required due to the active development in cold regions and deep seas.
  • the present invention aims to solve the problems of the conventional technology and provide a high-strength stainless steel seamless pipe for oil wells that has high strength, excellent low-temperature toughness, and excellent resistance to crevice corrosion in untreated seawater environments.
  • high strength refers to a yield strength YS of 110 ksi (758 MPa) or more.
  • excellent low-temperature toughness refers to a case where a Charpy impact test is performed on a V-notch test piece (10 mm thick) in accordance with the provisions of JIS Z 2242, with the test piece longitudinal direction perpendicular to the molding direction and the notch parallel to the molding direction, and the absorbed energy vE -10 at a test temperature of -10°C in the Charpy impact test is 40 J or more.
  • excellent crevice corrosion resistance in untreated seawater refers to a case where a test piece with crevice is immersed in artificial seawater (liquid temperature: 25°C, atmospheric saturation at 1 atmospheric pressure) for 30 days, and the test piece after the corrosion test is observed for the presence or absence of crevice on the surface of the test piece using a 10x magnifying glass, and no crevice corrosion has occurred to a depth of 0.1 mm or more.
  • the present inventors have conducted extensive research into the effects of various compositions of stainless steel pipes on crevice corrosion resistance in untreated seawater environments, and have found that the contents of Cr, Mo, Cu, Ni, W and Co in the composition of stainless steel materials must be adjusted to satisfy formula (1).
  • Cr, Ni, Mo, W, Cu, and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
  • Cr, Ni, Mo, W, Cu, and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
  • Co and Nb in formula (2) are the contents (mass %) of each element.
  • V 0.50% or less
  • Ti 0.20% or less
  • Zr 0.20% or less
  • B 0.01% or less
  • REM 0.01% or less
  • Ca 0.0100% or less
  • Sn 0.20% or less
  • Sb 0.50% or less
  • Ta 0.1% or less
  • Mg 0.0100% or less.
  • the present invention provides a high-strength stainless steel seamless pipe for oil wells that has high strength, excellent low-temperature toughness, and excellent resistance to crevice corrosion in untreated seawater.
  • C is an important element for increasing the strength of martensitic stainless steel.
  • the C content is set to 0.002% or more.
  • the C content is preferably set to 0.010% or more, more preferably set to 0.015% or more, and further preferably set to 0.020% or more.
  • the most preferable C content is 0.022% or more.
  • the C content is set to 0.050% or less, preferably 0.040% or less, more preferably 0.035% or less, and further preferably 0.030% or less.
  • the C content is most preferably 0.028% or less.
  • Si 0.05-0.50% Silicon is an element that acts as a deoxidizer. This effect can be obtained with a silicon content of 0.05% or more. Therefore, the silicon content is set to 0.05% or more.
  • the silicon content is preferably The Si content is set to 0.10% or more, more preferably 0.15% or more.
  • the Si content is further preferably set to 0.20% or more, and most preferably set to 0.22% or more. %, the crevice corrosion resistance in the untreated seawater environment is deteriorated. Therefore, the Si content is set to 0.50% or less.
  • the Si content is preferably set to 0.45% or less.
  • the Si content is preferably 0.40% or less, more preferably 0.30% or less, and most preferably 0.25% or less.
  • Mn 0.04-1.80% Mn is an element that suppresses the formation of ⁇ -ferrite during hot working and improves hot workability.
  • the Mn content must be 0.04% or more.
  • the Mn content is preferably 0.10% or more, more preferably 0.20% or more, and further preferably 0.25% or more.
  • the Mn content is most preferably The Mn content is set to 0.35% or more.
  • the Mn content is set to 1.80% or less. is preferably 1.60% or less, more preferably 0.80% or less, further preferably 0.60% or less, and most preferably 0.40% or less.
  • P 0.030% or less
  • P is an element that reduces crevice corrosion resistance in an untreated seawater environment. In the present invention, it is preferable to reduce it as much as possible, but an extreme reduction leads to an increase in manufacturing costs. For this reason, the P content is set to 0.030% or less as a range that can be implemented industrially at a relatively low cost without causing an extreme decrease in characteristics.
  • the P content is 0.025% or less, more preferably 0.020% or less.
  • the P content is further preferably 0.018% or less, and most preferably 0.015% or less.
  • the lower limit of the P content is not particularly limited. However, as described above, an excessive reduction leads to an increase in manufacturing costs, so it is preferably 0.005% or more.
  • S 0.0020% or less S significantly reduces hot workability and deteriorates low-temperature toughness by segregation to prior austenite grain boundaries, so it is preferable to reduce it as much as possible. If the S content is 0.0020% or less, the segregation of S to prior austenite grain boundaries can be suppressed, and the low-temperature toughness targeted in the present invention can be obtained. For this reason, the S content is set to 0.0020% or less. Preferably, the S content is set to 0.0015% or less. More preferably, the S content is set to 0.0010% or less, and further preferably, the S content is set to 0.0007% or less. The lower limit of the S content is not particularly limited. However, since excessive reduction leads to an increase in manufacturing costs, it is preferably set to 0.0005% or more.
  • Cr:16.0 ⁇ 20.0% Cr is an element that forms a protective film and contributes to crevice corrosion resistance in an untreated seawater environment.
  • the Cr content is required to be 16.0% or more.
  • the Cr content is The Cr content is preferably 16.5% or more, more preferably 16.8% or more, and further preferably 17.0% or more.
  • the Cr content is most preferably
  • the Cr content exceeds 20.0%, the martensite transformation is not caused and the residual austenite is easily generated, which reduces the stability of the martensite phase.
  • the ⁇ ferrite phase precipitates, significantly reducing hot workability.
  • the Cr content is set to 20.0% or less.
  • Cr Content The Cr content is preferably 19.5% or less, more preferably 19.0% or less, and further preferably 18.5% or less.
  • the Cr content is most preferably 18.0% or less.
  • Ni 4.0-7.5%
  • Ni is an element that strengthens the protective film and improves crevice corrosion resistance in an untreated seawater environment. Ni also inhibits the precipitation of the ⁇ -ferrite phase and improves hot workability. In addition, Ni increases the strength of steel by dissolving in solid solution. This effect can be obtained with a Ni content of 4.0% or more. For this reason, the Ni content is set to 4.0% or more. The Ni content is preferably 5.0% or more, more preferably 6.0% or more, and further preferably 6.1% or more. The Ni content is most preferably 6.3% or more.
  • Ni content exceeds 7.5%, the martensite transformation is not carried out and the residual austenite is easily generated, which reduces the stability of the martensite phase and decreases the strength.
  • the Ni content is preferably 7.0% or less, and more preferably 6.5% or less.
  • Mo 1.5-3.7%
  • Mo is an element that increases resistance to pitting corrosion caused by Cl- or low pH.
  • the Mo content must be 1.5% or more. If the Mo content is less than 1.5%, severe corrosion will occur. However, Mo content is not sufficient to prevent deterioration of carbon dioxide corrosion resistance and crevice corrosion resistance in a severe corrosive environment. Therefore, the Mo content is set to 1.5% or more.
  • the Mo content is preferably set to 2.0% or more, and more preferably 2.0% or more.
  • the Mo content is preferably 2.2% or more, and more preferably 2.5% or more.
  • the Mo content is most preferably 2.7% or more.
  • the Mo content of more than 3.7% increases ⁇ It generates ferrite, which leads to deterioration of hot workability, carbon dioxide corrosion resistance, and SSC resistance in a low temperature environment. For this reason, the Mo content is set to 3.7% or less.
  • the Mo content is preferably The Mo content is set to 3.5% or less, more preferably 3.3% or less, and further preferably 3.0% or less.
  • the Mo content is most preferably set to 2.8% or less.
  • Al 0.005-0.10%
  • Al is an element that acts as a deoxidizer. This effect can be obtained by including 0.005% or more of Al. Therefore, the Al content is set to 0.005% or more.
  • the Al content is The Al content is preferably 0.01% or more, more preferably 0.015% or more.
  • the Al content is further preferably 0.017% or more, and most preferably 0.02% or more. If the Al content exceeds 10%, the amount of oxides becomes too large, adversely affecting the crevice corrosion resistance. Therefore, the Al content is set to 0.10% or less.
  • the Al content is preferably The Al content is set to 0.05% or less, more preferably 0.04% or less, and further preferably 0.03% or less.
  • the Al content is most preferably set to 0.025% or less.
  • N 0.002-0.15%
  • the N content is 0.002% or more.
  • the N content is preferably 0.01% or more, more preferably 0.02% or more.
  • the N content is further preferably 0.03% or more, and most preferably
  • the N content is set to 0.15%.
  • the N content is preferably 0.12% or less, more preferably 0.10% or less, and further preferably 0.08% or less.
  • the N content is most preferably 0.06% or less. % or less.
  • Co is an element that improves crevice corrosion resistance. Such an effect can be obtained by including 0.2% or more of Co. Therefore, the Co content is set to 0.2% or more.
  • the Co content is preferably 0.25% or more, more preferably 0.3% or more, further preferably 0.35% or more, and most preferably 0.4% or more.
  • the Co content is set to 1.0% or less.
  • the Co content is preferably The Co content is preferably 0.8% or less, more preferably 0.7% or less.
  • the Co content is further preferably 0.65% or less, most preferably 0.6% or less.
  • Nb 0.005-0.20%
  • Nb is an element that increases the Ms point and is necessary to achieve both crevice corrosion resistance and high strength. Such an effect can be obtained by including 0.005% or more of Nb.
  • the Nb content is set to 0.005% or more, preferably 0.01% or more, more preferably 0.05% or more, and further preferably 0.07% or more.
  • the Nb content is most preferably 0.09% or more.
  • the Nb content is set to 0.20% or less.
  • the Nb content is preferably 0.17% or less, more preferably 0.15% or less, and further preferably 0.13% or less.
  • the Nb content is most preferably 0.11% or less. do.
  • O (oxygen) 0.010% or less
  • O (oxygen) exists as an oxide in steel and has a detrimental effect on various properties. For this reason, it is desirable to reduce O as much as possible.
  • the O content exceeds 0.010%, the crevice corrosion resistance is significantly reduced.
  • the O content is set to 0.010% or less.
  • the O content is set to 0.007% or less, more preferably 0.004% or less.
  • the O content is further preferably 0.003% or less, and most preferably 0.002% or less. Since excessive reduction leads to an increase in manufacturing costs, it is preferably set to 0.0005% or more.
  • Cu 3.5% or less
  • W 3.5% or less
  • Cu 3.5% or less
  • Cu is an element that strengthens the protective film and enhances crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.5% or more of Cu, the Cu content is preferably 0.5% or more, more preferably 0.7% or more. The Cu content is further preferably 1.0% or more, and most preferably 1.2% or more. On the other hand, the Cu content exceeding 3.5% leads to grain boundary precipitation of CuS, and the hot workability is reduced. For this reason, the Cu content is 3.5% or less.
  • the Cu content is preferably 3.0% or less, more preferably 2.5% or less, and even more preferably 2.0% or less.
  • the Cu content is most preferably 1.5% or less.
  • W 3.5% or less W is an element that contributes to increasing strength and enhances crevice corrosion resistance, and can be contained as necessary. Since such effects can be obtained by containing 0.05% or more of W, the W content is preferably 0.05% or more, more preferably 0.2% or more, even more preferably 0.3% or more, and most preferably 0.5% or more. On the other hand, even if W is contained in an amount exceeding 3.5%, the effect is saturated. For this reason, the W content is 3.5% or less.
  • the W content is preferably 3.0% or less, more preferably 2.0% or less, and even more preferably 1.5% or less.
  • the W content is most preferably 1.0% or less.
  • one or two selected from Cu: 3.5% or less and W: 3.5% or less means, when Cu and W are contained, Cu: 3.5% or less and W: 3.5% or less, and when one of Cu and W exceeds 3.5%, it is a comparative example.
  • Cr, Ni, Mo, W, Cu and Co are contained within the above-mentioned ranges and so as to satisfy the following formula (1).
  • Cr, Ni, Mo, W, Cu and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
  • the left side value of the formula (1) ("Cr + 0.22 ⁇ Ni + 0.38 ⁇ (Mo + 0.5 ⁇ W) + If the value of "0.89 x Cu + 0.09 x Co" is less than 21.4, the crevice corrosion resistance in an untreated seawater environment is reduced.
  • the left side value of formula (1) is 21.4 or more.
  • the left side value of formula (1) is preferably 21.6 or more, more preferably 21.8 or more, and even more preferably 22.0 or more.
  • the left side value of formula (1) is preferably 26.0 or less. More preferably, it is 24.0 or less, and even more preferably, it is 23.8 or less.
  • Co and Nb are contained within the above-mentioned ranges and so as to satisfy the following formula (2).
  • Co and Nb in formula (2) are the contents (mass %) of each element.
  • the desired crevice corrosion resistance in an untreated seawater environment can be obtained by setting the value of the left side of formula (1) to 21.4 or more.
  • adding Nb is effective for raising the Ms point, but if Nb is contained in excess, low-temperature toughness deteriorates.
  • Co an element that improves crevice corrosion resistance without lowering the Ms point, in an amount of 0.13% or more more than Nb, it is possible to achieve both excellent crevice corrosion resistance, high strength, and low-temperature toughness.
  • the value of the left side of formula (2) (the value of "Co-Nb") is less than 0.13, the low-temperature toughness value decreases.
  • Co and Nb are contained so as to satisfy formula (2).
  • the value on the left side of formula (2) is preferably 0.13 or more.
  • the value on the left side of formula (2) is preferably 0.17 or more, more preferably 0.20 or more, and even more preferably 0.30 or more. There is no particular upper limit on the value on the left side of formula (2).
  • the value on the left side of formula (2) is 1.00 or less. It is more preferable that the value on the left side of formula (2) is 0.80 or less.
  • the remainder other than the above components consists of iron (Fe) and unavoidable impurities.
  • the above-mentioned components are the basic components, and the high-strength stainless steel seamless pipe for oil wells of the present invention can obtain the desired properties with these basic components.
  • the present invention can contain the following optional elements as necessary.
  • Each of the following components V, Ti, Zr, B, REM, Ca, Sn, Sb, Ta, and Mg can be contained as necessary, so these components may be 0%.
  • V 0.50% or less
  • Ti 0.20% or less
  • Zr 0.20% or less
  • B 0.01% or less
  • REM 0.01% or less
  • Ca 0.0100% or less
  • Sn 0.20% or less
  • Sb 0.50% or less
  • Ta 0.1% or less
  • Mg 0.0100% or less.
  • V 0.50% or less
  • V is an element that improves the strength of steel by precipitation strengthening, and can be contained as necessary. This effect can be obtained by containing V at 0.005% or more, so the V content is preferably 0.005% or more.
  • the V content is more preferably 0.03% or more, and even more preferably 0.04% or more.
  • the V content is most preferably 0.05% or more.
  • V content is 0.50% or less.
  • the V content is preferably 0.40% or less, and more preferably 0.30% or less.
  • the V content is more preferably 0.25% or less, and most preferably 0.20% or less.
  • Ti 0.20% or less
  • Ti is an element that exists in oxide-based or sulfide-based inclusions and improves the chemical stability of the inclusions to improve crevice corrosion resistance in an untreated seawater environment, and can be contained as necessary. Since such an effect can be obtained by containing 0.002% or more of Ti, the Ti content is preferably 0.002% or more. The Ti content is more preferably 0.003% or more. On the other hand, if Ti is contained in an amount exceeding 0.20%, TiN precipitates as an inclusion, and the crevice corrosion resistance is deteriorated conversely. Therefore, when Ti is contained, the Ti content is 0.20% or less.
  • the Ti content is preferably 0.15% or less, more preferably 0.10% or less.
  • the Ti content is further preferably 0.07% or less, and most preferably 0.05% or less.
  • Zr 0.20% or less
  • Zr is an element that contributes to increasing strength, and can be contained as necessary. Such an effect can be obtained by containing 0.01% or more of Zr. Therefore, the Zr content is preferably 0.01% or more, and more preferably 0.02% or more. On the other hand, even if Zr is contained in an amount exceeding 0.20%, the effect is saturated. Therefore, when Zr is contained, the Zr content is 0.20% or less.
  • the Zr content is preferably 0.17% or less, more preferably 0.13% or less, and even more preferably 0.10% or less.
  • the Zr content is most preferably 0.07% or less.
  • B 0.01% or less
  • B is an element that contributes to increasing strength, and can be contained as necessary. Since such an effect can be obtained by containing 0.0005% or more of B, the B content is preferably 0.0005% or more. More preferably, it is 0.001% or more. Even more preferably, it is 0.002% or more. On the other hand, if B is contained in excess of 0.01%, the hot workability decreases. Therefore, when B is contained, the B content is 0.01% or less.
  • the B content is preferably 0.007% or less, more preferably 0.005% or less.
  • the B content is even more preferably 0.003% or less.
  • REM 0.01% or less REM (rare earth metal) is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.0005% or more of REM, the content is preferably 0.0005% or more. More preferably, the content is 0.001% or more. The REM content is further preferably 0.0015% or more. On the other hand, even if the REM content exceeds 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is 0.01% or less. The REM content is more preferably 0.007% or less. The REM content is further preferably 0.005% or less, and most preferably 0.003% or less.
  • Ca 0.0100% or less
  • Ca is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Such an effect can be obtained by containing 0.0005% or more of Ca.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is more preferably 0.0010% or more.
  • the Ca content is even more preferably 0.0015% or more.
  • the Ca content is more preferably 0.0070% or less.
  • the Ca content is even more preferably 0.0050% or less, and most preferably 0.0030% or less.
  • Sn 0.20% or less
  • Sn is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.02% or more of Sn, the Sn content is preferably 0.02% or more, more preferably 0.05% or more. The Sn content is further preferably 0.07% or more. On the other hand, even if the Sn content exceeds 0.20%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when Sn is contained, the Sn content is 0.20% or less. The Sn content is more preferably 0.15% or less. The Sn content is further preferably 0.13% or less, and most preferably 0.10% or less.
  • Sb 0.50% or less
  • Sb is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.02% or more of Sb, the Sb content is preferably 0.02% or more. More preferably, it is 0.05% or more. On the other hand, even if Sb is contained in an amount exceeding 0.50%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when Sb is contained, the Sb content is 0.50% or less.
  • the Sb content is preferably 0.40% or less, more preferably 0.30% or less, and even more preferably 0.15% or less.
  • the Sb content is most preferably 0.10% or less.
  • Ta 0.1% or less
  • Ta is an element that increases strength and has the effect of improving crevice corrosion resistance.
  • Ta is an element that brings about the same effect as Nb, and part of Nb can be replaced with Ta. Since such an effect can be obtained by containing 0.01% or more of Ta, the Ta content is preferably 0.01% or more.
  • the Ta content is more preferably 0.03% or more.
  • the Ta content is further preferably 0.04% or more.
  • the Ta content is if Ta is contained in an amount exceeding 0.1%, the low temperature toughness decreases. Therefore, when Ta is contained, the Ta content is 0.1% or less.
  • the Ta content is preferably 0.09% or less, more preferably 0.07% or less.
  • the Ta content is further preferably 0.06% or less, and most preferably 0.05% or less.
  • Mg 0.0100% or less
  • Mg is an element that improves crevice corrosion resistance and can be contained as necessary. Since such an effect can be obtained by containing 0.0002% or more of Mg, the Mg content is preferably 0.0002% or more, more preferably 0.0004% or more. On the other hand, even if the Mg content exceeds 0.0100%, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, when Mg is contained, the Mg content is preferably 0.0100% or less.
  • the Mg content is preferably 0.0080% or less, more preferably 0.0050% or less, and even more preferably 0.0020% or less.
  • the Mg content is most preferably 0.0010% or less.
  • the steel pipe structure of the high-strength stainless steel seamless pipe for oil wells of the present invention is not particularly limited, and it is preferable that the structure be, for example, as follows.
  • the high-strength stainless steel seamless pipe for oil wells of the present invention preferably has a steel pipe structure consisting of a martensite phase (tempered martensite phase), a retained austenite phase, and a ferrite phase.
  • the area fraction of the retained austenite phase is preferably 32% or less.
  • the area fraction of the retained austenite phase is more preferably 30% or less, and even more preferably 28% or less.
  • the lower limit is preferably 1% or more. If only a small amount of ferrite phase is present, strain is concentrated in the ferrite phase during hot working, reducing hot workability, so the area fraction is preferably 14% or more.
  • the area fraction of the ferrite phase is more preferably 16% or more, and even more preferably 18% or more.
  • the upper limit is preferably 50% or less.
  • Each of the above-mentioned tissues can be measured by the following method.
  • a test piece for microstructural observation was taken from the center of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with Villela's reagent (a mixture of picric acid, hydrochloric acid, and ethanol in proportions of 2 g, 10 ml, and 100 ml, respectively).
  • the structure was then imaged using a scanning electron microscope (magnification: 1000 times), and the structure fraction (area %) of the ferrite phase was calculated using an image analyzer.
  • the test piece for X-ray diffraction is then ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using X-ray diffraction.
  • the amount of retained austenite is determined by measuring the integrated intensity of diffracted X-rays from the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite), and converting it using the following formula. Note that the volume fraction of retained austenite is regarded as the area fraction here.
  • ⁇ (volume ratio) 100/(1+(I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ is the integrated intensity of ⁇
  • R ⁇ is the theoretically calculated value of ⁇
  • I ⁇ is the integrated intensity of ⁇
  • R ⁇ is the theoretically calculated value of ⁇
  • the fraction (area %) of the martensite phase is the remainder other than the ferrite phase and the residual gamma phase.
  • the fraction of the martensite phase is preferably 18% or more in area percentage. It is more preferably 30% or more. It is also preferably 85% or less. It is more preferably 75% or less.
  • the temperature refers to the surface temperature of the steel pipe material and the steel pipe (seamless steel pipe after pipe making) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like.
  • the starting material is a steel pipe material having the above-mentioned composition.
  • the manufacturing method of the starting steel pipe material there are no particular limitations on the manufacturing method of the starting steel pipe material.
  • the heating temperature is preferably in the range of 1100 to 1350°C. If the heating temperature is less than 1100°C, the hot workability decreases and many defects occur during pipe making. Therefore, the heating temperature is preferably 1100°C or higher, more preferably 1150°C or higher. The heating temperature is even more preferably 1170°C or higher, and most preferably 1200°C or higher. On the other hand, if the heating temperature exceeds 1350°C and becomes too high, the crystal grains become coarse and the low-temperature toughness decreases. Therefore, the heating temperature in the heating process is preferably 1350°C or lower. The heating temperature is more preferably 1300°C or lower. The heating temperature is even more preferably 1280°C or lower, and most preferably 1250°C or lower.
  • the seamless steel pipe is cooled to room temperature at a cooling rate faster than air cooling. This ensures that the steel pipe structure has martensite as the main phase.
  • the steel pipe (seamless steel pipe after pipe making) is preferably subjected to heat treatment (quenching treatment, tempering treatment). Specifically, it is preferable to perform a quenching treatment on the steel pipe (seamless steel pipe after pipe making) by reheating to a temperature (heating temperature) in the range of 850°C to 1120°C, holding the temperature for a predetermined time, and then cooling at a cooling rate faster than air cooling until the surface temperature of the steel pipe reaches a temperature of 100°C or less (cooling stop temperature).
  • the "cooling rate faster than air cooling” is 0.01°C/s or more.
  • the reheating temperature is preferably set to 850° C. or higher.
  • the reheating temperature (heating temperature of the quenching treatment) is more preferably 870°C or higher in order to prevent coarsening of the structure and dissolve the intermetallic compounds. It is even more preferably 900°C or higher.
  • the reheating temperature is most preferably 950°C or higher. It is preferable that the temperature be in the range of 1120°C or lower.
  • the reheating temperature is more preferably 1100°C or lower, even more preferably 1050°C or lower, and most preferably 1000°C or lower.
  • the steel pipe it is preferable to hold the steel pipe at the reheating temperature mentioned above for 5 minutes or more. It is more preferable to set the holding time to 10 minutes or more, and even more preferable to set the holding time to 15 minutes or more. Furthermore, the holding time is preferably 30 minutes or less. It is more preferable to set the holding time to 25 minutes or less, and even more preferable to set the holding time to 20 minutes or less.
  • the cooling stop temperature after quenching is 100°C or less.
  • the cooling stop temperature is more preferably 75°C or less, and even more preferably 50°C or less.
  • the cooling stop temperature is preferably 30°C or more, and more preferably 40°C or more.
  • the steel pipe that has been subjected to the above-mentioned quenching treatment is then subjected to a tempering treatment.
  • the tempering treatment is preferably a process in which the pipe is heated to a temperature (tempering temperature) of 500°C or higher and 650°C or lower, held for a predetermined period of time, and then air-cooled.
  • a temperature tempering temperature
  • other cooling methods such as water cooling, oil cooling, mist cooling, etc. may also be used.
  • the tempering temperature is preferably 500°C or higher.
  • the tempering temperature is more preferably 530°C or higher.
  • the tempering temperature is even more preferably 550°C or higher, and most preferably 570°C or higher. This makes it easier for the steel pipe structure to have tempered martensite phase as the main phase, resulting in a seamless steel pipe with the strength and crevice corrosion resistance desired in the present invention.
  • the tempering temperature is preferably 650°C or lower.
  • the tempering temperature is more preferably 640°C or lower. Even more preferably, it is 620°C or lower.
  • the tempering temperature is most preferably 600°C or lower.
  • the steel pipe at the above-mentioned tempering temperature for 10 minutes or more.
  • the holding time is preferably 90 minutes or less.
  • the above quenching and tempering treatments may be repeated two or more times. This improves the low-temperature toughness value.
  • a high-strength stainless steel seamless pipe for oil wells can be obtained, which has an absorbed energy vE -10 of 40 J or more at a test temperature of -10°C in a Charpy impact test, excellent crevice corrosion resistance in untreated seawater, and high strength of a yield strength YS of 758 MPa or more.
  • the absorbed energy vE -10 at a test temperature of -10°C in the Charpy impact test is 40 J or more.
  • the absorbed energy vE- 10 at a test temperature of -10°C in the Charpy impact test is preferably 50 J or more, more preferably 60 J or more, and even more preferably 70 J or more.
  • the upper limit is not particularly limited, but may be 200 J or less.
  • the yield strength YS is 758 MPa or more.
  • the yield strength YS is preferably 800 MPa or more, and more preferably 850 MPa or more.
  • the upper limit is not particularly limited, but may be 1000 MPa or less.
  • the intermediate products (billets, etc.) produced during the manufacturing process of the product have excellent hot workability.
  • the hot workability can be evaluated by the following method. A round bar test piece having a parallel section diameter of 10 mm taken from a steel pipe material (cast piece) was heated to 1250°C in a Gleeble tester, held for 100 seconds, cooled to 1000°C at 1°C/sec, held for 10 seconds, and then pulled until fractured to measure the reduction in area (%). The smaller the reduction in area, the worse the hot workability.
  • the reduction in area is preferably 60% or more. More preferably, it is 70% or more.
  • the reduction in area is preferably 90% or less. More preferably, it is 85% or less.
  • test specimen materials were cut out from the steel obtained by hot working.
  • the dimensions of the steel were length: 1100 mm, width: 160 mm, and thickness: 15 mm.
  • Each test specimen material was heated at the heating temperature (reheating temperature) and soaking time shown in Table 2, and then quenched by air cooling to the cooling stop temperature shown in Table 2.
  • tempering was performed by heating at the tempering temperature and soaking time shown in Table 2, and then air cooling.
  • Some test specimens (steel pipes No. 2 and 4) were quenched and tempered twice under the conditions shown in Table 2. Note that the cut test specimens were quenched and tempered, but this can be considered to be the same as when a seamless steel pipe is quenched and tempered.
  • test piece with an absorbed energy vE -10 of 40J or more at -10°C was evaluated as having high toughness and was deemed to have passed.
  • test piece with a vE -10 of less than 40J was deemed to have failed.
  • a test piece for microstructure observation was prepared from the test piece material that had been subjected to quenching and tempering, and each structure was measured.
  • the observation surface of the structure was a cross section (C cross section) perpendicular to the rolling direction.
  • the test piece for microstructure observation was corroded with Villela's reagent (a reagent made by mixing picric acid, hydrochloric acid, and ethanol in the ratio of 2 g, 10 ml, and 100 ml, respectively), and the structure was imaged with a scanning electron microscope (accelerating voltage: 15 kV, magnification: 1000 times), and the structure fraction (area %) of the ferrite phase was calculated using an image analyzer (Image-J).
  • the test piece for X-ray diffraction was ground and polished so that the cross section (C cross section) perpendicular to the rolling direction was the measurement surface, and the amount of retained austenite ( ⁇ ) was measured using an X-ray diffraction method.
  • the amount of retained austenite was determined by measuring the integrated intensity of the diffracted X-rays of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
  • the volume fraction of the retained austenite was regarded as the area fraction.
  • ⁇ (volume ratio) 100/(1+(I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ is the integrated intensity of ⁇
  • R ⁇ is the theoretically calculated value of ⁇
  • I ⁇ is the integrated intensity of ⁇
  • R ⁇ is the theoretically calculated value of ⁇ .
  • the fraction (area %) of the martensite phase (tempered martensite phase) was defined as the remainder other than the ferrite phase and the residual ⁇ phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide a high-strength stainless steel seamless pipe for oil wells, the high-strength stainless steel seamless pipe having high strength and excellent low-temperature toughness and being excellent in crevice corrosion resistance in an untreated seawater environment. There is provided a high-strength stainless steel seamless steel pipe for oil wells having a component composition that comprises specific components and that satisfies relationship (1) and relationship (2), with the balance being Fe and unavoidable impurities, having a yield strength of 758 MPa or above, and having an absorption energy vE-10 of 40 J or above at a test temperature of -10°C in a Charpy impact test. Relationship (1): Cr + 0.22 × Ni + 0.38 × (Mo + 0.5 × W) + 0.89 × Cu + 0.09 × Co ≥ 21.4 Cr, Ni, Mo, W, Cu and Co in relationship (1) are the contained amounts (mass %) of the respective elements, and the contained amount of elements that are not contained is deemed to be zero. Relationship (2): Co-Nb ≥ 0.13 Co and Nb in relationship (2) are the contained amounts (mass %) of the respective elements.

Description

油井用高強度ステンレス継目無鋼管High-strength stainless steel seamless pipes for oil wells

 本発明は、原油あるいは天然ガスの油井およびガス井(以下、単に「油井」と称する)等に好適に用いられる、油井用高強度ステンレス継目無鋼管に関する。 The present invention relates to high-strength stainless steel seamless pipes for oil wells, which are suitable for use in crude oil or natural gas oil wells and gas wells (hereinafter simply referred to as "oil wells").

 近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来、省みられなかったような、高深度の油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温でかつCO2、Cl、さらにH2Sを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、所望の高強度および耐食性を兼ね備えた材質とすることが要求される。 In recent years, in view of the soaring crude oil prices and the expected depletion of petroleum resources in the near future, development of deep oil fields and oil and gas fields in severe corrosive environments, so-called sour environments containing hydrogen sulfide, which were not considered in the past, has been thriving. Such oil and gas fields are generally very deep, and the atmosphere is high temperature and contains CO 2 , Cl - , and H 2 S, creating a severe corrosive environment. Oil well steel pipes used in such environments are required to be made of materials that combine the desired high strength and corrosion resistance.

 従来、炭酸ガス(CO2)、塩素イオン(Cl)等を含む環境の油田、ガス田では、採掘に使用する油井管として13Crマルテンサイト系ステンレス鋼管が多く使用されている。さらに、最近では13Crマルテンサイト系ステンレス鋼のCを低減し、Ni、Mo等を増加させた成分系の改良型13Crマルテンサイト系ステンレス鋼の使用も拡大している。 Conventionally, 13Cr martensitic stainless steel pipes have been widely used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide gas (CO 2 ), chlorine ions (Cl - ), etc. Furthermore, in recent years, the use of improved 13Cr martensitic stainless steel with a composition system in which the C content of 13Cr martensitic stainless steel is reduced and the Ni, Mo, etc. are increased has also become widespread.

 このような要望に対し、例えば特許文献1~5に挙げる技術がある。 In response to such demands, there are technologies listed in Patent Documents 1 to 5, for example.

 特許文献1には、質量%で、C:0.05%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:14.0~18.0%、Ni:5.0~8.0%、Mo:1.5~3.5%、Cu:0.5~3.5%、Al:0.05%以下、V:0.20%以下、N:0.01~0.15%、O:0.006%以下を含有し、かつ所定の式を満足し、残部がFeおよび不可避的不純物からなる鋼組成を有することで、耐食性を改善した油井用ステンレス鋼管が開示されている。 Patent Document 1 discloses a stainless steel pipe for oil wells that has improved corrosion resistance by having a steel composition that contains, by mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.20-1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-18.0%, Ni: 5.0-8.0%, Mo: 1.5-3.5%, Cu: 0.5-3.5%, Al: 0.05% or less, V: 0.20% or less, N: 0.01-0.15%, O: 0.006% or less, and satisfies a specified formula, with the remainder being Fe and unavoidable impurities.

 また、特許文献2には、質量%で、C:0.005~0.05%、Si:0.05~0.50%、Mn:0.20~1.80%、P:0.030%以下、S:0.005%以下、Cr:12.0~17.0%、Ni:4.0~7.0%、Mo:0.5~3.0%、Al:0.005~0.10%、V:0.005~0.20%、Co:0.01~1.0%、N:0.005~0.15%、O:0.010%以下を含有し、かつ所定の式を満足し、残部Feおよび不可避的不純物からなる組成を有することで、降伏強さが655MPa以上である油井用高強度ステンレス継目無鋼管が開示されている。 Patent Document 2 also discloses a high-strength stainless steel seamless pipe for oil wells that contains, by mass%, C: 0.005-0.05%, Si: 0.05-0.50%, Mn: 0.20-1.80%, P: 0.030% or less, S: 0.005% or less, Cr: 12.0-17.0%, Ni: 4.0-7.0%, Mo: 0.5-3.0%, Al: 0.005-0.10%, V: 0.005-0.20%, Co: 0.01-1.0%, N: 0.005-0.15%, and O: 0.010% or less, and that satisfies a specific formula, with the remainder being Fe and unavoidable impurities, and thus has a yield strength of 655 MPa or more.

 また、特許文献3には、mass%で、C:0.05%以下、Si:0.50%以下、Mn:0.10~1.80%、P:0.03%以下、S:0.005%以下、Cr:14.0~17.0%、Ni:5.0~8.0%、Mo:1.0~3.5%、Cu:0.5~3.5%、Al:0.05%以下、V:0.20%以下、N:0.03~0.15%、O:0.006%以下を含み、さらにNb:0.2%以下、Ti:0.3%以下のうちから選ばれた1種または2種を含有し、残部Feおよび不可避的不純物よりなる組成と、析出物中のMC型炭窒化物が全析出物量に対するmass%で3.0%以上存在する組織を有することによって、高強度でかつ高耐食性を有する油井用高強度ステンレス鋼管が開示されている。 Patent Document 3 also describes the following composition by mass: C: 0.05% or less, Si: 0.50% or less, Mn: 0.10-1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-17.0%, Ni: 5.0-8.0%, Mo: 1.0-3.5%, Cu: 0.5-3.5%, Al: 0.05% or less, V: 0.20% or less, N: 0.03-0.15%, O: 0 A high-strength stainless steel pipe for oil wells is disclosed that has high strength and high corrosion resistance due to its composition containing 0.006% or less of C, one or two selected from 0.2% or less of Nb and 0.3% or less of Ti, the balance being Fe and unavoidable impurities, and having a structure in which MC-type carbonitrides in the precipitates account for 3.0% or more of the total precipitate amount by mass%.

 また、特許文献4には、CrおよびNiを含有する組成と、焼戻マルテンサイト相を主相とする組織とを有する油井用高強度ステンレス鋼管であって、組成が、Cr/Ni≦5.3を満足し、ビレラ腐食液によるエッチングで白色を呈する相が管外表面から肉厚方向に10μm以上100μm以下の厚さを有し、かつ管外表面の面積率で50%以上分散した表層組織を有する油井用高強度ステンレス継目無鋼管が開示されている。 Patent Document 4 also discloses a high-strength stainless steel pipe for oil wells that has a composition containing Cr and Ni and a structure with tempered martensite as the main phase, the composition of which satisfies Cr/Ni≦5.3, and has a surface structure in which a phase that turns white when etched with a Virela etching solution has a thickness of 10 μm to 100 μm from the outer surface of the pipe in the wall thickness direction and is dispersed in an area ratio of 50% or more of the outer surface of the pipe.

 また、特許文献5には、質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1~2.0%、P:0.03%以下、S:0.005%以下、Cr:14.0~15.5%、Ni:5.5~7.0%、Mo:2.0~3.5%、Cu:0.3~3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含み、残部Feおよび不可避的不純物からなる組成を有することで、降伏強さ:655~862MPaの強度と降伏比:0.90以上を有し、耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を改善した油井用高強度マルテンサイト系ステンレス継目無鋼管が開示されている。 Patent Document 5 discloses a high-strength martensitic stainless steel seamless pipe for oil wells that contains, by mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 0.1-2.0%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0-15.5%, Ni: 5.5-7.0%, Mo: 2.0-3.5%, Cu: 0.3-3.5%, V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, with the balance being Fe and unavoidable impurities, and has a yield strength of 655-862 MPa and a yield ratio of 0.90 or more, and has improved resistance to carbon dioxide corrosion and sulfide stress corrosion cracking.

国際公開第2004/001082号International Publication No. 2004/001082 国際公開第2017/168874号International Publication No. 2017/168874 特開2005-105357号公報JP 2005-105357 A 国際公開第2015/178022号International Publication No. 2015/178022 特開2012-136742号公報JP 2012-136742 A

 近年、原油の回収率を向上させるために、シームレス鋼管を用いて地層中に水を注入するWater Injectionという手法が使われている。海水は豊富に存在するためにWater Injectionによく用いられる。海水中に存在する塩素イオン、溶存酸素、微生物などは腐食性を増大させるため、除去される場合もあるが、コストがかかるために、未処理の海水がWater Injectionに使用される場合がある。そのような環境で使用されるシームレス鋼管には高い耐食性が求められるが、特許文献1~5に記載された技術では、耐炭酸ガス腐食性は良好ではあるものの未処理海水環境における耐すき間腐食性が十分ではなかった。さらに、寒冷地や深海などにおける開発が盛んになっていることから、低温靭性も求められている。 In recent years, a method called water injection has been used to inject water into geological formations using seamless steel pipes in order to improve the recovery rate of crude oil. Seawater is often used for water injection because it is abundant. Chloride ions, dissolved oxygen, microorganisms, etc. present in seawater increase corrosiveness, so they are sometimes removed, but due to the cost, untreated seawater is sometimes used for water injection. High corrosion resistance is required for seamless steel pipes used in such environments, and the technologies described in Patent Documents 1 to 5, although having good resistance to carbon dioxide corrosion, did not have sufficient crevice corrosion resistance in untreated seawater environments. Furthermore, low-temperature toughness is also required due to the active development in cold regions and deep seas.

 そこで、本発明は、かかる従来技術の問題を解決し、高強度と、優れた低温靭性とを有するとともに、未処理海水環境における耐すき間腐食性に優れる、油井用高強度ステンレス継目無鋼管を提供することを目的とする。 The present invention aims to solve the problems of the conventional technology and provide a high-strength stainless steel seamless pipe for oil wells that has high strength, excellent low-temperature toughness, and excellent resistance to crevice corrosion in untreated seawater environments.

 なお、本発明における「高強度」とは、降伏強さYSが110ksi(758MPa)以上を有する場合を指す。 In the present invention, "high strength" refers to a yield strength YS of 110 ksi (758 MPa) or more.

 また、「優れた低温靭性」とは、JIS Z 2242の規定に準拠して、試験片長手方向が造形方向と直行し、ノッチが造形方向と平行となるように、Vノッチ試験片(10mm厚)を採取してシャルピー衝撃試験を実施し、シャルピー衝撃試験における試験温度:-10℃での吸収エネルギーvE-10が40J以上である場合をいう。 In addition, "excellent low-temperature toughness" refers to a case where a Charpy impact test is performed on a V-notch test piece (10 mm thick) in accordance with the provisions of JIS Z 2242, with the test piece longitudinal direction perpendicular to the molding direction and the notch parallel to the molding direction, and the absorbed energy vE -10 at a test temperature of -10°C in the Charpy impact test is 40 J or more.

 また、本発明における「未処理海水中における耐すき間腐食性に優れる」とは、人工海水(液温:25℃、1気圧の大気飽和)中に、すき間を付与した試験片を浸漬し、浸漬期間を30日間として実施した際に、腐食試験後の試験片について、倍率:10倍のルーペを用いて試験片表面のすき間発生の有無を観察し、深さ0.1mm以上のすき間腐食の発生がない場合を指す。 In addition, in the present invention, "excellent crevice corrosion resistance in untreated seawater" refers to a case where a test piece with crevice is immersed in artificial seawater (liquid temperature: 25°C, atmospheric saturation at 1 atmospheric pressure) for 30 days, and the test piece after the corrosion test is observed for the presence or absence of crevice on the surface of the test piece using a 10x magnifying glass, and no crevice corrosion has occurred to a depth of 0.1 mm or more.

 なお、上記した各試験の方法は、後述する実施例においても詳述している。 The methods for each of the tests mentioned above are also described in detail in the examples below.

 本発明者らは、上記した目的を達成するために、各種成分組成のステンレス鋼管における、未処理海水環境での耐すき間腐食性への影響について鋭意検討した。その結果、ステンレス鋼材の成分組成においてCr、Mo、Cu、Ni、WおよびCoの含有量が式(1)を満足するように調整する必要があることを知見した。
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4・・・(1)
ここで、式(1)におけるCr、Ni、Mo、W、Cu、Coは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
また、耐すき間腐食性を満足した上で、所望の低温靭性値を得るためには、NbおよびCoの含有量が式(2)を満足するように調整する必要があることを知見した。
Co-Nb≧0.13・・・(2)
ここで、式(2)におけるCo、Nbは、各元素の含有量(質量%)である。
In order to achieve the above object, the present inventors have conducted extensive research into the effects of various compositions of stainless steel pipes on crevice corrosion resistance in untreated seawater environments, and have found that the contents of Cr, Mo, Cu, Ni, W and Co in the composition of stainless steel materials must be adjusted to satisfy formula (1).
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4...(1)
Here, Cr, Ni, Mo, W, Cu, and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
In addition, the inventors have found that in order to obtain a desired low-temperature toughness value while satisfying crevice corrosion resistance, it is necessary to adjust the contents of Nb and Co so as to satisfy formula (2).
Co-Nb≧0.13...(2)
Here, Co and Nb in formula (2) are the contents (mass %) of each element.

 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1] 質量%で、
C:0.002~0.050%、
Si:0.05~0.50%、
Mn:0.04~1.80%、
P:0.030%以下、
S:0.0020%以下、
Cr:16.0~20.0%、
Ni:4.0~7.5%、
Mo:1.5~3.7%、
Al:0.005~0.10%、
N:0.002~0.15%、
Co:0.2~1.0%、
Nb:0.005~0.20%、
O:0.010%以下を含有し、
さらに、Cu:3.5%以下、W:3.5%以下のうちから選ばれた1種または2種を含有し、
かつ式(1)および式(2)を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、
降伏強さが758MPa以上であり、シャルピー衝撃試験における試験温度-10℃での吸収エネルギーvE-10が40J以上である油井用高強度ステンレス継目無鋼管。
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4・・・(1)
ここで、式(1)におけるCr、Ni、Mo、W、Cu、Coは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
Co-Nb≧0.13・・・(2)
ここで、式(2)におけるCo、Nbは、各元素の含有量(質量%)である。
[2] 前記成分組成に加えて、さらに、質量%で、
V:0.50%以下、
Ti:0.20%以下、
Zr:0.20%以下、
B:0.01%以下、
REM:0.01%以下、
Ca:0.0100%以下、
Sn:0.20%以下、
Sb:0.50%以下、
Ta:0.1%以下、
Mg:0.0100%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の油井用高強度ステンレス継目無鋼管。
The present invention has been completed based on these findings and through further investigation.
[1] In mass%,
C: 0.002-0.050%,
Si: 0.05-0.50%,
Mn: 0.04-1.80%,
P: 0.030% or less,
S: 0.0020% or less,
Cr: 16.0-20.0%,
Ni: 4.0 to 7.5%,
Mo: 1.5-3.7%,
Al: 0.005-0.10%,
N: 0.002-0.15%,
Co: 0.2-1.0%,
Nb: 0.005-0.20%,
O: 0.010% or less;
Further, it contains one or two selected from Cu: 3.5% or less and W: 3.5% or less,
and has a composition that satisfies formula (1) and formula (2), with the balance being Fe and unavoidable impurities,
A high-strength stainless steel seamless pipe for oil wells having a yield strength of 758 MPa or more and an absorbed energy vE -10 of 40 J or more at a test temperature of -10°C in a Charpy impact test.
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4...(1)
Here, Cr, Ni, Mo, W, Cu, and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
Co-Nb≧0.13...(2)
Here, Co and Nb in formula (2) are the contents (mass %) of each element.
[2] In addition to the above-mentioned component composition, further, in mass%,
V: 0.50% or less,
Ti: 0.20% or less,
Zr: 0.20% or less,
B: 0.01% or less,
REM: 0.01% or less,
Ca: 0.0100% or less,
Sn: 0.20% or less,
Sb: 0.50% or less,
Ta: 0.1% or less,
Mg: 0.0100% or less.

 本発明によれば、高強度と、優れた低温靭性とを有するとともに、未処理海水中における耐すき間腐食性に優れる、油井用高強度ステンレス継目無鋼管を提供することができる。 The present invention provides a high-strength stainless steel seamless pipe for oil wells that has high strength, excellent low-temperature toughness, and excellent resistance to crevice corrosion in untreated seawater.

 以下、本発明について詳細に説明する。なお、本発明は以下の実施形態に限定されない。 The present invention will be described in detail below. Note that the present invention is not limited to the following embodiments.

 まず、本発明の油井用高強度ステンレス継目無鋼管の成分組成と、その限定理由について説明する。以下、特に断わらない限り、質量%は単に「%」と記す。 First, we will explain the composition of the high-strength stainless steel seamless pipe for oil wells of the present invention and the reasons for its limitations. Hereinafter, unless otherwise specified, mass% will simply be written as "%".

 C:0.002~0.050%
 Cは、マルテンサイト系ステンレス鋼の強度を増加させる重要な元素である。本発明では、本発明で目的とする強度を確保するために0.002%以上のCを含有することが必要である。このため、C含有量は0.002%以上とする。C含有量は、好ましくは0.010%以上とし、より好ましくは0.015%以上とし、さらに好ましくは0.020%以上とする。C含有量は、もっとも好ましくは0.022%以上とする。一方、0.050%を超えてCを含有すると、強度がかえって低下する。また、未処理海水の環境における耐すき間腐食性も悪化する。このため、本発明では、C含有量は0.050%以下とする。なお、好ましくは0.040%以下とする。より好ましくは0.035%以下とし、さらに好ましくは0.030%以下とする。C含有量は、もっとも好ましくは0.028%以下とする。
C: 0.002-0.050%
C is an important element for increasing the strength of martensitic stainless steel. In the present invention, it is necessary to contain 0.002% or more of C in order to ensure the desired strength of the present invention. For this reason, the C content is set to 0.002% or more. The C content is preferably set to 0.010% or more, more preferably set to 0.015% or more, and further preferably set to 0.020% or more. The most preferable C content is 0.022% or more. On the other hand, if the C content exceeds 0.050%, the strength is rather reduced. Also, the resistance to crevice corrosion in an untreated seawater environment is also deteriorated. Therefore, in the present invention, the C content is set to 0.050% or less, preferably 0.040% or less, more preferably 0.035% or less, and further preferably 0.030% or less. The C content is most preferably 0.028% or less.

 Si:0.05~0.50%
 Siは、脱酸剤として作用する元素である。この効果は0.05%以上のSiの含有で得られる。このため、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.10%以上とし、より好ましくは0.15%以上とする。Si含有量は、さらに好ましくは0.20%以上とし、もっとも好ましくは0.22%以上とする。一方、0.50%を超えるSiの含有は、未処理海水の環境における耐すき間腐食性が悪化する。このため、Si含有量は0.50%以下とする。Si含有量は、好ましくは0.45%以下とし、より好ましくは0.40%以下とし、さらに好ましくは0.30%以下とする。Si含有量は、もっとも好ましくは0.25%以下とする。
Si: 0.05-0.50%
Silicon is an element that acts as a deoxidizer. This effect can be obtained with a silicon content of 0.05% or more. Therefore, the silicon content is set to 0.05% or more. The silicon content is preferably The Si content is set to 0.10% or more, more preferably 0.15% or more. The Si content is further preferably set to 0.20% or more, and most preferably set to 0.22% or more. %, the crevice corrosion resistance in the untreated seawater environment is deteriorated. Therefore, the Si content is set to 0.50% or less. The Si content is preferably set to 0.45% or less. The Si content is preferably 0.40% or less, more preferably 0.30% or less, and most preferably 0.25% or less.

 Mn:0.04~1.80%
 Mnは、熱間加工時のδフェライト生成を抑制し、熱間加工性を向上させる元素である。本発明では0.04%以上のMnの含有を必要とする。このため、Mn含有量は0.04%以上とする。Mn含有量は、好ましくは0.10%以上とし、より好ましくは0.20%以上とし、さらに好ましくは0.25%以上とする。Mn含有量は、もっとも好ましくは0.35%以上とする。一方、Mnは過剰に含有すると、未処理海水の環境における耐すき間腐食性が悪化する。このため、Mn含有量は1.80%以下とする。Mn含有量は、好ましくは、1.60%以下とし、より好ましくは0.80%以下とし、さらに好ましくは0.60%以下とし、もっとも好ましくは0.40%以下とする。
Mn: 0.04-1.80%
Mn is an element that suppresses the formation of δ-ferrite during hot working and improves hot workability. In the present invention, the Mn content must be 0.04% or more. The Mn content is preferably 0.10% or more, more preferably 0.20% or more, and further preferably 0.25% or more. The Mn content is most preferably The Mn content is set to 0.35% or more. On the other hand, if Mn is contained excessively, the crevice corrosion resistance in an untreated seawater environment deteriorates. Therefore, the Mn content is set to 1.80% or less. is preferably 1.60% or less, more preferably 0.80% or less, further preferably 0.60% or less, and most preferably 0.40% or less.

 P:0.030%以下
 Pは、未処理海水の環境における耐すき間腐食性を低減させる元素である。本発明では、できるだけ低減することが好ましいが、極端な低減は製造コストの高騰を招く。このため、特性の極端な低下を招くことなく、工業的に比較的安価に実施可能な範囲として、P含有量は0.030%以下とする。好ましくは、P含有量は0.025%以下であり、より好ましくは0.020%以下である。P含有量は、さらに好ましくは0.018%以下であり、もっとも好ましくは0.015%以下である。なお、P含有量の下限は特に限定されない。ただし、上述のように過度の低減は製造コストの増加を招くため、好ましくは0.005%以上とする。
P: 0.030% or less P is an element that reduces crevice corrosion resistance in an untreated seawater environment. In the present invention, it is preferable to reduce it as much as possible, but an extreme reduction leads to an increase in manufacturing costs. For this reason, the P content is set to 0.030% or less as a range that can be implemented industrially at a relatively low cost without causing an extreme decrease in characteristics. Preferably, the P content is 0.025% or less, more preferably 0.020% or less. The P content is further preferably 0.018% or less, and most preferably 0.015% or less. The lower limit of the P content is not particularly limited. However, as described above, an excessive reduction leads to an increase in manufacturing costs, so it is preferably 0.005% or more.

 S:0.0020%以下
 Sは、熱間加工性を著しく低下させ、また、旧オーステナイト粒界への偏析によって低温靭性を悪化させるため、できるだけ低減することが好ましい。S含有量は0.0020%以下であれば、旧オーステナイト粒界へのSの偏析を抑制し、本発明で目的とする低温靭性を得ることができる。このようなことから、S含有量は0.0020%以下とする。好ましくは、S含有量は0.0015%以下である。より好ましくは、S含有量は0.0010%以下であり、さらに好ましくは0.0007%以下である。なお、S含有量の下限は特に限定されない。ただし、過度の低減は製造コストの増加を招くため、好ましくは0.0005%以上とする。
S: 0.0020% or less S significantly reduces hot workability and deteriorates low-temperature toughness by segregation to prior austenite grain boundaries, so it is preferable to reduce it as much as possible. If the S content is 0.0020% or less, the segregation of S to prior austenite grain boundaries can be suppressed, and the low-temperature toughness targeted in the present invention can be obtained. For this reason, the S content is set to 0.0020% or less. Preferably, the S content is set to 0.0015% or less. More preferably, the S content is set to 0.0010% or less, and further preferably, the S content is set to 0.0007% or less. The lower limit of the S content is not particularly limited. However, since excessive reduction leads to an increase in manufacturing costs, it is preferably set to 0.0005% or more.

 Cr:16.0~20.0%
 Crは、保護皮膜を形成して未処理海水の環境における耐すき間腐食性に寄与する元素である。本発明では16.0%以上のCrの含有を必要とする。このため、Cr含有量は16.0%以上とする。Cr含有量は、好ましくは16.5%以上とし、より好ましくは16.8%以上とし、さらに好ましくは17.0%以上とする。Cr含有量は、もっとも好ましくは17.5%以上とする。一方、20.0%を超えるCrの含有は、マルテンサイト変態させずに、残留オーステナイトを生じやすくすることで、マルテンサイト相の安定性が低下し、本発明で目的とする強度が得られなくなる。このほか、高温加熱時にδフェライト相が析出し、熱間加工性が著しく低下する。このため、Cr含有量は20.0%以下とする。Cr含有量は、好ましくは19.5%以下とし、より好ましくは19.0%以下とし、さらに好ましくは18.5%以下とする。Cr含有量は、もっとも好ましくは18.0%以下とする。
Cr:16.0~20.0%
Cr is an element that forms a protective film and contributes to crevice corrosion resistance in an untreated seawater environment. In the present invention, the Cr content is required to be 16.0% or more. For this reason, the Cr content is The Cr content is preferably 16.5% or more, more preferably 16.8% or more, and further preferably 17.0% or more. The Cr content is most preferably On the other hand, if the Cr content exceeds 20.0%, the martensite transformation is not caused and the residual austenite is easily generated, which reduces the stability of the martensite phase. In addition, when heated to high temperatures, the δ ferrite phase precipitates, significantly reducing hot workability. For this reason, the Cr content is set to 20.0% or less. Cr Content The Cr content is preferably 19.5% or less, more preferably 19.0% or less, and further preferably 18.5% or less. The Cr content is most preferably 18.0% or less.

 Ni:4.0~7.5%
 Niは、保護皮膜を強固にして未処理海水の環境における耐すき間腐食性を向上させる作用を有する元素である。また、Niは、δフェライト相の析出を抑制し、熱間加工性を向上させる。また、Niは、固溶して鋼の強度を増加させる。このような効果は4.0%以上のNiの含有で得られる。このため、Ni含有量は4.0%以上とする。Ni含有量は、好ましくは5.0%以上とし、より好ましくは6.0%以上とし、さらに好ましくは6.1%以上とする。Ni含有量は、もっとも好ましくは6.3%以上とする。一方、7.5%を超えるNiの含有は、マルテンサイト変態させずに、残留オーステナイトを生じやすくすることで、マルテンサイト相の安定性が低下し、強度が低下する。このため、Ni含有量は7.5%以下とする。Ni含有量は、好ましくは7.0%以下とし、さらに好ましくは6.5%以下とする。
Ni: 4.0-7.5%
Ni is an element that strengthens the protective film and improves crevice corrosion resistance in an untreated seawater environment. Ni also inhibits the precipitation of the δ-ferrite phase and improves hot workability. In addition, Ni increases the strength of steel by dissolving in solid solution. This effect can be obtained with a Ni content of 4.0% or more. For this reason, the Ni content is set to 4.0% or more. The Ni content is preferably 5.0% or more, more preferably 6.0% or more, and further preferably 6.1% or more. The Ni content is most preferably 6.3% or more. On the other hand, if the Ni content exceeds 7.5%, the martensite transformation is not carried out and the residual austenite is easily generated, which reduces the stability of the martensite phase and decreases the strength. The Ni content is preferably 7.0% or less, and more preferably 6.5% or less.

 Mo:1.5~3.7%
 Moは、Clや低pHによる孔食に対する抵抗性を増加させる元素である。本発明では1.5%以上のMoの含有を必要とする。1.5%未満のMoの含有では、苛酷な腐食環境下での耐炭酸ガス腐食性や耐すき間腐食性を低下させる。このため、Mo含有量は1.5%以上とする。Mo含有量は、好ましくは2.0%以上とし、より好ましくは2.2%以上とし、さらに好ましくは2.5%以上とする。Mo含有量は、もっとも好ましくは2.7%以上とする。一方、3.7%を超えるMoの含有は、δフェライトを発生させて、熱間加工性および耐炭酸ガス腐食性や低温環境における耐SSC性の低下を招く。このため、Mo含有量は3.7%以下とする。Mo含有量は、好ましくは3.5%以下とし、より好ましくは3.3%以下とし、さらに好ましくは3.0%以下とする。Mo含有量は、もっとも好ましくは2.8%以下とする。
Mo: 1.5-3.7%
Mo is an element that increases resistance to pitting corrosion caused by Cl- or low pH. In the present invention, the Mo content must be 1.5% or more. If the Mo content is less than 1.5%, severe corrosion will occur. However, Mo content is not sufficient to prevent deterioration of carbon dioxide corrosion resistance and crevice corrosion resistance in a severe corrosive environment. Therefore, the Mo content is set to 1.5% or more. The Mo content is preferably set to 2.0% or more, and more preferably 2.0% or more. The Mo content is preferably 2.2% or more, and more preferably 2.5% or more. The Mo content is most preferably 2.7% or more. On the other hand, the Mo content of more than 3.7% increases δ It generates ferrite, which leads to deterioration of hot workability, carbon dioxide corrosion resistance, and SSC resistance in a low temperature environment. For this reason, the Mo content is set to 3.7% or less. The Mo content is preferably The Mo content is set to 3.5% or less, more preferably 3.3% or less, and further preferably 3.0% or less. The Mo content is most preferably set to 2.8% or less.

 Al:0.005~0.10%
 Alは、脱酸剤として作用する元素である。この効果は、Alを0.005%以上含有することで得られる。このため、Al含有量は0.005%以上とする。Al含有量は、好ましくは0.01%以上とし、より好ましくは0.015%以上とする。Al含有量は、さらに好ましくは0.017%以上とし、もっとも好ましくは0.02%以上とする。一方、0.10%を超えてAlを含有すると、酸化物量が多くなりすぎて、耐すき間腐食性に悪影響を及ぼす。このため、Al含有量は0.10%以下とする。Al含有量は、好ましくは0.05%以下とし、より好ましくは0.04%以下とし、さらに好ましくは0.03%以下とする。Al含有量は、もっとも好ましくは0.025%以下とする。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizer. This effect can be obtained by including 0.005% or more of Al. Therefore, the Al content is set to 0.005% or more. The Al content is The Al content is preferably 0.01% or more, more preferably 0.015% or more. The Al content is further preferably 0.017% or more, and most preferably 0.02% or more. If the Al content exceeds 10%, the amount of oxides becomes too large, adversely affecting the crevice corrosion resistance. Therefore, the Al content is set to 0.10% or less. The Al content is preferably The Al content is set to 0.05% or less, more preferably 0.04% or less, and further preferably 0.03% or less. The Al content is most preferably set to 0.025% or less.

 N:0.002~0.15%
 Nは、安価にδフェライトの生成を抑制し、熱間加工性を向上させる元素である。このような効果は、0.002%以上のNの含有で得られる。このため、N含有量は0.002%以上とする。N含有量は、好ましくは0.01%以上とし、より好ましくは0.02%以上とする。N含有量は、さらに好ましくは0.03%以上とし、もっとも好ましくは0.04%以上とする。一方、0.15%を超えてNを含有すると、粗大な窒化物を生成し、耐すき間腐食性が低下する。このため、N含有量は0.15%以下とする。N含有量は、好ましくは0.12%以下とし、より好ましくは0.10%以下とし、さらに好ましくは0.08%以下とする。N含有量は、もっとも好ましくは0.06%以下とする。
N: 0.002-0.15%
N is an inexpensive element that suppresses the formation of δ-ferrite and improves hot workability. Such effects can be obtained with an N content of 0.002% or more. For this reason, the N content is The N content is 0.002% or more. The N content is preferably 0.01% or more, more preferably 0.02% or more. The N content is further preferably 0.03% or more, and most preferably On the other hand, if the N content exceeds 0.15%, coarse nitrides are formed, which reduces the crevice corrosion resistance. Therefore, the N content is set to 0.15%. The N content is preferably 0.12% or less, more preferably 0.10% or less, and further preferably 0.08% or less. The N content is most preferably 0.06% or less. % or less.

 Co:0.2~1.0%
 Coは、耐すき間腐食性を向上させる元素である。このような効果は0.2%以上のCoを含有することで得られる。このため、Co含有量は0.2%以上とする。Co含有量は、好ましくは0.25%以上とする。Co含有量は、より好ましくは0.3%以上とし、さらに好ましくは0.35%以上とし、もっとも好ましくは0.4%以上とする。一方、1.0%を超えてCoを含有しても、効果は飽和する。このため、Coを含有する場合には、Co含有量は1.0%以下とする。Co含有量は、好ましくは0.8%以下とし、より好ましくは0.7%以下とする。Co含有量は、さらに好ましくは0.65%以下とし、もっとも好ましくは0.6%以下とする。
Co:0.2~1.0%
Co is an element that improves crevice corrosion resistance. Such an effect can be obtained by including 0.2% or more of Co. Therefore, the Co content is set to 0.2% or more. The Co content is preferably 0.25% or more, more preferably 0.3% or more, further preferably 0.35% or more, and most preferably 0.4% or more. On the other hand, even if the Co content exceeds 1.0%, the effect is saturated. Therefore, when Co is contained, the Co content is set to 1.0% or less. The Co content is preferably The Co content is preferably 0.8% or less, more preferably 0.7% or less. The Co content is further preferably 0.65% or less, most preferably 0.6% or less.

 Nb:0.005~0.20%
 Nbは、Ms点を高める元素であり、耐すき間腐食性と高強度を両立するために必要が元素である。このような効果は、0.005%以上のNbを含有することで得られる。このため、Nb含有量は0.005%以上とする。Nb含有量は、好ましくは0.01%以上とし、より好ましくは0.05%以上とし、さらに好ましくは0.07%以上とする。Nb含有量は、もっとも好ましくは0.09%以上とする。一方、0.20%を超えてNbを含有すると、低温靭性が悪化する。このため、Nb含有量は0.20%以下とする。Nb含有量は、好ましくは0.17%以下とし、より好ましくは0.15%以下とし、さらに好ましくは0.13%以下とする。Nb含有量は、もっとも好ましくは0.11%以下とする。
Nb: 0.005-0.20%
Nb is an element that increases the Ms point and is necessary to achieve both crevice corrosion resistance and high strength. Such an effect can be obtained by including 0.005% or more of Nb. For this reason, the Nb content is set to 0.005% or more, preferably 0.01% or more, more preferably 0.05% or more, and further preferably 0.07% or more. The Nb content is most preferably 0.09% or more. On the other hand, if the Nb content exceeds 0.20%, the low temperature toughness deteriorates. Therefore, the Nb content is set to 0.20% or less. The Nb content is preferably 0.17% or less, more preferably 0.15% or less, and further preferably 0.13% or less. The Nb content is most preferably 0.11% or less. do.

 O(酸素):0.010%以下
 O(酸素)は、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、Oはできるだけ低減することが望ましい。特に、O含有量が0.010%を超えると、耐すき間腐食性ともに著しく低下する。このため、O含有量は0.010%以下とする。好ましくは、O含有量は0.007%以下であり、より好ましくは0.004%以下である。O含有量は、さらに好ましくは0.003%以下であり、もっとも好ましくは0.002%以下である。過度の低減は製造コストの増加を招くため、好ましくは0.0005%以上とする。
O (oxygen): 0.010% or less O (oxygen) exists as an oxide in steel and has a detrimental effect on various properties. For this reason, it is desirable to reduce O as much as possible. In particular, when the O content exceeds 0.010%, the crevice corrosion resistance is significantly reduced. For this reason, the O content is set to 0.010% or less. Preferably, the O content is set to 0.007% or less, more preferably 0.004% or less. The O content is further preferably 0.003% or less, and most preferably 0.002% or less. Since excessive reduction leads to an increase in manufacturing costs, it is preferably set to 0.0005% or more.

 Cu:3.5%以下、W:3.5%以下のうちから選ばれた1種または2種
 Cu:3.5%以下
 Cuは、保護皮膜を強固にして、耐すき間腐食性を高める元素であり、必要に応じて含有できる。このような効果は、0.5%以上のCuを含有することで得られるため、Cu含有量は、好ましくは0.5%以上とし、より好ましくは0.7%以上とする。Cu含有量は、さらに好ましくは1.0%以上であり、もっとも好ましくは1.2%以上である。一方、3.5%を超えるCuの含有は、CuSの粒界析出を招き、熱間加工性が低下する。このため、Cu含有量は3.5%以下とする。Cu含有量は、好ましくは3.0%以下とし、より好ましくは2.5%以下とし、さらに好ましくは2.0%以下とする。Cu含有量は、もっとも好ましくは1.5%以下である。
One or two selected from Cu: 3.5% or less and W: 3.5% or less Cu: 3.5% or less Cu is an element that strengthens the protective film and enhances crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.5% or more of Cu, the Cu content is preferably 0.5% or more, more preferably 0.7% or more. The Cu content is further preferably 1.0% or more, and most preferably 1.2% or more. On the other hand, the Cu content exceeding 3.5% leads to grain boundary precipitation of CuS, and the hot workability is reduced. For this reason, the Cu content is 3.5% or less. The Cu content is preferably 3.0% or less, more preferably 2.5% or less, and even more preferably 2.0% or less. The Cu content is most preferably 1.5% or less.

 W:3.5%以下
 Wは、強度増加に寄与するとともに、耐すき間腐食性を高める元素であり、必要に応じて含有できる。このような効果は、0.05%以上のWを含有することで得られるため、W含有量は、好ましくは0.05%以上とし、より好ましくは0.2%以上とし、さらに好ましくは0.3%以上とし、もっとも好ましくは0.5%以上とする。一方、3.5%を超えてWを含有しても、効果は飽和する。このため、W含有量は3.5%以下とする。W含有量は、好ましくは3.0%以下とし、より好ましくは2.0%以下とし、さらに好ましくは1.5%以下とする。W含有量は、もっとも好ましくは1.0%以下である。
なお、Cu:3.5%以下、W:3.5%以下のうちから選ばれた1種または2種とは、本発明では、Cu、Wが含まれる場合には、Cu:3.5%以下、W:3.5%以下であり、Cu、Wのうち1種が3.5%を超えている場合は比較例となる。
W: 3.5% or less W is an element that contributes to increasing strength and enhances crevice corrosion resistance, and can be contained as necessary. Since such effects can be obtained by containing 0.05% or more of W, the W content is preferably 0.05% or more, more preferably 0.2% or more, even more preferably 0.3% or more, and most preferably 0.5% or more. On the other hand, even if W is contained in an amount exceeding 3.5%, the effect is saturated. For this reason, the W content is 3.5% or less. The W content is preferably 3.0% or less, more preferably 2.0% or less, and even more preferably 1.5% or less. The W content is most preferably 1.0% or less.
In addition, in the present invention, one or two selected from Cu: 3.5% or less and W: 3.5% or less means, when Cu and W are contained, Cu: 3.5% or less and W: 3.5% or less, and when one of Cu and W exceeds 3.5%, it is a comparative example.

 また、本発明では、Cr、Ni、Mo、W、CuおよびCoを、上記した範囲内とし、かつ下記式(1)を満足するように含有する。
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4・・・(1)
ここで、式(1)におけるCr、Ni、Mo、W、CuおよびCoは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
(1)式の左辺値(「Cr+0.22×Ni+0.38×(Mo+0.5×W)+
0.89×Cu+0.09×Co」の値)が21.4未満であると、未処理海水環境下における耐すき間腐食性が低下する。このため、本発明では、Cr、Ni、Mo、W、CuおよびCoについて、式(1)を満足するように含有する。つまり、式(1)の左辺値は、21.4以上とする。式(1)の左辺値は、好ましくは21.6以上とし、より好ましくは21.8以上とし、さらに好ましくは22.0以上とする。式(1)の左辺値の上限は特に設けない。過剰な合金添加によるコスト増の抑制および強度低下の抑制の観点から、式(1)の左辺値は26.0以下とすることが好ましい。より好ましくは24.0以下であり、さらに好ましくは23.8以下である。
In the present invention, Cr, Ni, Mo, W, Cu and Co are contained within the above-mentioned ranges and so as to satisfy the following formula (1).
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4...(1)
Here, Cr, Ni, Mo, W, Cu and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
The left side value of the formula (1) ("Cr + 0.22 × Ni + 0.38 × (Mo + 0.5 × W) +
If the value of "0.89 x Cu + 0.09 x Co" is less than 21.4, the crevice corrosion resistance in an untreated seawater environment is reduced. For this reason, in the present invention, Cr, Ni, Mo, W, Cu and Co are contained so as to satisfy formula (1). That is, the left side value of formula (1) is 21.4 or more. The left side value of formula (1) is preferably 21.6 or more, more preferably 21.8 or more, and even more preferably 22.0 or more. There is no particular upper limit for the left side value of formula (1). From the viewpoint of suppressing the increase in cost and the decrease in strength due to the excessive addition of alloys, the left side value of formula (1) is preferably 26.0 or less. More preferably, it is 24.0 or less, and even more preferably, it is 23.8 or less.

 また、本発明では、CoおよびNbを、上記した範囲内とし、かつ下記式(2)を満足するように含有する。
Co-Nb≧0.13・・・(2)
 ここで、式(2)におけるCoおよびNbは、各元素の含有量(質量%)である。
In the present invention, Co and Nb are contained within the above-mentioned ranges and so as to satisfy the following formula (2).
Co-Nb≧0.13...(2)
Here, Co and Nb in formula (2) are the contents (mass %) of each element.

 上述しているとおり、式(1)の左辺値を21.4以上とすることで未処理海水環境下における所望の耐すき間腐食性を得ることができる。このためには、Cr、Ni、Mo、W、Cu、Coを適宜含有する必要があるが、これらの元素のうち、Co以外の元素は、いずれもMs点を大きく低下させる元素であり、過剰に含有すると所望の高強度が得られない。一方で、Ms点を上昇させるためには、Nb添加が有効であるが、Nbを過剰に含有すると低温靭性が悪化してしまう。そこで、Ms点を低下させずに耐すき間腐食性を向上させる元素であるCoをNbよりも0.13%以上多く含有することで、優れた耐すき間腐食性と高強度、低温靭性を両立することができる。式(2)の左辺値(「Co-Nb」の値)が0.13未満であると、低温靭性値が低下する。このため、本発明では、CoおよびNbについて、式(2)を満足するように含有する。式(2)の左辺値は、好ましくは0.13以上とする。式(2)の左辺値は、好ましくは0.17以上とし、より好ましくは0.20以上とし、さらに好ましくは0.30以上とする。式(2)の左辺値の上限は特に設けない。過剰な合金添加によるコスト増の抑制および強度低下の抑制の観点から、式(2)の左辺値は1.00以下とすることが好ましい。式(2)の左辺値は0.80以下とすることがより好ましい。 As described above, the desired crevice corrosion resistance in an untreated seawater environment can be obtained by setting the value of the left side of formula (1) to 21.4 or more. To achieve this, it is necessary to appropriately contain Cr, Ni, Mo, W, Cu, and Co, but among these elements, all elements other than Co significantly lower the Ms point, and if contained in excess, the desired high strength cannot be obtained. On the other hand, adding Nb is effective for raising the Ms point, but if Nb is contained in excess, low-temperature toughness deteriorates. Therefore, by containing Co, an element that improves crevice corrosion resistance without lowering the Ms point, in an amount of 0.13% or more more than Nb, it is possible to achieve both excellent crevice corrosion resistance, high strength, and low-temperature toughness. If the value of the left side of formula (2) (the value of "Co-Nb") is less than 0.13, the low-temperature toughness value decreases. For this reason, in the present invention, Co and Nb are contained so as to satisfy formula (2). The value on the left side of formula (2) is preferably 0.13 or more. The value on the left side of formula (2) is preferably 0.17 or more, more preferably 0.20 or more, and even more preferably 0.30 or more. There is no particular upper limit on the value on the left side of formula (2). From the viewpoint of suppressing the increase in cost due to the excessive addition of alloy and suppressing the decrease in strength, it is preferable that the value on the left side of formula (2) is 1.00 or less. It is more preferable that the value on the left side of formula (2) is 0.80 or less.

 本発明では、上記した成分以外の残部は、鉄(Fe)および不可避的不純物からなる。 In the present invention, the remainder other than the above components consists of iron (Fe) and unavoidable impurities.

 上記した成分が基本の成分であり、この基本成分で本発明の油井用高強度ステンレス継目無鋼管は目的とする特性が得られる。本発明では、上記した基本成分に加えて、必要に応じて下記の選択元素を含有することができる。以下の、V、Ti、Zr、B、REM、Ca、Sn、Sb、Ta、Mgの各成分は、必要に応じて含有できるので、これらの成分は0%であってもよい。
V:0.50%以下、Ti:0.20%以下、Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Sb:0.50%以下、Ta:0.1%以下、Mg:0.0100%以下のうちから選ばれた1種または2種以上
The above-mentioned components are the basic components, and the high-strength stainless steel seamless pipe for oil wells of the present invention can obtain the desired properties with these basic components. In addition to the above-mentioned basic components, the present invention can contain the following optional elements as necessary. Each of the following components V, Ti, Zr, B, REM, Ca, Sn, Sb, Ta, and Mg can be contained as necessary, so these components may be 0%.
One or more selected from the group consisting of V: 0.50% or less, Ti: 0.20% or less, Zr: 0.20% or less, B: 0.01% or less, REM: 0.01% or less, Ca: 0.0100% or less, Sn: 0.20% or less, Sb: 0.50% or less, Ta: 0.1% or less, and Mg: 0.0100% or less.

 V:0.50%以下
 Vは、析出強化により鋼の強度を向上させる元素であり、必要に応じて含有できる。この効果は、Vを0.005%以上含有することで得られるため、V含有量は、0.005%以上とすることが好ましい。V含有量は、より好ましくは0.03%以上とし、さらに好ましくは0.04%以上とする。V含有量は、もっとも好ましくは0.05%以上とする。一方、0.50%を超えてVを含有しても、低温靭性が低下する。このため、Vを含有する場合には、V含有量は0.50%以下とする。V含有量は、好ましくは0.40%以下とし、より好ましくは0.30%以下とする。V含有量は、さらに好ましくは0.25%以下とし、もっとも好ましくは0.20%以下とする。
V: 0.50% or less V is an element that improves the strength of steel by precipitation strengthening, and can be contained as necessary. This effect can be obtained by containing V at 0.005% or more, so the V content is preferably 0.005% or more. The V content is more preferably 0.03% or more, and even more preferably 0.04% or more. The V content is most preferably 0.05% or more. On the other hand, even if V is contained at more than 0.50%, the low temperature toughness decreases. Therefore, when V is contained, the V content is 0.50% or less. The V content is preferably 0.40% or less, and more preferably 0.30% or less. The V content is more preferably 0.25% or less, and most preferably 0.20% or less.

 Ti:0.20%以下
 Tiは、酸化物系または硫化物系の介在物中に存在し、介在物の化学的安定性を向上させることで未処理海水の環境における耐すき間腐食性を向上させる元素であり、必要に応じて含有できる。このような効果は、0.002%以上のTiを含有することで得られるため、Ti含有量は0.002%以上とすることが好ましい。Ti含有量は、より好ましくは0.003%以上とする。一方、0.20%を超えてTiを含有すると、TiNが介在物として析出し、逆に耐すき間腐食性は悪化する。このため、Tiを含有する場合には、Ti含有量は0.20%以下とする。Ti含有量は、好ましくは0.15%以下とし、より好ましくは0.10%以下とする。Ti含有量は、さらに好ましくは0.07%以下とし、もっとも好ましくは0.05%以下とする。
Ti: 0.20% or less Ti is an element that exists in oxide-based or sulfide-based inclusions and improves the chemical stability of the inclusions to improve crevice corrosion resistance in an untreated seawater environment, and can be contained as necessary. Since such an effect can be obtained by containing 0.002% or more of Ti, the Ti content is preferably 0.002% or more. The Ti content is more preferably 0.003% or more. On the other hand, if Ti is contained in an amount exceeding 0.20%, TiN precipitates as an inclusion, and the crevice corrosion resistance is deteriorated conversely. Therefore, when Ti is contained, the Ti content is 0.20% or less. The Ti content is preferably 0.15% or less, more preferably 0.10% or less. The Ti content is further preferably 0.07% or less, and most preferably 0.05% or less.

 Zr:0.20%以下
 Zrは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.01%以上のZrを含有することで得られる。このため、Zr含有量は0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。一方、0.20%を超えてZrを含有しても、効果は飽和する。このため、Zrを含有する場合には、Zr含有量は0.20%以下とする。Zr含有量は、好ましくは0.17%以下とし、より好ましくは0.13%以下とし、さらに好ましくは0.10%以下とする。Zr含有量は、もっとも好ましくは0.07%以下とする。
Zr: 0.20% or less Zr is an element that contributes to increasing strength, and can be contained as necessary. Such an effect can be obtained by containing 0.01% or more of Zr. Therefore, the Zr content is preferably 0.01% or more, and more preferably 0.02% or more. On the other hand, even if Zr is contained in an amount exceeding 0.20%, the effect is saturated. Therefore, when Zr is contained, the Zr content is 0.20% or less. The Zr content is preferably 0.17% or less, more preferably 0.13% or less, and even more preferably 0.10% or less. The Zr content is most preferably 0.07% or less.

 B:0.01%以下
 Bは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のBを含有することで得られるため、B含有量は、好ましくは0.0005%以上とする。より好ましくは0.001%以上とする。さらに好ましくは0.002%以上である。一方、0.01%を超えてBを含有すると、熱間加工性が低下する。このため、Bを含有する場合には、B含有量は0.01%以下とする。B含有量は、好ましくは0.007%以下とし、より好ましくは0.005%以下とする。B含有量は、さらに好ましくは0.003%以下とする。
B: 0.01% or less B is an element that contributes to increasing strength, and can be contained as necessary. Since such an effect can be obtained by containing 0.0005% or more of B, the B content is preferably 0.0005% or more. More preferably, it is 0.001% or more. Even more preferably, it is 0.002% or more. On the other hand, if B is contained in excess of 0.01%, the hot workability decreases. Therefore, when B is contained, the B content is 0.01% or less. The B content is preferably 0.007% or less, more preferably 0.005% or less. The B content is even more preferably 0.003% or less.

 REM:0.01%以下
 REM(希土類金属)は、耐すき間腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のREMを含有することで得られるため、好ましくは0.0005%以上とする。より好ましくは0.001%以上とする。REM含有量は、さらに好ましくは0.0015%以上である。一方、0.01%を超えてREMを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、REMを含有する場合には、REM含有量は0.01%以下とする。REM含有量は、より好ましくは0.007%以下とする。REM含有量は、さらに好ましくは0.005%以下であり、もっとも好ましくは0.003%以下である。
REM: 0.01% or less REM (rare earth metal) is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.0005% or more of REM, the content is preferably 0.0005% or more. More preferably, the content is 0.001% or more. The REM content is further preferably 0.0015% or more. On the other hand, even if the REM content exceeds 0.01%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is 0.01% or less. The REM content is more preferably 0.007% or less. The REM content is further preferably 0.005% or less, and most preferably 0.003% or less.

 Ca:0.0100%以下
 Caは、耐すき間腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のCaを含有することで得られる。このため、Ca含有量は0.0005%以上とすることが好ましい。Ca含有量は、より好ましくは0.0010%以上とする。Ca含有量は、さらに好ましくは0.0015%以上である。一方、0.0100%を超えてCaを含有すると、粗大なCa系介在物の数密度が増加し、所望の耐すき間腐食性を得ることができなくなる。このため、Caを含有する場合には、Ca含有量は0.0100%以下とする。Ca含有量は、より好ましくは0.0070%以下とする。Ca含有量は、さらに好ましくは0.0050%以下とし、もっとも好ましくは0.0030%以下とする。
Ca: 0.0100% or less Ca is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Such an effect can be obtained by containing 0.0005% or more of Ca. For this reason, the Ca content is preferably 0.0005% or more. The Ca content is more preferably 0.0010% or more. The Ca content is even more preferably 0.0015% or more. On the other hand, if Ca is contained in an amount exceeding 0.0100%, the number density of coarse Ca-based inclusions increases, and the desired crevice corrosion resistance cannot be obtained. For this reason, when Ca is contained, the Ca content is 0.0100% or less. The Ca content is more preferably 0.0070% or less. The Ca content is even more preferably 0.0050% or less, and most preferably 0.0030% or less.

 Sn:0.20%以下
 Snは、耐すき間腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSnを含有することで得られるため、Sn含有量は、好ましくは0.02%以上とし、より好ましくは0.05%以上とする。Sn含有量は、さらに好ましくは0.07%以上とする。一方、0.20%を超えてSnを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Snを含有する場合には、Sn含有量は0.20%以下とする。Sn含有量は、より好ましくは0.15%以下とする。Sn含有量は、さらに好ましくは0.13%以下とし、もっとも好ましくは0.10%以下とする。
Sn: 0.20% or less Sn is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.02% or more of Sn, the Sn content is preferably 0.02% or more, more preferably 0.05% or more. The Sn content is further preferably 0.07% or more. On the other hand, even if the Sn content exceeds 0.20%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when Sn is contained, the Sn content is 0.20% or less. The Sn content is more preferably 0.15% or less. The Sn content is further preferably 0.13% or less, and most preferably 0.10% or less.

 Sb:0.50%以下
 Sbは、耐すき間腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSbを含有することで得られるため、Sb含有量は、好ましくは0.02%以上とする。より好ましくは0.05%以上とする。一方、0.50%を超えてSbを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Sbを含有する場合には、Sb含有量は0.50%以下とする。Sb含有量は、好ましくは0.40%以下とし、より好ましくは0.30%以下とし、さらに好ましくは0.15%以下とする。Sb含有量は、もっとも好ましくは0.10%以下とする。
Sb: 0.50% or less Sb is an element that contributes to improving crevice corrosion resistance, and can be contained as necessary. Since such an effect can be obtained by containing 0.02% or more of Sb, the Sb content is preferably 0.02% or more. More preferably, it is 0.05% or more. On the other hand, even if Sb is contained in an amount exceeding 0.50%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when Sb is contained, the Sb content is 0.50% or less. The Sb content is preferably 0.40% or less, more preferably 0.30% or less, and even more preferably 0.15% or less. The Sb content is most preferably 0.10% or less.

 Ta:0.1%以下
 Taは、強度を増加させる元素であり、耐すき間腐食性を改善する効果も有する。また、TaはNbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。このような効果は、0.01%以上のTaを含有することで得られるため、Ta含有量は、好ましくは0.01%以上とする。Ta含有量は、より好ましくは0.03%以上とする。Ta含有量は、さらに好ましくは0.04%以上とする。一方、0.1%を超えてTaを含有すると、低温靭性が低下する。このため、Taを含有する場合には、Ta含有量は0.1%以下とする。Ta含有量は、好ましくは0.09%以下とし、より好ましくは0.07%以下とする。Ta含有量は、さらに好ましくは0.06%以下とし、もっとも好ましくは0.05%以下とする。
Ta: 0.1% or less Ta is an element that increases strength and has the effect of improving crevice corrosion resistance. In addition, Ta is an element that brings about the same effect as Nb, and part of Nb can be replaced with Ta. Since such an effect can be obtained by containing 0.01% or more of Ta, the Ta content is preferably 0.01% or more. The Ta content is more preferably 0.03% or more. The Ta content is further preferably 0.04% or more. On the other hand, if Ta is contained in an amount exceeding 0.1%, the low temperature toughness decreases. Therefore, when Ta is contained, the Ta content is 0.1% or less. The Ta content is preferably 0.09% or less, more preferably 0.07% or less. The Ta content is further preferably 0.06% or less, and most preferably 0.05% or less.

 Mg:0.0100%以下
 Mgは、耐すき間腐食性を向上させる元素であり、必要に応じて含有できる。このような効果は、0.0002%以上のMgを含有することで得られるため、Mg含有量は、好ましくは0.0002%以上とし、より好ましくは0.0004%以上とする。一方、0.0100%を超えてMgを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Mgを含有する場合には、Mg含有量は0.0100%以下とすることが好ましい。Mg含有量は、好ましくは0.0080%以下とし、より好ましくは0.0050%以下とし、さらに好ましくは0.0020%以下とする。Mg含有量は、もっとも好ましくは0.0010%以下とする。
Mg: 0.0100% or less Mg is an element that improves crevice corrosion resistance and can be contained as necessary. Since such an effect can be obtained by containing 0.0002% or more of Mg, the Mg content is preferably 0.0002% or more, more preferably 0.0004% or more. On the other hand, even if the Mg content exceeds 0.0100%, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, when Mg is contained, the Mg content is preferably 0.0100% or less. The Mg content is preferably 0.0080% or less, more preferably 0.0050% or less, and even more preferably 0.0020% or less. The Mg content is most preferably 0.0010% or less.

 次に、本発明の油井用高強度ステンレス継目無鋼管の鋼管組織は特に限定されるわけでなく、例えば以下のような組織とすることが好ましい。 Next, the steel pipe structure of the high-strength stainless steel seamless pipe for oil wells of the present invention is not particularly limited, and it is preferable that the structure be, for example, as follows.

 本発明の油井用高強度ステンレス継目無鋼管は、鋼管組織はマルテンサイト相(焼戻マルテンサイト相)、残留オーステナイト相、フェライト相からなることが好ましい。 The high-strength stainless steel seamless pipe for oil wells of the present invention preferably has a steel pipe structure consisting of a martensite phase (tempered martensite phase), a retained austenite phase, and a ferrite phase.

 過剰な残留オーステナイト相の含有は強度を低下させることから、残留オーステナイト相は面積率で32%以下とすることが好ましい。残留オーステナイト相は面積率で30%以下とすることがより好ましく、28%以下とすることがさらに好ましい。下限は1%以上であることが好ましい。フェライト相が少量しか存在しない状態では熱間加工時にフェライト相に歪みが集中し、熱間加工性を低下させることから、面積率で14%以上とすることが好ましい。フェライト相は面積率で16%以上とすることがより好ましく、18%以上とすることがさらに好ましい。上限は50%以下であることが好ましい。 Since the inclusion of an excessive amount of the retained austenite phase reduces strength, the area fraction of the retained austenite phase is preferably 32% or less. The area fraction of the retained austenite phase is more preferably 30% or less, and even more preferably 28% or less. The lower limit is preferably 1% or more. If only a small amount of ferrite phase is present, strain is concentrated in the ferrite phase during hot working, reducing hot workability, so the area fraction is preferably 14% or more. The area fraction of the ferrite phase is more preferably 16% or more, and even more preferably 18% or more. The upper limit is preferably 50% or less.

 上記した各組織は、次の方法で測定することができる。
まず、組織観察用試験片を管軸方向に直交する断面の肉厚の中央部から採取し、ビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(面積%)を算出する。
Each of the above-mentioned tissues can be measured by the following method.
First, a test piece for microstructural observation was taken from the center of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with Villela's reagent (a mixture of picric acid, hydrochloric acid, and ethanol in proportions of 2 g, 10 ml, and 100 ml, respectively). The structure was then imaged using a scanning electron microscope (magnification: 1000 times), and the structure fraction (area %) of the ferrite phase was calculated using an image analyzer.

 そして、X線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定する。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算する。なお、ここでは、残留オーステナイトの体積率を面積率とみなすものとする。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値である。
The test piece for X-ray diffraction is then ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite (γ) is measured using X-ray diffraction. The amount of retained austenite is determined by measuring the integrated intensity of diffracted X-rays from the (220) plane of γ and the (211) plane of α (ferrite), and converting it using the following formula. Note that the volume fraction of retained austenite is regarded as the area fraction here.
γ (volume ratio) = 100/(1+(IαRγ/IγRα))
Here, Iα is the integrated intensity of α, Rα is the theoretically calculated value of α, Iγ is the integrated intensity of γ, and Rγ is the theoretically calculated value of γ.

 また、マルテンサイト相(焼戻しマルテンサイト相)の分率(面積%)は、フェライト相および残留γ相以外の残部とする。マルテンサイト相の分率は、面積率で18%以上であることが好ましい。30%以上であることがより好ましい。また、85%以下であることが好ましい。75%以下であることがより好ましい。 The fraction (area %) of the martensite phase (tempered martensite phase) is the remainder other than the ferrite phase and the residual gamma phase. The fraction of the martensite phase is preferably 18% or more in area percentage. It is more preferably 30% or more. It is also preferably 85% or less. It is more preferably 75% or less.

 次に、特に以下に限定されるものでないが、本発明の油井用高強度ステンレス継目無鋼管の製造方法の一実施形態について、説明する。
なお、以下の製造方法の説明において、温度(℃)は、特に断らない限り鋼管素材および鋼管(造管後の継目無鋼管)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。
Next, an embodiment of the method for producing a high-strength stainless steel seamless pipe for oil wells according to the present invention will be described, although the embodiment is not limited thereto.
In the following description of the manufacturing method, the temperature (°C) refers to the surface temperature of the steel pipe material and the steel pipe (seamless steel pipe after pipe making) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like.

 本発明では、上記した成分組成を有する鋼管素材を出発素材とする。出発素材である鋼管素材の製造方法は、特に限定しない。例えば、上記した成分組成の溶鋼を、転炉等の溶製方法で溶製し、連続鋳造法、あるいは造塊-分塊圧延法等の方法で、ビレット等の鋼管素材とすることが好ましい。 In the present invention, the starting material is a steel pipe material having the above-mentioned composition. There are no particular limitations on the manufacturing method of the starting steel pipe material. For example, it is preferable to melt molten steel having the above-mentioned composition using a melting method such as a converter, and turn it into a steel pipe material such as a billet using a method such as continuous casting or ingot casting and blooming rolling.

 次いで、これら鋼管素材を加熱し(加熱工程)、マンネスマン-プラグミル方式あるいはマンネスマン-マンドレルミル方式を用いて、加熱された鋼管素材を穿孔機で中空素管とした後、熱間加工を施し、造管する(造管工程)。これにより、所望の寸法(所定形状)の上記した成分組成を有する継目無鋼管とする。なお、プレス方式による熱間押出で継目無鋼管としてもよい。 These steel pipe materials are then heated (heating process), and the heated steel pipe materials are shaped into hollow blanks using a piercing machine using the Mannesmann plug mill method or the Mannesmann mandrel mill method, after which they are hot worked and made into pipes (pipe-making process). This produces seamless steel pipes with the desired dimensions (prescribed shape) and the above-mentioned chemical composition. Note that seamless steel pipes may also be made by hot extrusion using a press method.

 上記した鋼管素材の加熱工程では、加熱温度は1100~1350℃の範囲の温度とすることが好ましい。加熱温度が1100℃未満では、熱間加工性が低下し、造管時に疵が多発する。そのため、加熱温度は1100℃以上とすることが好ましく、より好ましくは1150℃以上とする。加熱温度は1170℃以上とすることがさらに好ましく、1200℃以上とすることがもっとも好ましい。一方、加熱温度が1350℃を超えて高温となると、結晶粒が粗大化し、低温靭性が低下する。このため、加熱工程における加熱温度は、1350℃以下とすることが好ましい。前記加熱温度は、より好ましくは1300℃以下とする。加熱温度は1280℃以下とすることがさらに好ましく、1250℃以下とすることがもっとも好ましい。 In the heating process of the steel pipe material described above, the heating temperature is preferably in the range of 1100 to 1350°C. If the heating temperature is less than 1100°C, the hot workability decreases and many defects occur during pipe making. Therefore, the heating temperature is preferably 1100°C or higher, more preferably 1150°C or higher. The heating temperature is even more preferably 1170°C or higher, and most preferably 1200°C or higher. On the other hand, if the heating temperature exceeds 1350°C and becomes too high, the crystal grains become coarse and the low-temperature toughness decreases. Therefore, the heating temperature in the heating process is preferably 1350°C or lower. The heating temperature is more preferably 1300°C or lower. The heating temperature is even more preferably 1280°C or lower, and most preferably 1250°C or lower.

 造管後の継目無鋼管は、空冷以上の冷却速度で室温まで冷却する。これにより、マルテンサイト相を主相とする鋼管組織を確保できる。 After pipe making, the seamless steel pipe is cooled to room temperature at a cooling rate faster than air cooling. This ensures that the steel pipe structure has martensite as the main phase.

 本発明では、上記した造管後の空冷以上の冷却速度での冷却に引き続き、鋼管(造管後の継目無鋼管)に熱処理(焼入れ処理、焼戻処理)を行うことが好ましい。
具体的には、鋼管(造管後の継目無鋼管)に、850℃以上1120℃以下の範囲の温度(加熱温度)へ再加熱し、所定時間保持した後、続いて空冷以上の冷却速度で鋼管表面温度が100℃以下の温度(冷却停止温度)となるまで冷却する焼入れ処理を施すことが好ましい。ここで、「空冷以上の冷却速度」とは、0.01℃/s以上である。
これにより、上述のマルテンサイト相と高強度化が達成できる。このため、再加熱温度は850℃以上とすることが好ましい。
再加熱の温度(焼入れ処理の加熱温度)は、組織の粗大化を防止し金属間化合物を溶解させるために、870℃以上とすることがより好ましい。さらに好ましくは900℃以上とする。再加熱の温度は、もっとも好ましくは950℃以上とする。1120℃以下の範囲の温度とすることが好ましい。再加熱の温度は、より好ましくは1100℃以下とし、さらに好ましくは1050℃以下とする。もっとも好ましくは1000℃以下とする。
In the present invention, following the above-mentioned cooling at a cooling rate equal to or faster than the air cooling after pipe making, the steel pipe (seamless steel pipe after pipe making) is preferably subjected to heat treatment (quenching treatment, tempering treatment).
Specifically, it is preferable to perform a quenching treatment on the steel pipe (seamless steel pipe after pipe making) by reheating to a temperature (heating temperature) in the range of 850°C to 1120°C, holding the temperature for a predetermined time, and then cooling at a cooling rate faster than air cooling until the surface temperature of the steel pipe reaches a temperature of 100°C or less (cooling stop temperature). Here, the "cooling rate faster than air cooling" is 0.01°C/s or more.
This makes it possible to achieve the above-mentioned martensite phase and high strength. For this reason, the reheating temperature is preferably set to 850° C. or higher.
The reheating temperature (heating temperature of the quenching treatment) is more preferably 870°C or higher in order to prevent coarsening of the structure and dissolve the intermetallic compounds. It is even more preferably 900°C or higher. The reheating temperature is most preferably 950°C or higher. It is preferable that the temperature be in the range of 1120°C or lower. The reheating temperature is more preferably 1100°C or lower, even more preferably 1050°C or lower, and most preferably 1000°C or lower.

 均熱性確保の観点からは、上記した再加熱の温度で5分間以上鋼管を保持することが好ましい。保持時間は10分間以上とすることがより好ましく、15分間以上とすることがさらに好ましい。また、保持時間は、好ましくは30分以下とする。保持時間は、より好ましくは25分以下とし、さらに好ましくは20分以下とする。 From the viewpoint of ensuring uniform heating, it is preferable to hold the steel pipe at the reheating temperature mentioned above for 5 minutes or more. It is more preferable to set the holding time to 10 minutes or more, and even more preferable to set the holding time to 15 minutes or more. Furthermore, the holding time is preferably 30 minutes or less. It is more preferable to set the holding time to 25 minutes or less, and even more preferable to set the holding time to 20 minutes or less.

 本発明で目的とする降伏強さ(YS)を確保する観点からは、焼入れ処理後の冷却停止温度は100℃以下とすることが好ましい。冷却停止温度は、より好ましくは75℃以下とし、さらに好ましくは50℃以下とする。また、冷却停止温度は、好ましくは30℃以上とし、より好ましくは40℃以上とする。 From the viewpoint of ensuring the yield strength (YS) targeted in the present invention, it is preferable that the cooling stop temperature after quenching is 100°C or less. The cooling stop temperature is more preferably 75°C or less, and even more preferably 50°C or less. In addition, the cooling stop temperature is preferably 30°C or more, and more preferably 40°C or more.

 上記した焼入れ処理を施された鋼管は、次いで、焼戻処理を施される。焼戻処理は、500℃以上650℃以下の温度(焼戻温度)に加熱し、所定時間保持した後、空冷する処理とすることが好ましい。空冷の全部または一部にかえて、水冷、油冷、ミスト冷却等の他の冷却を行ってもよい。 The steel pipe that has been subjected to the above-mentioned quenching treatment is then subjected to a tempering treatment. The tempering treatment is preferably a process in which the pipe is heated to a temperature (tempering temperature) of 500°C or higher and 650°C or lower, held for a predetermined period of time, and then air-cooled. In place of all or part of the air cooling, other cooling methods such as water cooling, oil cooling, mist cooling, etc. may also be used.

 焼戻温度が500℃未満になると、強度が過剰に高くなり、所望の低温靭性を確保することが困難となる。このため、焼戻温度は500℃以上とすることが好ましい。焼戻温度は、より好ましくは530℃以上とする。焼戻温度は、さらに好ましくは550℃以上とし、もっとも好ましくは570℃以上とする。これにより、鋼管組織が、焼戻マルテンサイト相を主相とする組織となりやすくなり、本発明で目的とする強度および耐すき間腐食性を有する継目無鋼管となる。一方、焼戻温度が高すぎると、焼戻後に、フレッシュマルテンサイト相が析出し、所望の高強度を確保できなくなる。そのため、焼戻温度は650℃以下であることが好ましい。焼戻温度は、より好ましくは640℃以下とする。さらに好ましくは、620℃以下とする。焼戻温度は、もっとも好ましくは600℃以下とする。 If the tempering temperature is less than 500°C, the strength will be excessively high, making it difficult to ensure the desired low-temperature toughness. For this reason, the tempering temperature is preferably 500°C or higher. The tempering temperature is more preferably 530°C or higher. The tempering temperature is even more preferably 550°C or higher, and most preferably 570°C or higher. This makes it easier for the steel pipe structure to have tempered martensite phase as the main phase, resulting in a seamless steel pipe with the strength and crevice corrosion resistance desired in the present invention. On the other hand, if the tempering temperature is too high, fresh martensite phase will precipitate after tempering, making it impossible to ensure the desired high strength. For this reason, the tempering temperature is preferably 650°C or lower. The tempering temperature is more preferably 640°C or lower. Even more preferably, it is 620°C or lower. The tempering temperature is most preferably 600°C or lower.

 また、材料の均熱性確保の観点から、上記した焼戻温度で10分間以上鋼管を保持することが好ましい。保持時間は、好ましくは90分以下とする。 In addition, from the viewpoint of ensuring uniform heating of the material, it is preferable to hold the steel pipe at the above-mentioned tempering temperature for 10 minutes or more. The holding time is preferably 90 minutes or less.

 また、本発明では、上記の焼入れ処理および焼戻処理を2回以上繰り返し行ってもよい。これにより、低温靭性値が向上する。焼入れ処理および焼戻処理の回数の上限は特に限定されるものではないが、製造コストの増加を防ぐ理由から、3回以下とすることが好ましい。 In addition, in the present invention, the above quenching and tempering treatments may be repeated two or more times. This improves the low-temperature toughness value. There is no particular upper limit on the number of quenching and tempering treatments, but it is preferable to keep it to three times or less in order to prevent an increase in manufacturing costs.

 以上、継目無鋼管を例にして説明したが、本発明はこれに限定されるものではない。上記した成分組成の鋼管素材を用いて、電縫鋼管、UOE鋼管を製造し油井用鋼管とすることも可能である。この場合、得られた油井用鋼管に対し、上記した条件で焼入れ処理および焼戻処理を施せば、本発明の油井用高強度ステンレス継目無鋼管を得られる。  The above has been explained using seamless steel pipes as an example, but the present invention is not limited to this. It is also possible to manufacture electric resistance welded steel pipes and UOE steel pipes using steel pipes for oil wells using steel pipes with the above-mentioned composition. In this case, by subjecting the obtained steel pipes for oil wells to quenching and tempering treatments under the above-mentioned conditions, the high-strength stainless steel seamless steel pipes for oil wells of the present invention can be obtained.

 以上に説明したように、本発明によれば、シャルピー衝撃試験における試験温度-10℃での吸収エネルギーvE-10が40J以上であり、未処理海水中における耐すき間腐食性に優れ、かつ降伏強さYS:758MPa以上の高強度を有する、油井用高強度ステンレス継目無鋼管を得ることができる。 As described above, according to the present invention, a high-strength stainless steel seamless pipe for oil wells can be obtained, which has an absorbed energy vE -10 of 40 J or more at a test temperature of -10°C in a Charpy impact test, excellent crevice corrosion resistance in untreated seawater, and high strength of a yield strength YS of 758 MPa or more.

 シャルピー衝撃試験における試験温度-10℃での吸収エネルギーvE-10は40J以上である。シャルピー衝撃試験における試験温度-10℃での吸収エネルギーvE-10は好ましくは50J以上であり、より好ましくは60J以上であり、さらに好ましくは70J以上である。上限は特に限定されるものではないが、200J以下であってよい。 The absorbed energy vE -10 at a test temperature of -10°C in the Charpy impact test is 40 J or more. The absorbed energy vE- 10 at a test temperature of -10°C in the Charpy impact test is preferably 50 J or more, more preferably 60 J or more, and even more preferably 70 J or more. The upper limit is not particularly limited, but may be 200 J or less.

 また、降伏強さYSは758MPa以上である。降伏強さYSは、800MPa以上であることが好ましく、850MPa以上であることがより好ましい。上限は特に限定されるものではないが、1000MPa以下であってよい。 Furthermore, the yield strength YS is 758 MPa or more. The yield strength YS is preferably 800 MPa or more, and more preferably 850 MPa or more. The upper limit is not particularly limited, but may be 1000 MPa or less.

 また、製品を製造する途中段階の中間生成物(ビレット等)において熱間加工性に優れる。
なお、熱間加工性は、下記方法にて評価することができる。
鋼管素材(鋳片)から採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、100秒間保持後、1℃/secで1000℃まで冷却し、10秒間保持した後、破断するまで引っ張り、断面減少率(%)を測定した。断面減少率が小さいほど熱間加工性が悪いと判断できる。前期断面減少率は60%以上が好ましい。70%以上がより好ましい。また、断面減少率は90%以下が好ましい。断面減少率は85%以下がより好ましい。
Furthermore, the intermediate products (billets, etc.) produced during the manufacturing process of the product have excellent hot workability.
The hot workability can be evaluated by the following method.
A round bar test piece having a parallel section diameter of 10 mm taken from a steel pipe material (cast piece) was heated to 1250°C in a Gleeble tester, held for 100 seconds, cooled to 1000°C at 1°C/sec, held for 10 seconds, and then pulled until fractured to measure the reduction in area (%). The smaller the reduction in area, the worse the hot workability. The reduction in area is preferably 60% or more. More preferably, it is 70% or more. The reduction in area is preferably 90% or less. More preferably, it is 85% or less.

 以下、実施例に基づき、本発明を説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be explained below based on examples. Note that the present invention is not limited to the following examples.

 表1に示す成分組成の溶鋼を真空溶解炉で溶製し、鋳片(鋼管素材)を得た。得られた鋳片を全水準について1250℃で加熱し、熱間加工した。 Molten steel with the composition shown in Table 1 was melted in a vacuum melting furnace to obtain slabs (steel pipe material). The resulting slabs were heated to 1250°C for all levels and hot worked.

 次いで、熱間加工によって得られた鋼材から、試験片素材を切り出した。ここで、鋼材の寸法は、縦:1100mm、横:160mm、厚さ:15mmとした。各試験片素材を用いて、表2に示す加熱温度(再加熱の温度)、均熱時間で加熱したのち、表2に示す冷却停止温度まで空冷する焼入れ処理を施した。さらに、表2に示す焼戻温度、均熱時間で加熱し、空冷する焼戻処理を施した。一部の試験片(鋼管No.2、4)は、表2に示す条件で焼入れ処理および焼戻処理を2回繰り返した。なお、切り出した試験片に対して焼入れ処理および焼戻処理しているが、継目無鋼管を焼入れ処理および焼戻処理する場合と同様であると見做してよい。 Next, test specimen materials were cut out from the steel obtained by hot working. Here, the dimensions of the steel were length: 1100 mm, width: 160 mm, and thickness: 15 mm. Each test specimen material was heated at the heating temperature (reheating temperature) and soaking time shown in Table 2, and then quenched by air cooling to the cooling stop temperature shown in Table 2. Furthermore, tempering was performed by heating at the tempering temperature and soaking time shown in Table 2, and then air cooling. Some test specimens (steel pipes No. 2 and 4) were quenched and tempered twice under the conditions shown in Table 2. Note that the cut test specimens were quenched and tempered, but this can be considered to be the same as when a seamless steel pipe is quenched and tempered.

 そして、焼入れ処理および焼戻処理を施した各試験片素材を用いて、以下に説明する方法で、引張特性、シャルピー衝撃試験特性、腐食特性の評価、また組織の測定をそれぞれ行った。熱間加工性の評価については、上述している鋳片を用いて、以下に説明する方法で実施している。 Then, using each test piece material that had been quenched and tempered, the tensile properties, Charpy impact test properties, and corrosion properties were evaluated, and the structure was measured, using the methods described below. The hot workability was evaluated using the above-mentioned cast pieces, using the methods described below.

 〔引張特性の評価〕
 焼入れ処理および焼戻処理を施された試験片素材から、JIS(Japanese Industial Standards)14A号引張試験片(Φ6.0mm)を採取し、JIS Z2241:2011の規定に準拠して引張試験を実施し、引張特性(降伏強さ(YS)、引張強さ(TS))を求めた。ここでは、降伏強さ(YS)が758MPa以上のものを合格とし、降伏強さが758MPa未満のものを不合格とした。
[Evaluation of tensile properties]
A JIS (Japanese Industrial Standards) No. 14A tensile test piece (Φ6.0 mm) was taken from the test piece material that had been subjected to quenching and tempering, and a tensile test was carried out in accordance with the provisions of JIS Z2241:2011 to determine the tensile properties (yield strength (YS), tensile strength (TS)). Here, a specimen with a yield strength (YS) of 758 MPa or more was deemed to have passed, and a specimen with a yield strength of less than 758 MPa was deemed to have failed.

 〔シャルピー衝撃試験特性の評価〕
 焼入れ処理および焼戻処理を施された試験片素材から、試験片長手方向が造形方向と直行するように、Vノッチ試験片(10mm厚)を採取し、JIS Z 2242(2018年)の規定に準拠して、シャルピー衝撃試験を実施した。試験温度は-10℃とし、-10℃における吸収エネルギーvE-10を求め、低温靭性を評価した。なお、試験片は各3本とし、得られた値の算術平均をステンレス鋼部材の吸収エネルギー(J)とした。ここでは、-10℃における吸収エネルギーvE-10が40J以上のものを高靭性であると評価し、合格とした。一方、vE-10が40J未満のものは不合格とした。
[Evaluation of Charpy impact test characteristics]
From the test piece material that had been subjected to quenching and tempering, a V-notch test piece (10 mm thick) was taken so that the longitudinal direction of the test piece was perpendicular to the molding direction, and a Charpy impact test was performed in accordance with the provisions of JIS Z 2242 (2018). The test temperature was set to -10°C, and the absorbed energy vE -10 at -10°C was obtained to evaluate the low-temperature toughness. Note that three test pieces were used for each test piece, and the arithmetic average of the obtained values was taken as the absorbed energy (J) of the stainless steel member. Here, a test piece with an absorbed energy vE -10 of 40J or more at -10°C was evaluated as having high toughness and was deemed to have passed. On the other hand, a test piece with a vE -10 of less than 40J was deemed to have failed.

 〔腐食特性の評価〕
 焼入れ処理および焼戻処理を施された試験片素材から、Φ12mmの穴を有する厚さが3mm、幅が20mm、長さが50mmとするサイズの腐食試験片を機械加工によって作製し、腐食試験を実施した。
腐食試験は、上記試験片の穴部にフッ素樹脂製のすき間作製用の治具を嵌め込み、試験片表面をトルク20N/mmで押しつけてすき間を形成した。試験液は人工海水(液温:25℃)を用い、腐食試験片を浸漬し、浸漬期間を30日間として実施した。試験中は試験液に大気をバブリングさせながら行った。試験後の腐食試験片について、倍率:10倍のルーペを用いて試験片表面のすき間腐食発生の有無を観察した。ここでは、すき間腐食発生が無し(表3の「すき間腐食」の欄に「無」と示す)のものを合格とし、すき間腐食発生が有り(表3の「すき間腐食」の欄に「あり」と示す)のものを不合格とした。
なお、すき間腐食発生が無しの場合を「耐すき間腐食性に優れる」と評価した。
[Evaluation of corrosion characteristics]
From the test piece material that had been subjected to quenching and tempering treatment, a corrosion test piece having a thickness of 3 mm, a width of 20 mm, and a length of 50 mm and a hole of Φ12 mm was machined, and a corrosion test was performed.
The corrosion test was performed by fitting a jig made of fluororesin for making a gap into the hole of the test piece, and pressing the surface of the test piece with a torque of 20 N/ mm2 to form a gap. The test liquid was artificial seawater (liquid temperature: 25°C), and the corrosion test piece was immersed in the test liquid for 30 days. The test was performed while bubbling air into the test liquid. After the test, the corrosion test piece was observed for the presence or absence of crevice corrosion on the surface of the test piece using a magnifying glass with a magnification of 10 times. Here, the test piece without crevice corrosion (shown as "absent" in the "crevice corrosion" column in Table 3) was considered to have passed, and the test piece with crevice corrosion (shown as "present" in the "crevice corrosion" column in Table 3) was considered to have failed.
In addition, cases where no crevice corrosion occurred were evaluated as "excellent crevice corrosion resistance."

 〔熱間加工性の評価〕
 熱間加工性の評価には、鋳片から採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、100秒間保持後、1℃/secで1000℃まで冷却し、10秒間保持した後、破断するまで引っ張り、断面減少率(%)を測定した。断面減少率が小さいほど熱間加工性が悪いと判断できる。
[Evaluation of hot workability]
For the evaluation of hot workability, round bar test pieces with a parallel part diameter of 10 mm taken from the cast slab were heated to 1250°C in a Gleeble tester, held for 100 seconds, cooled to 1000°C at 1°C/sec, held for 10 seconds, and then pulled until fractured to measure the reduction in area (%). The smaller the reduction in area, the worse the hot workability.

 〔組織の測定〕
 焼入れ処理および焼戻処理を施された試験片素材から組織観察用試験片を作製し、各組織の測定を行った。組織の観察面は、圧延方向に直交する断面(C断面)とした。まず、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(加速電圧:15kV、倍率:1000倍)で組織を撮像し、画像解析装置(Image-J)を用いて、フェライト相の組織分率(面積%)を算出した。
そして、X線回折用試験片を、圧延方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定した。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算した。なお、ここでは、残留オーステナイトの体積率を面積率とみなすものとした。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値である。
また、マルテンサイト相(焼戻しマルテンサイト相)の分率(面積%)は、フェライト相および残留γ相以外の残部とした。
[Tissue Measurements]
A test piece for microstructure observation was prepared from the test piece material that had been subjected to quenching and tempering, and each structure was measured. The observation surface of the structure was a cross section (C cross section) perpendicular to the rolling direction. First, the test piece for microstructure observation was corroded with Villela's reagent (a reagent made by mixing picric acid, hydrochloric acid, and ethanol in the ratio of 2 g, 10 ml, and 100 ml, respectively), and the structure was imaged with a scanning electron microscope (accelerating voltage: 15 kV, magnification: 1000 times), and the structure fraction (area %) of the ferrite phase was calculated using an image analyzer (Image-J).
The test piece for X-ray diffraction was ground and polished so that the cross section (C cross section) perpendicular to the rolling direction was the measurement surface, and the amount of retained austenite (γ) was measured using an X-ray diffraction method. The amount of retained austenite was determined by measuring the integrated intensity of the diffracted X-rays of the (220) plane of γ and the (211) plane of α (ferrite) and converting it using the following formula. Here, the volume fraction of the retained austenite was regarded as the area fraction.
γ (volume ratio) = 100/(1+(IαRγ/IγRα))
Here, Iα is the integrated intensity of α, Rα is the theoretically calculated value of α, Iγ is the integrated intensity of γ, and Rγ is the theoretically calculated value of γ.
The fraction (area %) of the martensite phase (tempered martensite phase) was defined as the remainder other than the ferrite phase and the residual γ phase.

 得られた結果を表3に示す。 The results are shown in Table 3.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (2)

 質量%で、
C:0.002~0.050%、
Si:0.05~0.50%、
Mn:0.04~1.80%、
P:0.030%以下、
S:0.0020%以下、
Cr:16.0~20.0%、
Ni:4.0~7.5%、
Mo:1.5~3.7%、
Al:0.005~0.10%、
N:0.002~0.15%、
Co:0.2~1.0%、
Nb:0.005~0.20%、
O:0.010%以下を含有し、
さらに、Cu:3.5%以下、W:3.5%以下のうちから選ばれた1種または2種を含有し、
かつ式(1)および式(2)を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、
降伏強さが758MPa以上であり、シャルピー衝撃試験における試験温度-10℃での吸収エネルギーvE-10が40J以上である油井用高強度ステンレス継目無鋼管。
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4・・・(1)
ここで、式(1)におけるCr、Ni、Mo、W、Cu、Coは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
Co-Nb≧0.13・・・(2)
ここで、式(2)におけるCo、Nbは、各元素の含有量(質量%)である。
In mass percent,
C: 0.002-0.050%,
Si: 0.05-0.50%,
Mn: 0.04-1.80%,
P: 0.030% or less,
S: 0.0020% or less,
Cr: 16.0-20.0%,
Ni: 4.0 to 7.5%,
Mo: 1.5-3.7%,
Al: 0.005-0.10%,
N: 0.002-0.15%,
Co: 0.2-1.0%,
Nb: 0.005-0.20%,
O: 0.010% or less;
Further, it contains one or two selected from Cu: 3.5% or less and W: 3.5% or less,
and has a composition that satisfies formula (1) and formula (2), with the balance being Fe and unavoidable impurities,
A high-strength stainless steel seamless pipe for oil wells having a yield strength of 758 MPa or more and an absorbed energy vE -10 of 40 J or more at a test temperature of -10°C in a Charpy impact test.
Cr+0.22×Ni+0.38×(Mo+0.5×W)+0.89×Cu+0.09×Co≧21.4...(1)
Here, Cr, Ni, Mo, W, Cu, and Co in formula (1) are the contents (mass %) of each element, and the content of elements that are not contained is zero.
Co-Nb≧0.13...(2)
Here, Co and Nb in formula (2) are the contents (mass %) of each element.
 前記成分組成に加えて、さらに、質量%で、
V:0.50%以下、
Ti:0.20%以下、
Zr:0.20%以下、
B:0.01%以下、
REM:0.01%以下、
Ca:0.0100%以下、
Sn:0.20%以下、
Sb:0.50%以下、
Ta:0.1%以下、
Mg:0.0100%以下のうちから選ばれた1種または2種以上を含有する請求項1に記載の油井用高強度ステンレス継目無鋼管。

 
In addition to the above-mentioned component composition, further, in mass%,
V: 0.50% or less,
Ti: 0.20% or less,
Zr: 0.20% or less,
B: 0.01% or less,
REM: 0.01% or less,
Ca: 0.0100% or less,
Sn: 0.20% or less,
Sb: 0.50% or less,
Ta: 0.1% or less,
2. A high-strength stainless steel seamless pipe for oil wells according to claim 1, which contains one or more selected from the following: Mg: 0.0100% or less.

PCT/JP2024/014699 2023-05-30 2024-04-11 High-strength stainless steel seamless pipe for oil wells WO2024247508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024545085A JPWO2024247508A1 (en) 2023-05-30 2024-04-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-088996 2023-05-30
JP2023088996 2023-05-30

Publications (1)

Publication Number Publication Date
WO2024247508A1 true WO2024247508A1 (en) 2024-12-05

Family

ID=93657740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014699 WO2024247508A1 (en) 2023-05-30 2024-04-11 High-strength stainless steel seamless pipe for oil wells

Country Status (2)

Country Link
JP (1) JPWO2024247508A1 (en)
WO (1) WO2024247508A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2021065263A1 (en) * 2019-10-01 2021-04-08 Jfeスチール株式会社 Stainless seamless steel pipe and method for producing same
JP2021161503A (en) * 2020-04-01 2021-10-11 日本製鉄株式会社 Seamless steel pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
WO2021065263A1 (en) * 2019-10-01 2021-04-08 Jfeスチール株式会社 Stainless seamless steel pipe and method for producing same
JP2021161503A (en) * 2020-04-01 2021-10-11 日本製鉄株式会社 Seamless steel pipe

Also Published As

Publication number Publication date
JPWO2024247508A1 (en) 2024-12-05

Similar Documents

Publication Publication Date Title
JP6399259B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP6460229B2 (en) High strength stainless steel seamless steel pipe for oil well
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP5861786B2 (en) Stainless steel seamless steel pipe for oil well and manufacturing method thereof
WO2017138050A1 (en) High strength stainless steel seamless pipe for oil well and manufacturing method therefor
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
WO2013179667A1 (en) High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
WO2018131340A1 (en) High strength seamless stainless steel pipe and production method therefor
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP7201094B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7156537B2 (en) Seamless stainless steel pipe and method for producing seamless stainless steel pipe
JP7315097B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP7226675B1 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
CN115298343A (en) Stainless steel seamless steel pipe and method for manufacturing stainless steel seamless steel pipe
JP2005336599A (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
WO2023053743A1 (en) High-strength stainless steel seamless pipe for oil wells and method for manufacturing same
JP7347714B1 (en) High strength seamless stainless steel pipe for oil wells
CN114450428A (en) Stainless steel seamless steel pipe and its manufacturing method
JP7226571B2 (en) Seamless stainless steel pipe and manufacturing method thereof
WO2024247508A1 (en) High-strength stainless steel seamless pipe for oil wells
JP7279863B2 (en) Stainless steel pipe and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024545085

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24814995

Country of ref document: EP

Kind code of ref document: A1