WO2024247167A1 - Heating system - Google Patents
Heating system Download PDFInfo
- Publication number
- WO2024247167A1 WO2024247167A1 PCT/JP2023/020294 JP2023020294W WO2024247167A1 WO 2024247167 A1 WO2024247167 A1 WO 2024247167A1 JP 2023020294 W JP2023020294 W JP 2023020294W WO 2024247167 A1 WO2024247167 A1 WO 2024247167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal image
- human detection
- unit
- detection area
- heating
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C3/00—Stoves or ranges for gaseous fuels
- F24C3/12—Arrangement or mounting of control or safety devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
Definitions
- This disclosure relates to a heating system with a safety device.
- AI-based detection methods are used to detect people on thermal images.
- safety devices using infrared imaging devices are required to operate independently without connecting to external PCs or servers. Therefore, using a high-performance CPU to operate the AI raises the problem of higher product prices and shorter battery life due to increased power consumption.
- MCUs microcontroller units
- the processing power of the MCU is limited, the number of bits of the thermal image input to the MCU needs to be low. For example, an image taken with an infrared camera may be converted into an 8-bit, 256-level grayscale image, and AI-based human detection processing may be performed on the MCU.
- the temperature resolution of 1 digit which is the unit of digital signals, decreases in thermal images with a reduced number of bits. This causes the difference between the background temperature and the brightness of the person to become extremely small, making it difficult to determine whether a person is present or not on the thermal image.
- This disclosure has been made to solve the problems described above, and its purpose is to obtain a heating system that can accurately detect people in a thermal image even when a high-temperature subject is present within the imaging range of the infrared imaging device.
- the first heating system includes a heating device having a heating section for heating an object to be heated, and a safety device for controlling the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating section, and the object to be heated within its imaging range, a thermal image generating section that generates a thermal image from an output signal from the infrared imaging device, a human detection section that detects whether a person is present in the thermal image, a human detection area setting section that sets a human detection area that is an area in the thermal image where a person is detected, and a sensitivity adjustment section that adjusts the sensitivity of each pixel of the infrared imaging device, and the sensitivity adjustment section is characterized in that the sensitivity of the pixels corresponding to the human detection area is set higher than that of pixels corresponding to other areas.
- the second heating system includes a heating device having a heating section for heating an object to be heated, and a safety device for controlling the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating section, and the object to be heated within its imaging range, a thermal image generating section that generates a thermal image from an output signal from the infrared imaging device, a human detection section that detects whether a person is present in the thermal image, and a protective member that is disposed in front of an infrared-transmitting lens of the infrared imaging device and transmits infrared rays, and is characterized in that the thickness of the protective member in an area corresponding to a human detection area, which is an area in the thermal image where a person is detected, is thinner than the thickness of the protective member in an area corresponding to the outside of the human detection area.
- the third heating system includes a heating device having a heating unit that heats an object to be heated, and a safety device that controls the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating unit, and the object to be heated in its imaging range, a thermal image generation unit that generates a thermal image from an output signal of the infrared imaging device, a human detection unit that detects whether a person is present in the thermal image, a human detection area setting unit that sets a human detection area that is an area in the thermal image where a person is detected, and a sensitivity adjustment unit that switches the sensitivity of the entire pixels of the infrared imaging device for each frame of an image continuously captured by the infrared imaging device, and the continuously captured images include a first frame and a second frame in which the sensitivity of the entire pixels is lower than that of the first frame, and the thermal image generation unit generates the thermal image using the first frame for the human detection area and the second frame for other areas.
- the sensitivity of pixels corresponding to the human detection area is set higher than the sensitivity of pixels corresponding to other areas. This makes it possible to simultaneously display the high-temperature subject and the person on the thermal image using an inexpensive MCU, even if there is a high-temperature subject within the imaging range of the infrared imaging device, and therefore makes it possible to accurately detect the person on the thermal image.
- the thickness of the protective member in the area corresponding to the human detection area is thinner than the thickness of the protective member in the area corresponding to the outside of the human detection area. This makes it possible to reduce the infrared transmittance in the area corresponding to the outside of the human detection area. Therefore, even if a high-temperature subject is present within the imaging range of the infrared imaging device, it is possible to simultaneously display the high-temperature subject and the person on the thermal image using an inexpensive MCU, thereby making it possible to accurately detect the person on the thermal image.
- the sensitivity of the entire pixels of the infrared imaging device is switched for each frame of continuously captured images, and a thermal image is generated using a first frame with high sensitivity for the human detection area and a second frame with low sensitivity for other areas.
- FIG. 1 is a side view showing a heating system according to a first embodiment.
- FIG. 1 is a block diagram showing a heating system according to a first embodiment.
- 1 is a diagram showing an infrared imaging device according to a first embodiment;
- FIG. 13 is a flowchart for setting a human detection area and sensitivity.
- FIG. 13 is a diagram showing an image of sensitivity settings of an infrared imaging device. This is a thermal image taken without adjusting the sensitivity of the human detection area. This is a thermal image taken without adjusting the sensitivity of the human detection area. This is a thermal image taken with the sensitivity of the human detection area adjusted.
- 13 is a flowchart of human detection.
- FIG. 11 is a diagram showing an infrared imaging device according to a second embodiment.
- FIG. 11 is a block diagram showing a heating system according to a second embodiment.
- 10 is a flowchart showing the operation of a safety device according to a second embodiment.
- FIG. 13 is a diagram showing a thermal image before offset.
- FIG. 13 is a diagram showing a thermal image after offset.
- 13 is a flowchart showing the operation of a safety device according to a third embodiment.
- FIG. 13 is a diagram showing a part of a safety device according to a fourth embodiment.
- FIG. 1 shows a first frame with high sensitivity.
- FIG. 13 shows a second frame with low sensitivity.
- 13A and 13B are diagrams showing thermal images generated by a thermal image generating unit according to embodiment 5.
- Embodiment 1. 1 is a side view showing a heating system according to embodiment 1.
- a heating device 1 is a cooking utensil or the like used by a person 2, and heats an object to be heated 3.
- a safety device 4 controls the heating device 1.
- FIG. 2 is a block diagram showing the heating system according to the first embodiment.
- the heating section 5 of the heating device 1 heats the object 3 to be heated.
- the operation section 6 inputs operations from the person 2.
- the memory section 7 of the heating device 1 stores recipe information such as a heating sequence.
- the control section 8 controls the heating section 5 according to instructions from the operation section 6 or the recipe information stored in the memory section 7. Examples of recipe information include simmering for 10 minutes after the water temperature reaches 100 degrees, frying for 3 minutes at a frying pan temperature of 160 degrees, etc.
- the safety device 4 has an infrared imaging device 9 that captures an image of a subject.
- the safety device 4 is installed above the heating device 1 at a position and angle such that the imaging range of the infrared imaging device 9 includes the person 2 standing in front of the heating device 1, the heating unit 5, and the object to be heated 3.
- the control unit 10 controls the infrared imaging device 9.
- Thermal image generating unit 11 generates a thermal image from the output signal of infrared imaging device 9 and converts the number of bits. For example, the thermal image generating unit 11 generates an 8-bit grayscale thermal image from a 14-bit digital signal.
- the human detection unit 12 detects the presence of a person 2 in the thermal image or the state of the person 2 using various detection methods such as AI.
- Various deep learning algorithms may be used for these detections.
- the number of bits of the input image may be limited. For example, an 8-bit grayscale thermal image is generated by extracting the maximum and minimum brightness from the 14-bit brightness data of each pixel to calculate the brightness range, and then dividing this into 256 gradations and allocating the brightness of each pixel.
- the temperature calculation unit 13 calculates the temperature of each pixel from the output signal of the infrared imaging device 9 using the sensitivity that has been set above and a conversion formula and coefficients that have been set in advance in the storage unit 14. This allows for highly accurate human detection without compromising the accuracy of the temperature measurement.
- the light source 15 is an LED that is mounted on a typical range hood and illuminates the area around the hands of the person 2.
- the communication unit 16 of the safety device 4 and the communication unit 17 of the heating device 1 transmit and receive data to each other. Note that if recipe information is stored in the memory unit 14 of the safety device 4, the memory unit 7 of the heating device 1 may not be necessary.
- the human detection area setting unit 18 sets a human detection area, which is an area in the thermal image where a person 2 is detected. For example, the user operates the operation unit 19 while viewing the thermal image on the display to set the human detection area using the human detection area setting unit 18. Information about the set human detection area is stored in the memory unit 14.
- FIG. 3 is a diagram showing an infrared imaging device according to the first embodiment.
- Infrared light incident on an infrared-transmitting lens 20 is imaged on the light-receiving surface of the infrared imaging device 9.
- a plurality of detection pixels are arranged in a two-dimensional array on the light-receiving surface of the infrared imaging device 9.
- the detection pixels are microbolometers, thermopiles, or thermal diodes with a focal plane array (FPA) structure. Each pixel absorbs infrared light and outputs an analog voltage according to its energy.
- FPA focal plane array
- An analog-to-digital converter 21 amplifies the analog signal output from each pixel of the infrared imaging device 9 with an internal analog amplifier and converts it into, for example, a 14-bit digital signal. This digital signal is called luminance. The luminance of each pixel is correlated to temperature according to a predetermined conversion formula to form a thermal image.
- the multiple pixels of the infrared imaging device 9 have different sensitivities to the amount of light, output offsets, and their temperature characteristics. For this reason, a reference thermal image is acquired and stored in advance, and a thermal image is obtained by outputting the difference between the reference thermal image and the input signal from the subject.
- imaging is performed for a predetermined time with the infrared-transmitting lens 20 covered with the light-shielding member 22.
- the data captured at this time is averaged for a preset number of frames and stored in the FPN memory 23 as a reference thermal image.
- the reference thermal image is FPN (fixed pattern noise) data of the light-shielding member 22.
- the temperature of the light-shielding member 22 is measured by the reference temperature detection unit 24 and stored in the FPN memory 23 as the reference temperature.
- the light-shielding member 22 is, for example, a mechanical shutter using a black-painted aluminum plate.
- the reference temperature detection unit 24 is, for example, a temperature IC (Integrated Circuit) attached to the mechanical shutter with thermal conductive tape or the like. Since the output from each pixel is a relative brightness based on a reference thermal image, calculations must be performed using the reference temperature to convert it to absolute temperature. Note that a component with a uniform temperature may be photographed during pre-shipment inspection at the factory of the infrared imaging device, and the thermal image and component temperature at that time may be stored in the FPN memory 23 as the reference thermal image and reference temperature, respectively. In this case, the light shielding member 22 and the reference temperature detection unit 24 are not necessary.
- the frame memory 25 records the difference between the reference thermal image recorded in the FPN memory 23 and the output signal of the analog-digital converter 21. By outputting this to the outside, a two-dimensional thermal image can be obtained.
- the temperature of the infrared imaging device 9 changes due to self-heating of the infrared imaging device 9 or the analog-digital converter 21, or changes in the environmental temperature, the temperature of the photographed subject appears to have changed on the thermal image.
- the temperature change of the infrared imaging device 9 can be read by an element temperature detection unit (not shown) installed near the element, and input and recorded in the frame memory 25, and the thermal image can be corrected.
- the sensitivity adjustment unit 26 adjusts the gain of the analog amplifier based on the information from the human detection area setting unit 18 to adjust the sensitivity of the corresponding pixel.
- the sensitivity adjustment unit 26 may adjust the gain of the digital output of the analog-digital converter 21 to adjust the sensitivity of the corresponding pixel.
- Sensitivity is the amount of change in luminance when the temperature of the subject changes by 1°C.
- the sensitivity adjustment unit 26 sets the sensitivity of pixels corresponding to the human detection area, which is the area in the thermal image where a person 2 is detected, higher than that of pixels corresponding to other areas. For example, the sensitivity of pixels in the human detection area is set to 30 digit/K, and the sensitivity of pixels outside the human detection area is set to 10 digit/K, and these are stored in the memory unit 14.
- Figure 4 shows a visible image.
- a heated object 3 is placed on the heating device 1, and a person 2 is standing in front of the heating device 1.
- Figure 5 is a flowchart for setting the human detection area and sensitivity.
- the human detection area setting unit 18 sets the human detection area (step S1).
- the sensitivity adjustment unit 26 changes the sensitivity of the pixels corresponding to the human detection area (step S2).
- Figure 6 is a diagram showing an image of the sensitivity setting of the infrared imaging device. For example, the sensitivity of the human detection area 27 is increased to 30 digit/K, and the sensitivity of the other areas is left at 10 digit/K.
- the thermal image generating unit 11 generates a thermal image using the brightness corrected by the sensitivity. As a result, the brightness of the person 2 photographed within the human detection area 27 is output relatively high, so the difference in brightness with the heat source outside the human detection area 27 is reduced, and the high-temperature subject and the person can be displayed simultaneously on the thermal image.
- Figures 7 and 8 are thermal images taken without adjusting the sensitivity of the human detection area.
- Figures 7 and 8 are thermal images taken without adjusting the sensitivity of the human detection area.
- Figure 9 is a thermal image taken with the sensitivity of the human detection area adjusted. The high-temperature heated object 3 and the person 2 can be displayed simultaneously on the thermal image.
- Figure 10 is a flowchart of human detection.
- the infrared imaging device 9 captures an image of a subject (step S11).
- the thermal image generation unit 11 generates and outputs a thermal image (step S12).
- the human detection unit 12 detects whether a person 2 is present in the thermal image (step S13). If a person 2 is not detected or is not present within the human detection area 27, the process returns to step S11. If a person 2 is present within the human detection area 27, an output is made indicating that a person has been detected (step S14). Note that the presence/absence of a person 2 may be determined only within the human detection area 27.
- the safety device 4 controls the output of the heating device 1 based on the detection result of the human detection unit 12 and the temperature information calculated by the temperature calculation unit 13. For example, the safety device 4 automatically controls the output of the heating device 1 when the person 2 is not in front of the heating device 1. Specifically, if the output of the heating device 1 is reduced or turned off when the person 2 is not in front of the heating device 1 and the heating device 1 has been on for a predetermined time, it is possible to prevent forgetting to turn it off and reduce energy consumption. Furthermore, when the person 2 is not in front of the heating device 1 and the temperature of the heating device 1 is too high, the safety device 4 reduces or turns off the output of the heating device 1. This makes it possible to prevent abnormal heat generation of the heated object 3, thereby improving the safety of the heating device 1.
- safety device 4 prevents automatic control of the output of heating device 1. This allows person 2 to manually control the heat of heating device 1. Furthermore, safety device 4 will not automatically reduce the heat even if person 2 intentionally increases the heat. This prevents person 2's operation from being hindered and convenience from being impaired.
- the sensitivity of pixels corresponding to the human detection area 27 is set higher than the sensitivity of pixels corresponding to other areas.
- the high-temperature subject and the person can be displayed simultaneously on the thermal image using an inexpensive MCU, making it possible to accurately detect person 2 on the thermal image.
- the temperature of the heat source can also be measured at the same time. Furthermore, by setting the human detection area 27 in advance, people who are not approaching the equipment, such as people walking in the aisle, will not be displayed on the thermal image, preventing erroneous detection.
- Embodiment 2 Fig. 11 is a diagram showing an infrared imaging device according to embodiment 2. The difference from embodiment 1 is that there is no sensitivity adjustment unit 26.
- Fig. 12 is a block diagram showing a heating system according to embodiment 2. The difference from embodiment 1 is that the safety device 4 has an offset setting unit 28.
- the human detection area setting unit 18 sets the upper limit temperature to be detected as a threshold value. For example, the threshold value is set to 38°C, which is slightly higher than the human body surface temperature.
- the other configurations are the same as those of embodiment 1.
- FIG. 13 is a flowchart showing the operation of the safety device according to the second embodiment.
- the infrared imaging device 9 captures an image (step S21).
- the temperature calculation unit 13 calculates the temperature of each pixel (step S22).
- the offset setting unit 28 determines whether there is a pixel outside the human detection area 27 that is hotter than the threshold (step S23). If there is, the offset setting unit 28 performs an offset process to reduce the brightness value output from the infrared imaging device 9 so that the temperature of the pixel becomes the same as the threshold, and outputs the result to the thermal image generation unit 11 (step S24).
- FIG. 14 is a diagram showing a thermal image before offset. For example, the temperature of the person 2 is 35°C, and the temperature of the heated object 3 is 100°C.
- FIG. 15 is a diagram showing a thermal image after offset. The temperature of the heated object 3 has been changed to the same temperature as the threshold 38°C.
- the thermal image generating unit 11 generates and outputs a thermal image in which the maximum and minimum brightness of the offset-processed data are assigned to a gradation according to the desired number of bits (step S25).
- the human detection unit 12 detects whether a person 2 is present in the thermal image (step S26). If a person 2 is not detected or is not present within the human detection area 27, the process returns to step S21. If a person 2 is present within the human detection area 27, an output is made indicating that a person has been detected (step S27).
- an offset process is performed to reduce the brightness value output from the infrared imaging device 9 so that the temperature of that pixel becomes the same as the threshold.
- This makes it possible to simultaneously display a high-temperature heat source and a person in a thermal image without providing the infrared imaging device 9 with a mechanism for adjusting pixel sensitivity.
- the offset is applied based on the threshold, it is possible to make a person appear the same on the thermal image regardless of the temperature of the heated object. This makes it possible to obtain high detection accuracy.
- erroneous detection can be suppressed.
- Embodiment 3 Similar to the second embodiment, there is no sensitivity adjustment unit 26, and the safety device 4 has an offset setting unit 28. The difference from the second embodiment is that the function of the offset setting unit 28 is different as described later, and the human detection area setting unit 18 does not set a threshold value.
- the other configurations are the same as those of the first and second embodiments.
- FIG. 16 is a flowchart showing the operation of the safety device according to the third embodiment.
- steps S21 and S22 are performed in the same manner as in the second embodiment.
- the offset setting unit 28 determines whether there is a pixel outside the human detection area 27 that is hotter than the maximum temperature of the human detection area 27 (step S31). If there is, the offset setting unit 28 performs an offset process to reduce the brightness value output from the infrared imaging device 9 so that the temperature of the pixel is the same as the maximum temperature of the human detection area 27, and outputs the result to the thermal image generating unit 11 (step S32).
- steps S25 to S27 are performed in the same manner as in the second embodiment.
- an offset process is performed to reduce the brightness value output from the infrared imaging device 9 so that the temperature of that pixel becomes the same as the maximum temperature.
- This makes it possible to simultaneously display a high-temperature heat source and a person in a thermal image without providing the infrared imaging device 9 with a mechanism for adjusting pixel sensitivity.
- this provides greater convenience than the second embodiment.
- it is possible to prevent the appearance of the person 2 in the thermal image from changing when the body surface temperature of the person 2 drops due to the outside air or rises due to heating by the heating device 1, thereby achieving high human detection accuracy.
- the maximum temperature may be determined for each frame, or at regular intervals. Also, if a heat source other than a person is captured in the human detection area 27, the offset may not function properly. Therefore, if a heat source of a predetermined temperature or higher is detected in the human detection area 27, an abnormality may be reported.
- Embodiment 4. 17 is a diagram showing a part of a safety device according to embodiment 4.
- a protective member 29 is disposed in front of the infrared transmitting lens 20 of the infrared imaging device 9 to prevent contamination of the infrared transmitting lens 20 and adjust the sensitivity.
- the protective member 29 is made of Si, germanium, high density polyethylene (HDPE), or the like that transmits infrared rays. Since the protective member 29 needs to be disposed at a distance that does not affect the imaging performance on the infrared imaging device 9, it is preferable to secure a distance of several centimeters or more between the infrared transmitting lens 20 and the protective member 29.
- the thickness of the protective member 29 in the area corresponding to the human detection area 27 is thinner than the thickness of the protective member 29 in the area corresponding to the outside of the human detection area 27.
- the protective member 29 in the area corresponding to the outside of the human detection area 27 is HDPE with a thickness of 0.5 mm
- the protective member 29 in the area corresponding to the outside of the human detection area 27 is HDPE with a thickness of 0.3 mm. This makes it possible to reduce the infrared transmittance in the area corresponding to the outside of the human detection area 27.
- the protective member 29 for adjusting the sensitivity also serves as the protective member for the module, preventing oil or water droplets from adhering to the infrared-transmitting lens 20 and preventing thermal image capture, improving product reliability.
- the luminance of the high-temperature heat source is set uniformly, so the luminance of the high-temperature subject may saturate and the temperature distribution inside the heat source may not be visible. Therefore, in the present embodiment, the sensitivity adjustment unit 26 switches the sensitivity of the entire pixels of the infrared imaging device 9 for each frame of images continuously captured by the infrared imaging device 9.
- the continuously captured images have a first frame and a second frame in which the sensitivity of the entire pixels is lower than that of the first frame.
- Figure 18 shows a first frame with high sensitivity.
- the luminance of person 2 is 200 digits.
- the luminance of both the outer periphery and center of the heated object 3 is saturated at 256 digits.
- Figure 19 shows a second frame with low sensitivity.
- the luminance of person 2 is 10 digits.
- the luminance of the outer periphery of the heated object 3 is 240 digits, and the luminance of the center is 220 digits.
- the thermal image generating unit 11 generates a thermal image by using a high-sensitivity first frame for the human detection area 27 and a low-sensitivity second frame for other areas. This makes it possible to display the high-temperature subject and the person 2 simultaneously on the thermal image using an inexpensive MCU, even if there is a high-temperature subject within the imaging range of the infrared imaging device 9, and therefore to accurately detect the person 2 on the thermal image.
- FIG. 20 shows a thermal image generated by the thermal image generation unit according to the fifth embodiment. It is possible to simultaneously display the high-temperature heated object 3 and the person 2 on the thermal image without losing information on the temperature distribution of the heated object 3. As a result, in addition to information on the presence/absence and status of the person, it is possible to obtain information on the temperature distribution of the heat source. This makes it possible to improve the controllability of the heating device 1. For example, when cooking on a stove, it is possible to control the heat according to the temperature distribution of ingredients inside a frying pan.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本開示は、安全装置付きの加熱システムに関する。 This disclosure relates to a heating system with a safety device.
赤外線撮像装置で取得した熱画像から人の在/不在及び人の向きなどの状態を検知する技術が開示されている(例えば、特許文献1参照)。これらの情報は見守り、防犯、自動運転などに活用され、安心・安全な社会の実現に貢献している。工場又はキッチンなどの高温の熱源を使用する機器においては、熱源の前に人が近づいた場合に警告を発したり、熱源の温度を制御したりすることで加熱装置の安全性を高めることが求められている。 Technology has been disclosed that detects the presence/absence of people and their orientation from thermal images acquired by an infrared imaging device (see, for example, Patent Document 1). This information is used for monitoring, crime prevention, autonomous driving, and other purposes, contributing to the realization of a safe and secure society. In equipment that uses high-temperature heat sources, such as in factories or kitchens, there is a demand for improving the safety of heating devices by issuing a warning when a person approaches the heat source or by controlling the temperature of the heat source.
熱画像上での人検知には例えばAIによる検知手法が用いられる。一方、赤外線撮像装置を用いた安全装置は、外部のPC及びサーバと接続せず、単体で動作することが求められる。従って、AIを動作させるために高性能なCPUを用いると製品価格の上昇、消費電力の増加によりバッテリ寿命が短くなるという問題が生じる。このため、比較的安価で性能が限定されたマイクロコントローラユニット(MCU)が搭載されることが多い。MCUの処理能力に制約があるため、MCUに入力する熱画像のbit数を低くする必要がある。例えば、赤外線カメラで撮影された画像を8bit256階調のグレースケール画像に変換して、MCU上でAIによる人検知処理を行うことがある。 For example, AI-based detection methods are used to detect people on thermal images. On the other hand, safety devices using infrared imaging devices are required to operate independently without connecting to external PCs or servers. Therefore, using a high-performance CPU to operate the AI raises the problem of higher product prices and shorter battery life due to increased power consumption. For this reason, relatively inexpensive microcontroller units (MCUs) with limited performance are often installed. Since the processing power of the MCU is limited, the number of bits of the thermal image input to the MCU needs to be low. For example, an image taken with an infrared camera may be converted into an 8-bit, 256-level grayscale image, and AI-based human detection processing may be performed on the MCU.
赤外線撮像装置の撮像範囲内に高温の被写体が存在する場合、bit数を小さくした熱画像ではデジタル信号の単位である1digitの温度分解能が低下する。このため、背景温度と人の輝度の差が極めて小さくなり、熱画像上での人の在/不在判別が困難になるという問題があった。 When a high-temperature subject is present within the imaging range of an infrared imaging device, the temperature resolution of 1 digit, which is the unit of digital signals, decreases in thermal images with a reduced number of bits. This causes the difference between the background temperature and the brightness of the person to become extremely small, making it difficult to determine whether a person is present or not on the thermal image.
本開示は、上述のような課題を解決するためになされたもので、その目的は赤外線撮像装置の撮像範囲内に高温の被写体が存在する場合でも熱画像上で人を精度良く検知することができる加熱システムを得るものである。 This disclosure has been made to solve the problems described above, and its purpose is to obtain a heating system that can accurately detect people in a thermal image even when a high-temperature subject is present within the imaging range of the infrared imaging device.
本開示に係る第1の加熱システムは、被加熱物を加熱する加熱部を有する加熱装置と、前記加熱装置を制御する安全装置とを備え、前記安全装置は、前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、前記熱画像に人が存在するかを検知する人検知部と、前記熱画像において人を検知する領域である人検知エリアを設定する人検知エリア設定部と、前記赤外線撮像装置の各画素の感度を調整する感度調整部とを有し、前記感度調整部は、前記人検知エリアに対応する画素はその他の領域に対応する画素よりも感度を高く設定することを特徴とする。 The first heating system according to the present disclosure includes a heating device having a heating section for heating an object to be heated, and a safety device for controlling the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating section, and the object to be heated within its imaging range, a thermal image generating section that generates a thermal image from an output signal from the infrared imaging device, a human detection section that detects whether a person is present in the thermal image, a human detection area setting section that sets a human detection area that is an area in the thermal image where a person is detected, and a sensitivity adjustment section that adjusts the sensitivity of each pixel of the infrared imaging device, and the sensitivity adjustment section is characterized in that the sensitivity of the pixels corresponding to the human detection area is set higher than that of pixels corresponding to other areas.
本開示に係る第2の加熱システムは、被加熱物を加熱する加熱部を有する加熱装置と、前記加熱装置を制御する安全装置とを備え、前記安全装置は、前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、前記熱画像に人が存在するかを検知する人検知部と、前記赤外線撮像装置の赤外線透過レンズの前面に配置され、赤外線を透過する保護部材とを有し、前記熱画像において人を検知する領域である人検知エリアに対応する領域の前記保護部材の厚さは、前記人検知エリアの外側に対応する領域の前記保護部材の厚さよりも薄いことを特徴とする。 The second heating system according to the present disclosure includes a heating device having a heating section for heating an object to be heated, and a safety device for controlling the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating section, and the object to be heated within its imaging range, a thermal image generating section that generates a thermal image from an output signal from the infrared imaging device, a human detection section that detects whether a person is present in the thermal image, and a protective member that is disposed in front of an infrared-transmitting lens of the infrared imaging device and transmits infrared rays, and is characterized in that the thickness of the protective member in an area corresponding to a human detection area, which is an area in the thermal image where a person is detected, is thinner than the thickness of the protective member in an area corresponding to the outside of the human detection area.
本開示に係る第3の加熱システムは、被加熱物を加熱する加熱部を有する加熱装置と、前記加熱装置を制御する安全装置とを備え、前記安全装置は、前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、前記熱画像に人が存在するかを検知する人検知部と、前記熱画像において人を検知する領域である人検知エリアを設定する人検知エリア設定部と、前記赤外線撮像装置が連続撮影した画像のフレーム毎に前記赤外線撮像装置の画素全体の感度を切り替える感度調整部とを有し、前記連続撮影した画像は、第1のフレームと、前記第1のフレームよりも画素全体の感度を低くした第2のフレームとを有し、前記熱画像生成部は、前記人検知エリアには前記第1のフレームを用い、その他の領域には前記第2のフレームを用いて前記熱画像を生成することを特徴とする。 The third heating system according to the present disclosure includes a heating device having a heating unit that heats an object to be heated, and a safety device that controls the heating device, and the safety device includes an infrared imaging device that includes a person standing in front of the heating device, the heating unit, and the object to be heated in its imaging range, a thermal image generation unit that generates a thermal image from an output signal of the infrared imaging device, a human detection unit that detects whether a person is present in the thermal image, a human detection area setting unit that sets a human detection area that is an area in the thermal image where a person is detected, and a sensitivity adjustment unit that switches the sensitivity of the entire pixels of the infrared imaging device for each frame of an image continuously captured by the infrared imaging device, and the continuously captured images include a first frame and a second frame in which the sensitivity of the entire pixels is lower than that of the first frame, and the thermal image generation unit generates the thermal image using the first frame for the human detection area and the second frame for other areas.
本開示に係る第1の加熱システムでは、人検知エリアに対応する画素の感度をその他の領域に対応する画素の感度よりも高く設定する。これにより、赤外線撮像装置の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人を同時に熱画像上に表示させることができるため、熱画像上で人を精度良く検知することができる。 In the first heating system of the present disclosure, the sensitivity of pixels corresponding to the human detection area is set higher than the sensitivity of pixels corresponding to other areas. This makes it possible to simultaneously display the high-temperature subject and the person on the thermal image using an inexpensive MCU, even if there is a high-temperature subject within the imaging range of the infrared imaging device, and therefore makes it possible to accurately detect the person on the thermal image.
本開示に係る第2の加熱システムでは、人検知エリアに対応する領域の保護部材の厚さは、人検知エリアの外側に対応する領域の保護部材の厚さよりも薄くなっている。これにより、人検知エリアの外側に対応する領域で赤外線の透過率を低下させることができる。従って、赤外線撮像装置の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人を同時に熱画像上に表示させることができるため、熱画像上で人を精度良く検知することができる。 In the second heating system of the present disclosure, the thickness of the protective member in the area corresponding to the human detection area is thinner than the thickness of the protective member in the area corresponding to the outside of the human detection area. This makes it possible to reduce the infrared transmittance in the area corresponding to the outside of the human detection area. Therefore, even if a high-temperature subject is present within the imaging range of the infrared imaging device, it is possible to simultaneously display the high-temperature subject and the person on the thermal image using an inexpensive MCU, thereby making it possible to accurately detect the person on the thermal image.
本開示に係る第3の加熱システムでは、連続撮影した画像のフレーム毎に赤外線撮像装置の画素全体の感度を切り替え、人検知エリアには高感度の第1のフレームを用い、その他の領域には低感度の第2のフレームを用いて熱画像を生成する。これにより、赤外線撮像装置の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人2を同時に熱画像上に表示させることができるため、熱画像上で人を精度良く検知することができる。
In the third heating system disclosed herein, the sensitivity of the entire pixels of the infrared imaging device is switched for each frame of continuously captured images, and a thermal image is generated using a first frame with high sensitivity for the human detection area and a second frame with low sensitivity for other areas. As a result, even if a high-temperature subject is present within the imaging range of the infrared imaging device, the high-temperature subject and
実施の形態に係る加熱システムについて図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 The heating system according to the embodiment will be described with reference to the drawings. The same or corresponding components will be given the same reference numerals, and repeated explanations may be omitted.
実施の形態1.
図1は、実施の形態1に係る加熱システムを示す側面図である。加熱装置1は、人2が使用する調理器具などであり、被加熱物3を加熱する。安全装置4が加熱装置1を制御する。
1 is a side view showing a heating system according to
図2は、実施の形態1に係る加熱システムを示すブロック図である。加熱装置1の加熱部5が被加熱物3を加熱する。操作部6は人2からの操作を入力する。加熱装置1の記憶部7は、加熱シーケンスなどのレシピ情報を保存している。制御部8は、操作部6からの指示又は記憶部7に記憶されたレシピ情報に応じて加熱部5を制御する。レシピ情報は、例えば、お湯の温度が100度になってから10分煮込む、フライパンの温度が160℃で3分焼くなどである。
FIG. 2 is a block diagram showing the heating system according to the first embodiment. The
安全装置4は、被写体を撮影する赤外線撮像装置9を有する。安全装置4は、加熱装置1の上方において、赤外線撮像装置9の撮影範囲が加熱装置1の前に立つ人2と加熱部5と被加熱物3を含むような位置と角度で設置されている。制御部10が赤外線撮像装置9を制御する。
The
熱画像生成部11は、赤外線撮像装置9の出力信号から熱画像を生成し、bit数を変換する。例えば、熱画像生成部11は14bitのデジタル信号から8bitのグレースケールの熱画像を生成する。
Thermal
人検知部12は、熱画像に人2が存在するか又は人2の状態をAIなどの各種検知手法で検知する。これらの検知には各種ディープラーニングのアルゴリズムを活用してもよい。AI処理を安価なMCUで行う場合、入力する画像のbit数が制限されることがある。例えば、14bitの各画素の輝度のデータから最大輝度と最小輝度を抽出して輝度の範囲を算出し、これを256階調に分割して各画素の輝度を割り付けることで8bitグレースケールの熱画像が生成される。
The
温度算出部13は、上記設定された感度と、予め記憶部14に設定された変換式及び係数とを用いて、赤外線撮像装置9の出力信号から各画素の温度を算出する。これにより、温度測定の精度を損なうことなく、高精度な人検知を行うことができる。
The
光源15は、一般的なレンジフードに搭載されており、人2の手元を照らすLEDである。安全装置4の通信部16と加熱装置1の通信部17は互いにデータを送受信する。なお、安全装置4の記憶部14にレシピ情報を保存する場合は、加熱装置1の記憶部7はなくてもよい。
The
人検知エリア設定部18は、熱画像において人2を検知する領域である人検知エリアを設定する。例えば、ユーザがディスプレイ上で熱画像を見ながら操作部19を操作して人検知エリア設定部18により人検知エリアを設定する。設定した人検知エリアの情報は記憶部14に保存される。
The human detection
図3は、実施の形態1に係る赤外線撮像装置を示す図である。赤外線透過レンズ20に入射した赤外線は赤外線撮像装置9の受光面に結像する。赤外線撮像装置9の受光面において複数の検知画素が二次元アレイ状に配置されている。複数の検知画素は、フォーカルプレーンアレイ(FPA: Focal Plane Array)構造のマイクロボロメータ、サーモパイル、又はサーマルダイオードである。各画素は赤外線を吸収し、そのエネルギーに応じたアナログ電圧を出力する。アナログ・デジタル・コンバータ21(Analog-to-digital converter)は、赤外線撮像装置9の各画素から出力されたアナログ信号を内部のアナログアンプで増幅し、例えば14bitのデジタル信号に変換する。このデジタル信号は、輝度と呼ばれる。予め定められた変換式に従って各画素の輝度を温度に対応させたものが熱画像である。
FIG. 3 is a diagram showing an infrared imaging device according to the first embodiment. Infrared light incident on an infrared-transmitting
赤外線撮像装置9の複数の画素は、光量に対する感度、出力のオフセット、及びこれらの温度特性が異なる。このため、予め基準となる熱画像を取得・保存し、被写体からの入力信号に対して基準熱画像との差分を出力することで熱画像を得る。基準熱画像の取得方法の一例では、遮光部材22で赤外線透過レンズ20を覆った状態で所定の時間撮像を行う。この時に撮像したデータは、予め設定したフレーム数で平均化処理され、基準熱画像としてFPNメモリ23に保存される。基準熱画像は遮光部材22のFPN(fixed pattern noise)データである。また、遮光部材22の温度は、基準温度検出部24で測定され、基準温度としてFPNメモリ23に保存される。遮光部材22は例えば黒色塗装したアルミ板を用いたメカニカルシャッタである。基準温度検出部24は例えばメカニカルシャッタに熱伝導テープなどで貼り付けられた温度IC(Integrated Circuit)である。各画素からの出力は基準熱画像を基準とした相対輝度であるため、絶対温度への換算には基準温度を用いて計算を行う必要がある。なお、赤外線撮像装置の工場での出荷前検査において一様な温度の部材を撮影し、その時の熱画像と部材の温度をそれぞれ基準熱画像と基準温度としてFPNメモリ23に保存しておいてもよい。この場合、遮光部材22と基準温度検出部24は不要となる。
The multiple pixels of the
フレームメモリ25は、FPNメモリ23に記録された前記基準熱画像とアナログ・デジタル・コンバータ21の出力信号との差分を記録する。これを外部に出力することで2次元の熱画像を得ることができる。
The
赤外線撮像装置9又はアナログ・デジタル・コンバータ21の自己発熱、及び環境温度の変化によって赤外線撮像装置9の温度が変化すると、撮影された被写体の温度が熱画像上で変化したように見える。これを補正するために、赤外線撮像装置9の温度変化を素子近傍に設置された図示しない素子温度検出部で読み取ってフレームメモリ25に入力・記録しておき、熱画像の補正を行ってもよい。
When the temperature of the
感度調整部26は、人検知エリア設定部18の情報からアナログアンプのゲインを調整することにより、対応する画素の感度を調整する。または、感度調整部26は、アナログ・デジタル・コンバータ21のデジタル出力のゲインを調整することにより、対応する画素の感度を調整してもよい。感度とは被写体温度が1℃変化した場合の輝度の変化量である。本実施の形態では、感度調整部26は、熱画像において人2を検知する領域である人検知エリアに対応する画素はその他の領域に対応する画素よりも感度を高く設定する。例えば、人検知エリアの画素の感度を30digit/K、人検知エリアの外側の画素の感度を10digit/Kに設定し、記憶部14に保存しておく。
The
図4は、可視画像を示す図である。加熱装置1の上に被加熱物3が載せられ、加熱装置1の前に人2が立っている。図5は、人検知エリアと感度の設定のフローチャートである。人検知エリア設定部18が人検知エリアを設定する(ステップS1)。次に、感度調整部26が人検知エリアに対応する画素の感度を変更する(ステップS2)。図6は、赤外線撮像装置の感度設定のイメージを示す図である。例えば、人検知エリア27の感度を30digit/Kに増加させ、その他のエリアの感度を10digit/Kのままにする。
Figure 4 shows a visible image. A
熱画像生成部11は前記感度で補正された輝度を用いて熱画像を生成する。これにより、人検知エリア27内で撮影された人2の輝度が相対的に高く出力されるため、人検知エリア27外の熱源との輝度の差が小さくなり、高温の被写体と人を同時に熱画像上に表示させることができる。
The thermal
図7及び図8は、人検知エリアの感度を調整せずに撮影した熱画像である。高温の被加熱物3が存在しない場合は、図7に示すように人2の検知が可能である。一方、高温の被加熱物3が存在する場合、図8に示すように人2と背景温度の輝度差がなくなり熱画像上での人2の検知が困難になる。図9は、人検知エリアの感度を調整して撮影した熱画像である。高温の被加熱物3と人2を同時に熱画像上に表示できている。
Figures 7 and 8 are thermal images taken without adjusting the sensitivity of the human detection area. When there is no high-temperature
図10は、人検知のフローチャートである。まず、赤外線撮像装置9が被写体を撮影する(ステップS11)。次に、熱画像生成部11は熱画像を生成して出力する(ステップS12)。次に、人検知部12は熱画像に人2が存在するかを検知する(ステップS13)。人2が検知されない場合又は人検知エリア27内に存在しない場合はステップS11に戻る。人2が人検知エリア27内に存在する場合は、人を検知したと出力する(ステップS14)。なお、人検知エリア27内のみで人2の在/不在を判定してもよい。
Figure 10 is a flowchart of human detection. First, the
その後、安全装置4は、人検知部12の検知結果と温度算出部13が算出した温度情報に基づいて加熱装置1の出力を制御する。例えば、安全装置4は、人2が加熱装置1の前にいない場合に加熱装置1の出力を自動で制御する。具体的には、人2が加熱装置1の前におらず加熱装置1がオンの状態が所定時間を超えた場合に加熱装置1の出力を低下させるか又はオフにすれば、消し忘れを防止でき、消費エネルギーを低減することができる。また、人2が加熱装置1の前におらず加熱装置1の温度が高すぎる場合、安全装置4は加熱装置1の出力を低下させるか又はオフにする。これにより、被加熱物3の異常発熱などを防止することができるため、加熱装置1の安全性が向上する。
Then, the
また、人2が加熱装置1の前にいる場合、安全装置4は加熱装置1の出力の自動制御を行わないようにする。これにより、人2は加熱装置1の火力を手動で制御できる。さらに、人2が意図的に火力を強くしているのに、安全装置4が勝手に火力を弱くすることもない。従って、人2の操作の操作が妨げられ利便性が損なわれるのを防ぐことができる。
Furthermore, when
続いて、本実施の形態の効果を従来技術と比較して説明する。AIによる人検知を安価なMCUで行う場合、入力する熱画像のbit数が制限される。少ないbit数の熱画像で高温から低温までを表示しようとすると温度分解能が低下する。高温の被加熱物3が写り込むことでデジタル信号の1カウント(1digit)毎の温度分解能が低下する。従って、従来技術では、人2と背景温度の輝度差がなくなり熱画像上での人2の検知が困難になる。
Next, the effects of this embodiment will be explained in comparison with the conventional technology. When human detection using AI is performed with an inexpensive MCU, the number of bits of the input thermal image is limited. When attempting to display a range from high to low temperatures using a thermal image with a small number of bits, the temperature resolution decreases. When a high-temperature
これに対して、本実施の形態では、人検知エリア27に対応する画素の感度をその他の領域に対応する画素の感度よりも高く設定する。これにより、赤外線撮像装置9の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人を同時に熱画像上に表示させることができるため、熱画像上で人2を精度良く検知することができる。また、熱源の温度も同時に測定することができる。また、人検知エリア27を予め設定することで、通路を歩行している人など機器に近づいていない人は熱画像上に表示されなくなるため、誤検知を防止することができる。
In contrast, in this embodiment, the sensitivity of pixels corresponding to the
実施の形態2.
図11は、実施の形態2に係る赤外線撮像装置を示す図である。実施の形態1との相違点として感度調整部26が存在しない。図12は、実施の形態2に係る加熱システムを示すブロック図である。実施の形態1との相違点として安全装置4がオフセット設定部28を有する。人検知エリア設定部18は、検知する上限温度を閾値として設定する。例えば人の体表温度よりやや高い38℃を閾値に設定する。その他の構成は実施の形態1と同様である。
Fig. 11 is a diagram showing an infrared imaging device according to
図13は、実施の形態2に係る安全装置の動作を示すフローチャートである。まず、赤外線撮像装置9が撮影する(ステップS21)。次に、温度算出部13が各画素の温度を算出する(ステップS22)。次に、オフセット設定部28は、人検知エリア27の外側に閾値よりも高温の画素が存在するかを判定する(ステップS23)。存在する場合、オフセット設定部28は、当該画素の温度が閾値と同じとなるように赤外線撮像装置9から出力された輝度値を減ずるオフセット処理を行って熱画像生成部11に出力する(ステップS24)。図14は、オフセット前の熱画像を示す図である。例えば人2は35℃であり、被加熱物3は100℃である。図15は、オフセット後の熱画像を示す図である。被加熱物3の温度が閾値38℃と同じ温度に変更されている。
FIG. 13 is a flowchart showing the operation of the safety device according to the second embodiment. First, the
次に、熱画像生成部11は、オフセット処理されたデータの最大・最低輝度を所望のbit数に応じた階調に割り付けた熱画像を生成して出力する(ステップS25)。次に、人検知部12は熱画像に人2が存在するかを検知する(ステップS26)。人2が検知されない場合又は人検知エリア27内に存在しない場合はステップS21に戻る。人2が人検知エリア27内に存在する場合は、人を検知したと出力する(ステップS27)。
Then, the thermal
以上説明したように、本実施の形態では、人検知エリア27の外側に閾値よりも高温の画素が存在する場合、当該画素の温度が閾値と同じとなるように赤外線撮像装置9から出力された輝度値を減ずるオフセット処理を行う。これにより、赤外線撮像装置9に画素感度を調整する機構を設けることなく、高温熱源と人を同時に熱画像に表示することができる。また、閾値によってオフセットを適用するため、被加熱物の温度が何℃であっても熱画像上で人の見え方を同等にすることができる。これにより、高い検知精度を得ることができる。また、人検知エリア27を限定することで、誤検出を抑制することができる。
As described above, in this embodiment, if there is a pixel outside the
実施の形態3.
本実施の形態では、実施の形態2と同様に感度調整部26が存在せず、安全装置4がオフセット設定部28を有する。実施の形態2との相違点として、後述のようにオフセット設定部28の機能が異なり、人検知エリア設定部18は閾値を設定しない。その他の構成は実施の形態1,2と同様である。
In this embodiment, similarly to the second embodiment, there is no
図16は、実施の形態3に係る安全装置の動作を示すフローチャートである。まず、実施の形態2と同様にステップS21,S22を実施する。次に、オフセット設定部28は、人検知エリア27の外側に人検知エリア27の最高温度よりも高温の画素が存在するかを判定する(ステップS31)。存在する場合、オフセット設定部28は、当該画素の温度が人検知エリア27の最高温度と同じとなるように赤外線撮像装置9から出力された輝度値を減ずるオフセット処理を行って熱画像生成部11に出力する(ステップS32)。例えば、被加熱物3が100℃、人検知エリア27の最高温度が35.5℃の場合、被加熱物3の温度が35.5℃に変更される。その後、実施の形態2と同様にステップS25~S27を実施する。
FIG. 16 is a flowchart showing the operation of the safety device according to the third embodiment. First, steps S21 and S22 are performed in the same manner as in the second embodiment. Next, the offset setting
以上説明したように、本実施の形態では、人検知エリア27の外側に人検知エリア27の最高温度よりも高温の画素が存在する場合、当該画素の温度が当該最高温度と同じとなるように赤外線撮像装置9から出力された輝度値を減ずるオフセット処理を行う。これにより、赤外線撮像装置9に画素感度を調整する機構を設けることなく、高温熱源と人を同時に熱画像に表示することができる。また、事前に閾値を設定する必要がないため、実施の形態2よりも利便性が向上する。また、人2の体表温度が外気により低下するか又は加熱装置1に加熱されて上昇した場合に熱画像での人2の見え方が変化するのを防止でき、高い人検知精度を得ることができる。
As described above, in this embodiment, if there is a pixel outside the
なお、最高温度の判定はフレーム毎に行ってもよいし、一定時間毎に行ってもよい。また、人検知エリア27に人以外の熱源が写り込んだ場合、オフセットが正常に機能しない可能性がある。そこで、人検知エリア27で予め定めた温度以上の熱源が検知された場合は異常であるとして発報してもよい。
The maximum temperature may be determined for each frame, or at regular intervals. Also, if a heat source other than a person is captured in the
実施の形態4.
図17は、実施の形態4に係る安全装置の一部を示す図である。赤外線撮像装置9の赤外線透過レンズ20の前面に、赤外線透過レンズ20の防汚と感度調整のために保護部材29が配置されている。保護部材29は、赤外線を透過するSi、ゲルマニウム、高密度ポリエチレン(HDPE)などからなる。保護部材29は赤外線撮像装置9上での結像性に影響を与えない距離に配置する必要があるため、赤外線透過レンズ20と保護部材29の距離は数cm以上確保することが好ましい。
17 is a diagram showing a part of a safety device according to
人検知エリア27に対応する領域の保護部材29の厚さは、人検知エリア27の外側に対応する領域の保護部材29の厚さよりも薄くなっている。例えば、人検知エリア27の外側に対応する領域の保護部材29は0.5mm厚のHDPEであり、人検知エリア27に対応する領域の保護部材29は0.3mm厚のHDPEである。これにより、人検知エリア27の外側に対応する領域で赤外線の透過率を低下させることができる。従って、赤外線撮像装置9の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人2を同時に熱画像上に表示させることができるため、熱画像上で人2を精度良く検知することができる。
The thickness of the
ハード側で人検知エリア27と人検知エリア27の外側で感度を変えることができるため、人検知エリア27及び閾値などの設定が不要となり、利便性が向上する。感度を調整するための保護部材29がモジュールの保護部材を兼ねることで、油又は水滴が赤外線透過レンズ20に付着して熱画像撮影ができなくなることを防止でき、製品の信頼性が向上する。
Because the sensitivity can be changed on the hardware side between the
実施の形態5.
実施の形態2,3では高温熱源の輝度を一律に設定するため、高温被写体の輝度が飽和し熱源内部の温度分布が見えなくなってしまうことがある。そこで、本実施の形態では、感度調整部26は、赤外線撮像装置9が連続撮影した画像のフレーム毎に赤外線撮像装置9の画素全体の感度を切り替える。連続撮影した画像は、第1のフレームと、第1のフレームよりも画素全体の感度を低くした第2のフレームとを有する。
In the second and third embodiments, the luminance of the high-temperature heat source is set uniformly, so the luminance of the high-temperature subject may saturate and the temperature distribution inside the heat source may not be visible. Therefore, in the present embodiment, the
図18は、高感度の第1のフレームを示す図である。人2の輝度は200digitである。被加熱物3の外周部と中央部の輝度は何れも256digitで飽和している。図19は、低感度の第2のフレームを示す図である。人2の輝度は10digitである。被加熱物3の外周部の輝度は240digit、中央部の輝度は220digitである。
Figure 18 shows a first frame with high sensitivity. The luminance of
熱画像生成部11は、人検知エリア27には高感度の第1のフレームを用い、その他の領域には低感度の第2のフレームを用いて熱画像を生成する。これにより、赤外線撮像装置9の撮像範囲内に高温の被写体が存在する場合でも、安価なMCUを用いて高温の被写体と人2を同時に熱画像上に表示させることができるため、熱画像上で人2を精度良く検知することができる。
The thermal
図20は、実施の形態5に係る熱画像生成部が生成した熱画像を示す図である。被加熱物3の温度分布の情報を失わずに、高温の被加熱物3と人2を同時に熱画像上に表示することができる。この結果、人の在/不在と状態の情報に加えて、熱源の温度分布の情報を得ることができる。これにより、加熱装置1の制御性を向上させることができる。例えば、コンロでの調理時にフライパン内部の具材の温度分布に応じた火力制御を行うことができる。
FIG. 20 shows a thermal image generated by the thermal image generation unit according to the fifth embodiment. It is possible to simultaneously display the high-temperature
1 加熱装置、2 人、3 被加熱物、4 安全装置、5 加熱部、9 赤外線撮像装置、11 熱画像生成部、12 人検知部、13 温度算出部、18 人検知エリア設定部、26 感度調整部、27 人検知エリア、28 オフセット設定部、29 保護部材 1 Heating device, 2 Person, 3 Heated object, 4 Safety device, 5 Heating unit, 9 Infrared imaging device, 11 Thermal image generation unit, 12 Person detection unit, 13 Temperature calculation unit, 18 Person detection area setting unit, 26 Sensitivity adjustment unit, 27 Person detection area, 28 Offset setting unit, 29 Protective member
Claims (6)
前記加熱装置を制御する安全装置とを備え、
前記安全装置は、
前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、
前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、
前記熱画像に人が存在するかを検知する人検知部と、
前記熱画像において人を検知する領域である人検知エリアを設定する人検知エリア設定部と、
前記赤外線撮像装置の各画素の感度を調整する感度調整部とを有し、
前記感度調整部は、前記人検知エリアに対応する画素はその他の領域に対応する画素よりも感度を高く設定することを特徴とする加熱システム。 A heating device having a heating unit that heats an object to be heated;
a safety device for controlling the heating device;
The safety device comprises:
an infrared imaging device that captures a person standing in front of the heating device, the heating unit, and the heated object within its imaging range;
a thermal image generating unit that generates a thermal image from an output signal of the infrared imaging device;
a human detection unit that detects whether a human is present in the thermal image;
a human detection area setting unit that sets a human detection area in which a person is detected in the thermal image;
a sensitivity adjustment unit that adjusts the sensitivity of each pixel of the infrared imaging device;
A heating system characterized in that the sensitivity adjustment unit sets a higher sensitivity for pixels corresponding to the human detection area than for pixels corresponding to other areas.
前記加熱装置を制御する安全装置とを備え、
前記安全装置は、
前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、
前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、
前記熱画像に人が存在するかを検知する人検知部と、
前記赤外線撮像装置の赤外線透過レンズの前面に配置され、赤外線を透過する保護部材とを有し、
前記熱画像において人を検知する領域である人検知エリアに対応する領域の前記保護部材の厚さは、前記人検知エリアの外側に対応する領域の前記保護部材の厚さよりも薄いことを特徴とする加熱システム。 A heating device having a heating unit that heats an object to be heated;
a safety device for controlling the heating device;
The safety device comprises:
an infrared imaging device that captures a person standing in front of the heating device, the heating unit, and the heated object within its imaging range;
a thermal image generating unit that generates a thermal image from an output signal of the infrared imaging device;
a human detection unit that detects whether a human is present in the thermal image;
a protective member that is disposed in front of the infrared transmitting lens of the infrared imaging device and transmits infrared rays;
A heating system characterized in that the thickness of the protective member in an area corresponding to a human detection area, which is an area in the thermal image where humans are detected, is thinner than the thickness of the protective member in an area corresponding to the outside of the human detection area.
前記加熱装置を制御する安全装置とを備え、
前記安全装置は、
前記加熱装置の前に立つ人と前記加熱部と前記被加熱物を撮影範囲に含む赤外線撮像装置と、
前記赤外線撮像装置の出力信号から熱画像を生成する熱画像生成部と、
前記熱画像に人が存在するかを検知する人検知部と、
前記熱画像において人を検知する領域である人検知エリアを設定する人検知エリア設定部と、
前記赤外線撮像装置が連続撮影した画像のフレーム毎に前記赤外線撮像装置の画素全体の感度を切り替える感度調整部とを有し、
前記連続撮影した画像は、第1のフレームと、前記第1のフレームよりも画素全体の感度を低くした第2のフレームとを有し、
前記熱画像生成部は、前記人検知エリアには前記第1のフレームを用い、その他の領域には前記第2のフレームを用いて前記熱画像を生成することを特徴とする加熱システム。 A heating device having a heating unit that heats an object to be heated;
a safety device for controlling the heating device;
The safety device comprises:
an infrared imaging device that captures a person standing in front of the heating device, the heating unit, and the heated object within its imaging range;
a thermal image generating unit that generates a thermal image from an output signal of the infrared imaging device;
a human detection unit that detects whether a human is present in the thermal image;
a human detection area setting unit that sets a human detection area in which a person is detected in the thermal image;
a sensitivity adjustment unit that switches sensitivity of all pixels of the infrared imaging device for each frame of images continuously captured by the infrared imaging device;
the continuously captured images include a first frame and a second frame in which sensitivity of all pixels is lower than that of the first frame;
A heating system characterized in that the thermal image generation unit generates the thermal image using the first frame for the human detection area and the second frame for other areas.
前記安全装置は、前記人検知部の検知結果と前記温度算出部が算出した温度情報に基づいて前記加熱装置の出力を制御することを特徴とする請求項1~5の何れか1項に記載の加熱システム。 the safety device further includes a temperature calculation unit that calculates a temperature of each pixel from an output signal of the infrared imaging device,
A heating system described in any one of claims 1 to 5, characterized in that the safety device controls the output of the heating device based on the detection result of the human detection unit and the temperature information calculated by the temperature calculation unit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023556753A JPWO2024247167A1 (en) | 2023-05-31 | 2023-05-31 | |
PCT/JP2023/020294 WO2024247167A1 (en) | 2023-05-31 | 2023-05-31 | Heating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/020294 WO2024247167A1 (en) | 2023-05-31 | 2023-05-31 | Heating system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024247167A1 true WO2024247167A1 (en) | 2024-12-05 |
Family
ID=93657038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/020294 WO2024247167A1 (en) | 2023-05-31 | 2023-05-31 | Heating system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024247167A1 (en) |
WO (1) | WO2024247167A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000301340A (en) * | 1999-04-21 | 2000-10-31 | Toshiba Corp | Automatic welding equipment |
US20160338594A1 (en) * | 2011-04-04 | 2016-11-24 | James G. Spahn | Grayscale Thermographic Imaging |
WO2017187811A1 (en) * | 2016-04-27 | 2017-11-02 | ソニー株式会社 | Imaging control device, imaging control method, and imaging apparatus |
JP2017224171A (en) * | 2016-06-15 | 2017-12-21 | パナソニックIpマネジメント株式会社 | Cooking support method and system |
-
2023
- 2023-05-31 JP JP2023556753A patent/JPWO2024247167A1/ja active Pending
- 2023-05-31 WO PCT/JP2023/020294 patent/WO2024247167A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000301340A (en) * | 1999-04-21 | 2000-10-31 | Toshiba Corp | Automatic welding equipment |
US20160338594A1 (en) * | 2011-04-04 | 2016-11-24 | James G. Spahn | Grayscale Thermographic Imaging |
WO2017187811A1 (en) * | 2016-04-27 | 2017-11-02 | ソニー株式会社 | Imaging control device, imaging control method, and imaging apparatus |
JP2017224171A (en) * | 2016-06-15 | 2017-12-21 | パナソニックIpマネジメント株式会社 | Cooking support method and system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024247167A1 (en) | 2024-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5636116B2 (en) | Portable temperature measuring device using infrared array sensor | |
KR101947214B1 (en) | Infrared presence detector for detecting a presence of an object in a surveillance area | |
KR20060064615A (en) | Radiation analysis using an uncooled microbolometer detector | |
JP2013041282A (en) | Network camera and method of controlling lighting thereof | |
IL158245A0 (en) | A flir camera having fov vs. sensitivity control | |
CN205940774U (en) | Data analysing means based on infrared hot imaging detection ware | |
WO2004027459A2 (en) | Front lens shutter mount for uniformity correction | |
US10999537B2 (en) | Compact camera | |
TWI803335B (en) | Infrared camera device and method for generating noise data of fixed pattern | |
JP2005249723A (en) | Output device for image including temperature distribution and control method thereof | |
WO2024247167A1 (en) | Heating system | |
JP3517811B2 (en) | Infrared imaging device | |
US12215872B2 (en) | Auto detection system for cooking assistance and hair dryer with thermal detection | |
KR100952398B1 (en) | SOC-based infrared sensor for space sensing | |
JP5970965B2 (en) | Imaging device | |
GB2478708A (en) | Measuring the temperature of an object with an image sensor | |
JP7399371B1 (en) | Overheating prevention device and heating system | |
JP7484544B2 (en) | Infrared image processing device, infrared imaging system, and infrared image processing method | |
CN118464200A (en) | A two-color thermal imaging temperature measurement method for measuring the surface temperature of smoldering solids | |
KR101022529B1 (en) | Dynamic Range Control Apparatus and Method of Thermal Imager | |
JPH0843209A (en) | Picture image processor | |
Weiler et al. | Uncooled far infrared camera based on IMS VGA IRFPA | |
CZ24140U1 (en) | Circuit arrangement for detection of change in brightness of video signal and for detection of movement | |
JPWO2024247167A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023556753 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23939642 Country of ref document: EP Kind code of ref document: A1 |