[go: up one dir, main page]

WO2024247034A1 - Light distribution control device and light distribution control method - Google Patents

Light distribution control device and light distribution control method Download PDF

Info

Publication number
WO2024247034A1
WO2024247034A1 PCT/JP2023/019889 JP2023019889W WO2024247034A1 WO 2024247034 A1 WO2024247034 A1 WO 2024247034A1 JP 2023019889 W JP2023019889 W JP 2023019889W WO 2024247034 A1 WO2024247034 A1 WO 2024247034A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
probability
vehicle
light distribution
distribution control
Prior art date
Application number
PCT/JP2023/019889
Other languages
French (fr)
Japanese (ja)
Inventor
僚太郎 江原
裕 小野寺
悟 井上
Original Assignee
三菱電機モビリティ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機モビリティ株式会社 filed Critical 三菱電機モビリティ株式会社
Priority to JP2025523678A priority Critical patent/JPWO2024247034A1/ja
Priority to PCT/JP2023/019889 priority patent/WO2024247034A1/en
Publication of WO2024247034A1 publication Critical patent/WO2024247034A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/24Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead

Definitions

  • This disclosure relates to a light distribution control device and a light distribution control method.
  • high beams also known as passing lights, which illuminate farther than the vehicle's low beams, in order to ensure visibility.
  • high beams can ensure the driver's visibility, they can also cause glare, dazzling people, other vehicles, and other traffic participants within the high beam's illumination range.
  • a system called ADB Advanced Driving Beam
  • ADB Advanced Driving Beam
  • the above-mentioned ADB performs control to suppress glare after detecting a traffic participant
  • a delay occurs between when the traffic participant appears from a side road or behind a parked vehicle and when the ADB suppresses glare.
  • This delay is mainly caused by, for example, the time required to determine the traffic participant from an image of the area in front of the vehicle captured by a camera, and the time required to perform dimming control on the area in which the traffic participant is detected.
  • the above-mentioned light distribution control there is a problem in that glare continues to be seen by the traffic participant during this delay.
  • the present disclosure has been made in consideration of the above-mentioned problems, and aims to provide technology that can appropriately suppress glare from being caused to traffic participants.
  • the light distribution control device includes a surrounding information acquisition unit that acquires surrounding information about the vehicle, a determination unit that determines the probability that a traffic participant will appear in the future within the illumination range of the vehicle's running lights based on the surrounding information, and determines an area within the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and a running light control unit that dims the brightness of the running lights for the appearance area based on the probability.
  • an area within the illumination range where the probability is equal to or greater than a predetermined threshold is determined to be an appearance area, and the brightness of the running lights for the appearance area is dimmed based on the probability.
  • FIG. 1 is a block diagram showing a configuration of a light distribution control device according to a first embodiment.
  • FIG. 5 is a diagram for explaining control of a running light control unit according to the first embodiment.
  • FIG. 5 is a diagram for explaining control of a running light control unit according to the first embodiment.
  • FIG. 5 is a diagram for explaining control of a running light control unit according to the first embodiment.
  • FIG. 3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment.
  • 3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment.
  • 3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment.
  • 4 is a flowchart showing the operation of the light distribution control device according to the first embodiment.
  • FIG. 11 is a block diagram showing the configuration of a light distribution control device according to a second embodiment.
  • 13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment.
  • FIG. 13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment.
  • FIG. 13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment.
  • FIG. 13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment.
  • FIG. 10 is a flowchart showing the operation of a light distribution control device according to a second embodiment.
  • FIG. 13 is a flowchart showing the operation of a light distribution control device according to embodiment 3.
  • FIG. 13 is a block diagram showing the configuration of a light distribution control device according to a fourth embodiment. 13 is a diagram for explaining control of a light distribution control device according to embodiment 4.
  • FIG. 13 is a flowchart showing the operation of a light distribution control device according to embodiment 4.
  • FIG. 13 is a block diagram showing a hardware configuration of a light distribution control device according to another modified example.
  • FIG. 13 is a block diagram showing a hardware configuration of a light distribution control device according to another modified example.
  • FIG. 13 is a block diagram showing a configuration of a server according to another modified example.
  • FIG. 13 is a block diagram showing a configuration of a communication terminal according to another modified example.
  • Fig. 1 is a block diagram showing the configuration of a light distribution control device 100 according to the first embodiment.
  • the light distribution control device 100 in Fig. 1 controls the light distribution of a running light 7 of a vehicle.
  • the light distribution control device 100 may be mounted on a vehicle, or may be a server not mounted on a vehicle as described below.
  • the vehicle whose running light 7 is controlled may be, for example, an automobile or a motorcycle. In the following description, vehicles other than the vehicle whose running light 7 is controlled may be referred to as other vehicles.
  • the running lights 7 are lighting fixtures that may cause glare to traffic participants, and include, for example, high beams with ADB function and at least one of other auxiliary lights. Traffic participants include, for example, at least one of pedestrians and other vehicles.
  • at least one of A, B, C, ..., and Z means any one of all combinations of one or more items selected from the group A, B, C, ..., and Z.
  • the light distribution control device 100 in FIG. 1 is connected to a surrounding information collection unit 1 and a running light 7.
  • the light distribution control device 100 in FIG. 1 also includes a surrounding information acquisition unit 2, a probability area specification unit 3, a probability determination unit 4, an area determination unit 5, and a running light control unit 6.
  • the probability area specification unit 3, the probability determination unit 4, and the area determination unit 5 are included in the concept of a determination unit.
  • the components in FIG. 1 will be described in detail below.
  • the surrounding information collection unit 1 collects surrounding information about the vehicle.
  • the surrounding information collection unit 1 may include a forward camera that captures an image in front of the vehicle or a distance measurement sensor, may include a search device that can search for surrounding information based on the vehicle's position and map information, or may include a communication device that can receive surrounding information through vehicle-to-vehicle communication.
  • the surrounding information acquisition unit 2 acquires the surrounding information collected by the surrounding information collection unit 1.
  • the surrounding information acquisition unit 2 is an interface to the surrounding information collection unit 1, but is not limited to this and may include, for example, the surrounding information collection unit 1.
  • the probability area identification unit 3 identifies an area within the illumination range of the vehicle's running lights 7 where there is a probability that a traffic participant will appear in the future, based on the surrounding information acquired by the surrounding information acquisition unit 2.
  • the probability area identification unit 3 calculates the shape of the object in front of the vehicle based on the surrounding information and determines whether the calculated shape has the shape of a specific structure such as a building or a side street. If the calculated shape is the shape of a specific structure, the probability area identification unit 3 identifies an area adjacent to the specific structure, such as an area located behind the specific structure relative to the driver, as an area where there is a probability that a traffic participant will appear in the future.
  • the probability area identification unit 3 determines whether or not a specific structure, such as a building or a side road, exists ahead of the vehicle based on the surrounding information. If the probability area identification unit 3 determines that a specific structure exists ahead of the vehicle, it identifies an area adjacent to the specific structure, such as an area located behind the specific structure relative to the driver, as an area where there is a probability that a traffic participant will appear in the future.
  • the probability area identification unit 3 includes a probability determination unit 4.
  • the probability determination unit 4 determines the probability that a traffic participant will appear in the area identified by the probability area identification unit 3 in the future based on the surrounding information acquired by the surrounding information acquisition unit 2 and the type and size of the area identified by the probability area identification unit 3. For example, if the identified area is adjacent to a building, the probability determination unit 4 determines a first value as the probability of the area, and if the identified area is adjacent to a side road, the probability determination unit 4 determines a second value as the probability of the area. For example, if the size of the identified area is large, the probability determination unit 4 determines a first value as the probability of the area, and if the size of the identified area is small, the probability determination unit 4 determines a second value as the probability of the area.
  • the identification of the area by the probability area identification unit 3 and the determination of the probability by the probability determination unit 4 may be performed, for example, based on a predetermined calculation process, or based on machine learning (training) such as deep learning using a neural network.
  • the area determination unit 5 determines whether or not there is an area, among the areas identified by the probability area identification unit 3, where the probability determined by the probability determination unit 4 is equal to or greater than a predetermined threshold. The area determination unit 5 then determines the area where the probability is equal to or greater than the threshold as an appearance area.
  • the threshold may be 0 or a value greater than 0.
  • the probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 described above determine the probability that a traffic participant will appear in the future in the illumination range of the running lights 7 based on surrounding information, and determine an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area. Note that, if such a determination is made, the probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 are not limited to those described above. For example, two or more of the probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 may be realized by a single component.
  • the running light control unit 6 dims the brightness of the running lights 7 for the appearance area determined by the area determination unit 5 based on the probability determined by the probability determination unit 4. In this embodiment 1, the running light control unit 6 dims the brightness of the running lights 7 for the appearance area based on the probability, regardless of whether a traffic participant actually exists in the appearance area.
  • FIGS. 2 to 4 are diagrams showing the control by the running light control unit 6 to darken the brightness of the running lights 7 for the appearance area, that is, the dimming control of the running lights 7 for the appearance area.
  • FIGS. 2 to 4 are diagrams showing the relationship between the probability determined by the probability determination unit 4 and the amount of dimming of the running lights 7 for the appearance area.
  • the threshold value TH in FIGS. 2 to 4 may be any value equal to or greater than the threshold value used by the area determination unit 5 to determine the appearance area.
  • the driving light control unit 6 sets the dimming amount of the driving lights 7 for the appearance area to a constant value greater than 0. In this case, the dimming control of the driving lights 7 can be simplified.
  • the running light control unit 6 increases the dimming amount of the running lights 7 in the appearance area as the probability increases. In this case, it is possible to ensure the driver's visibility while suppressing the glare caused to traffic participants.
  • the solid line in FIG. 3 shows the control of the running light control unit 6 when the threshold value used by the area determination unit 5 to determine the appearance area is 0, and the dotted line in FIG. 3 shows the control of the running light control unit 6 when the threshold value is greater than 0.
  • the running light control unit 6 increases the dimming amount of the running lights 7 for the appearance area from a value greater than 0 as the probability increases.
  • dimming control of the running lights 7 can be performed according to the vehicle's traveling speed or the traveling scene.
  • FIGS. 5 to 7 are diagrams showing an example of light distribution control by the light distribution control device 100 according to the first embodiment, specifically, diagrams showing the front of the vehicle.
  • FIGS. 5 to 7 show the high beam illumination range 36, which is the illumination range of the running light 7, and the low beam illumination range 37 of the vehicle.
  • FIG. 5 an example is shown in which there is no appearance area ahead of the vehicle, and there is another vehicle, a preceding vehicle 31.
  • the running light control unit 6 controls the running lights 7 to darken (e.g., turn off) the portion of the high beam illumination range 36 where the preceding vehicle 31 is located.
  • FIG. 6 shows an example in which a vehicle is traveling in an urban area with buildings such as buildings.
  • the running light control unit 6 controls the running lights 7 to darken not only the portion of the high beam illumination range 36 in which the preceding vehicle 31 is present, but also the appearance area 33.
  • the surrounding information acquisition unit 2 is configured to acquire information recognized by the vehicle's front camera as surrounding information
  • the running light control unit 6 ensures that the brightness of the appearance area 33 is such that the traffic participants appearing in the appearance area 33 can be recognized by the front camera.
  • the running light control unit 6 darkens the appearance area 33 to the extent that the traffic participants appearing in the appearance area 33 can be recognized by the front camera.
  • FIG. 7 shows the state when a pedestrian 34, who is a traffic participant, appears in the appearance area 33 after the state of FIG. 6. As shown in FIGS. 6 and 7, by darkening the brightness of the appearance area 33 in advance, it is possible to prevent glare from occurring to the pedestrian 34 who appears in the illumination range 36 of the high beam.
  • the running light control unit 6 may determine whether or not a traffic participant has appeared in the appearance area 33 based on the surrounding information, and if it determines that a traffic participant has appeared in the appearance area 33, it may control the brightness of the appearance area 33 based on the type of traffic participant.
  • the running light control unit 6 may turn off the appearance area 33, or may ensure that the appearance area 33 is bright enough to recognize the other vehicle with the forward camera. Also, for example, if it is determined that the emerging traffic participant is a pedestrian, the running light control unit 6 may ensure that the appearance area 33 is bright enough to recognize the pedestrian with the forward camera, but may make the brightness brighter than the appearance area 33 of the other vehicle.
  • the running light control unit 6 may move the appearance area 33 to track the traffic participant while maintaining the brightness of the appearance area 33.
  • Fig. 8 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 1. The operation in Fig. 8 is repeatedly performed while the driving lights 7 are turned on, for example.
  • step S1 the surrounding information acquisition unit 2 acquires surrounding information.
  • step S2 the probability area identification unit 3 identifies an area within the illumination range of the vehicle's running lights 7 where there is a probability that a traffic participant will appear in the future, based on the surrounding information.
  • the probability determination unit 4 determines the probability that a traffic participant will appear in the future, based on the area identified by the probability area identification unit 3.
  • the area determination unit 5 determines the appearance area, based on the area identified by the probability area identification unit 3 and the probability determined by the probability determination unit 4.
  • step S3 the running light control unit 6 determines a light distribution pattern for the running lights 7 to dim the brightness of the running lights 7 in the appearance area based on the probability and the appearance area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.
  • the probability that a traffic participant will appear in the future in the illumination range of the running lights 7 is determined based on ambient information, an area in the illumination range where the probability is equal to or greater than a predetermined threshold is determined as an appearance area 33, and the brightness of the running lights 7 for the appearance area 33 is dimmed based on the probability.
  • the brightness of the appearance area 33 where a traffic participant is highly likely to appear in the illumination range of the running lights 7 can be dimmed in advance, thereby making it possible to suppress glare to traffic participants caused by delays in light distribution control.
  • the running light control unit 6 ensures that the brightness of the appearance area 33 is such that traffic participants appearing in the appearance area 33 can be recognized by the front camera.
  • the brightness of the running lights 7 for the appearance area 33 can be dimmed while the traffic participants appearing in the appearance area 33 can be recognized by the front camera.
  • the brightness of the appearance area 33 is controlled based on the type of traffic participant.
  • the running lights 7 can illuminate the traffic participant with a brightness appropriate for the traffic participant, so that the driver's visibility can be ensured while suppressing glare to the traffic participants.
  • ⁇ Embodiment 2> 9 is a block diagram showing the configuration of a light distribution control device 100 according to the present embodiment 2.
  • components that are the same as or similar to the components described above are given the same or similar reference numerals, and different components will be mainly described.
  • the probability area identification unit 3 further includes a weighting calculation unit 8, which is included in the concept of a determination unit, just like the probability area identification unit 3.
  • the weighting calculation unit 8 applies weighting to the probability determined by the probability determination unit 4. By applying weighting to the probability, for example, it is possible to increase the accuracy of the probability, and as a result, it is possible to appropriately suppress the occurrence of glare to traffic participants.
  • FIG. 10 is a diagram for explaining the weighting of the probability by the weighting calculation unit 8. Specifically, the lower diagram in FIG. 10 is a diagram showing the front of the vehicle, and the upper diagram in FIG. 10 is a diagram showing the relationship between the weighting and the horizontal position (i.e., angle) in front of the vehicle.
  • the weighting calculation unit 8 weights the probability so that the weighting of the probability at the ends of the illumination range of the running light 7 is greater than the weighting of the probability at the center of the illumination range of the running light 7.
  • the weighting of the probability is a weighting that changes the probability itself.
  • the weighting calculation unit 8 weights the probability so that the relationship a ⁇ b holds.
  • the center of the illumination range of the running lights 7 usually corresponds to the center of the front of the vehicle.
  • the weighting of the probability is not limited to the example in FIG. 10.
  • the graph showing the relationship between angle and probability is symmetrical in the example of FIG. 10, but it may be asymmetrical.
  • the graph showing the relationship between angle and probability is represented by a straight line in the example of FIG. 10, but it may be represented by a curve, etc.
  • FIG. 11 is a diagram showing an example of application of the weights in FIG. 10, specifically showing the relationship between the probability and the amount of dimming of the running lights 7 for the appearance area.
  • the probability determination unit 4 determines the probability c
  • the probability c is smaller than the threshold value TH, so the amount of dimming of the running lights 7 for the appearance area is 0.
  • the running light control unit 6 controls the running lights 7 with the amount of dimming d' of the running lights 7 for the appearance area.
  • the weighting that adds the probability has been described, but the weighting may be a weighting that subtracts the probability, for example, the probability c' may be changed to the probability c.
  • the weighting related to the probability is a weighting that changes the probability itself, but this is not limited to this.
  • the weighting related to the probability may be a weighting that changes the probability threshold value TH that determines whether or not to dim the light.
  • the weighting related to the probability may be a weighting that changes the rate of change in the amount of dimming relative to the probability.
  • Fig. 14 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 2.
  • the operation in Fig. 14 is similar to the operation in Fig. 8 in which the processing of step S4 is added between steps S2 and S3, and therefore step S4 will be mainly described here.
  • step S4 the running light control unit 6 weights the probability based on the horizontal position of the appearance area 33 in front of the vehicle, according to the relationship shown in the graph in FIG. 10.
  • step S3 the running light control unit 6 determines a light distribution pattern for the running lights 7 to dim the brightness of the running lights 7 in the appearance area based on the probability after the weighting has been applied and the appearance area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.
  • the direction of the center of the illumination range of the running lights 7 as seen by the driver is often the direction of travel of the vehicle, so the brightness has a large impact on the driver's driving safety.
  • the direction of the edge of the illumination range of the running lights 7 as seen by the driver is often shifted from the direction of travel of the vehicle, so the brightness has a small impact on the driver's driving safety. For this reason, the driver usually pays less attention to the edge of the illumination range of the running lights 7 than to the center.
  • the weighting of the probability at the ends of the illumination range of the running lights 7 is greater than the weighting of the probability at the center of the illumination range of the running lights 7.
  • ⁇ Third embodiment> 15 is a block diagram showing the configuration of a light distribution control device 100 according to the third embodiment.
  • the same or similar reference symbols are used for the components that are the same as or similar to the components described above, and different components are mainly described.
  • the surrounding information acquisition unit 2 acquires at least an image in front of the vehicle as surrounding information.
  • the configuration in FIG. 15 is an example of a case where the area related to the line of sight of the vehicle driver is actually measured, and is similar to the configuration in FIG. 9 with the addition of a line of sight information collection unit 11, line of sight information acquisition unit 12, and gaze area identification unit 9.
  • the gaze area identification unit 9 is included in the concept of a determination unit, like the probability area identification unit 3 and the like.
  • the gaze information collection unit 11 collects gaze information of the driver. For example, the gaze information collection unit 11 collects gaze information of the driver using a camera that captures images inside the vehicle.
  • the gaze information acquisition unit 12 acquires gaze information collected by the gaze information collection unit 11.
  • the gaze information acquisition unit 12 is an interface to the gaze information collection unit 11, but is not limited to this, and may include, for example, a DMS (driver monitoring system) as the gaze information collection unit 11.
  • DMS driver monitoring system
  • the gaze area identification unit 9 identifies the area related to the line of sight of the vehicle driver as the area on which the vehicle driver is gazing (hereinafter referred to as the "gaze area”) by actual measurement or estimation.
  • the gaze area identification unit 9 identifies the gaze area based on gaze information acquired by the gaze information acquisition unit 12.
  • the surrounding information may be expanded to include information obtained by actually measuring the area related to the gaze of the driver of the vehicle.
  • the gaze information collection unit 11 and the gaze information acquisition unit 12 are not required, and the gaze area identification unit 9 uses a saliency map, for example.
  • the saliency map is a map that calculates for each pixel how easily a person will gaze when looking at an image showing the area in front of the vehicle, and includes areas that are easy for the driver of the vehicle to gaze at, i.e., areas that correspond to the gaze area. Areas that are easy for the driver of the vehicle to gaze at include, for example, the area in the direction of travel (vanishing point), the area of vehicles parked on the shoulder of the road, and the area of pedestrians.
  • the gaze area identification unit 9 acquires an image of the area in front of the vehicle included in the surrounding information acquired by the surrounding information acquisition unit 2, and generates the saliency map based on the image.
  • One example of the saliency map generated by the gaze area identification unit 9 is a saliency map for detecting the gaze area in the image signal (see, for example, L. Itti, and C. Koch, “A saliency-based search mechanism for overt and covert shift of visual attention”, Vision Research, Vol. 40, pp. 1489-1506, 2000).
  • the method of calculating the saliency of the saliency map may be, for example, a method of calculating the saliency based on the luminance, color, or direction in the image, or a method that applies machine learning (training) such as deep learning using a neural network.
  • the deep learning may be, for example, learning that uses an image of the area in front of the vehicle and actual gaze information as learning data.
  • the gaze area identifying unit 9 infers the gaze area based on a saliency map generated from the image. For example, the gaze area identifying unit 9 selects from among a plurality of saliency maps the saliency map that is closest to the image in front of the vehicle contained in the surrounding information, and identifies the gaze area by comparing the image in front of the vehicle with the searched saliency map.
  • the running light control unit 6 increases the brightness of the running lights 7 in the gaze area.
  • the running light control unit 6 also increases the brightness of the running lights 7 in the overlap area where the appearance area and gaze area overlap, to be brighter than the appearance area and darker than the gaze area.
  • FIG. 16 is a diagram showing an example of light distribution control of the light distribution control device 100 according to the third embodiment, specifically showing the front of the vehicle.
  • FIG. 16 shows an example in which the vehicle is traveling in an urban area with buildings such as skyscrapers.
  • FIG. 16 shows an example in which a building 32 and a parked vehicle 41 are present in front of the vehicle.
  • Two appearance regions 33a, 33b are determined for the parked vehicle 41, and one appearance region 33c is determined for the building 32, and a gaze region 43 is identified.
  • the appearance regions 33a, 33b and the gaze region 43 form overlapping regions 44a, 44b, and a part of the appearance region 33c and the gaze region 43 form an overlapping region 44c.
  • the running light control unit 6 makes the brightness of the gaze area 43 other than the overlap area brighter than the brightness of the normal illumination range 36 of the high beam.
  • the running light control unit 6 also makes the brightness of the overlap areas 44a, 44b, 44c brighter than the brightness of the appearance area 33c and darker than the brightness of the gaze area 43.
  • the running light control unit 6 controls the brightness of each area so that the brightness of the gaze area is 120%, the brightness of the appearance area is 20%, and the brightness of the overlap area is 70%, which is the average of the brightness of the appearance area and the brightness of the gaze area. Note that these numerical values are merely examples and are not limited to these.
  • Fig. 17 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 3.
  • the operation in Fig. 17 is similar to the operation in Fig. 14 in which the processing of step S5 is added between step S4 and step S3, and therefore step S5 will be mainly described here.
  • step S5 the gaze area identification unit 9 identifies the gaze area by actual measurement or estimation.
  • step S3 the running light control unit 6 determines a light distribution pattern of the running lights 7 to control the brightness of each area based on the probability after the weighting has been applied, the appearance area, and the gaze area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.
  • the brightness of the running lights 7 in the gaze area is increased, and the brightness of the running lights 7 in the overlap area where the appearance area and the gaze area overlap is increased compared to the appearance area and decreased compared to the gaze area.
  • This configuration makes it possible to achieve two contradictory controls: a control to darken the appearance area in order to prevent glare from being caused to traffic participants, and a control to brighten the gaze area.
  • Fig. 18 is a block diagram showing the configuration of a light distribution control device 100 according to embodiment 4.
  • components that are the same as or similar to the components described above are given the same or similar reference symbols, and different components will be mainly described.
  • the configuration of FIG. 18 is the same as the configuration of FIG. 15 with the addition of a danger area identification unit 10, and the danger area identification unit 10 is included in the concept of a determination unit, like the probability area identification unit 3.
  • the danger area identification unit 10 determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the surrounding information. For example, the danger area identification unit 10 calculates the relative movement of the appearance area with respect to the vehicle based on the surrounding information, predicts the future positional relationship between the vehicle and the appearance area based on the movement, and determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the positional relationship. Note that the danger area identification unit 10 may first determine whether or not there is an object in the appearance area based on the surrounding information, and then calculate the movement, predict the movement relationship, and determine the possibility of contact.
  • the running light control unit 6 prohibits the brightness of the running lights 7 from being dimmed in areas where the danger area identification unit 10 has determined that there is a possibility of contact with a vehicle.
  • FIG. 19 is a diagram showing an example of light distribution control by the light distribution control device 100 according to the fourth embodiment, specifically showing the front of the vehicle.
  • FIG. 19 shows an example in which the vehicle is traveling in an urban area with buildings such as skyscrapers.
  • FIG. 19 also shows an example in which a building 32 and a parked vehicle 41 are present in front of the vehicle. Two appearance areas 33a, 33b are determined for the parked vehicle 41, and one appearance area 33c is determined for the building 32, and the gaze area 43 is identified.
  • the danger area identification unit 10 determines that the appearance area 33a may come into contact with a vehicle. Therefore, the running light control unit 6 prohibits the brightness of the running lights 7 for the appearance area 33a to be dimmed. As a result, the brightness of the area where the appearance area 33a and the gaze area 43 overlap becomes substantially the same as the brightness of the gaze area 43.
  • the danger area identification unit 10 since the appearance area 33b does not exist in the traveling direction of the vehicle, the danger area identification unit 10 does not determine that the appearance area 33a may come into contact with a vehicle. Therefore, the running light control unit 6 dims the brightness of the running lights 7 for the appearance area 33b.
  • Fig. 20 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 4.
  • the operation in Fig. 20 is similar to the operation in Fig. 17 in which the processing of step S6 is added between steps S5 and S3, and therefore step S6 will be mainly described here.
  • step S6 the danger area identification unit 10 determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the surrounding information.
  • step S3 the running light control unit 6 determines a light distribution pattern of the running lights 7 to control the brightness of each area based on the probability after the weighting has been applied, the appearance area, the gaze area, and the determination result of the danger area identification unit 10. Then, the running light control unit 6 controls the light distribution of the running lights 7 based on the determined light distribution pattern.
  • the surrounding information acquisition unit 2 the determination unit (i.e., the probability area specification unit 3, the probability determination unit 4, the area determination unit 5), and the running light control unit 6 in FIG. 1 described above are hereinafter referred to as the "surrounding information acquisition unit 2, etc.”
  • the surrounding information acquisition unit 2, etc. are realized by a processing circuit 81 shown in FIG. 21.
  • the processing circuit 81 includes the surrounding information acquisition unit 2 that acquires surrounding information of the vehicle, a determination unit that determines the probability that a traffic participant will appear in the future in the illumination range of the vehicle's running lights based on the surrounding information, and determines an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and a running light control unit 6 that darkens the brightness of the running lights for the appearance area based on the probability.
  • the processing circuit 81 may be implemented with dedicated hardware, or may be implemented with a processor that executes a program stored in a memory.
  • the processor may be, for example, a central processing unit, a GPU (Graphics Processing Unit), a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), a SoC (System-on-a-Chip), a system LSI (Large-Scale Integration), or a combination of these.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • SoC System-on-a-Chip
  • system LSI Large-Scale Integration
  • the processing circuit 81 When the processing circuit 81 is a processor, the functions of the surrounding information acquisition unit 2 and the like are realized by a combination with software and the like.
  • the software and the like includes, for example, software, firmware, or software and firmware.
  • the software and the like are written as a program and stored in a memory. As shown in FIG. 22, the processor 82 applied to the processing circuit 81 realizes the functions of each unit by reading and executing a program stored in the memory 83.
  • the light distribution control device 100 includes a memory 83 for storing a program that, when executed by the processing circuit 81, results in the execution of the steps of acquiring surrounding information about the vehicle, judging the probability that a traffic participant will appear in the future in the illumination range of the vehicle's running lights based on the surrounding information, and judging an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and dimming the brightness of the running lights for the appearance area based on the probability.
  • this program can be said to cause a computer to execute the procedures and methods of the surrounding information acquisition unit 2 and the like.
  • memory 83 may be, for example, non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), drive devices for these, or any storage medium to be used in the future.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), drive devices for these, or any storage medium to be used in the future.
  • the above describes a configuration in which the functions of the surrounding information acquisition unit 2, etc. are realized either by hardware or software, etc.
  • this is not limited to the above, and a configuration in which part of the surrounding information acquisition unit 2, etc. is realized by dedicated hardware and another part is realized by software, etc.
  • the surrounding information acquisition unit 2's functions can be realized by a processing circuit 81 as dedicated hardware, and the other functions can be realized by the processing circuit 81 as a processor 82 reading and executing a program stored in a memory 83.
  • the processing circuit 81 can realize each of the above-mentioned functions through hardware, software, etc., or a combination of these.
  • the light distribution control device described above can also be applied to a light distribution control system constructed as a system by appropriately combining a vehicle device, a communication terminal, the functions of an application installed in at least one of the vehicle device and the communication terminal, and a server.
  • Communication terminals include, for example, mobile phones, smartphones, and tablets.
  • Each function or component of the light distribution control device described above may be distributed and disposed in each device that constructs the system, or may be concentrated and disposed in one of the devices.
  • FIG. 23 is a block diagram showing the configuration of a server 91 according to this modified example.
  • the server 91 in FIG. 23 includes a communication unit 91a and a control unit 91b, and is capable of wireless communication with a vehicle device 93 of a vehicle 92.
  • the communication unit 91a which is the surrounding information acquisition unit, receives surrounding information about the vehicle acquired by the vehicle device 93 by performing wireless communication with the vehicle device 93.
  • the control unit 91b has functions similar to those of the determination unit (i.e., the probability area identification unit 3, the probability determination unit 4, the area determination unit 5) and the running light control unit 6 in FIG. 1, by a processor (not shown) of the server 91 executing a program stored in a memory (not shown) of the server 91.
  • the control unit 91b determines the probability and the appearance area based on the surrounding information, and generates a control signal for controlling the brightness of the running lights for the appearance area to be darker based on the probability.
  • the communication unit 91a then transmits the control signal of the control unit 91b to the vehicle device 93. With the server 91 configured in this manner, it is possible to obtain the same effect as the light distribution control device 100 described in embodiment 1.
  • FIG. 24 is a block diagram showing the configuration of a communication terminal 96 according to this modified example.
  • the communication terminal 96 in FIG. 24 includes a communication unit 96a similar to the communication unit 91a and a control unit 96b similar to the control unit 91b, and is capable of wireless communication with a vehicle device 98 of a vehicle 97.
  • the communication terminal 96 may be, for example, a mobile phone, smartphone, tablet, or other mobile terminal carried by the driver of the vehicle 97. With the communication terminal 96 configured in this manner, it is possible to obtain the same effects as the light distribution control device 100 described in embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

The purpose of the present invention is to provide a technique capable of appropriately preventing a traffic participant from experiencing glare. This light distribution control device comprises: a peripheral information acquisition unit that acquires peripheral information around a vehicle; a determination unit that determines, on the basis of the peripheral information, the probability that a traffic participant will appear in the future within an irradiation range of a traveling lamp of the vehicle, and determines, as an appearance region, a region, in the irradiation range, where the probability is equal to or greater than a predetermined threshold value; and a traveling lamp control unit. The traveling lamp control unit darkens the brightness of the traveling lamp with respect to the appearance region in accordance with the probability.

Description

配光制御装置、及び、配光制御方法Light distribution control device and light distribution control method

 本開示は、配光制御装置、及び、配光制御方法に関する。 This disclosure relates to a light distribution control device and a light distribution control method.

 夜間に車両を運転する場合、運転者は視界を確保するために、すれ違い灯と称される車両のロービームよりも遠方を照らす車両のハイビームを点灯することが推奨される。しかしながら、ハイビームは、運転者の視界を確保できるが、ハイビームの照射範囲内に存在する人及び他車両などの交通参加者を眩しく照らす眩惑(グレア)を生じさせる虞がある。 When driving at night, drivers are encouraged to turn on their vehicle's high beams, also known as passing lights, which illuminate farther than the vehicle's low beams, in order to ensure visibility. However, while high beams can ensure the driver's visibility, they can also cause glare, dazzling people, other vehicles, and other traffic participants within the high beam's illumination range.

 そこで、例えば前方カメラなどで車両の周囲情報を取得し、交通参加者を検出したときに、走行灯から交通参加者への照射を暗くすることによって、交通参加者におけるグレアを抑制可能なADB(Advanced Driving Beam)が提案されている。 A system called ADB (Advanced Driving Beam) has been proposed that can reduce glare on traffic participants by, for example, acquiring information about the vehicle's surroundings using a forward-facing camera, and dimming the illumination of the driving lights on the traffic participants when they are detected.

特開2008-037240号公報JP 2008-037240 A

 しかしながら、上述のADBは交通参加者を検出した後にグレアを抑制する制御を行うため、交通参加者が脇道または駐車車両の物陰などから出現してからADBがグレアを抑制するまでに遅れが生じる。この遅れは、例えばカメラで撮像した車両前方の画像から、交通参加者を判定するのに要する時間や、交通参加者が検出された領域を減光制御するのに要する時間などが主な原因である。上述した配光制御では、このような遅れが生じている間、交通参加者にグレアが生じ続けてしまうという問題があった。 However, because the above-mentioned ADB performs control to suppress glare after detecting a traffic participant, a delay occurs between when the traffic participant appears from a side road or behind a parked vehicle and when the ADB suppresses glare. This delay is mainly caused by, for example, the time required to determine the traffic participant from an image of the area in front of the vehicle captured by a camera, and the time required to perform dimming control on the area in which the traffic participant is detected. With the above-mentioned light distribution control, there is a problem in that glare continues to be seen by the traffic participant during this delay.

 そこで、本開示は、上記のような問題点に鑑みてなされたものであり、交通参加者にグレアが生じることを適切に抑制可能な技術を提供することを目的とする。 The present disclosure has been made in consideration of the above-mentioned problems, and aims to provide technology that can appropriately suppress glare from being caused to traffic participants.

 本開示に係る配光制御装置は、車両の周囲情報を取得する周囲情報取得部と、周囲情報に基づいて、車両の走行灯の照射範囲において交通参加者が将来に出現する蓋然性を判定し、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域として判定する判定部と、蓋然性に基づいて出現領域に対する走行灯の明るさを暗くする走行灯制御部とを備える。 The light distribution control device according to the present disclosure includes a surrounding information acquisition unit that acquires surrounding information about the vehicle, a determination unit that determines the probability that a traffic participant will appear in the future within the illumination range of the vehicle's running lights based on the surrounding information, and determines an area within the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and a running light control unit that dims the brightness of the running lights for the appearance area based on the probability.

 本開示によれば、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域として判定し、蓋然性に基づいて出現領域に対する走行灯の明るさを暗くする。このような構成によれば、交通参加者にグレアが生じることを適切に抑制することができる。 According to the present disclosure, an area within the illumination range where the probability is equal to or greater than a predetermined threshold is determined to be an appearance area, and the brightness of the running lights for the appearance area is dimmed based on the probability. With this configuration, it is possible to appropriately prevent glare from being caused to traffic participants.

 本開示の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present disclosure will become more apparent from the following detailed description and the accompanying drawings.

実施の形態1に係る配光制御装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a light distribution control device according to a first embodiment. FIG. 実施の形態1に係る走行灯制御部の制御を説明するための図である。5 is a diagram for explaining control of a running light control unit according to the first embodiment. FIG. 実施の形態1に係る走行灯制御部の制御を説明するための図である。5 is a diagram for explaining control of a running light control unit according to the first embodiment. FIG. 実施の形態1に係る走行灯制御部の制御を説明するための図である。5 is a diagram for explaining control of a running light control unit according to the first embodiment. FIG. 実施の形態1に係る配光制御装置の制御を説明するための図である。3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment. 実施の形態1に係る配光制御装置の制御を説明するための図である。3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment. 実施の形態1に係る配光制御装置の制御を説明するための図である。3A to 3C are diagrams for explaining control of the light distribution control device according to the first embodiment. 実施の形態1に係る配光制御装置の動作を示すフローチャートである。4 is a flowchart showing the operation of the light distribution control device according to the first embodiment. 実施の形態2に係る配光制御装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a light distribution control device according to a second embodiment. 実施の形態2に係る重み付け演算部8の重み付けを説明するための図である。13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment. FIG. 実施の形態2に係る重み付け演算部8の重み付けを説明するための図である。13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment. FIG. 実施の形態2に係る重み付け演算部8の重み付けを説明するための図である。13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment. FIG. 実施の形態2に係る重み付け演算部8の重み付けを説明するための図である。13 is a diagram for explaining weighting by a weighting calculation unit 8 according to the second embodiment. FIG. 実施の形態2に係る配光制御装置の動作を示すフローチャートである。10 is a flowchart showing the operation of a light distribution control device according to a second embodiment. 実施の形態3に係る配光制御装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a light distribution control device according to a third embodiment. 実施の形態3に係る配光制御装置の制御を説明するための図である。13 is a diagram for explaining control of a light distribution control device according to embodiment 3. FIG. 実施の形態3に係る配光制御装置の動作を示すフローチャートである。13 is a flowchart showing the operation of a light distribution control device according to embodiment 3. 実施の形態4に係る配光制御装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of a light distribution control device according to a fourth embodiment. 実施の形態4に係る配光制御装置の制御を説明するための図である。13 is a diagram for explaining control of a light distribution control device according to embodiment 4. FIG. 実施の形態4に係る配光制御装置の動作を示すフローチャートである。13 is a flowchart showing the operation of a light distribution control device according to embodiment 4. その他の変形例に係る配光制御装置のハードウェア構成を示すブロック図である。FIG. 13 is a block diagram showing a hardware configuration of a light distribution control device according to another modified example. その他の変形例に係る配光制御装置のハードウェア構成を示すブロック図である。FIG. 13 is a block diagram showing a hardware configuration of a light distribution control device according to another modified example. その他の変形例に係るサーバの構成を示すブロック図である。FIG. 13 is a block diagram showing a configuration of a server according to another modified example. その他の変形例に係る通信端末の構成を示すブロック図である。FIG. 13 is a block diagram showing a configuration of a communication terminal according to another modified example.

 <実施の形態1>
 図1は、本実施の形態1に係る配光制御装置100の構成を示すブロック図である。図1の配光制御装置100は、車両の走行灯7の配光を制御する。配光制御装置100は、車両に搭載されてもよいし、後述するように車両に搭載されないサーバなどであってもよい。走行灯7が制御される車両は、例えば自動車であってもよいし、二輪車であってもよい。以下の説明では、走行灯7が制御される車両以外の車両を他車両と記すこともある。
<First embodiment>
Fig. 1 is a block diagram showing the configuration of a light distribution control device 100 according to the first embodiment. The light distribution control device 100 in Fig. 1 controls the light distribution of a running light 7 of a vehicle. The light distribution control device 100 may be mounted on a vehicle, or may be a server not mounted on a vehicle as described below. The vehicle whose running light 7 is controlled may be, for example, an automobile or a motorcycle. In the following description, vehicles other than the vehicle whose running light 7 is controlled may be referred to as other vehicles.

 走行灯7は、交通参加者にグレアを生じさせる虞がある灯具であり、例えば、ADB機能を有するハイビーム、及び、その他の補助灯の少なくともいずれか1つを含む。交通参加者は、例えば、歩行者及び他車両の少なくともいずれか1つを含む。なお、本明細書において、例えばA、B、C、…、及び、Zの少なくともいずれか1つとは、A、B、C、…、及び、Zのグループから1つ以上抜き出した全ての組合せのうちのいずれか1つであることを意味する。 The running lights 7 are lighting fixtures that may cause glare to traffic participants, and include, for example, high beams with ADB function and at least one of other auxiliary lights. Traffic participants include, for example, at least one of pedestrians and other vehicles. In this specification, for example, at least one of A, B, C, ..., and Z means any one of all combinations of one or more items selected from the group A, B, C, ..., and Z.

 図1の配光制御装置100は、周囲情報収集部1及び走行灯7と接続されている。また、図1の配光制御装置100は、周囲情報取得部2、蓋然性領域特定部3、蓋然性判定部4、領域判定部5、及び、走行灯制御部6を備える。なお、配光制御装置100の構成要素のうち、蓋然性領域特定部3、蓋然性判定部4、及び、領域判定部5は、判定部の概念に含まれる。以下、図1の構成要素について詳細に説明する。 The light distribution control device 100 in FIG. 1 is connected to a surrounding information collection unit 1 and a running light 7. The light distribution control device 100 in FIG. 1 also includes a surrounding information acquisition unit 2, a probability area specification unit 3, a probability determination unit 4, an area determination unit 5, and a running light control unit 6. Among the components of the light distribution control device 100, the probability area specification unit 3, the probability determination unit 4, and the area determination unit 5 are included in the concept of a determination unit. The components in FIG. 1 will be described in detail below.

 周囲情報収集部1は、車両の周囲情報を収集する。例えば、周囲情報収集部1は、車両の前方を撮影する前方カメラ、または、測距センサを含んでもよいし、車両の位置と地図情報とに基づいて周囲情報を検索可能な検索装置を含んでもよいし、車車間通信によって周囲情報を受信可能な通信装置を含んでもよい。 The surrounding information collection unit 1 collects surrounding information about the vehicle. For example, the surrounding information collection unit 1 may include a forward camera that captures an image in front of the vehicle or a distance measurement sensor, may include a search device that can search for surrounding information based on the vehicle's position and map information, or may include a communication device that can receive surrounding information through vehicle-to-vehicle communication.

 周囲情報取得部2は、周囲情報収集部1で収集された周囲情報を取得する。図1の例では、周囲情報取得部2は、周囲情報収集部1のインターフェイスであるが、これに限ったものではなく、例えば周囲情報収集部1を含んでもよい。 The surrounding information acquisition unit 2 acquires the surrounding information collected by the surrounding information collection unit 1. In the example of FIG. 1, the surrounding information acquisition unit 2 is an interface to the surrounding information collection unit 1, but is not limited to this and may include, for example, the surrounding information collection unit 1.

 蓋然性領域特定部3は、周囲情報取得部2で取得された周囲情報に基づいて、車両の走行灯7の照射範囲において交通参加者が将来に出現する蓋然性がある領域を特定する。 The probability area identification unit 3 identifies an area within the illumination range of the vehicle's running lights 7 where there is a probability that a traffic participant will appear in the future, based on the surrounding information acquired by the surrounding information acquisition unit 2.

 例えば、周囲情報が、前方カメラまたは測距センサで収集された情報である場合には、蓋然性領域特定部3は、周囲情報に基づいて車両前方の物体の形状を算出し、算出された形状が建物か脇道などの特定の構造物の形状を有するか否かを判定する。そして、蓋然性領域特定部3は、算出された形状が特定の構造物の形状である場合には、例えば運転者に対して特定の構造物の背後に位置する領域のような、特定の構造物に隣接する領域を、交通参加者が将来に出現する蓋然性がある領域として特定する。 For example, if the surrounding information is information collected by a forward camera or a distance sensor, the probability area identification unit 3 calculates the shape of the object in front of the vehicle based on the surrounding information and determines whether the calculated shape has the shape of a specific structure such as a building or a side street. If the calculated shape is the shape of a specific structure, the probability area identification unit 3 identifies an area adjacent to the specific structure, such as an area located behind the specific structure relative to the driver, as an area where there is a probability that a traffic participant will appear in the future.

 例えば、周囲情報が、地図情報から検索された情報、または、車車間通信によって受信された情報である場合には、蓋然性領域特定部3は、周囲情報に基づいて車両前方に建物か脇道などの特定の構造物が存在するか否かを判定する。そして、蓋然性領域特定部3は、車両前方に特定の構造物が存在すると判定された場合には、例えば運転者に対して特定の構造物の背後に位置する領域のような、特定の構造物に隣接する領域を、交通参加者が将来に出現する蓋然性がある領域として特定する。 For example, if the surrounding information is information retrieved from map information or information received by vehicle-to-vehicle communication, the probability area identification unit 3 determines whether or not a specific structure, such as a building or a side road, exists ahead of the vehicle based on the surrounding information. If the probability area identification unit 3 determines that a specific structure exists ahead of the vehicle, it identifies an area adjacent to the specific structure, such as an area located behind the specific structure relative to the driver, as an area where there is a probability that a traffic participant will appear in the future.

 蓋然性領域特定部3は、蓋然性判定部4を含む。蓋然性判定部4は、周囲情報取得部2で取得された周囲情報と蓋然性領域特定部3で特定された領域の種類及びサイズとに基づいて、蓋然性領域特定部3で特定された領域に交通参加者が将来に出現する蓋然性を判定する。例えば、蓋然性判定部4は、特定された領域が建物に隣接する領域である場合には、当該領域の蓋然性として第1値を判定し、特定された領域が脇道に隣接する領域である場合には、当該領域の蓋然性として第2値を判定する。例えば、蓋然性判定部4は、特定された領域のサイズが大きい場合には、当該領域の蓋然性として第1値を判定し、特定された領域のサイズが小さい場合には、当該領域の蓋然性として第2値を判定する。 The probability area identification unit 3 includes a probability determination unit 4. The probability determination unit 4 determines the probability that a traffic participant will appear in the area identified by the probability area identification unit 3 in the future based on the surrounding information acquired by the surrounding information acquisition unit 2 and the type and size of the area identified by the probability area identification unit 3. For example, if the identified area is adjacent to a building, the probability determination unit 4 determines a first value as the probability of the area, and if the identified area is adjacent to a side road, the probability determination unit 4 determines a second value as the probability of the area. For example, if the size of the identified area is large, the probability determination unit 4 determines a first value as the probability of the area, and if the size of the identified area is small, the probability determination unit 4 determines a second value as the probability of the area.

 なお、蓋然性領域特定部3による領域の特定、及び、蓋然性判定部4による蓋然性の判定は、例えば、予め定められた演算処理に基づいて行われてもよいし、ニューラルネットワークを用いた深層学習などの機械学習(訓練)に基づいて行われてもよい。 The identification of the area by the probability area identification unit 3 and the determination of the probability by the probability determination unit 4 may be performed, for example, based on a predetermined calculation process, or based on machine learning (training) such as deep learning using a neural network.

 領域判定部5は、蓋然性領域特定部3で特定された領域のうち、蓋然性判定部4で判定された蓋然性が予め定められた閾値以上である領域が存在するか否かを判定する。そして、領域判定部5は、蓋然性が閾値以上である領域を出現領域として判定する。閾値は0であってもよいし、0よりも大きな値であってもよい。 The area determination unit 5 determines whether or not there is an area, among the areas identified by the probability area identification unit 3, where the probability determined by the probability determination unit 4 is equal to or greater than a predetermined threshold. The area determination unit 5 then determines the area where the probability is equal to or greater than the threshold as an appearance area. The threshold may be 0 or a value greater than 0.

 以上のような蓋然性領域特定部3、蓋然性判定部4、及び、領域判定部5は、周囲情報に基づいて、走行灯7の照射範囲において交通参加者が将来に出現する蓋然性を判定し、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域として判定する。なお、このような判定を行うのであれば、蓋然性領域特定部3、蓋然性判定部4、及び、領域判定部5は、上記に限ったものではない。例えば、蓋然性領域特定部3、蓋然性判定部4、及び、領域判定部5のうちの2つ以上が、1つの構成要素で実現されてもよい。 The probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 described above determine the probability that a traffic participant will appear in the future in the illumination range of the running lights 7 based on surrounding information, and determine an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area. Note that, if such a determination is made, the probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 are not limited to those described above. For example, two or more of the probability area identification unit 3, the probability determination unit 4, and the area determination unit 5 may be realized by a single component.

 走行灯制御部6は、蓋然性判定部4で判定された蓋然性に基づいて、領域判定部5で判定された出現領域に対する走行灯7の明るさを暗くする。本実施の形態1では、走行灯制御部6は、交通参加者が出現領域に実在しているか否かに関わらず、蓋然性に基づいて出現領域に対する走行灯7の明るさを暗くする。 The running light control unit 6 dims the brightness of the running lights 7 for the appearance area determined by the area determination unit 5 based on the probability determined by the probability determination unit 4. In this embodiment 1, the running light control unit 6 dims the brightness of the running lights 7 for the appearance area based on the probability, regardless of whether a traffic participant actually exists in the appearance area.

 図2~図4は、走行灯制御部6が、出現領域に対する走行灯7の明るさを暗くする制御、つまり出現領域に対する走行灯7の減光制御を示す図である。図2~4は、具体的には蓋然性判定部4で判定された蓋然性と、出現領域に対する走行灯7の減光量との関係を示す図である。なお、図2~図4の閾値THは、領域判定部5が出現領域の判定に用いる閾値以上の値であればよい。 FIGS. 2 to 4 are diagrams showing the control by the running light control unit 6 to darken the brightness of the running lights 7 for the appearance area, that is, the dimming control of the running lights 7 for the appearance area. Specifically, FIGS. 2 to 4 are diagrams showing the relationship between the probability determined by the probability determination unit 4 and the amount of dimming of the running lights 7 for the appearance area. Note that the threshold value TH in FIGS. 2 to 4 may be any value equal to or greater than the threshold value used by the area determination unit 5 to determine the appearance area.

 図2の場合、走行灯制御部6は、蓋然性が閾値TH以上である場合に、出現領域に対する走行灯7の減光量を0よりも大きい一定値にする。この場合、走行灯7の減光制御を単純化することができる。 In the case of FIG. 2, when the probability is equal to or greater than the threshold value TH, the driving light control unit 6 sets the dimming amount of the driving lights 7 for the appearance area to a constant value greater than 0. In this case, the dimming control of the driving lights 7 can be simplified.

 図3の場合、走行灯制御部6は、蓋然性が大きくなるにつれて、出現領域に対する走行灯7の減光量を大きくする。この場合、交通参加者に生じるグレアを抑制しつつ、運転者の視界を確保することができる。なお、図3の実線は、領域判定部5が出現領域の判定に用いる閾値が0である場合の走行灯制御部6の制御を示し、図3の点線は、当該閾値が0よりも大きい場合の走行灯制御部6の制御を示す。 In the case of FIG. 3, the running light control unit 6 increases the dimming amount of the running lights 7 in the appearance area as the probability increases. In this case, it is possible to ensure the driver's visibility while suppressing the glare caused to traffic participants. Note that the solid line in FIG. 3 shows the control of the running light control unit 6 when the threshold value used by the area determination unit 5 to determine the appearance area is 0, and the dotted line in FIG. 3 shows the control of the running light control unit 6 when the threshold value is greater than 0.

 図4の場合、走行灯制御部6は、蓋然性が閾値TH以上である場合に、蓋然性が大きくなるにつれて、出現領域に対する走行灯7の減光量を0よりも大きい値から大きくする。この場合、車両の走行速度または走行場面に適した走行灯7の減光制御を行うことができる。 In the case of FIG. 4, when the probability is equal to or greater than the threshold value TH, the running light control unit 6 increases the dimming amount of the running lights 7 for the appearance area from a value greater than 0 as the probability increases. In this case, dimming control of the running lights 7 can be performed according to the vehicle's traveling speed or the traveling scene.

 図5~図7は、本実施の形態1に係る配光制御装置100の配光制御の例を示す図であり、具体的には車両の前方を示す図である。図5~図7には、走行灯7の照射範囲であるハイビームの照射範囲36と、車両のロービームの照射範囲37とが図示されている。 FIGS. 5 to 7 are diagrams showing an example of light distribution control by the light distribution control device 100 according to the first embodiment, specifically, diagrams showing the front of the vehicle. FIGS. 5 to 7 show the high beam illumination range 36, which is the illumination range of the running light 7, and the low beam illumination range 37 of the vehicle.

 図5では、車両の前方に、出現領域が存在せず、他車両である先行車両31が存在する例が示されている。この場合、走行灯制御部6は、ハイビームの照射範囲36のうち、先行車両31が存在する部分を暗くする(例えば消灯する)ように、走行灯7を制御する。 In FIG. 5, an example is shown in which there is no appearance area ahead of the vehicle, and there is another vehicle, a preceding vehicle 31. In this case, the running light control unit 6 controls the running lights 7 to darken (e.g., turn off) the portion of the high beam illumination range 36 where the preceding vehicle 31 is located.

 図6では、車両がビルなどの建物のある市街地を走行している例が示されている。図6では、車両の前方に、先行車両31が存在するだけでなく、路肩に設けられた建物32の背後の領域が出現領域33として存在する例が示されている。この場合、走行灯制御部6は、ハイビームの照射範囲36のうち、先行車両31が存在する部分だけでなく出現領域33を暗くするように、走行灯7を制御する。なお、周囲情報取得部2が、車両の前方カメラで認識された情報を周囲情報として取得するように構成されている場合には、走行灯制御部6は、出現領域33に出現する交通参加者を前方カメラで認識可能な明るさによって、出現領域33の明るさを確保する。これにより、走行灯制御部6は、出現領域33に出現する交通参加者を前方カメラで認識できる程度の明るさを限度として、出現領域33を暗くする。 FIG. 6 shows an example in which a vehicle is traveling in an urban area with buildings such as buildings. In addition to the preceding vehicle 31 being present ahead of the vehicle, an example is shown in which the area behind a building 32 on the roadside is present as the appearance area 33. In this case, the running light control unit 6 controls the running lights 7 to darken not only the portion of the high beam illumination range 36 in which the preceding vehicle 31 is present, but also the appearance area 33. Note that if the surrounding information acquisition unit 2 is configured to acquire information recognized by the vehicle's front camera as surrounding information, the running light control unit 6 ensures that the brightness of the appearance area 33 is such that the traffic participants appearing in the appearance area 33 can be recognized by the front camera. As a result, the running light control unit 6 darkens the appearance area 33 to the extent that the traffic participants appearing in the appearance area 33 can be recognized by the front camera.

 図7では、図6の状態の後に、交通参加者である歩行者34が出現領域33に出現した場合の状態を示す図である。図6及び図7に示すように、出現領域33の明るさを予め暗くしておくことで、ハイビームの照射範囲36に出現した歩行者34にグレアが生じることを抑制することができる。 FIG. 7 shows the state when a pedestrian 34, who is a traffic participant, appears in the appearance area 33 after the state of FIG. 6. As shown in FIGS. 6 and 7, by darkening the brightness of the appearance area 33 in advance, it is possible to prevent glare from occurring to the pedestrian 34 who appears in the illumination range 36 of the high beam.

 なお、周囲情報取得部2が、車両の前方カメラで認識された情報を周囲情報として取得するように構成されている場合には、図7の出現領域33は、前方カメラが交通参加者を認識できる明るさで照らされている。そこで、走行灯制御部6は、周囲情報に基づいて出現領域33に交通参加者が出現したか否かを判定し、出現領域33に交通参加者が出現したと判定した場合に、交通参加者の種別に基づいて出現領域33の明るさを制御してもよい。 Note that if the surrounding information acquisition unit 2 is configured to acquire information recognized by the vehicle's front camera as surrounding information, the appearance area 33 in FIG. 7 is illuminated with a brightness that allows the front camera to recognize the traffic participant. Therefore, the running light control unit 6 may determine whether or not a traffic participant has appeared in the appearance area 33 based on the surrounding information, and if it determines that a traffic participant has appeared in the appearance area 33, it may control the brightness of the appearance area 33 based on the type of traffic participant.

 例えば、出現した交通参加者が他車両であると判定された場合には、走行灯制御部6は、出現領域33を消灯してもよいし、他車両を前方カメラで認識可能な明るさによって出現領域33の明るさを確保してもよい。また例えば、出現した交通参加者が歩行者であると判定された場合には、走行灯制御部6は、歩行者を前方カメラで認識可能な明るさによって出現領域33の明るさを確保しつつ、その明るさを他車両の出現領域33の明るさよりも明るくしてもよい。 For example, if it is determined that the emerging traffic participant is another vehicle, the running light control unit 6 may turn off the appearance area 33, or may ensure that the appearance area 33 is bright enough to recognize the other vehicle with the forward camera. Also, for example, if it is determined that the emerging traffic participant is a pedestrian, the running light control unit 6 may ensure that the appearance area 33 is bright enough to recognize the pedestrian with the forward camera, but may make the brightness brighter than the appearance area 33 of the other vehicle.

 なお、図示は省略するが、交通参加者が出現領域33の外側に向かって移動した場合には、走行灯制御部6は、出現領域33の明るさを維持したまま、交通参加者を追跡するように出現領域33を移動させてもよい。 Although not shown in the figure, if a traffic participant moves toward the outside of the appearance area 33, the running light control unit 6 may move the appearance area 33 to track the traffic participant while maintaining the brightness of the appearance area 33.

 <動作>
 図8は、本実施の形態1に係る配光制御装置100の動作を示すフローチャートである。図8の動作は、例えば走行灯7が点灯している間に繰り返し行われる。
<Operation>
Fig. 8 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 1. The operation in Fig. 8 is repeatedly performed while the driving lights 7 are turned on, for example.

 ステップS1にて、周囲情報取得部2は、周囲情報を取得する。 In step S1, the surrounding information acquisition unit 2 acquires surrounding information.

 ステップS2にて、蓋然性領域特定部3は、周囲情報に基づいて、車両の走行灯7の照射範囲において交通参加者が将来に出現する蓋然性がある領域を特定する。蓋然性判定部4は、蓋然性領域特定部3で特定された領域に基づいて、交通参加者が将来に出現する蓋然性を判定する。領域判定部5は、蓋然性領域特定部3で特定された領域と、蓋然性判定部4で判定された蓋然性とに基づいて、出現領域を判定する。 In step S2, the probability area identification unit 3 identifies an area within the illumination range of the vehicle's running lights 7 where there is a probability that a traffic participant will appear in the future, based on the surrounding information. The probability determination unit 4 determines the probability that a traffic participant will appear in the future, based on the area identified by the probability area identification unit 3. The area determination unit 5 determines the appearance area, based on the area identified by the probability area identification unit 3 and the probability determined by the probability determination unit 4.

 ステップS3にて、走行灯制御部6は、蓋然性と出現領域とに基づいて、出現領域に対する走行灯7の明るさを暗くするための、走行灯7の配光パターンを決定する。そして、走行灯制御部6は、決定した配光パターンに基づいて走行灯7の配光を制御する。 In step S3, the running light control unit 6 determines a light distribution pattern for the running lights 7 to dim the brightness of the running lights 7 in the appearance area based on the probability and the appearance area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.

 <実施の形態1のまとめ>
 本実施の形態1に係る配光制御装置100によれば、周囲情報に基づいて、走行灯7の照射範囲において交通参加者が将来に出現する蓋然性を判定し、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域33として判定し、蓋然性に基づいて出現領域33に対する走行灯7の明るさを暗くする。このような構成によれば、走行灯7の照射範囲のうち、交通参加者が出現する蓋然性が高い出現領域33の明るさを予め暗くすることができるので、配光制御の遅延が原因で交通参加者にグレアが生じることを抑制することができる。
Summary of the First Embodiment
According to the light distribution control device 100 of the first embodiment, the probability that a traffic participant will appear in the future in the illumination range of the running lights 7 is determined based on ambient information, an area in the illumination range where the probability is equal to or greater than a predetermined threshold is determined as an appearance area 33, and the brightness of the running lights 7 for the appearance area 33 is dimmed based on the probability. According to this configuration, the brightness of the appearance area 33 where a traffic participant is highly likely to appear in the illumination range of the running lights 7 can be dimmed in advance, thereby making it possible to suppress glare to traffic participants caused by delays in light distribution control.

 また本実施の形態1では、周囲情報取得部2が、車両の前方カメラで認識された情報を周囲情報として取得する場合に、走行灯制御部6は、出現領域33に出現する交通参加者を前方カメラで認識可能な明るさによって、出現領域33の明るさを確保する。このような構成によれば、出現領域33に対する走行灯7の明るさを暗くしつつ、出現領域33に出現する交通参加者を前方カメラで認識することができる。 In addition, in this embodiment 1, when the surrounding information acquisition unit 2 acquires information recognized by the vehicle's front camera as surrounding information, the running light control unit 6 ensures that the brightness of the appearance area 33 is such that traffic participants appearing in the appearance area 33 can be recognized by the front camera. With this configuration, the brightness of the running lights 7 for the appearance area 33 can be dimmed while the traffic participants appearing in the appearance area 33 can be recognized by the front camera.

 また本実施の形態1では、出現領域33に交通参加者が出現した場合に、交通参加者の種別に基づいて出現領域33の明るさを制御する。このような構成によれば、交通参加者に適した明るさで走行灯7は交通参加者を照らすことができるので、交通参加者にグレアが生じることを抑制しつつ、運転者の視界を確保することができる。 In addition, in the first embodiment, when a traffic participant appears in the appearance area 33, the brightness of the appearance area 33 is controlled based on the type of traffic participant. With this configuration, the running lights 7 can illuminate the traffic participant with a brightness appropriate for the traffic participant, so that the driver's visibility can be ensured while suppressing glare to the traffic participants.

 <実施の形態2>
 図9は、本実施の形態2に係る配光制御装置100の構成を示すブロック図である。以下、本実施の形態2に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 2>
9 is a block diagram showing the configuration of a light distribution control device 100 according to the present embodiment 2. In the following, among the components according to the present embodiment 2, components that are the same as or similar to the components described above are given the same or similar reference numerals, and different components will be mainly described.

 蓋然性領域特定部3は、重み付け演算部8をさらに含んでおり、重み付け演算部8は、蓋然性領域特定部3と同様に判定部の概念に含まれる。重み付け演算部8は、蓋然性判定部4で判定した蓋然性に関して重みを付ける。蓋然性に関して重みを付けることで、例えば蓋然性の精度を高めることができ、その結果として、交通参加者にグレアが生じることを適切に抑制することができる。 The probability area identification unit 3 further includes a weighting calculation unit 8, which is included in the concept of a determination unit, just like the probability area identification unit 3. The weighting calculation unit 8 applies weighting to the probability determined by the probability determination unit 4. By applying weighting to the probability, for example, it is possible to increase the accuracy of the probability, and as a result, it is possible to appropriately suppress the occurrence of glare to traffic participants.

 図10は、重み付け演算部8の蓋然性に関する重み付けを説明するための図である。具体的には、図10の下図は、車両の前方を示す図であり、図10の上図は、重み付けと、車両の前方における水平方向の位置(つまり角度)との関係を示す図である。 FIG. 10 is a diagram for explaining the weighting of the probability by the weighting calculation unit 8. Specifically, the lower diagram in FIG. 10 is a diagram showing the front of the vehicle, and the upper diagram in FIG. 10 is a diagram showing the relationship between the weighting and the horizontal position (i.e., angle) in front of the vehicle.

 図10に示すように、走行灯7の照射範囲の端部における蓋然性に関する重み付けが、走行灯7の照射範囲の中央部における蓋然性に関する重み付けよりも大きくなるように、重み付け演算部8は、蓋然性に関する重み付けを行う。 As shown in FIG. 10, the weighting calculation unit 8 weights the probability so that the weighting of the probability at the ends of the illumination range of the running light 7 is greater than the weighting of the probability at the center of the illumination range of the running light 7.

 図10の例では、蓋然性に関する重み付けは、蓋然性そのものを変更する重み付けである。つまり、走行灯7の照射範囲の中央部における蓋然性の重み付け量をaとし、走行灯7の照射範囲の端部における蓋然性の重み付け量をbとした場合に、a<bという関係が成り立つように、重み付け演算部8は、蓋然性の重み付けを行う。なお、走行灯7の照射範囲の中央部は、通常、車両前方の中央部に対応する。 In the example of FIG. 10, the weighting of the probability is a weighting that changes the probability itself. In other words, if the weighting amount of the probability in the center of the illumination range of the running lights 7 is a and the weighting amount of the probability in the edge of the illumination range of the running lights 7 is b, the weighting calculation unit 8 weights the probability so that the relationship a<b holds. Note that the center of the illumination range of the running lights 7 usually corresponds to the center of the front of the vehicle.

 交通参加者にグレアが生じることを抑制しつつ、運転者の視界を確保することができるのであれば、蓋然性の重み付けは、図10の例に限ったものではない。例えば、角度と蓋然性との関係を示すグラフは、図10の例では、左右対称であったが、左右非対称であってもよい。また例えば、角度と蓋然性との関係を示すグラフは、図10の例では、直線で表されているが、曲線などで表されてもよい。  As long as it is possible to ensure the driver's visibility while suppressing glare to traffic participants, the weighting of the probability is not limited to the example in FIG. 10. For example, the graph showing the relationship between angle and probability is symmetrical in the example of FIG. 10, but it may be asymmetrical. Also, for example, the graph showing the relationship between angle and probability is represented by a straight line in the example of FIG. 10, but it may be represented by a curve, etc.

 図11は、図10の重みの適用例を示す図であり、具体的には蓋然性と、出現領域に対する走行灯7の減光量との関係を示す図である。蓋然性判定部4で蓋然性cが判定された場合、蓋然性cは閾値THよりも小さいため、出現領域に対する走行灯7の減光量は0である。図10の重みを適用することで蓋然性cが蓋然性c’に変更された場合には、走行灯制御部6は、出現領域に対する走行灯7の減光量d’で走行灯7を制御する。 FIG. 11 is a diagram showing an example of application of the weights in FIG. 10, specifically showing the relationship between the probability and the amount of dimming of the running lights 7 for the appearance area. When the probability determination unit 4 determines the probability c, the probability c is smaller than the threshold value TH, so the amount of dimming of the running lights 7 for the appearance area is 0. When the probability c is changed to probability c' by applying the weights in FIG. 10, the running light control unit 6 controls the running lights 7 with the amount of dimming d' of the running lights 7 for the appearance area.

 なお、以上の説明では、蓋然性を加算する重み付けについて説明したが、蓋然性を減算する重み付けであってもよく、例えば蓋然性c’が蓋然性cに変更されてもよい。また、図10の例では、蓋然性に関する重み付けは、蓋然性そのものを変更する重み付けであったが、これに限ったものではない。例えば図12のように、蓋然性に関する重み付けは、減光するか否かを規定する蓋然性の閾値THを変更する重み付けであってもよい。また例えば図13のように、蓋然性に関する重み付けは、蓋然性に対する減光量の変化の割合を変更する重み付けであってもよい。 In the above explanation, the weighting that adds the probability has been described, but the weighting may be a weighting that subtracts the probability, for example, the probability c' may be changed to the probability c. Also, in the example of FIG. 10, the weighting related to the probability is a weighting that changes the probability itself, but this is not limited to this. For example, as shown in FIG. 12, the weighting related to the probability may be a weighting that changes the probability threshold value TH that determines whether or not to dim the light. Also, as shown in FIG. 13, the weighting related to the probability may be a weighting that changes the rate of change in the amount of dimming relative to the probability.

 <動作>
 図14は、本実施の形態2に係る配光制御装置100の動作を示すフローチャートである。図14の動作は、図8の動作のステップS2とステップS3との間にステップS4の処理が追加された動作と同様であるため、ここではステップS4について主に説明する。
<Operation>
Fig. 14 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 2. The operation in Fig. 14 is similar to the operation in Fig. 8 in which the processing of step S4 is added between steps S2 and S3, and therefore step S4 will be mainly described here.

 ステップS4にて、走行灯制御部6は、車両の前方における出現領域33の水平方向の位置に基づき、図10のグラフで示される関係に従って、蓋然性に関して重みを付ける。 In step S4, the running light control unit 6 weights the probability based on the horizontal position of the appearance area 33 in front of the vehicle, according to the relationship shown in the graph in FIG. 10.

 ステップS3にて、走行灯制御部6は、重み付けが適用された後の蓋然性と、出現領域とに基づいて、出現領域に対する走行灯7の明るさを暗くするための、走行灯7の配光パターンを決定する。そして、走行灯制御部6は、決定した配光パターンに基づいて走行灯7の配光を制御する。 In step S3, the running light control unit 6 determines a light distribution pattern for the running lights 7 to dim the brightness of the running lights 7 in the appearance area based on the probability after the weighting has been applied and the appearance area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.

 <実施の形態2のまとめ>
 一般的に、運転者からみた走行灯7の照射範囲の中央部の方向は、車両の進行方向である場合が多いため、明るさが運転者の運転の安全性に与える影響が大きい。一方、運転者からみた走行灯7の照射範囲の端部の方向は、車両の進行方向からずれている場合が多いため、明るさが運転者の運転の安全性に与える影響が小さい。このため、通常、運転者は、走行灯7の照射範囲の中央部よりも端部に注意を払わないことが多い。
Summary of the second embodiment
Generally, the direction of the center of the illumination range of the running lights 7 as seen by the driver is often the direction of travel of the vehicle, so the brightness has a large impact on the driver's driving safety. On the other hand, the direction of the edge of the illumination range of the running lights 7 as seen by the driver is often shifted from the direction of travel of the vehicle, so the brightness has a small impact on the driver's driving safety. For this reason, the driver usually pays less attention to the edge of the illumination range of the running lights 7 than to the center.

 これに対して本実施の形態2に係る配光制御装置100によれば、走行灯7の照射範囲の端部における蓋然性に関する重み付けが、走行灯7の照射範囲の中央部における蓋然性に関する重み付けよりも大きい。このような構成によれば、出現領域33が、走行灯7の照射範囲の中央部よりも端部において生成されやすくなるので、運転者の運転の安全性を維持しつつ、交通参加者におけるグレアの抑制を高めることができる。 In contrast, with the light distribution control device 100 according to the second embodiment, the weighting of the probability at the ends of the illumination range of the running lights 7 is greater than the weighting of the probability at the center of the illumination range of the running lights 7. With this configuration, the appearance area 33 is more likely to be generated at the ends of the illumination range of the running lights 7 than at the center, so that glare suppression for traffic participants can be improved while maintaining the driving safety of the driver.

 <実施の形態3>
 図15は、本実施の形態3に係る配光制御装置100の構成を示すブロック図である。以下、本実施の形態3に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。なお、本実施の形態3では、周囲情報取得部2は、少なくとも車両前方の画像を周囲情報として取得するものとする。
<Third embodiment>
15 is a block diagram showing the configuration of a light distribution control device 100 according to the third embodiment. In the following, among the components according to the third embodiment, the same or similar reference symbols are used for the components that are the same as or similar to the components described above, and different components are mainly described. In the third embodiment, the surrounding information acquisition unit 2 acquires at least an image in front of the vehicle as surrounding information.

 図15の構成は、車両の運転者の視線に関する領域を実測する場合を例示した構成であり、図9の構成に、視線情報収集部11、視線情報取得部12、及び、注視領域特定部9が追加された構成と同様である。注視領域特定部9は、蓋然性領域特定部3などと同様に判定部の概念に含まれる。 The configuration in FIG. 15 is an example of a case where the area related to the line of sight of the vehicle driver is actually measured, and is similar to the configuration in FIG. 9 with the addition of a line of sight information collection unit 11, line of sight information acquisition unit 12, and gaze area identification unit 9. The gaze area identification unit 9 is included in the concept of a determination unit, like the probability area identification unit 3 and the like.

 視線情報収集部11は、運転者の視線情報を収集する。例えば、視線情報収集部11は、車内を撮影するカメラを用いて、運転者の視線情報を収集する。 The gaze information collection unit 11 collects gaze information of the driver. For example, the gaze information collection unit 11 collects gaze information of the driver using a camera that captures images inside the vehicle.

 視線情報取得部12は、視線情報収集部11で収集された視線情報を取得する。図15の例では、視線情報取得部12は、視線情報収集部11のインターフェイスであるが、これに限ったものではなく、例えばDMS(ドライバモニタリングシステム)を、視線情報収集部11として含んでもよい。 The gaze information acquisition unit 12 acquires gaze information collected by the gaze information collection unit 11. In the example of FIG. 15, the gaze information acquisition unit 12 is an interface to the gaze information collection unit 11, but is not limited to this, and may include, for example, a DMS (driver monitoring system) as the gaze information collection unit 11.

 注視領域特定部9は、車両の運転者の視線に関する領域を、車両の運転者が注視する領域(以下「注視領域」と記す)として実測または推測により特定する。 The gaze area identification unit 9 identifies the area related to the line of sight of the vehicle driver as the area on which the vehicle driver is gazing (hereinafter referred to as the "gaze area") by actual measurement or estimation.

 注視領域の実測では、例えば、注視領域特定部9は、視線情報取得部12で取得された視線情報に基づいて注視領域を特定する。この場合、周囲情報が拡張されることによって、周囲情報には、車両の運転者の視線に関する領域を実測した情報が含まれてもよい。 In measuring the gaze area, for example, the gaze area identification unit 9 identifies the gaze area based on gaze information acquired by the gaze information acquisition unit 12. In this case, the surrounding information may be expanded to include information obtained by actually measuring the area related to the gaze of the driver of the vehicle.

 注視領域の推測では、視線情報収集部11、及び、視線情報取得部12は不要であり、例えば、注視領域特定部9は顕著性マップを用いる。顕著性マップは、人が車両前方を示す画像を見たときの人の注視しやすさをピクセル毎に計算したマップであり、車両の運転者が注視しやすい領域、すなわち注視領域に対応する領域を含む。車両の運転者が注視しやすい領域は、例えば進行方向(消失点)の領域、路肩に駐車している駐車車両の領域、歩行者の領域などを含む。 To estimate the gaze area, the gaze information collection unit 11 and the gaze information acquisition unit 12 are not required, and the gaze area identification unit 9 uses a saliency map, for example. The saliency map is a map that calculates for each pixel how easily a person will gaze when looking at an image showing the area in front of the vehicle, and includes areas that are easy for the driver of the vehicle to gaze at, i.e., areas that correspond to the gaze area. Areas that are easy for the driver of the vehicle to gaze at include, for example, the area in the direction of travel (vanishing point), the area of vehicles parked on the shoulder of the road, and the area of pedestrians.

 顕著性マップの生成として、例えば、注視領域特定部9は、周囲情報取得部2で取得された周囲情報に含まれる車両前方の画像を取得し、当該画像に基づいて顕著性マップを生成する。注視領域特定部9が生成する顕著性マップの一例として、撮像信号中の注視領域を検出するためのサリエンシーマップ(例えば、「L. Itti, and C. Koch, “A saliency-based search mechanism for overt and covert shift of visual attention”, Vision Research, Vol. 40, pp. 1489-1506, 2000」を参照)が挙げられる。顕著性マップの顕著性の算出方法は、例えば、画像中の輝度、色または方位等に基づいて顕著性を算出する方法であってもよいし、ニューラルネットワークを用いた深層学習などの機械学習(訓練)を応用した方法であってもよい。深層学習は、例えば車両前方の画像と実際の視線情報とを学習データとして用いる学習であってもよい。 To generate the saliency map, for example, the gaze area identification unit 9 acquires an image of the area in front of the vehicle included in the surrounding information acquired by the surrounding information acquisition unit 2, and generates the saliency map based on the image. One example of the saliency map generated by the gaze area identification unit 9 is a saliency map for detecting the gaze area in the image signal (see, for example, L. Itti, and C. Koch, “A saliency-based search mechanism for overt and covert shift of visual attention”, Vision Research, Vol. 40, pp. 1489-1506, 2000). The method of calculating the saliency of the saliency map may be, for example, a method of calculating the saliency based on the luminance, color, or direction in the image, or a method that applies machine learning (training) such as deep learning using a neural network. The deep learning may be, for example, learning that uses an image of the area in front of the vehicle and actual gaze information as learning data.

 注視領域特定部9は、画像から生成された顕著性マップに基づいて注視領域を推測により特定する。例えば、注視領域特定部9は、周囲情報に含まれる車両前方の画像に最も近い顕著性マップを複数の顕著性マップの中から選択し、車両前方の画像と、検索された顕著性マップとを対比することによって、注視領域を特定する。 The gaze area identifying unit 9 infers the gaze area based on a saliency map generated from the image. For example, the gaze area identifying unit 9 selects from among a plurality of saliency maps the saliency map that is closest to the image in front of the vehicle contained in the surrounding information, and identifies the gaze area by comparing the image in front of the vehicle with the searched saliency map.

 走行灯制御部6は、注視領域に対する走行灯7の明るさを明るくする。また、走行灯制御部6は、出現領域と注視領域とが重なる重複領域に対する走行灯7の明るさを、出現領域よりも明るく、かつ、注視領域よりも暗くする。 The running light control unit 6 increases the brightness of the running lights 7 in the gaze area. The running light control unit 6 also increases the brightness of the running lights 7 in the overlap area where the appearance area and gaze area overlap, to be brighter than the appearance area and darker than the gaze area.

 図16は、本実施の形態3に係る配光制御装置100の配光制御の例を示す図であり、具体的には車両の前方を示す図である。図16では、車両がビルなどの建物のある市街地を走行している例が示されている。図16では、車両の前方に建物32及び駐車車両41が存在する例が示されている。そして、駐車車両41に対して2つの出現領域33a,33bと、建物32に対して1つの出現領域33cとが判定され、注視領域43が特定されている。また、出現領域33a,33bと注視領域43とは重複領域44a,44bを形成し、出現領域33cの一部と注視領域43とは重複領域44cを形成している。 FIG. 16 is a diagram showing an example of light distribution control of the light distribution control device 100 according to the third embodiment, specifically showing the front of the vehicle. FIG. 16 shows an example in which the vehicle is traveling in an urban area with buildings such as skyscrapers. FIG. 16 shows an example in which a building 32 and a parked vehicle 41 are present in front of the vehicle. Two appearance regions 33a, 33b are determined for the parked vehicle 41, and one appearance region 33c is determined for the building 32, and a gaze region 43 is identified. Furthermore, the appearance regions 33a, 33b and the gaze region 43 form overlapping regions 44a, 44b, and a part of the appearance region 33c and the gaze region 43 form an overlapping region 44c.

 この場合に、走行灯制御部6は、重複領域以外の注視領域43の明るさを、ハイビームの通常の照射範囲36の明るさよりも明るくする。また、走行灯制御部6は、重複領域44a,44b,44cの明るさを、出現領域33cの明るさよりも明るく、注視領域43の明るさよりも暗くする。例えば、ハイビームの通常の照射範囲の明るさを100%とした場合に、注視領域の明るさが120%となり、出現領域の明るさが20%となり、重複領域の明るさが出現領域の明るさと注視領域の明るさとの平均である70%となるように、走行灯制御部6は各領域の明るさを制御する。なお、この数値は一例であって、これに限ったものではない。 In this case, the running light control unit 6 makes the brightness of the gaze area 43 other than the overlap area brighter than the brightness of the normal illumination range 36 of the high beam. The running light control unit 6 also makes the brightness of the overlap areas 44a, 44b, 44c brighter than the brightness of the appearance area 33c and darker than the brightness of the gaze area 43. For example, if the brightness of the normal illumination range of the high beam is 100%, the running light control unit 6 controls the brightness of each area so that the brightness of the gaze area is 120%, the brightness of the appearance area is 20%, and the brightness of the overlap area is 70%, which is the average of the brightness of the appearance area and the brightness of the gaze area. Note that these numerical values are merely examples and are not limited to these.

 <動作>
 図17は、本実施の形態3に係る配光制御装置100の動作を示すフローチャートである。図17の動作は、図14の動作のステップS4とステップS3との間にステップS5の処理が追加された動作と同様であるため、ここではステップS5について主に説明する。
<Operation>
Fig. 17 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 3. The operation in Fig. 17 is similar to the operation in Fig. 14 in which the processing of step S5 is added between step S4 and step S3, and therefore step S5 will be mainly described here.

 ステップS5にて、注視領域特定部9は、注視領域を実測または推測により特定する。 In step S5, the gaze area identification unit 9 identifies the gaze area by actual measurement or estimation.

 ステップS3にて、走行灯制御部6は、重み付けが適用された後の蓋然性と、出現領域と、注視領域とに基づいて、各領域の明るさを制御するための、走行灯7の配光パターンを決定する。そして、走行灯制御部6は、決定した配光パターンに基づいて走行灯7の配光を制御する。 In step S3, the running light control unit 6 determines a light distribution pattern of the running lights 7 to control the brightness of each area based on the probability after the weighting has been applied, the appearance area, and the gaze area. The running light control unit 6 then controls the light distribution of the running lights 7 based on the determined light distribution pattern.

 <実施の形態3のまとめ>
 以上のような本実施の形態3に係る配光制御装置100によれば、注視領域に対する走行灯7の明るさを明るくし、出現領域と注視領域とが重なる重複領域に対する走行灯7の明るさを、出現領域よりも明るく、かつ、注視領域よりも暗くする。このような構成によれば、交通参加者にグレアが生じることを抑制するために出現領域を暗くする制御、及び、注視領域を明るくする制御という、相反する制御を両立することができる。
<Summary of the Third Embodiment>
According to the light distribution control device 100 of the third embodiment, the brightness of the running lights 7 in the gaze area is increased, and the brightness of the running lights 7 in the overlap area where the appearance area and the gaze area overlap is increased compared to the appearance area and decreased compared to the gaze area. This configuration makes it possible to achieve two contradictory controls: a control to darken the appearance area in order to prevent glare from being caused to traffic participants, and a control to brighten the gaze area.

 <実施の形態4>
 図18は、本実施の形態4に係る配光制御装置100の構成を示すブロック図である。以下、本実施の形態4に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Fourth embodiment>
Fig. 18 is a block diagram showing the configuration of a light distribution control device 100 according to embodiment 4. Below, among the components according to embodiment 4, components that are the same as or similar to the components described above are given the same or similar reference symbols, and different components will be mainly described.

 図18の構成は、図15の構成に危険領域特定部10が追加された構成と同様であり、危険領域特定部10は、蓋然性領域特定部3などと同様に判定部の概念に含まれる。危険領域特定部10は、周囲情報に基づいて、車両と出現領域とが接触する可能性があるか否かを判定する。例えば、危険領域特定部10は、周囲情報に基づいて、車両に対する出現領域の相対的な移動を算出し、当該移動に基づいて車両と出現領域との将来の位置関係を予測し、当該位置関係に基づいて車両と出現領域とが接触する可能性があるか否かを判定する。なお、危険領域特定部10は、周囲情報に基づいて出現領域に物体があるか否かを判定してから、上記移動の算出と、移動関係の予測と、接触の可能性の判定とを行ってもよい。 The configuration of FIG. 18 is the same as the configuration of FIG. 15 with the addition of a danger area identification unit 10, and the danger area identification unit 10 is included in the concept of a determination unit, like the probability area identification unit 3. The danger area identification unit 10 determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the surrounding information. For example, the danger area identification unit 10 calculates the relative movement of the appearance area with respect to the vehicle based on the surrounding information, predicts the future positional relationship between the vehicle and the appearance area based on the movement, and determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the positional relationship. Note that the danger area identification unit 10 may first determine whether or not there is an object in the appearance area based on the surrounding information, and then calculate the movement, predict the movement relationship, and determine the possibility of contact.

 走行灯制御部6は、危険領域特定部10で車両と接触する可能性があると判定された出現領域について、走行灯7の明るさを暗くすることを禁止する。 The running light control unit 6 prohibits the brightness of the running lights 7 from being dimmed in areas where the danger area identification unit 10 has determined that there is a possibility of contact with a vehicle.

 図19は、本実施の形態4に係る配光制御装置100の配光制御の例を示す図であり、具体的には車両の前方を示す図である。図19では、車両がビルなどの建物のある市街地を走行している例が示されている。図19では、車両の前方に建物32及び駐車車両41が存在する例が示されている。そして、駐車車両41に対して2つの出現領域33a,33bと、建物32に対して1つの出現領域33cとが判定され、注視領域43が特定されている。 FIG. 19 is a diagram showing an example of light distribution control by the light distribution control device 100 according to the fourth embodiment, specifically showing the front of the vehicle. FIG. 19 shows an example in which the vehicle is traveling in an urban area with buildings such as skyscrapers. FIG. 19 also shows an example in which a building 32 and a parked vehicle 41 are present in front of the vehicle. Two appearance areas 33a, 33b are determined for the parked vehicle 41, and one appearance area 33c is determined for the building 32, and the gaze area 43 is identified.

 ここで、運転者が、駐車車両41の右側から駐車車両41を追い越すように車両を運転する場合を想定する。この場合、出現領域33aは車両の進行方向に存在するので、危険領域特定部10は、出現領域33aは車両と接触する可能性があると判定する。このため、走行灯制御部6は、出現領域33aについて走行灯7の明るさを暗くすることを禁止する。この結果、出現領域33aと注視領域43とが重複する領域の明るさは、注視領域43の明るさと実質的に同じになる。一方、出現領域33bは車両の進行方向に存在しないので、危険領域特定部10は、出現領域33aは車両と接触する可能性があると判定しない。このため、走行灯制御部6は、出現領域33bについて走行灯7の明るさを暗くする。 Here, assume that the driver drives the vehicle to overtake the parked vehicle 41 from the right side of the parked vehicle 41. In this case, since the appearance area 33a exists in the traveling direction of the vehicle, the danger area identification unit 10 determines that the appearance area 33a may come into contact with a vehicle. Therefore, the running light control unit 6 prohibits the brightness of the running lights 7 for the appearance area 33a to be dimmed. As a result, the brightness of the area where the appearance area 33a and the gaze area 43 overlap becomes substantially the same as the brightness of the gaze area 43. On the other hand, since the appearance area 33b does not exist in the traveling direction of the vehicle, the danger area identification unit 10 does not determine that the appearance area 33a may come into contact with a vehicle. Therefore, the running light control unit 6 dims the brightness of the running lights 7 for the appearance area 33b.

 <動作>
 図20は、本実施の形態4に係る配光制御装置100の動作を示すフローチャートである。図20の動作は、図17の動作のステップS5とステップS3との間にステップS6の処理が追加された動作と同様であるため、ここではステップS6について主に説明する。
<Operation>
Fig. 20 is a flowchart showing the operation of the light distribution control device 100 according to the embodiment 4. The operation in Fig. 20 is similar to the operation in Fig. 17 in which the processing of step S6 is added between steps S5 and S3, and therefore step S6 will be mainly described here.

 ステップS6にて、危険領域特定部10は、周囲情報に基づいて、車両と出現領域とが接触する可能性があるか否かを判定する。 In step S6, the danger area identification unit 10 determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the surrounding information.

 ステップS3にて、走行灯制御部6は、重み付けが適用された後の蓋然性と、出現領域と、注視領域と、危険領域特定部10の判定結果とに基づいて、各領域の明るさを制御するための、走行灯7の配光パターンを決定する。そして、走行灯制御部6は、決定した配光パターンに基づいて走行灯7の配光を制御する。 In step S3, the running light control unit 6 determines a light distribution pattern of the running lights 7 to control the brightness of each area based on the probability after the weighting has been applied, the appearance area, the gaze area, and the determination result of the danger area identification unit 10. Then, the running light control unit 6 controls the light distribution of the running lights 7 based on the determined light distribution pattern.

 <実施の形態4のまとめ>
 以上のような本実施の形態4に係る配光制御装置100によれば、周囲情報に基づいて、車両と出現領域とが接触する可能性があるか否かを判定し、当該可能性があると判定された出現領域について、走行灯7の明るさを暗くすることを禁止する。このような構成によれば、車両と接触する可能性がある出現領域の明るさが維持され、運転者の視界を確保することができるので、減光よりも運転の安全性を優先することができる。
<Summary of the Fourth Embodiment>
According to the light distribution control device 100 of the fourth embodiment described above, it is determined whether or not there is a possibility of contact between a vehicle and an appearance area based on surrounding information, and for an appearance area determined to have such a possibility, dimming of the brightness of the running lights 7 is prohibited. With this configuration, the brightness of the appearance area where there is a possibility of contact with a vehicle is maintained, and the driver's visibility can be secured, so that driving safety can be prioritized over dimming.

 <その他の変形例>
 上述した図1の周囲情報取得部2と、判定部(つまり蓋然性領域特定部3、蓋然性判定部4、領域判定部5)と、走行灯制御部6とを、以下「周囲情報取得部2等」と記す。周囲情報取得部2等は、図21に示す処理回路81により実現される。すなわち、処理回路81は、車両の周囲情報を取得する周囲情報取得部2と、周囲情報に基づいて、車両の走行灯の照射範囲において交通参加者が将来に出現する蓋然性を判定し、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域として判定する判定部と、蓋然性に基づいて出現領域に対する走行灯の明るさを暗くする走行灯制御部6と、を備える。処理回路81には、専用のハードウェアが適用されてもよいし、メモリに格納されるプログラムを実行するプロセッサが適用されてもよい。プロセッサには、例えば、中央処理装置、GPU(Graphics Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)などが該当する。
<Other Modifications>
The surrounding information acquisition unit 2, the determination unit (i.e., the probability area specification unit 3, the probability determination unit 4, the area determination unit 5), and the running light control unit 6 in FIG. 1 described above are hereinafter referred to as the "surrounding information acquisition unit 2, etc." The surrounding information acquisition unit 2, etc. are realized by a processing circuit 81 shown in FIG. 21. That is, the processing circuit 81 includes the surrounding information acquisition unit 2 that acquires surrounding information of the vehicle, a determination unit that determines the probability that a traffic participant will appear in the future in the illumination range of the vehicle's running lights based on the surrounding information, and determines an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and a running light control unit 6 that darkens the brightness of the running lights for the appearance area based on the probability. The processing circuit 81 may be implemented with dedicated hardware, or may be implemented with a processor that executes a program stored in a memory. The processor may be, for example, a central processing unit, a GPU (Graphics Processing Unit), a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.

 処理回路81が専用のハードウェアである場合、処理回路81は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、SoC(System-on-a-Chip)、システムLSI(Large-Scale Integration)、またはこれらを組み合わせたものが該当する。周囲情報取得部2等の各部の機能それぞれは、処理回路を分散させた回路で実現されてもよいし、各部の機能をまとめて一つの処理回路で実現されてもよい。 When the processing circuit 81 is dedicated hardware, the processing circuit 81 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), a SoC (System-on-a-Chip), a system LSI (Large-Scale Integration), or a combination of these. Each function of the surrounding information acquisition unit 2, etc. may be realized by a circuit with distributed processing circuits, or the functions of each unit may be combined and realized by a single processing circuit.

 処理回路81がプロセッサである場合、周囲情報取得部2等の機能は、ソフトウェア等との組み合わせにより実現される。なお、ソフトウェア等には、例えば、ソフトウェア、ファームウェア、または、ソフトウェア及びファームウェアが該当する。ソフトウェア等はプログラムとして記述され、メモリに格納される。図22に示すように、処理回路81に適用されるプロセッサ82は、メモリ83に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、配光制御装置100は、処理回路81により実行されるときに、車両の周囲情報を取得するステップと、周囲情報に基づいて、車両の走行灯の照射範囲において交通参加者が将来に出現する蓋然性を判定し、照射範囲のうち蓋然性が予め定められた閾値以上である領域を出現領域として判定するステップと、蓋然性に基づいて出現領域に対する走行灯の明るさを暗くするステップと、が結果的に実行されることになるプログラムを格納するためのメモリ83を備える。換言すれば、このプログラムは、周囲情報取得部2等の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ83は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、SSD(Solid State Drive)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)、それらのドライブ装置、または、今後使用されるあらゆる記憶媒体であってもよい。 When the processing circuit 81 is a processor, the functions of the surrounding information acquisition unit 2 and the like are realized by a combination with software and the like. The software and the like includes, for example, software, firmware, or software and firmware. The software and the like are written as a program and stored in a memory. As shown in FIG. 22, the processor 82 applied to the processing circuit 81 realizes the functions of each unit by reading and executing a program stored in the memory 83. That is, the light distribution control device 100 includes a memory 83 for storing a program that, when executed by the processing circuit 81, results in the execution of the steps of acquiring surrounding information about the vehicle, judging the probability that a traffic participant will appear in the future in the illumination range of the vehicle's running lights based on the surrounding information, and judging an area in the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area, and dimming the brightness of the running lights for the appearance area based on the probability. In other words, this program can be said to cause a computer to execute the procedures and methods of the surrounding information acquisition unit 2 and the like. Here, memory 83 may be, for example, non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), SSD (Solid State Drive), HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), drive devices for these, or any storage medium to be used in the future.

 以上、周囲情報取得部2等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、周囲情報取得部2等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えば、周囲情報取得部2については専用のハードウェアとしての処理回路81でその機能を実現し、それ以外についてはプロセッサ82としての処理回路81がメモリ83に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 The above describes a configuration in which the functions of the surrounding information acquisition unit 2, etc. are realized either by hardware or software, etc. However, this is not limited to the above, and a configuration in which part of the surrounding information acquisition unit 2, etc. is realized by dedicated hardware and another part is realized by software, etc. For example, the surrounding information acquisition unit 2's functions can be realized by a processing circuit 81 as dedicated hardware, and the other functions can be realized by the processing circuit 81 as a processor 82 reading and executing a program stored in a memory 83.

 以上のように、処理回路81は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 81 can realize each of the above-mentioned functions through hardware, software, etc., or a combination of these.

 また、以上で説明した配光制御装置は、車両装置と、通信端末と、車両装置及び通信端末の少なくとも1つにインストールされるアプリケーションの機能と、サーバとを適宜に組み合わせてシステムとして構築される配光制御システムにも適用することができる。通信端末は、例えば、携帯電話、スマートフォン及びタブレットなどを含む。以上で説明した配光制御装置の各機能あるいは各構成要素は、前記システムを構築する各機器に分散して配置されてもよいし、いずれかの機器に集中して配置されてもよい。 The light distribution control device described above can also be applied to a light distribution control system constructed as a system by appropriately combining a vehicle device, a communication terminal, the functions of an application installed in at least one of the vehicle device and the communication terminal, and a server. Communication terminals include, for example, mobile phones, smartphones, and tablets. Each function or component of the light distribution control device described above may be distributed and disposed in each device that constructs the system, or may be concentrated and disposed in one of the devices.

 図23は、本変形例に係るサーバ91の構成を示すブロック図である。図23のサーバ91は、通信部91aと制御部91bとを備えており、車両92の車両装置93と無線通信を行うことが可能となっている。 FIG. 23 is a block diagram showing the configuration of a server 91 according to this modified example. The server 91 in FIG. 23 includes a communication unit 91a and a control unit 91b, and is capable of wireless communication with a vehicle device 93 of a vehicle 92.

 周囲情報取得部である通信部91aは、車両装置93と無線通信を行うことにより、車両装置93で取得された車両の周囲情報を受信する。 The communication unit 91a, which is the surrounding information acquisition unit, receives surrounding information about the vehicle acquired by the vehicle device 93 by performing wireless communication with the vehicle device 93.

 制御部91bは、サーバ91の図示しないプロセッサなどが、サーバ91の図示しないメモリに記憶されたプログラムを実行することにより、図1の判定部(つまり蓋然性領域特定部3、蓋然性判定部4、領域判定部5)及び走行灯制御部6と同様の機能を有している。つまり、制御部91bは、周囲情報に基づいて蓋然性の判定と出現領域の判定とを行い、蓋然性に基づいて出現領域に対する走行灯の明るさを暗くする制御を行うための制御信号を生成する。そして、通信部91aは、制御部91bの制御信号を車両装置93に送信する。このように構成されたサーバ91によれば、実施の形態1で説明した配光制御装置100と同様の効果を得ることができる。 The control unit 91b has functions similar to those of the determination unit (i.e., the probability area identification unit 3, the probability determination unit 4, the area determination unit 5) and the running light control unit 6 in FIG. 1, by a processor (not shown) of the server 91 executing a program stored in a memory (not shown) of the server 91. In other words, the control unit 91b determines the probability and the appearance area based on the surrounding information, and generates a control signal for controlling the brightness of the running lights for the appearance area to be darker based on the probability. The communication unit 91a then transmits the control signal of the control unit 91b to the vehicle device 93. With the server 91 configured in this manner, it is possible to obtain the same effect as the light distribution control device 100 described in embodiment 1.

 図24は、本変形例に係る通信端末96の構成を示すブロック図である。図24の通信端末96は、通信部91aと同様の通信部96aと、制御部91bと同様の制御部96bとを備えており、車両97の車両装置98と無線通信を行うことが可能となっている。なお、通信端末96には、例えば車両97の運転者が携帯する携帯電話、スマートフォン、及びタブレットなどの携帯端末が適用される。このように構成された通信端末96によれば、実施の形態1で説明した配光制御装置100と同様の効果を得ることができる。 FIG. 24 is a block diagram showing the configuration of a communication terminal 96 according to this modified example. The communication terminal 96 in FIG. 24 includes a communication unit 96a similar to the communication unit 91a and a control unit 96b similar to the control unit 91b, and is capable of wireless communication with a vehicle device 98 of a vehicle 97. Note that the communication terminal 96 may be, for example, a mobile phone, smartphone, tablet, or other mobile terminal carried by the driver of the vehicle 97. With the communication terminal 96 configured in this manner, it is possible to obtain the same effects as the light distribution control device 100 described in embodiment 1.

 なお、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。 In addition, it is possible to freely combine the various embodiments and modifications, and to modify or omit the various embodiments and modifications as appropriate.

 上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。 The above description is illustrative in all respects and is not limiting. It is understood that countless variations not illustrated can be envisioned.

 2 周囲情報取得部、3 蓋然性領域特定部、4 蓋然性判定部、5 領域判定部、6 走行灯制御部、7 走行灯、8 重み付け演算部、9 注視領域特定部、10 危険領域特定部、33,33a,33b,33c 出現領域、43 注視領域、44a,44b,44c 重複領域、100 配光制御装置。 2 Surrounding information acquisition unit, 3 Probability area identification unit, 4 Probability judgment unit, 5 Area judgment unit, 6 Running light control unit, 7 Running light, 8 Weighting calculation unit, 9 Gazing area identification unit, 10 Danger area identification unit, 33, 33a, 33b, 33c Appearance area, 43 Gazing area, 44a, 44b, 44c Overlapping area, 100 Light distribution control device.

Claims (8)

 車両の周囲情報を取得する周囲情報取得部と、
 前記周囲情報に基づいて、前記車両の走行灯の照射範囲において交通参加者が将来に出現する蓋然性を判定し、前記照射範囲のうち前記蓋然性が予め定められた閾値以上である領域を出現領域として判定する判定部と、
 前記蓋然性に基づいて前記出現領域に対する前記走行灯の明るさを暗くする走行灯制御部と
を備える、配光制御装置。
A surrounding information acquisition unit that acquires surrounding information of the vehicle;
a determination unit that determines a probability that a traffic participant will appear in the future within an illumination range of the running lights of the vehicle based on the surrounding information, and determines an area of the illumination range where the probability is equal to or greater than a predetermined threshold as an appearance area;
A light distribution control device comprising: a driving light control unit that dims the brightness of the driving lights for the appearance area based on the probability.
 請求項1に記載の配光制御装置であって、
 前記周囲情報取得部は、前記車両の前方カメラで認識された情報を前記周囲情報として取得し、
 前記走行灯制御部は、前記出現領域に出現する前記交通参加者を前記前方カメラで認識可能な明るさによって、前記出現領域の前記明るさを確保する、配光制御装置。
The light distribution control device according to claim 1,
The surrounding information acquisition unit acquires information recognized by a front camera of the vehicle as the surrounding information,
The running light control unit is a light distribution control device that ensures the brightness of the appearance area to be sufficient to enable the forward camera to recognize the traffic participants appearing in the appearance area.
 請求項2に記載の配光制御装置であって、
 前記走行灯制御部は、前記出現領域に前記交通参加者が出現した場合に、前記交通参加者の種別に基づいて前記出現領域の前記明るさを制御する、配光制御装置。
The light distribution control device according to claim 2,
The running light control unit is a light distribution control device that controls the brightness of the appearance area based on a type of the traffic participant when the traffic participant appears in the appearance area.
 請求項1に記載の配光制御装置であって、
 前記走行灯の前記照射範囲の端部における前記蓋然性に関する重み付けは、前記走行灯の前記照射範囲の中央部における前記蓋然性に関する重み付けよりも大きい、配光制御装置。
The light distribution control device according to claim 1,
A light distribution control device, wherein a weighting for the probability at an end portion of the illumination range of the running light is greater than a weighting for the probability at a center portion of the illumination range of the running light.
 請求項1に記載の配光制御装置であって、
 前記走行灯制御部は、前記車両の運転者の視線に関する領域である注視領域に対する前記走行灯の明るさを明るくし、前記出現領域と前記注視領域とが重なる重複領域に対する前記走行灯の明るさを、前記出現領域よりも明るく、かつ、前記注視領域よりも暗くする、配光制御装置。
The light distribution control device according to claim 1,
The running light control unit increases the brightness of the running lights in a gaze area, which is an area related to the line of sight of the driver of the vehicle, and increases the brightness of the running lights in an overlap area where the appearance area and the gaze area overlap, so that the brightness is brighter than that of the appearance area and darker than that of the gaze area.
 請求項5に記載の配光制御装置であって、
 前記周囲情報取得部は、前記車両前方の画像を取得し、
 前記判定部は、前記画像から生成された顕著性マップに基づいて前記注視領域を推測する、配光制御装置。
The light distribution control device according to claim 5,
The surrounding information acquisition unit acquires an image of a front area of the vehicle,
The light distribution control device, wherein the determination unit estimates the gaze area based on a saliency map generated from the image.
 請求項1に記載の配光制御装置であって、
 前記判定部は、前記周囲情報に基づいて、前記車両と前記出現領域とが接触する可能性があるか否かを判定し、
 前記走行灯制御部は、前記可能性があると判定された前記出現領域について、前記走行灯の前記明るさを暗くすることを禁止する、配光制御装置。
The light distribution control device according to claim 1,
The determination unit determines whether or not there is a possibility of contact between the vehicle and the appearance area based on the surrounding information;
The running light control unit prohibits the brightness of the running lights from being darkened in the appearance area determined to have the possibility.
 車両の周囲情報を取得し、
 前記周囲情報に基づいて、前記車両の走行灯の照射範囲において交通参加者が将来に出現する蓋然性を判定し、前記照射範囲のうち前記蓋然性が予め定められた閾値以上である領域を出現領域として判定し、
 前記蓋然性に基づいて前記出現領域に対する前記走行灯の明るさを暗くする、配光制御方法。
Acquires information about the vehicle's surroundings,
Based on the surrounding information, a probability that a traffic participant will appear in the future is determined within an illumination range of the running lights of the vehicle, and an area of the illumination range where the probability is equal to or greater than a predetermined threshold is determined as an appearance area;
The light distribution control method includes dimming the brightness of the driving lights for the appearance area based on the probability.
PCT/JP2023/019889 2023-05-29 2023-05-29 Light distribution control device and light distribution control method WO2024247034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2025523678A JPWO2024247034A1 (en) 2023-05-29 2023-05-29
PCT/JP2023/019889 WO2024247034A1 (en) 2023-05-29 2023-05-29 Light distribution control device and light distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019889 WO2024247034A1 (en) 2023-05-29 2023-05-29 Light distribution control device and light distribution control method

Publications (1)

Publication Number Publication Date
WO2024247034A1 true WO2024247034A1 (en) 2024-12-05

Family

ID=93656958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019889 WO2024247034A1 (en) 2023-05-29 2023-05-29 Light distribution control device and light distribution control method

Country Status (2)

Country Link
JP (1) JPWO2024247034A1 (en)
WO (1) WO2024247034A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119357A (en) * 2011-12-08 2013-06-17 Toyota Central R&D Labs Inc Illumination control device
JP2017114405A (en) * 2015-12-25 2017-06-29 マツダ株式会社 Drive support device
JP2020093766A (en) * 2018-12-05 2020-06-18 パナソニックIpマネジメント株式会社 Vehicle control device, control system, and control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119357A (en) * 2011-12-08 2013-06-17 Toyota Central R&D Labs Inc Illumination control device
JP2017114405A (en) * 2015-12-25 2017-06-29 マツダ株式会社 Drive support device
JP2020093766A (en) * 2018-12-05 2020-06-18 パナソニックIpマネジメント株式会社 Vehicle control device, control system, and control program

Also Published As

Publication number Publication date
JPWO2024247034A1 (en) 2024-12-05

Similar Documents

Publication Publication Date Title
JP5097648B2 (en) Headlamp control device and vehicle headlamp device
JP6200481B2 (en) Outside environment recognition device
JP6310899B2 (en) Outside environment recognition device
JP5409929B2 (en) Control method for headlight device for vehicle and headlight device
JP5207146B2 (en) How to automatically control long-distance lights
CN102806867B (en) Image processing apparatus and light distribution control method
CN103476636B (en) Method and control device for the illumination distances of illuminator that vehicle is relatively adjusted with road
CN109311416B (en) Imaging system with adaptive high beam control
CN103596804B (en) Method and control device for the distance light of connecting vehicle
JP4980970B2 (en) Image pickup means adjustment device and object detection device
JP6929481B1 (en) Light distribution control device, light distribution control method and light distribution control program
JP6236039B2 (en) Outside environment recognition device
KR20140022035A (en) Method and apparatus for recognizing an intensity of an aerosol in a field of vision of a camera on a vehicle
JP2009029227A (en) Lighting control device, method and program
CN114655111B (en) Switching method of high-low beam light of vehicle and central processing unit
JP2008296759A (en) Information processor, method, and program
JP2013025568A (en) Approaching obstacle detecting device and program
US20240303996A1 (en) Dark place judgment device, dark place judgment method, and recording medium
JP2017001453A (en) Headlamp control device and headlamp control method
CN114789689A (en) Far and near light switching control method, storage medium and electronic equipment
WO2024247034A1 (en) Light distribution control device and light distribution control method
WO2024069676A1 (en) Headlight control device and headlight control method
JP2012196999A (en) Vehicle lighting device and method
CN115402189A (en) Vehicle control method and device and vehicle
US20240375576A1 (en) Headlight control device, headlight control system, and headlight control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23939514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025523678

Country of ref document: JP