[go: up one dir, main page]

WO2024245113A1 - 光伏电池串、光伏组件及其制备方法 - Google Patents

光伏电池串、光伏组件及其制备方法 Download PDF

Info

Publication number
WO2024245113A1
WO2024245113A1 PCT/CN2024/095049 CN2024095049W WO2024245113A1 WO 2024245113 A1 WO2024245113 A1 WO 2024245113A1 CN 2024095049 W CN2024095049 W CN 2024095049W WO 2024245113 A1 WO2024245113 A1 WO 2024245113A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cell
photovoltaic
glue
grid line
cell string
Prior art date
Application number
PCT/CN2024/095049
Other languages
English (en)
French (fr)
Inventor
李翔
黄强
崔艳峰
Original Assignee
中能创光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能创光电科技(常州)有限公司 filed Critical 中能创光电科技(常州)有限公司
Publication of WO2024245113A1 publication Critical patent/WO2024245113A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic technology, in particular to a photovoltaic cell string, a photovoltaic module and a preparation method thereof.
  • the busbar-free photovoltaic cell technology does not have a battery busbar, which can save the amount of battery busbar Ag paste.
  • the first is to initially weld the interconnected busbars to the photovoltaic cell through multiple welding pads to form a photovoltaic cell string, and then laminate the components. Under the lamination temperature and lamination pressure, the low-melting-point welding material on the surface of the interconnected busbars is welded and connected to the fine grid lines of the photovoltaic cell.
  • the second method is to electrically connect busbar-free photovoltaic cells through film electrodes with interconnected busbar lines. There is no need to set Ag paste pads on the surface of busbar-free photovoltaic cells, which reduces the total Ag paste consumption of photovoltaic modules.
  • the third method is to change the pad welding to the interconnected main grid line fixed on the photovoltaic cell by dispensing glue to form a photovoltaic cell string, and then perform component lamination. Under the lamination temperature and lamination pressure, the low-melting-point welding material on the surface of the interconnected main grid line is welded and connected with the fine grid line of the photovoltaic cell.
  • the first electrical connection solution in which the interconnected main grid lines are fixed by welding with pads requires Ag paste pads, which is not conducive to saving Ag paste.
  • the second electrical connection solution reduces the total Ag paste consumption of photovoltaic modules, the process manufacturing cost is also high, and the actual effect of reducing module costs is limited.
  • the third interconnection busbar is fixed by glue dispensing, which also does not require Ag paste pads and has low process manufacturing costs.
  • the material of the adhesive at the current glue point has reliability issues.
  • components namely component TC tests
  • the technical problem to be solved by the present invention is that the existing solution of fixing interconnected main grid lines by glue dots has reliability problems.
  • a photovoltaic cell string including photovoltaic cells and interconnecting main grid lines, the interconnecting main grid lines are fixed on the photovoltaic cells by glue points; the glue points are made of soft glue; the soft glue is in a flowing state before curing, and the soft glue is in a non-flowing state after curing to fix the interconnecting main grid lines, and the cured soft glue is in a flexible state at the component lamination temperature and can flow and deform by applying pressure.
  • the soft glue is a light-curing adhesive.
  • the soft glue is an acrylic, silicone, epoxy resin or EVA modified polymer adhesive.
  • a photovoltaic component comprises a photovoltaic cell layer and an encapsulation structure for encapsulating the photovoltaic cell layer.
  • the photovoltaic cell layer is composed of photovoltaic cell strings, and the photovoltaic cell strings are the above-mentioned photovoltaic cell strings.
  • the encapsulation structure includes a grid wire adhesive layer and a grid wire support layer, the grid wire support layer is attached to the surface of the photovoltaic cell sheet through the adhesive effect of the grid wire adhesive layer, and the grid wire support layer is pressed on the interconnection main grid wire to fix the interconnection main grid wire on the surface of the photovoltaic cell sheet.
  • the interconnection main grid wire has a better compression and fixing effect.
  • the grid line support layer is a polymer material that is not easy to flow at the lamination temperature; and the grid line adhesive layer is a polymer adhesive material that is easy to flow at the lamination temperature.
  • a method for preparing the above-mentioned photovoltaic module includes a preparation step of a photovoltaic cell string and a module lamination step.
  • the preparation step of the photovoltaic cell string soft glue is placed on the photovoltaic cell sheet by dispensing or printing, and the soft glue is cured to fix the interconnecting main grid lines on the photovoltaic cell sheet through the soft glue dots; the photovoltaic cell string obtained by the preparation step of the photovoltaic cell string and other layer structures of the photovoltaic module are arranged and then enter the module lamination step for lamination.
  • the beneficial effect of the present invention is that fixing the interconnected main grid lines by curing with soft glue can reduce the process control requirements for dispensing or printing glue points. Even if the height of the glue points is relatively high, the soft glue can be squeezed to both sides of the interconnected main grid lines in the subsequent component lamination step, so that the interconnected main grid lines and the photovoltaic cells can fit more closely and the current of the photovoltaic cells can be reliably derived.
  • the soft glue is in a non-flowing state after curing, and its state inside the photovoltaic module is stable, so there will be no delamination phenomenon.
  • FIG1 is a schematic diagram of a structure in which a photovoltaic cell and an interconnected main grid line are connected by glue points in Example 1 of the present invention
  • FIG3 is a schematic diagram of the structure of a photovoltaic module according to Scheme 1 of Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a gate line support layer bonded via a gate line bonding layer in scheme 1 of embodiment 2 of the present invention
  • FIG. 5 is a schematic structural diagram of a gate line support layer bonded via a gate line bonding layer in scheme 2 of embodiment 2 of the present invention
  • photovoltaic cell 1-1. fine grid line, 2. interconnection main grid line, 3. glue point, 4. panel, 5. packaging adhesive layer, 6. photovoltaic cell layer, 7. backplane, 8. grid line adhesive layer, 9. grid line support layer.
  • a photovoltaic cell string includes a photovoltaic cell sheet 1 and an interconnecting main grid line 2, wherein the interconnecting main grid line 2 is fixed to the photovoltaic cell sheet 1 via glue dots 3; the glue dots 3 are made of soft glue; the soft glue is in a flowing state before curing, and is in a non-flowing state after curing to fix the interconnecting main grid line 2, and the cured soft glue is in a flexible state at the component lamination temperature and can flow and deform by applying pressure.
  • the number of the photovoltaic cell sheets 1 of the photovoltaic cell string of the present invention is at least one.
  • a photovoltaic module includes a photovoltaic cell layer 6 and a packaging structure for packaging the photovoltaic cell layer 6 .
  • the photovoltaic cell layer 6 is composed of photovoltaic cell strings, and the photovoltaic cell strings are the photovoltaic cell strings mentioned above.
  • a method for preparing a photovoltaic module includes a photovoltaic cell string preparation step and a module lamination step.
  • the photovoltaic cell string preparation step soft glue is placed on a photovoltaic cell sheet 1 by dispensing or printing, and the soft glue is cured so that an interconnecting main grid line 2 is fixed on the photovoltaic cell sheet 1 by glue dots 3; the photovoltaic cell string prepared by the photovoltaic cell string preparation step and other layer structures of the photovoltaic module are arranged and then enter the module lamination step for lamination.
  • the soft glue is specifically a modified polymer viscose. Through modification, the soft glue will not be completely cross-linked after curing. However, the degree of cross-linking can ensure that the soft glue is in a non-flowing state and stable at room temperature in the component production environment. It can stably fix the photovoltaic cell string. The degree of cross-linking of the soft glue after curing ensures that the soft glue is flexible at the component lamination temperature and will not flow completely freely. It can only flow and deform under the component lamination pressure.
  • the soft glue After the soft glue is cured, it is stable at room temperature in the production environment of the module, and can stably fix the photovoltaic cell string, which is convenient for the transportation and layout of the photovoltaic cell string.
  • the process of the module lamination step is divided into vacuuming and pressurizing stages. In the vacuuming stage, the soft glue can only be flexible when heated, but it will not be free-flowing. Because in the vacuuming stage, if the glue at glue point 3 flows freely, If it moves, the interconnection busbar 2 will be deviated. At this time, the soft glue can also play the role of fixing the position of the interconnection busbar 2. Only during the pressurization stage of component lamination, when there is external pressure, the soft glue is squeezed to both sides of the interconnection busbar 2. In this way, the interconnection busbar 2 and the photovoltaic cell 1 will fit more tightly, and the current of the photovoltaic cell 1 can be reliably derived.
  • thermoplastic adhesive cannot pass the module high and low temperature test, namely the module TC test.
  • the soft glue After curing, the soft glue is in a non-flowing state, and the state of the soft glue in the photovoltaic module is stable, so there will be no delamination.
  • the hard glue that becomes hard after curing is also in a non-flowing state, so there will be no delamination.
  • the lamination temperature of the module is generally 120°C ⁇ 160°C. Therefore, the soft glue after curing is generally designed to be flexible when the temperature is higher than 120°C, and can flow and deform by applying pressure. Of course, the softening temperature of this soft glue can be lower, as long as it is stable at the normal temperature of the module production environment and can stably fix the photovoltaic cell string.
  • the soft adhesive is more specifically an acrylic, silicone, epoxy or EVA modified polymer adhesive.
  • the curing method of the soft glue is determined according to the modification method, and the light curing method, such as UV light curing method, is preferred.
  • the soft glue undergoes a photochemical cross-linking reaction through light curing, changes its cross-linking degree, and changes from a liquid state to a non-flowing state.
  • the soft glue is a light-cured acrylic, silicone, epoxy resin or EVA modified polymer adhesive.
  • the packaging structure of the photovoltaic module of this embodiment 1 adopts a conventional packaging structure.
  • the encapsulation structure of the encapsulated photovoltaic cell layer 6 includes a panel 4, a backboard 7 and an encapsulation adhesive layer 5.
  • the structure of the photovoltaic module from top to bottom is specifically a panel 4, an encapsulation adhesive layer 5, a photovoltaic cell layer 6, an encapsulation adhesive layer 5 and a backboard 7.
  • the photovoltaic cell layer 6 is composed of at least one photovoltaic cell string.
  • the photovoltaic cell 1 is a busbar-free photovoltaic cell, more specifically a busbar-free heterojunction cell, and the photovoltaic module is a busbar-free
  • the interconnected main grid lines 2 are multi-main grid welding strips having a low melting point welding layer on the surface.
  • the low melting point welding layer of the multi-main grid welding strips is welded to the fine grid lines 1-1 of the main grid-free photovoltaic cell sheet.
  • the glue dots 3 used in the industry to fix the interconnected main grid lines 2 are arranged in the following manner: the glue dots 3 adjacent to each other in the extension direction of the fine grid lines 1-1 are arranged in a straight line with each other, and the glue dots 3 are preset between two adjacent fine grid lines 1-1 to prevent the glue from covering the fine grid lines 1-1.
  • the photovoltaic cell string of this embodiment includes photovoltaic cells 1 and interconnecting main grid lines 2 of the photovoltaic cells 1 in series, and the glue dots 3 adjacent to each other in the extension direction of the thin grid lines 1-1 are staggered. Even if the glue dots 3 are not preset between two adjacent thin grid lines 1-1, the EL can be prevented from blackening.
  • the packaging structure includes a gate wire bonding layer 8 and a gate wire support layer 9, the gate wire support layer 9 is adhered to the surface of the photovoltaic cell 1 through the bonding effect of the gate wire bonding layer 8, and the gate wire support layer 9 is pressed on the interconnection main grid line 2, so as to completely fix the interconnection main grid line 2 on the surface of the photovoltaic cell 1.
  • the grid line support layer 9 is a polymer material that is not easy to flow at the lamination temperature, such as PET, PVF, PMMA or PC.
  • the grid line adhesive layer 8 is a polymer adhesive material that is easy to flow at the lamination temperature, such as silica gel, POE, EVA, TPU or other thermal adhesives.
  • the grid line adhesive layer 8 and the grid line support layer 9 can be compounded into a composite adhesive film.
  • the grid line support layer 9 is pressed on the interconnection busbar 2, and the interconnection busbar 2 is tightly pressed on the surface of the photovoltaic cell 1, limiting the movement of the interconnection busbar 2, achieving complete fixation of the interconnection busbar 2, and helping the components resist changes in the external environment temperature.
  • the glue point 3 between the interconnection busbar 2 and the photovoltaic cell 1 only plays a preliminary fixing role, which is convenient for connecting the photovoltaic cell 1 into a photovoltaic cell string for subsequent preparation steps.
  • This embodiment 2 does not exclude the interconnection busbar 2 without a low melting point welding layer, and the electrical connection is made by direct contact to guide the light out The current of volt battery cell 1.
  • a specific scheme in which the gate wire support layer 9 is bonded to the surface of the photovoltaic cell 1 through the bonding effect of the gate wire adhesive layer 8 is: as shown in Figures 3 and 4, the gate wire adhesive layer 8 is located between the gate wire support layer 9 and the photovoltaic cell 1, and is used to bond the gate wire support layer 9 to the surface of the photovoltaic cell 1.
  • the thickness of the gate wire adhesive layer 8 is smaller than the thickness of the interconnection busbar 2 .
  • the gate wire adhesive layer 8 is heated and flows, and the interconnection busbar 2 is embedded in the gate wire adhesive layer 8 .
  • the structure of the photovoltaic module from top to bottom specifically includes a panel 4 , a grid wire bonding layer 8 , a grid wire supporting layer 9 , a photovoltaic cell layer 6 , a grid wire supporting layer 9 , a grid wire bonding layer 8 , and a backplane 7 .

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏技术领域,特别是一种光伏电池串、光伏组件及其制备方法。光伏电池串,包括光伏电池和互联主栅线,互联主栅线通过胶点固定在光伏电池上;胶点的材质采用软胶;软胶在固化前呈流动状态,固化后的软胶呈非流动状态对互联主栅线形成固定作用,并且固化后的软胶在组件层压温度下,呈柔性状态,通过施压可流动变形。光伏组件,包括光伏电池层和封装光伏电池串的封装结构。上述光伏组件的制备方法,包括光伏电池串制备步骤和层压步骤。有益效果是:可以降低胶点的工艺控制要求,即使胶点的高度偏高,在层压步骤中也可以将软胶挤向互联主栅线两边,使互联主栅线与光伏电池更紧密地贴合。同时,软胶固化后状态稳定,不会有脱层现象。

Description

光伏电池串、光伏组件及其制备方法 技术领域
本发明涉及光伏技术领域,特别是一种光伏电池串、光伏组件及其制备方法。
背景技术
无主栅光伏电池技术没有电池主栅,可以节省电池主栅Ag浆用量。
现有技术中无主栅光伏电池片具有几种电连接方案,第一种是将互联主栅线通过多个焊盘初步焊接在光伏电池片上,形成光伏电池串,然后进行组件层压,在层压温度和层压压力下,互联主栅线表面的低熔点焊接材料与光伏电池片的细栅线焊接连接。
第二种是通过带互联主栅线的胶膜电极进行无主栅光伏电池片的电连接,无主栅光伏电池片的表面无需设置Ag浆焊盘,降低了光伏组件的总Ag浆耗量。
第三种是将焊盘焊接改为互联主栅线通过点胶固定在光伏电池片上,形成光伏电池串,然后进行组件层压,在层压温度和层压压力下,互联主栅线表面的低熔点焊接材料与光伏电池片的细栅线焊接连接。
第一种互联主栅线通过焊盘焊接固定的电连接方案,需要Ag浆焊盘,不利于节省Ag浆。
第二种电连接方案虽然降低了光伏组件的总Ag浆耗量,但是工艺制造成本也高,实际降低组件成本的作用有限。
第三种互联主栅线通过点胶固定的电连接方案,也无需Ag浆焊盘,而且工艺制造成本低,但是目前依然如下存在问题:
1)胶点的高度控制不易,这在大批量生产中是不可避免的,通过印刷方式可以降低胶体厚度,但是依然无法100%保证,一旦胶点高度太高,则不仅仅会使胶点处的互联主栅线,还包括胶点附近的互联主栅线,无法接触到光伏电池片表面,从而不导电。
2)另外因为互联主栅线与光伏电池片的材质不同,互联主栅线的材质为铜,而光伏电池片的材质为Si,两者的膨胀系数相差接近一个数量级,从而使得在光伏电池片的工作状态(50-80C)时,互联主栅线可能离开电池表面,从而不再导电,温度越高越严重。
3)现在胶点的粘胶的材质存在可靠性问题,在进行组件高低温测试即组件TC测试时,存在与封装膜层脱层的问题。
发明内容
本发明所要解决的技术问题是:现有的通过胶点固定互联主栅线的方案存在可靠性问题。
本发明解决其技术问题所采用的技术方案是:一种光伏电池串,包括光伏电池片和互联主栅线,互联主栅线通过胶点固定在光伏电池片上;胶点的材质采用软胶;软胶在固化前呈流动状态,固化后的软胶呈非流动状态对互联主栅线形成固定作用,并且固化后的软胶在组件层压温度下,呈柔性状态,通过施压可流动变形。
进一步限定,软胶为光固化粘胶。
进一步限定,软胶为丙烯酸类、有机硅类、环氧树脂类或EVA类改性高分子粘胶。
一种光伏组件,包括光伏电池层和封装光伏电池层的封装结构,光伏电池层由光伏电池串构成,光伏电池串为上述的光伏电池串。
进一步限定,封装结构包括栅线粘结层和栅线支撑层,栅线支撑层通过栅线粘结层的粘结作用贴合在光伏电池片表面,栅线支撑层压在互联主栅线上,用于将互联主栅线固定在光伏电池片表面。通过栅线支撑层压在光伏电池片的表面,对互联主栅线具有更好的压紧固定效果。
更进一步限定,栅线支撑层为在层压温度下不易流动的高分子材料;栅线粘结层为在层压温度下易于流动的高分子粘胶材料。
一种上述光伏组件的制备方法,包括光伏电池串的制备步骤和组件层压步骤,光伏电池串的制备步骤中,软胶通过点胶或印刷方式置于光伏电池片上,通过对软胶进行固化,使互联主栅线通过软胶点固定在光伏电池片上;通过光伏电池串的制备步骤制得的光伏电池串与光伏组件的其他层结构排版后进入组件层压步骤,进行层压。
本发明的有益效果是:通过软胶固化固定互联主栅线可以降低点胶或印刷胶点的工艺控制要求,即使胶点的高度偏高,在后续的组件层压步骤中也可以将软胶挤向互联主栅线两边,使互联主栅线与光伏电池片更紧密地贴合,可靠地导出光伏电池片的电流。
同时,软胶固化后处于非流动状态,在光伏组件内的状态是稳定地,所以不会有脱层现象。
附图说明
下面结合附图和实施例对本发明进一步说明;
图1是本发明的实施例1的光伏电池片和互联主栅线通过胶点连接的结构示意图;
图2是本发明的实施例1的光伏组件的结构示意图;
图3是本发明的实施例2的方案1的光伏组件的结构示意图;
图4是本发明的实施例2的方案1的栅线支撑层通过栅线粘结层进行粘结的结构示意图;
图5是本发明的实施例2的方案2的栅线支撑层通过栅线粘结层进行粘结的结构示意图;
图中,1.光伏电池片,1-1.细栅线,2.互联主栅线,3.胶点,4.面板,5.封装粘结层,6.光伏电池层,7.背板,8.栅线粘结层,9.栅线支撑层。
具体实施方式
实施例1
如图1所示,一种光伏电池串,包括光伏电池片1和互联主栅线2,互联主栅线2通过胶点3固定在光伏电池片1上;胶点3的材质采用软胶;软胶在固化前呈流动状态,固化后的软胶呈非流动状态对互联主栅线2形成固定作用,并且固化后的软胶在组件层压温度下,呈柔性状态,通过施压可流动变形。
本发明的光伏电池串的光伏电池片1的数量为至少1片。
如图2所示,一种光伏组件,包括光伏电池层6和封装光伏电池层6的封装结构,光伏电池层6由光伏电池串构成,光伏电池串为上述的光伏电池串。
一种光伏组件的制备方法,包括光伏电池串的制备步骤和组件层压步骤,光伏电池串的制备步骤中,软胶通过点胶或印刷方式置于光伏电池片1上,通过对软胶进行固化,使互联主栅线2通过胶点3固定在光伏电池片1上;通过光伏电池串的制备步骤制得的光伏电池串与光伏组件的其他层结构排版后进入组件层压步骤,进行层压。
软胶具体为改性高分子粘胶,通过改性处理,使软胶在固化后不会完全交联,但是交联程度已经可以保证在组件生产环境的常温下,软胶呈非流动状态,并且状态稳定,能够稳定地固定光伏电池串,并且固化后软胶的交联程度保证软胶在组件层压温度下呈柔性状态,不会完全的自由流动,只有在组件层压压力下可流动变形。
采用软胶固定互联主栅线2和光伏电池片1的方案的优点是:
软胶固化后在组件生产环境的常温下状态稳定,能够稳定地固定光伏电池串,方便光伏电池串的搬运和排版。组件层压步骤的过程分为抽真空和加压阶段,在抽真空阶段,软胶受热只能呈柔性状态,但不会呈现自由流动的状态,因为抽真空阶段如果胶点3的粘胶自由流 动的话,会把互联主栅线2带偏,此时软胶还能起到固定互联主栅线2位置的作用,只有在组件层压的加压阶段,有外界压力的情况,软胶受力被挤向互联主栅线2两边,这样互联主栅线2与光伏电池片1会贴合地更紧,可靠地导出光伏电池片1的电流。
如果采用传统的固化后呈硬性的硬胶,一旦在光伏电池串的制备过程中,互联主栅线2因为胶点3的高度没有控制好,或者因为其他原因导致互联主栅线2与光伏电池片1的表面接触不良,因为硬胶固化后状态过于稳定,在组件层压步骤的高温和层压压力,也无法改善互联主栅线2与光伏电池片1的表面接触不良。故需要在光伏电池串的制备过程中,严格控制制备工艺条件,保证互联主栅线2与光伏电池片1的表面接触良好,不利于降低成本,良品率低。
如果采用传统的热塑性粘胶,如未改性的EVA,在低温下会变为固态,也能可靠地将互联主栅线2固定在光伏电池片1上,在高温下热塑性粘胶变成可自由流动的液态,在组件层压的加压阶段,热塑性粘胶受力被挤向互联主栅线2两边,但是在组件层压步骤的真空阶段热塑性粘胶自由流动的话,会把互联主栅线2带偏,使光伏组件无法通过外观检测。
同时,光伏组件需要通过组件高低温测试即组件TC测试,组件TC测试的条件是-40℃~+85℃,热塑性粘胶的反应是可逆的,多次冷热循环后,热塑性粘胶因为自由流动,在光伏组件内的位置以及状态都会发生变化,会发生脱层现象,即胶点3的热塑性粘胶与光伏组件内部的膜层发生分离的现象,所以采用热塑性粘胶无法通过组件高低温测试即组件TC测试。
而固化后的软胶处于非流动状态,软胶在光伏组件内的状态是稳定地,所以不会有脱层现象。当然固化后呈硬性的硬胶因为也处于非流动状态,所以也不会有脱层现象。
组件层压温度一般为120℃~160℃。所以一般设计固化后的软胶在温度高于120℃时,呈柔性状态,通过施压可流动变形。当然这个软胶的软化温度可以更低,只要保证在组件生产环境的常温下状态稳定,能够稳定地固定光伏电池串。
软胶更具体为丙烯酸类、有机硅类、环氧树脂类或EVA类改性高分子粘胶。
软胶根据改性方法确定其固化方式,优选光固化方式,如UV光固化方式,软胶通过光固化,使软胶发生光化学交联反应,改变其交联程度,由液态状态转为非流动状态。软胶为光固化的丙烯酸类、有机硅类、环氧树脂类或EVA类改性高分子粘胶。
本实施例1的光伏组件的封装结构采用常规封装结构。
如图2所示,封装光伏电池层6的封装结构包括面板4、背板7和封装粘结层5,光伏组件的结构由上至下具体为面板4、封装粘结层5、光伏电池层6、封装粘结层5和背板7,光伏电池层6由至少一个光伏电池串构成。
光伏电池片1为无主栅光伏电池片,更具体为无主栅异质结电池片,光伏组件为无主栅 异质结电池组件,互联主栅线2为表面具有低熔点焊接层的多主栅焊带,多主栅焊带在组件层压步骤中,在组件层压温度下,低熔点焊接层与无主栅光伏电池片的细栅线1-1形成焊接。
目前行业中采用胶点3固定互联主栅线2的胶点3的排布方式为:在细栅线1-1延伸方向上相邻的胶点3彼此之间一直线设置,胶点3预设于相邻的两条细栅线1-1之间,用于避免胶水覆盖细栅线1-1。
但是,要将胶点3正确点胶至两条细栅线1-1之间,需要很高的定位精度,并且胶水量也要严格控制,才能避免胶水覆盖细栅线1-1,胶水覆盖细栅线1-1将导致互联主栅线2和细栅线1-1无法导通,而这种风险在实际生产中无法避免,会发生EL发黑现象。
如图1所示,本实施例的光伏电池串包括光伏电池片1和串联光伏电池片1的互联主栅线2,在细栅线1-1延伸方向上相邻的胶点3彼此之间错开设置。即使胶点3没有预设于相邻的两条细栅线1-1之间,也能避免EL发黑。
通过胶点3在细栅线1-1延伸方向上彼此之间错开设置,降低了胶点3对位精度要求,解决了EL发黑的问题,整体产品良率高。
胶点3错开设置的技术方案更具体地公开在中国专利申请号为202223565944.2的申请文件中,在此不再更详细的描述。
实施例2
和实施例1相比基本相同,区别在于:如图3、4和5所示,封装结构包括栅线粘结层8和栅线支撑层9,栅线支撑层9通过栅线粘结层8的粘结作用贴合在光伏电池片1表面,栅线支撑层9压在互联主栅线2上,用于将互联主栅线2完全固定在光伏电池片1表面。
栅线支撑层9为在层压温度下不易流动的高分子材料,如PET、PVF、PMMA或PC等。
栅线粘结层8为在层压温度下易于流动的高分子粘胶材料,如硅胶、POE、EVA、TPU或其他热黏胶等。
栅线粘结层8和栅线支撑层9可以复合为复合胶膜。
在本实施例2中,在组件层压的时候,栅线支撑层9压在互联主栅线2上,将互联主栅线2紧紧地压在光伏电池片1的表面,限制互联主栅线2的移动,实现互联主栅线2的完全固定,帮助组件抵抗外界环境温度变化。互联主栅线2与光伏电池片1之间的胶点3只是起到初步固定作用,方便将光伏电池片1连接为光伏电池串后用于后续制备步骤。
相比实施例1的封装粘结层5,本实施例2通过栅线支撑层9压在光伏电池片1的表面,对互联主栅线2具有更好的压紧固定效果。
本实施例2不排除互联主栅线2没有低熔点焊接层,通过直接接触进行电连接,导出光 伏电池片1的电流。
栅线支撑层9通过栅线粘结层8的粘结作用贴合在光伏电池片1表面的一种具体方案为:如图3和4所示,栅线粘结层8位于栅线支撑层9与光伏电池片1之间,用于将栅线支撑层9贴合在光伏电池片1表面。
光伏组件的结构由上至下具体为面板4、封装粘结层5、栅线支撑层9、栅线粘结层8、光伏电池层6、栅线粘结层8、栅线支撑层9、封装粘结层5、背板7。
为使栅线粘结层8能可靠地压在互联主栅线2上,栅线粘结层8的厚度小于互联主栅线2的厚度,在组件层压步骤中栅线粘结层8受热流动,互联主栅线2嵌入栅线粘结层8。
栅线支撑层9通过栅线粘结层8的粘结作用贴合在光伏电池片1表面的另一种具体方案为:如图5所示,栅线支撑层9位于栅线粘结层8与光伏电池片1之间,栅线支撑层9仅在局部区域遮挡栅线粘结层8,栅线粘结层8的被栅线支撑层9的遮挡的遮挡区域和非遮挡区域分别与栅线支撑层9和光伏电池片1粘结,用于将栅线支撑层9贴合在光伏电池片1表面。图5为层压前的排版结构示意图。
光伏组件的结构由上至下具体为面板4、栅线粘结层8、栅线支撑层9、光伏电池层6、栅线支撑层9、栅线粘结层8、背板7。
本实施例2的通过栅线支撑层9压在互联主栅线2上,将互联主栅线2完全固定在光伏电池片1表面的方案更具体地公开在国际申请号为PCT/CN2022/089209以及中国专利申请号为202111492715.x的申请文件中,在此不再更详细的描述。

Claims (7)

  1. 一种光伏电池串,包括光伏电池片(1)和互联主栅线(2),其特征是:所述的互联主栅线(2)通过胶点(3)固定在光伏电池片(1)上;
    所述的胶点(3)的材质采用软胶;
    所述的软胶在固化前呈流动状态,固化后的软胶呈非流动状态对互联主栅线(2)形成固定作用,并且固化后的软胶在组件层压温度下,呈柔性状态,通过施压可流动变形。
  2. 根据权利要求1所述的光伏电池串,其特征是:所述的软胶为光固化粘胶。
  3. 根据权利要求1或2所述的光伏电池串,其特征是:所述的软胶为丙烯酸类、有机硅类、环氧树脂类或EVA类改性高分子粘胶。
  4. 一种光伏组件,包括光伏电池层(6)和封装光伏电池层(6)的封装结构,光伏电池层(6)由光伏电池串构成,其特征是:所述的光伏电池串为权利要求1~2任一项的光伏电池串。
  5. 根据权利要求4所述的光伏组件,其特征是:所述的封装结构包括栅线粘结层(8)和栅线支撑层(9),栅线支撑层(9)通过栅线粘结层(8)的粘结作用贴合在光伏电池片(1)表面,栅线支撑层(9)压在互联主栅线(2)上,用于将互联主栅线(2)固定在光伏电池片(1)表面。
  6. 根据权利要求5所述的光伏组件,其特征是:所述的栅线支撑层(9)为在层压温度下不易流动的高分子材料;栅线粘结层(8)为在层压温度下易于流动的高分子粘胶材料。
  7. 一种权利要求4所述的光伏组件的制备方法,其特征是:包括光伏电池串的制备步骤和组件层压步骤,光伏电池串的制备步骤中,软胶通过点胶或印刷方式置于光伏电池片(1)上,通过对软胶进行固化,使互联主栅线(2)通过胶点(3)固定在光伏电池片(1)上;通过光伏电池串的制备步骤制得的光伏电池串与光伏组件的其他层结构排版后进入组件层压步骤,进行层压。
PCT/CN2024/095049 2023-05-30 2024-05-24 光伏电池串、光伏组件及其制备方法 WO2024245113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310630488.5 2023-05-30
CN202310630488.5A CN119069559A (zh) 2023-05-30 2023-05-30 光伏电池串、光伏组件及其制备方法

Publications (1)

Publication Number Publication Date
WO2024245113A1 true WO2024245113A1 (zh) 2024-12-05

Family

ID=93641265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/095049 WO2024245113A1 (zh) 2023-05-30 2024-05-24 光伏电池串、光伏组件及其制备方法

Country Status (2)

Country Link
CN (1) CN119069559A (zh)
WO (1) WO2024245113A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066885A (zh) * 2021-03-18 2021-07-02 苏州沃特维自动化系统有限公司 一种串联光伏电池组件及其封装方法
CN114774006A (zh) * 2022-04-13 2022-07-22 杭州福斯特应用材料股份有限公司 聚合物胶膜、聚合物导体膜、电池串和光伏组件
CN115588705A (zh) * 2021-07-05 2023-01-10 苏州沃特维自动化系统有限公司 一种光伏电池串制作装置及光伏组件生产设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066885A (zh) * 2021-03-18 2021-07-02 苏州沃特维自动化系统有限公司 一种串联光伏电池组件及其封装方法
CN115588705A (zh) * 2021-07-05 2023-01-10 苏州沃特维自动化系统有限公司 一种光伏电池串制作装置及光伏组件生产设备
CN114774006A (zh) * 2022-04-13 2022-07-22 杭州福斯特应用材料股份有限公司 聚合物胶膜、聚合物导体膜、电池串和光伏组件

Also Published As

Publication number Publication date
CN119069559A (zh) 2024-12-03

Similar Documents

Publication Publication Date Title
EP2634818B1 (en) Method for producing solar cell module
JP5604236B2 (ja) 太陽電池モジュールの製造方法、太陽電池セルの接続装置、太陽電池モジュール
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
WO2023103260A1 (zh) 光伏电池组件及其制造方法
JP2013080982A (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール製造装置
CN108323213A (zh) 光伏模块互连接头
WO2024140134A1 (zh) 光伏电池串及光伏组件
CN111403528A (zh) 一种导电胶膜、背板、背接触太阳电池组件
US20130125951A1 (en) Solar cell module and method of manufacturing solar cell module
JP2012019078A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
CN119545919A (zh) 光伏电池串及其制备方法和设备、光伏组件
CN116387391A (zh) 一种无主栅电池片及其制作方法、光伏组件
JPS61194732A (ja) 半導体ペレツトと基板の接合方法
JP2010141109A (ja) 太陽電池モジュールおよびその製造方法
WO2024245113A1 (zh) 光伏电池串、光伏组件及其制备方法
JP2011222744A (ja) 太陽電池接続用タブ線、接続方法、及び太陽電池モジュール
CN220021143U (zh) 一种无主栅电池串及光伏组件
CN219303679U (zh) 一种无主栅光伏组件及光伏系统
JP2012119441A (ja) 太陽電池モジュール及びその製造方法
CN115050851A (zh) 一种电池组件的制作方法及电池组件
Takano et al. Film technologies for semiconductor & electronic components
CN208460754U (zh) 一种多芯片pqfn封装结构
EP2590228A1 (en) Solar cell module and method for manufacturing same
CN117747586B (zh) 一种柔性薄膜型芯片封装结构及封装方法
JP6705517B2 (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24814312

Country of ref document: EP

Kind code of ref document: A1