WO2024244397A1 - 电池及用电装置 - Google Patents
电池及用电装置 Download PDFInfo
- Publication number
- WO2024244397A1 WO2024244397A1 PCT/CN2023/139591 CN2023139591W WO2024244397A1 WO 2024244397 A1 WO2024244397 A1 WO 2024244397A1 CN 2023139591 W CN2023139591 W CN 2023139591W WO 2024244397 A1 WO2024244397 A1 WO 2024244397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- electrical box
- battery
- generating component
- heat sink
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the embodiments of the present application relate to the field of battery technology, and in particular to a battery and an electrical device.
- the electrical box is a control unit that distributes battery energy and is used to distribute high voltage to the battery.
- the electrical box will partially expose the heat-generating components outside the shell to dissipate the heat of the heat-generating components to the outside of the shell.
- this may easily lead to the risk of high-voltage short circuit and ignition due to water seeping in from the outside, affecting safety performance.
- the embodiments of the present application provide a battery and an electrical device, which are intended to solve the problem that the safety performance of an electrical box is affected in order to meet the heat dissipation requirements.
- a battery comprising:
- the electrical box includes:
- a housing the housing being used to accommodate a heat generating component
- the heat-conducting structure is sealed and connected to the shell, and the heat-conducting structure connects the heat-generating component and the heat-management component.
- the electrical box can accommodate the heat generating component through the shell, and connect the heat generating component in the shell and the heat management component outside the shell through the heat conducting structure, so as to facilitate heat exchange and heat conduction between the heat generating component and the heat management component through the heat conducting structure, and in particular, facilitate heat conduction of the heat generated by the heat generating component to the heat management component through the heat conducting structure, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box, reducing the risk of overheating of the electrical box, ensuring the performance of the heat generating component, and ensuring and extending the service life of the heat generating component, the electrical box and the battery.
- the connection gap between the heat conducting structure and the shell can be effectively sealed, and the liquid can be reliably prevented from penetrating into the shell from the outside through the gap between the heat conducting structure and the shell, thereby effectively ensuring and improving the sealing of the shell and the electrical box, effectively reducing the risk of high voltage short circuit ignition due to water seepage from the outside of the electrical box, and effectively ensuring the safety performance of the electrical box and the battery.
- the heat-conducting structure is insulated and heat-conductingly connected to the heat-generating component.
- the heat-generating component and the heat-conducting structure insulated and heat-conducting connection, on the one hand, it can facilitate the quick and reliable heat exchange between the heat-conducting structure and the heat-generating component, especially it can facilitate the heat-conducting structure to conduct the heat generated by the heat-generating component and dissipate it to the heat management component, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box, and ensuring and improving the performance and service life of the heat-generating component that is heat-conductingly connected to the heat-conducting structure.
- it can avoid short circuits between the heat-generating component and the heat-conducting structure, thereby reducing the risk of high-voltage short circuits and ignitions in the electrical box, and improving the safety of the electrical box. and battery safety performance.
- the thermally conductive structure is insulated and thermally conductive connection with the thermal management component.
- a heat dissipation hole is formed through the side wall of the shell; the heat-conducting structure includes a heat dissipation element, which is embedded in the heat dissipation hole, and the surrounding wall of the heat dissipation element is sealed and connected to the hole wall of the heat dissipation hole.
- the electrical box can embed the heat sink in the heat dissipation hole on the side wall of the shell, so as to facilitate heat exchange between the inside and outside of the shell through the heat sink, especially to facilitate heat conduction of the heat of the heat-generating component to the heat management component through the heat sink, so as to ensure the heat dissipation performance and heat dissipation efficiency of the electrical box, reduce the risk of overheating of the electrical box, and ensure and extend the service life of the heat-generating component, the electrical box and the battery.
- the electrical box can also seal the peripheral wall of the heat sink with the hole wall of the heat dissipation hole so that the heat-conducting structure and the shell can be reliably sealed, so as to effectively seal the connection gap between the heat-conducting structure and the shell, especially the gap between the peripheral wall of the heat sink and the hole wall of the heat dissipation hole, so as to reliably prevent liquid from penetrating into the shell from the outside of the shell through the gap between the peripheral wall of the heat sink and the hole wall of the heat dissipation hole, so as to ensure and improve the sealing of the shell and the electrical box, reduce the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box, and improve the safety performance of the electrical box and the battery.
- the heat sink and the housing are an integrated structure.
- the heat sink and the housing can form an integrated structure through an integrated molding process.
- the gap between the peripheral wall of the heat sink and the hole wall of the heat dissipation hole can be conveniently, quickly and reliably sealed by connecting the peripheral wall of the heat sink and the hole wall of the heat dissipation hole as a whole, thereby ensuring and improving the sealing of the housing and the electrical box, and reducing the risk of high-voltage short circuit ignition caused by water seeping into the electrical box from the outside.
- the structural strength of the heat sink and the housing can be enhanced, the assembly process between the heat sink and the housing can be reduced, and the production efficiency of the electrical box can be improved.
- the heat sink and the housing are integrally injection molded.
- the heat sink and the housing can be integrally injection molded, based on which, on the one hand, the connection strength between the heat sink and the housing can be enhanced, the comprehensive structural strength of the heat sink and the housing can be enhanced, the assembly process between the heat sink and the housing can be reduced, and the production efficiency of the electrical box can be improved.
- connection between the peripheral wall of the heat sink and the hole wall of the heat dissipation hole can be made tight, fitting, and reliable, so that the gap between the peripheral wall of the heat sink and the hole wall of the heat dissipation hole can be conveniently, quickly, and reliably sealed, thereby improving the sealing of the housing and the electrical box, and reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box.
- a recess is provided on the hole wall of the heat dissipation hole, and a part of the heat dissipation element is embedded in the recess.
- the connection area between the heat sink and the heat dissipation hole can be increased, the comprehensive structural strength of the heat sink and the shell can be enhanced, the strength, tightness and fit of the connection between the heat sink and the shell can be enhanced, thereby improving the sealing reliability between the heat sink and the heat dissipation hole, improving the sealing of the shell and the electrical box, and reducing the risk of high-voltage short circuit and ignition in the electrical box due to water seeping in from the outside.
- the heat sink is an aluminum plate
- the aluminum plate is insulated and thermally connected to the heat generating component
- the aluminum plate is insulated and thermally connected to the thermal management component.
- the heat conduction effect of the heat sink and the heat conduction structure can be effectively guaranteed and improved based on the good thermal conductivity of the aluminum plate, thereby effectively guaranteeing and improving the heat dissipation performance and heat dissipation efficiency of the electrical box, effectively reducing the risk of overheating of the electrical box, and guaranteeing and extending the service life of the heating components, the electrical box and the battery.
- the heat-conducting structure includes a first heat-conducting pad, and the first heat-conducting pad is disposed between the heat-generating component and the heat-dissipating element.
- the first thermal conductive pad can be thermally connected between the heat generating component and the heat sink, so as to facilitate reliable heat exchange between the heat sink and the heat generating component.
- the first thermal conductive pad can conduct the heat generated by the heat generating component to the heat sink and then dissipate the heat to the outside of the shell through the heat sink, thereby ensuring the heat dissipation performance and heat dissipation efficiency of the electrical box, and ensuring the performance and service life of the heat generating component.
- the first thermal pad is an elastic member.
- the first thermal pad can be made into an elastic member, so that the first thermal pad disposed between the heat generating component and the heat sink has elastic properties and can be adaptively deformed elastically to fit and abut between the heat generating component and the heat sink.
- the first thermal pad and the heat generating component can be closely fitted and form a sufficient abutment area, and it can be ensured that the first thermal pad and the heat sink can be closely fitted and form a sufficient abutment area, so that it can be ensured that the first thermal pad can be reliably and effectively connected to the heat generating component and the heat sink by thermal conduction, and the thermal conduction effect of the first thermal pad can be ensured and improved, and the heat dissipation performance and heat dissipation efficiency of the electrical box can be ensured and improved.
- the first thermal pad is an insulating member.
- the first thermal pad can be an insulating member, so that the first thermal pad disposed between the heat generating component and the heat sink has insulation properties and can be insulated and isolated between the heat generating component and the heat sink. Based on this, a short circuit between the heat generating component and the heat sink can be avoided, thereby reducing the risk of high voltage short circuit ignition in the electrical box.
- a first heat-conducting layer is disposed on a side of the heat sink facing the heat-generating component.
- a first heat-conducting layer can be provided on the side of the heat sink facing the heat-generating component, so that the heat-generating component and the heat sink are connected by heat conduction through the first heat-conducting layer, thereby enhancing the heat conduction effect between the heat-generating component and the heat sink, thereby improving the heat dissipation performance and heat dissipation efficiency of the electrical box, and ensuring and improving the performance and service life of the heat-generating component.
- a groove is provided on a side of the heat sink facing the heat generating component.
- a groove can be set on the side of the heat sink facing the heat-generating component to accommodate structures such as the first thermal pad, the first thermal layer, etc. located between the heat sink and the heat-generating component, and even to accommodate part of the heat-generating component. Based on this, on the one hand, the combined occupied space of various structures between the heat sink and the heat-generating component can be compressed, which can be beneficial to the miniaturization and lightness of the electrical box.
- the contact area and the tightness of fit between the first thermal pad, the first thermal layer or the heat-generating component and the heat sink can be increased accordingly, thereby enhancing the heat conduction effect between the first thermal pad, the first thermal layer or the heat-generating component and the heat sink, and improving the heat dissipation performance and heat dissipation efficiency of the electrical box.
- At least a portion of the heat generating component is embedded in the groove.
- the heat generating component can be embedded in the groove, so that at least part of the part of the heat generating component used for heat conduction connection with the heat sink is limitedly matched in the groove. Based on this, on the one hand, the combined occupied space of various structures between the heat sink and the heat generating component can be greatly compressed, which can be conducive to the miniaturization and lightness of the electrical box. On the other hand, the heat generating component can be connected with the heat sink.
- the heat sink directly forms a tighter and more fitting fit, and forms a larger and tighter abutment area, thereby improving the tightness of fit and the heat conduction effect between the heat-generating component and the heat sink, and improving the heat dissipation performance and heat dissipation efficiency of the electrical box.
- the thermally conductive structure includes a second thermally conductive pad disposed between the heat sink and the thermal management component.
- the heat sink and the thermal management component can be connected by thermal conduction through the second thermal conductive pad, so as to facilitate reliable heat exchange between the heat sink and the thermal management component, and especially facilitate the second thermal conductive pad to conduct the heat of the heat sink to the thermal management component, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box.
- the second thermal pad is an elastic member.
- the second thermal pad can be made into an elastic member, so that the second thermal pad has elastic properties and can be adaptively deformed elastically to fit and abut between the heat sink and the thermal management component. Based on this, it can be ensured that the second thermal pad and the heat sink can be closely fitted and form a sufficient abutment area, and it can be ensured that the second thermal pad and the thermal management component can be closely fitted and form a sufficient abutment area, so that it can be ensured that the second thermal pad can be reliably and effectively connected to the heat sink and the thermal management component by thermal conduction, and the thermal conduction effect of the second thermal pad can be guaranteed and improved, and the heat dissipation performance and heat dissipation efficiency of the electrical box can be guaranteed and improved.
- the second thermal pad is an insulating member.
- the second thermally conductive pad can be an insulating member, so that the second thermally conductive pad disposed between the heat sink and the thermal management component has insulating properties and can be insulated and isolated between the heat sink and the thermal management component. Based on this, a short circuit between the heat sink and the thermal management component can be avoided, thereby reducing the risk of high-voltage short circuit ignition in the electrical box.
- a second heat conducting layer is disposed on a side of the heat sink facing the heat management component.
- a second heat-conducting layer can be provided on the side of the heat sink facing the thermal management component, so that the heat conduction effect between the heat sink and the thermal management component can be enhanced by thermally conducting the second heat-conducting layer to connect the heat sink and the thermal management component, thereby improving the heat dissipation performance and heat dissipation efficiency of the electrical box.
- the thermal management component is a liquid cold plate.
- the thermal management component can be made into a liquid cooling plate, so that the liquid cooling plate can reliably and effectively exchange heat with the heat-conducting structure and the electrical box through the fluid, and in particular, the contact area and heat conduction effect between the thermal management component and the heat-conducting structure can be guaranteed, thereby meeting the heat dissipation requirements of the electrical box.
- the heat generating component is a bar sheet, and the bar sheet is insulated and thermally connected to the heat conducting structure.
- the heat-generating component by making the heat-generating component a bar, the bar that generates more heat during use can be directly connected to the heat-conducting structure through heat conduction. Based on this, it is convenient to reliably and effectively dissipate the large amount of heat generated by the bar to the outside of the shell through the heat-conducting structure, thereby effectively ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box, effectively reducing the risk of overheating of the electrical box, and ensuring and extending the service life of the heat-generating component, the electrical box and the battery.
- an electrical device comprising the battery provided in an embodiment of the present application.
- the electrical device can ensure and improve the performance, service life and safety performance of the electrical device by applying the battery provided in the embodiment of the present application.
- FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
- FIG2 is an exploded schematic diagram of a battery provided in some embodiments of the present application.
- FIG3 is a schematic diagram of a partial structure of a battery provided in some embodiments of the present application.
- FIG4 is a schematic diagram of the structure of an electrical box and a thermal management component provided in some embodiments of the present application;
- FIG5 is an exploded schematic diagram of an electrical box provided in some embodiments of the present application.
- FIG6 is a front view of an electrical box and a thermal management component provided in some embodiments of the present application.
- Fig. 7 is a cross-sectional view taken along line A-A provided in Fig. 6;
- FIG8 is a cross-sectional view of an electrical box and a thermal management component provided in some other embodiments of the present application, wherein the heat sink is provided with a first heat-conducting layer and a second heat-conducting layer;
- FIG9 is a cross-sectional view of an electrical box and a heat management component provided in some other embodiments of the present application, wherein the heat sink is provided with a groove, and a portion of the heat generating component is embedded in the groove;
- FIG. 10 is a schematic diagram of an exploded view of a thermal management component provided in some embodiments of the present application.
- the reference numerals in the figure are: 1-battery, 2-controller, 3-motor; 10-battery unit; 20-box, 21-first part, 22-second part; 30- Electrical box, 31-shell, 311-heat dissipation hole, 3111-recess, 312-base, 313-top cover, 32-heat-conducting structure, 321-heat dissipation element, 3211-first heat-conducting layer, 3212-groove, 3213-second heat-conducting layer, 322-first thermal pad, 323-second thermal pad; 33-heat-generating component; 40-thermal management component, 41-first metal plate, 411-flow channel, 42-second metal plate.
- first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
- the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- installed can be a fixed connection, a detachable connection, or an integral connection
- it can be a mechanical connection or an electrical connection
- it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- the electrical box is a control unit that distributes battery energy and is used to distribute high voltage to the battery.
- the electrical box includes a housing and a heat generating component disposed in the housing, and a portion of the heat generating component is disposed through the housing and exposed.
- the heat-generating components will generate heat during the operation of the electrical box, and the heat generated by the heat-generating components can be dissipated to the outside of the housing through the portion of the heat-generating components exposed outside the housing, thereby ensuring the heat dissipation performance and heat dissipation efficiency of the electrical box, and ensuring the performance and service life of the heat-generating components.
- the thermal management component in the battery leaks, or the battery seal fails and causes water to seep into the battery from the outside, the water that has seeped into the battery may seep into the electrical box along the weak seal of the electrical box, causing the electrical box to have a high-voltage short circuit and ignition risk due to water seeping in from the outside, thereby affecting the safety performance of the electrical box and the battery.
- some embodiments of the present application provide a battery, in which the electrical box can accommodate a heat-generating component through a shell, and connect the heat-generating component in the shell and the heat management component outside the shell through a heat-conducting structure, so as to facilitate heat exchange and heat conduction between the heat-generating component and the heat management component through the heat-conducting structure, and in particular, facilitate heat conduction of the heat generated by the heat-generating component to the heat management component through the heat-conducting structure, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box, reducing the risk of overheating of the electrical box, ensuring the performance of the heat-generating component, and ensuring and extending the service life of the heat-generating component, the electrical box and the battery.
- the connection gap between the heat-conducting structure and the shell can be effectively sealed, and the liquid can be reliably prevented from penetrating into the shell from the outside of the shell through the gap between the heat-conducting structure and the shell, thereby effectively ensuring and improving the sealing of the shell and the electrical box, effectively reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box, and effectively ensuring the safety performance of the electrical box and the battery.
- the battery disclosed in the embodiment of the present application may be a modular structure including one or more battery cells to provide higher voltage and capacity, such as a battery module or battery pack.
- the battery cell may be a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery or a magnesium-ion battery, etc.;
- the battery cell may be cylindrical, flat, rectangular or other shapes, etc.; the battery cell may be packaged in different ways to form a cylindrical battery cell, a square battery cell or a soft-pack battery cell, etc.
- the battery disclosed in the embodiment of the present application can be used in an electrical device that uses the battery as a power source, or in various energy storage systems that use the battery as an energy storage element.
- the electrical device may be, but is not limited to, a vehicle, a mobile phone, a portable device, a laptop computer, a ship, a spacecraft, an electric toy, and an electric tool, etc.
- the vehicle may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle, etc.
- Spacecraft include airplanes, rockets, space shuttles, and spacecraft, etc.
- Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, and electric airplane toys, etc.
- Electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools, and railway electric tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete
- FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
- the vehicle can be a fuel vehicle, a gas vehicle or a new energy vehicle.
- the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
- a battery 1 is arranged inside the vehicle, and the battery 1 can be arranged at the bottom, head or tail of the vehicle.
- the battery 1 is used to power the vehicle.
- the battery 1 can be used as an operating power source for the vehicle.
- the vehicle may also include a controller 2 and a motor 3.
- the controller 2 is used to control the battery 1 to power the motor 3, for example, for the starting, navigation and driving power requirements of the vehicle.
- the battery 1 can be used not only as an operating power source for the vehicle, but also as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
- Figure 2 is a schematic diagram of the exploded view of the battery 1 provided in some embodiments of the present application
- Figure 3 is a schematic diagram of the present application.
- the battery 1 includes a battery cell 10 and a box 20, and the battery cell 10 is accommodated in the box 20.
- the box 20 is used to provide a first accommodation space for the battery cell 10, and the box 20 can adopt a variety of structures.
- the box 20 may include a first part 21 and a second part 22, the first part 21 and the second part 22 cover each other, and the first part 21 and the second part 22 jointly define a first accommodation space for accommodating the battery cell 10.
- the second part 22 may be a hollow structure with one end open, the first part 21 may be a plate-like structure, and the first part 21 covers the open side of the second part 22, so that the first part 21 and the second part 22 jointly define the first accommodation space; the first part 21 and the second part 22 may also be hollow structures with one side open, and the open side of the first part 21 covers the open side of the second part 22.
- the box 20 formed by the first part 21 and the second part 22 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
- the battery 1 there may be a plurality of battery cells 10 , and the plurality of battery cells 10 may be connected in series, in parallel, or in mixed connection.
- Mixed connection means that the plurality of battery cells 10 may be connected in series or in parallel.
- the battery unit 10 may be a battery cell.
- a plurality of battery cells may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the plurality of battery cells may be accommodated in the box body 20.
- the battery cell may be a lithium-ion secondary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, etc.
- the battery cell may be cylindrical, flat, rectangular, or in other shapes, etc.
- the battery cell may be packaged in different ways to form a cylindrical battery cell, a square battery cell, or a soft-pack battery cell, etc.
- the battery unit 10 may be a battery module or a battery module.
- a plurality of battery cells may be connected in series, in parallel or in a mixed connection to form a modular structure, i.e., a battery module or a battery module; a plurality of battery modules or battery modules may then be connected in series, in parallel or in a mixed connection to form a whole, and accommodated in the box 20.
- the battery 1 may further include an electrical box 30, which is accommodated in the first accommodation space of the box body 20, and is connected to the battery unit 10, etc.
- the electrical box 30 may serve as a control unit for distributing the energy of the battery 1, and distributes high voltage to the battery 1.
- the electrical box 30 may include a housing, a high-voltage component, and an electrical connector.
- the high-voltage component is disposed in the housing.
- the high-voltage component may include one or more of a relay, a current sensor, a fuse, an insurance, a pre-charging resistor, etc.
- the relay may include a main positive relay, a main negative relay, etc.
- the electrical connector is used to electrically connect to the high-voltage component.
- the battery 1 may further include a thermal management component 40, which is contained in the first accommodating space of the box 20 and is used to perform heat exchange with components such as the battery cell 10 and the electrical box 30 to adjust the temperature of the battery 1.
- the thermal management component 40 may be a liquid cooling plate.
- one thermal management component 40 may be provided and disposed on the same side of components such as the battery cell 10 and the electrical box 30 to facilitate heat exchange with components such as the battery cell 10 and the electrical box 30.
- multiple thermal management components 40 may also be provided to facilitate flexible design of the position and state of the thermal management component 40, so that multiple thermal management components 40 can perform heat exchange with components such as the battery cell 10 and the electrical box 30 respectively.
- the thermal management component 40 may also be an air cooling system, and the airflow generated by the air cooling system may pass through components such as the battery cell 10 and the electrical box 30 to facilitate heat exchange with components such as the battery cell 10 and the electrical box 30.
- the thermal management component 40 may also be other structural forms.
- the battery 1 may also include other structures.
- the battery 1 may also include a busbar component (not shown in the figure) for realizing electrical connection between the plurality of battery cells 10 .
- the battery 1 may not include the box body 20, but a plurality of battery cells may be electrically connected and formed into a whole through necessary fixing structures and then assembled into an electrical device.
- some embodiments of the present application provide a battery 1 , the battery 1 including a thermal management component 40 and an electrical box 30 .
- the thermal management component 40 is used to adjust the temperature of the battery 1 .
- the electrical box 30 The heat management device comprises a housing 31 and a heat conducting structure 32.
- the housing 31 is used to accommodate a heat generating component 33.
- the heat conducting structure 32 is sealedly connected to the housing 31, and the heat conducting structure 32 connects the heat generating component 33 and the heat management component 40.
- thermal management component 40 is used to perform heat exchange with components such as the electrical box 30 to adjust the temperature of the battery 1.
- One or more thermal management components 40 may be provided.
- the thermal management component 40 may be in various structural forms, and the thermal management component 40 may be, but is not limited to, a liquid cooling plate.
- the electrical box 30 can be used as a control unit for distributing energy of the battery 1 and distributes high voltage to the battery 1.
- the electrical box 30 includes a housing 31, a heat-conducting structure 32, a heat-generating component 33 and other components.
- the housing 31 is used to provide a second accommodation space for components such as the heating component 33 of the electrical box 30, and the housing 31 can adopt a variety of structures.
- the housing 31 may include a base 312 and a top cover 313, the base 312 and the top cover 313 cover each other, and the base 312 and the top cover 313 jointly define a second accommodation space for accommodating components such as the heating component 33 of the electrical box 30.
- the base 312 may be a hollow structure with one end open, and the top cover 313 may be a plate-like structure, and the top cover 313 covers the open side of the base 312, so that the top cover 313 and the base 312 jointly define the second accommodation space; the base 312 and the top cover 313 may also be hollow structures with one side open, and the open side of the top cover 313 covers the open side of the base 312.
- the housing 31 formed by the top cover 313 and the base 312 can be in a variety of shapes, such as a cylinder, a cuboid, etc.
- the housing 31 can be assembled from three or more parts.
- the heat generating component 33 is disposed in the second accommodation space of the housing 31.
- the heat generating component 33 may refer to any component of the electrical box 30 disposed in the housing 31 and generating heat, such as an electrical component, or an electrical connector for achieving electrical connection such as a bar, a bus bar, a conductive sheet, etc.
- the electrical component may be, but is not limited to, a fuse, a relay, a pre-charge resistor, etc.
- the heat-conducting structure 32 includes a heat-conducting material, has heat-conducting properties, and can play a heat-conducting role, that is, play a heat exchange and heat conduction role.
- the heat-conducting structure 32 can be a single-layer structure or a multi-layer structure.
- the heat-conducting structure 32 can be in a variety of shapes, such as a cuboid, a cylinder, etc.
- the heat-conducting structure 32 is sealedly connected to the housing 31 to seal the connection gap between the heat-conducting structure 32 and the housing 31, thereby reliably preventing liquid from penetrating into the housing 31 from the outside of the housing 31 through the gap between the heat-conducting structure 32 and the housing 31, thereby ensuring and improving the sealing of the housing 31 and the electrical box 30.
- the heat-conducting structure 32 can be sealedly connected to the housing 31 through its own structural design or by using components such as a sealing ring and a sealant.
- the heat-conducting structure 32 is connected to the heat-generating component 33 to facilitate quick and reliable heat exchange between the heat-conducting structure 32 and the heat-generating component 33, and in particular, facilitates the heat-conducting structure 32 to conduct the heat generated by the heat-generating component 33 and dissipate it to the outside of the shell 31, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, ensuring the performance of the heat-generating component 33, and ensuring and extending the service life of the heat-generating component 33, the electrical box 30 and the battery 1.
- the heat-conducting structure 32 is connected to the thermal management component 40 to facilitate quick and reliable heat exchange between the heat-conducting structure 32 and the thermal management component 40, and in particular, to facilitate the heat-conducting structure 32 to conduct the heat generated by the heat-generating component 33 to the thermal management component 40, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30 and reducing the risk of overheating of the electrical box 30.
- the electrical box 30 can accommodate the heat-generating component 33 through the shell 31, and connect the heat-generating component 33 in the shell 31 and the thermal management component 40 outside the shell 31 through the heat-conducting structure 32, so as to facilitate heat exchange and heat conduction between the heat-generating component 33 and the thermal management component 40 through the heat-conducting structure 32, and in particular, facilitate heat conduction of the heat generated by the heat-generating component 33 to the thermal management component 40 through the heat-conducting structure 32, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, reducing the risk of overheating of the electrical box 30, ensuring the performance of the heat-generating component 33, and ensuring and extending the service life of the heat-generating component 33, the electrical box 30 and the battery 1.
- the connection gap between the heat-conducting structure 32 and the shell 31 can be effectively sealed, thereby reliably preventing liquid from entering the shell 31.
- the outside of the body 31 penetrates into the inside of the shell 31 through the gap between the heat-conducting structure 32 and the shell 31, thereby effectively ensuring and improving the sealing of the shell 31 and the electrical box 30, and effectively reducing the risk of high-voltage short circuit and ignition due to water seepage from the outside of the electrical box 30, and effectively ensuring the safety performance of the electrical box 30 and the battery 1.
- the heat-conducting structure 32 is insulated and heat-conductingly connected to the heat-generating component 33 .
- the heat-generating component 33 is thermally connected to the heat-conducting structure 32 to facilitate quick and reliable heat exchange between the heat-conducting structure 32 and the heat-generating component 33, and in particular, the heat-conducting structure 32 conducts and dissipates the heat generated by the heat-generating component 33 to the thermal management component 40, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, ensuring the performance of the heat-generating component 33, and ensuring and extending the service life of the heat-generating component 33.
- the heat-generating component 33 is insulated from the heat-conducting structure 32 to avoid a short circuit between the heat-generating component 33 and the heat-conducting structure 32, thereby reducing the risk of a high-voltage short circuit ignition in the electrical box 30.
- at least the portion of the heat-generating component 33 used for thermal connection with the heat-conducting structure 32 may be an insulating member, or an insulating layer may be provided on the surface of the heat-generating component 33 used for thermal connection with the heat-conducting structure 32, or at least the portion of the heat-conducting structure 32 used for thermal connection with the heat-generating component 33 may be an insulating member, or an insulating layer may be provided on the surface of the heat-conducting structure 32 used for thermal connection with the heat-generating component 33, or an insulating member may be provided on the object thermally connected between the heat-generating component 33 and the heat-conducting structure 32, and so on, all of which can achieve insulation between the heat-generating component 33 and the heat-conducting structure 32
- the heat-conducting structure 32 is insulated and heat-conductingly connected to the heat-management component 40 .
- the heat-conducting structure 32 is thermally connected to the thermal management component 40 to facilitate quick and reliable heat exchange between the heat-conducting structure 32 and the thermal management component 40, especially to facilitate the heat-conducting structure 32 to conduct and dissipate the heat generated by the heat-generating component 33 to the thermal management component 40, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, reducing the risk of overheating of the electrical box 30, and ensuring and extending the service life of the electrical box 30 and the battery 1.
- the heat-conducting structure 32 is insulated from the heat-management component 40 to avoid a short circuit between the heat-conducting structure 32 and the heat-management component 40, thereby reducing the risk of a high-voltage short circuit ignition in the electrical box 30.
- the portion of the heat-management component 40 used for heat-conducting connection with the heat-conducting structure 32 may be an insulating member, or an insulating layer may be provided on the surface of the heat-management component 40 used for heat-conducting connection with the heat-conducting structure 32, or at least the portion of the heat-conducting structure 32 used for heat-conducting connection with the heat-management component 40 may be an insulating member, or an insulating layer may be provided on the surface of the heat-conducting structure 32 used for heat-conducting connection with the heat-management component 40, or an object heat-conductingly connected between the heat-management component 40 and the heat-conducting structure 32 may be an insulating member, etc., all of which can achieve
- a heat dissipation hole 311 is formed through the side wall of the housing 31.
- the heat conduction structure 32 includes a heat dissipation element 321, which is embedded in the heat dissipation hole 311, and the peripheral wall of the heat dissipation element 321 is sealed and connected to the hole wall of the heat dissipation hole 311.
- the housing 31 has a plurality of side walls, and the side walls together define a second accommodation space for accommodating components such as the heat generating component 33 of the electrical box 30.
- Any side wall may be provided with a heat dissipation hole 311 as required, and the heat dissipation hole 311 penetrates the side wall along the thickness direction of the side wall.
- the number of the heat dissipation hole 311 is at least one.
- the heat dissipation hole 311 may be, but is not limited to, a circular hole, a rectangular hole, or a hole of other shapes.
- the heat-conducting structure 32 includes a heat sink 321.
- the heat sink 321 includes at least one of a heat dissipation material, a heat-conducting material or a phase change material, that is, the heat sink 321 is made of at least one of a heat dissipation material, a heat-conducting material or a phase change material, so that the heat sink 321 has heat dissipation performance and heat-conducting performance, and can play the role of heat exchange and heat conduction.
- the heat sink 321 can be a metal part or a non-metal part, such as an aluminum part, a ceramic part, etc.
- the heat sink 321 can be a variety of shapes, such as a circular plate, a polygonal plate, a circular block, a polygonal block, etc.
- the heat sink 321 is arranged corresponding to the heat dissipation hole 311.
- the heat sink 321 is embedded in the heat dissipation hole 311, and in the cross section with the heat dissipation hole 311, the heat sink 321 basically blocks the heat dissipation hole 311.
- the cross section of the heat dissipation hole 311 refers to the cross section of the heat dissipation hole 311 that intersects (optionally perpendicular to) its axial direction, and the axial direction of the heat dissipation hole 311 refers to the direction of the heat dissipation hole 311 along its axis.
- the shape of the heat sink 321 can be set the same as the shape of the heat dissipation hole 311, or it can be set differently. In the axial direction of the heat dissipation hole 311, the thickness of the heat sink 321 can be greater than, less than or equal to the length of the heat dissipation hole 311.
- the peripheral wall of the heat sink 321 is sealed and connected with the hole wall of the heat dissipation hole 311 to seal the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311, and reliably prevent the liquid from penetrating into the inside of the shell 31 through the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 from the outside of the shell 31, thereby ensuring and improving the sealing of the shell 31 and the electrical box 30.
- the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 can be clearance fit, transition fit or interference fit.
- the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 can be sealed and connected through its own structural design or by using sealing rings, sealants and other components.
- the electrical box 30 can embed the heat sink 321 in the heat dissipation hole 311 on the side wall of the shell 31, so as to realize heat exchange between the inside and the outside of the shell 31 through the heat sink 321, and especially facilitate the heat conduction of the heat-generating component 33 to the thermal management component 40 through the heat sink 321, thereby ensuring the heat dissipation performance and heat dissipation efficiency of the electrical box 30, reducing the risk of overheating of the electrical box 30, and ensuring and extending the service life of the heat-generating component 33, the electrical box 30 and the battery 1.
- the electrical box 30 can also seal the peripheral wall of the heat sink 321 with the hole wall of the heat dissipation hole 311 to make the heat-conducting structure 32 and the shell 31 reliably sealed and connected, thereby effectively sealing the connecting gap between the heat-conducting structure 32 and the shell 31, especially effectively sealing the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311, thereby reliably preventing liquid from penetrating into the shell 31 from the outside of the shell 31 through the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311, thereby ensuring and improving the sealing of the shell 31 and the electrical box 30, reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box 30, and improving the safety performance of the electrical box 30 and the battery 1.
- the heat sink 321 and the housing 31 are an integrated structure.
- the heat sink 321 and the housing 31 can be formed into an integrated structure by, but not limited to, an integrated molding process such as integral injection molding and 3D printing.
- the heat sink 321 and the housing 31 can form an integrated structure through an integrated molding process. Therefore, on the one hand, the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 can be conveniently, quickly and reliably sealed by integrally connecting the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311, thereby ensuring and improving the sealing of the housing 31 and the electrical box 30, and reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box 30. On the other hand, the structural strength of the heat sink 321 and the housing 31 can be enhanced, the assembly process between the heat sink 321 and the housing 31 can be reduced, and the production efficiency of the electrical box 30 can be improved.
- the heat sink 321 and the housing 31 may be formed separately and then connected separately.
- the heat sink 321 and the housing 31 are integrally injection molded. That is, the heat sink 321 and the housing 31 are integrally injection molded to form an integrated structure.
- the heat sink 321 and the housing 31 can be integrally injection molded, based on which, on the one hand, the connection strength between the heat sink 321 and the housing 31 can be enhanced, the comprehensive structural strength of the heat sink 321 and the housing 31 can be enhanced, the assembly process between the heat sink 321 and the housing 31 can be reduced, and the production efficiency of the electrical box 30 can be improved.
- connection between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 can be made tight, fitting, and reliable, so that the gap between the peripheral wall of the heat sink 321 and the hole wall of the heat dissipation hole 311 can be conveniently, quickly, and reliably sealed, thereby improving the sealing of the housing 31 and the electrical box 30, and reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box 30.
- a recess 3111 is provided on the hole wall of the heat dissipation hole 311 , and a part of the heat dissipation element 321 is embedded in the recess 3111 .
- a recess 3111 is provided on the hole wall of the heat dissipation hole 311, and the extension direction of the recess 3111 corresponds to the circumference of the heat dissipation element 321.
- the recess 3111 may be linear, open ring or closed ring.
- a recess 3111 is provided on one side of the hole wall of the heat dissipation hole 311, and the recess 3111 extends in the circumference of the heat dissipation element 321 and may extend in a linear shape; for another example, assuming that the heat dissipation hole 311 is a polygonal hole, the recess 3111 extends on multiple hole walls of the heat dissipation hole 311 in the circumference of the heat dissipation element 321. If the head end and the tail end of the recess 3111 are butt-jointed, a closed ring may be formed; if the head end and the tail end of the recess 3111 are disconnected and spaced, an open ring may be formed.
- the portion of the heat sink 321 corresponding to the recess 3111 is embedded in the recess 3111.
- the circumference of the heat sink 321 is correspondingly embedded in the recess 3111 in the closed ring shape.
- the connection area between the heat sink 321 and the heat dissipation hole 311 can be increased, the comprehensive structural strength of the heat sink 321 and the shell 31 can be enhanced, and the strength, tightness and fit of the connection between the heat sink 321 and the shell 31 can be enhanced, thereby improving the sealing reliability between the heat sink 321 and the heat dissipation hole 311, improving the sealing of the shell 31 and the electrical box 30, and reducing the risk of high-voltage short circuit ignition due to water seepage from the outside of the electrical box 30.
- the peripheral wall of the heat sink 321 may be adapted to fit and integrally connected with the hole wall of the heat dissipation hole 311 .
- the heat sink 321 is an aluminum plate, which is insulated and thermally connected to the heat generating component 33 , and is insulated and thermally connected to the heat management component 40 .
- the heat sink 321 is an aluminum plate. Such a configuration can effectively ensure and improve the thermal conductivity of the heat sink 321 and the thermal conductive structure 32 based on the good thermal conductivity of the aluminum plate, thereby effectively ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, effectively reducing the risk of overheating of the electrical box 30, and ensuring and extending the service life of the heating component 33, the electrical box 30 and the battery 1.
- the aluminum plate and the heating component 33 are insulated to avoid short circuit between the aluminum plate and the heating component 33, thereby reducing the risk of high voltage short circuit ignition in the electrical box 30.
- the heating component 33 can be at least used for thermal connection with the aluminum plate. Part of it is an insulating part, or the surface of the heat-generating component 33 used for thermal connection with the aluminum plate may be provided with an insulating layer, or the surface of the aluminum plate used for thermal connection with the heat-generating component 33 may be provided with an insulating layer, or the object thermally connected between the heat-generating component 33 and the aluminum plate may be an insulating part, etc., all of which can achieve insulation between the aluminum plate and the heat-generating component 33.
- the aluminum plate and the thermal management component 40 are insulated to avoid short circuit between the aluminum plate and the thermal management component 40, thereby reducing the risk of high voltage short circuit ignition in the electrical box 30.
- the portion of the thermal management component 40 used for thermal connection with the aluminum plate may be an insulating member, or an insulating layer may be provided on the surface of the thermal management component 40 used for thermal connection with the aluminum plate, or an insulating layer may be provided on the surface of the aluminum plate used for thermal connection with the thermal management component 40, or an insulating member may be provided on the object thermally connected between the thermal management component 40 and the aluminum plate, etc., all of which can achieve insulation between the aluminum plate and the thermal management component 40.
- the heat conduction effect of the heat sink 321 and the heat conduction structure 32 can be effectively guaranteed and improved based on the good thermal conductivity of the aluminum plate, thereby effectively guaranteeing and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, effectively reducing the risk of overheating of the electrical box 30, and guaranteeing and extending the service life of the heating component 33, the electrical box 30 and the battery 1.
- the heat-conducting structure 32 includes a first heat-conducting pad 322 .
- the first heat-conducting pad 322 is disposed between the heat-generating component 33 and the heat-dissipating element 321 .
- the first thermal pad 322 includes a thermally conductive material, has thermal conductivity, and can play a role in heat conduction.
- the first thermal pad 322 is arranged between the heat-generating component 33 and the heat sink 321, and is used for heat conduction connection between the heat-generating component 33 and the heat sink 321.
- the first thermal pad 322 can be in various forms, such as sheet, plate, block, etc.
- the first thermal pad 322 can be in various shapes, such as round, polygonal, special-shaped, etc.
- the material of the first thermal pad 322 can be a material with high thermal conductivity, such as a thermally conductive material with a thermal conductivity of more than 0.6.
- the first thermal pad 322 can be a thermally conductive silicone pad.
- the first thermal pad 322 can also be made of other similar thermally conductive materials, which will not be repeated here.
- the first thermal pad 322 can be thermally connected between the heat generating component 33 and the heat sink 321, so as to facilitate reliable heat exchange between the heat sink 321 and the heat generating component 33.
- the first thermal pad 322 can conduct the heat generated by the heat generating component 33 to the heat sink 321 and then dissipate the heat to the outside of the shell 31 through the heat sink 321, thereby ensuring the heat dissipation performance and heat dissipation efficiency of the electrical box 30, and ensuring the performance and service life of the heat generating component 33.
- the first thermal pad 322 may not be provided, and the heat-generating component 33 and the heat sink 321 may be thermally connected by other structures (such as the first thermal conductive layer 3211 described below), or the heat-generating component 33 and the heat sink 321 may be directly thermally connected without any structure.
- the first thermal pad 322 is an elastic member.
- the first thermally conductive pad 322 is an elastic member, so that the first thermally conductive pad 322 has elastic properties in addition to thermal conductivity, so that the first thermally conductive pad 322 can be elastically deformed under force.
- the first thermal pad 322 can be an elastic member, so that the first thermal pad 322 disposed between the heat generating component 33 and the heat sink 321 has elastic properties and can be adaptively elastically deformed to fit and abut between the heat generating component 33 and the heat sink 321. Based on this, it can be ensured that the first thermal pad 322 and the heat generating component 33 can be closely attached to form a sufficient abutment area, and it can be ensured that the first thermal pad 322 and the heat sink 321 can be closely attached to form a sufficient abutment area, so that the first thermal pad 322 can be reliably and effectively connected to the heat generating component through thermal conduction.
- the heat conduction effect of the first thermal pad 322 can be ensured and improved between the heat sink 33 and the heat sink 321 , and the heat dissipation performance and heat dissipation efficiency of the electrical box 30 can be ensured and improved.
- the first thermal pad 322 may be a rigid member.
- the first thermal pad 322 is an insulating member.
- the first thermal pad 322 is an insulating member, so that the first thermal pad 322 has insulation properties in addition to thermal conductivity, so that the first thermal pad 322 can be insulated and isolated between the heat generating component 33 and the heat sink 321 .
- the first thermal pad 322 can be an insulating member, so that the first thermal pad 322 disposed between the heat generating component 33 and the heat sink 321 has insulation properties, and can be insulated and isolated between the heat generating component 33 and the heat sink 321. Based on this, a short circuit between the heat generating component 33 and the heat sink 321 can be avoided, thereby reducing the risk of high voltage short circuit ignition in the electrical box 30.
- the first thermal pad 322 may be a non-insulating member (ie, a conductive member), and insulation between the heat generating component 33 and the heat sink 321 may be achieved in other ways.
- a first heat-conducting layer 3211 is disposed on a side of the heat sink 321 facing the heat-generating component 33 .
- the first heat-conducting layer 3211 includes a heat-conducting material, has heat-conducting properties, and can play a heat conduction effect.
- the first heat-conducting layer 3211 can be formed on the side of the heat sink 321 facing the heat-generating component 33 by, but not limited to, coating or injection molding, and the first heat-conducting layer 321 is used for heat conduction connection between the heat-generating component 33 and the heat sink 321.
- the first heat-conducting layer 3211 when the first heat-conducting pad 322 is provided, the first heat-conducting layer 3211 can be located between the first heat-conducting pad 322 and the heat sink 321.
- the first heat-conducting layer 3211 can be provided on the side of the heat sink 321 facing the heat-generating component 33, so as to be connected between the heat-generating component 33 and the heat sink 321 by heat conduction through the first heat-conducting layer 3211, and the heat conduction effect between the heat-generating component 33 and the heat sink 321 can be enhanced, thereby improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, and ensuring and improving the performance and service life of the heat-generating component 33.
- the first heat-conducting layer 3211 may be an insulating layer, so as to play an insulating role in addition to playing a heat conduction role, so that the first heat-conducting layer 3211 can be insulated and isolated between the heat-generating component 33 and the heat-dissipating element 321.
- the first heat-conducting layer 3211 may be a non-insulating element (i.e., a conductive element), and the heat-generating component 33 and the heat-dissipating element 321 may be insulated by other methods.
- the first heat-conducting layer 3211 may be a heat-conducting structural adhesive, which has high strength, good thermal conductivity, and can withstand large loads.
- the use of heat-conducting structural adhesive for bonding can make the stress distribution of the bonding surface uniform, and the connection stability and reliability are higher.
- a groove 3212 is provided on a side of the heat sink 321 facing the heat generating component 33 .
- a groove 3212 is provided on the side of the heat sink 321 facing the heat-generating component 33, so as to accommodate the structure provided between the heat sink 321 and the heat-generating component 33, such as the first thermal pad 322, the first thermal layer 3211, etc.; it can even be used to accommodate a part of the heat-generating component 33.
- the shape and size of the groove 3212 can be flexibly designed according to the object it accommodates.
- the heat sink 321 is provided with a first thermal layer 3211 on the side facing the heat-generating component 33, and the first thermal layer 3211 can be arranged in the groove 3212.
- a first thermal pad 322 is provided between the heat-generating component 33 and the heat sink 321, and the first thermal pad 322 can be arranged in the groove 3212.
- the portion of the heat-generating component 33 used for thermal connection with the heat sink 321 can be arranged in the groove 3212.
- the heat generating component 33 and the heat sink 321 can be connected in an insulated and thermally conductive manner.
- a groove 3212 is provided on the side of the heat sink 321 facing the heat generating component 33, so that the structures such as the first heat conductive pad 322 and the first heat conductive layer 3211 located between the heat sink 321 and the heat generating component 33 can be accommodated through the groove 3212, and even a part of the heat generating component 33 can be accommodated.
- the overall occupied space of each structure between the heat sink 321 and the heat generating component 33 can be compressed, so that the miniaturization and lightness of the electrical box 30 can be facilitated.
- the first heat conductive pad 322 by accommodating the first heat conductive pad 322, the first heat conductive layer 3211 or the heat generating component 33 in the groove 3212, the contact area and the matching tightness between the first heat conductive pad 322, the first heat conductive layer 3211 or the heat generating component 33 and the heat sink 321 can be increased accordingly, so that the heat conduction effect between the first heat conductive pad 322, the first heat conductive layer 3211 or the heat generating component 33 and the heat sink 321 can be enhanced, and the heat dissipation performance and heat dissipation efficiency of the electrical box 30 can be improved.
- At least a portion of the heat generating component 33 is embedded in the groove 3212 .
- At least a part of the heat-generating component 33 is embedded in the groove 3212, and in particular, at least a part of the heat-generating component 33 used for heat-conducting connection with the heat-dissipating element 321 is embedded in the groove 3212.
- first heat-conducting pad 322 is further provided between the heat-generating component 33 and the heat-dissipating element 321, the first heat-conducting pad 322 is provided between the bottom of the groove 3212 and the heat-generating component 33; if a first heat-conducting layer 3211 is further provided on the side of the heat-dissipating element 321 facing the heat-generating component 33, the first heat-conducting layer 3211 is provided on the bottom of the groove 3212.
- At least a part of the heat-generating component 33 can be embedded in the groove 3212, so that at least a part of the part of the heat-generating component 33 used for heat-conducting connection with the heat-dissipating element 321 is limitedly matched in the groove 3212.
- the overall occupied space of various structures between the heat-dissipating element 321 and the heat-generating component 33 can be compressed to a large extent, so as to facilitate the miniaturization and lightness of the electrical box 30.
- the heat-generating component 33 can be directly formed with the heat-dissipating element 321 to form a tighter and more fitting fit, and form a larger and tighter abutment area, so as to improve the fit tightness and heat conduction effect between the heat-generating component 33 and the heat-dissipating element 321, and improve the heat dissipation performance and heat dissipation efficiency of the electrical box 30.
- the heat-conducting structure 32 includes a second heat-conducting pad 323 .
- the second heat-conducting pad 323 is disposed between the heat sink 321 and the heat-management component 40 .
- the second thermal pad 323 includes a thermally conductive material, has thermal conductivity, and can play a role in heat conduction.
- the second thermal pad 323 is arranged between the heat sink 321 and the thermal management component 40.
- the second thermal pad 323 is used for thermal conduction connection between the heat sink 321 and the thermal management component 40.
- the second thermal pad 323 can be in a variety of forms, such as sheet, plate, block, etc.
- the second thermal pad 323 can be in a variety of shapes, such as round, polygonal, special-shaped, etc.
- the material of the second thermal pad 323 can be a material with high thermal conductivity, such as a thermally conductive material with a thermal conductivity of more than 0.6.
- the second thermal pad 323 can be a thermally conductive silicone pad.
- the second thermal pad 323 can also be made of other similar thermally conductive materials, which will not be repeated here.
- the second thermal conductive pad 323 can be thermally connected between the heat sink 321 and the thermal management component 40, so that the heat sink 321 and the thermal management component 40 can be reliably heat exchanged, and in particular, the second thermal conductive pad 323 can conduct the heat of the heat sink 321 to the thermal management component 40, thereby ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30.
- the second thermal pad 323 may not be provided, and the heat sink 321 may be thermally connected to the thermal management component 40 by other structures (such as the second thermal conductive layer 3213 described below), or the heat sink 321 may be directly thermally connected to the thermal management component 40 without any structure.
- the second thermal pad 323 is an elastic member.
- the second thermal pad 323 is an elastic member, so that the second thermal pad 323 is on the base with thermal conductivity.
- the base also has elastic properties, so that the second thermal pad 323 can produce elastic deformation under force.
- the second thermal pad 323 can be made into an elastic member, so that the second thermal pad 323 has elastic properties and can be adaptively deformed elastically to fit and abut between the heat sink 321 and the thermal management component 40. Based on this, it can be ensured that the second thermal pad 323 and the heat sink 321 can be closely fitted and form a sufficient abutment area, and it can be ensured that the second thermal pad 323 and the thermal management component 40 can be closely fitted and form a sufficient abutment area, so that the second thermal pad 323 can be reliably and effectively connected to the heat sink 321 and the thermal management component 40 through thermal conduction, and the thermal conduction effect of the second thermal pad 323 can be guaranteed and improved, and the heat dissipation performance and heat dissipation efficiency of the electrical box 30 can be guaranteed and improved.
- the second thermal pad 323 may be a rigid member.
- the second thermal pad 323 is an insulating member.
- the second thermal pad 323 is an insulating member, so that the second thermal pad 323 has insulation properties in addition to thermal conductivity, so that the second thermal pad 323 can be insulated and isolated between the heat sink 321 and the thermal management component 40 .
- the second thermal pad 323 can be an insulating member, so that the second thermal pad 323 disposed between the heat sink 321 and the thermal management component 40 has insulation properties and can be insulated and isolated between the heat sink 321 and the thermal management component 40. Based on this, a short circuit between the heat sink 321 and the thermal management component 40 can be avoided, thereby reducing the risk of high-voltage short circuit ignition in the electrical box 30.
- the second thermal pad 323 may be a non-insulating member (ie, a conductive member), and insulation between the heat sink 321 and the thermal management component 40 may be achieved in other ways.
- a second heat conducting layer 3213 is disposed on a side of the heat sink 321 facing the heat management component 40 .
- the second heat-conducting layer 3213 includes a heat-conducting material, has heat-conducting properties, and can play a role in heat conduction.
- the second heat-conducting layer 3213 can be formed on the side of the heat sink 321 facing the heat management component 40 by, but not limited to, coating or injection molding, and the second heat-conducting layer 3213 is used for heat conduction connection between the heat sink 321 and the heat management component 40.
- the second heat-conducting layer 3213 can be located between the second heat-conducting pad 323 and the heat sink 321.
- the second heat-conducting layer 3213 may be a heat-conducting structural adhesive, which has high strength, good thermal conductivity, and can withstand large loads.
- the use of heat-conducting structural adhesive for bonding can make the stress distribution of the bonding surface uniform, and the connection stability and reliability are higher.
- a second heat-conducting layer 3213 can be provided on the side of the heat sink 321 facing the thermal management component 40, so that the heat conduction effect between the heat sink 321 and the thermal management component 40 is enhanced by thermal conduction connection between the heat sink 321 and the thermal management component 40, thereby improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30.
- the second heat-conducting layer 3213 may be an insulating layer, so as to play an insulating role in addition to playing a heat conduction role, so that the second heat-conducting layer 3213 can be insulated and isolated between the heat sink 321 and the thermal management component 40.
- the second heat-conducting layer 3213 may be a non-insulating member (i.e., a conductive member), and other methods may be used to achieve insulation between the heat sink 321 and the thermal management component 40.
- the thermal management component 40 is a liquid cooling plate.
- the thermal management component 40 is a liquid cooling plate, and the thermal management component 40 can adopt a variety of structures.
- the thermal management component 40 includes a first metal plate 41 having a flow channel 411 and a second metal plate 42 in a flat shape, and the second metal plate 42 covers the flow channel 411 on the first metal plate 41 for accommodating a fluid.
- the fluid can be used to adjust the temperature, and the fluid can be a liquid or a gas.
- the fluid can be circulated to achieve Better temperature regulation effect.
- the fluid can be water, a mixture of water and ethylene glycol, or air.
- the thermal management component 40 can be made into a liquid cooling plate, so that the liquid cooling plate can reliably and effectively exchange heat with the heat-conducting structure 32 and the electrical box 30 through the fluid, and in particular, the contact area and heat conduction effect between the thermal management component 40 and the heat-conducting structure 32 can be guaranteed, thereby meeting the heat dissipation requirements of the electrical box 30.
- thermal management component 40 may also adopt other structural forms.
- the heat generating component 33 is a bar sheet, and the bar sheet is insulated and heat-conductingly connected to the heat-conducting structure 32 .
- the heat generating component 33 is a bar, which is thermally connected to the heat conducting structure 32.
- the bar which generates more heat during use, can be directly thermally connected to the heat conducting structure 32, based on which, a large amount of heat generated by the bar can be reliably and effectively dissipated to the outside of the housing 31 through the heat conducting structure 32, thereby effectively ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, effectively reducing the risk of overheating of the electrical box 30, and ensuring and extending the service life of the heat generating component 33, the electrical box 30 and the battery 1.
- the bar sheet is insulated from the heat-conducting structure 32 to avoid a short circuit between the bar sheet and the heat-conducting structure 32, thereby reducing the risk of high-voltage short circuit ignition in the electrical box 30.
- an insulating layer may be provided on the surface of the bar sheet used for heat-conducting connection with the heat-conducting structure 32, or at least the portion of the heat-conducting structure 32 used for heat-conducting connection with the bar sheet may be an insulating member, or an insulating layer may be provided on the surface of the heat-conducting structure 32 used for heat-conducting connection with the bar sheet, or an object heat-conductingly connected between the bar sheet and the heat-conducting structure 32 may be an insulating member, etc., all of which can achieve insulation between the bar sheet and the heat-conducting structure 32.
- the heat-generating component 33 By adopting the above scheme, by making the heat-generating component 33 a bar, the bar that generates more heat during use can be directly connected to the heat-conducting structure 32 by heat conduction. Based on this, it is convenient to reliably and effectively dissipate the large amount of heat generated by the bar to the outside of the housing 31 through the heat-conducting structure 32, thereby effectively ensuring and improving the heat dissipation performance and heat dissipation efficiency of the electrical box 30, effectively reducing the risk of overheating of the electrical box 30, and ensuring and extending the service life of the heat-generating component 33, the electrical box 30 and the battery 1.
- Some embodiments of the present application provide an electrical device, and the electrical device includes a battery 1 provided in an embodiment of the present application.
- the electrical device can ensure and improve the performance, service life and safety performance of the electrical device by applying the battery 1 provided in the embodiment of the present application.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
Abstract
本申请涉及电池领域,提供一种电池(1)及用电装置。电池(1)包括热管理部件(40)和电气盒(30)。电气盒(30)包括壳体(31)和导热结构(32)。壳体(31)用于容纳发热部件(33)。导热结构(32)与壳体(31)密封连接,导热结构(32)连接发热部件(33)和热管理部件(40)。电池(1)的电气盒(30)通过导热结构(32)热交换于发热部件(33)和热管理部件(40)之间,以满足电气盒(30)的散热需求,还通过使导热结构(32)与壳体(31)密封连接,以密封连接缝隙,而阻碍液体渗入壳体(31)内部,从而可提高电气盒(30)的密封性,可降低电气盒(30)因渗水而出现高压短路打火的风险。
Description
相关申请的交叉引用
本申请要求于2023年05月31日在中华人民共和国国家知识产权局提交的、申请号为202310640621.5、发明名称为“电池及用电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施方式涉及电池技术领域,尤其涉及一种电池及用电装置。
在电池中,电气盒是分配电池能量的控制单元,用于对电池进行高压分配。在一些情形下,电气盒会使发热部件的局部露出于壳体外,以便于将发热部件的热量散出至壳体外部。但这样容易导致电气盒可能因外部向内渗水而出现高压短路打火风险,影响安全性能。
申请内容
本申请实施例提供一种电池及用电装置,旨在解决电气盒为了满足散热要求影响安全性能的问题。
为实现上述目的,本申请实施例采用的技术方案是:
第一方面,提供了一种电池,电池包括:
热管理部件,用于调节电池的温度;
电气盒,电气盒包括:
壳体,壳体用于容纳发热部件;
导热结构,与壳体密封连接,导热结构连接发热部件和热管理部件。
本申请实施例提供的电池中,电气盒可通过壳体容纳发热部件,并通过导热结构连接壳体内的发热部件和壳体外的热管理部件,以便于通过导热结构热交换、热传导于发热部件和热管理部件之间,尤其便于通过导热结构将发热部件产生的热量热传导至热管理部件,从而可保障并提高电气盒的散热性能和散热效率,可降低电气盒出现过热情况的风险,可保障发热部件的使用性能,可保障并延长发热部件、电气盒及电池的使用寿命。并且,由于导热结构与壳体密封连接,可有效密封导热结构与壳体之间的连接缝隙,而可靠阻碍液体从壳体外部经由导热结构与壳体之间的缝隙渗入壳体内部,从而可有效保障并提高壳体及电气盒的密封性,可有效降低电气盒因外部向内渗水而出现高压短路打火的风险,可有效保障电气盒及电池的安全性能。
在一些实施例中,导热结构与发热部件绝缘导热连接。
通过采用上述方案,通过使发热部件与导热结构绝缘导热连接,一方面,可便于导热结构与发热部件之间快捷、可靠地进行热交换,尤其可便于导热结构将发热部件产生的热量热传导并散出至热管理部件,从而可保障并提高电气盒的散热性能和散热效率,可保障并提高与导热结构导热连接的发热部件的使用性能和使用寿命。另一方面,可避免发热部件与导热结构之间发生短路,从而可降低电气盒出现高压短路打火的风险,可提高电气盒
及电池的安全性能。
在一些实施例中,导热结构与热管理部件绝缘导热连接。
通过采用上述方案,通过使导热结构与热管理部件绝缘导热连接,一方面,可便于导热结构与热管理部件之间快捷、可靠地进行热交换,尤其可便于导热结构将发热部件产生的热量热传导并散出至热管理部件,从而可保障并提高电气盒的散热性能和散热效率,可降低电气盒出现过热情况的风险,可保障并延长电气盒及电池的使用寿命。另一方面,可避免导热结构与热管理部件之间发生短路,从而可降低电气盒出现高压短路打火的风险,可提高电气盒及电池的安全性能。
在一些实施例中,壳体的侧壁上贯通有散热孔;导热结构包括散热件,散热件嵌设于散热孔中,散热件的周壁与散热孔的孔壁密封连接。
通过采用上述方案,电气盒可通过将散热件嵌设于壳体侧壁上的散热孔中,以便于通过散热件实现壳体内部和外部之间的热交换,尤其便于通过散热件实现将发热部件的热量热传导至热管理部件,从而可保障电气盒的散热性能和散热效率,可降低电气盒出现过热情况的风险,可保障并延长发热部件、电气盒及电池的使用寿命。在此基础上,电气盒还可通过使散热件的周壁与散热孔的孔壁密封连接,以使导热结构与壳体可靠密封连接,从而可有效密封导热结构与壳体之间的连接缝隙,尤其可有效密封散热件的周壁与散热孔的孔壁之间的缝隙,从而能够可靠阻碍液体从壳体外部经由散热件的周壁与散热孔的孔壁之间的缝隙渗入壳体内部,可保障并提高壳体及电气盒的密封性,可降低电气盒因外部向内渗水而出现高压短路打火的风险,可提高电气盒及电池的安全性能。
在一些实施例中,散热件与壳体为一体化结构。
通过采用上述方案,散热件与壳体可通过一体成型工艺形成一体化结构,基于此,一方面,可通过使散热件的周壁与散热孔的孔壁一体连接,而方便、快捷、可靠地密封散热件的周壁与散热孔的孔壁之间的缝隙,从而可保障并提高壳体及电气盒的密封性,可降低电气盒因外部向内渗水而出现高压短路打火的风险。另一方面,可增强散热件与壳体的结构强度,可减少散热件与壳体之间的组装流程,可提高电气盒的生产效率。
在一些实施例中,散热件与壳体一体注塑成型。
通过采用上述方案,散热件与壳体可一体注塑成型,基于此,一方面,可增强散热件与壳体之间的连接强度,可增强散热件与壳体二者的综合结构强度,可减少散热件与壳体之间的组装流程,可提高电气盒的生产效率。另一方面,可促使散热件的周壁与散热孔的孔壁之间的连接紧密、贴合、可靠,从而可方便、快捷、可靠地密封散热件的周壁与散热孔的孔壁之间的缝隙,从而可提高壳体及电气盒的密封性,可降低电气盒因外部向内渗水而出现高压短路打火的风险。
在一些实施例中,散热孔的孔壁上设有凹部,散热件的局部嵌入凹部中。
通过采用上述方案,在散热件与壳体形成一体化结构的基础上,通过使散热件的局部嵌入散热孔孔壁上的凹部中,可增加散热件与散热孔之间的连接面积,可增强散热件与壳体二者的综合结构强度,可增强散热件与壳体之间的连接的强度、紧密度、贴合度,从而可提高散热件与散热孔之间的密封可靠性,可提高壳体及电气盒的密封性,可降低电气盒因外部向内渗水而出现高压短路打火的风险。
在一些实施例中,散热件为铝板,铝板与发热部件绝缘导热连接,铝板与热管理部件绝缘导热连接。
通过采用上述方案,通过使散热件为铝板,可基于铝板的良好导热性,有效保障并提高散热件及导热结构的导热效果,从而可有效保障并提高电气盒的散热性能和散热效率,可有效降低电气盒出现过热情况的风险,可保障并延长发热部件、电气盒及电池的使用寿命。在此基础上,通过使铝板与发热部件绝缘导热连接,可避免铝板与发热部件之间发生短路,而通过使铝板与热管理部件绝缘导热连接,可避免铝板与热管理部件之间发生短路,从而可降低电气盒出现高压短路打火的风险,可提高电气盒及电池的安全性能。
在一些实施例中,导热结构包括第一导热垫,第一导热垫设于发热部件和散热件之间。
通过采用上述方案,可通过第一导热垫热传导连接于发热部件和散热件之间,以便于散热件与发热部件之间可靠地进行热交换,尤其便于第一导热垫将发热部件产生的热量热传导至散热件再经由散热件散出至壳体外部,从而可保障电气盒的散热性能和散热效率,可保障发热部件的使用性能和使用寿命。
在一些实施例中,第一导热垫为弹性件。
通过采用上述方案,可通过使第一导热垫为弹性件,使得设于发热部件和散热件之间的第一导热垫具有弹性性能,可适应性发生弹性形变,以贴合抵接于发热部件和散热件之间。基于此,可保障第一导热垫与发热部件之间能够紧密贴合并形成充足的抵接面积,且可保障第一导热垫与散热件之间能够紧密贴合并形成充足的抵接面积,从而可保障第一导热垫能够可靠、有效地热传导连接于发热部件和散热件之间,可保障并提高第一导热垫的热传导效果,可保障并提高电气盒的散热性能和散热效率。
在一些实施例中,第一导热垫为绝缘件。
通过采用上述方案,可通过使第一导热垫为绝缘件,使得设于发热部件和散热件之间的第一导热垫具有绝缘性,可绝缘阻隔于发热部件和散热件之间。基于此,可避免发热部件与散热件之间发生短路,从而可降低电气盒出现高压短路打火的风险。
在一些实施例中,散热件朝向发热部件的一侧设有第一导热层。
通过采用上述方案,可通过在散热件朝向发热部件的一侧设置第一导热层,以通过第一导热层热传导连接于发热部件和散热件之间,而增强发热部件和散热件之间的热传导效果,从而可提高电气盒的散热性能和散热效率,可保障并提高发热部件的使用性能和使用寿命。
在一些实施例中,散热件朝向发热部件的一侧设有凹槽。
通过采用上述方案,可在保障发热部件与散热件绝缘导热连接的基础上,通过在散热件朝向发热部件的一侧设置凹槽,以通过凹槽容纳位于散热件和发热部件之间的如第一导热垫、第一导热层等结构,甚至容纳发热部件的局部。基于此,一方面,可压缩散热件至发热部件之间的各结构的综合占用空间,从而可利于电气盒的小型化、轻量化。另一方面,可通过使第一导热垫、第一导热层或发热部件等容纳于凹槽中,以相应增加第一导热垫、第一导热层或发热部件等与散热件的抵接面积和配合紧密度,从而可增强第一导热垫、第一导热层或发热部件等与散热件的热传导效果,可提高电气盒的散热性能和散热效率。
在一些实施例中,发热部件的至少局部嵌入凹槽中。
通过采用上述方案,可在保障发热部件与散热件绝缘导热连接的基础上,通过将发热部件的至少局部嵌入凹槽中,以使得发热部件用于与散热件导热连接的部分的至少局部限位配合于凹槽中。基于此,一方面,可较大程度地压缩散热件至发热部件之间的各结构的综合占用空间,从而可利于电气盒的小型化、轻量化。另一方面,可使得发热部件能够与
散热件直接形成较紧密、较贴合的配合,且形成较大、较紧密的抵接面积,从而可提高发热部件和散热件之间的配合紧密度、热传导效果,可提高电气盒的散热性能和散热效率。
在一些实施例中,导热结构包括第二导热垫,第二导热垫设于散热件和热管理部件之间。
通过采用上述方案,可通过第二导热垫热传导连接于散热件和热管理部件之间,以便于散热件与热管理部件进行可靠地热交换,尤其便于第二导热垫将散热件的热量热传导至热管理部件,从而可保障并提高电气盒的散热性能和散热效率。
在一些实施例中,第二导热垫为弹性件。
通过采用上述方案,可通过使第二导热垫为弹性件,使得第二导热垫具有弹性性能,可适应性发生弹性形变,以贴合抵接于散热件和热管理部件之间。基于此,可保障第二导热垫与散热件之间能够紧密贴合并形成充足的抵接面积,且可保障第二导热垫与热管理部件之间能够紧密贴合并形成充足的抵接面积,从而可保障第二导热垫能够可靠、有效地热传导连接于散热件和热管理部件之间,可保障并提高第二导热垫的热传导效果,可保障并提高电气盒的散热性能和散热效率。
在一些实施例中,第二导热垫为绝缘件。
通过采用上述方案,可通过使第二导热垫为绝缘件,使得设于散热件和热管理部件之间的第二导热垫具有绝缘性,可绝缘阻隔于散热件和热管理部件之间。基于此,可避免散热件和热管理部件之间发生短路,从而可降低电气盒出现高压短路打火的风险。
在一些实施例中,散热件朝向热管理部件的一侧设有第二导热层。
通过采用上述方案,可通过在散热件朝向热管理部件的一侧设置第二导热层,以通过第二导热层热传导连接于散热件和热管理部件之间,而增强散热件和热管理部件之间的热传导效果,从而可提高电气盒的散热性能和散热效率。
在一些实施例中,热管理部件为液冷板。
通过采用上述方案,可通过使热管理部件为液冷板,以便于液冷板通过流体可靠、有效地与导热结构及电气盒进行热交换,尤其可保障热管理部件与导热结构的接触面积和热传导效果,从而可满足电气盒的散热要求。
在一些实施例中,发热部件为巴片,巴片与导热结构绝缘导热连接。
通过采用上述方案,通过使发热部件为巴片,可使在使用过程中产生热量较多的巴片与导热结构直接导热连接,基于此,可便于通过导热结构可靠、有效地将巴片产生的大量热量散出至壳体的外部,从而可有效保障并提高电气盒的散热性能和散热效率,可有效降低电气盒出现过热情况的风险,可保障并延长发热部件、电气盒及电池的使用寿命。在此基础上,通过使巴片与导热结构绝缘设置,可避免巴片与导热结构之间发生短路,从而可降低电气盒出现高压短路打火的风险,可提高电气盒及电池的安全性能。
第二方面,提供了一种用电装置,用电装置包括本申请实施例提供的电池。
通过采用上述方案,用电装置可通过应用本申请实施例提供的电池,保障并提高用电装置的使用性能、使用寿命和安全性能。
为了清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,
对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的分解示意图;
图3为本申请一些实施例提供的电池的部分结构示意图;
图4为本申请一些实施例提供的电气盒和热管理部件的结构示意图;
图5为本申请一些实施例提供的电气盒的分解示意图;
图6为本申请一些实施例提供的电气盒和热管理部件的正视图;
图7为图6提供的沿A-A的剖视图;
图8为本申请另一些实施例提供的电气盒和热管理部件的剖视图,其中,散热件设有第一导热层和第二导热层;
图9为本申请另一些实施例提供的电气盒和热管理部件的剖视图,其中,散热件设有凹槽,且发热部件的局部嵌入凹槽;
图10为本申请一些实施例提供的热管理部件的分解示意图。
其中,图中各附图标记:
1-电池,2-控制器,3-马达;10-电池单元;20-箱体,21-第一部分,22-第二部分;30-
电气盒,31-壳体,311-散热孔,3111-凹部,312-底座,313-顶盖,32-导热结构,321-散热件,3211-第一导热层,3212-凹槽,3213-第二导热层,322-第一导热垫,323-第二导热垫;33-发热部件;40-热管理部件,41-第一金属板,411-流道,42-第二金属板。
1-电池,2-控制器,3-马达;10-电池单元;20-箱体,21-第一部分,22-第二部分;30-
电气盒,31-壳体,311-散热孔,3111-凹部,312-底座,313-顶盖,32-导热结构,321-散热件,3211-第一导热层,3212-凹槽,3213-第二导热层,322-第一导热垫,323-第二导热垫;33-发热部件;40-热管理部件,41-第一金属板,411-流道,42-第二金属板。
为了使本申请所要解决的技术问题、技术方案及有益效果清楚明白,以下结合附图及实施例,对本申请进行详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在电池中,电气盒是分配电池能量的控制单元,用于对电池进行高压分配。在一些情形下,电气盒包括壳体,以及设于壳体内的发热部件,发热部件的局部穿设于壳体并露出
于壳体外。发热部件在电气盒作业期间会产生热量,而发热部件产生的热量可经由发热部件的露出于壳体外的部分散出至壳体外部,从而可保障电气盒的散热性能和散热效率,可保障发热部件的使用性能和使用寿命。
然而,发明人发现,基于上述散热设计,电气盒的密封性会相对较差。当电池内的热管理部件出现漏水现象,或电池密封失效导致电池外部向电池内部渗水时,渗入电池内的水便可能沿电气盒的密封薄弱处渗入电气盒内部,导致电气盒可能因外部向内渗水而出现高压短路打火风险,从而影响了电气盒及电池的安全性能。
由此,本申请的一些实施例提供了一种电池,该电池中,电气盒可通过壳体容纳发热部件,并通过导热结构连接壳体内的发热部件和壳体外的热管理部件,以便于通过导热结构热交换、热传导于发热部件和热管理部件之间,尤其便于通过导热结构将发热部件产生的热量热传导至热管理部件,从而可保障并提高电气盒的散热性能和散热效率,可降低电气盒出现过热情况的风险,可保障发热部件的使用性能,可保障并延长发热部件、电气盒及电池的使用寿命。并且,由于导热结构与壳体密封连接,可有效密封导热结构与壳体之间的连接缝隙,而可靠阻碍液体从壳体外部经由导热结构与壳体之间的缝隙渗入壳体内部,从而可有效保障并提高壳体及电气盒的密封性,可有效降低电气盒因外部向内渗水而出现高压短路打火的风险,可有效保障电气盒及电池的安全性能。
本申请实施例公开的电池可以是包括一个或多个电池单体以提供更高电压和容量的模块化结构,例如电池模组或电池包。其中,电池单体可以是锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等等;电池单体可呈圆柱体、扁平体、长方体或其他形状等等;电池单体可采用不同封装方式,形成柱形电池单体、方形电池单体或软包电池单体等等。
本申请实施例公开的电池可以用于使用电池作为电源的用电装置,或者用于使用电池作为储能元件的各种储能系统。用电装置可为但不限于为车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。航天器包括飞机、火箭、航天飞机和宇宙飞船等等。电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等。电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例,并以“用电装置为车辆”为例,进行详细说明。
请参阅图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的内部设置有电池1,电池1可以设置在车辆的底部或头部或尾部。电池1用于为车辆供电,例如,电池1可以作为车辆的操作电源。车辆还可以包括控制器2和马达3,控制器2用来控制电池1为马达3供电,例如,用于车辆的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池1不仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
请参阅图2、图3,图2为本申请一些实施例提供的电池1的分解示意图,图3为本申
请一些实施例提供的电池1的部分结构示意图。电池1包括电池单元10和箱体20,电池单元10容纳于箱体20内。其中,箱体20用于为电池单元10提供第一容纳空间,箱体20可以采用多种结构。在一些实施例中,箱体20可以包括第一部分21和第二部分22,第一部分21与第二部分22相互盖合,第一部分21和第二部分22共同限定出用于容纳电池单元10的第一容纳空间。第二部分22可为一端开口的空心结构,第一部分21可为板状结构,第一部分21盖合于第二部分22的开口侧,以使第一部分21与第二部分22共同限定出第一容纳空间;第一部分21和第二部分22也可以是均为一侧开口的空心结构,第一部分21的开口侧盖合于第二部分22的开口侧。当然,第一部分21和第二部分22形成的箱体20可以是多种形状,比如,圆柱体、长方体等。
在电池1中,电池单元10可以是多个,多个电池单元10之间可串联或并联或混联,混联是指多个电池单元10中既有串联又有并联。
具体地,电池单元10可以是电池单体。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体20内。其中,电池单体可以是锂离子二次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等等。电池单体可呈圆柱体、扁平体、长方体或其他形状等等。电池单体可采用不同封装方式,形成柱形电池单体、方形电池单体或软包电池单体等等。
或者,电池单元10可以是电池模块或电池模组。多个电池单体可以先串联或并联或混联组成模块化结构,即电池模块或电池模组;多个电池模块或电池模组再串联或并联或混联形成一个整体,并容纳于箱体20内。
在一些实施例中,电池1还可以包括电气盒30,电气盒30容纳于箱体20的第一容纳空间内,电气盒30与电池单元10等连接,电气盒30可作为分配电池1能量的控制单元,对电池1进行高压分配。在一些实施例中,电气盒30可包括壳体、高压元件以及电连接件。高压元件设置于壳体内。高压元件可包括继电器、电流传感器、熔断器、保险、预充电阻等中的一个或多个。继电器可包括主正继电器、主负继电器等。电连接件用于与高压元件电连接。
在一些实施例中,电池1还可以包括热管理部件40,热管理部件40容纳于箱体20的第一容纳空间内,用于与电池单元10和电气盒30等部件进行热交换,以调节电池1的温度。其中,热管理部件40可以是液冷板,在一些实施例中,热管理部件40可以设置一个,并设置在电池单元10和电气盒30等部件的同一侧,以便于与电池单元10和电气盒30等部件进行热交换;当然,在一些实施例中,热管理部件40也可以设置多个,以便于灵活设计热管理部件40的位置和状态,而便于多个热管理部件40分别与电池单元10和电气盒30等部件进行热交换。其中,热管理部件40还可以是风冷系统,风冷系统产生的气流可经过电池单元10和电气盒30等部件,以便于与电池单元10和电气盒30等部件进行热交换。当然,热管理部件40还可以是其他结构形式。
当然,电池1还可以包括其他结构,例如,该电池1还可以包括汇流部件(图中未示出),用于实现多个电池单元10之间的电连接。
当然,在一些实施例中,电池1可以不包括箱体20,而是将多个电池单体进行电连接,并通过必要的固定结构形成一整体后装配到用电装置中。
请参阅图3、图4,本申请的一些实施例提供了一种电池1,电池1包括热管理部件40和电气盒30。热管理部件40用于调节电池1的温度。请参阅图5、图6、图7,电气盒30
包括壳体31和导热结构32。壳体31用于容纳发热部件33。导热结构32与壳体31密封连接,导热结构32连接发热部件33和热管理部件40。
需要说明的是,热管理部件40用于与电气盒30等部件进行热交换,以调节电池1的温度。热管理部件40可以设置一个或多个。热管理部件40可以是多种结构形式,热管理部件40可为但不限于为液冷板。
还需要说明的是,电气盒30可作为分配电池1能量的控制单元,对电池1进行高压分配。电气盒30包括壳体31、导热结构32和发热部件33等部件。
其中,壳体31用于为电气盒30的发热部件33等部件提供第二容纳空间,壳体31可以采用多种结构。在一些实施例中,壳体31可以包括底座312和顶盖313,底座312与顶盖313相互盖合,底座312和顶盖313共同限定出用于容纳电气盒30的发热部件33等部件的第二容纳空间。底座312可为一端开口的空心结构,顶盖313可为板状结构,顶盖313盖合于底座312的开口侧,以使顶盖313和底座312共同限定出第二容纳空间;底座312和顶盖313也可以是均为一侧开口的空心结构,顶盖313的开口侧盖合于底座312的开口侧。当然,顶盖313和底座312形成的壳体31可以是多种形状,例如圆柱体、长方体等。当然,在其他实施例中,壳体31可以由三个甚至更多部分组装形成。
其中,发热部件33设于壳体31的第二容纳空间内,发热部件33可指代电气盒30中设于壳体31内且会产生热量的任意部件,例如电器件,又例如用于实现电连接的电连接件如巴片、汇流排、导电片等。其中,电器件可为但不限于为保险、继电器、预充电阻等。
其中,导热结构32包括导热材料,具有导热性能,可发挥导热效用,即发挥热交换、热传导效用。导热结构32可为单层结构或多层结构。导热结构32可以是多种形状,例如长方体、圆柱体等等。
导热结构32与壳体31密封连接,以密封导热结构32与壳体31之间的连接缝隙,而可靠阻碍液体从壳体31外部经由导热结构32与壳体31之间的缝隙渗入壳体31内部,从而可保障并提高壳体31及电气盒30的密封性。其中,导热结构32可以经由自身结构设计或借用密封圈、密封胶等部件与壳体31密封连接。
导热结构32与发热部件33连接,以便于导热结构32与发热部件33之间快捷、可靠地进行热交换,尤其便于导热结构32将发热部件33产生的热量热传导并散出至壳体31外部,从而可保障并提高电气盒30的散热性能和散热效率,可保障发热部件33的使用性能,可保障并延长发热部件33、电气盒30及电池1的使用寿命。
导热结构32与热管理部件40连接,以便于导热结构32与热管理部件40之间快捷、可靠地进行热交换,尤其便于导热结构32将发热部件33产生的热量热传导至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可降低电气盒30出现过热情况的风险。
综上,本申请实施例提供的电池1中,电气盒30可通过壳体31容纳发热部件33,并通过导热结构32连接壳体31内的发热部件33和壳体31外的热管理部件40,以便于通过导热结构32热交换、热传导于发热部件33和热管理部件40之间,尤其便于通过导热结构32将发热部件33产生的热量热传导至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可降低电气盒30出现过热情况的风险,可保障发热部件33的使用性能,可保障并延长发热部件33、电气盒30及电池1的使用寿命。并且,由于导热结构32与壳体31密封连接,可有效密封导热结构32与壳体31之间的连接缝隙,而可靠阻碍液体从壳
体31外部经由导热结构32与壳体31之间的缝隙渗入壳体31内部,从而可有效保障并提高壳体31及电气盒30的密封性,可有效降低电气盒30因外部向内渗水而出现高压短路打火的风险,可有效保障电气盒30及电池1的安全性能。
请参阅图3、图4、图7,在本申请的一些实施例中,导热结构32与发热部件33绝缘导热连接。
需要说明的是,发热部件33与导热结构32导热连接,以便于导热结构32与发热部件33之间快捷、可靠地进行热交换,尤其便于导热结构32将发热部件33产生的热量热传导并散出至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可保障发热部件33的使用性能,可保障并延长发热部件33的使用寿命。
发热部件33与导热结构32绝缘设置,以避免发热部件33与导热结构32之间发生短路,而降低电气盒30出现高压短路打火的风险。具体地,可以是发热部件33至少用于与导热结构32导热连接的部分为绝缘件,也可以是发热部件33用于与导热结构32导热连接的表面上设有绝缘层,也可以是导热结构32至少用于与发热部件33导热连接的部分为绝缘件,也可以是导热结构32用于与发热部件33导热连接的表面上设有绝缘层,也可以是导热连接于发热部件33和导热结构32之间的物件为绝缘件,等等,均可使发热部件33与导热结构32之间实现绝缘。
通过采用上述方案,通过使发热部件33与导热结构32绝缘导热连接,一方面,可便于导热结构32与发热部件33之间快捷、可靠地进行热交换,尤其可便于导热结构32将发热部件33产生的热量热传导并散出至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可保障并提高与导热结构32导热连接的发热部件33的使用性能和使用寿命。另一方面,可避免发热部件33与导热结构32之间发生短路,从而可降低电气盒30出现高压短路打火的风险,可提高电气盒30及电池1的安全性能。
请参阅图3、图4、图7,在本申请的一些实施例中,导热结构32与热管理部件40绝缘导热连接。
需要说明的是,导热结构32与热管理部件40导热连接,以便于导热结构32与热管理部件40之间快捷、可靠地进行热交换,尤其便于导热结构32将发热部件33产生的热量热传导并散出至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可降低电气盒30出现过热情况的风险,可保障并延长电气盒30及电池1的使用寿命。
导热结构32与热管理部件40绝缘设置,以避免导热结构32与热管理部件40之间发生短路,而降低电气盒30出现高压短路打火的风险。具体地,可以是热管理部件40至少用于与导热结构32导热连接的部分为绝缘件,也可以是热管理部件40用于与导热结构32导热连接的表面上设有绝缘层,也可以是导热结构32至少用于与热管理部件40导热连接的部分为绝缘件,也可以是导热结构32用于与热管理部件40导热连接的表面上设有绝缘层,也可以是导热连接于热管理部件40和导热结构32之间的物件为绝缘件,等等,均可使导热结构32与热管理部件40之间实现绝缘。
通过采用上述方案,通过使导热结构32与热管理部件40绝缘导热连接,一方面,可便于导热结构32与热管理部件40之间快捷、可靠地进行热交换,尤其可便于导热结构32将发热部件33产生的热量热传导并散出至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率,可降低电气盒30出现过热情况的风险,可保障并延长电气盒30及电池1的使用寿命。另一方面,可避免导热结构32与热管理部件40之间发生短路,从而
可降低电气盒30出现高压短路打火的风险,可提高电气盒30及电池1的安全性能。
请参阅图3、图4、图7,在本申请的一些实施例中,壳体31的侧壁上贯通有散热孔311。导热结构32包括散热件321,散热件321嵌设于散热孔311中,散热件321的周壁与散热孔311的孔壁密封连接。
需要说明的是,壳体31具有多个侧壁,各侧壁共同限定出用于容纳电气盒30的发热部件33等部件的第二容纳空间。任意侧壁可以按需设置散热孔311,散热孔311沿侧壁的厚度方向贯通侧壁。散热孔311的数量为至少一个。散热孔311可为但不限于为圆形孔、矩形孔或其他形状孔。
还需要说明的是,导热结构32包括散热件321。散热件321包括散热材料、导热材料或相变材料中的至少一种,即散热件321由散热材料、导热材料或相变材料中的至少一种制成,以使得散热件321具有散热性能、导热性能,可发挥热交换、热传导效用。散热件321可为金属件或非金属件,例如铝件、陶瓷件等。散热件321可以是多种形状,例如圆形板状、多边形板状、圆形块状、多边形块状等。
散热件321与散热孔311对应设置。散热件321嵌设于散热孔311中,在与散热孔311的横截面上,散热件321基本封堵散热孔311。其中,散热孔311的横截面指的是散热孔311的相交于(可选垂直于)其轴向的截面,散热孔311的轴向指的是散热孔311沿其中轴线的方向。其中,散热件321的形状可以与散热孔311的形状相同设置,也可以不同设置。其中,在散热孔311的轴向上,散热件321的厚度可以大于、小于或等于散热孔311的长度。
散热件321的周壁与散热孔311的孔壁密封连接,以密封散热件321的周壁与散热孔311的孔壁之间的缝隙,而可靠阻碍液体从壳体31外部经由散热件321的周壁与散热孔311的孔壁之间的缝隙渗入壳体31内部,从而可保障并提高壳体31及电气盒30的密封性。其中,散热件321的周壁与散热孔311的孔壁可以间隙配合、过渡配合或过盈配合。散热件321的周壁与散热孔311的孔壁可以经由自身结构设计或借用密封圈、密封胶等部件实现密封连接。
通过采用上述方案,电气盒30可通过将散热件321嵌设于壳体31侧壁上的散热孔311中,以便于通过散热件321实现壳体31内部和外部之间的热交换,尤其便于通过散热件321实现将发热部件33的热量热传导至热管理部件40,从而可保障电气盒30的散热性能和散热效率,可降低电气盒30出现过热情况的风险,可保障并延长发热部件33、电气盒30及电池1的使用寿命。在此基础上,电气盒30还可通过使散热件321的周壁与散热孔311的孔壁密封连接,以使导热结构32与壳体31可靠密封连接,从而可有效密封导热结构32与壳体31之间的连接缝隙,尤其可有效密封散热件321的周壁与散热孔311的孔壁之间的缝隙,从而能够可靠阻碍液体从壳体31外部经由散热件321的周壁与散热孔311的孔壁之间的缝隙渗入壳体31内部,可保障并提高壳体31及电气盒30的密封性,可降低电气盒30因外部向内渗水而出现高压短路打火的风险,可提高电气盒30及电池1的安全性能。
请参阅图4、图5、图7,在本申请的一些实施例中,散热件321与壳体31为一体化结构。其中,散热件321与壳体31可通过但不限于通过一体注塑成型、3D打印等一体成型工艺形成一体化结构。
通过采用上述方案,散热件321与壳体31可通过一体成型工艺形成一体化结构,基于
此,一方面,可通过使散热件321的周壁与散热孔311的孔壁一体连接,而方便、快捷、可靠地密封散热件321的周壁与散热孔311的孔壁之间的缝隙,从而可保障并提高壳体31及电气盒30的密封性,可降低电气盒30因外部向内渗水而出现高压短路打火的风险。另一方面,可增强散热件321与壳体31的结构强度,可减少散热件321与壳体31之间的组装流程,可提高电气盒30的生产效率。
当然,在其他可能的实施方式中,散热件321与壳体31可分体成型再分体连接。
请参阅图4、图5、图7,在本申请的一些实施例中,散热件321与壳体31一体注塑成型。即,散热件321与壳体31通过一体注塑成型形成一体化结构。
通过采用上述方案,散热件321与壳体31可一体注塑成型,基于此,一方面,可增强散热件321与壳体31之间的连接强度,可增强散热件321与壳体31二者的综合结构强度,可减少散热件321与壳体31之间的组装流程,可提高电气盒30的生产效率。另一方面,可促使散热件321的周壁与散热孔311的孔壁之间的连接紧密、贴合、可靠,从而可方便、快捷、可靠地密封散热件321的周壁与散热孔311的孔壁之间的缝隙,从而可提高壳体31及电气盒30的密封性,可降低电气盒30因外部向内渗水而出现高压短路打火的风险。
请参阅图4、图5、图7,在本申请的一些实施例中,散热孔311的孔壁上设有凹部3111,散热件321的局部嵌入凹部3111中。
需要说明的是,散热孔311的孔壁上设有凹部3111,凹部3111的延伸方向对应散热件321的周向。凹部3111可呈线状、开口环状或封闭环状,例如,假设散热孔311为多边形孔,散热孔311的一侧孔壁上设有凹部3111,凹部3111对应散热件321的周向进行延伸,可延伸呈线状;又例如,假设散热孔311为多边形孔,凹部3111对应散热件321的周向在散热孔311的多个孔壁上延伸,若凹部3111的首端和尾端对接,可形成封闭环状,若凹部3111的首端和尾端断开、间隔,可形成开口环状。
散热件321的与凹部3111相对应的部分嵌入凹部3111中。例如,当凹部3111呈封闭环状时,散热件321的周侧均对应嵌入呈封闭环状的凹部3111中。
通过采用上述方案,在散热件321与壳体31形成一体化结构的基础上,通过使散热件321的局部嵌入散热孔311孔壁上的凹部3111中,可增加散热件321与散热孔311之间的连接面积,可增强散热件321与壳体31二者的综合结构强度,可增强散热件321与壳体31之间的连接的强度、紧密度、贴合度,从而可提高散热件321与散热孔311之间的密封可靠性,可提高壳体31及电气盒30的密封性,可降低电气盒30因外部向内渗水而出现高压短路打火的风险。
当然,在其他可能的实施方式中,散热件321的周壁可与散热孔311的孔壁适配贴合并一体连接。
请参阅图3、图4、图7,在本申请的一些实施例中,散热件321为铝板,铝板与发热部件33绝缘导热连接,铝板与热管理部件40绝缘导热连接。
需要说明的是,散热件321为铝板,如此设置,可基于铝板的良好导热性,有效保障并提高散热件321及导热结构32的导热效果,从而可有效保障并提高电气盒30的散热性能和散热效率,可有效降低电气盒30出现过热情况的风险,可保障并延长发热部件33、电气盒30及电池1的使用寿命。
铝板与发热部件33绝缘设置,以避免铝板与发热部件33之间发生短路,而降低电气盒30出现高压短路打火的风险。具体地,可以是发热部件33至少用于与铝板导热连接的
部分为绝缘件,也可以是发热部件33用于与铝板导热连接的表面上设有绝缘层,也可以是铝板用于与发热部件33导热连接的表面上设有绝缘层,也可以是导热连接于发热部件33和铝板之间的物件为绝缘件,等等,均可使铝板与发热部件33之间实现绝缘。
铝板与热管理部件40绝缘设置,以避免铝板与热管理部件40之间发生短路,而降低电气盒30出现高压短路打火的风险。具体地,可以是热管理部件40至少用于与铝板导热连接的部分为绝缘件,也可以是热管理部件40用于与铝板导热连接的表面上设有绝缘层,也可以是铝板用于与热管理部件40导热连接的表面上设有绝缘层,也可以是导热连接于热管理部件40和铝板之间的物件为绝缘件,等等,均可使铝板与热管理部件40之间实现绝缘。
通过采用上述方案,通过使散热件321为铝板,可基于铝板的良好导热性,有效保障并提高散热件321及导热结构32的导热效果,从而可有效保障并提高电气盒30的散热性能和散热效率,可有效降低电气盒30出现过热情况的风险,可保障并延长发热部件33、电气盒30及电池1的使用寿命。在此基础上,通过使铝板与发热部件33绝缘导热连接,可避免铝板与发热部件33之间发生短路,而通过使铝板与热管理部件40绝缘导热连接,可避免铝板与热管理部件40之间发生短路,从而可降低电气盒30出现高压短路打火的风险,可提高电气盒30及电池1的安全性能。
请参阅图4、图5、图7,在本申请的一些实施例中,导热结构32包括第一导热垫322,第一导热垫322设于发热部件33和散热件321之间。
需要说明的是,第一导热垫322包括导热材料,具有导热性能,可发挥热传导效用。第一导热垫322设于发热部件33和散热件321之间,用于热传导连接于发热部件33和散热件321之间。其中,第一导热垫322可以是多种形态,例如片状、板状、块状等。第一导热垫322可以是多种形状,例如圆形、多边形、异形等。第一导热垫322的材质可以选用导热系数高的材料,如导热系数在0.6以上的导热材料。第一导热垫322可以采用导热硅胶垫,当然,在一些其他的实施例中,第一导热垫322也可采用其他类似的导热材料,在此不作赘述。
通过采用上述方案,可通过第一导热垫322热传导连接于发热部件33和散热件321之间,以便于散热件321与发热部件33之间可靠地进行热交换,尤其便于第一导热垫322将发热部件33产生的热量热传导至散热件321再经由散热件321散出至壳体31外部,从而可保障电气盒30的散热性能和散热效率,可保障发热部件33的使用性能和使用寿命。
当然,在其他可能的实施方式中,可不设置第一导热垫322,而是借由其他结构(例如下文的第一导热层3211)使发热部件33与散热件321导热连接,或不借由任何结构使发热部件33与散热件321直接导热连接。
请参阅图4、图5、图7,在本申请的一些实施例中,第一导热垫322为弹性件。
需要说明的是,第一导热垫322为弹性件,使得第一导热垫322在具有导热性能的基础上还具有弹性性能,使得第一导热垫322可受力产生弹性形变。
通过采用上述方案,可通过使第一导热垫322为弹性件,使得设于发热部件33和散热件321之间的第一导热垫322具有弹性性能,可适应性发生弹性形变,以贴合抵接于发热部件33和散热件321之间。基于此,可保障第一导热垫322与发热部件33之间能够紧密贴合并形成充足的抵接面积,且可保障第一导热垫322与散热件321之间能够紧密贴合并形成充足的抵接面积,从而可保障第一导热垫322能够可靠、有效地热传导连接于发热部
件33和散热件321之间,可保障并提高第一导热垫322的热传导效果,可保障并提高电气盒30的散热性能和散热效率。
当然,在其他可能的实施方式中,第一导热垫322可为刚性件。
请参阅图4、图5、图7,在本申请的一些实施例中,第一导热垫322为绝缘件。
需要说明的是,第一导热垫322为绝缘件,使得第一导热垫322在具有导热性能的基础上还具有绝缘性,使得第一导热垫322可绝缘阻隔于发热部件33和散热件321之间。
通过采用上述方案,可通过使第一导热垫322为绝缘件,使得设于发热部件33和散热件321之间的第一导热垫322具有绝缘性,可绝缘阻隔于发热部件33和散热件321之间。基于此,可避免发热部件33与散热件321之间发生短路,从而可降低电气盒30出现高压短路打火的风险。
当然,在其他可能的实施方式中,第一导热垫322可为非绝缘件(即导电件),而发热部件33和散热件321之间可采用其他方式实现绝缘。
请参阅图8,在本申请的一些实施例中,散热件321朝向发热部件33的一侧设有第一导热层3211。
需要说明的是,第一导热层3211包括导热材料,具有导热性能,可发挥热传导效用。第一导热层3211可采用但不限于采用涂覆或注塑等方式形成于散热件321朝向发热部件33的一侧,第一导热层3211用于热传导连接于发热部件33和散热件321之间。在一些实施例中,如图8的实施例所示,在设置了第一导热垫322的情况下,第一导热层3211可以位于第一导热垫322和散热件321之间。通过采用上述方案,可通过在散热件321朝向发热部件33的一侧设置第一导热层3211,以通过第一导热层3211热传导连接于发热部件33和散热件321之间,而增强发热部件33和散热件321之间的热传导效果,从而可提高电气盒30的散热性能和散热效率,可保障并提高发热部件33的使用性能和使用寿命。
在一些实施例中,第一导热层3211可为绝缘层,以在发挥热传导效用的基础上还发挥绝缘效用,使得第一导热层3211可绝缘阻隔于发热部件33和散热件321之间。当然,在其他可能的实施方式中,第一导热层3211可为非绝缘件(即导电件),而发热部件33和散热件321之间可采用其他方式实现绝缘。
在一些示例中,第一导热层3211可以为导热结构胶。导热结构胶的强度高,导热性能好,能够承受较大荷载,且采用导热结构胶粘接连接可以使结合面应力分布均匀,连接稳定性和可靠性更高。
请参阅图图8、图9,在本申请的一些实施例中,散热件321朝向发热部件33的一侧设有凹槽3212。
需要说明的是,在保障发热部件33与散热件321绝缘导热连接的基础上,散热件321朝向发热部件33的一侧设有凹槽3212,以用于容纳设于散热件321和发热部件33之间的结构,例如第一导热垫322、第一导热层3211等;甚至可用于容纳发热部件33的局部。凹槽3212的形状、尺寸可根据其所容纳的对象灵活设计。示例地,散热件321朝向发热部件33的一侧设有第一导热层3211,第一导热层3211可以设置于凹槽3212中。又示例地,发热部件33和散热件321之间设有第一导热垫322,第一导热垫322可以设置于凹槽3212中。又示例地,发热部件33至少用于与散热件321导热连接的部分可以设置于凹槽3212中。
通过采用上述方案,可在保障发热部件33与散热件321绝缘导热连接的基础上,通过
在散热件321朝向发热部件33的一侧设置凹槽3212,以通过凹槽3212容纳位于散热件321和发热部件33之间的如第一导热垫322、第一导热层3211等结构,甚至容纳发热部件33的局部。基于此,一方面,可压缩散热件321至发热部件33之间的各结构的综合占用空间,从而可利于电气盒30的小型化、轻量化。另一方面,可通过使第一导热垫322、第一导热层3211或发热部件33等容纳于凹槽3212中,以相应增加第一导热垫322、第一导热层3211或发热部件33等与散热件321的抵接面积和配合紧密度,从而可增强第一导热垫322、第一导热层3211或发热部件33等与散热件321的热传导效果,可提高电气盒30的散热性能和散热效率。
请参阅图8、图9,在本申请的一些实施例中,发热部件33的至少局部嵌入凹槽3212中。
需要说明的是,在保障发热部件33与散热件321绝缘导热连接的基础上,发热部件33的至少局部嵌入凹槽3212中,尤其发热部件33用于与散热件321导热连接的部分的至少局部嵌入凹槽3212中。在此基础上,若发热部件33和散热件321之间还设有第一导热垫322,则第一导热垫322设于凹槽3212的槽底和发热部件33之间;若散热件321朝向发热部件33的一侧还设有第一导热层3211,则第一导热层3211设于凹槽3212的槽底上。
通过采用上述方案,可在保障发热部件33与散热件321绝缘导热连接的基础上,通过将发热部件33的至少局部嵌入凹槽3212中,以使得发热部件33用于与散热件321导热连接的部分的至少局部限位配合于凹槽3212中。基于此,一方面,可较大程度地压缩散热件321至发热部件33之间的各结构的综合占用空间,从而可利于电气盒30的小型化、轻量化。另一方面,可使得发热部件33能够与散热件321直接形成较紧密、较贴合的配合,且形成较大、较紧密的抵接面积,从而可提高发热部件33和散热件321之间的配合紧密度、热传导效果,可提高电气盒30的散热性能和散热效率。
请参阅图4、图5、图7,在本申请的一些实施例中,导热结构32包括第二导热垫323,第二导热垫323设于散热件321和热管理部件40之间。
需要说明的是,第二导热垫323包括导热材料,具有导热性能,可发挥热传导效用。第二导热垫323设于散热件321和热管理部件40之间。第二导热垫323用于热传导连接于散热件321和热管理部件40之间。其中,第二导热垫323可以是多种形态,例如片状、板状、块状等。第二导热垫323可以是多种形状,例如圆形、多边形、异形等。第二导热垫323的材质可以选用导热系数高的材料,如导热系数在0.6以上的导热材料。第二导热垫323可以采用导热硅胶垫,当然,在一些其他的实施例中,第二导热垫323也可采用其他类似的导热材料,在此不作赘述。
通过采用上述方案,可通过第二导热垫323热传导连接于散热件321和热管理部件40之间,以便于散热件321与热管理部件40进行可靠地热交换,尤其便于第二导热垫323将散热件321的热量热传导至热管理部件40,从而可保障并提高电气盒30的散热性能和散热效率。
当然,在其他可能的实施方式中,可不设置第二导热垫323,而是借由其他结构(例如下文的第二导热层3213)使散热件321与热管理部件40导热连接,或不借由任何结构使散热件321与热管理部件40直接导热连接。
请参阅图4、图5、图7,在本申请的一些实施例中,第二导热垫323为弹性件。
需要说明的是,第二导热垫323为弹性件,使得第二导热垫323在具有导热性能的基
础上还具有弹性性能,使得第二导热垫323可受力产生弹性形变。
通过采用上述方案,可通过使第二导热垫323为弹性件,使得第二导热垫323具有弹性性能,可适应性发生弹性形变,以贴合抵接于散热件321和热管理部件40之间。基于此,可保障第二导热垫323与散热件321之间能够紧密贴合并形成充足的抵接面积,且可保障第二导热垫323与热管理部件40之间能够紧密贴合并形成充足的抵接面积,从而可保障第二导热垫323能够可靠、有效地热传导连接于散热件321和热管理部件40之间,可保障并提高第二导热垫323的热传导效果,可保障并提高电气盒30的散热性能和散热效率。
当然,在其他可能的实施方式中,第二导热垫323可为刚性件。
请参阅图4、图5、图7,在本申请的一些实施例中,第二导热垫323为绝缘件。
需要说明的是,第二导热垫323为绝缘件,使得第二导热垫323在具有导热性能的基础上还具有绝缘性,使得第二导热垫323可绝缘阻隔于散热件321和热管理部件40之间。
通过采用上述方案,可通过使第二导热垫323为绝缘件,使得设于散热件321和热管理部件40之间的第二导热垫323具有绝缘性,可绝缘阻隔于散热件321和热管理部件40之间。基于此,可避免散热件321和热管理部件40之间发生短路,从而可降低电气盒30出现高压短路打火的风险。
当然,在其他可能的实施方式中,第二导热垫323可为非绝缘件(即导电件),而散热件321和热管理部件40之间可采用其他方式实现绝缘。
请参阅图8,在本申请的一些实施例中,散热件321朝向热管理部件40的一侧设有第二导热层3213。
需要说明的是,第二导热层3213包括导热材料,具有导热性能,可发挥热传导效用。第二导热层3213可采用但不限于采用涂覆或注塑等方式形成于散热件321朝向热管理部件40的一侧,第二导热层3213用于热传导连接于散热件321和热管理部件40之间。在一些实施例中,如图8的实施例所示,在设置了第二导热垫323的情况下,第二导热层3213可以位于第二导热垫323和散热件321之间。
在一些示例中,第二导热层3213可以为导热结构胶。导热结构胶的强度高,导热性能好,能够承受较大荷载,且采用导热结构胶粘接连接可以使结合面应力分布均匀,连接稳定性和可靠性更高。
通过采用上述方案,可通过在散热件321朝向热管理部件40的一侧设置第二导热层3213,以通过第二导热层3213热传导连接于散热件321和热管理部件40之间,而增强散热件321和热管理部件40之间的热传导效果,从而可提高电气盒30的散热性能和散热效率。
在一些实施例中,第二导热层3213可为绝缘层,以在发挥热传导效用的基础上还发挥绝缘效用,使得第二导热层3213可绝缘阻隔于散热件321和热管理部件40之间。当然,在其他可能的实施方式中,第二导热层3213可为非绝缘件(即导电件),而散热件321和热管理部件40之间可采用其他方式实现绝缘。
请参阅图3、图4、图7,在本申请的一些实施例中,热管理部件40为液冷板。
需要说明的是,热管理部件40为液冷板,热管理部件40可以采用多种结构。如图10所示,在一些实施例中,热管理部件40包括具有流道411的第一金属板41以及呈平板状的第二金属板42,第二金属板42盖合第一金属板41上的用于容纳流体的流道411。其中,流体可用于调节温度,流体可以是液体或气体,可选地,流体可以是循环流动的,以达到
更好的温度调节效果。可选地,流体可为水、水和乙二醇的混合液或者空气等。
通过采用上述方案,可通过使热管理部件40为液冷板,以便于液冷板通过流体可靠、有效地与导热结构32及电气盒30进行热交换,尤其可保障热管理部件40与导热结构32的接触面积和热传导效果,从而可满足电气盒30的散热要求。
当然,在其他可能的实施方式中,热管理部件40还可采用其他结构形式。
请参阅图3、图4、图7,在本申请的一些实施例中,发热部件33为巴片,巴片与导热结构32绝缘导热连接。
需要说明的是,发热部件33为巴片,巴片与导热结构32导热连接。如此设置,可使在使用过程中产生热量较多的巴片与导热结构32直接导热连接,基于此,可便于通过导热结构32可靠、有效地将巴片产生的大量热量散出至壳体31的外部,从而可有效保障并提高电气盒30的散热性能和散热效率,可有效降低电气盒30出现过热情况的风险,可保障并延长发热部件33、电气盒30及电池1的使用寿命。
巴片与导热结构32绝缘设置,以避免巴片与导热结构32之间发生短路,而降低电气盒30出现高压短路打火的风险。具体地,可以是巴片用于与导热结构32导热连接的表面上设有绝缘层,也可以是导热结构32至少用于与巴片导热连接的部分为绝缘件,也可以是导热结构32用于与巴片导热连接的表面上设有绝缘层,也可以是导热连接于巴片和导热结构32之间的物件为绝缘件,等等,均可使巴片与导热结构32之间实现绝缘。
通过采用上述方案,通过使发热部件33为巴片,可使在使用过程中产生热量较多的巴片与导热结构32直接导热连接,基于此,可便于通过导热结构32可靠、有效地将巴片产生的大量热量散出至壳体31的外部,从而可有效保障并提高电气盒30的散热性能和散热效率,可有效降低电气盒30出现过热情况的风险,可保障并延长发热部件33、电气盒30及电池1的使用寿命。在此基础上,通过使巴片与导热结构32绝缘设置,可避免巴片与导热结构32之间发生短路,从而可降低电气盒30出现高压短路打火的风险,可提高电气盒30及电池1的安全性能。
请参阅图1,本申请的一些实施例提供了一种用电装置,用电装置包括本申请实施例提供的电池1。
通过采用上述方案,用电装置可通过应用本申请实施例提供的电池1,保障并提高用电装置的使用性能、使用寿命和安全性能。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。
Claims (18)
- 一种电池,其中,所述电池包括:热管理部件,用于调节所述电池的温度;电气盒,所述电气盒包括:壳体,所述壳体用于容纳发热部件;导热结构,与所述壳体密封连接,所述导热结构连接所述发热部件和所述热管理部件。
- 如权利要求1所述的电池,其中,所述导热结构与所述发热部件绝缘导热连接;和/或,所述导热结构与所述热管理部件绝缘导热连接。
- 如权利要求1所述的电池,其中,所述壳体的侧壁上贯通有散热孔;所述导热结构包括散热件,所述散热件嵌设于所述散热孔中,所述散热件的周壁与所述散热孔的孔壁密封连接。
- 如权利要求3所述的电池,其中,所述散热件与所述壳体为一体化结构。
- 如权利要求4所述的电池,其中,所述散热件与所述壳体一体注塑成型。
- 如权利要求3-5中任一项所述的电池,其中,所述散热孔的孔壁上设有凹部,所述散热件的局部嵌入所述凹部中。
- 如权利要求3-6中任一项所述的电池,其中,所述散热件为铝板,所述铝板与所述发热部件绝缘导热连接,所述铝板与所述热管理部件绝缘导热连接。
- 如权利要求3-7中任一项所述的电池,其中,所述导热结构包括第一导热垫,所述第一导热垫设于所述发热部件和所述散热件之间。
- 如权利要求8所述的电池,其中,所述第一导热垫为弹性件;和/或,所述第一导热垫为绝缘件。
- 如权利要求3-9中任一项所述的电池,其中,所述散热件朝向所述发热部件的一侧设有第一导热层。
- 如权利要求3-10中任一项所述的电池,其中,所述散热件朝向所述发热部件的一侧设有凹槽。
- 如权利要求11所述的电池,其中,所述发热部件的至少局部嵌入所述凹槽中。
- 如权利要求3-12中任一项所述的电池,其中,所述导热结构包括第二导热垫,所述第二导热垫设于所述散热件和所述热管理部件之间。
- 如权利要求13所述的电池,其中,所述第二导热垫为弹性件;和/或,所述第二导热垫为绝缘件。
- 如权利要求3-14中任一项所述的电池,其中,所述散热件朝向所述热管理部件的一侧设有第二导热层。
- 如权利要求1-15中任一项所述的电池,其中,所述热管理部件为液冷板。
- 如权利要求1-16中任一项所述的电池,其中,所述发热部件为巴片,所述巴片与所述导热结构绝缘导热连接。
- 一种用电装置,其中,所述用电装置包括如权利要求1-17中任一项所述的电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310640621.5 | 2023-05-31 | ||
CN202310640621.5A CN119069891A (zh) | 2023-05-31 | 2023-05-31 | 电池及用电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024244397A1 true WO2024244397A1 (zh) | 2024-12-05 |
Family
ID=93641442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/139591 WO2024244397A1 (zh) | 2023-05-31 | 2023-12-18 | 电池及用电装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN119069891A (zh) |
WO (1) | WO2024244397A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN120109359A (zh) * | 2025-05-06 | 2025-06-06 | 宁德时代新能源科技股份有限公司 | 电池装置、储能装置及用电装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000332171A (ja) * | 1999-05-20 | 2000-11-30 | Murata Mfg Co Ltd | 発熱素子の放熱構造およびその放熱構造を有するモジュール |
JP2011187275A (ja) * | 2010-03-08 | 2011-09-22 | Hitachi Ltd | 電池モジュール、これを収納する電池箱、及びこれを備える鉄道車両 |
CN205542966U (zh) * | 2016-02-29 | 2016-08-31 | 宁德时代新能源科技股份有限公司 | 一种动力电池包 |
CN108633216A (zh) * | 2017-03-16 | 2018-10-09 | 建准电机工业股份有限公司 | 马达组件及其马达电气盒 |
CN215184185U (zh) * | 2021-03-29 | 2021-12-14 | 广州汽车集团股份有限公司 | 一种电池热管理装置和动力电池 |
CN216251008U (zh) * | 2021-11-22 | 2022-04-08 | 宁德时代新能源科技股份有限公司 | 一种高压盒、电池及用电装置 |
-
2023
- 2023-05-31 CN CN202310640621.5A patent/CN119069891A/zh active Pending
- 2023-12-18 WO PCT/CN2023/139591 patent/WO2024244397A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000332171A (ja) * | 1999-05-20 | 2000-11-30 | Murata Mfg Co Ltd | 発熱素子の放熱構造およびその放熱構造を有するモジュール |
JP2011187275A (ja) * | 2010-03-08 | 2011-09-22 | Hitachi Ltd | 電池モジュール、これを収納する電池箱、及びこれを備える鉄道車両 |
CN205542966U (zh) * | 2016-02-29 | 2016-08-31 | 宁德时代新能源科技股份有限公司 | 一种动力电池包 |
CN108633216A (zh) * | 2017-03-16 | 2018-10-09 | 建准电机工业股份有限公司 | 马达组件及其马达电气盒 |
CN215184185U (zh) * | 2021-03-29 | 2021-12-14 | 广州汽车集团股份有限公司 | 一种电池热管理装置和动力电池 |
CN216251008U (zh) * | 2021-11-22 | 2022-04-08 | 宁德时代新能源科技股份有限公司 | 一种高压盒、电池及用电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN119069891A (zh) | 2024-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230275282A1 (en) | High Voltage Box, Battery and Electric Device | |
US20250055063A1 (en) | Thermal management assembly, battery, and electric apparatus | |
JP7514953B2 (ja) | エンドキャップアセンブリ、電池単体、電池および電池使用装置 | |
WO2024031413A1 (zh) | 电池以及用电装置 | |
US20220352573A1 (en) | Battery cell, battery, power consumption device, and battery manufacturing method and device | |
CN217159335U (zh) | 一种散热结构、高压盒、电池和用电装置 | |
CN117638310B (zh) | 电池包及用电装置 | |
WO2024244397A1 (zh) | 电池及用电装置 | |
WO2023134110A1 (zh) | 电池和用电设备 | |
CN216720071U (zh) | 电池和用电设备 | |
CN221427848U (zh) | 电池单体、电池及用电装置 | |
CN105027349A (zh) | 具有热元件的电池模块 | |
WO2023015558A1 (zh) | 电池单体、电池、用电设备及电池单体的制造方法和设备 | |
CN116325302A (zh) | 电池以及用电装置 | |
KR20230126177A (ko) | 배터리, 전기 장치, 배터리 제조 방법 및 장치 | |
CN117276813B (zh) | 电池转接组件、电池、电池模组及用电设备 | |
CN221766681U (zh) | 熔断器组件、电池、用电装置及储能装置 | |
CN117293487B (zh) | 电池转接组件、电池及用电设备 | |
CN116154390B (zh) | 电池模块及其制造方法和制造装备、电池及用电装置 | |
CN117293474B (zh) | 电池、电池模组及用电设备 | |
JP7529801B2 (ja) | 電池及び電気装置 | |
CN221447295U (zh) | 电池及用电设备 | |
WO2023070396A1 (zh) | 电池、用电设备及电池的制造方法 | |
CN219498103U (zh) | 电池单体、电池及用电装置 | |
WO2024178706A1 (zh) | 电池和用电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23939365 Country of ref document: EP Kind code of ref document: A1 |