WO2024243831A1 - 显示面板、显示装置及驱动方法 - Google Patents
显示面板、显示装置及驱动方法 Download PDFInfo
- Publication number
- WO2024243831A1 WO2024243831A1 PCT/CN2023/097275 CN2023097275W WO2024243831A1 WO 2024243831 A1 WO2024243831 A1 WO 2024243831A1 CN 2023097275 W CN2023097275 W CN 2023097275W WO 2024243831 A1 WO2024243831 A1 WO 2024243831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- viewing angle
- liquid crystal
- electrode
- substrate
- polarizer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
Definitions
- the present invention relates to the field of display technology, and in particular to a display panel, a display device and a driving method.
- the viewing angle of the display has been widened from the original 120° to more than 160°. While enjoying the visual experience brought by the wide viewing angle, people also hope to effectively protect business secrets and personal privacy to avoid business losses or embarrassment caused by the leakage of screen information. Therefore, in addition to the demand for wide viewing angle, in many occasions, the display device is also required to have the function of switching between wide and narrow viewing angles.
- the main method is to attach a louver film to the display screen to achieve wide and narrow viewing angle switching.
- the screen can be covered with a louver film to narrow the viewing angle.
- this method requires additional louver film, which will cause great inconvenience to the user, and a louver film can only achieve one viewing angle.
- the louver film is attached, the viewing angle is fixed in the narrow viewing angle mode, resulting in the inability to switch freely between the wide viewing angle mode and the narrow viewing angle mode.
- the anti-peeping film will reduce the brightness and affect the taste.
- the prior art also has a dual-box structure that uses a dimming box and a display panel to switch between wide viewing angle and narrow viewing angle, wherein the display panel is used for normal picture display and the dimming box is used to control the viewing angle switching.
- the dimming box includes an upper substrate, a lower substrate, and a liquid crystal layer between the upper substrate and the lower substrate.
- the viewing angle control electrodes on the upper substrate and the lower substrate apply a vertical electric field to the liquid crystal molecules to deflect the liquid crystal in the vertical direction to achieve a narrow viewing angle mode. By controlling the voltage on the viewing angle control electrode, it is possible to switch between wide viewing angle and narrow viewing angle.
- This display panel uses a large viewing angle to collect light to reduce the brightness to achieve narrow viewing angle display.
- the ratio of the display brightness of 45° to the display brightness of the center (0°) is about 1%, and the wide viewing angle display effect at a wide viewing angle is poor.
- the narrow viewing angle effect will deteriorate; or when the display effect of a narrow viewing angle is improved, the wide viewing angle display effect will deteriorate. It is difficult to improve the display effect of a wide viewing angle without affecting or improving the display effect of a narrow viewing angle.
- an object of the present invention is to provide a display panel, a display device and a driving method to solve the problem in the prior art that it is impossible to improve the display effect of a wide viewing angle without affecting or improving the display effect of a narrow viewing angle.
- the first liquid crystal box comprises a first substrate, a second substrate arranged opposite to the first substrate, and a dye liquid crystal layer located between the first substrate and the second substrate, the first substrate is provided with a viewing angle auxiliary electrode, and the second substrate is provided with a viewing angle control electrode matched with the viewing angle auxiliary electrode;
- the second liquid crystal box comprises a color filter substrate, an array substrate arranged opposite to the color filter substrate, and a liquid crystal layer arranged between the color filter substrate and the array substrate;
- the first polarizer is provided on the side of the second liquid crystal box away from the first liquid crystal box, and the second polarizer is provided on the side of the second liquid crystal box close to the first liquid crystal box.
- the transmission axis of the second polarizer is perpendicular to the transmission axis of the first polarizer.
- the first polarizer is a reflective polarizer.
- a prism structure layer is provided in the first liquid crystal box and/or the second liquid crystal box, and the prism structure layer has a scattering effect on the backlight.
- the second polarizer is a reflective polarizer; and/or a transflective layer is provided between the second polarizer and the first liquid crystal cell.
- the first liquid crystal box has a logo pattern area and a non-logo pattern area
- the viewing angle control electrode includes a first viewing angle control electrode corresponding to the logo pattern area and a second viewing angle control electrode corresponding to the non-logo pattern area
- the first viewing angle control electrode and the second viewing angle control electrode are insulated from each other and spaced apart;
- the first viewing angle control electrode and the second viewing angle control electrode respectively apply narrow viewing angle signals with different amplitudes.
- first viewing angle control electrode and the second viewing angle control electrode are located in the same layer, or the first viewing angle control electrode and the The second viewing angle control electrode is located in a different layer.
- the array substrate is provided with a plurality of first scan lines and a plurality of first data lines, the plurality of first scan lines and the plurality of first data lines are insulated from each other and cross to define a plurality of pixel units, the array substrate is provided with a pixel electrode and a first thin film transistor in each pixel unit, the pixel electrode is electrically connected to the first scan line and the first data line adjacent to the first thin film transistor through the first thin film transistor;
- a plurality of second scan lines and a plurality of second data lines are provided on the second substrate, the second scan lines correspond to the first scan lines, the second data lines correspond to the first data lines, the viewing angle control electrode comprises a plurality of electrode blocks corresponding to the pixel units, the second substrate is provided with a second thin film transistor in each pixel unit, the electrode block is electrically connected to the second scan line and the second data line adjacent to the second thin film transistor through the second thin film transistor;
- the first liquid crystal box has a logo pattern area and a non-logo pattern area.
- the electrode block corresponding to the logo pattern area and the electrode block corresponding to the non-logo pattern area respectively apply narrow viewing angle signals with different amplitudes.
- a third polarizer is disposed on a side of the first liquid crystal cell away from the second liquid crystal cell, and a light transmission axis of the third polarizer is parallel to a light transmission axis of the second polarizer.
- a transflective layer is provided between the second polarizer and the first liquid crystal box, and the transflective layer is a one-way perspective film, the dye liquid crystal layer is aligned parallel to the first substrate and the second substrate, and the alignment direction of the dye liquid crystal layer is parallel to the light transmission axis of the third polarizer;
- the array substrate is provided with a plurality of first scan lines and a plurality of first data lines, the plurality of first scan lines and the plurality of first data lines are insulated from each other and cross to define a plurality of pixel units, the array substrate is provided with a pixel electrode and a first thin film transistor in each pixel unit, the pixel electrode is electrically connected to the first scan line and the first data line adjacent to the first thin film transistor through the first thin film transistor;
- a plurality of second scan lines and a plurality of second data lines are provided on the second substrate, the second scan lines correspond to the first scan lines, the second data lines correspond to the first data lines, the viewing angle control electrode comprises a plurality of electrode blocks corresponding to the pixel units, the second substrate is provided with a second thin film transistor in each pixel unit, the electrode block is electrically connected to the second scan line and the second data line adjacent to the second thin film transistor through the second thin film transistor;
- a corresponding grayscale voltage is applied to each of the electrode blocks.
- first substrate and the second substrate are both colorless and transparent structures in areas corresponding to the pixel units.
- the first substrate and/or the second substrate is provided with a boss on a side facing the dye liquid crystal layer, and the boss corresponds to a display area of the display panel.
- the prism structure layer is provided on a side of the second substrate facing the dye liquid crystal layer, and/or the prism structure layer is provided on a side of the array substrate facing the liquid crystal layer.
- the present application also provides a display device, comprising a backlight module and the display panel as described above, wherein the display panel is arranged on the light emitting side of the backlight module.
- the present application also provides a driving method, the driving method is used to drive the display panel as described above, the driving method comprising:
- a common signal is applied to the viewing angle auxiliary electrode, and a wide viewing angle signal is applied to the viewing angle control electrode, so as to control the liquid crystal molecules and dye molecules in the dye liquid crystal layer to be in a standing posture;
- a common signal is applied to the viewing angle auxiliary electrode, and a narrow viewing angle signal is applied to the viewing angle control electrode, so as to control the liquid crystal molecules and dye molecules in the dye liquid crystal layer to be in a tilted posture.
- the second polarizer is a reflective polarizer, and/or a transflective layer is provided between the second polarizer and the first liquid crystal box;
- the first liquid crystal box has a logo pattern area and a non-logo pattern area,
- the viewing angle control electrode includes a first viewing angle control electrode corresponding to the logo pattern area and a second viewing angle control electrode corresponding to the non-logo pattern area, and the first viewing angle control electrode and the second viewing angle control electrode are insulated from each other and spaced apart;
- a common signal is applied to the viewing angle auxiliary electrode, a first narrow viewing angle signal is applied to the first viewing angle control electrode, and a second narrow viewing angle signal is applied to the second viewing angle control electrode, and the amplitudes of the first narrow viewing angle signal and the second narrow viewing angle signal are different, so as to control the liquid crystal molecules and dye molecules corresponding to the identification pattern area to be in a first tilted posture, and control the liquid crystal molecules and dye molecules corresponding to the non-identification pattern area to be in a second tilted posture.
- the second polarizer is a reflective polarizer, and/or a transflective layer is provided between the second polarizer and the first liquid crystal cell;
- the first liquid crystal box has an identification pattern area and a non-identification pattern area
- the viewing angle control electrode includes a plurality of electrode blocks corresponding to the pixel units; in the identification display mode, a common signal is applied to the viewing angle auxiliary electrode, a first narrow viewing angle signal is applied to the electrode block corresponding to the identification pattern area, and a second narrow viewing angle signal is applied to the electrode block corresponding to the non-identification pattern area, and the amplitudes of the first narrow viewing angle signal and the second narrow viewing angle signal are different, so as to control the liquid crystal molecules and dye molecules corresponding to the identification pattern area to be in a first tilted posture, and control the liquid crystal molecules and dye molecules corresponding to the non-identification pattern area to be in a second tilted posture.
- a transflective layer is provided between the second polarizer and the first liquid crystal cell, and the transflective layer is a one-way perspective film;
- a third polarizer is provided on the side of the first liquid crystal box away from the second liquid crystal box, the transmittance axis of the third polarizer is parallel to the transmittance axis of the second polarizer, the dye liquid crystal layer is aligned parallel to the first substrate and the second substrate, and the alignment direction of the dye liquid crystal layer is parallel to the transmittance axis of the third polarizer, and the viewing angle control electrode includes a plurality of electrode blocks corresponding to the pixel units; in the reflective display mode, the backlight module and the second liquid crystal box are turned off, a common signal is applied to the viewing angle auxiliary electrode, and corresponding grayscale voltages are applied to each of the electrode blocks.
- the wide viewing angle effect is improved while ensuring good wide viewing angle display brightness; and the first liquid crystal box uses dye liquid crystal, which has a certain light absorption effect at a narrow viewing angle, so as to reduce the influence of the prism structure layer on the narrow viewing angle effect and improve the narrow viewing angle effect.
- the prism structure layer, the reflective polarizer and the dye liquid crystal it is achieved that when the wide viewing angle effect is improved, the narrow viewing angle effect is not affected or improved.
- FIG. 1 is a schematic structural diagram of a display device in an initial state according to a first embodiment of the present invention.
- FIG. 2 is a schematic diagram of a planar structure of an array substrate in Embodiment 1 of the present invention.
- FIG. 3 is a waveform diagram of driving signals of a display device in the first embodiment of the present invention.
- FIG. 4 is a schematic diagram of the structure of the display device in the wide viewing angle mode according to the first embodiment of the present invention.
- FIG. 5 is a schematic diagram of the structure of the display device in the narrow viewing angle mode according to the first embodiment of the present invention.
- FIG. 6 is a simulation diagram of viewing angle and contrast ratio of the first liquid crystal cell in the wide viewing angle mode under different doping ratios of dye molecules in the first embodiment of the present invention.
- FIG. 7 is a simulation diagram of viewing angle and contrast ratio of the first liquid crystal cell in the narrow viewing angle mode under different doping ratios of dye molecules in the first embodiment of the present invention.
- FIG. 8 is a measured graph of viewing angle and transmittance of the first liquid crystal cell in the narrow viewing angle mode at different dye molecule doping ratios in the first embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a display device in an initial state in Embodiment 2 of the present invention.
- FIG. 10 is a schematic structural diagram of the display device in the initial state in the third embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of a display device in an initial state in Embodiment 4 of the present invention.
- FIG. 12 is a schematic structural diagram of the display device in the initial state in the fifth embodiment of the present invention.
- FIG13 is a schematic diagram of the planar structure of the display device in the fifth embodiment of the present invention.
- FIG. 14 is a schematic diagram of the planar structure of the viewing angle control electrode in the fifth embodiment of the present invention.
- FIG. 15 is a waveform diagram of driving signals of a display device in the fifth embodiment of the present invention.
- FIG. 16 is a schematic diagram of the structure of the display device in the wide viewing angle mode in the fifth embodiment of the present invention.
- FIG. 17 is a schematic diagram of the structure of the display device in the narrow viewing angle mode in the fifth embodiment of the present invention.
- FIG. 18 is a schematic diagram of the structure of the display device in the identification display mode in the fifth embodiment of the present invention.
- FIG. 19 is a schematic diagram of the structure of the display device in the initial state in the sixth embodiment of the present invention.
- FIG. 20 is a schematic diagram of the planar structure of the second substrate in Embodiment 6 of the present invention.
- FIG. 21 is a schematic diagram of the structure of the display device in the wide viewing angle mode in the sixth embodiment of the present invention.
- FIG. 22 is a schematic diagram of the structure of the display device in the narrow viewing angle mode in the sixth embodiment of the present invention.
- FIG. 23 is a schematic diagram of the structure of the display device in the identification display mode in the sixth embodiment of the present invention.
- FIG. 24 is a schematic diagram of the planar structure of the display device in the identification display mode in the sixth embodiment of the present invention.
- FIG. 25 is a schematic diagram of the structure of the display device in the reflective display mode in the sixth embodiment of the present invention.
- FIG. 26 is one of the planar structural schematic diagrams of the display device in the present invention.
- FIG. 27 is a second schematic diagram of the planar structure of the display device of the present invention.
- FIG1 is a schematic diagram of the structure of the display device in the initial state in the first embodiment of the present invention.
- FIG2 is a schematic diagram of the planar structure of the array substrate in the first embodiment of the present invention.
- the first embodiment of the present invention provides a display panel, comprising a first liquid crystal box 10 and a second liquid crystal box 20 stacked on each other, wherein the first liquid crystal box 10 is arranged on the light-emitting side of the second liquid crystal box 20, that is, the first liquid crystal box 10 is arranged on the side of the second liquid crystal box 20 away from the backlight module 50.
- the first liquid crystal box 10 includes a first substrate 11, a second substrate 12 disposed opposite to the first substrate 11, and a dye liquid crystal layer 13 located between the first substrate 11 and the second substrate 12.
- a viewing angle auxiliary electrode 111 is disposed on the first substrate 11, and a viewing angle control electrode 121 matched with the viewing angle auxiliary electrode 111 is disposed on the second substrate 12.
- the first liquid crystal box 10 is controlled to switch between a wide viewing angle and a narrow viewing angle by controlling the voltage applied to the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121.
- the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121 are both planar electrodes disposed on the entire surface, so that all areas of the display device can be controlled to switch between a wide viewing angle and a narrow viewing angle at the same time.
- an insulating layer covering the viewing angle auxiliary electrode 111 is provided on the first substrate 11
- an insulating layer covering the viewing angle control electrode 121 is provided on the second substrate 12 to avoid a short circuit between the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121 .
- the optical path difference ⁇ n*d of the dye liquid crystal layer 13 is 700-1500nm, for example, 1393nm.
- the dye liquid crystal layer 13 includes liquid crystal molecules 131 and dye molecules 132 that are mixed with each other.
- the liquid crystal molecules 131 are positive liquid crystal molecules (liquid crystal molecules with positive dielectric anisotropy).
- the dye molecules 132 can be black dye molecules or purple-black dye molecules.
- the light absorption capacity of the long axis of the dye molecules is greater than the light absorption capacity of the short axis, that is, the dye molecules 132 have the characteristics of strong light absorption capacity of the long axis and very weak light absorption capacity of the short axis.
- the positive liquid crystal molecules and the dye molecules 132 are aligned parallel to the first substrate 11 and the second substrate 12, and the alignment direction of the dye liquid crystal layer 13 close to the first substrate 11 and the alignment direction close to the second substrate 12 are parallel or anti-parallel to each other.
- the first substrate 11 is provided with a first alignment layer on the side facing the dye liquid crystal layer 13
- the second substrate 12 is provided with a second alignment layer on the side facing the dye liquid crystal layer 13.
- the first alignment layer and the second alignment layer are used to align the dye liquid crystal layer 13, and the alignment directions of the first alignment layer and the second alignment layer are parallel to each other.
- the dye liquid crystal layer 13 may have a small pre-tilt angle (for example, less than 5°) during the initial alignment, that is, the liquid crystal molecules 131 and the dye molecules 132 initially form a small angle with the first substrate 11 and the second substrate 12, which can accelerate the deflection of the positive liquid crystal molecules and the dye molecules 132 toward the vertical direction when switching to a narrow viewing angle.
- a small pre-tilt angle for example, less than 5°
- the second liquid crystal box 20 includes a color filter substrate 21, an array substrate 22 disposed opposite to the color filter substrate 21, and a liquid crystal layer 23 disposed between the color filter substrate 21 and the array substrate 22.
- the liquid crystal molecules in the liquid crystal layer 23 also use positive liquid crystal molecules (liquid crystal molecules with positive dielectric anisotropy).
- the positive liquid crystal molecules are aligned parallel to the color filter substrate 21 and the array substrate 22, and the alignment direction of the liquid crystal layer 23 on the side close to the color filter substrate 21 is parallel or anti-parallel to the alignment direction on the side close to the array substrate 22.
- the liquid crystal molecules in the liquid crystal layer 23 may also use negative liquid crystal molecules (liquid crystal molecules with negative dielectric anisotropy).
- the color filter substrate 21 is provided with color resist layers 212 arranged in an array and a black matrix 211 separating the color resist layers 212.
- the color resist layers 212 include color resist materials of red (R), green (G), and blue (B), and correspondingly form sub-pixels of red (R), green (G), and blue (B), that is, the pixel unit SP has three colors of red (R), green (G), and blue (B).
- a plurality of first scan lines 1 and a plurality of first data lines 2 are provided on the array substrate 22, and the plurality of first scan lines 1 and the plurality of first data lines 2 are insulated from each other and cross to define a plurality of pixel units SP, and the array substrate 22 is provided with a pixel electrode 222 and a first thin film transistor 3 in each pixel unit SP, and the pixel electrode 222 is electrically connected to the first scan line 1 and the first data line 2 adjacent to the first thin film transistor 3 through the first thin film transistor 3.
- the first thin film transistor 3 includes a gate, an active layer, a drain and a source, the gate is located in the same layer as the first scan line 1 and is electrically connected, the gate is isolated from the active layer by a gate insulating layer, the source is electrically connected to the first data line 2, and the drain is electrically connected to the pixel electrode 222.
- a common electrode 221 is provided on the array substrate 22 to match the pixel electrode 222.
- the common electrode 221 and the pixel electrode 222 are located in different layers and are insulated and isolated by an insulating layer.
- the common electrode 221 can be located above or below the pixel electrode 222 (the common electrode 221 shown in FIG. 1 221 is located below the pixel electrode 222).
- the common electrode 221 is a planar structure
- the pixel electrode 222 is a slit electrode having a plurality of electrode strips in each pixel unit SP to form a fringe field switching mode (Fringe Field Switching, FFS).
- FFS fringe Field Switching
- the pixel electrode 222 and the common electrode 221 may be located in the same layer, but the two are insulated and isolated from each other, and the pixel electrode 222 and the common electrode 221 may each include a plurality of electrode strips, and the electrode strips of the pixel electrode 222 and the electrode strips of the common electrode 221 are arranged alternately with each other to form an in-plane switching mode (In-Plane Switching, IPS).
- the array substrate 22 is provided with a pixel electrode 222 on a side facing the liquid crystal layer 23, and the color film substrate 21 is provided with a common electrode 221 on a side facing the liquid crystal layer 23 to form a TN display mode or a VA display mode.
- the TN display mode and the VA display mode please refer to the prior art, which will not be repeated here.
- a prism structure layer 40 is provided in the first liquid crystal box 10 and/or the second liquid crystal box 20, and the prism structure layer 40 has a light-scattering effect on the backlight.
- the prism structure layer 40 is provided on the side of the array substrate 22 facing the liquid crystal layer 23, and the backlight emitted by the backlight module 50 passes through the prism structure layer 40 and is in a divergent state, thereby enhancing the wide viewing angle effect.
- the prism structure layer 40 includes a first refractive layer and a second refractive layer, and a convex structure is provided on the first refractive layer, and the second refractive layer covers the first refractive layer.
- the longitudinal section of the convex structure can be a triangle, a trapezoid, a semicircle, etc., and the convex structure is a columnar structure.
- the refractive index of the first refractive layer is less than the refractive index of the second refractive layer, so that the backlight has a divergent effect after passing through the first refractive layer and the second refractive layer in sequence.
- a first polarizer 31 is provided on the side of the second liquid crystal cell 20 away from the first liquid crystal cell 10, and a second polarizer 32 is provided on the side of the second liquid crystal cell 20 close to the first liquid crystal cell 10, and the light transmission axis of the second polarizer 32 is perpendicular to the light transmission axis of the first polarizer 31.
- the first polarizer 31 is a reflective polarizer (APF, Advanced Polarizer Film, full name: reflective polarizing ultra-thin optical film) with a specular reflectivity (SCI) of more than 46%.
- the reflective polarizer has a light transmission axis and a light reflection axis, and the light transmission axis and the light reflection axis of the reflective polarizer are perpendicular to each other. Since the prism structure layer 40 has a light diffusion effect on the backlight, when the wide viewing angle is improved, the display brightness of the wide viewing angle will be reduced. By arranging a reflective polarizer on the side of the second liquid crystal cell 20 away from the first liquid crystal cell 10, the utilization rate of the backlight can be improved compared with ordinary polarizers, so as to improve the display brightness of the wide viewing angle. With the cooperation between the prism structure layer 40 and the reflective polarizer, the wide viewing angle effect is improved while ensuring good wide viewing angle display brightness.
- a transflective layer 34 is provided between the second polarizer 32 and the first liquid crystal box 10.
- the transflective layer 34 is a reflective polarizer (APF, Advanced Polarizer Film, full name: reflective polarizing ultra-thin optical film), so that the transflective layer 34 has an axial transmission and reflection of light.
- APF Advanced Polarizer Film
- the transflective layer 34 can also be a one-way perspective film, which has no polarization effect on light.
- the backlight is still natural light after passing through the one-way perspective film, and the ambient light is still natural light after being reflected by the one-way perspective film, that is, regardless of the polarization direction of the light, the one-way perspective film has a transmission and reflection effect on it.
- the one-way perspective film also called one-way film, mirror film, etc. refers to a film that is attached to the glass and can make the glass have a very high reflectance ratio for visible light.
- the one-way perspective film is commonly used in home glass film or car glass film.
- the golden ambient light reflected by the transflective layer 34 can be seen, thereby enhancing the anti-peeping effect of the narrow viewing angle and achieving the golden anti-peeping effect.
- a viewing angle compensation film (not shown) or a composite film of the viewing angle compensation film and the reflective polarizer may be provided between the second polarizer 32 and the first liquid crystal box 10.
- the viewing angle compensation film has a certain light collecting effect, thereby further improving the anti-peeping effect of the narrow viewing angle.
- the viewing angle compensation film may be composited with the transflective layer 34 into a single film, that is, the viewing angle compensation film and the transflective layer 34 are bonded together in advance.
- the transflective layer 34 is relatively thin, by bonding the viewing angle compensation film and the transflective layer 34 together in advance, a certain thickness and strength may be increased, thereby facilitating bonding the viewing angle compensation film and the transflective layer 34 between the second polarizer 32 and the first liquid crystal box 10.
- a third polarizer 33 is disposed on a side of the first liquid crystal cell 10 away from the second liquid crystal cell 20, and the light transmission axis of the third polarizer 33 is parallel to the light transmission axis of the second polarizer 32, and the light transmission axis of the third polarizer 33 is perpendicular to the alignment direction of the dye liquid crystal layer 13.
- the alignment direction of the dye liquid crystal layer 13 is 90°
- the light transmission axis of the first polarizer 31 (reflective polarizer) is 90°
- the reflection axis of the first polarizer 31 is 0°.
- the first substrate 11, the second substrate 12, the color filter substrate 21 and the array substrate 22 can be made of materials such as glass, acrylic and polycarbonate.
- the materials of the viewing angle auxiliary electrode 111, the viewing angle control electrode 121, the common electrode 221 and the pixel electrode 222 can be transparent materials such as indium tin oxide (ITO) or indium zinc oxide (IZO).
- the present application also provides a display device, including a backlight module 50 and the display panel as described above, wherein the display panel is arranged on the light-emitting side of the backlight module 50, and the backlight module 50 is used to provide a backlight source for the display panel.
- the backlight module 50 can be a collimated backlight module, an edge-entry backlight module, or a Light module or light-collecting backlight module.
- FIG. 3 is a waveform diagram of a driving signal of a display device in Embodiment 1 of the present invention.
- FIG. 4 is a schematic diagram of a structure of a display device in Embodiment 1 of the present invention in a wide viewing angle mode.
- FIG. 5 is a schematic diagram of a structure of a display device in Embodiment 1 of the present invention in a narrow viewing angle mode.
- the present application further provides a driving method, which is used to drive the display panel as described above.
- the driving method comprises:
- the backlight module 50 is turned on, and a common signal Vcom is applied to the viewing angle auxiliary electrode 111, and a wide viewing angle signal V1 is applied to the viewing angle control electrode 121.
- a large voltage difference e.g., 5 to 10V
- a strong vertical electric field E2 in FIG. 4
- the liquid crystal molecules 131 and the dye molecules 132 in the dye liquid crystal layer 13 are controlled to deflect in the vertical direction and stand in a standing posture to achieve a wide viewing angle effect.
- the prism structure layer 40 and the first polarizer 31 cooperate with each other, thereby improving the wide viewing angle effect while ensuring that the display device has good wide viewing angle display brightness.
- the dye molecules 132 in the dye liquid crystal layer 13 are in a standing posture, the dye molecules 132 basically do not absorb light, so the dye molecules 132 do not affect the display effect of wide viewing angle.
- the backlight transmitted is strong regardless of the large viewing angle or the normal viewing angle (0°), which can cover the golden ambient light reflected by the transflective layer 34. Therefore, the golden ambient light reflected by the transflective layer 34 has basically no effect on the display under wide viewing angle.
- the backlight module 50 in the on state, and the common signal Vcom is applied to the viewing angle auxiliary electrode 111, and the narrow viewing angle signal V2 is applied to the viewing angle control electrode 121.
- There is a large voltage difference between the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121 (for example, 1.5 to 3V, preferably 2.7V), so that a strong vertical electric field (E3 in Figure 5) is formed between the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121, and the liquid crystal molecules 131 and the dye molecules 132 in the dye liquid crystal layer 13 are controlled to be deflected in the vertical direction and to be in a tilted posture.
- the dye liquid crystal layer 13 has a light-collecting effect at a large viewing angle, that is, the brightness at a large viewing angle becomes darker to achieve a narrow viewing angle effect.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 5 ) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- Table 1 below is a comparison of the display device of the present application and the display device in the prior art in terms of narrow viewing angle effect and wide viewing angle effect:
- Table 2 below shows experimental data of the doping ratio of the dye molecules 132 in the first liquid crystal cell 10 being 0-3%. Please refer to Table 2 below:
- FIG9 is a schematic diagram of the structure of the display device in the initial state in the second embodiment of the present invention.
- the display panel, display device, and driving method provided in the second embodiment of the present invention are basically the same as the display panel, display device, and driving method in the first embodiment (FIG. 1 to FIG5), except that, in this embodiment:
- the first substrate 11 is provided with a boss 14 on the side facing the dye liquid crystal layer 13.
- the boss 14 corresponds to the display area of the display panel, that is, the projection of the boss 14 on the first substrate 11 coincides with the display area.
- the boss 14 can be made of a flat layer (OC), first covering the entire flat layer, and then removing the flat layer corresponding to the non-display area to retain the flat layer corresponding to the display area and form the boss 14. Since the first substrate 11 is easy to bend after the thinning process, the first substrate 11 and the second substrate 12 are easy to be adsorbed together to form rainbow pattern anomalies.
- the boss 14 By providing the boss 14 in the display area, the strength of the first substrate 11 after the thinning process can be enhanced, the distance between the first substrate 11 and the second substrate 12 at the edge of the large board can be increased, and the first substrate 11 and the second substrate 12 are prevented from being easily adsorbed together. Moreover, only providing the boss 14 in the display area will not affect the thickness of the first liquid crystal box 10, and it can also avoid the peripheral color difference problem caused by simply increasing the size of the silicon ball (SP Size).
- the boss 14 may be disposed on the side of the second substrate 12 facing the dye liquid crystal layer 13 , or the first substrate 11 and the second substrate 12 may both be provided with the boss 14 on the side facing the dye liquid crystal layer 13 .
- FIG10 is a schematic diagram of the structure of the display device in the initial state in the third embodiment of the present invention.
- the display panel, display device, and driving method provided in the third embodiment of the present invention are basically the same as the display panel, display device, and driving method in the first embodiment (FIGs. 1 to 5) and the second embodiment (FIG. 9), except that, in the present embodiment:
- the prism structure layer 40 is disposed on the side of the second substrate 12 facing the dye liquid crystal layer 13.
- the prism structure layer 40 has a light diffusion effect on the backlight.
- the backlight emitted by the backlight module 50 passes through the prism structure layer 40 and is in a divergent state, thereby improving the wide viewing angle effect.
- the prism structure layer 40 includes The first refractive layer and the second refractive layer are provided with a convex structure on the first refractive layer, and the second refractive layer covers the first refractive layer.
- the longitudinal section of the convex structure can be a triangle, a trapezoid, a semicircle, etc., and the convex structure is a columnar structure.
- the refractive index of the first refractive layer is less than the refractive index of the second refractive layer, so that the backlight has a divergent effect after passing through the first refractive layer and the second refractive layer in sequence.
- a prism structure layer 40 can be provided on the side of the array substrate 22 facing the liquid crystal layer 23 and the side of the second substrate 12 facing the dye liquid crystal layer 13 at the same time, so as to further enhance the wide viewing angle effect.
- FIG11 is a schematic diagram of the structure of the display device in the initial state in the fourth embodiment of the present invention.
- the display panel, display device, and driving method provided in the fourth embodiment of the present invention are basically the same as the display panel, display device, and driving method in the first embodiment (FIGs. 1 to 5), the second embodiment (FIG. 9), and the third embodiment (FIG. 10), except that, in this embodiment:
- the second polarizer 32 is a reflective polarizer, that is, the second polarizer 32 has a light transmission axis and a light reflection axis, and the light transmission axis and the light reflection axis of the second polarizer 32 are perpendicular to each other.
- the second polarizer 32 is a reflective polarizer (APF, Advanced Polarizer Film, reflective polarizing ultra-thin optical film), and its specular reflectivity (SCI) can reach more than 46%.
- APF Advanced Polarizer Film
- SCI specular reflectivity
- the second polarizer 32 when the second polarizer 32 also uses a reflective polarizer, since the reflective polarizer has a reflective effect, the transflective layer 34 may not be provided. In this case, a separate viewing angle compensation film may be provided between the second polarizer 32 and the first liquid crystal box 10, but the reflection effect of ambient light is slightly worse. It should be understood by those skilled in the art that the rest of the structure and working principle of this embodiment are the same as those of Embodiment 1, Embodiment 2, and Embodiment 3, and will not be described in detail here.
- FIG. 12 is a schematic diagram of the structure of the display device in the initial state in the fifth embodiment of the present invention.
- FIG. 13 is a schematic diagram of the planar structure of the display device in the fifth embodiment of the present invention.
- FIG. 14 is a schematic diagram of the planar structure of the viewing angle control electrode in the fifth embodiment of the present invention.
- the display panel, display device, and driving method provided in the fifth embodiment of the present invention are basically the same as the display panel, display device, and driving method in the first embodiment (FIGs. 1 to 5), the second embodiment (FIG. 9), the third embodiment (FIG. 10), and the fourth embodiment (FIG. 11), except that, in this embodiment:
- the first liquid crystal box 10 has a logo pattern area 110 and a non-logo pattern area 120.
- the viewing angle control electrode 121 includes a first viewing angle control electrode 121a corresponding to the logo pattern area 110 and a second viewing angle control electrode 121b corresponding to the non-logo pattern area 120.
- the first viewing angle control electrode 121a and the second viewing angle control electrode 121b are insulated and spaced apart from each other, so that in the logo display mode, it is convenient to apply narrow viewing angle signals with different amplitudes to the first viewing angle control electrode 121a and the second viewing angle control electrode 121b respectively.
- the pattern of the logo pattern area 110 can be set according to actual needs, and the pattern of the first viewing angle control electrode 121a is the same as the pattern of the logo pattern area 110.
- the pattern of the logo pattern area 110 cannot be changed, and in the logo display mode, only the same logo pattern can be displayed.
- the first viewing angle control electrode 121a and the second viewing angle control electrode 121b are located in the same layer, wherein the non-identification pattern area 120 surrounds the periphery of the identification pattern area 110, and the second viewing angle control electrode 121b surrounds the periphery of the first viewing angle control electrode 121a. Therefore, an additional signal wire layer can be provided to conductively connect the first viewing angle control electrode 121a to the binding area of the non-display area, so as to facilitate the application of a control signal to the first viewing angle control electrode 121a.
- the first viewing angle control electrode 121a and the second viewing angle control electrode 121b are located in different layers, so there is no need to additionally provide a signal wire layer. However, since the first viewing angle control electrode 121a and the second viewing angle control electrode 121b are located in different layers and the distances from the viewing angle auxiliary electrode 111 are different, the display effect of the narrow viewing angle of the display device is affected to a certain extent.
- FIG. 15 is a waveform diagram of a driving signal of a display device in Embodiment 5 of the present invention.
- FIG. 16 is a schematic diagram of the structure of a display device in Embodiment 5 of the present invention in a wide viewing angle mode.
- FIG. 17 is a schematic diagram of the structure of a display device in Embodiment 5 of the present invention in a narrow viewing angle mode.
- FIG. 18 is a schematic diagram of the structure of a display device in Embodiment 5 of the present invention in an identification display mode.
- the present application further provides a driving method, which is used to drive the display panel as described above.
- the driving method comprises:
- the backlight module 50 is turned on, and a common signal Vcom is applied to the viewing angle auxiliary electrode 111, and a wide viewing angle signal V1 is applied to the viewing angle control electrode 121, that is, the wide viewing angle signal V1 is applied to both the first viewing angle control electrode 121a and the second viewing angle control electrode 121b.
- a large voltage difference for example, 5 to 10 V
- a strong vertical electric field (E2 in FIG. 16 ) is formed between the viewing angle auxiliary electrode 111 and the second viewing angle control electrode 121 b , which controls all liquid crystal molecules 131 and dye molecules 132 in the dye liquid crystal layer 13 to deflect in the vertical direction and stand upright, so as to achieve a wide viewing angle display effect.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 16) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- the prism structure layer 40 and the first polarizer 31 cooperate with each other, thereby improving the wide viewing angle effect while ensuring good wide viewing angle display brightness.
- the dye molecules 132 in the dye liquid crystal layer 13 are in a standing posture, the dye molecules 132 basically do not absorb light, so the dye molecules 132 do not affect the wide viewing angle display effect.
- the backlight transmitted is strong regardless of the large viewing angle or the normal viewing angle (0°), which can cover the golden ambient light reflected by the transflective layer 34. Therefore, the golden ambient light reflected by the transflective layer 34 has basically no effect on the display under wide viewing angle.
- the backlight module 50 in the narrow viewing angle mode, is in the on state, and the common signal Vcom is applied to the viewing angle auxiliary electrode 111, and the narrow viewing angle signal V2 is applied to the viewing angle control electrode 121, that is, the first narrow viewing angle signal V21 or the second narrow viewing angle signal V22 is applied to both the first viewing angle control electrode 121a and the second viewing angle control electrode 121b.
- the dye liquid crystal layer 13 has a light-collecting effect at a wide viewing angle, that is, the brightness at a wide viewing angle becomes darker to achieve a narrow viewing angle effect.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 17 ) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- the dye molecules 132 in the dye liquid crystal layer 13 When displaying at a narrow viewing angle, due to the use of the dye liquid crystal layer 13, the dye molecules 132 in the dye liquid crystal layer 13 have the characteristics of strong light absorption ability of the long axis and very weak light absorption ability of the short axis. When displaying at a narrow viewing angle, the dye molecules 132 can absorb part of the light, thereby increasing the light collection effect at a narrow viewing angle to enhance the narrow viewing angle effect. Moreover, a transflective layer 34 is provided between the second polarizer 32 and the first liquid crystal box 10.
- the golden ambient light reflected by the transflective layer 34 can be seen, thereby further enhancing the anti-peeping effect at a narrow viewing angle and achieving a golden anti-peeping effect. Since the backlight transmitted at a normal viewing angle (0°) at a narrow viewing angle is strong, it can cover the golden ambient light reflected by the transflective layer 34. Therefore, the reflected golden ambient light is basically invisible at a normal viewing angle, that is, the golden ambient light reflected by the transflective layer 34 has basically no effect on the display at a narrow viewing angle at a normal viewing angle.
- the backlight module 50 in the identification display mode, is in the on state, and the common signal Vcom is applied to the viewing angle auxiliary electrode 111, the first narrow viewing angle signal V21 is applied to the first viewing angle control electrode 121a, and the second narrow viewing angle signal V22 is applied to the second viewing angle control electrode 121b.
- the first narrow viewing angle signal V21 and the second narrow viewing angle signal V22 can be of the same polarity or of opposite polarity.
- the liquid crystal molecules 131 and dye molecules 132 corresponding to the logo pattern area 110 are controlled to be in a first tilted posture, and the liquid crystal molecules 131 and dye molecules 132 corresponding to the non-logo pattern area 120 are controlled to be in a second tilted posture, and the first tilted posture and the second tilted posture have different tilt angles.
- the dye liquid crystal layer 13 corresponding to the logo pattern area 110 and the dye liquid crystal layer 13 corresponding to the non-logo pattern area 120 have different light collection effects under a large viewing angle.
- the logo pattern (LOGO) corresponding to the logo pattern area 110 can be displayed at a wide viewing angle to enhance the brand effect of the product. It can be understood that in the logo display mode, the first liquid crystal cell 10 also presents a display effect at a narrow viewing angle.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 18) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- FIG. 19 is a schematic diagram of the structure of the display device in the initial state in the sixth embodiment of the present invention.
- FIG. 20 is a schematic diagram of the planar structure of the second substrate in the sixth embodiment of the present invention.
- the display panel, display device, and driving method provided in the sixth embodiment of the present invention are basically the same as the display panel, display device, and driving method in the fifth embodiment (FIGS. 12 to 18), except that, in this embodiment:
- the transflective layer 34 needs to adopt a transflective film without axial direction.
- the transflective layer 34 is a one-way perspective film, which has no polarization effect on light.
- the backlight is still natural light after passing through the one-way perspective film, and the ambient light is still natural light after being reflected by the one-way perspective film. That is, regardless of the polarization direction of the light, the one-way perspective film has a transmission and reflection effect on it.
- a plurality of second scan lines 4 and a plurality of second data lines 5 are provided on the second substrate 12, wherein the second scan lines 4 correspond to the first scan lines 1, and the second data lines 5 correspond to the first data lines 2.
- the viewing angle control electrode 121 includes a plurality of electrode blocks 121c corresponding to the pixel units SP, and the second substrate 12 is provided with a second thin film transistor 6 in each pixel unit SP, and the electrode block 121c is electrically connected to the second scan line 4 and the second data line 5 adjacent to the second thin film transistor 6 through the second thin film transistor 6.
- the electrode blocks 121c correspond to the pixel units SP one by one, and then the electrode blocks 121c are electrically connected to the second scan line 4 and the second data line 5 adjacent to the second thin film transistor 6 through the second thin film transistor 6, so as to realize the individual control of the electrical signal on each electrode block 121c.
- the dye liquid crystal layer 13 is aligned parallel to the first substrate 11 and the second substrate 12, and the alignment direction of the dye liquid crystal layer 13 is parallel to the light transmission axis of the third polarizer 33.
- the transmittance of light passing through the dye liquid crystal layer 13 can be controlled by controlling the tilt angle of the dye molecule 132 in the dye liquid crystal layer 13, that is, the corresponding grayscale voltage can be applied to different electrode blocks 121c to make the pixel unit SP present different brightness, so as to realize reflective display using ambient light.
- the first substrate 11 and the second substrate 12 are both colorless and transparent in the area corresponding to the pixel unit SP, that is, the first substrate 11 and the second substrate 12 are both transparent substrates, and no color resist layer is provided. Therefore, in the case of reflective display, a black and white image can be displayed, and in the case of transmissive display using the backlight, a color image can be displayed, realizing the function that the display panel can switch between black and white images and color images.
- the first liquid crystal box 10 has a logo pattern area 110 and a non-logo pattern area 120.
- the electrode block 121c corresponding to the logo pattern area 110 and the electrode block 121c corresponding to the non-logo pattern area 120 respectively apply narrow viewing angle signals with different amplitudes.
- the pattern of the logo pattern area 110 can be adjusted at will according to user needs, and it is only necessary to control the electrode block 121c of the corresponding area to apply the corresponding narrow viewing angle signal. Therefore, compared with the fifth embodiment, the logo pattern (LOGO) displayed in the present application can be adjusted at will according to user needs, and reflective display can also be realized, that is, the picture is displayed only using ambient light.
- FIG. 21 is a schematic diagram of the structure of the display device in the wide viewing angle mode in the sixth embodiment of the present invention.
- FIG. 22 is a schematic diagram of the structure of the display device in the narrow viewing angle mode in the sixth embodiment of the present invention.
- FIG. 23 is a schematic diagram of the structure of the display device in the identification display mode in the sixth embodiment of the present invention.
- FIG. 24 is a schematic diagram of the planar structure of the display device in the identification display mode in the sixth embodiment of the present invention.
- FIG. 25 is a schematic diagram of the structure of the display device in the reflective display mode in the sixth embodiment of the present invention.
- the present application further provides a driving method for driving the display panel as described above.
- the driving method comprises:
- the backlight module 50 is turned on, and a common signal Vcom is applied to the viewing angle auxiliary electrode 111, and a wide viewing angle signal V1 is applied to the viewing angle control electrode 121, that is, the wide viewing angle signal V1 is applied to all electrode blocks 121c through the second data line 5.
- a large voltage difference e.g., 5 to 10V
- the viewing angle auxiliary electrode 111 and all electrode blocks 121c have a large voltage difference (e.g., 5 to 10V), ...
- the electrode 21 is formed between the electrode 111 and all the electrode blocks 121 c , which controls all the liquid crystal molecules 131 and dye molecules 132 in the dye liquid crystal layer 13 to deflect in the vertical direction and stand upright, so as to achieve a wide viewing angle effect.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 21) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- the prism structure layer 40 and the first polarizer 31 cooperate with each other, thereby improving the wide viewing angle effect while ensuring good wide viewing angle display brightness.
- the dye molecules 132 in the dye liquid crystal layer 13 are in a standing posture, the dye molecules 132 basically do not absorb light, so the dye molecules 132 do not affect the wide viewing angle display effect.
- the backlight transmitted is strong regardless of the large viewing angle or the normal viewing angle (0°), which can cover the golden ambient light reflected by the transflective layer 34 (one-way perspective film). Therefore, the golden ambient light reflected by the transflective layer 34 has basically no effect on the display at a wide viewing angle.
- the backlight module 50 is turned on, and a common signal Vcom is applied to the viewing angle auxiliary electrode 111, and a narrow viewing angle signal V2 is applied to the viewing angle control electrode 121, that is, the first narrow viewing angle signal V21 or the second narrow viewing angle signal V22 is applied to all electrode blocks 121c through the second data line 5.
- a large voltage difference for example, 1.5 to 3V, preferably 2.7V
- the dye liquid crystal layer 13 has a light collecting effect at a large viewing angle, that is, the brightness at a large viewing angle becomes darker, so as to achieve a narrow viewing angle effect.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 22) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- the dye molecules 132 in the dye liquid crystal layer 13 When displaying at a narrow viewing angle, due to the use of the dye liquid crystal layer 13, the dye molecules 132 in the dye liquid crystal layer 13 have the characteristics of strong light absorption ability in the long axis and very weak light absorption ability in the short axis. When displaying at a narrow viewing angle, the dye molecules 132 can absorb part of the light, thereby increasing the light collection effect at a narrow viewing angle to enhance the narrow viewing angle effect. Since in this embodiment, the orientation direction of the dye liquid crystal layer 13 is parallel to the light transmission axis of the third polarizer 33, the dye molecules 132 can absorb more light, further increasing the light collection effect at a narrow viewing angle.
- a transflective layer 34 (one-way perspective film) is provided between the second polarizer 32 and the first liquid crystal box 10. Since the backlight transmitted at a wide viewing angle is darker at a narrow viewing angle, the golden ambient light reflected by the transflective layer 34 can be seen, thereby further enhancing the anti-peeping effect at a narrow viewing angle and achieving a golden anti-peeping effect. Since the backlight transmitted at the normal viewing angle (0°) at a narrow viewing angle is relatively strong, it can cover the golden ambient light reflected by the transflective layer 34. Therefore, the reflected golden ambient light is basically invisible at the normal viewing angle, that is, the golden ambient light reflected by the transflective layer 34 has basically no effect on the display at the narrow viewing angle.
- the backlight module 50 in the identification display mode, is in the on state, and the common signal Vcom is applied to the viewing angle auxiliary electrode 111, and the first narrow viewing angle signal V21 is applied to the electrode block 121c corresponding to the identification pattern area 110 through the second data line 5, and the second narrow viewing angle signal V22 is applied to the electrode block 121c corresponding to the non-identification pattern area 120.
- the first narrow viewing angle signal V21 and the second narrow viewing angle signal V22 can be of the same polarity or opposite polarity.
- the liquid crystal molecules 131 and the dye molecules 132 corresponding to the logo pattern area 110 are controlled to be in a first tilted posture, and the liquid crystal molecules 131 and the dye molecules 132 corresponding to the non-logo pattern area 120 are controlled to be in a second tilted posture, and the first tilted posture and the second tilted posture have different tilt angles.
- the dye liquid crystal layer 13 corresponding to the logo pattern area 110 and the dye liquid crystal layer 13 corresponding to the non-logo pattern area 120 have different light collection effects at a wide viewing angle, and there is a difference in brightness between the logo pattern area 110 and the non-logo pattern area 120 at a wide viewing angle.
- the logo pattern (LOGO) corresponding to the logo pattern area 110 can be displayed to enhance the brand effect of the product. It can be understood that in the logo display mode, the first liquid crystal box 10 also presents a narrow viewing angle effect.
- the pattern of the logo pattern area 110 can be adjusted at will according to user needs, and the pattern of the logo pattern area 110 can be adjusted by controlling the electrode block 121c in the corresponding area to apply the corresponding narrow viewing angle signal.
- a common voltage is applied to the common electrode 221, and a corresponding grayscale voltage is applied to the pixel electrode 222.
- a voltage difference is formed between the pixel electrode 222 and the common electrode 221, and a horizontal electric field (E1 in FIG. 23) is generated.
- the positive liquid crystal molecules in the liquid crystal layer 23 are deflected in the horizontal direction, thereby controlling the intensity of light passing through the liquid crystal layer 23 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- the backlight module 50 and the second liquid crystal box 20 are turned off, a common signal Vcom is applied to the viewing angle auxiliary electrode 111, and corresponding grayscale voltages are applied to the electrode blocks 121c through the second data line 5.
- Different voltage differences are formed between the viewing angle auxiliary electrode 111 and the electrode blocks 121c corresponding to different pixel units SP, and vertical electric fields with different intensities are formed, thereby controlling the intensity of the reflected ambient light passing through the first liquid crystal box 10 to achieve grayscale display.
- the grayscale voltage includes 0 to 255 grayscale voltages.
- Figures 26 and 27 are schematic diagrams of the planar structure of the display device in the present invention.
- the display device is provided with a viewing angle switching button 60 for the user to send a viewing angle switching request to the display device.
- the viewing angle switching button 60 can be a physical button (as shown in Figure 26), or it can be a software control or an application (APP) to realize the switching function (as shown in Figure 27, for example, by setting the wide and narrow viewing angles through a slider).
- APP application
- the viewing angle switching button 60 can be operated to send a viewing angle switching request to the display device, and finally the driving chip 70 controls the application of different electrical signals to the viewing angle auxiliary electrode 111 and the viewing angle control electrode 121, so that the display device can realize the switching between a wide viewing angle and a narrow viewing angle.
- its driving method adopts the driving method corresponding to the wide angle mode
- its driving method adopts the driving method corresponding to the narrow viewing angle mode. Therefore, the display device of the embodiment of the present invention has strong operational flexibility and convenience, and achieves a multifunctional display device integrating entertainment video and privacy protection.
- the directional words such as up, down, left, right, front, and back are defined by the positions of the structures in the drawings and the positions of the structures relative to each other, just for the sake of clarity and convenience in expressing the technical solution. It should be understood that the use of the directional words should not limit the scope of protection claimed in this application. It should also be understood that the terms "first" and "second” used in this document are only used to distinguish names and are not used to limit quantity and order.
- the wide viewing angle effect is improved while ensuring good wide viewing angle display brightness; and the first liquid crystal box uses dye liquid crystal, which has a certain light absorption effect at a narrow viewing angle, so as to reduce the influence of the prism structure layer on the narrow viewing angle effect and improve the narrow viewing angle effect.
- the prism structure layer, the reflective polarizer and the dye liquid crystal it is achieved that when the wide viewing angle effect is improved, the narrow viewing angle effect is not affected or improved.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
Abstract
一种显示面板、显示装置及驱动方法,显示面板包括第一液晶盒(10)和第二液晶盒(20);第一液晶盒(10)包括第一基板(11)、第二基板(12)以及染料液晶层(13),第一基板(11)设有视角辅助电极(111),第二基板(12)设有视角控制电极(121);第二液晶盒(20)包括彩膜基板(21)、阵列基板(22)以及液晶层(23);第二液晶盒(20)远离第一液晶盒(10)的一侧设有反射型偏光片,第一液晶盒(10)和/或第二液晶盒(20)内设有具有散光作用的棱镜结构层(40)。通过设置具有散光作用的棱镜结构层(40),并搭配在第二液晶盒(20)远离第一液晶盒(10)的一侧设置反射型偏光片,在提升宽视角效果的同时,保证具有较好的显示亮度;而且第一液晶盒(10)内采用染料液晶,以降低棱镜结构层(40)对窄视角效果的影响,并提升窄视角效果,从而实现在提升宽视角效果时,并不影响或提升窄视角效果。
Description
本发明涉及显示器技术领域,特别是涉及一种显示面板、显示装置及驱动方法。
随着液晶显示技术的不断进步,显示器的可视角度已经由原来的120°左右拓宽到160°以上,人们在享受大视角带来视觉体验的同时,也希望有效保护商业机密和个人隐私,以避免屏幕信息外泄而造成的商业损失或尴尬。因此除了宽视角需求之外,在许多场合还需要显示装置具备宽窄视角相互切换的功能。
目前主要采取在显示屏上贴附百叶遮挡膜来实现宽窄视角切换,当需要防窥时,利用百叶遮挡膜遮住屏幕即可缩小视角,但这种方式需要额外准备百叶遮挡膜,会给使用者造成极大的不便,而且一张百叶遮挡膜只能实现一种视角,一旦贴附上百叶遮挡膜后,视角便固定在窄视角模式,导致无法在宽视角模式和窄视角模式之间进行自由切换,而且防窥片会造成辉度降低影响品位。
现有技术也有利用调光盒和显示面板实现在宽视角和窄视角之间进行切换的双盒结构,其中,显示面板用于正常的画面显示,调光盒用于控制视角切换。调光盒包括上基板、下基板以及上基板和下基板之间的液晶层,上基板和下基板上的视角控制电极给液晶分子施加一个垂直电场,使液晶朝竖直方向偏转,实现窄视角模式,通过控制视角控制电极上的电压,从而可以实现在宽视角和窄视角之间进行切换。这种显示面板是利用大视角收光以降低亮度实现窄视角显示。但是,这种宽窄视角可切换的显示面板在宽视角显示时,左右45°的显示亮度与中心(0°)的显示亮度的比值在1%左右,宽视角时的大视角显示效果较差。而且现有技术中,在提升宽视角的显示效果时,窄视角效果会变差;或者在提升窄视角的显示效果时,宽视角的显示效果会变差。难以做到在提升宽视角的显示效果时,并不影响或提升窄视角的显示效果。
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种显示面板、显示装置及驱动方法,以解决现有技术中无法做到在提升宽视角的显示效果时,并不影响或提升窄视角的显示效果的问题。
本发明的目的通过下述技术方案实现:
本发明提供一种显示面板,包括相互层叠设置的第一液晶盒和第二液晶盒,所述第一液晶盒设于所述第二液晶盒的出光侧;
所述第一液晶盒包括第一基板、与所述第一基板相对设置的第二基板以及位于所述第一基板与所述第二基板之间的染料液晶层,所述第一基板上设有视角辅助电极,所述第二基板上设有与所述视角辅助电极配合的视角控制电极;
所述第二液晶盒包括彩膜基板、与所述彩膜基板相对设置的阵列基板以及设于所述彩膜基板和所述阵列基板之间的液晶层;
所述第二液晶盒远离所述第一液晶盒的一侧设有所述第一偏光片,所述第二液晶盒靠近所述第一液晶盒的一侧设有第二偏光片,所述第二偏光片的透光轴与所述第一偏光片的透光轴相互垂直,所述第一偏光片为反射型偏光片,所述第一液晶盒和/或所述第二液晶盒内设有棱镜结构层,所述棱镜结构层对背光线具有散光作用。
进一步地,所述第二偏光片为反射型偏光片;和/或所述第二偏光片与所述第一液晶盒之间设有透反层。
进一步地,所述第一液晶盒具有标识图案区和非标识图案区,所述视角控制电极包括与所述标识图案区对应的第一视角控制电极以及与所述非标识图案区对应的第二视角控制电极,所述第一视角控制电极和所述第二视角控制电极相互绝缘且间隔开;
在标识显示模式时,所述第一视角控制电极和所述第二视角控制电极分别施加幅值不同的窄视角信号。
进一步地,所述第一视角控制电极和所述第二视角控制电极位于同一层,或所述第一视角控制电极和所述
第二视角控制电极位于不同层。
进一步地,所述阵列基板上设有多条第一扫描线和多条第一数据线,多条所述第一扫描线和多条所述第一数据线相互绝缘交叉限定形成多个像素单元,所述阵列基板在每个像素单元内设有像素电极和第一薄膜晶体管,所述像素电极通过所述第一薄膜晶体管与邻近所述第一薄膜晶体管的第一扫描线和第一数据线电性连接;
所述第二基板上设有多条第二扫描线和多条第二数据线,所述第二扫描线和所述第一扫描线相对应,所述第二数据线与所述第一数据线相对应,所述视角控制电极包括多个与所述像素单元对应的电极块,所述第二基板在每个像素单元内设有第二薄膜晶体管,所述电极块通过所述第二薄膜晶体管与邻近所述第二薄膜晶体管的第二扫描线和第二数据线电性连接;
所述第一液晶盒具有标识图案区和非标识图案区,在标识显示模式时,所述标识图案区对应的所述电极块和所述非标识图案区对应的所述电极块分别施加幅值不同的窄视角信号。
进一步地,所述第一液晶盒远离所述第二液晶盒的一侧设有第三偏光片,所述第三偏光片的透光轴与所述第二偏光片的透光轴相互平行。
进一步地,所述第二偏光片与所述第一液晶盒之间设有透反层,且所述透反层为单向透视膜,所述染料液晶层平行于所述第一基板和所述第二基板进行配向,且所述染料液晶层的配向方向与所述第三偏光片的透光轴相互平行;
所述阵列基板上设有多条第一扫描线和多条第一数据线,多条所述第一扫描线和多条所述第一数据线相互绝缘交叉限定形成多个像素单元,所述阵列基板在每个像素单元内设有像素电极和第一薄膜晶体管,所述像素电极通过所述第一薄膜晶体管与邻近所述第一薄膜晶体管的第一扫描线和第一数据线电性连接;
所述第二基板上设有多条第二扫描线和多条第二数据线,所述第二扫描线和所述第一扫描线相对应,所述第二数据线与所述第一数据线相对应,所述视角控制电极包括多个与所述像素单元对应的电极块,所述第二基板在每个像素单元内设有第二薄膜晶体管,所述电极块通过所述第二薄膜晶体管与邻近所述第二薄膜晶体管的第二扫描线和第二数据线电性连接;
在反射显示模式时,所述电极块上各自施加对应的灰阶电压。
进一步地,所述第一基板和所述第二基板在与所述像素单元对应的区域均为无色透明结构。
进一步地,所述第一基板和/或所述第二基板在朝向所述染料液晶层的一侧设有凸台,所述凸台与所述显示面板的显示区相对应。
进一步地,所述棱镜结构层设于所述第二基板朝向所述染料液晶层的一侧,和/或所述棱镜结构层设于所述阵列基板朝向所述液晶层的一侧。
本申请还提供一种显示装置,包括背光模组以及如上所述的显示面板,所述显示面板设于所述背光模组的出光侧。
本申请还提供一种驱动方法,所述驱动方法用于驱动如上所述的显示面板,所述驱动方法包括:
在宽视角模式时,向所述视角辅助电极施加公共信号,向所述视角控制电极施加宽视角信号,以控制所述染料液晶层中的液晶分子和染料分子呈站立姿态;
在窄视角模式时,向所述视角辅助电极施加公共信号,向所述视角控制电极施加窄视角信号,以控制所述染料液晶层中的液晶分子和染料分子呈倾斜姿态。
进一步地,所述第二偏光片为反射型偏光片,和/或所述第二偏光片与所述第一液晶盒之间设有透反层;所述第一液晶盒具有标识图案区和非标识图案区,所述视角控制电极包括与所述标识图案区对应的第一视角控制电极以及与所述非标识图案区对应的第二视角控制电极,所述第一视角控制电极和所述第二视角控制电极相互绝缘且间隔开;
在标识显示模式时,向所述视角辅助电极施加公共信号,向所述第一视角控制电极施加第一窄视角信号,以及向所述第二视角控制电极施加第二窄视角信号,所述第一窄视角信号和所述第二窄视角信号的幅值不同,以控制所述标识图案区对应的液晶分子和染料分子呈第一倾斜姿态,以及控制所述非标识图案区对应的液晶分子和染料分子呈第二倾斜姿态。
进一步地,所述第二偏光片为反射型偏光片,和/或所述第二偏光片与所述第一液晶盒之间设有透反层;
所述第一液晶盒具有标识图案区和非标识图案区,所述视角控制电极包括多个与像素单元对应的电极块;在标识显示模式时,向所述视角辅助电极施加公共信号,向所述标识图案区对应的电极块施加第一窄视角信号,以及向所述非标识图案区对应的电极块施加第二窄视角信号,所述第一窄视角信号和所述第二窄视角信号的幅值不同,以控制所述标识图案区对应的液晶分子和染料分子呈第一倾斜姿态,以及控制所述非标识图案区对应的液晶分子和染料分子呈第二倾斜姿态。
进一步地,所述第二偏光片与所述第一液晶盒之间设有透反层,且所述透反层为单向透视膜;
所述第一液晶盒远离所述第二液晶盒的一侧设有第三偏光片,所述第三偏光片的透光轴与所述第二偏光片的透光轴相互平行,所述染料液晶层平行于所述第一基板和所述第二基板进行配向,且所述染料液晶层的配向方向与所述第三偏光片的透光轴相互平行,所述视角控制电极包括多个与像素单元对应的电极块;在反射显示模式时,关闭背光模组以及第二液晶盒,向所述视角辅助电极施加公共信号,向所述电极块上各自施加对应的灰阶电压。
通过设置具有散光作用的棱镜结构层,并搭配在第二液晶盒远离第一液晶盒的一侧设置反射型偏光片,从而在提升宽视角效果的同时,保证具有较好的宽视角显示亮度;而且第一液晶盒内采用染料液晶,染料液晶在窄视角时具有一定吸光作用,以降低棱镜结构层对窄视角效果的影响,并提升窄视角效果。通过棱镜结构层、反射型偏光片以及染料液晶的相互配合,从而实现在提升宽视角效果时,并不影响或提升窄视角效果。
图1是本发明实施例一中显示装置在初始状态时的结构示意图。
图2是本发明实施例一中阵列基板的平面结构示意图。
图3是本发明实施例一中显示装置的驱动信号波形图。
图4是本发明实施例一中显示装置在宽视角模式时的结构示意图。
图5是本发明实施例一中显示装置在窄视角模式时的结构示意图。
图6是本发明实施例一中第一液晶盒在宽视角模式时不同掺杂比的染料分子下视角与对比度的仿真图。
图7是本发明实施例一中第一液晶盒在窄视角模式时不同掺杂比的染料分子下视角与对比度的仿真图。
图8是本发明实施例一中第一液晶盒在窄视角模式时不同染料分子掺杂比下视角与透光率的实测图。
图9是本发明实施例二中显示装置在初始状态时的结构示意图。
图10是本发明实施例三中显示装置在初始状态时的结构示意图。
图11是本发明实施例四中显示装置在初始状态时的结构示意图。
图12是本发明实施例五中显示装置在初始状态时的结构示意图。
图13是本发明实施例五中显示装置的平面结构示意图。
图14是本发明实施例五中视角控制电极的平面结构示意图。
图15是本发明实施例五中显示装置的驱动信号波形图。
图16是本发明实施例五中显示装置在宽视角模式时的结构示意图。
图17是本发明实施例五中显示装置在窄视角模式时的结构示意图。
图18是本发明实施例五中显示装置在标识显示模式时的结构示意图。
图19是本发明实施例六中显示装置在初始状态时的结构示意图。
图20是本发明实施例六中第二基板的平面结构示意图。
图21是本发明实施例六中显示装置在宽视角模式时的结构示意图。
图22是本发明实施例六中显示装置在窄视角模式时的结构示意图。
图23是本发明实施例六中显示装置在标识显示模式时的结构示意图。
图24是本发明实施例六中显示装置在标识显示模式时的平面结构示意图。
图25是本发明实施例六中显示装置在反射显示模式时的结构示意图。
图26是本发明中显示装置的平面结构示意图之一。
图27是本发明中显示装置的平面结构示意图之二。
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的显示面板及显示装置、驱动方法的具体实施方式、结构、特征及其功效,详细说明如下:
[实施例一]
图1是本发明实施例一中显示装置在初始状态时的结构示意图。图2是本发明实施例一中阵列基板的平面结构示意图。如图1和图2所示,本发明实施例一提供的一种显示面板,包括相互层叠设置的第一液晶盒10和第二液晶盒20,第一液晶盒10设于第二液晶盒20的出光侧,即第一液晶盒10设于第二液晶盒20远离背光模组50的一侧。
第一液晶盒10包括第一基板11、与第一基板11相对设置的第二基板12以及位于第一基板11与第二基板12之间的染料液晶层13。第一基板11上设有视角辅助电极111,第二基板12上设有与视角辅助电极111配合的视角控制电极121,通过控制施加在视角辅助电极111和视角控制电极121上的电压,以控制第一液晶盒10在宽视角和窄视角之间进行切换。本实施例中,视角辅助电极111和视角控制电极121均为整面设置的面状电极,从而可以控制显示装置的所有区域同时在宽视角和窄视角之间进行切换。
进一步地,第一基板11上设有覆盖视角辅助电极111的绝缘层,和/或第二基板12上设有覆盖视角控制电极121的绝缘层,以避免视角辅助电极111和视角控制电极121之间出现短路的问题。
染料液晶层13的光程差△n*d为700~1500nm,例如为1393nm。染料液晶层13包括相互混合的液晶分子131和染料分子132,液晶分子131为正性液晶分子(介电各向异性为正的液晶分子),染料分子132可以采用黑色染料分子或紫黑色染料分子,染料分子长轴的吸光能力大于短轴的吸光能力,即染料分子132具有长轴吸收光的能力强,短轴吸收光的能力很弱的特性。如图1所示,初始状态时,正性液晶分子和染料分子132平行于第一基板11和第二基板12进行配向,染料液晶层13靠近第一基板11一侧的配向方向与靠近第二基板12一侧的配向方向相互平行或反向平行。可以理解地是,第一基板11朝向染料液晶层13的一侧设有第一配向层,第二基板12朝向染料液晶层13的一侧设有第二配向层,第一配向层和第二配向层用于对染料液晶层13进行配向,第一配向层和第二配向层的配向方向相互平行。当然,染料液晶层13在初始配向时可具有较小的预倾角(例如小于5°),即液晶分子131和染料分子132在初始时与第一基板11和第二基板12形成有较小的夹角,可在切换为窄视角时,加快正性液晶分子和染料分子132朝向竖直方向偏转。
第二液晶盒20包括彩膜基板21、与彩膜基板21相对设置的阵列基板22以及设于彩膜基板21和阵列基板22之间的液晶层23。本实施例中,液晶层23中的液晶分子也采用正性液晶分子(介电各向异性为正的液晶分子),如图1所示,初始状态时,正性液晶分子平行于彩膜基板21和阵列基板22进行配向,液晶层23靠近彩膜基板21一侧的配向方向与靠近阵列基板22一侧的配向方向相互平行或反向平行。当然,液晶层23中的液晶分子也可采用负性液晶分子(介电各向异性为负的液晶分子)。
彩膜基板21上设有呈阵列排布的色阻层212以及将色阻层212间隔开的黑矩阵211,色阻层212包括红(R)、绿(G)、蓝(B)三色的色阻材料,并对应形成红(R)、绿(G)、蓝(B)三色的子像素,即像素单元SP具有红(R)、绿(G)、蓝(B)三种颜色。
如图2所示,阵列基板22上设有多条第一扫描线1和多条第一数据线2,多条第一扫描线1和多条第一数据线2相互绝缘交叉限定形成多个像素单元SP,阵列基板22在每个像素单元SP内设有像素电极222和第一薄膜晶体管3,像素电极222通过第一薄膜晶体管3与邻近第一薄膜晶体管3的第一扫描线1和第一数据线2电性连接。其中,第一薄膜晶体管3包括栅极、有源层、漏极以及源极,栅极与第一扫描线1位于同一层并电性连接,栅极与有源层通过栅极绝缘层隔离开,源极与第一数据线2电性连接,漏极与像素电极222电性连接。
如图1所示,阵列基板22上设有与像素电极222相配合的公共电极221,公共电极221与像素电极222位于不同层并通过绝缘层绝缘隔离。公共电极221可位于像素电极222上方或下方(图1中所示为公共电极
221位于像素电极222的下方)。本实施例中,公共电极221为面状结构,像素电极222为在每个像素单元SP内具有多个电极条的狭缝电极,以形成边缘场开关模式(Fringe Field Switching,FFS)。当然,在其他实施例中,像素电极222与公共电极221可位于同一层,但是两者相互绝缘隔离开,像素电极222和公共电极221各自均可包括多个电极条,像素电极222的电极条和公共电极221的电极条相互交替排列,以形成面内切换模式(In-Plane Switching,IPS)。或者,阵列基板22在朝向液晶层23的一侧设有像素电极222,彩膜基板21在朝向液晶层23的一侧设有公共电极221,以形成TN显示模式或VA显示模式,至于TN显示模式和VA显示模式的其他介绍请参考现有技术,这里不再赘述。
进一步地,第一液晶盒10和/或第二液晶盒20内设有棱镜结构层40,棱镜结构层40对背光线具有散光作用。本实施例中,棱镜结构层40设于阵列基板22朝向液晶层23的一侧,背光模组50发出的背光线穿过棱镜结构层40,呈发散状态,从而提升宽视角效果。其中,棱镜结构层40包括第一折射层和第二折射层,第一折射层上设有凸起结构,第二折射层覆盖于第一折射层上。凸起结构的纵截面可以为三角形、梯形以及半圆形等,凸起结构为柱状结构。第一折射层的折射率小于第二折射层的折射率,从而使得背光线依次穿过第一折射层和第二折射层后,具有发散效果。
如图1所示,第二液晶盒20远离第一液晶盒10的一侧设有第一偏光片31,第二液晶盒20靠近第一液晶盒10的一侧设有第二偏光片32,第二偏光片32的透光轴与第一偏光片31的透光轴相互垂直。其中,第一偏光片31为反射型偏光片(APF,Advanced Polarizer Film,全称:反射型偏光超薄光学膜)的镜面反射率(SCI)可达46%以上,反射型偏光片具有透光轴和反光轴,反射型偏光片的透光轴和反光轴相互垂直。由于棱镜结构层40对背光线具有散光作用,在提升宽视角时,会降低宽视角的显示亮度。通过在第二液晶盒20远离第一液晶盒10的一侧设置反射型偏光片,相对于普通偏光片,可以提高对背光线的利用率,以提高宽视角的显示亮度。在棱镜结构层40和反射型偏光片的相互配合下,从而在提升宽视角效果的同时,以保证具有较好的宽视角显示亮度。
进一步地,第二偏光片32与第一液晶盒10之间设有透反层34。本实施例中,透反层34为反射型偏光片(APF,Advanced Polarizer Film,全称:反射型偏光超薄光学膜),从而使得透反层34对光线的透射和反射具有轴向,只要偏振方向与反射型偏光片的透射轴相互平行的光线,大部分可以透过反射型偏光片,从增加透射背光的亮度。当然,在其他实施例中,透反层34也可以为单向透视膜,单向透视膜对光线没有偏振作用,背光线穿过单向透视膜后依然是自然光,环境光经过单向透视膜反射后也还是自然光,即不论光线的偏振方向,单向透视膜均对其具有透射和反射效果。其中,单向透视膜(也叫单向膜、镜面膜等),是指一种贴在玻璃上可以使玻璃对可见光具有很高反射比的膜。例如,当室外比室内明亮时,单向透视膜与普通镜子相似,室外看不到室内的景物,但室内可以看清室外的景物的效果,单向透视膜普遍应用于居家生活玻璃贴膜或汽车玻璃贴膜。在窄视角模式时,由于大视角下透过的背光较暗,因此,可以看见透反层34反射的金色环境光,从而提升窄视角的防窥效果,实现金色防窥效果。
在另一实施例中,还可以在第二偏光片32与第一液晶盒10之间设置视角补偿膜(图未示)或视角补偿膜与反射型偏光片的复合膜,视角补偿膜具有一定收光效果,从而进一步提升窄视角的防窥效果。其中,视角补偿膜可以与透反层34复合成一层膜,即预先将视角补偿膜与透反层34粘接在一起。由于透反层34比较薄,通过预先将视角补偿膜与透反层34粘接在一起,可以提升一定厚度和强度,从而便于将视角补偿膜和透反层34粘接于第二偏光片32与第一液晶盒10之间。
本实施例中,第一液晶盒10远离第二液晶盒20的一侧设有第三偏光片33,第三偏光片33的透光轴与第二偏光片32的透光轴相互平行,第三偏光片33的透光轴与染料液晶层13的配向方向相互垂直。例如第三偏光片33的透光轴与第二偏光片32的透光轴均为0°,则染料液晶层13的配向方向为90°,第一偏光片31(反射型偏光片)的透光轴为90°,第一偏光片31的反光轴为0°。
其中,第一基板11、第二基板12、彩膜基板21以及阵列基板22可以用玻璃、丙烯酸和聚碳酸酯等材料制成。第视角辅助电极111、视角控制电极121、公共电极221以及像素电极222的材料可以为氧化铟锡(ITO)或氧化铟锌(IZO)等透明材料。
本申请还提供一种显示装置,包括背光模组50以及如上所述的显示面板,显示面板设于背光模组50的出光侧,背光模组50用于给显示面板提供背光源。其中,背光模组50可以采用准直型背光模组、侧入型背
光模组或集光型背光模组。
图3是本发明实施例一中显示装置的驱动信号波形图。图4是本发明实施例一中显示装置在宽视角模式时的结构示意图。图5是本发明实施例一中显示装置在窄视角模式时的结构示意图。如图3至图5所示,本申请还提供一种驱动方法,该驱动方法用于驱动如上所述的显示面板。该驱动方法包括:
如图3和图4所示,在宽视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加宽视角信号V1,视角辅助电极111与视角控制电极121之间具有很大压差(例如5~10V),使得视角辅助电极111与视角控制电极121之间形成很强的垂直电场(图4中的E2),控制染料液晶层13中的液晶分子131和染料分子132在竖直方向上发生偏转,并呈站立姿态,以实现宽视角效果。在宽视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图4中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在宽视角下显示不同的画面,以实现显示装置在宽视角下的正常显示。
在宽视角显示时,通过设置具有散光作用的棱镜结构层40,并搭配在第二液晶盒20远离第一液晶盒10的一侧设置第一偏光片31,在棱镜结构层40和第一偏光片31的相互配合下,从而在提升宽视角效果的同时,以保证显示装置具有较好的宽视角显示亮度。在宽视角时,由于染料液晶层13中的液晶分子131和染料分子132呈站立姿态,染料分子132基本不会吸收光线,因此,染料分子132不会影响宽视角的显示效果。而且,在宽视角时,不论大视角还是正视角度(0°)下透过的背光较强,可以掩盖住透反层34反射的金色环境光,因此,透反层34反射的金色环境光对宽视角下的显示基本没有影响。
如图3和图5所示,在窄视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加窄视角信号V2,视角辅助电极111与视角控制电极121之间具有较大压差(例如1.5~3V,优选为2.7V),使得视角辅助电极111与视角控制电极121之间形成较强的垂直电场(图5中的E3),控制染料液晶层13中的液晶分子131和染料分子132在竖直方向上发生偏转,并呈倾斜姿态,染料液晶层13在大视角下具有收光效果,即大视角下的亮度变暗,以实现窄视角效果。
在窄视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图5中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在窄视角下显示不同的画面,以实现显示装置在窄视角下的正常显示。
在窄视角显示时,由于采用染料液晶层13,染料液晶层13中的染料分子132具有长轴吸收光的能力强,短轴吸收光的能力很弱的特性,在窄视角显示时,染料分子132可以吸收部分光线,从而增加窄视角时的收光效果,以提升窄视角效果。而且,在第二偏光片32与第一液晶盒10之间设有透反层34,由于窄视角时大视角下透过的背光较暗,因此,可以看见透反层34反射的金色环境光,从而进一步提升窄视角的防窥效果,实现金色防窥效果。由于窄视角时正视角度(0°)下透过的背光较强,可以掩盖住透反层34反射的金色环境光,因此,正视角度下基本看不见反射的金色环境光,即透反层34反射的金色环境光对窄视角正视角度下的显示基本没有影响。
在宽视角显示时向视角控制电极121施加的宽视角信号V1大于在窄视角显示时向视角控制电极121施加窄视角信号V2,从而使得在宽视角显示时视角辅助电极111与视角控制电极121之间的压差大于在窄视角显示时视角辅助电极111与视角控制电极121之间的压差。
下表一为本申请的显示装置与现有技术中显示装置在窄视角效果和宽视角效果的比对数据:
由上述表一可以看出,在宽视角(WVA)时,本申请相对于现有技术在左右45°亮度与中心(0°)亮度的比值分别从1.05%、1.12%提升至4.32%、4.54%,在窄视角(NVA)时,本申请相对于现有技术窄视角效果相当,当然,也可以通过增加染料分子132的掺杂比例来提升窄视角的显示效果。
图6是本发明实施例一中第一液晶盒在宽视角模式时不同掺杂比的染料分子下视角与对比度的仿真图。图7是本发明实施例一中第一液晶盒在窄视角模式时不同掺杂比的染料分子下视角与对比度的仿真图。图8是本发明实施例一中第一液晶盒在窄视角模式时不同染料分子掺杂比下视角与透光率的实测图。如图6和图7所示,图中a表示染料液晶层13中染料分子132的掺杂比例为0时的实测图,图中b表示染料液晶层13中染料分子132的掺杂比例为1%时的实测图,图中c表示染料液晶层13中染料分子132的掺杂比例为2%时的实测图,图中d表示染料液晶层13中染料分子132的掺杂比例为3%时的实测图。如图8所示,图中曲线C0表示染料液晶层13中染料分子132的掺杂比例为0时的仿真曲线,图中曲线C3表示染料液晶层13中染料分子132的掺杂比例为3%时的仿真曲线。从图6中可以看出,染料分子132的掺杂比例对第一液晶盒10的宽视角效果影响不大;从图7和图8中可以看出,染料分子132的掺杂比例对第一液晶盒10的窄视角效果影响较大。
下表二为第一液晶盒10中染料分子132的掺杂比例为0-3%实验数据,请参考下表二:
由上述表二可以看出,染料分子132的掺杂比例对第一液晶盒10的窄视角效果影响较大,因此,可以通过控制第一液晶盒10中染料分子132的掺杂比例,来控制第一液晶盒10在窄视角时的收光效果。其中,图6-图8以及表二仅是单独对第一液晶盒10的测试数据。
[实施例二]
图9是本发明实施例二中显示装置在初始状态时的结构示意图。如图9所示,本发明实施例二提供的显示面板及显示装置、驱动方法与实施例一(图1至图5)中的显示面板及显示装置、驱动方法基本相同,不同之处在于,在本实施例中:
第一基板11在朝向染料液晶层13的一侧设有凸台14,凸台14与显示面板的显示区相对应,即凸台14在第一基板11上的投影与显示区重合。其中,凸台14可以采用平坦层(OC)制作,先覆盖整面的平坦层,然后再将非显示区对应的平坦层去除,以保留显示区对应的平坦层,并形成凸台14。由于第一基板11在经过薄化处理后容易弯曲,导致第一基板11与第二基板12容易吸附在一起形成彩虹纹异常。通过在显示区设置凸台14,从而可以增强经过薄化处理后第一基板11的强度,增大大板边缘处第一基板11与第二基板12之间距离,避免第一基板11与第二基板12容易吸附在一起,而且仅将凸台14设置于显示区,不会影响第一液晶盒10的厚度,同时也可以避免单纯将硅球尺寸(SP Size)加大引起的周边色差问题。当然,在其他实施例中,也可以将凸台14设置于第二基板12朝向染料液晶层13的一侧,或者,第一基板11和第二基板12在朝向染料液晶层13的一侧均设有凸台14。
本领域的技术人员应当理解的是,本实施例的其余结构以及工作原理均与实施例一相同,这里不再赘述。
[实施例三]
图10是本发明实施例三中显示装置在初始状态时的结构示意图。如图10所示,本发明实施例三提供的显示面板及显示装置、驱动方法与实施例一(图1至图5)、实施例二(图9)中的显示面板及显示装置、驱动方法基本相同,不同之处在于,在本实施例中:
棱镜结构层40设于第二基板12朝向染料液晶层13的一侧,棱镜结构层40对背光线具有散光作用。背光模组50发出的背光线穿过棱镜结构层40,呈发散状态,从而提升宽视角效果。其中,棱镜结构层40包括
第一折射层和第二折射层,第一折射层上设有凸起结构,第二折射层覆盖于第一折射层上。凸起结构的纵截面可以为三角形、梯形以及半圆形等,凸起结构为柱状结构。第一折射层的折射率小于第二折射层的折射率,从而使得背光线依次穿过第一折射层和第二折射层后,具有发散效果。当然,可以同时在阵列基板22朝向液晶层23的一侧和第二基板12朝向染料液晶层13的一侧设置棱镜结构层40,从而进一步提升宽视角效果。
本领域的技术人员应当理解的是,本实施例的其余结构以及工作原理均与实施例一、实施例二相同,这里不再赘述。
[实施例四]
图11是本发明实施例四中显示装置在初始状态时的结构示意。如图11所示,本发明实施例四提供的显示面板及显示装置、驱动方法与实施例一(图1至图5)、实施例二(图9)、实施例三(图10)中的显示面板及显示装置、驱动方法基本相同,不同之处在于,在本实施例中:
第二偏光片32为反射型偏光片,即第二偏光片32有透光轴和反光轴,第二偏光片32的透光轴和反光轴相互垂直。例如,第二偏光片32为反射型偏光片(APF,Advanced Polarizer Film,反射型偏光超薄光学膜),其镜面反射率(SCI)可达46%以上。通过将第二偏光片32也采用反射型偏光片,再搭配透反层34,从而可以增加对环境光的反射效果,以提升窄视角的防窥效果,实现金色防窥效果。当然,在其他实施例中,第二偏光片32也采用反射型偏光片时,由于反射型偏光片具有反光效果,因此,可以不用设置透反层34,此时可在第二偏光片32与第一液晶盒10之间单独的视角补偿膜,只是对环境光的反射效果较差一点。本领域的技术人员应当理解的是,本实施例的其余结构以及工作原理均与实施例一、实施例二、实施例三相同,这里不再赘述。
[实施例五]
图12是本发明实施例五中显示装置在初始状态时的结构示意图。图13是本发明实施例五中显示装置的平面结构示意图。图14是本发明实施例五中视角控制电极的平面结构示意图。如图12至图14所示,本发明实施例五提供的显示面板及显示装置、驱动方法与实施例一(图1至图5)、实施例二(图9)、实施例三(图10)、实施例四(图11)中的显示面板及显示装置、驱动方法基本相同,不同之处在于,在本实施例中:
第一液晶盒10具有标识图案区110和非标识图案区120。视角控制电极121包括与标识图案区110对应的第一视角控制电极121a以及与非标识图案区120对应的第二视角控制电极121b。第一视角控制电极121a和第二视角控制电极121b相互绝缘且间隔开,从而在标识显示模式时,便于向第一视角控制电极121a和第二视角控制电极121b分别施加幅值不同的窄视角信号。其中,标识图案区110的图案可以根据实际需要进行设置,第一视角控制电极121a的图案与标识图案区110的图案相同,但是,当第一液晶盒10制作完成后,标识图案区110的图案就无法变更,在标识显示模式时,只能显示相同的标识图案。
本实施例中,第一视角控制电极121a和第二视角控制电极121b位于同一层,其中,非标识图案区120围绕于标识图案区110的周缘,第二视角控制电极121b围绕于第一视角控制电极121a的周缘,因此,可以额外设置一层信号导线层,以将第一视角控制电极121a导电连接至非显示区的绑定区域,从而便于给第一视角控制电极121a施加控制信号。当然,在其他实施例中,第一视角控制电极121a和第二视角控制电极121b位于不同层,从而无需额外设置信号导线层。但是,由于第一视角控制电极121a和第二视角控制电极121b位于不同层,与视角辅助电极111的距离不同,对显示装置的窄视角的显示效果具有一定影响。
图15是本发明实施例五中显示装置的驱动信号波形图。图16是本发明实施例五中显示装置在宽视角模式时的结构示意图。图17是本发明实施例五中显示装置在窄视角模式时的结构示意图。图18是本发明实施例五中显示装置在标识显示模式时的结构示意图。如图15至图18所示,本申请还提供一种驱动方法,该驱动方法用于驱动如上所述的显示面板。该驱动方法包括:
如图15和图16所示,在宽视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加宽视角信号V1,即向第一视角控制电极121a和第二视角控制电极121b均施加宽视角信号V1。视角辅助电极111与第一视角控制电极121a之间以及视角辅助电极111与第二视角控制电极121b之间均具有很大压差(例如5~10V),使得视角辅助电极111与第一视角控制电极121a之间以及
视角辅助电极111与第二视角控制电极121b之间均形成很强的垂直电场(图16中的E2),控制染料液晶层13中所有的液晶分子131和染料分子132在竖直方向上发生偏转,并呈站立姿态,以实现宽视角的显示效果。
在宽视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图16中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在宽视角下显示不同的画面,以实现显示装置在宽视角下的正常显示。
在宽视角显示时,通过设置具有散光作用的棱镜结构层40,并搭配在第二液晶盒20远离第一液晶盒10的一侧设置第一偏光片31,在棱镜结构层40和第一偏光片31的相互配合下,从而在提升宽视角效果的同时,以保证具有较好的宽视角显示亮度。在宽视角时,由于染料液晶层13中的液晶分子131和染料分子132呈站立姿态,染料分子132基本不会吸收光线,因此,染料分子132不会影响宽视角显示效果。而且,在宽视角时,不论大视角还是正视角度(0°)下透过的背光较强,可以掩盖住透反层34反射的金色环境光,因此,透反层34反射的金色环境光对宽视角下的显示基本没有影响。
如图15和图17所示,在窄视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加窄视角信号V2,即向第一视角控制电极121a和第二视角控制电极121b均施加第一窄视角信号V21或第二窄视角信号V22。视角辅助电极111与第一视角控制电极121a之间以及视角辅助电极111与第二视角控制电极121b之间均具有较大压差(例如1.5~3V,优选为2.7V),使得视角辅助电极111与第一视角控制电极121a之间以及视角辅助电极111与第二视角控制电极121b之间均形成较强的垂直电场(图17中的E3),控制染料液晶层13中所有的液晶分子131和染料分子132在竖直方向上发生偏转,并呈相同倾斜姿态,染料液晶层13在大视角下具有收光效果,即大视角下的亮度变暗,以实现窄视角效果。
在窄视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图17中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在窄视角下显示不同的画面,以实现显示装置在窄视角下的正常显示。
在窄视角显示时,由于采用染料液晶层13,染料液晶层13中的染料分子132具有长轴吸收光的能力强,短轴吸收光的能力很弱的特性,在窄视角显示时,染料分子132可以吸收部分光线,从而增加窄视角时的收光效果,以提升窄视角效果。而且,在第二偏光片32与第一液晶盒10之间设有透反层34,由于窄视角时大视角下透过的背光较暗,因此,可以看见透反层34反射的金色环境光,从而进一步提升窄视角的防窥效果,实现金色防窥效果。由于窄视角时正视角度(0°)下透过的背光较强,可以掩盖住透反层34反射的金色环境光,因此,正视角度下基本看不见反射的金色环境光,即透反层34反射的金色环境光对窄视角正视角度下的显示基本没有影响。
如图15和图18所示,在标识显示模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向第一视角控制电极121a施加第一窄视角信号V21,以及向第二视角控制电极121b施加第二窄视角信号V22。视角辅助电极111与第一视角控制电极121a之间以及视角辅助电极111与第二视角控制电极121b之间均具有较大压差(例如1.5~3V),但是第一窄视角信号V21和第二窄视角信号V22的幅值不同,即视角辅助电极111和第一视角控制电极121a之间的压差与视角辅助电极111和第二视角控制电极121b之间的压差不相同,使得视角辅助电极111与第一视角控制电极121a之间形成较强的第一垂直电场(图18中的E3),以及视角辅助电极111与第二视角控制电极121b之间均形成较强的第二垂直电场(图18中的E4)。其中,第一窄视角信号V21和第二窄视角信号V22可以为相同的极性,也可以为相反的极性。控制标识图案区110对应的液晶分子131和染料分子132呈第一倾斜姿态,以及控制非标识图案区120对应的液晶分子131和染料分子132呈第二倾斜姿态,第一倾斜姿态与第二倾斜姿态的倾斜角度不同。标识图案区110对应的染料液晶层13与非标识图案区120对应的染料液晶层13在大视角下具有不同和收光效果,标识图
案区110和非标识图案区120在大视角下的亮度存在差异。因此,在大视角下可以显示出与标识图案区110对应的标识图案(LOGO),达到增强产品的品牌效应。可以理解地是,在标识显示模式,第一液晶盒10也是呈现窄视角的显示效果。
在标识显示模式时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图18中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在标识显示模式下显示不同的画面,以实现显示装置在标识显示模式下的正常显示。
本领域的技术人员应当理解的是,本实施例的其余结构以及工作原理均与实施例一、实施例二、实施例三、实施例四相同,这里不再赘述。
[实施例六]
图19是本发明实施例六中显示装置在初始状态时的结构示意图。图20是本发明实施例六中第二基板的平面结构示意图。如图19和图20所示,本发明实施例六提供的显示面板及显示装置、驱动方法与实施例五(图12至图18)中的显示面板及显示装置、驱动方法基本相同,不同之处在于,在本实施例中:
由于本实施例中还需要实现反射显示,因此,透反层34需要采用没有轴向的透反膜。透反层34为单向透视膜,单向透视膜对光线没有偏振作用,背光线穿过单向透视膜后依然是自然光,环境光经过单向透视膜反射后也还是自然光,即不论光线的偏振方向,单向透视膜均对其具有透射和反射效果。
第二基板12上设有多条第二扫描线4和多条第二数据线5,第二扫描线4和第一扫描线1相对应,第二数据线5与第一数据线2相对应。视角控制电极121包括多个与像素单元SP对应的电极块121c,第二基板12在每个像素单元SP内设有第二薄膜晶体管6,电极块121c通过第二薄膜晶体管6与邻近第二薄膜晶体管6的第二扫描线4和第二数据线5电性连接。即通过将视角控制电极121分割呈多个相互绝缘的电极块121c,电极块121c与像素单元SP一一对应,再通过第二薄膜晶体管6将电极块121c与邻近第二薄膜晶体管6的第二扫描线4和第二数据线5电性连接,以实现对每个电极块121c上的电信号进行单独控制。染料液晶层13平行于第一基板11和第二基板12进行配向,且染料液晶层13的配向方向与第三偏光片33的透光轴相互平行。例如第三偏光片33的透光轴与第二偏光片32的透光轴均为0°,则染料液晶层13的配向方向也为0°,即在初始状态时,染料分子132的长轴与第三偏光片33的透光轴相互平行。因此,可以通过控制染料液晶层13中染料分子132的倾斜角度,来控制光线穿过染料液晶层13的透过率,即可以通过不同的电极块121c上施加对应的灰阶电压,使像素单元SP呈现不同的亮度,以实现利用环境光进行反射显示。
第一基板11和第二基板12在与像素单元SP对应的区域均为无色透明结构,即第一基板11和第二基板12上均采用透明基板,并未设置色阻层。因此,在反射显示时,可以显示黑白画面,而在利用背光线进行透射显示时,可以显示彩色画面,实现显示面板可以在黑白画面和彩色画面进行切换的功能。
进一步地,第一液晶盒10具有标识图案区110和非标识图案区120。在标识显示模式时,标识图案区110对应的电极块121c和非标识图案区120对应的电极块121c分别施加幅值不同的窄视角信号。其中,标识图案区110的图案可以根据用户需要随意进行调整,只需要控制相应区域的电极块121c施加对应的窄视角信号。因此,相对于实施例五,本申请中显示的标识图案(LOGO)可以根据用户需要随意进行调整,而且还可以实现反射显示,即仅利用环境光进行显示画面。
图21是本发明实施例六中显示装置在宽视角模式时的结构示意图。图22是本发明实施例六中显示装置在窄视角模式时的结构示意图。图23是本发明实施例六中显示装置在标识显示模式时的结构示意图。图24是本发明实施例六中显示装置在标识显示模式时的平面结构示意图。图25是本发明实施例六中显示装置在反射显示模式时的结构示意图。如图21至图25所示,并参考图15,本申请还提供一种驱动方法,该驱动方法用于驱动如上所述的显示面板。该驱动方法包括:
如图21所示,并参考图15,在宽视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加宽视角信号V1,即通过第二数据线5向所有的电极块121c均施加宽视角信号V1。视角辅助电极111与所有的电极块121c之间均具有很大压差(例如5~10V),使得视角辅助
电极111与所有的电极块121c之间均形成很强的垂直电场(图21中的E2),控制染料液晶层13中所有的液晶分子131和染料分子132在竖直方向上发生偏转,并呈站立姿态,以实现宽视角效果。
在宽视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图21中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在宽视角下显示不同的画面,以实现显示装置在宽视角下的正常显示。
在宽视角显示时,通过设置具有散光作用的棱镜结构层40,并搭配在第二液晶盒20远离第一液晶盒10的一侧设置第一偏光片31,在棱镜结构层40和第一偏光片31的相互配合下,从而在提升宽视角效果的同时,以保证具有较好的宽视角显示亮度。在宽视角时,由于染料液晶层13中的液晶分子131和染料分子132呈站立姿态,染料分子132基本不会吸收光线,因此,染料分子132不会影响宽视角显示效果。而且,在宽视角时,不论大视角还是正视角度(0°)下透过的背光较强,可以掩盖住透反层34(单向透视膜)反射的金色环境光,因此,透反层34反射的金色环境光对宽视角下的显示基本没有影响。
如图22所示,并参考图15,在窄视角模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,向视角控制电极121施加窄视角信号V2,即通过第二数据线5向所有的电极块121c均施加第一窄视角信号V21或第二窄视角信号V22。视角辅助电极111与所有的电极块121c之间均具有较大压差(例如1.5~3V,优选为2.7V),使得视角辅助电极111与所有的电极块121c之间均形成较强的垂直电场(图22中的E3),控制染料液晶层13中所有的液晶分子131和染料分子132在竖直方向上发生偏转,并呈相同倾斜姿态,染料液晶层13在大视角下具有收光效果,即大视角下的亮度变暗,以实现窄视角效果。
在窄视角显示时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图22中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在窄视角下显示不同的画面,以实现显示装置在窄视角下的正常显示。
在窄视角显示时,由于采用染料液晶层13,染料液晶层13中的染料分子132具有长轴吸收光的能力强,短轴吸收光的能力很弱的特性,在窄视角显示时,染料分子132可以吸收部分光线,从而增加窄视角时的收光效果,以提升窄视角效果。由于本实施例中,染料液晶层13的配向方向与第三偏光片33的透光轴相互平行,因此,染料分子132可以吸收更多的光线,进一步增加窄视角时的收光效果。而且,在第二偏光片32与第一液晶盒10之间设有透反层34(单向透视膜),由于窄视角时大视角下透过的背光较暗,因此,可以看见透反层34反射的金色环境光,从而进一步提升窄视角的防窥效果,实现金色防窥效果。由于窄视角时正视角度(0°)下透过的背光较强,可以掩盖住透反层34反射的金色环境光,因此,正视角度下基本看不见反射的金色环境光,即透反层34反射的金色环境光对窄视角正视角度下的显示基本没有影响。
如图23和图24所示,并参考图15,在标识显示模式时,背光模组50为开启状态,向视角辅助电极111施加公共信号Vcom,通过第二数据线5向标识图案区110对应的电极块121c施加第一窄视角信号V21,以及向非标识图案区120对应的电极块121c施加第二窄视角信号V22。视角辅助电极111与标识图案区110对应的电极块121c之间以及视角辅助电极111与非标识图案区120对应的电极块121c之间均具有较大压差(例如1.5~3V),但是第一窄视角信号V21和第二窄视角信号V22的幅值不同,即视角辅助电极111和标识图案区110对应的电极块121c之间的压差与视角辅助电极111和非标识图案区120对应的电极块121c之间的压差不相同,使得视角辅助电极111与标识图案区110对应的电极块121c之间形成较强的第一垂直电场(图23中的E3),以及视角辅助电极111与非标识图案区120对应的电极块121c之间均形成较强的第二垂直电场(图23中的E4)。其中,第一窄视角信号V21和第二窄视角信号V22可以为相同的极性,也可以为相反的极性。控制标识图案区110对应的液晶分子131和染料分子132呈第一倾斜姿态,以及控制非标识图案区120对应的液晶分子131和染料分子132呈第二倾斜姿态,第一倾斜姿态与第二倾斜姿态的倾斜角度不同。标识图案区110对应的染料液晶层13与非标识图案区120对应的染料液晶层13在大视角下具有不同的收光效果,标识图案区110和非标识图案区120在大视角下的亮度存在差异,因此,在大
视角下可以显示出与标识图案区110对应的标识图案(LOGO),达到增强产品的品牌效应。可以理解地是,在标识显示模式,第一液晶盒10也是呈现窄视角效果。本实施例中,标识图案区110的图案可以根据用户需要随意进行调整,只需要控制相应区域的电极块121c施加对应的窄视角信号,即可实现对标识图案区110的图案进行调整。
在标识显示模式时,向公共电极221施加公共电压,向像素电极222施加对应的灰阶电压,像素电极222与公共电极221之间形成压差并产生水平电场(图23中的E1),液晶层23中的正性液晶分子在水平方向上发生偏转,从而在控制光线穿过液晶层23的强度,实现灰阶显示。灰阶电压包括0~255级灰阶电压,像素电极222施加不同的灰阶电压时,像素单元SP呈现不同的亮度,从而在标识显示模式下显示不同的画面,以实现显示装置在标识显示模式下的正常显示。
如图25所示,在反射显示模式时,关闭背光模组50以及第二液晶盒20,向视角辅助电极111施加公共信号Vcom,通过第二数据线5向电极块121c上各自施加对应的灰阶电压,视角辅助电极111和不同像素单元SP对应的电极块121c之间的形成不同压差,并形成强度不同的垂直电场,从而在控制反射的环境光线穿过第一液晶盒10的强度,实现灰阶显示。阶电压包括0~255级灰阶电压,电极块121c上施加不同的灰阶电压时,像素单元SP呈现不同的亮度,以实现利用环境光进行反射显示。
本领域的技术人员应当理解的是,本实施例的其余结构以及工作原理均与实施例五相同,这里不再赘述。图26和图27是本发明中显示装置的平面结构示意图。请参图26和图27,该显示装置设有视角切换按键60,用于供用户向该显示装置发出视角切换请求。视角切换按键60可以是实体按键(如图26所示),也可以为软件控制或者应用程序(APP)来实现切换功能(如图27所示,例如通过滑动条来设定宽窄视角)。当用户需要在宽视角与窄视角之间切换时,可以通过操作视角切换按键60向该显示装置发出视角切换请求,最终由驱动芯片70控制在视角辅助电极111和视角控制电极121上施加不同的电信号,显示装置即可以实现宽视角与窄视角之间的切换,切换为宽视角时,其驱动方法采用宽角模式对应的驱动方法,切换为窄视角时,其驱动方法采用窄视角模式对应的驱动方法。因此本发明实施例的显示装置具有较强的操作灵活性和方便性,达到集娱乐视频与隐私保密于一体的多功能显示装置。
在本文中,所涉及的上、下、左、右、前、后等方位词是以附图中的结构位于图中的位置以及结构相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。还应当理解,本文中使用的术语“第一”和“第二”等,仅用于名称上的区分,并不用于限制数量和顺序。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限定,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰,为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的保护范围之内。
通过设置具有散光作用的棱镜结构层,并搭配在第二液晶盒远离第一液晶盒的一侧设置反射型偏光片,从而在提升宽视角效果的同时,保证具有较好的宽视角显示亮度;而且第一液晶盒内采用染料液晶,染料液晶在窄视角时具有一定吸光作用,以降低棱镜结构层对窄视角效果的影响,并提升窄视角效果。通过棱镜结构层、反射型偏光片以及染料液晶的相互配合,从而实现在提升宽视角效果时,并不影响或提升窄视角效果。
Claims (15)
- 一种显示面板,其特征在于,包括相互层叠设置的第一液晶盒(10)和第二液晶盒(20),所述第一液晶盒(10)设于所述第二液晶盒(20)的出光侧;所述第一液晶盒(10)包括第一基板(11)、与所述第一基板(11)相对设置的第二基板(12)以及位于所述第一基板(11)与所述第二基板(12)之间的染料液晶层(13),所述第一基板(11)上设有视角辅助电极(111),所述第二基板(12)上设有与所述视角辅助电极(111)配合的视角控制电极(121);所述第二液晶盒(20)包括彩膜基板(21)、与所述彩膜基板(21)相对设置的阵列基板(22)以及设于所述彩膜基板(21)和所述阵列基板(22)之间的液晶层(23);所述第二液晶盒(20)远离所述第一液晶盒(10)的一侧设有所述第一偏光片(31),所述第二液晶盒(20)靠近所述第一液晶盒(10)的一侧设有第二偏光片(32),所述第二偏光片(32)的透光轴与所述第一偏光片(31)的透光轴相互垂直,所述第一偏光片(31)为反射型偏光片,所述第一液晶盒(10)和/或所述第二液晶盒(20)内设有棱镜结构层(40),所述棱镜结构层(40)对背光线具有散光作用。
- 根据权利要求1所述的显示面板,其特征在于,所述第二偏光片(32)为反射型偏光片;和/或所述第二偏光片(32)与所述第一液晶盒(10)之间设有透反层(34)。
- 根据权利要求2所述的显示面板,其特征在于,所述第一液晶盒(10)具有标识图案区(110)和非标识图案区(120),所述视角控制电极(121)包括与所述标识图案区(110)对应的第一视角控制电极(121a)以及与所述非标识图案区(120)对应的第二视角控制电极(121b),所述第一视角控制电极(121a)和所述第二视角控制电极(121b)相互绝缘且间隔开;在标识显示模式时,所述第一视角控制电极(121a)和所述第二视角控制电极(121b)分别施加幅值不同的窄视角信号。
- 根据权利要求3所述的显示面板,其特征在于,所述第一视角控制电极(121a)和所述第二视角控制电极(121b)位于同一层,或所述第一视角控制电极(121a)和所述第二视角控制电极(121b)位于不同层。
- 根据权利要求2所述的显示面板,其特征在于,所述阵列基板(22)上设有多条第一扫描线(1)和多条第一数据线(2),多条所述第一扫描线(1)和多条所述第一数据线(2)相互绝缘交叉限定形成多个像素单元(SP),所述阵列基板(22)在每个像素单元(SP)内设有像素电极(222)和第一薄膜晶体管(3),所述像素电极(222)通过所述第一薄膜晶体管(3)与邻近所述第一薄膜晶体管(3)的第一扫描线(1)和第一数据线(2)电性连接;所述第二基板(12)上设有多条第二扫描线(4)和多条第二数据线(5),所述第二扫描线(4)和所述第一扫描线(1)相对应,所述第二数据线(5)与所述第一数据线(2)相对应,所述视角控制电极(121)包括多个与所述像素单元(SP)对应的电极块(121c),所述第二基板(12)在每个像素单元(SP)内设有第二薄膜晶体管(6),所述电极块(121c)通过所述第二薄膜晶体管(6)与邻近所述第二薄膜晶体管(6)的第二扫描线(4)和第二数据线(5)电性连接;所述第一液晶盒(10)具有标识图案区(110)和非标识图案区(120),在标识显示模式时,所述标识图案区(110)对应的所述电极块(121c)和所述非标识图案区(120)对应的所述电极块(121c)分别施加幅值不同的窄视角信号。
- 根据权利要求1所述的显示面板,其特征在于,所述第一液晶盒(10)远离所述第二液晶盒(20)的一侧设有第三偏光片(33),所述第三偏光片(33)的透光轴与所述第二偏光片(32)的透光轴相互平行。
- 根据权利要求6所述的显示面板,其特征在于,所述第二偏光片(32)与所述第一液晶盒(10)之间设有透反层(34),且所述透反层(34)为单向透视膜,所述染料液晶层(13)平行于所述第一基板(11)和所述第二基板(12)进行配向,且所述染料液晶层(13)的配向方向与所述第三偏光片(33)的透光轴相互平行;所述阵列基板(22)上设有多条第一扫描线(1)和多条第一数据线(2),多条所述第一扫描线(1)和多条所述第一数据线(2)相互绝缘交叉限定形成多个像素单元(SP),所述阵列基板(22)在每个像素单元(SP)内设有像素电极(222)和第一薄膜晶体管(3),所述像素电极(222)通过所述第一薄膜晶体管(3)与邻近所述第一薄膜晶体管(3)的第一扫描线(1)和第一数据线(2)电性连接;所述第二基板(12)上设有多条第二扫描线(4)和多条第二数据线(5),所述第二扫描线(4)和所述第一扫描线(1)相对应,所述第二数据线(5)与所述第一数据线(2)相对应,所述视角控制电极(121)包括多个与所述像素单 元(SP)对应的电极块(121c),所述第二基板(12)在每个像素单元(SP)内设有第二薄膜晶体管(6),所述电极块(121c)通过所述第二薄膜晶体管(6)与邻近所述第二薄膜晶体管(6)的第二扫描线(4)和第二数据线(5)电性连接;在反射显示模式时,所述电极块(121c)上各自施加对应的灰阶电压。
- 根据权利要求7所述的显示面板,其特征在于,所述第一基板(11)和所述第二基板(12)在与所述像素单元(SP)对应的区域均为无色透明结构。
- 根据权利要求1-8任一项所述的显示面板,其特征在于,所述第一基板(11)和/或所述第二基板(12)在朝向所述染料液晶层(13)的一侧设有凸台(14),所述凸台(14)与所述显示面板的显示区相对应。
- 根据权利要求1-8任一项所述的显示面板,其特征在于,所述棱镜结构层(40)设于所述第二基板(12)朝向所述染料液晶层(13)的一侧,和/或所述棱镜结构层(40)设于所述阵列基板(22)朝向所述液晶层(23)的一侧。
- 一种显示装置,其特征在于,包括背光模组(50)以及如权利要求1-10任一项所述的显示面板,所述显示面板设于所述背光模组(50)的出光侧。
- 一种驱动方法,其特征在于,所述驱动方法用于驱动如权利要求1-10任一项所述的显示面板,所述驱动方法包括:在宽视角模式时,向所述视角辅助电极(111)施加公共信号(Vcom),向所述视角控制电极(121)施加宽视角信号(V1),以控制所述染料液晶层(13)中的液晶分子(131)和染料分子(132)呈站立姿态;在窄视角模式时,向所述视角辅助电极(111)施加公共信号(Vcom),向所述视角控制电极(121)施加窄视角信号(V2),以控制所述染料液晶层(13)中的液晶分子(131)和染料分子(132)呈倾斜姿态。
- 根据权利要求12所述的驱动方法,其特征在于,所述第二偏光片(32)为反射型偏光片,和/或所述第二偏光片(32)与所述第一液晶盒(10)之间设有透反层(34);所述第一液晶盒(10)具有标识图案区(110)和非标识图案区(120),所述视角控制电极(121)包括与所述标识图案区(110)对应的第一视角控制电极(121a)以及与所述非标识图案区(120)对应的第二视角控制电极(121b),所述第一视角控制电极(121a)和所述第二视角控制电极(121b)相互绝缘且间隔开;在标识显示模式时,向所述视角辅助电极(111)施加公共信号(Vcom),向所述第一视角控制电极(121a)施加第一窄视角信号(V21),以及向所述第二视角控制电极(121b)施加第二窄视角信号(V22),所述第一窄视角信号(V21)和所述第二窄视角信号(V22)的幅值不同,以控制所述标识图案区(110)对应的液晶分子(131)和染料分子(132)呈第一倾斜姿态,以及控制所述非标识图案区(120)对应的液晶分子(131)和染料分子(132)呈第二倾斜姿态。
- 根据权利要求12所述的驱动方法,其特征在于,所述第二偏光片(32)为反射型偏光片,和/或所述第二偏光片(32)与所述第一液晶盒(10)之间设有透反层(34);所述第一液晶盒(10)具有标识图案区(110)和非标识图案区(120),所述视角控制电极(121)包括多个与像素单元(SP)对应的电极块(121c);在标识显示模式时,向所述视角辅助电极(111)施加公共信号(Vcom),向所述标识图案区(110)对应的电极块(121c)施加第一窄视角信号(V21),以及向所述非标识图案区(120)对应的电极块(121c)施加第二窄视角信号(V22),所述第一窄视角信号(V21)和所述第二窄视角信号(V22)的幅值不同,以控制所述标识图案区(110)对应的液晶分子(131)和染料分子(132)呈第一倾斜姿态,以及控制所述非标识图案区(120)对应的液晶分子(131)和染料分子(132)呈第二倾斜姿态。
- 根据权利要求12所述的驱动方法,其特征在于,所述第二偏光片(32)与所述第一液晶盒(10)之间设有透反层(34),且所述透反层(34)为单向透视膜;所述第一液晶盒(10)远离所述第二液晶盒(20)的一侧设有第三偏光片(33),所述第三偏光片(33)的透光轴与所述第二偏光片(32)的透光轴相互平行,所述染料液晶层(13)平行于所述第一基板(11)和所述第二基板(12)进行配向,且所述染料液晶层(13)的配向方向与所述第三偏光片(33)的透光轴相互平行,所述视角控制电极(121)包括多个与像素单元(SP)对应的电极块(121c);在反射显示模式时,关闭背光模组(50)以及第二液晶盒(20),向所述视角辅助电极(111)施加公共信号(Vcom),向所述电极块(121c)上各自施加对应的灰阶电压。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/097275 WO2024243831A1 (zh) | 2023-05-30 | 2023-05-30 | 显示面板、显示装置及驱动方法 |
CN202380009335.7A CN117157579B (zh) | 2023-05-30 | 显示面板、显示装置及驱动方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/097275 WO2024243831A1 (zh) | 2023-05-30 | 2023-05-30 | 显示面板、显示装置及驱动方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024243831A1 true WO2024243831A1 (zh) | 2024-12-05 |
Family
ID=88885354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/097275 WO2024243831A1 (zh) | 2023-05-30 | 2023-05-30 | 显示面板、显示装置及驱动方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024243831A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070046354A (ko) * | 2005-10-31 | 2007-05-03 | 엘지.필립스 엘시디 주식회사 | 액정 표시 장치 및 그 구동 방법 |
CN113917721A (zh) * | 2021-10-21 | 2022-01-11 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及驱动方法和显示装置 |
CN215813619U (zh) * | 2021-08-18 | 2022-02-11 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及显示装置 |
CN114200718A (zh) * | 2021-12-20 | 2022-03-18 | 昆山龙腾光电股份有限公司 | 液晶显示装置及驱动方法 |
CN115981035A (zh) * | 2022-12-28 | 2023-04-18 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及驱动方法、显示装置 |
CN218938707U (zh) * | 2023-02-02 | 2023-04-28 | 昆山龙腾光电股份有限公司 | 一种宽窄视角可切换的显示面板和显示装置 |
-
2023
- 2023-05-30 WO PCT/CN2023/097275 patent/WO2024243831A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070046354A (ko) * | 2005-10-31 | 2007-05-03 | 엘지.필립스 엘시디 주식회사 | 액정 표시 장치 및 그 구동 방법 |
CN215813619U (zh) * | 2021-08-18 | 2022-02-11 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及显示装置 |
CN113917721A (zh) * | 2021-10-21 | 2022-01-11 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及驱动方法和显示装置 |
CN114200718A (zh) * | 2021-12-20 | 2022-03-18 | 昆山龙腾光电股份有限公司 | 液晶显示装置及驱动方法 |
CN115981035A (zh) * | 2022-12-28 | 2023-04-18 | 昆山龙腾光电股份有限公司 | 宽窄视角可切换的显示面板及驱动方法、显示装置 |
CN218938707U (zh) * | 2023-02-02 | 2023-04-28 | 昆山龙腾光电股份有限公司 | 一种宽窄视角可切换的显示面板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117157579A (zh) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN212255969U (zh) | 显示装置 | |
CN112379550B (zh) | 显示面板及驱动方法和显示装置 | |
TWI421576B (zh) | 可調整視角之液晶顯示面板 | |
CN112987349B (zh) | 宽窄视角可切换的显示面板及制作方法和显示装置 | |
CN112666747B (zh) | 显示面板及驱动方法和显示装置 | |
JP2005266215A (ja) | 液晶表示装置および抵抗検出式タッチパネル | |
CN215813619U (zh) | 宽窄视角可切换的显示面板及显示装置 | |
CN114624907B (zh) | 宽窄视角可切换的显示面板及驱动方法、显示装置 | |
CN113917721B (zh) | 宽窄视角可切换的显示面板及驱动方法和显示装置 | |
CN215813614U (zh) | 宽窄视角可切换的显示面板及显示装置 | |
CN115016156A (zh) | 宽窄视角可切换的显示装置及驱动方法 | |
CN215813616U (zh) | 视角可切换的显示装置 | |
CN114660841A (zh) | 宽窄视角可切换的显示面板及驱动方法、显示装置 | |
US12292630B2 (en) | Display panel with switchable wide and narrow viewing angles, driving method and display device | |
CN112068340A (zh) | 视角可切换的显示面板、显示装置及驱动方法 | |
CN114942535A (zh) | 宽窄视角可切换的显示装置及驱动方法 | |
US10969634B2 (en) | Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device | |
CN114624906A (zh) | 宽窄视角区域可调的液晶显示装置及驱动方法 | |
CN214751240U (zh) | 视角可切换背光模组及显示装置 | |
CN114815376B (zh) | 反射型彩色显示面板及显示装置、制作方法 | |
CN114355644B (zh) | 一种发光方向可调谐型交互式桌面显示器 | |
CN220357398U (zh) | 宽窄视角可切换的显示面板及显示装置 | |
CN116338995B (zh) | 宽窄视角可切换的显示面板及驱动方法、显示装置 | |
CN116736567A (zh) | 显示装置及驱动方法 | |
WO2024243831A1 (zh) | 显示面板、显示装置及驱动方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23938825 Country of ref document: EP Kind code of ref document: A1 |