WO2024242513A1 - Method for measuring location using wi-fi nan in v2x communication - Google Patents
Method for measuring location using wi-fi nan in v2x communication Download PDFInfo
- Publication number
- WO2024242513A1 WO2024242513A1 PCT/KR2024/007174 KR2024007174W WO2024242513A1 WO 2024242513 A1 WO2024242513 A1 WO 2024242513A1 KR 2024007174 W KR2024007174 W KR 2024007174W WO 2024242513 A1 WO2024242513 A1 WO 2024242513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- location
- nan
- relative distance
- gps
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims description 103
- 230000005540 biological transmission Effects 0.000 claims description 17
- 230000005484 gravity Effects 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 35
- 230000015654 memory Effects 0.000 description 34
- 230000006870 function Effects 0.000 description 28
- 101100539927 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) NAN1 gene Proteins 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 18
- 239000010410 layer Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 11
- 238000010295 mobile communication Methods 0.000 description 10
- 238000012937 correction Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 241000497429 Obus Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/10—Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the following description is about the operation method and device of a terminal and server related to the location measurement method and procedure using NAN (Neighbor Awareness Network) in V2X (Vehicle-to-Everything).
- NAN Neighbor Awareness Network
- V2X Vehicle-to-Everything
- Wireless communication systems provide various types of communication services, such as voice and data.
- Wireless communication systems are multiple access systems that support communication with multiple users by sharing available system resources (e.g., bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single carrier frequency division multiple access (SC-FDMA) systems, and multi carrier frequency division multiple access (MC-FDMA) systems.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- MC-FDMA multi carrier frequency division multiple access
- SL refers to a communication method that establishes a direct link between user equipment (UE) to directly exchange voice or data between terminals without going through a base station (BS).
- UE user equipment
- BS base station
- SL is being considered as a solution to solve the burden on base stations due to rapidly increasing data traffic.
- V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built-in infrastructure through wired/wireless communication.
- V2X can be divided into types such as V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), and V2P (vehicle-to-pedestrian).
- V2X communication can be provided through the PC5 interface and/or Uu interface.
- the embodiments address a method and procedure for location measurement using Wi-Fi NAN in V2X as a technical challenge.
- One embodiment is a terminal related to V2X in a wireless communication system, comprising: at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, wherein the operations include: performing a search procedure for a NAN cluster including a first device and a second device by the terminal; receiving a NAN SDF Subscribe including Ranging information from the first device and the second device by the terminal; measuring a relative distance from the first device and a relative distance from the second device based on NAN Ranging and FTM Sequence by the terminal; receiving an absolute location of the first device and an absolute location of the second device by the terminal through NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of
- One embodiment is a method for operating a terminal related to V2X in a wireless communication system, wherein the terminal performs a search procedure for a NAN cluster including a first device and a second device; the terminal receives a NAN SDF Subscribe including Ranging information from the first device and the second device; the terminal measures a relative distance with the first device and a relative distance with the second device based on NAN Ranging and FTM Sequence; the terminal receives an absolute location of the first device and an absolute location of the second device through NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of the first device, and a second circle based on the relative distance from the second device and the absolute location of the second device, and determines the location of the terminal based on the zero or
- a nonvolatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a terminal, the operations comprising: causing the terminal to perform a search procedure for a NAN cluster including a first device and a second device; the terminal to receive a NAN SDF Subscribe including Ranging information from the first device and the second device; the terminal to measure a relative distance from the first device and a relative distance from the second device based on NAN Ranging and FTM Sequence; the terminal to receive an absolute location of the first device and an absolute location of the second device through a NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of the first device, and a second circle based on the relative
- the terminal can determine the center of a third circle having a diameter equal to a line segment connecting the first contact point near the GPS location and the GPS location as the location of the terminal based on the fact that there are two contact points.
- the above terminal can determine the location of the terminal by further considering GPS accuracy and FTM accuracy.
- the terminal can correct the position of the terminal adjacent to a position having a higher accuracy among the first contact point and the GPS position.
- the terminal can determine the one contact point as the location of the terminal without considering the GPS location.
- the above one contact point may be a point where the first circle and the second circle are inscribed.
- the terminal can determine the center of gravity of a triangle having a line segment connecting the first device and the second device as a base and the GPS location as a vertex as the location of the terminal based on the fact that the contact point is 0.
- the above first device and the above second device may be fixed devices.
- the above Ranging information may be information that distance will be measured through the NAN Ranging.
- the above terminal can calculate RTT (Round trip time) through transmission and reception of Wi-Fi packets including a timestamp through the FTM Sequence, and measure the relative distance to the first device and the relative distance to the second device using the RTT.
- RTT Red trip time
- the above NAN SDF Subscribe may include range_configuration_parameters corresponding to the above Ranging information.
- the above NAN SDF Follow-up may include V2X service data.
- the accuracy of the location measured by GPS by V2X devices is generally low, but by correcting the location through Wi-Fi Aware's FTM (Fine Timing Measurement), more precise location measurement is possible.
- FTM Freine Timing Measurement
- Figure 1 illustrates a system to which the present disclosure is applied.
- Figure 2 shows an example of a tile using a quadtree.
- Figure 3 shows an example of how a subscription area is set.
- FIG. 4 illustrates the V2X protocol stack.
- Figure 5 shows an example of Geocasting using MQTT in V2X.
- Figures 6 to 8 are drawings for explaining NAN.
- FIGS 9 to 18 are drawings for explaining embodiment(s).
- Figures 19 to 22 are drawings illustrating various devices to which the embodiment(s) can be applied.
- a vehicle according to one embodiment of the present specification may be or may be defined as a means of transportation that runs on a road or a track.
- the vehicle may include an automobile, a ship, an aircraft, a train, a motorcycle, a bicycle, and the like.
- the vehicle may include an internal combustion engine vehicle powered by an engine, a hybrid vehicle powered by an engine and an electric motor, an electric vehicle powered by an electric motor, and a combination thereof.
- a V2X (Vehicle-to-Everything) device may be an existing V2X device, or may mean a device that provides V2X functions and V2X services to users based on software, in which case it may also be referred to as a Soft V2X device.
- a V2X device may be a UE (User Equipment), an MS (Mobile Station), an MT (Mobile Terminal), a UT (User Terminal), a mobile phone, a laptop, a handheld device, a tablet, a drone, a home appliance, etc.
- a V2X device may be mounted on a vehicle or an electronic device as an onboard unit (OBU) to provide V2X functions and services to the vehicle.
- a V2X device placed inside or outside a vehicle may be connected to a vehicle via a wireless interface to provide V2X functions and V2X services to the vehicle.
- “/” and “,” should be interpreted as representing “and/or”.
- “A/B” can mean “A and/or B”.
- “A, B” can mean “A and/or B”.
- “A/B/C” can mean “at least one of A, B, and/or C”.
- “A, B, C” can mean “at least one of A, B, and/or C”.
- “or” should be interpreted as meaning “and/or.”
- “A or B” can include “only A,” “only B,” and/or “both A and B.”
- “or” should be interpreted as meaning “additionally or alternatively.”
- Figure 1 illustrates a system to which the present disclosure is applied.
- the system includes a UE (111) (or a V2X device/device) and a server (121) (or a V2X server).
- the UE (111) can communicate with the server (121) via a base station (131) or an RSU (132).
- the UE (111) can communicate with the base station (131), the RSU (Road Side Unit) (132), a neighboring vehicle (133), and/or a neighboring UE using a wireless communication protocol.
- wireless communication protocol may include, for example, DSRC (Dedicated Short Range Communications), C-V2X (Cellular-V2X), WiFi, Bluetooth, and/or 3GPP (3rd Generation Partnership Project) based cellular communication protocols (e.g., WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), NR (New Radio), etc.).
- DSRC Dedicated Short Range Communications
- C-V2X Cellular-V2X
- WiFi Wireless Fidelity
- Bluetooth Wireless Fidelity
- 3GPP (3rd Generation Partnership Project) based cellular communication protocols e.g., WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), NR (New Radio), etc.
- the server (121) receives V2X messages from one or more UEs (111) within the area it manages.
- the server (121) can forward one or more collected V2X messages to the subscribed UEs (111).
- a V2X message is a message that is transmitted periodically or aperiodically by a UE (111) (or an RSU (132)) to a server (121) and provides status information of the UE (111) (or a device managed by the RSU (132)). For example, the UE (111) can transmit 10 V2X messages per second.
- the server (121) collects V2X messages from multiple UEs and forwards the V2X messages to subscribed UEs.
- the following table shows examples of information elements included in V2X messages. Not all information elements are required, and the names are only examples. Information elements may be added/changed/deleted depending on policy or situation.
- V2X ID A temporary identifier to identify the UE transmitting this message. Randomly selected by the UE and may change periodically. The size may be 4 octets.
- position Indicates the location of the UE. May include latitude, longitude, and elevation. Positional Accuracy Includes the quality of various parameters used to model the accuracy of positioning.
- Velocity Indicates the speed of the UE. Heading Indicates the current heading (direction of motion) of the UE.
- Path History Defines a geometric path reflecting V2X device's movement over some period of time and/or distance Acceleration Represents the acceleration of the UE.
- Device Type Indicates the type of UE. Examples: pedestrian, vehicle, bicycle, etc.
- Publishing Area The area where the UE transmits V2X messages to the server. The publish area contains one or more tiles at each level.
- V2X message that the UE (111) transmits to the server (121) is called an UL (uplink) V2X message
- V2X message that the server (121) transmits to the UE (111) is called a DL (downlink) V2X message.
- the UE (111) may include a processor (112) and a memory (113).
- the processor (112) implements the function of the UE (111) and may include one or more software modules.
- the UE (111) may further include various additional devices depending on the function, such as a display, a user interface, and a wireless modem.
- the server (121) includes computing hardware that is connected to one or more base stations (131) and/or RSUs (132) and provides V2X functions and services to the UE (111).
- the server (121) may be a MEC (Mobile/Multi-access Edge Computing)-based server or a centralized-based server.
- the server (121) may be called by other names such as a Geocast server, a Soft V2X server, a V2X application server, etc.
- the server (121) may include a processor (122) and a memory (123).
- the processor (122) implements the functions of the server (121) and may include one or more software modules.
- the processor (112, 122) may include an application-specific integrated circuit (ASIC), a central processing unit (CPU), an application processor (AP), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), a microcontroller, a chipset, a logic circuit, a data processing device, and/or a combination thereof.
- ASIC application-specific integrated circuit
- CPU central processing unit
- AP application processor
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- microcontroller a chipset, a logic circuit, a data processing device, and/or a combination thereof.
- the memory (113, 123) can store information accessible by the processor (112, 122).
- the information can include instructions executable by the processor (112, 122) and/or data processed by the processor.
- the memory (113, 123) can include any form of computer-readable medium that operates to store information.
- the memory (113, 123) can include a read only memory (ROM), a random access memory (RAM), a digital video disc (DVD), an optical disc, a flash memory, a solid state drive (SSD), a hard drive, and combinations thereof.
- MQTT Message Queuing Telemetry Transport
- AMQP Advanced Message Queuing Protocol
- HTTP HyperText Transfer Protocol
- vendor specific protocols may be used.
- tile refers to the basic geographical unit for setting the subscription area.
- the tile shape is shown as a square, but it is only an example. There is no limitation on the shape of the tile, such as polygon or circle.
- Figure 2 shows an example of a tile using a quadtree.
- a quadtree represents a partition of space in two dimensions by decomposing a map (i.e. a world map) into four equal quadrants, subquadrants, and so on.
- the size of the quadrants varies depending on the zoom level, and each quadrant corresponds to a tile. Here, we show the cases where the levels are 1, 2, and 3. As the level increases, the size of the tiles decreases.
- a unique ID is assigned to the tiles.
- the tile ID can have a number of bits corresponding to the level. For example, each internal node of the quadtree can have four subordinate parts.
- the UE can obtain the ID of the tile it is located in based on its location information (e.g., latitude and longitude).
- the UE and/or the server can adjust the level according to the situation to adjust the size of the area.
- the areas for V2X services are as follows.
- the management area When one or more servers manage the area in a distributed manner to serve a large number of users or a wide area, the area managed by the server.
- the management area includes one or more tiles.
- Subscription area The area to which the UE has requested a subscription from the server.
- the subscription area may be called by other names such as the concerned area, the impact area, and the Geocast area.
- the subscription area contains one or more tiles.
- the subscription area may be included in one management area, or may be defined across multiple management areas by multiple servers.
- the - Publishing area The area where the UE transmits V2X messages to the server.
- the publishing area may include one or more tiles at each level.
- the publishing area may indicate the tile where the UE is currently located. Part or all of the publishing area may overlap with the subscription area.
- Figure 3 shows an example of how a subscription area is set.
- a first subscription area is set for a first UE (310) (e.g., a left-sloping hash around a person associated with the first V2X device (310)), and a second subscription area is set for a second UE (320) (e.g., a right-sloping hash around a vehicle associated with/corresponding to the second V2X device (320).
- Each UE can set/change/delete a subscription area periodically or aperiodically (e.g., when its location changes).
- Each UE can request the server to set/change/delete a subscription area.
- the number of tiles included in the first subscription area is 9, and the number of tiles included in the second subscription area is 25, but there is no limitation on the number of tiles included in the subscription area or the shape of the subscription area.
- the subscription area may include a tile where the UE is located.
- the subscription area may include one or more tiles excluding the tile where the UE is located.
- a first UE (310) can generate a first V2X message and send it periodically to a server.
- a second UE (320) can generate a second V2X message and send it periodically to a server.
- the server may forward one or more V2X messages received within or around the subscription area to UEs associated with the subscription area.
- a device that sets up a subscription area may be called a ‘subscriber device’.
- a device that transmits V2X messages to a server may be called a ‘publisher device’.
- a UE may be a subscriber device, a provider device, or both a subscriber device and a provider device.
- the server may forward V2X messages transmitted by provider devices within the management area to the subscriber device.
- the server can forward V2X messages of provider devices that are “associated” with the subscription area of the subscriber device to the subscriber device.
- a provider device that is associated with the subscription area of the subscriber device may be referred to as a “subscribed provider device.”
- a provider device that is associated with the subscription area of the subscriber device may satisfy at least one of the following conditions (i) to (iii): (i) Part or all of the publish area of the provider device overlaps with the subscription area of the subscriber device. (ii) Part or all of the subscription area of the provider device overlaps with the subscription area of the subscriber device. (iii) The location where the provider device transmits the V2X messages is within the subscription area of the subscriber device.
- the server forwards the V2X message received within the first subscription area to the first UE (310).
- the server forwards the V2X message received within the second subscription area to the second UE (320).
- the server can forward the first V2X message to the second UE (320).
- the second UE (320) is a subscriber device, and the first UE (310) is a subscribed provider device.
- the server does not forward the second V2X message to the first UE (310).
- the person may be in the subscription area of the vehicle and the vehicle may receive a V2X message from the person, but the vehicle may not be in the subscription area of the person yet and the person may not receive a V2X message from the vehicle depending on the situation.
- the second V2X device (320) may recognize the first V2X device (310) but may not recognize the first V2X device (310) yet.
- the subscription area of the second V2X device (320) is much smaller than that of the first V2X device (310).
- the second UE (320) is not a provider device of the first UE (310).
- the second UE (320) can be a provider device of the first UE (310).
- the server can still be configured to forward messages from the second V2X device to the first V2X device if condition (ii) is met.
- FIG. 4 illustrates a Soft V2X protocol stack or V2N2X (Vehicle-to-Network-to-Everything) protocol stack that can operate in UE, smartphones, etc.
- Soft V2X refers to a V2X communication method in which the method described below is used, and the description below is not limited to the term Soft V2X.
- other terms that refer to communication methods corresponding to the description below can also be considered to correspond to Soft V2X in the present invention.
- Cellular Modem is a layer (physical layer or media layer) for modems that use cellular networks.
- Cellular networks are networks that divide regions into multiple cells to form and operate communications networks, where a cell refers to a divided region that includes one base station.
- Cellular network communication technologies may include 5G NR (New RAT), LTE (Long Term Evolution), etc. Unlike V2X, Soft V2X performs unicast communications.
- the network/transport layer uses IP/TCP used in cellular networks.
- the TLS (Transport Layer Security) layer is to ensure confidentiality by using transport layer security, and the certificate uses X.509, an ITU-T standard based on public key infrastructure (PKI).
- PKI public key infrastructure
- the Soft V2X protocol is configured to perform a Geocast function that transmits messages only to users in a specific area, and uses MQTT (Message Queuing Telemetry Transport), a publish-subscribe based messaging protocol, for this purpose.
- MQTT Message Queuing Telemetry Transport
- Soft V2X uses messages defined in SAE J2735 (BSM, PSM, RSA, etc.).
- SAE J2735 defines signal standards for V2V/V2I communication, including messages, data frames, element formats, and structures, and the main messages are as shown in Table 2 below.
- BSM(Basic Safety Message) V2V Provides overall safety-related information, broadcasting communication at 100ms intervals PVD(Probe Vehicle Data) V2I Transmits 'Prove data' (vehicle operation status) collected in the vehicle to the RSU MapData I2V Provides information on intersection and road terrain data SPaT(SinglePhaseAndTiming) I2V Provides information on signal phase and time synchronization of handlers at intersections (in conjunction with MapData) RTCMCorrections (Real-Time Differential Correction Maritime) I2V Message to provide RTCM correction information PSM(PersonalSafetyMessage) V2P Providing information about pedestrians in danger zones PDM(ProveDataManagement) I2V Messages for managing PVD messages RSA(RoadSideAlert) V2X Support for ad-hoc message generation from public safety vehicles and RSUs SSM(SignalStatusMessage) I2V Used for Response
- TIM(TravelerInformationMessage) I2V Information messages about various traffic information, emergencies, advance road work, etc.
- CSR CommunicationSafetyRequest
- EVA EmergencyVehicleAlert
- ICA IntersectionVehicleAlert
- testMessages00-15 N/A Use in the form of customized messages for each region Not Assigned N/A Assign when adding new message content
- the Classification layer performs an algorithm to generate data necessary for risk assessment
- the Application layer can determine the risk based on the data submitted for classification and notify pedestrians and drivers with smartphones of the risk.
- FIG 5 shows an example of Geocasting using MQTT in Soft V2X.
- legacy V2X that uses broadcast communication
- devices in the same area can naturally receive messages (such as BSM) through the broadcast channel.
- BSM Base Station
- Soft V2X can achieve the same effect as broadcasting by performing unicast transmission to all devices in the same area using MQTT.
- a secure session is first established between all nodes and the server using TLS.
- Each node first performs the CONNECT process and then can perform the SUBSCRIBE process on a specific topic (S501 ⁇ S503 in Fig. 5).
- the topic selection is selected differently depending on the region.
- the map can be divided into tiles and the same topic value can be assigned to each tile. Therefore, each node selects a topic according to the tile it is located in and performs SUBSCRIBE. For example, in Fig. 5, Nodes 1, 2, and 3 are all in the same tile (region) and SUBSCRIBE to the same topic 1. (S504 ⁇ 506 in Fig. 5)
- Node1 When Node1 transmits PUBLISH (BSM) to the MQTT server (S507), the server transmits PUBLISH (BSM) in unicast to all Nodes subscribed to topic1 (S508, S509).
- Nodes 2 and 3 perform classification and threat assessment based on the received BSM message, and if a risk is detected, they notify the smartphone user (pedestrian, driver).
- Cars transmit BSM and pedestrians transmit PSM, and these messages basically contain information necessary for risk detection (ID, location, speed, acceleration, direction, etc.).
- NAN Neighbor Awareness Network
- Wi-Fi Aware (NAN; Neighbor Awareness Network, Wi-Fi Aware) is a communication standard of the MAC layer that uses the 802.11 PHY defined by the Wi-Fi Alliance as it is. While the existing Wi-Fi aims for Internet connection through AP, Wi-Fi Aware was developed for the purpose of searching for services and exchanging simple messages between surrounding devices. NAN devices form a NAN cluster, and devices within the NAN cluster can synchronize the transmission and reception sections and advertise (Publish) or subscribe (Subscribe) to search for upper-layer services. It can also send and receive short-length messages such as the NAN SDF (Service Discovery Frame) Follow-up Message.
- Fig. 6(a) shows the form of the NAN Cluster defined in the standard.
- Wi-Fi Aware provides a function called NAN Ranging that measures the distance between NAN devices, so that two NAN devices can measure the distance to each other based on the transmission time of packets when they exchange FTM packets.
- Figure 6(b) shows the functional structure defined in the NAN standard.
- NAN uses the existing physical layer of Wi-Fi as it is, and defines the NAN Engine including the upper MAC (Medium Access Control) layer and search (NAN Discovery), distance (Ranging), and data communication (NAN Data).
- the NAN Engine provides the NAN API, which provides NAN functions to upper arbitrary applications.
- FIG. 7 illustrates an example of a connection type of a V2X service to which the present embodiment can be applied.
- the V2X service considered in the present disclosure is a service or application that is composed of devices such as vehicles, pedestrians, and fixed facilities and communicates with each other for traffic safety, energy conservation, and mobility efficiency.
- it has a connection type of V2I (Vehicle-to-Interface) or V2C (Vehicle-to-Cloud) that exchanges information with other V2X devices via the Internet or cloud, but is not limited thereto, and can be applied to direct vehicle-to-vehicle communication or vehicle-to-infrastructure communication, etc.
- V2I Vehicle-to-Interface
- V2C Vehicle-to-Cloud
- the devices of the vehicle and the pedestrian can use various communication methods to connect to the Internet network.
- the pedestrian is connected to the Internet cloud via the mobile communication (LTE/5G) of the smartphone, and the vehicle communicates via the mobile communication of the driver's smartphone or OBU, or C-V2X, WAVE.
- CCTV or RSU can be connected to the Internet via wired Ethernet.
- FIG. 8 illustrates an example of a V2X Service/Application and a communication interface that can be used in the present embodiment.
- the V2X device considered in the present disclosure supports Wi-Fi and Wi-Fi NAN (Wi-Fi Aware) technology in addition to the communication technology used for existing V2X services. This is a very common situation in existing ICT devices such as smartphones, and devices such as OBUs and RSUs can also support multiple communication interfaces without much difficulty. In the case of existing mobile communication technologies, they are used for V2X services in the same way as before, and the GPS interface is used to measure the location of the V2X device in the same way as before.
- NAN Wi-Fi Aware
- a Soft V2X terminal searches for V2X services, measures location, and performs location correction based on NAN.
- a terminal may include at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
- the above operations can be performed by the terminal performing a search procedure (912 of FIG. 9) for a NAN cluster including a first device (NAN 1 of FIG. 9) and a second device (NAN 2), and the terminal can receive (914, 921) a NAN SDF Subscribe including Ranging information from the first device and the second device.
- the above terminal can measure the relative distance to the first device and the relative distance to the second device based on NAN Ranging and FTM Sequence.
- the terminal can receive the absolute location of the first device and the absolute location of the second device through NAN SDF Follow-up (916, 923).
- the terminal can determine the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device.
- the terminal can derive zero or more contact points between a first circle based on a relative distance from the first device and an absolute position of the first device, and a second circle based on a relative distance from the second device and an absolute position of the second device, and determine a location of the terminal based on the zero or more contact points and a GPS location.
- step 911 all of these fixed devices are located within the same Wi-Fi transmission range, so they form the same NAN Cluster. In addition, they all participate in and support the same V2X service/application called “com.example.v2xapp”.
- Step 912) The operation of Publish may be different depending on the policy of the device or service belonging to the NAN Cluster.
- an embodiment is one in which NAN1, NAN2, and NAN3 all support unsolicited publish and solicited publish at the same time.
- both a method using only solicited publish and a method using only unsolicited publish are included.
- NAN1, NAN2, and NAN3 may be subscriber devices rather than devices supporting only publishers, or devices supporting both publishers and subscribers.
- the embodiment shows an example in which three fixed NAN devices periodically send unsolicited publish. At this time, the SDF Publish message includes the V2X service name “com.example.v2xapp” and ranging information that can measure the relative distance through FTM thereafter.
- Step 913 is when NAN4, a moving V2X device, moves around a NAN cluster formed by NAN1, NAN2, and NAN3. At this time, it searches for a surrounding NAN cluster on the Wi-Fi listen channel (ex, CH6 in 2.4GHz) according to the synchronization method defined in Wi-Fi Aware. If a surrounding NAN cluster is found, it synchronizes and participates in the corresponding NAN cluster.
- the Wi-Fi listen channel ex, CH6 in 2.4GHz
- Step 914 is the process in which the NAN4 device actively (solicited) sends a subscription to receive a solicited publish message from a publisher performing the same V2X service in the vicinity.
- the NAN SDF Publish/Subscription must include the V2X service name and Ranging information, which is information on future distance measurement through NAN Ranging.
- Step 915 represents a process of measuring a relative distance between a NAN4 device and a NAN1 device through NAN Ranging.
- the NAN4 device first sends a NAN Ranging Request, and the NAN1 device responds to this by sending a Ranging Response.
- the two devices calculate the RTT (Round trip time) by transmitting and receiving a Wi-Fi packet including a timestamp through the FTM Sequence.
- the NAN4 can calculate the relative distance from NAN1.
- the NAN 4 device can inform the NAN1 device of the calculated relative distance through a Ranging Report.
- the NAN 4 sends the Ranging Request first, but the invention is not limited thereto, and the NAN1 device can also send the Ranging Request first to measure the distance and send the measured result to the NAN 4 device through a Ranging Report.
- Step 916 is a process of sending the absolute location of the NAN1 device to NAN4 through a NAN SDF Follow-up message.
- the NAN SDF Follow-up may include the BSM or PSM message described above, and may also include additional information specialized for V2X services.
- the NAN4 device that receives this NAN SDF Follow-up message can know the absolute location information corresponding to the latitude and longitude of NAN1 and the relative distance from the NAN1 device confirmed through the previous FTM.
- the absolute location is confirmed by performing SDF Follow-up after distance measurement through FTM, but it is also technically possible to perform SDF Follow-up first and then check the relative distance through FTM.
- the FTM process can be performed more than once, because the relative distance also changes as the location of the moving NAN4 device changes. Packets used in this FTM process are processed with the highest priority within the device and protocol stack to minimize transmission and processing delays.
- Steps 921 and 922 represent the process of performing the same process that was performed between NAN4 and NAN1 between NAN4 and NAN2.
- the terminal can know the relative distance from the first device, the relative distance from the second device, the absolute position of the first device, and the absolute position of the second device.
- the terminal can derive zero or more contact points between a first circle based on the relative distance from the first device and the absolute position of the first device, and a second circle based on the relative distance from the second device and the absolute position of the second device, as described above, and determine the location of the terminal based on the zero or more contact points and the GPS location.
- the terminal may determine the center of a third circle having a diameter equal to a line segment connecting a first contact point close to the GPS location and the GPS location as the location of the terminal.
- the terminal may further consider GPS accuracy and FTM accuracy to determine the location of the terminal.
- the terminal may correct the location of the terminal adjacent to a location having a higher accuracy among the first contact point and the GPS location.
- Fig. 10 shows an example with two contact points
- Fig. 11 shows an example with one contact point
- Figs. 12 and 13 show examples with zero contact points.
- the terms used in each drawing are as follows.
- NAN4 NAN4's own location acquired through its own GPS interface.
- NAN1 Absolute location (latitude, longitude, altitude) of NAN1 device. When NAN1 is installed as a fixed device, the exact location is entered.
- NAN2 Absolute location (latitude, longitude, altitude) of the NAN2 device. When NAN2 is installed as a fixed device, the exact location is entered.
- Loc FTM (NAN4)
- Loc FTM_Opposite Two points calculated using the equation of a circle using the values of the absolute position and the relative position. An example is a case where two circles meet at two points. In this case, among the two points A and B, the point of contact closer to Loc GPS (NAN4) is defined as Loc FTM (NAN4), and the point of contact farther from Loc GPS (NAN4) is defined as Loc FTM_Opposite (NAN4).
- the Loc FTM (NAN4) point becomes the expected location of NAN4 calculated using FTM. There must be at least one point of contact between the two circles, but there may be cases where there is no point of contact depending on the difference in measurement time or the movement of NAN4 during measurement.
- NAN4 The location of the real NAN4 corrected according to the location correction method in this disclosure.
- Loc real it is determined within a circle whose diameter is Loc GPS and Loc FTM . If the accuracy of the location measured via GPS and the location measured via FTM are the same, Loc real can be determined as the center of the gray circle, but the location can be adjusted depending on the accuracy of each interface, the difference in environmental factors, and the policy in determining Loc real . That is, if the accuracy of FTM in Fig. 10 is relatively higher than that of GPS, Loc real is determined as a location moved in the direction of Loc FTM from the center of the circle. Conversely, if the accuracy of GPS is relatively high, Loc real is determined as a location moved in the direction of Loc GPS .
- the accuracy between NAN1 and FTM and between NAN2 and FTM can also differ. This can differ depending on signal strength, such as RSSI included in Wi-Fi packet transmission. In this case, a weight is applied in the direction measured by the positioning/distance with high accuracy, and Loc real is adjusted and determined. If you obtain FTM distances from three or more fixed devices via Wi-Fi Aware, more precise location determination is possible.
- the terminal can determine the one contact point as the location of the terminal without considering the GPS location.
- the one contact point may be a point where the first circle and the second circle are circumscribed or inscribed.
- FIG. 11 illustrates a case where the circle has one contact point when calculating the FTM location based on information acquired from two fixed-position devices in NAN4. If the two fixed devices, NAN1 and NAN2, and the mobile device, NAN4, are positioned in a straight line, the location calculated through FTM becomes one. That is, Loc FTM (NAN4) and Loc FTM_Opposite (NAN4) become the same point. In this case, Loc FTM is determined as the corresponding contact point without comparing it with its own GPS location to determine a separate Loc FTM .
- the terminal can determine the center of gravity of a triangle having the line segment connecting the first device and the second device as its base and the GPS location as its vertex as the location of the terminal based on the fact that the contact point is 0.
- FIG. 12 shows an example of a case where there is no contact point between two circles when a circle with each distance (Distance NAN1->NAN4 , Distance NAN2->NAN4 ) as its radius is expressed based on information received from two fixedly located devices during calculation.
- the reason why such a contact point occurs is - 1) it occurs because the distance between the two fixed devices is far, 2) a large error occurs in performing FTM with the fixed device, 3) the mobile body (NAN4) moves while performing FTM with each fixed device, etc., and various other reasons.
- the Loc FTM calculated based on the contact point of the circle as described above cannot be derived.
- the actual location can be corrected by the following method. A straight line connecting the absolute positions of the two fixed devices Draw. At this time, points A and B that touch the circumference of the circle can be calculated and found. It is possible to obtain a triangle with points A, B, and Loc GPS, which is the location received by GPS from the NAN4 device, as vertices.
- the center of gravity of this triangle can be determined as Loc real .
- Loc real an example of determining the center of gravity of the triangle as Loc real is shown, but it is not limited thereto, and as explained above, Loc real can be changed and determined by applying weights depending on the difference in error, environmental factors, policies, etc.
- Figure 13 is similar to the above, in which the two circles have 0 points of contact and one circle is inside the other circle.
- Loc real can also be inferred similarly to what was explained above.
- points A and B that touch the circumference of the circle can be calculated and found.
- the center of gravity of this triangle, the star location in Fig. 13 can be calculated as Loc real .
- an example of determining the center of gravity of the triangle as Loc real is shown, but it is not limited thereto and may be changed according to the difference in error, environmental factors, policy, etc. as explained above.
- Fig. 14 is an example of a NAN cluster configuration according to the above embodiment.
- all devices perform V2X services/applications (e.g., com.example.v2xapp) through an existing mobile communication network as shown in Fig. 14, and at the same time, all devices additionally have a Wi-Fi Aware (NAN) interface.
- NAN1, NAN2, and NAN3 devices have fixed locations and form a cluster according to the NAN standard.
- NAN4 (vehicle) and NAN5 (pedestrian) are moving entities, and when they are within the Wi-Fi transmission range of the NAN cluster while moving, they search for and synchronize with the cluster according to the NAN standard.
- NAN1 (901), NAN2 (902), and NAN3 (903) devices are devices with fixed locations, such as roadside RSU devices or traffic lights.
- the device is a V2X device that moves, such as a vehicle or pedestrian.
- Each device is a device that performs V2X service with existing communication methods such as mobile communication or Ethernet as described above, and additionally has a Wi-Fi Aware interface.
- these NAN1, NAN2, and NAN3 devices are devices installed by service providers, governments, local governments, etc., so the location of the corresponding device can be known relatively accurately, and the absolute location of the corresponding device at the time of installation can be input into an API defined in a setting file within the device.
- the latitude and longitude of the location of NAN1 are 37.5353445, 126.8473708
- NAN2 is installed at 37.5353714, 126.8473008, and
- NAN3 is installed at 37.5360714, 126.8477988.
- the latitude and longitude can be expressed as setAbsoluteLocation (bool movable, double latitude, double longitude, double elevation).
- V2X Device A and V2X Device B are existing V2X service component terminals.
- they can be a vehicle OBU, a smartphone mounted on a vehicle, a pedestrian's smartphone, an RSU located on the roadside, a traffic light, and the like.
- the device performs a service by connecting to the Internet or the Cloud based on existing mobile communication, or performs a service through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. If the device requires location information, it can confirm its own location through a positioning interface that the existing device has, such as GPS or GNSS. As described above in FIG.
- the V2X Device proposed in the invention supports both a mobile communication interface and a NAN interface, and can be connected to the NAN interface through a NAN Engine.
- the service name of the V2X service/application is exemplified as “com.example.v2xapp”.
- the service can perform subscription and publication according to the API or method defined in the NAN standard. By including the service name in this publish/subscribe, the V2X device can search for the service.
- the NAN standard largely defines three publishing methods.
- the V2X Service/Application of Device A calls the Publish API to the NAN Engine and includes its service name, “com.example.v2xapp”.
- the NAN Engine periodically transmits publish to surrounding devices even if there is no request from other surrounding devices.
- a V2X Device using the same service searches for the service and notifies the V2X Service/Application if it subscribes to the same service based on matching_filter or service name.
- V2X Device B calls the Subscribe API to the NAN Engine from the V2X Service/Application at a certain point in time.
- the service name is transmitted including com.example.v2xapp.
- the subscribe is transmitted to the surrounding NAN devices, and at this time, V2X Device A that provides/participates in the same service responds with SDF Publish in response to the service search.
- Device A and Device B can send and receive additional messages.
- SDF Follow-up can send and receive additional information required for the service after the service search. For example, location information, sensor information, or additional information for the service can be sent between V2X services/applications without a separate Wi-Fi session establishment.
- the SDF Publish, SDF subscribe, and SDF follow-up messages used for service discovery follow the format of the NAN standard, and Table 3 shows examples of primitives of the main settings to support V2X services.
- the NAN SDF Follow-up message can transmit and receive additional data specific to the discovered V2X service.
- the NAN SDF follow-up message is transmitted and received based on the Service ID and Instance ID of the discovered service, and the maximum size of the message that can be sent at one time is limited to 255 bytes according to the standard.
- Fig. 16 shows the format of the BSM (Basic Safety Message) or PSM (Personal Safety Message) of the V2X service through the NAN Follow-up message format.
- the NAN Service Discovery frame has the form of an IEEE 802.11 public action frame, and the OUI Type specifies the NAN frame in the header as 0x13. It also includes one or more NAN attributes.
- the following shows an embodiment of the NAN follow-up message for a Soft V2X service.
- a safety message (ex. BSM; Basic Safety Message or PSM; Personal Safety Message) used in V2X through a NAN follow-up message.
- a safety message (ex. BSM; Basic Safety Message or PSM; Personal Safety Message) used in V2X through a NAN follow-up message.
- it may include messages containing information such as the location (latitude, longitude, altitude), speed, direction, acceleration, and device characteristics of the V2X entity, without being limited to the message format defined in the standard.
- the search requester can check whether the searched device is a fixed device or a mobile device.
- the value in BasicVehicleClass which is a data type that indicates the type of vehicle, i.e., the type of V2X device, can be indicated as “Other V2X Equipped Device Types”, “infrastructure-TypeUnknown”, “infrastructure-Fixed”, or “infrastructure-Movable” for fixed equipment.
- the search requester parses the BSM or PSM message included in the NAN SDF, and if the type of the corresponding device is a fixed device, determines that the latitude and longitude values included in the BSMcoreData of the corresponding device are absolute locations that can be reliably referenced.
- Service Specific Message in Fig. 6.
- the Service Specific Message can be specifically defined in the V2X service or similar service, and this can be as exemplified in Tables 4 and 5 below.
- the corresponding value can be encoded and decoded according to the method defined by the service or system.
- Device ID An ID value that can distinguish the device Fixed Device Device is fixed or mobile ex) 0 (fixed) Latitude Latitude of the device Longitude Hardness of the device Elevation Altitude of the device Accuracy Location accuracy ... ...
- Device ID An ID value that can distinguish the device Fixed Device
- the device is a fixed device or a mobile device ex) 1 (mobile) Latitude Latitude of the device Longitude Hardness of the device Elevation Altitude of the device Accuracy Location accuracy Transmission Transmission status of the device (Drive, Parking, Reverse.) Speed Movement speed Heading Direction of movement Angle The degree of bend of the handle Brake Whether the brakes are working Size Size of the device Path Movement route ... ...
- Figure 17 shows the process of searching for services provided by NAN and measuring distance based on FTM (Fine Timing Measurement).
- FTM Freine Timing Measurement
- the two devices can perform Raging Measurement operation to check how far apart they are from each other.
- FTM defined in IEEE 802.11
- NAN Wi-Fi Aware
- Step 1 in Figure 17 is about the connection and service operation of V2X services using existing mobile communications.
- Step 2 is the process of searching for V2X services using mobile communication through the NAN interface, similar to Step 1, using the NAN service search method described in the previous section.
- the Ranging Information attribute must be included in SDF Publish and SDF Subscribe for service search.
- Step 3 is the Ranging Measurement process via NAN.
- a NAN device can perform both the role of an initiator that initiates FTM and a responder that responds to it, and in this embodiment, a subscriber that subscribes to service discovery acts as a NAN Ranging Initiator.
- the two devices exchange FTM packets for Ranging according to the method defined in IEEE 802.11. At this time, the distance between the two devices is calculated based on the time stamp in the packet.
- step 4 additional messages can be exchanged through the SDF Follow-up described in the previous section.
- this Follow-up message it can be performed after or before the Ranging step 3 depending on the settings or message transmission order.
- Fig. 18 is a flowchart showing a position correction algorithm according to one embodiment.
- Step 1801 is the process initiated by the V2X device to determine whether it is a mobile device.
- Step 1811 is the process of adding the absolute position of the device during installation or setup, as described in the previous section, if it is a fixed device.
- This absolute position is a position that has been precisely adjusted in advance to the actual position of the fixed device. This position information is then used for reference purposes by the mobile device.
- Step 1812 is the process of configuring a Wi-Fi Aware cluster in an environment with fixed devices or a mix of fixed and mobile devices.
- Step 1813 is the process by which a fixed device publishes the V2X service through solicited or unsolicited publish.
- step 1814 check whether the fixed device receives a subscription from another device. If no subscription is received, continue to wait and perform the publish process. If a subscription is received, move to step 1815.
- Step 1815 is a process of transmitting and receiving to calculate the absolute position and relative distance of the corresponding fixed device through NAN Ranging and NAN SDF Follow-up proposed in the invention described in the previous section.
- the corresponding fixed device performs publishing again.
- Step 1821 is a process of determining the location of the V2X device if it is a mobile device and has a positioning interface such as GPS.
- the Loc GPS location is determined.
- Step 1822 is the process of searching for the surrounding NAN Cluster described in the previous section, synchronizing with the cluster, and searching for V2X services. This process follows the Wi-Fi Aware standard, and publishes the V2X service/application name performed by the device.
- Step 1823 determines whether a device participating in the same V2X service in the vicinity is found through NAN service search. If not found, periodic or aperiodic service search can be re-executed.
- Step 1824 is the process of measuring the distance to the device through FTM when a device supporting the same V2X service supporting NAN is found in the vicinity. Then, if the counterpart device has an absolute location (latitude, longitude), the absolute location of the device is confirmed through NAN SDF Follow-up.
- Step 1825 checks whether two or more fixed devices or devices with absolute positions are found in the vicinity through such service search. As described in the previous section, the proposal of the present invention measures the distance to two or more devices with absolute positions to correct the position.
- Step 1826 calculates the point of contact of the circles using the equation of the circle as described in the previous section, if two or more counterparts are found.
- Step 1827 is the process of determining whether the number of contact points of the circle is 1 or more or whether there are no contact points.
- Step 1828 is the process of finding the FTM-based location when there is more than one contact point of the circle, through which the V2X device can determine the Loc FTM .
- Step 1829-1 is the process of finding the center of the circle based on the position obtained through FTM and the position obtained through GPS.
- Step 1829-2 is for the case where the number of contact points of the circle is 0, in which case the center of gravity of the triangle with the connecting line of the two fixtures and the contact points A, B of the circle and the GPS position as vertices is calculated as described in the previous section.
- Step 1831 is the process of determining the policy for performing the actual detailed position correction.
- AccuracyGPS is the accuracy of the current position obtained through GPS and is determined by the number of GPS satellites and the strength of the signal.
- ThreasholdGPS is a value determined by the system or implementation. If the accuracy is higher than the threshold, it means that the position confirmed through GPS is sufficiently accurate.
- AccuracyFTM is the accuracy of the distance obtained through the current Wi-Fi FTM and the accuracy of the FTM varies depending on the Wi-Fi bandwidth, Delay, etc. If the Accuracy value is greater than the threshold, it means that the current Wi-Fi connection is fast enough to measure the FTM, so reliable distance measurement is possible. (AccuracyGPS > ThresholdGPS) && (AccuracyFTM > ThresholdFTM) means that both positioning methods are sufficiently accurate. In this case, proceed to step 1832.
- Step 1832 is when the final corrected position is calculated, and since both GPS and FTM are sufficiently reliable, the final correction is made to the center of the circle of FTM-GPS if there is more than one previously calculated contact point, or to the center of gravity of the triangle if there are 0 contact points.
- step 1841 is to compare which of the current GPS and FTM positioning reliability is more reliable. That is, If this is true, it means that GPS can determine the location more accurately than FTM, and in step 1842, the GPS location is weighted and corrected in the final position correction. The calculation method or degree of this weight will vary depending on the system settings or implementation.
- Step 1843 is the opposite case where the position accuracy of FTM is higher than that of GPS, and in this case, the position correction is weighted more toward FTM than GPS.
- the embodiment exemplifies a fusion algorithm of positioning methods via GPS and Wi-Fi Aware
- the technology of the invention is not limited to GPS and Wi-Fi FTM, and can be applied to all technologies that use a combination of two or more positioning methods, such as GPS+UWB, UWB+Wi-Fi, and Wi-Fi-Bluetooth.
- Fig. 19 illustrates a communication system (1) applied to the present disclosure.
- a communication system (1) applied to the present disclosure includes a wireless device, a base station, and a network.
- the wireless device means a device that performs communication using a wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
- the wireless device may include a robot (100a), a vehicle (100b-1, 100b-2), an XR (eXtended Reality) device (100c), a hand-held device (100d), a home appliance (100e), an IoT (Internet of Thing) device (100f), and an AI device/server (400).
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing vehicle-to-vehicle communication, etc.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (e.g., a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices and can be implemented in the form of HMD (Head-Mounted Device), HUD (Head-Up Display) installed in a vehicle, television, smartphone, computer, wearable device, home appliance, digital signage, vehicle, robot, etc.
- HMD Head-Mounted Device
- HUD Head-Up Display
- Portable devices can include smartphone, smart pad, wearable device (e.g., smart watch, smart glass), computer (e.g., laptop, etc.).
- Home appliances can include TV, refrigerator, washing machine, etc.
- IoT devices can include sensors, smart meters, etc.
- base stations and networks can also be implemented as wireless devices, and a specific wireless device (200a) can act as a base station/network node to other wireless devices.
- Wireless devices (100a to 100f) can be connected to a network (300) via a base station (200). Artificial Intelligence (AI) technology can be applied to the wireless devices (100a to 100f), and the wireless devices (100a to 100f) can be connected to an AI server (400) via the network (300).
- the network (300) can be configured using a 3G network, a 4G (e.g., LTE) network, a 5G (e.g., NR) network, etc.
- the wireless devices (100a to 100f) can communicate with each other via the base station (200)/network (300), but can also communicate directly (e.g., sidelink communication) without going through the base station/network.
- vehicles can communicate directly (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication).
- IoT devices e.g., sensors
- IoT devices can communicate directly with other IoT devices (e.g., sensors) or other wireless devices (100a to 100f).
- Wireless communication/connection can be established between wireless devices (100a to 100f)/base stations (200), and base stations (200)/base stations (200).
- the wireless communication/connection can be achieved through various wireless access technologies (e.g., 5G NR) such as uplink/downlink communication (150a), sidelink communication (150b) (or, D2D communication), and communication between base stations (150c) (e.g., relay, IAB (Integrated Access Backhaul).
- 5G NR wireless access technologies
- a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to/from each other.
- the wireless communication/connection can transmit/receive signals through various physical channels.
- various configuration information setting processes for transmitting/receiving wireless signals various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), and resource allocation processes can be performed based on various proposals of the present disclosure.
- FIG. 20 illustrates a wireless device applicable to the present disclosure.
- the first wireless device (100) and the second wireless device (200) can transmit and receive wireless signals through various wireless access technologies (e.g., LTE, NR).
- ⁇ the first wireless device (100), the second wireless device (200) ⁇ can correspond to ⁇ the wireless device (100x), the base station (200) ⁇ and/or ⁇ the wireless device (100x), the wireless device (100x) ⁇ of FIG. 19.
- a first wireless device (100) includes one or more processors (102) and one or more memories (104), and may additionally include one or more transceivers (106) and/or one or more antennas (108).
- the processor (102) controls the memory (104) and/or the transceiver (106), and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document.
- the processor (102) may process information in the memory (104) to generate first information/signal, and then transmit a wireless signal including the first information/signal via the transceiver (106).
- the processor (102) may receive a wireless signal including second information/signal via the transceiver (106), and then store information obtained from signal processing of the second information/signal in the memory (104).
- the memory (104) may be connected to the processor (102) and may store various information related to the operation of the processor (102). For example, the memory (104) may perform some or all of the processes controlled by the processor (102), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
- the processor (102) and the memory (104) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR).
- the transceiver (106) may be connected to the processor (102) and may transmit and/or receive wireless signals via one or more antennas (108).
- the transceiver (106) may include a transmitter and/or a receiver.
- the transceiver (106) may be used interchangeably with an RF (Radio Frequency) unit.
- a wireless device may also mean a communication modem/circuit/chip.
- the second wireless device (200) includes one or more processors (202), one or more memories (204), and may additionally include one or more transceivers (206) and/or one or more antennas (208).
- the processor (202) may be configured to control the memories (204) and/or the transceivers (206), and implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (202) may process information in the memory (204) to generate third information/signals, and then transmit a wireless signal including the third information/signals via the transceivers (206). Additionally, the processor (202) may receive a wireless signal including fourth information/signals via the transceivers (206), and then store information obtained from signal processing of the fourth information/signals in the memory (204).
- the memory (204) may be connected to the processor (202) and may store various information related to the operation of the processor (202). For example, the memory (204) may perform some or all of the processes controlled by the processor (202), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present document.
- the processor (202) and the memory (204) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR).
- the transceiver (206) may be connected to the processor (202) and may transmit and/or receive wireless signals via one or more antennas (208).
- the transceiver (206) may include a transmitter and/or a receiver.
- the transceiver (206) may be used interchangeably with an RF unit.
- a wireless device may also mean a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors (102, 202).
- processors (102, 202) may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- processors (102, 202) may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors (102, 202) may generate messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document.
- One or more processors (102, 202) can generate signals (e.g., baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methodologies disclosed herein and provide the signals to one or more transceivers (106, 206).
- One or more processors (102, 202) can receive signals (e.g., baseband signals) from one or more transceivers (106, 206) and obtain PDUs, SDUs, messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
- signals e.g., baseband signals
- the one or more processors (102, 202) may be referred to as a controller, a microcontroller, a microprocessor, or a microcomputer.
- the one or more processors (102, 202) may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
- the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software configured to perform one or more of the following: included in one or more processors (102, 202), or stored in one or more memories (104, 204) and driven by one or more of the processors (102, 202).
- the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
- One or more memories (104, 204) may be coupled to one or more processors (102, 202) and may store various forms of data, signals, messages, information, programs, codes, instructions and/or commands.
- the one or more memories (104, 204) may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media and/or combinations thereof.
- the one or more memories (104, 204) may be located internally and/or externally to the one or more processors (102, 202). Additionally, the one or more memories (104, 204) may be coupled to the one or more processors (102, 202) via various technologies, such as wired or wireless connections.
- One or more transceivers (106, 206) can transmit user data, control information, wireless signals/channels, etc., as described in the methods and/or flowcharts of this document, to one or more other devices.
- One or more transceivers (106, 206) can receive user data, control information, wireless signals/channels, etc., as described in the descriptions, functions, procedures, suggestions, methods and/or flowcharts of this document, from one or more other devices.
- one or more transceivers (106, 206) can be coupled to one or more processors (102, 202) and can transmit and receive wireless signals.
- one or more processors (102, 202) can control one or more transceivers (106, 206) to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors (102, 202) may control one or more transceivers (106, 206) to receive user data, control information, or wireless signals from one or more other devices. Additionally, one or more transceivers (106, 206) may be coupled to one or more antennas (108, 208), and one or more transceivers (106, 206) may be configured to transmit and receive user data, control information, wireless signals/channels, and the like, as described in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein, via one or more antennas (108, 208).
- one or more antennas may be multiple physical antennas, or multiple logical antennas (e.g., antenna ports).
- One or more transceivers (106, 206) may convert received user data, control information, wireless signals/channels, etc. from RF band signals to baseband signals in order to process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202).
- One or more transceivers (106, 206) may convert processed user data, control information, wireless signals/channels, etc. from baseband signals to RF band signals using one or more processors (102, 202).
- one or more transceivers (106, 206) may include an (analog) oscillator and/or filter.
- Fig. 21 illustrates a vehicle or autonomous vehicle to which the present disclosure applies.
- the vehicle or autonomous vehicle may be implemented as a mobile robot, a car, a train, a manned/unmanned aerial vehicle (AV), a ship, etc.
- AV manned/unmanned aerial vehicle
- a vehicle or autonomous vehicle may include an antenna unit (108), a communication unit (110), a control unit (120), a driving unit (140a), a power supply unit (140b), a sensor unit (140c), and an autonomous driving unit (140d).
- the antenna unit (108) may be configured as a part of the communication unit (110).
- the communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, road side units, etc.), servers, etc.
- the control unit (120) can control elements of the vehicle or autonomous vehicle (100) to perform various operations.
- the control unit (120) can include an ECU (Electronic Control Unit).
- the drive unit (140a) can drive the vehicle or autonomous vehicle (100) on the ground.
- the drive unit (140a) can include an engine, a motor, a power train, wheels, brakes, a steering device, etc.
- the power supply unit (140b) supplies power to the vehicle or autonomous vehicle (100) and can include a wired/wireless charging circuit, a battery, etc.
- the sensor unit (140c) can obtain vehicle status, surrounding environment information, user information, etc.
- the sensor unit (140c) may include an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an incline sensor, a weight detection sensor, a heading sensor, a position module, a vehicle forward/backward sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, a light sensor, a pedal position sensor, etc.
- IMU intial measurement unit
- the autonomous driving unit (140d) may implement a technology for maintaining a driving lane, a technology for automatically controlling speed such as adaptive cruise control, a technology for automatically driving along a set path, a technology for automatically setting a path and driving when a destination is set, etc.
- the communication unit (110) can receive map data, traffic information data, etc. from an external server.
- the autonomous driving unit (140d) can generate an autonomous driving route and a driving plan based on the acquired data.
- the control unit (120) can control the driving unit (140a) so that the vehicle or autonomous vehicle (100) moves along the autonomous driving route according to the driving plan (e.g., speed/direction control).
- the communication unit (110) can irregularly/periodically acquire the latest traffic information data from an external server and can acquire surrounding traffic information data from surrounding vehicles.
- the sensor unit (140c) can acquire vehicle status and surrounding environment information during autonomous driving.
- the autonomous driving unit (140d) can update the autonomous driving route and driving plan based on the newly acquired data/information.
- the communication unit (110) can transmit information on the vehicle location, autonomous driving route, driving plan, etc. to an external server.
- An external server can predict traffic information data in advance using AI technology, etc. based on information collected from vehicles or autonomous vehicles, and provide the predicted traffic information data to the vehicles or autonomous vehicles.
- Fig. 22 illustrates a vehicle to which the present disclosure applies.
- the vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, etc.
- the vehicle (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), and a position measurement unit (140b).
- the communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with other vehicles or external devices such as base stations.
- the control unit (120) can control components of the vehicle (100) to perform various operations.
- the memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the vehicle (100).
- the input/output unit (140a) can output AR/VR objects based on information in the memory unit (130).
- the input/output unit (140a) can include a HUD.
- the position measurement unit (140b) can obtain position information of the vehicle (100).
- the position information can include absolute position information of the vehicle (100), position information within a driving line, acceleration information, position information with respect to surrounding vehicles, etc.
- the position measurement unit (140b) can include GPS and various sensors.
- the communication unit (110) of the vehicle (100) can receive map information, traffic information, etc. from an external server and store them in the memory unit (130).
- the location measurement unit (140b) can obtain vehicle location information through GPS and various sensors and store them in the memory unit (130).
- the control unit (120) can generate a virtual object based on the map information, traffic information, vehicle location information, etc., and the input/output unit (140a) can display the generated virtual object on the vehicle window (1410, 1420).
- the control unit (120) can determine whether the vehicle (100) is being driven normally within the driving line based on the vehicle location information.
- control unit (120) can display a warning on the vehicle window through the input/output unit (140a). In addition, the control unit (120) can broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit (110). Depending on the situation, the control unit (120) can transmit vehicle location information and information regarding driving/vehicle abnormalities to relevant organizations through the communication unit (110).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
이하의 설명은 V2X(Vehicle-to-Everything)에서 NAN(Neighbor Awareness Network)을 사용한 위치 측정 방법 및 절차에 관련된 단말, 서버의 동작 방법 및 장치이다. The following description is about the operation method and device of a terminal and server related to the location measurement method and procedure using NAN (Neighbor Awareness Network) in V2X (Vehicle-to-Everything).
무선 통신 시스템은 음성 및 데이터와 같은 다양한 유형의 통신 서비스를 제공한다. 무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems provide various types of communication services, such as voice and data. Wireless communication systems are multiple access systems that support communication with multiple users by sharing available system resources (e.g., bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single carrier frequency division multiple access (SC-FDMA) systems, and multi carrier frequency division multiple access (MC-FDMA) systems.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.Sidelink (SL) refers to a communication method that establishes a direct link between user equipment (UE) to directly exchange voice or data between terminals without going through a base station (BS). SL is being considered as a solution to solve the burden on base stations due to rapidly increasing data traffic.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.V2X (vehicle-to-everything) refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built-in infrastructure through wired/wireless communication. V2X can be divided into types such as V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), and V2P (vehicle-to-pedestrian). V2X communication can be provided through the PC5 interface and/or Uu interface.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.Meanwhile, as more and more communication devices require greater communication capacity, there is a growing need for improved mobile broadband communication over existing Radio Access Technology (RAT). Accordingly, communication systems that consider services or terminals sensitive to reliability and latency are being discussed, and the next-generation radio access technology that considers improved mobile broadband communication, massive MTC (Machine Type Communication), URLLC (Ultra-Reliable and Low Latency Communication), etc. can be called new RAT (new radio access technology) or NR (new radio). V2X (vehicle-to-everything) communication can also be supported in NR.
실시예(들)은 V2X에서 Wi-Fi NAN을 사용한 위치 측정 방법 및 절차를 기술적 과제로 한다.The embodiments address a method and procedure for location measurement using Wi-Fi NAN in V2X as a technical challenge.
일 실시예는, 무선통신시스템에서, V2X에 관련된 단말에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 상기 단말이 제1 장치 및 제2 장치를 포함하는 NAN cluster를 검색 절차를 수행; 상기 단말이 상기 제1 장치 및 상기 제2 장치로부터 Ranging information을 포함하는 NAN SDF Subscribe를 수신; 상기 단말이 NAN Ranging 및 FTM Sequence에 기초하여 상기 제1 장치와의 상대적인 거리 및 상기 제2 장치와의 상대적인 거리를 측정; 상기 단말이 NAN SDF Follow-up을 통해 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치를 수신; 및 상기 단말이 상기 제1 장치와의 상대적인 거리, 상기 제2 장치와의 상대적인 거리, 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치에 기초하여, 상기 단말의 위치를 결정을 포함하며, 상기 단말은, 상기 제1 장치와의 상대적인 거리 및 상기 제1 장치의 절대 위치에 기초한 제1 원(Circle)과, 상기 제2 장치와의 상대적인 거리 및 상기 제2 장치의 절대 위치에 기초한 제2 원 사이의 0개 이상의 접점을 도출하고, 상기 0개 이상의 접점 및 GPS 위치에 기초하여, 상기 단말의 위치를 결정하는, 단말이다.One embodiment is a terminal related to V2X in a wireless communication system, comprising: at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, wherein the operations include: performing a search procedure for a NAN cluster including a first device and a second device by the terminal; receiving a NAN SDF Subscribe including Ranging information from the first device and the second device by the terminal; measuring a relative distance from the first device and a relative distance from the second device based on NAN Ranging and FTM Sequence by the terminal; receiving an absolute location of the first device and an absolute location of the second device by the terminal through NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of the first device, and a second circle based on the relative distance from the second device and the absolute location of the second device, and determines the location of the terminal based on the zero or more contact points and the GPS location.
일 실시예는, 무선통신시스템에서, V2X에 관련된 단말의 동작 방법 있어서, 상기 단말이 제1 장치 및 제2 장치를 포함하는 NAN cluster를 검색 절차를 수행; 상기 단말이 상기 제1 장치 및 상기 제2 장치로부터 Ranging information을 포함하는 NAN SDF Subscribe를 수신; 상기 단말이 NAN Ranging 및 FTM Sequence에 기초하여 상기 제1 장치와의 상대적인 거리 및 상기 제2 장치와의 상대적인 거리를 측정; 상기 단말이 NAN SDF Follow-up을 통해 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치를 수신; 및 상기 단말이 상기 제1 장치와의 상대적인 거리, 상기 제2 장치와의 상대적인 거리, 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치에 기초하여, 상기 단말의 위치를 결정을 포함하며, 상기 단말은, 상기 제1 장치와의 상대적인 거리 및 상기 제1 장치의 절대 위치에 기초한 제1 원(Circle)과, 상기 제2 장치와의 상대적인 거리 및 상기 제2 장치의 절대 위치에 기초한 제2 원 사이의 0개 이상의 접점을 도출하고, 상기 0개 이상의 접점 및 GPS 위치에 기초하여, 상기 단말의 위치를 결정하는, 방법이다.One embodiment is a method for operating a terminal related to V2X in a wireless communication system, wherein the terminal performs a search procedure for a NAN cluster including a first device and a second device; the terminal receives a NAN SDF Subscribe including Ranging information from the first device and the second device; the terminal measures a relative distance with the first device and a relative distance with the second device based on NAN Ranging and FTM Sequence; the terminal receives an absolute location of the first device and an absolute location of the second device through NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of the first device, and a second circle based on the relative distance from the second device and the absolute location of the second device, and determines the location of the terminal based on the zero or more contact points and the GPS location.
적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 단말을 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 상기 단말이 제1 장치 및 제2 장치를 포함하는 NAN cluster를 검색 절차를 수행; 상기 단말이 상기 제1 장치 및 상기 제2 장치로부터 Ranging information을 포함하는 NAN SDF Subscribe를 수신; 상기 단말이 NAN Ranging 및 FTM Sequence에 기초하여 상기 제1 장치와의 상대적인 거리 및 상기 제2 장치와의 상대적인 거리를 측정; 상기 단말이 NAN SDF Follow-up을 통해 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치를 수신; 및 상기 단말이 상기 제1 장치와의 상대적인 거리, 상기 제2 장치와의 상대적인 거리, 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치에 기초하여, 상기 단말의 위치를 결정을 포함하며, 상기 단말은, 상기 제1 장치와의 상대적인 거리 및 상기 제1 장치의 절대 위치에 기초한 제1 원(Circle)과, 상기 제2 장치와의 상대적인 거리 및 상기 제2 장치의 절대 위치에 기초한 제2 원 사이의 0개 이상의 접점을 도출하고, 상기 0개 이상의 접점 및 GPS 위치에 기초하여, 상기 단말의 위치를 결정하는, 저장 매체이다.A nonvolatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a terminal, the operations comprising: causing the terminal to perform a search procedure for a NAN cluster including a first device and a second device; the terminal to receive a NAN SDF Subscribe including Ranging information from the first device and the second device; the terminal to measure a relative distance from the first device and a relative distance from the second device based on NAN Ranging and FTM Sequence; the terminal to receive an absolute location of the first device and an absolute location of the second device through a NAN SDF Follow-up; And the terminal determines the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device, wherein the terminal derives zero or more contact points between a first circle based on the relative distance from the first device and the absolute location of the first device, and a second circle based on the relative distance from the second device and the absolute location of the second device, and determines the location of the terminal based on the zero or more contact points and the GPS location.
상기 단말은 상기 접점이 2개인 것에 기초하여, 상기 GPS 위치와 가까운 제1 접점 및 상기 GPS 위치를 연결한 선분을 지름으로 갖는 제3 원의 중심을 상기 단말의 위치로 결정할 수 있다.The terminal can determine the center of a third circle having a diameter equal to a line segment connecting the first contact point near the GPS location and the GPS location as the location of the terminal based on the fact that there are two contact points.
상기 단말은 GPS accuracy 및 FTM accuracy를 더 고려하여 상기 단말의 위치를 결정할 수 있다.The above terminal can determine the location of the terminal by further considering GPS accuracy and FTM accuracy.
상기 단말은, 제1 접점 및 상기 GPS 위치 중에서, 더 높은 accuracy 를 갖는 위치에 인접하게 상기 단말의 위치를 보정할 수 있다.The terminal can correct the position of the terminal adjacent to a position having a higher accuracy among the first contact point and the GPS position.
상기 단말은 상기 접점이 1개인 것에 기초하여, 상기 단말은 상기 GPS 위치를 고려하지 않고 상기 1개의 접점을 상기 단말의 위치로 결정할 수 있다.Based on the fact that the terminal has one contact point, the terminal can determine the one contact point as the location of the terminal without considering the GPS location.
상기 1개의 접점은 상기 제1 원과 상기 제2 원이 내접하는 지점일 수 있다.The above one contact point may be a point where the first circle and the second circle are inscribed.
상기 단말은 상기 접점이 0개인 것에 기초하여, 상기 제1 장치와 상기 제2 장치를 연결하는 선분을 밑변으로 갖고 상기 GPS 위치를 꼭지점으로 갖는 삼각형의 무게중심을 상기 단말의 위치로 결정할 수 있다.The terminal can determine the center of gravity of a triangle having a line segment connecting the first device and the second device as a base and the GPS location as a vertex as the location of the terminal based on the fact that the contact point is 0.
상기 제1 장치 및 상기 제2 장치는 fixed device일 수 있다.The above first device and the above second device may be fixed devices.
상기 Ranging information은 상기 NAN Ranging을 통해서 거리 측정을 하겠다는 정보일 수 있다.The above Ranging information may be information that distance will be measured through the NAN Ranging.
상기 단말은 상기 FTM Sequence를 통해서 timestamp가 포함된 Wi-Fi 패킷의 송수신을 통해서 RTT(Round trip time)을 계산하고, 상기 RTT를 사용하여 상기 제1 장치와의 상대적인 거리 및 상기 제2 장치와의 상대적인 거리를 측정할 수 있다.The above terminal can calculate RTT (Round trip time) through transmission and reception of Wi-Fi packets including a timestamp through the FTM Sequence, and measure the relative distance to the first device and the relative distance to the second device using the RTT.
상기 NAN SDF Subscribe는 상기 Ranging information에 해당하는 range_configuration_parameters를 포함할 수 있다.The above NAN SDF Subscribe may include range_configuration_parameters corresponding to the above Ranging information.
상기 NAN SDF Follow-up은 V2X 서비스 데이터를 포함할 수 있다.The above NAN SDF Follow-up may include V2X service data.
일 실시예에 의하면, 일반적으로 V2X디바이스가 GPS을 통해서 측량된 위치의 정확도가 낮은데, Wi-Fi Aware의 FTM(Fine Timing Measurement)을 통해서 위치를 보정함으로써 보다 정밀한 위치 측정이 가능하게 된다 In one embodiment, the accuracy of the location measured by GPS by V2X devices is generally low, but by correcting the location through Wi-Fi Aware's FTM (Fine Timing Measurement), more precise location measurement is possible.
본 명세서에 첨부되는 도면은 실시예(들)에 대한 이해를 제공하기 위한 것으로서 다양한 실시형태들을 나타내고 명세서의 기재와 함께 원리를 설명하기 위한 것이다. The drawings attached to this specification are intended to provide an understanding of the embodiments and to illustrate various embodiments and, together with the description of the specification, to explain the principles.
도 1은 본 개시가 적용되는 시스템을 나타낸다.Figure 1 illustrates a system to which the present disclosure is applied.
도 2는 쿼드트리(quadtree)를 활용한 타일의 예를 보여준다. Figure 2 shows an example of a tile using a quadtree.
도 3은 구독 영역이 설정되는 일 예를 보여준다.Figure 3 shows an example of how a subscription area is set.
도 4는 V2X protocol stack를 도시한다.Figure 4 illustrates the V2X protocol stack.
도 5에는 V2X에서 MQTT를 이용하여 Geocast 하는 예가 도시되어 있다. Figure 5 shows an example of Geocasting using MQTT in V2X.
도 6 내지 8은 NAN을 설명하기 위한 도면이다.Figures 6 to 8 are drawings for explaining NAN.
도 9 내지 도 18은 실시예(들)을 설명하기 위한 도면이다.Figures 9 to 18 are drawings for explaining embodiment(s).
도 19 내지 도 22는 실시예(들)이 적용될 수 있는 다양한 장치를 설명하는 도면이다.Figures 19 to 22 are drawings illustrating various devices to which the embodiment(s) can be applied.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일 또는 유사한 구성요소에 대해서는 도면부호에 관계없이 동일한 참조번호를 부여하고 중복되는 설명은 생략한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만을 고려하여 부여 또는 혼용한 것으로, 그 자체로 뚜렷한 의미나 역할을 가지는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해하기 위한 것일 뿐, 본 명세서에 개시된 기술적 사상이 첨부된 도면에 의해 한정되는 것은 아니다.Hereinafter, the embodiments disclosed in this specification will be described in detail with reference to the attached drawings. Regardless of the drawing numbers, the same or similar components will be given the same reference numbers and redundant descriptions will be omitted. The suffixes "module" and "part" used for components in the following description are given or used interchangeably only in consideration of the ease of writing the specification, and do not have a distinct meaning or role in themselves. In addition, when describing the embodiments disclosed in this specification, if it is determined that a specific description of a related known technology may obscure the gist of the embodiments disclosed in this specification, the detailed description thereof will be omitted. In addition, the attached drawings are only for easily understanding the embodiments disclosed in this specification, and the technical ideas disclosed in this specification are not limited by the attached drawings.
제1, 제2 등의 서수를 포함하는 용어는 다양한 구성요소를 설명하기 위해 사용될 수 있으나, 이러한 용어에 의해 구성요소가 한정되는 것은 아니다. 위의 용어는 한 구성 요소를 다른 구성 요소와 구별하기 위한 목적으로만 사용된다.Terms including ordinal numbers such as first, second, etc. may be used to describe various components, but these terms do not limit the components. The above terms are used only to distinguish one component from another.
어떤 구성요소가 다른 구성요소와 "연결된다" 또는 "결합된다"고 언급될 때, 그것은 다른 구성요소와 직접적으로 연결되거나 결합될 수 있지만, 그 사이에 다른 구성요소가 존재할 수 있는 것으로 이해된다. 한편, 어떤 요소가 다른 요소와 "직접 연결" 또는 "직접 연결"되어 있다고 언급되는 경우에는 중간에 다른 요소가 존재하지 않는 것으로 이해되어야 한다.When an element is referred to as being "connected" or "coupled" to another element, it should be understood that it can be directly connected or coupled with the other element, but that there may be other elements in between. On the other hand, when an element is referred to as being "directly connected" or "directly coupled" to another element, it should be understood that there are no other elements in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서 "구성하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이나, 이것은 하나 이상의 다른 기능, 숫자, 단계, 작동, 구성 요소, 부품 또는 이들의 조합의 추가 또는 존재 가능성을 배제하지 않는 것으로 이해된다.In this application, the terms “comprise” or “have” are intended to specify the presence of a feature, number, step, operation, component, part or combination thereof described in the specification, but it is to be understood that this does not exclude the possibility of the addition or presence of one or more other features, numbers, steps, operations, components, parts or combinations thereof.
본 명세서의 일 실시예에 따른 차량은 도로 또는 선로를 주행하는 운송 수단일 수 있거나 정의될 수 있다. 차량은 자동차, 선박, 항공기, 기차, 오토바이, 자전거 등을 포함할 수 있다. 차량은 엔진을 동력원으로 하는 내연기관 차량, 엔진과 전기 모터를 동력원으로 하는 하이브리드 차량, 전기 모터를 동력원으로 하는 전기 자동차 및 이들의 조합을 포함할 수 있다.A vehicle according to one embodiment of the present specification may be or may be defined as a means of transportation that runs on a road or a track. The vehicle may include an automobile, a ship, an aircraft, a train, a motorcycle, a bicycle, and the like. The vehicle may include an internal combustion engine vehicle powered by an engine, a hybrid vehicle powered by an engine and an electric motor, an electric vehicle powered by an electric motor, and a combination thereof.
본 명세서의 일 실시예에 따른 V2X(Vehicle-to-Everything) 장치는 기존 V2X 장치일 수 있으며, 또는 소프트웨어 기반으로 사용자에게 V2X 기능 및 V2X 서비스를 제공하는 장치를 의미할 수 있으며 이 때 Soft V2X 장치라고도 지칭될 수 있다. V2X 장치는 UE(User Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), 휴대폰, 노트북, 핸드헬드 장치, 태블릿, 드론, 가전 제품 등. V2X 장치는 온보드 유닛(OBU)으로 차량 또는 전자 장치에 장착되어 차량에 V2X 기능 및 서비스를 제공할 수 있다. 차량 내부 또는 외부에 배치된 V2X 장치는 무선 인터페이스를 통해 차량과 연결되어 차량에 V2X 기능 및 V2X 서비스를 제공할 수 있다.A V2X (Vehicle-to-Everything) device according to one embodiment of the present specification may be an existing V2X device, or may mean a device that provides V2X functions and V2X services to users based on software, in which case it may also be referred to as a Soft V2X device. A V2X device may be a UE (User Equipment), an MS (Mobile Station), an MT (Mobile Terminal), a UT (User Terminal), a mobile phone, a laptop, a handheld device, a tablet, a drone, a home appliance, etc. A V2X device may be mounted on a vehicle or an electronic device as an onboard unit (OBU) to provide V2X functions and services to the vehicle. A V2X device placed inside or outside a vehicle may be connected to a vehicle via a wireless interface to provide V2X functions and V2X services to the vehicle.
본 개시의 다양한 실시 예에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A, B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. 나아가, “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.In various embodiments of the present disclosure, “/” and “,” should be interpreted as representing “and/or”. For example, “A/B” can mean “A and/or B”. Furthermore, “A, B” can mean “A and/or B”. Furthermore, “A/B/C” can mean “at least one of A, B, and/or C”. Furthermore, “A, B, C” can mean “at least one of A, B, and/or C”.
본 개시의 다양한 실시 예에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석되어야 한다.In various embodiments of the present disclosure, “or” should be interpreted as meaning “and/or.” For example, “A or B” can include “only A,” “only B,” and/or “both A and B.” In other words, “or” should be interpreted as meaning “additionally or alternatively.”
도 1은 본 개시가 적용되는 시스템을 나타낸다.Figure 1 illustrates a system to which the present disclosure is applied.
시스템은 UE(111)(또는 V2X 기기/장치)와 서버(121)(또는 V2X 서버)를 포함한다. UE(111)는 기지국(131) 또는 RSU(132)를 통해 서버(121)와 통신할 수 있다. UE(111)는 무선 통신 프로토콜을 사용하여 기지국(131), RSU(Road Side Unit)(132), 주변(neighbor) 차량(133) 및/또는 주변 UE와 통신할 수 있다. 무선 통신 프로토콜에는 제한이 없으며, 예를 들어, DSRC(Dedicated Short Range Communications), C-V2X(Cellular-V2X), WiFi, 블루투스 및/또는 3GPP(3rd Generation Partnership Project) 기반의 셀룰라 통신 프로토콜(예, WCDMA(Wideband Code Division Multiple Access), LTE(Long Term Evolution), NR(New Radio) 등)를 포함할 수 있다. The system includes a UE (111) (or a V2X device/device) and a server (121) (or a V2X server). The UE (111) can communicate with the server (121) via a base station (131) or an RSU (132). The UE (111) can communicate with the base station (131), the RSU (Road Side Unit) (132), a neighboring vehicle (133), and/or a neighboring UE using a wireless communication protocol. There is no limitation on the wireless communication protocol, and may include, for example, DSRC (Dedicated Short Range Communications), C-V2X (Cellular-V2X), WiFi, Bluetooth, and/or 3GPP (3rd Generation Partnership Project) based cellular communication protocols (e.g., WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), NR (New Radio), etc.).
서버(121)는 관리하는 영역내의 하나 또는 그 이상으로 UE(111)로부터 V2X 메시지를 수신한다. 서버(121)는 구독 중인 UE(111)에게 수집된 하나 또는 그 이상의 V2X 메시지를 포워딩할 수 있다. The server (121) receives V2X messages from one or more UEs (111) within the area it manages. The server (121) can forward one or more collected V2X messages to the subscribed UEs (111).
V2X 메시지는 UE(111)(또는 RSU(132))에 의해 서버(121)로 주기적으로 또는 비주기적으로 전송되고, UE(111)(또는 RSU(132)에 의해 관리되는 기기)의 상태 정보를 제공하는 메시지이다. 예를 들어, UE(111)는 초당 10개의 V2X 메시지를 전송할 수 있다. 서버(121)는 다수의 UE로부터 V2X 메시지를 수집하고, 구독 중인 UE에게 V2X 메시지를 포워딩한다. A V2X message is a message that is transmitted periodically or aperiodically by a UE (111) (or an RSU (132)) to a server (121) and provides status information of the UE (111) (or a device managed by the RSU (132)). For example, the UE (111) can transmit 10 V2X messages per second. The server (121) collects V2X messages from multiple UEs and forwards the V2X messages to subscribed UEs.
다음 표는 V2X 메시지에 포함되는 정보 요소들의 예를 나타낸다. 모든 정보 요소가 필수적인 것은 아니며, 명칭은 예시에 불과하다. 정책이나 상황에 따라 정보 요소가 추가/변경/삭제될 수 있다.The following table shows examples of information elements included in V2X messages. Not all information elements are required, and the names are only examples. Information elements may be added/changed/deleted depending on policy or situation.
UE(111)가 서버(121)로 전송하는 V2X 메시지를 UL(uplink) V2X 메시지라 하고, 서버(121)가 UE(111)로 전송하는 V2X 메시지를 DL(downlink) V2X 메시지라 한다.The V2X message that the UE (111) transmits to the server (121) is called an UL (uplink) V2X message, and the V2X message that the server (121) transmits to the UE (111) is called a DL (downlink) V2X message.
UE(111)는 프로세서(112)와 메모리(113)를 포함할 수 있다. 프로세서(112)는 UE(111)의 기능을 구현하며, 하나 또는 그 이상의 소프트웨어 모듈을 포함할 수 있다. UE(111)는 디스플레이, 사용자 인터페이스, 무선 모뎀 등 기능에 따라 다양한 부가적인 장치를 더 포함할 수 있다.The UE (111) may include a processor (112) and a memory (113). The processor (112) implements the function of the UE (111) and may include one or more software modules. The UE (111) may further include various additional devices depending on the function, such as a display, a user interface, and a wireless modem.
서버(121)는 하나 또는 그 이상의 기지국(131) 및/또는 RSU(132)와 연결되어, UE(111)에게 V2X 기능 및 서비스를 제공하는 컴퓨팅 하드웨어를 포함한다. 서버(121)는 MEC(Mobile/Multi-access Edge Computing) 기반의 서버이거나 중앙 집중 기반의 서버일 수 있다. 서버(121)는 Geocast 서버, Soft V2X서버, V2X 어플리케이션 서버 등 다른 명칭으로 불릴 수 있다. 서버(121)는 프로세서(122)와 메모리(123)를 포함할 수 있다. 프로세서(122)는 서버(121)의 기능을 구현하며, 하나 또는 그 이상의 소프트웨어 모듈을 포함할 수 있다. The server (121) includes computing hardware that is connected to one or more base stations (131) and/or RSUs (132) and provides V2X functions and services to the UE (111). The server (121) may be a MEC (Mobile/Multi-access Edge Computing)-based server or a centralized-based server. The server (121) may be called by other names such as a Geocast server, a Soft V2X server, a V2X application server, etc. The server (121) may include a processor (122) and a memory (123). The processor (122) implements the functions of the server (121) and may include one or more software modules.
프로세서(112, 122)는 ASIC(application-specific integrated circuit), CPU(central processing unit), AP(application processor), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 제어기, 칩셋, 논리 회로, 데이터 처리 장치 및/또는 이들의 조합을 포함할 수 있다. 이하의 실시예에 대한 소프트웨어 구현에 있어서, 여기서 기술된 기능을 수행하는 소프트웨어 코드는 메모리(113, 123)에 저장되고, 프로세서(112, 122)에 의해 처리될 수 있다.The processor (112, 122) may include an application-specific integrated circuit (ASIC), a central processing unit (CPU), an application processor (AP), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), a microcontroller, a chipset, a logic circuit, a data processing device, and/or a combination thereof. In the software implementation of the embodiments below, software codes for performing the functions described herein may be stored in the memory (113, 123) and processed by the processor (112, 122).
메모리(113, 123)는 프로세서(112, 122)에 의해 액세스 가능한 정보를 저장할 수 있다. 상기 정보는 프로세서(112, 122)에 의해 실행 가능한 명령어(instructions) 및/또는 프로세서에 의해 처리되는 데이터를 포함할 수 있다. 메모리(113, 123)는 정보를 저장하도록 동작하는 어떤 형태의 컴퓨터 읽기 가능한 매체(computer-readable medium)를 포함할 수 있다. 예를 들어, 메모리(113, 123)는 ROM(read only memory), RAM(random access memory), DVD(digital video disc), 옵티칼 디스크(optical disc), 플래쉬 메모리, SSD(Solid State Drive), 하드 드라이브(hard drive) 및 이들의 조합을 포함할 수 있다.The memory (113, 123) can store information accessible by the processor (112, 122). The information can include instructions executable by the processor (112, 122) and/or data processed by the processor. The memory (113, 123) can include any form of computer-readable medium that operates to store information. For example, the memory (113, 123) can include a read only memory (ROM), a random access memory (RAM), a digital video disc (DVD), an optical disc, a flash memory, a solid state drive (SSD), a hard drive, and combinations thereof.
UE(111)와 서버(121)간의 메시지 프로토콜(message protocol)로 MQTT(Message Queuing Telemetry Transport)이 사용되지만, 이는 예시에 불과하다. AMQP(Advanced Message Queuing Protocol), HTTP(HyperText Transfer Protocol) 및/또는 밴더 특정적(vendor specific) 프로토콜이 사용될 수 있다.MQTT (Message Queuing Telemetry Transport) is used as a message protocol between UE (111) and server (121), but this is only an example. AMQP (Advanced Message Queuing Protocol), HTTP (HyperText Transfer Protocol) and/or vendor specific protocols may be used.
이제 V2X 서비스를 위한 영역의 설정에 대해 보다 구체적으로 기술한다. 이하에서 타일(tile)은 구독 영역을 설정하기 위한 지리적 기본 단위를 말한다. 이하에서는 타일 형태로 사각형을 나타내지만, 예시에 불과하다. 다각형, 원형 등 타일의 형태에 제한이 없다.Now, let's describe in more detail the setting of the area for V2X service. Hereinafter, tile refers to the basic geographical unit for setting the subscription area. Hereinafter, the tile shape is shown as a square, but it is only an example. There is no limitation on the shape of the tile, such as polygon or circle.
도 2는 쿼드트리(quadtree)를 활용한 타일의 예를 보여준다. Figure 2 shows an example of a tile using a quadtree.
쿼드트리는 지도(예, 세계 지도)를 이차원으로 4등분하여 4분면, 서브4분면 등 공간의 분할로 나타낸 것이다(The quadtree represents a partition of space in two dimensions by decomposing a map (i.e. world map) into four equal quadrants, subquadrants, and so on). 줌 레벨(zoom level)에 따라 사분면(quadrant)의 크기는 달라지고, 각 사분면이 타일에 해당된다. 여기서는, 레벨이 1, 2, 3인 경우를 보여준다. 레벨이 커질수록, 타일의 크기는 작아진다. 각 레벨에서 타일에는 고유한 ID(identifier)가 할당된다. 타일 ID는 레벨에 해당되는 비트수를 가질 수 있다. 예를 들어 쿼드트리의 각 내부 노드는 4개의 하위부를 가질 수 있다.A quadtree represents a partition of space in two dimensions by decomposing a map (i.e. a world map) into four equal quadrants, subquadrants, and so on. The size of the quadrants varies depending on the zoom level, and each quadrant corresponds to a tile. Here, we show the cases where the levels are 1, 2, and 3. As the level increases, the size of the tiles decreases. At each level, a unique ID (identifier) is assigned to the tiles. The tile ID can have a number of bits corresponding to the level. For example, each internal node of the quadtree can have four subordinate parts.
UE는 자신의 위치 정보(예, 위도와 경도)를 기반으로 자신이 위치하는 타일의 ID를 획득할 수 있다. UE 및/또는 서버는 상황에 따라 레벨을 조정하여, 영역의 크기를 조절할 수 있다.The UE can obtain the ID of the tile it is located in based on its location information (e.g., latitude and longitude). The UE and/or the server can adjust the level according to the situation to adjust the size of the area.
이하의 실시예에 있어서, V2X 서비스를 위한 영역은 다음과 같다.In the following examples, the areas for V2X services are as follows.
- 관리 영역(management area) : 대규모 사용자나 넓은 지역을 서비스 하기 위해서, 한대 이상의 서버가 지역을 분산하여 관리할 때, 서버에 의해 관리되는 영역. 관리 영역은 하나 또는 그 이상의 타일을 포함한다. - Management area: When one or more servers manage the area in a distributed manner to serve a large number of users or a wide area, the area managed by the server. The management area includes one or more tiles.
- 구독 영역(subscription area) : UE가 서버에게 구독을 신청한 영역. 구독 영역은 관심 영역(concerned area), 임팩트 영역(impact area), Geocast 영역 등 다른 명칭으로 불릴 수 있다. 구독 영역은 하나 또는 그 이상의 타일을 포함한다. 구독 영역은 하나의 관리 영역에 포함될 수 있고, 복수의 서버에 의한 복수의 관리 영역에 걸쳐 정의될 수도 있다.- Subscription area: The area to which the UE has requested a subscription from the server. The subscription area may be called by other names such as the concerned area, the impact area, and the Geocast area. The subscription area contains one or more tiles. The subscription area may be included in one management area, or may be defined across multiple management areas by multiple servers.
- 퍼블리시 영역(publishing area) : UE가 서버로 V2X 메시지를 전송하는 영역. 퍼블리시 영역은 각 레벨에서 하나 또는 그 이상의 타일을 포함할 수 있다. 퍼블리시 영역은 UE가 현재 위치한 타일을 나타낼 수 있다. 퍼블리시 영역의 일부 또는 전부는 구독 영역과 중복될(overlap) 수 있다.- Publishing area: The area where the UE transmits V2X messages to the server. The publishing area may include one or more tiles at each level. The publishing area may indicate the tile where the UE is currently located. Part or all of the publishing area may overlap with the subscription area.
도 3은 구독 영역이 설정되는 일 예를 보여준다.Figure 3 shows an example of how a subscription area is set.
제1 UE(310)(예를 들어, 제1 V2X 장치(310)와 관련된 사람 주위의 왼쪽으로 경사진 해싱)에 제1 구독 영역이 설정되고, 제2 UE(320)(예를 들어, 제2 V2X 장치(320)와 관련된/해당하는 차량 주변의 오른쪽으로 경사진 해싱)에 제2 구독 영역이 설정된다. 각 UE는 주기적으로 또는 비주기적으로(예, 자신의 위치가 변경될 때) 구독 영역을 설정/변경/삭제할 수 있다. 각 UE는 서버로 구독 영역의 설정/변경/삭제를 요청할 수 있다. A first subscription area is set for a first UE (310) (e.g., a left-sloping hash around a person associated with the first V2X device (310)), and a second subscription area is set for a second UE (320) (e.g., a right-sloping hash around a vehicle associated with/corresponding to the second V2X device (320). Each UE can set/change/delete a subscription area periodically or aperiodically (e.g., when its location changes). Each UE can request the server to set/change/delete a subscription area.
제1 구독 영역에 포함되는 타일의 수는 9이고, 제2 구독 영역에 포함되는 타일의 수는 25이지만, 구독 영역에 포함되는 타일의 개수나 구독 영역의 형태에 제한이 있는 것은 아니다. 구독 영역은 UE가 위치하는 타일을 포함할 수 있다. 또는, 구독 영역은 UE가 위치하는 타일을 제외한 하나 또는 그 이상의 타일을 포함할 수 있다. The number of tiles included in the first subscription area is 9, and the number of tiles included in the second subscription area is 25, but there is no limitation on the number of tiles included in the subscription area or the shape of the subscription area. The subscription area may include a tile where the UE is located. Alternatively, the subscription area may include one or more tiles excluding the tile where the UE is located.
제1 UE(310)는 제1 V2X 메시지를 생성하고, 서버로 주기적으로 보낼 수 있다. 제2 UE(320)는 제2 V2X 메시지를 생성하고, 서버로 주기적으로 보낼 수 있다.A first UE (310) can generate a first V2X message and send it periodically to a server. A second UE (320) can generate a second V2X message and send it periodically to a server.
서버는 구독 영역내 또는 주변에서 수신되는 하나 또는 그 이상의 V2X 메시지를 상기 구독 영역에 연관되는 UE에게 포워딩할 수 있다.The server may forward one or more V2X messages received within or around the subscription area to UEs associated with the subscription area.
구독 영역을 설정하는 기기를 ‘구독자 기기(subscriber device)’라 할 수 있다. 서버로 V2X 메시지를 전송하는 기기를 ‘발행자 기기(Publisher device)’라 할 수 있다. UE는 구독자 기기가 되거나, 제공자 기기가 되거나, 구독자 기기 및 제공자 기기 양자가 될 수 있다. 서버는 관리 영역 내 제공자 기기들에 의해 전송된 V2X 메시지들을 상기 구독자 기기에게 포워딩할 수 있다.A device that sets up a subscription area may be called a ‘subscriber device’. A device that transmits V2X messages to a server may be called a ‘publisher device’. A UE may be a subscriber device, a provider device, or both a subscriber device and a provider device. The server may forward V2X messages transmitted by provider devices within the management area to the subscriber device.
서버는 구독자 기기의 구독 영역에 ‘연관되는(associated)’ 제공자 기기의 V2X 메시지를 구독자 기기로 전달할 수 있다. 구독자 기기의 구독 영역에 연관되는(associated) 제공자 기기를 ‘구독된 제공자 기기’라 할 수 있다. 구독자 기기의 구독 영역에 연관되는(associated) 제공자 기기는 다음 조건 (i)~(iii) 중 적어도 어느 하나를 만족할 수 있다. (i) 제공자 기기의 퍼블리시 영역의 일부 또는 전부가 구독자 기기의 구독 영역과 중복된다. (ii) 제공자 기기의 구독 영역의 일부 또는 전부가 구독자 기기의 구독 영역과 중복된다. (iii) 제공자 기기가 V2X 메시지를 전송하는 위치가 구독자 기기의 구독 영역 내이다. The server can forward V2X messages of provider devices that are “associated” with the subscription area of the subscriber device to the subscriber device. A provider device that is associated with the subscription area of the subscriber device may be referred to as a “subscribed provider device.” A provider device that is associated with the subscription area of the subscriber device may satisfy at least one of the following conditions (i) to (iii): (i) Part or all of the publish area of the provider device overlaps with the subscription area of the subscriber device. (ii) Part or all of the subscription area of the provider device overlaps with the subscription area of the subscriber device. (iii) The location where the provider device transmits the V2X messages is within the subscription area of the subscriber device.
조건 (i) 또는 (iii)에 의하면, 서버는 제1 UE(310)에게 제1 구독 영역내에서 수신되는 V2X 메시지를 전달한다. 서버는 제2 UE(320)에게 제2 구독 영역내에서 수신되는 V2X 메시지를 전달한다. According to condition (i) or (iii), the server forwards the V2X message received within the first subscription area to the first UE (310). The server forwards the V2X message received within the second subscription area to the second UE (320).
제1 UE(310)는 제2 구독 영역내에 위치하므로, 서버는 제2 UE(320)로 제1 V2X 메시지를 포워딩할 수 있다. 제2 UE(320)는 구독자 기기이고, 제1 UE(310)는 구독된 제공자 기기가 된다.Since the first UE (310) is located within the second subscription area, the server can forward the first V2X message to the second UE (320). The second UE (320) is a subscriber device, and the first UE (310) is a subscribed provider device.
제2 UE(320)는 제1 구독 영역내에 위치하지 않으므로(이는 조건 (i) 또는 조건 (iii)을 만족하지 않음을 의미한다), 서버는 제1 UE(310)로 제2 V2X 메시지를 포워딩하지 않는다. (예를 들어, 사람이 차량의 구독 영역에 있어 차량이 사람으로부터 V2X 메시지를 수신할 수 있지만, 차량이 아직 사람의 구독 영역에 있지 않아 상황에 따라 사람이 차량으로부터 V2X 메시지를 수신하지 못할 수 있다). 즉, 제1 V2X 장치(310)와 제2 V2X 장치(320)에 서로 다른 영역 또는 구역을 설정하여, 제2 V2X 장치(320)는 제1 V2X 장치(310)를 인식하고 제1 V2X 장치(310)는 아직 인식하지 못할 수 있다. 제2 V2X 기기(320)의 구독 영역은 제1 V2X 기기(310)가 훨씬 작기 때문이다. 제2 UE(320)는 제1 UE(310)의 제공자 기기가 아니다. 그러나 조건 (ii)를 고려하면, 제2 UE(320)는 제1 UE(310)의 제공자 기기가 될 수 있다. (예를 들어, 조건 (i) 및 (iii)이 충족되지 않더라도, 조건 (ii)가 충족되면 서버는 여전히 두 번째 V2X 장치에서 첫 번째 V2X 장치로 메시지를 전달하도록 구성될 수 있음)Since the second UE (320) is not located within the first subscription area (which means that condition (i) or condition (iii) is not satisfied), the server does not forward the second V2X message to the first UE (310). (For example, the person may be in the subscription area of the vehicle and the vehicle may receive a V2X message from the person, but the vehicle may not be in the subscription area of the person yet and the person may not receive a V2X message from the vehicle depending on the situation.) That is, by setting different areas or zones to the first V2X device (310) and the second V2X device (320), the second V2X device (320) may recognize the first V2X device (310) but may not recognize the first V2X device (310) yet. This is because the subscription area of the second V2X device (320) is much smaller than that of the first V2X device (310). The second UE (320) is not a provider device of the first UE (310). However, considering condition (ii), the second UE (320) can be a provider device of the first UE (310). (For example, even if conditions (i) and (iii) are not met, the server can still be configured to forward messages from the second V2X device to the first V2X device if condition (ii) is met.)
도 4에는 UE, 스마트폰 등에서 동작할 수 있는 Soft V2X protocol stack 혹은 V2N2X(Vehicle-to-Network-toEverything) protocol stack이 도시되어 있다. 도 4을 참조하여 Soft V2X protocol stack 각 계층에 대해 설명한다. 여기서 Soft V2X라 함은 이하에서 설명되는 방식이 사용되는 하나의 V2X 통신 방식으로써, 이하의 설명이 Soft V2X라는 용어에 한정되는 것은 아니다. 또한 이하의 설명에 상응하는 통신 방식을 지칭하는 다른 용어들도 본 발명에서의 Soft V2X 에 해당한다고 볼 수 있다.]FIG. 4 illustrates a Soft V2X protocol stack or V2N2X (Vehicle-to-Network-to-Everything) protocol stack that can operate in UE, smartphones, etc. Each layer of the Soft V2X protocol stack will be described with reference to FIG. 4. Here, Soft V2X refers to a V2X communication method in which the method described below is used, and the description below is not limited to the term Soft V2X. In addition, other terms that refer to communication methods corresponding to the description below can also be considered to correspond to Soft V2X in the present invention.
Cellular Modem은 셀룰러 망을 사용하는 모뎀을 위한 계층(물리 계층 또는 미디어 계층)이다. 셀룰러 네트워크는 지역을 여러 개의 셀로 분할하여 통신망을 구성, 운용하는 것으로, 여기서 셀은 하나의 기지국을 포함하는 분할된 지역을 의미한다. 셀룰러 네트워크 통신 기술에는 5G NR(New RAT), LTE(Long Term Evolution) 등이 포함될 수 있다. Soft V2X에서는 V2X의 경우와 달리 유니캐스트 통신을 수행한다. Cellular Modem is a layer (physical layer or media layer) for modems that use cellular networks. Cellular networks are networks that divide regions into multiple cells to form and operate communications networks, where a cell refers to a divided region that includes one base station. Cellular network communication technologies may include 5G NR (New RAT), LTE (Long Term Evolution), etc. Unlike V2X, Soft V2X performs unicast communications.
Soft V2X protocol 에서 network / transport layer는 Cellular 망에서 사용하는 IP / TCP를 사용한다.In the Soft V2X protocol, the network/transport layer uses IP/TCP used in cellular networks.
TLS(Transport Layer Security) 계층은 transport layer security를 사용하여 confidentiality를 보장하기 위한 것으로, 인증서는 공개 키 기반(PKI)의 ITU-T 표준인 X.509를 사용한다. 또한, Soft V2X protocol은 특정 지역에 있는 사용자에게만 Message를 전송하는 Geocast 기능을 수행하도록 구성되는데, 이를 위해 발행-구독 기반의 메시징 프로토콜인 MQTT(Message Queuing Telemetry Transport)를 사용한다.The TLS (Transport Layer Security) layer is to ensure confidentiality by using transport layer security, and the certificate uses X.509, an ITU-T standard based on public key infrastructure (PKI). In addition, the Soft V2X protocol is configured to perform a Geocast function that transmits messages only to users in a specific area, and uses MQTT (Message Queuing Telemetry Transport), a publish-subscribe based messaging protocol, for this purpose.
계속해서, Soft V2X 에서는 SAE J2735 (BSM, PSM, RSA 등)에 정의된 message를 사용한다. SAE J2735 는 V2V/V2I 통신을 위한 메시지, 데이터 프레임, 요소 형식 및 구조 등 신호규격에 대해 정의하며, 주요 메시지는 다음 표 2와 같다.Continuing, Soft V2X uses messages defined in SAE J2735 (BSM, PSM, RSA, etc.). SAE J2735 defines signal standards for V2V/V2I communication, including messages, data frames, element formats, and structures, and the main messages are as shown in Table 2 below.
(Real-Time Differential Correction Maritime)RTCMCorrections
(Real-Time Differential Correction Maritime)
계속해서, Classification 계층은 알고리즘을 수행하여 위험판단에 필요한 data를 생성하며, Application 계층은 Classification을 올려준 Data를 기반으로 위험여부를 판단하여 smartphone을 소유한 보행자 및 운전자에게 위험을 알릴 수 있다.Next, the Classification layer performs an algorithm to generate data necessary for risk assessment, and the Application layer can determine the risk based on the data submitted for classification and notify pedestrians and drivers with smartphones of the risk.
도 5에는 Soft V2X에서 MQTT를 이용하여 Geocast 하는 예가 도시되어 있다. Broadcast 통신을 하는 legacy V2X에서는 동일지역에 있는 device 들은 자연스럽게 broadcast channel을 통해 message (BSM 등)을 받을 수 있다. 그러나 Cellular 망은 unicast 통신을 사용하므로 Soft V2X 에서는 MQTT를 이용하여 같은 지역에 있는 device들에게 모두 unicast 전송을 수행하여 broadcast 같은 효과를 볼 수 있다. Figure 5 shows an example of Geocasting using MQTT in Soft V2X. In legacy V2X that uses broadcast communication, devices in the same area can naturally receive messages (such as BSM) through the broadcast channel. However, since Cellular networks use unicast communication, Soft V2X can achieve the same effect as broadcasting by performing unicast transmission to all devices in the same area using MQTT.
MQTT 통신을 하기 위해서는 TLS를 이용하여 먼저 모든 Node와 server간에 secure session이 맺어진다. 각 Node는 먼저 CONNECT 과정을 수행한 후 특정 topic에 SUBSCRIBE 과정을 수행할 수 있다(도 5의 S501~S503). 이때 topic 선택은 지역에 따라 다르게 선택한다. Map을 tile로 나누어 각 tile 별로 같은 topic 값이 부여될 수 있다. 따라서 각 Node들은 자신이 위치한 tile에 따라 topic을 선택하여 SUBSCRIBE를 수행한다. 예를 들어, 도 5에서는 Node1, 2, 3이 모두 같은 tile(지역)에 존재하여 같은 topic 1에 SUBSCRIBE 하였다.(도 5의 S504~506)In order to communicate MQTT, a secure session is first established between all nodes and the server using TLS. Each node first performs the CONNECT process and then can perform the SUBSCRIBE process on a specific topic (S501~S503 in Fig. 5). At this time, the topic selection is selected differently depending on the region. The map can be divided into tiles and the same topic value can be assigned to each tile. Therefore, each node selects a topic according to the tile it is located in and performs SUBSCRIBE. For example, in Fig. 5,
Node1이 PUBLISH (BSM)을 MQTT server로 전송(S507)하면 server는 topic1에 가입된 모든 Node 들에서 unicast 방식으로 PUBLISH (BSM)을 전달한다(S508, S509). Node2, 3은 수신한 BSM message를 기반으로 Classification 및 Threat assessment를 수행하여 위험을 감지한 경우 이를 smartphone 사용자 (보행자, 운전자)에게 알린다. 자동차는 BSM, 보행자는 PSM을 전송하며 이 message들에는 기본적으로 위험 감지에 필요한 정보 (ID, 위치, 속도, 가속도, 방향 등)의 정보를 가지고 있다.When Node1 transmits PUBLISH (BSM) to the MQTT server (S507), the server transmits PUBLISH (BSM) in unicast to all Nodes subscribed to topic1 (S508, S509).
NAN (Neighbor Awareness Network)NAN (Neighbor Awareness Network)
Wi-Fi Aware(NAN; Neighbor Awareness Network, Wi-Fi Aware)는 Wi-Fi Alliance에서 정의한 802.11 PHY를 그대로 사용하는 MAC 계층의 통신 표준이다. 기존 Wi-Fi는 AP를 통한 인터넷 연결을 목표로 하지만, Wi-Fi Aware는 주변 기기간에 서비스를 검색하고 간단한 메시지를 주고 받기 위한 목적으로 개발되었다. NAN 기기는 NAN cluster를 구성하고 NAN cluster 내에 기기들이 송수신을 위한 구간의 동기를 맞추고 상위 계층의 서비스를 검색하기 위한 광고(Publish)나 구독(Subscribe)를 할 수 있다. 또한 NAN SDF(Service Discovery Frame) Follow-up Message와 같이 짧은 길이의 메시지를 송수신 할 수 있다. 도 6(a)은 표준규격에서 정의한 NAN Cluster의 형태을 보여준다. 또한 Wi-Fi Aware는 NAN디바이스들 사이에 거리를 측정하는 NAN Ranging이라는 기능을 제공하여, 두 NAN device가 FTM packet을 주고받음으로써 패킷의 전송시간을 기반으로 상대의 거리를 측정할 수 있다.Wi-Fi Aware (NAN; Neighbor Awareness Network, Wi-Fi Aware) is a communication standard of the MAC layer that uses the 802.11 PHY defined by the Wi-Fi Alliance as it is. While the existing Wi-Fi aims for Internet connection through AP, Wi-Fi Aware was developed for the purpose of searching for services and exchanging simple messages between surrounding devices. NAN devices form a NAN cluster, and devices within the NAN cluster can synchronize the transmission and reception sections and advertise (Publish) or subscribe (Subscribe) to search for upper-layer services. It can also send and receive short-length messages such as the NAN SDF (Service Discovery Frame) Follow-up Message. Fig. 6(a) shows the form of the NAN Cluster defined in the standard. In addition, Wi-Fi Aware provides a function called NAN Ranging that measures the distance between NAN devices, so that two NAN devices can measure the distance to each other based on the transmission time of packets when they exchange FTM packets.
도 6(b)는 NAN 표준에서 정의하는 기능적 구조를 나타낸다. NAN은 기존의 Wi-Fi의 물리 계층을 그대로 사용하고, 상위 MAC(Medium Access Control) 계층과 검색(NAN Discovery), 거리(Ranging), 데이터통신(NAN Data)을 포함하는 NAN Engine을 정의하고 있다. NAN Engine은 상위 임의의 어플리케이션에게 NAN 기능을 제공하는 NAN API를 제공한다.Figure 6(b) shows the functional structure defined in the NAN standard. NAN uses the existing physical layer of Wi-Fi as it is, and defines the NAN Engine including the upper MAC (Medium Access Control) layer and search (NAN Discovery), distance (Ranging), and data communication (NAN Data). The NAN Engine provides the NAN API, which provides NAN functions to upper arbitrary applications.
도 7에는 본 실시예가 적용될 수 있는 V2X 서비스의 연결형태의 일 예가 도시되어 있다. 본 개시에서 고려하는 V2X 서비스는 차량, 보행자, 고정된 시설물과 같은 기기로 구성되어 교통안전, 에너지절약, 이동 효율성을 위해서 서로 통신하는 서비스 혹은 어플리케이션이다. 실시예에서는 인터넷, 클라우드를 통해서 다른 V2X 디바이스와 정보를 주고 받는 V2I(Vehicle-to-Interface) 혹은 V2C(Vehicle-to-Cloud)의 연결 형태를 갖지만 이에 한정되지 않고, 차량간 직접통신이나 차량과 infrastructure 간 통신 등에도 적용할 수 있다. 실시예의 V2X 서비스에서는 차량과 보행자의 디바이스는 인터넷 망과 연결을 위해서 여러가지 통신 방법을 사용할 수 있다. 예를 들면 도 7에서 보행자는 스마트폰의 이동통신 (LTE/5G)를 통해서 인터넷 클라우드에 연결되며, 차량 은 운전자의 스마트폰 혹은 OBU의 이동통신. 혹은 C-V2X, WAVE를 통해서 통신하게 된다. CCTV 혹은 RSU는 유선 Ethernet을 통해서 인터넷에 연결될 수 있다.FIG. 7 illustrates an example of a connection type of a V2X service to which the present embodiment can be applied. The V2X service considered in the present disclosure is a service or application that is composed of devices such as vehicles, pedestrians, and fixed facilities and communicates with each other for traffic safety, energy conservation, and mobility efficiency. In the embodiment, it has a connection type of V2I (Vehicle-to-Interface) or V2C (Vehicle-to-Cloud) that exchanges information with other V2X devices via the Internet or cloud, but is not limited thereto, and can be applied to direct vehicle-to-vehicle communication or vehicle-to-infrastructure communication, etc. In the V2X service of the embodiment, the devices of the vehicle and the pedestrian can use various communication methods to connect to the Internet network. For example, in FIG. 7, the pedestrian is connected to the Internet cloud via the mobile communication (LTE/5G) of the smartphone, and the vehicle communicates via the mobile communication of the driver's smartphone or OBU, or C-V2X, WAVE. CCTV or RSU can be connected to the Internet via wired Ethernet.
도 8에는 본 실시예에 사용될 수 있는 V2X Service/Application과 통신 인터페이스가 예시되어 있다. 본 개시에서 고려하는 V2X 디바이스는 기존에 V2X 서비스를 위해서 사용하는 통신 기술 외에 Wi-Fi 및 Wi-Fi NAN(Wi-Fi Aware) 기술을 함께 지원하게 된다. 이는 스마트폰과 같이 기존 ICT 기기에서는 매우 일반적인 상황이며, OBU나 RSU와 같은 기기에서도 큰 어려움 없이 다중 통신 인터페이스를 지원할 수 있다. 기존 이동통신 기술의 경우 기존과 동일하게 V2X 서비스를 위해서 사용하며, GPS 인터페이스는 기존과 동일하게 V2X 디바이스의 위치를 측량하기 위해서 사용한다. 이 때 NAN(Wi-Fi Aware)은 근접한 V2X 디바이스가 동일 V2X 서비스 지원하는지 추가로 서비스 검색하고, 짧은 길이의 추가 데이터 송수신과 FTM을 통한 상대와 거리를 측정하는데 사용할 수 있다.FIG. 8 illustrates an example of a V2X Service/Application and a communication interface that can be used in the present embodiment. The V2X device considered in the present disclosure supports Wi-Fi and Wi-Fi NAN (Wi-Fi Aware) technology in addition to the communication technology used for existing V2X services. This is a very common situation in existing ICT devices such as smartphones, and devices such as OBUs and RSUs can also support multiple communication interfaces without much difficulty. In the case of existing mobile communication technologies, they are used for V2X services in the same way as before, and the GPS interface is used to measure the location of the V2X device in the same way as before. At this time, NAN (Wi-Fi Aware) can be used to additionally search for services whether nearby V2X devices support the same V2X service, to transmit and receive short-length additional data, and to measure the distance to the counterpart through FTM.
이하에서는 Soft V2X 단말이 NAN에 기초하여, V2X서비스 검색하고, 위치를 측정하고, 위치 보정을 수행하는 본 발명의 실시예에 대해 설명한다.Below, an embodiment of the present invention is described in which a Soft V2X terminal searches for V2X services, measures location, and performs location correction based on NAN.
일 실시예에 의한 단말은 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. A terminal according to one embodiment may include at least one processor; and at least one computer memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
상기 동작들은, 상기 단말은 제1 장치(도 9의 NAN 1) 및 제2 장치 (NAN 2)를 포함하는 NAN cluster를 검색 절차를 수행(도 9의 912)하고, 상기 단말은 상기 제1 장치 및 상기 제2 장치로부터 Ranging information을 포함하는 NAN SDF Subscribe를 수신(914, 921)할 수 있다.The above operations can be performed by the terminal performing a search procedure (912 of FIG. 9) for a NAN cluster including a first device (
상기 단말은 NAN Ranging 및 FTM Sequence에 기초하여 상기 제1 장치와의 상대적인 거리 및 상기 제2 장치와의 상대적인 거리를 측정할 수 있다. The above terminal can measure the relative distance to the first device and the relative distance to the second device based on NAN Ranging and FTM Sequence.
또한, 상기 단말은 NAN SDF Follow-up을 통해 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치를 수신(916, 923)할 수 있다.Additionally, the terminal can receive the absolute location of the first device and the absolute location of the second device through NAN SDF Follow-up (916, 923).
상기 단말은 상기 제1 장치와의 상대적인 거리, 상기 제2 장치와의 상대적인 거리, 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치에 기초하여, 상기 단말의 위치를 결정할 수 있다.The terminal can determine the location of the terminal based on the relative distance from the first device, the relative distance from the second device, the absolute location of the first device, and the absolute location of the second device.
여기서, 상기 단말은, 상기 제1 장치와의 상대적인 거리 및 상기 제1 장치의 절대 위치에 기초한 제1 원(Circle)과, 상기 제2 장치와의 상대적인 거리 및 상기 제2 장치의 절대 위치에 기초한 제2 원 사이의 0개 이상의 접점을 도출하고, 상기 0개 이상의 접점 및 GPS 위치에 기초하여, 상기 단말의 위치를 결정할 수 있다.Here, the terminal can derive zero or more contact points between a first circle based on a relative distance from the first device and an absolute position of the first device, and a second circle based on a relative distance from the second device and an absolute position of the second device, and determine a location of the terminal based on the zero or more contact points and a GPS location.
상기 실시예는, 도 9에 상세히 예시되어 있다. 우선 도 9에 관련된 설명을 통해 각 단계에 대해 상세히 살펴보고, 상기 단말의 위치를 결정하는 방법에 대해 설명한다.The above embodiment is illustrated in detail in Fig. 9. First, each step will be examined in detail through a description related to Fig. 9, and a method for determining the position of the terminal will be described.
단계 911에서, 이 고정된 기기는 모두 같은 Wi-Fi 전송범위 내에 위치하고 있어 동일한 NAN Cluster를 구성한다. 또한 모두 동일한 “com.example.v2xapp”이라는 V2X 서비스/어플리케이션에 참여하고 지원한다. 단계 912) 이 NAN 클러스터 속한 디바이스 혹은 서비스의 정책에 따라서 Publish의 동작은 상이할 수 있다. 본 실시예에서는 NAN1, NAN2, NAN3이 모두 unsolicited publish와 solicited publish를 동시에 지원하는 실시예이다. 또한, solicited publish만 사용 혹은 unsolicited publish만 사용한 방법 모두 포함한다. 또한 NAN1, NAN2, NAN3 기기가 publisher만 지원하는 기기가 아닌 subscriber 기기이거나 publisher와 subscriber를 모두 지원하는 기기 모두 포함할 수 있다. 실시예에서는 3개의 고정된 NAN 기기가 unsolicited publish를 주기적으로 보내는 예를 보여준다. 이때 SDF Publish 메시지 내에서는 V2X 서비스 이름인 “com.example.v2xapp”과 이후 FTM을 통해서 상대적 거리를 측정할 수 있다는 ranging information 이 포함된다.In
단계 913은 이동하는 V2X 디바이스인 NAN4가 기존에 NAN1, NAN2, NAN3이 구성한 NAN cluster 주변으로 이동한 경우이다. 이때 Wi-Fi Aware에서 정의한 synchronization 방법에 따라서 Wi-Fi listen channel (ex, CH6 in 2.4GHz)에서 주변 NAN cluster를 검색하게 된다. 주변 NAN cluster를 찾은 경우 동기화하고, 해당 NAN cluster에 참여하게 된다. Step 913 is when NAN4, a moving V2X device, moves around a NAN cluster formed by NAN1, NAN2, and NAN3. At this time, it searches for a surrounding NAN cluster on the Wi-Fi listen channel (ex, CH6 in 2.4GHz) according to the synchronization method defined in Wi-Fi Aware. If a surrounding NAN cluster is found, it synchronizes and participates in the corresponding NAN cluster.
단계 914에서는 NAN4 기기가 active(solicited)하게 subscription을 보내서 주변 동일한 V2X 서비스를 수행하는 publisher로부터 solicited publish 메시지를 수신하는 과정이다. 앞서 설명한 것과 마찬가지로 NAN SDF Publish/Subscription 내에는 V2X 서비스 이름과 NAN Ranging을 통해서 향후 거리 측정을 하겠다는 정보인 Ranging information 이 반드시 포함된다.Step 914 is the process in which the NAN4 device actively (solicited) sends a subscription to receive a solicited publish message from a publisher performing the same V2X service in the vicinity. As described above, the NAN SDF Publish/Subscription must include the V2X service name and Ranging information, which is information on future distance measurement through NAN Ranging.
단계 915는 NAN Ranging 을 통해서 NAN4 기기와 NAN1 기기 사이에 상대적인 거리를 측정하는 과정을 나타낸다. 실시예에서는 NAN4 기기가 먼저 NAN Ranging Request를 보내고, NAN1 기기가 이에 대한 응답은 Ranging Response를 보내는 형태이다. 이렇게 Ranging Request와 Response가 교환되면 두 기기는 FTM Sequence를 통해서 timestamp가 포함된 Wi-Fi 패킷의 송수신을 통해서 RTT(Round trip time)을 계산하게 된다. 이를 통해 NAN4는 NAN1과의 상대 거리를 계산할 수 있다. Optional 하게 NAN 4 기기는 계산된 상대거리를 Ranging Report를 통해서 NAN1 기기에 알리는 것이 가능하다. 본 실시예에서는 NAN 4가 먼저 Ranging Request를 보내고 있으나 발명에서는 이에 한정하지 않고, NAN1 기기가 먼저 Ranging Request를 보내서 거리를 측정하고, 측정된 결과를 Ranging Report를 통해서 NAN 4 기기에 보내는 것도 가능하다. Step 915 represents a process of measuring a relative distance between a NAN4 device and a NAN1 device through NAN Ranging. In the embodiment, the NAN4 device first sends a NAN Ranging Request, and the NAN1 device responds to this by sending a Ranging Response. When the Ranging Request and Response are exchanged in this manner, the two devices calculate the RTT (Round trip time) by transmitting and receiving a Wi-Fi packet including a timestamp through the FTM Sequence. Through this, NAN4 can calculate the relative distance from NAN1. Optionally, the
단계 916에서는 NAN SDF Follow-up 메시지를 통해서 NAN1 기기의 절대위치를 NAN4에 보내는 과정이다. 앞서 설명한 것과 같이 NAN1의 위치는 다른 이동 기기의 참조 위치로 사용되기에 NAN1이 설치된 정밀한 위치 정보이어야 한다. NAN SDF Follow-up에는 앞서 설명한 BSM 혹은 PSM 메시지가 포함될 수 있으며, V2X 서비스에 특화된 추가 정보 역시 포함될 수 있다. 실시예에서 이 NAN SDF Follow-up 메시지를 수신한 NAN4 기기는 NAN1의 위도, 경도에 해당하는 절대 위치 정보와 이전 FTM을 통해서 확인한 NAN1 기기와의 상대 거리를 알 수 있게 된다. 실시예에서는 FTM을 통한 거리 측정 이후에 SDF Follow-up을 수행하여 절대 위치를 확인하나 기술적으로 SDF Follow-up을 우선 수행하고, 이후 FTM을 통한 상대 거리를 확인하는 것도 가능하다. FTM의 과정은 한번 이상 수행할 수 있으며, 이는 이동하는 NAN4 기기의 위치가 변경됨에 따라 상대거리도 변하기 때문이다. 이 FTM 과정에 사용되는 패킷의 경우 전송 및 프로세싱 딜레이를 최소화하기 위해 디바이스 및 프로토콜 스택내에서 가장 높은 우선순위로 처리된다. Step 916 is a process of sending the absolute location of the NAN1 device to NAN4 through a NAN SDF Follow-up message. As described above, the location of NAN1 is used as a reference location for other mobile devices, so it must be precise location information where NAN1 is installed. The NAN SDF Follow-up may include the BSM or PSM message described above, and may also include additional information specialized for V2X services. In an embodiment, the NAN4 device that receives this NAN SDF Follow-up message can know the absolute location information corresponding to the latitude and longitude of NAN1 and the relative distance from the NAN1 device confirmed through the previous FTM. In the embodiment, the absolute location is confirmed by performing SDF Follow-up after distance measurement through FTM, but it is also technically possible to perform SDF Follow-up first and then check the relative distance through FTM. The FTM process can be performed more than once, because the relative distance also changes as the location of the moving NAN4 device changes. Packets used in this FTM process are processed with the highest priority within the device and protocol stack to minimize transmission and processing delays.
단계 921, 단계 922은 NAN4와 NAN1 간에 동작한 동일한 내용의 과정을 NAN4와 NAN2 간에 수행하는 과정을 나타낸다.
상술한 바와 같이 도 9에 도시된 절차에 의해, 상기 단말은 상기 제1 장치와의 상대적인 거리, 상기 제2 장치와의 상대적인 거리, 상기 제1 장치의 절대 위치 및 상기 제2 장치의 절대 위치를 알 수 있다. As described above, by the procedure illustrated in FIG. 9, the terminal can know the relative distance from the first device, the relative distance from the second device, the absolute position of the first device, and the absolute position of the second device.
따라서, 상기 단말은, 앞서 설명된 바와 같이, 상기 제1 장치와의 상대적인 거리 및 상기 제1 장치의 절대 위치에 기초한 제1 원(Circle)과, 상기 제2 장치와의 상대적인 거리 및 상기 제2 장치의 절대 위치에 기초한 제2 원 사이의 0개 이상의 접점을 도출하고, 상기 0개 이상의 접점 및 GPS 위치에 기초하여, 상기 단말의 위치를 결정할 수 있다.Accordingly, the terminal can derive zero or more contact points between a first circle based on the relative distance from the first device and the absolute position of the first device, and a second circle based on the relative distance from the second device and the absolute position of the second device, as described above, and determine the location of the terminal based on the zero or more contact points and the GPS location.
일 예로, 상기 단말은 상기 접점이 2개인 것에 기초하여, 상기 GPS 위치와 가까운 제1 접점 및 상기 GPS 위치를 연결한 선분을 지름으로 갖는 제3 원의 중심을 상기 단말의 위치로 결정할 수 있다. 상기 단말은 GPS accuracy 및 FTM accuracy를 더 고려하여 상기 단말의 위치를 결정할 수 있다. 또한, 상기 단말은, 제1 접점 및 상기 GPS 위치 중에서, 더 높은 accuracy 를 갖는 위치에 인접하게 상기 단말의 위치를 보정할 수 있다.For example, based on the fact that there are two contact points, the terminal may determine the center of a third circle having a diameter equal to a line segment connecting a first contact point close to the GPS location and the GPS location as the location of the terminal. The terminal may further consider GPS accuracy and FTM accuracy to determine the location of the terminal. In addition, the terminal may correct the location of the terminal adjacent to a location having a higher accuracy among the first contact point and the GPS location.
도 10에는 이와 같이 상기 접점이 2개인 예, 도 11에는 접점이 1개인 예, 도 12, 13에는 접점이 0개인 예가 도시되어 있다. 각 도면에서 사용되는 용어는 다음과 같다.Fig. 10 shows an example with two contact points, Fig. 11 shows an example with one contact point, and Figs. 12 and 13 show examples with zero contact points. The terms used in each drawing are as follows.
- LocGPS(NAN4) : NAN4 자신의 GPS 인터페이스를 통해서 획득한 NAN4 본인의 위치- Loc GPS (NAN4): NAN4's own location acquired through its own GPS interface.
- Locabsolute(NAN1) : NAN1 기기의 절대위치 (위도, 경도, 고도), NAN1이 고정 기기 시 설치시 정확한 위치가 입력된다.- Loc absolute (NAN1): Absolute location (latitude, longitude, altitude) of NAN1 device. When NAN1 is installed as a fixed device, the exact location is entered.
- Locabsolute(NAN2) : NAN2 기기의 절대위치 (위도, 경도, 고도), NAN2가 고정 기기 시 설치시 정확한 위치가 입력된다.- Loc absolute (NAN2): Absolute location (latitude, longitude, altitude) of the NAN2 device. When NAN2 is installed as a fixed device, the exact location is entered.
- DistanceNAN1->NAN4 : NAN1과 NAN4의 상대 거리, FTM을 통해서 측위된 거리- Distance NAN1->NAN4 : Relative distance between NAN1 and NAN4, distance measured through FTM
- DistanceNAN2->NAN4 : NAN2와 NAN4의 상대 거리, FTM을 통해서 측위된 거리- Distance NAN2->NAN4 : Relative distance between NAN2 and NAN4, distance measured through FTM
- LocFTM(NAN4), LocFTM_Opposite(NAN4) : 절대위치와 상대위치의 값을 통한 원의방정식을 통해서 계산된 두 점. 실시예는 두 원이 2점에서 만나는 경우이며, 이때 A와 B 두 점 중에서 LocGPS(NAN4)와 가까운 접점을 LocFTM(NAN4), LocGPS(NAN4)와 먼 접점을 LocFTM_Opposite(NAN4)로 정의한다. LocFTM(NAN4) 지점이 FTM을 통해서 계산된 NAN4의 예상 위치가 된다. 두 원의 접점은 최소 1개이상 존재해야 하나, 측정 시점의 차이, 측정시 NAN4의 이동에 따라서 접점이 없는 경우가 있다.- Loc FTM (NAN4), Loc FTM_Opposite (NAN4): Two points calculated using the equation of a circle using the values of the absolute position and the relative position. An example is a case where two circles meet at two points. In this case, among the two points A and B, the point of contact closer to Loc GPS (NAN4) is defined as Loc FTM (NAN4), and the point of contact farther from Loc GPS (NAN4) is defined as Loc FTM_Opposite (NAN4). The Loc FTM (NAN4) point becomes the expected location of NAN4 calculated using FTM. There must be at least one point of contact between the two circles, but there may be cases where there is no point of contact depending on the difference in measurement time or the movement of NAN4 during measurement.
- Locreal(NAN4) : 본 개시에서 위치 보정 방법에 따라서 보정된 실제 NAN4의 위치- Loc real (NAN4): The location of the real NAN4 corrected according to the location correction method in this disclosure.
- Locreal : 상기 정보를 바탕으로 NAN4 기기의 보정된 위치- Loc real : Corrected location of NAN4 device based on the above information
도 10을 참조하면, LocGPS 와 LocFTM 를 지름으로 하는 원 내부에서 결정된다. GPS을 통해서 측정된 위치와 FTM을 통해서 측정된 위치의 accuracy가 동일하다면 Locreal 은 해당 회색원의 중심으로 결정될 수 있으나, Locreal 을 결정하는데 있어서 각각의 인터페이스의 정확도나 환경적인 요인의 차이, 정책에 따라서 그 위치가 조정될 수 있다. 즉, 도 10에서 FTM의 accuracy가 GPS의 accuracy보다 상대적으로 높은 경우, Locreal 은 원의 중심에서 LocFTM 방향으로 이동된 위치로 결정된다. 반대로 GPS의 accuracy가 상대적으로 높은 경우 Locreal 은 LocGPS 방향으로 이동된 위치로 결정된다. 또한 NAN1과 FTM과 NAN2와 FTM 간의 accuracy 역시 차이가 날 수 있다. 이는 Wi-Fi 패킷 전송에 포함되는 RSSI와 같이 신호 세기등에 따라 차이가 날 수 있다. 이 경우 역시 accuracy 가 높은 측위/거리로 측정된 방향으로 가중치가 적용되어 Locreal 이 조정되어 결정된다. 만약 Wi-Fi Aware을 통해서 3개 이상의 고정기기로부터 FTM 거리를 획득하는 경우에 보다 정밀한 위치 측위가 가능하게 된다.Referring to Fig. 10, it is determined within a circle whose diameter is Loc GPS and Loc FTM . If the accuracy of the location measured via GPS and the location measured via FTM are the same, Loc real can be determined as the center of the gray circle, but the location can be adjusted depending on the accuracy of each interface, the difference in environmental factors, and the policy in determining Loc real . That is, if the accuracy of FTM in Fig. 10 is relatively higher than that of GPS, Loc real is determined as a location moved in the direction of Loc FTM from the center of the circle. Conversely, if the accuracy of GPS is relatively high, Loc real is determined as a location moved in the direction of Loc GPS . In addition, the accuracy between NAN1 and FTM and between NAN2 and FTM can also differ. This can differ depending on signal strength, such as RSSI included in Wi-Fi packet transmission. In this case, a weight is applied in the direction measured by the positioning/distance with high accuracy, and Loc real is adjusted and determined. If you obtain FTM distances from three or more fixed devices via Wi-Fi Aware, more precise location determination is possible.
다른 예로써, 상기 단말은 상기 접점이 1개인 것에 기초하여, 상기 단말은 상기 GPS 위치를 고려하지 않고 상기 1개의 접점을 상기 단말의 위치로 결정할 수 있다. 상기 1개의 접점은 상기 제1 원과 상기 제2 원이 외접 또는 내접하는 지점일 수 있다. 이와 관련하여, 도 11은 NAN4에 2개의 고정 위치의 기기로부터 획득한 정보를 바탕으로 FTM 위치를 계산하는 경우 원의 접점이 1개인 경우이다. 만약 2개의 고정 기기인 NAN1과 NAN2와 이동기기인 NAN4가 일직선상 위치하는 경우 FTM을 통해서 계산된 위치는 1개가 된다. 즉, LocFTM(NAN4)과 LocFTM_Opposite(NAN4)은 같은 지점이 된다. 이 경우 별도의 LocFTM을 결정하기 위해서 자신의 GPS 위치와 비교하지 않고 LocFTM 은 해당 접점으로 결정된다.As another example, based on the fact that the terminal has one contact point, the terminal can determine the one contact point as the location of the terminal without considering the GPS location. The one contact point may be a point where the first circle and the second circle are circumscribed or inscribed. In this regard, FIG. 11 illustrates a case where the circle has one contact point when calculating the FTM location based on information acquired from two fixed-position devices in NAN4. If the two fixed devices, NAN1 and NAN2, and the mobile device, NAN4, are positioned in a straight line, the location calculated through FTM becomes one. That is, Loc FTM (NAN4) and Loc FTM_Opposite (NAN4) become the same point. In this case, Loc FTM is determined as the corresponding contact point without comparing it with its own GPS location to determine a separate Loc FTM .
또 다른 예로써, 상기 단말은 상기 접점이 0개인 것에 기초하여, 상기 제1 장치와 상기 제2 장치를 연결하는 선분을 밑변으로 갖고 상기 GPS 위치를 꼭지점으로 갖는 삼각형의 무게중심을 상기 단말의 위치로 결정할 수 있다. 이와 관련하여, 도 12는 2개의 고정된 위치의 기기로부터 수신한 정보를 바탕으로 계산 중에 각 거리(DistanceNAN1->NAN4, DistanceNAN2->NAN4)를 반지름으로 하는 원을 표현했을 때, 두 개의 원의 접점이 없는 경우의 실시예를 보여준다. 이렇게 접점이 발생되는 이유는 - 1) 두 고정기기간 거리가 멀어서 발생, 2) 고정 기기와 FTM을 수행하는데 있어 큰 오차가 발생, 3) 고정 기기 각각과 FTM을 수행하는 도중 이동체 (NAN4)가 이동 등 여러가지 이유로 발생할 수 있다. 이 경우 앞서 설명한 것과 같이 원의 접점을 기반으로 계산되는 LocFTM을 도출할 수 없다. 이 경우 아래와 같은 방법으로 실제 위치를 보정할 수 있다. 두개의 고정 기기의 절대위치를 연결하는 직선 을 그린다. 이때 원의 둘레와 맞닿는 점 A와 점B를 계산하여 찾을 수 있다. 이 점A, 점B, NAN4 기기에서 GPS로 수신한 위치인 LocGPS 을 꼭지점으로 하는 삼각형을 구할 수 있게 된다. 이 삼각형의 무게중심인 도 12의 별표 위치를 Locreal 로 결정 할 수 있다. 본 개시에서는 삼각형의 무게중심을 Locreal 로 결정하는 예를 보였으나, 이에 한정하지 않고 앞서 설명한 것과 같이 오차의 차이, 환경적인 요인, 정책 등에 따라서 가중치를 적용하여 Locreal 변경되어 결정될 수 있다.As another example, the terminal can determine the center of gravity of a triangle having the line segment connecting the first device and the second device as its base and the GPS location as its vertex as the location of the terminal based on the fact that the contact point is 0. In this regard, FIG. 12 shows an example of a case where there is no contact point between two circles when a circle with each distance (Distance NAN1->NAN4 , Distance NAN2->NAN4 ) as its radius is expressed based on information received from two fixedly located devices during calculation. The reason why such a contact point occurs is - 1) it occurs because the distance between the two fixed devices is far, 2) a large error occurs in performing FTM with the fixed device, 3) the mobile body (NAN4) moves while performing FTM with each fixed device, etc., and various other reasons. In this case, the Loc FTM calculated based on the contact point of the circle as described above cannot be derived. In this case, the actual location can be corrected by the following method. A straight line connecting the absolute positions of the two fixed devices Draw. At this time, points A and B that touch the circumference of the circle can be calculated and found. It is possible to obtain a triangle with points A, B, and Loc GPS, which is the location received by GPS from the NAN4 device, as vertices. The center of gravity of this triangle, the star location in Fig. 12, can be determined as Loc real . In this disclosure, an example of determining the center of gravity of the triangle as Loc real is shown, but it is not limited thereto, and as explained above, Loc real can be changed and determined by applying weights depending on the difference in error, environmental factors, policies, etc.
도 13은 위와 유사하게 두 원의 접점이 0개이며, 하나의 원이 다른 원의 내부에 있을 경우이다. 이 경우 역시 앞서 설명한 것과 유사하게 Locreal을 유추할 수 있다. 두 개의 고정 기기의 절대위치를 연결하는 직선 을 그린다. 이때 원의 둘레와 맞닿는 점 A와 점B를 계산하여 찾을 수 있다. 이 점A, 점B, NAN4 기기에서 GPS로 수신한 위치인 LocGPS 을 꼭지점으로 하는 삼각형을 구할 수 있게 된다. 이 삼각형의 무게중심인 도 13의 별표 위치를 Locreal 로 계산할 수 있다. 본 개시에서는 삼각형의 무게중심을 Locreal 로 결정하는 예를 보였으나, 이에 한정하지 않고 앞서 설명한 것과 같이 오차의 차이, 환경적인 요인, 정책 등에 따라서 변경될 수 있다.Figure 13 is similar to the above, in which the two circles have 0 points of contact and one circle is inside the other circle. In this case, Loc real can also be inferred similarly to what was explained above. A straight line connecting the absolute positions of two fixed devices Draw. At this time, points A and B that touch the circumference of the circle can be calculated and found. It is possible to obtain a triangle with points A, B, and Loc GPS, which is the location received by GPS from the NAN4 device, as vertices. The center of gravity of this triangle, the star location in Fig. 13, can be calculated as Loc real . In this disclosure, an example of determining the center of gravity of the triangle as Loc real is shown, but it is not limited thereto and may be changed according to the difference in error, environmental factors, policy, etc. as explained above.
도 14는 상기 실시예에 의한 NAN 클러스터 구성의 일 예시이다. 도 14의 실시예에서는 모든 기기는 도 14와 같이 기존 이동통신망을 통해서 V2X 서비스/어플리케이션(예를 들어, com.example.v2xapp)을 수행하고 있으며, 동시에 모든 기기는 Wi-Fi Aware (NAN) 인터페이스를 추가로 가지고 있다. 이중 NAN1, NAN2, NAN3 기기는 위치가 고정이며, NAN 규격에 따라 클러스터를 구성한다. NAN4(차량)과 NAN5(보행자)는 이동하는 개체로 이동중 NAN 클러스터의 Wi-Fi 전송 범위내에 위치하게 되면 NAN 규격에 따라서 클러스터를 검색하고 동기화하게 된다. 동기화 이후에 각 기기는 publish와 subscribe을 통해 NAN 서비스 검색을 수행하게 된다. NAN1(901), NAN2(902), NAN3(903) 기기는 도로변 RSU 기기나 신호등과 같이 위치가 고정된 기기이다. (904)의 기기는 차량이나 보행자와 같이 이동하는 V2X 디바이스다. Fig. 14 is an example of a NAN cluster configuration according to the above embodiment. In the embodiment of Fig. 14, all devices perform V2X services/applications (e.g., com.example.v2xapp) through an existing mobile communication network as shown in Fig. 14, and at the same time, all devices additionally have a Wi-Fi Aware (NAN) interface. Among them, NAN1, NAN2, and NAN3 devices have fixed locations and form a cluster according to the NAN standard. NAN4 (vehicle) and NAN5 (pedestrian) are moving entities, and when they are within the Wi-Fi transmission range of the NAN cluster while moving, they search for and synchronize with the cluster according to the NAN standard. After synchronization, each device performs NAN service search through publish and subscribe. NAN1 (901), NAN2 (902), and NAN3 (903) devices are devices with fixed locations, such as roadside RSU devices or traffic lights. (904) The device is a V2X device that moves, such as a vehicle or pedestrian.
각 기기는 앞에서 설명한 것과 같이 이동통신이나 이더넷과 같이 기존 통신 방법으로 V2X 서비스를 수행하고 있는 기기이며, 추가로 Wi-Fi Aware 인터페이스를 가지고 있다. 또한 이 NAN1, NAN2, NAN3 기기는 서비스 제공업체, 정부, 지자체 등에서 설치하는 기기로 비교적 정확하게 해당 기기의 위치를 알 수 있고, 설치 시 해당 기기의 절대 위치는 장치내 설정 파일 등에 정의된 API 입력할 수 있다. 실시예에서는 NAN1의 위치의 위도와 경도는 37.5353445, 126.8473708이고, NAN2는 37.5353714, 126.8473008, NAN3의 경우 37.5360714, 126.8477988 위치에 설치되어 있다. 위도와 경도는 setAbsoluteLocation (bool movable, double latitude, double longitude, double elevation)와 같이 표현될 수 있다.Each device is a device that performs V2X service with existing communication methods such as mobile communication or Ethernet as described above, and additionally has a Wi-Fi Aware interface. In addition, these NAN1, NAN2, and NAN3 devices are devices installed by service providers, governments, local governments, etc., so the location of the corresponding device can be known relatively accurately, and the absolute location of the corresponding device at the time of installation can be input into an API defined in a setting file within the device. In the embodiment, the latitude and longitude of the location of NAN1 are 37.5353445, 126.8473708, NAN2 is installed at 37.5353714, 126.8473008, and NAN3 is installed at 37.5360714, 126.8477988. The latitude and longitude can be expressed as setAbsoluteLocation (bool movable, double latitude, double longitude, double elevation).
계속해서, 도 15에는 상기 설명 중 NAN 서비스 검색을 통해 기존에 V2X 서비스/어플리케이션을 검색에 대해 상세한다. 도 15에서 V2X Device A와 V2X Device B는 기존에 V2X 서비스의 구성 단말이 된다. 예를 들어 차량 OBU, 차량에 탑재된 스마트폰, 보행자의 스마트폰, 도로변 위치한 RSU, 신호등과 같은 기기가 될 수 있다. 해당 기기는 기존의 이동통신 기반으로 Internet 혹은 Cloud에 연결하여 서비스를 수행하거나, 차량간 통신 혹은 차량-인프라간 통신을 통해 서비스를 수행한다. 해당 기기가 위치 정보를 필요로 하는 경우 GPS, GNSS등 기존의 기기가 자체적으로 가진 측위 인터페이스를 통해 자신의 위치를 확인할 수 있다. 앞서 도 4에서 설명한 것과 같이 발명에서 제안하는 V2X Device는 이동통신 인터페이스와 NAN 인터페이스를 함께 지원하며, NAN Engine을 통해서 NAN 인터페이스와 연결할 수 있다. 실시예에서는 V2X 서비스/어플리에케션의 서비스 이름을 “com.example.v2xapp”이라고 예시한다. 해당 서비스는 NAN 규격에서 정의한 API 혹은 방법에 따라서 구독(subscribe)와 출판(publish)를 수행할 수 있다. 이 publish/subscribe에 서비스 이름을 포함하여 V2X device는 서비스를 검색할 수 있게 된다.Continuing, FIG. 15 details the search for an existing V2X service/application through the NAN service search among the above descriptions. In FIG. 15, V2X Device A and V2X Device B are existing V2X service component terminals. For example, they can be a vehicle OBU, a smartphone mounted on a vehicle, a pedestrian's smartphone, an RSU located on the roadside, a traffic light, and the like. The device performs a service by connecting to the Internet or the Cloud based on existing mobile communication, or performs a service through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. If the device requires location information, it can confirm its own location through a positioning interface that the existing device has, such as GPS or GNSS. As described above in FIG. 4, the V2X Device proposed in the invention supports both a mobile communication interface and a NAN interface, and can be connected to the NAN interface through a NAN Engine. In the embodiment, the service name of the V2X service/application is exemplified as “com.example.v2xapp”. The service can perform subscription and publication according to the API or method defined in the NAN standard. By including the service name in this publish/subscribe, the V2X device can search for the service.
NAN 규격에서 publish의 방법을 크게 3가지 정의하고 있다. The NAN standard largely defines three publishing methods.
1) Unsolicited publish의 경우 서비스를 제공 혹은 동작하는 개체가 다른 개체의 요청없이 주기적으로 서비스를 publish하는 형태이다. 도 6(a)에서 Device A의 V2X Service/Application이 NAN Engine에 Publish API를 호출하고 이때 자신의 서비스 이름인 “com.example.v2xapp”을 포함한다. NAN Engine은 주변 다른 device에 요청이 없더라도 주기적으로 publish를 주변에 전송하게 된다. 이때 동일한 서비스를 사용하는 V2X Device는 matching_filter 혹은 서비스 이름에 기반하여 동일 서비스를 구독하는 경우 서비스가 검색되어 V2X 서비스/어플리케이션에 알려주게 된다.1) In the case of unsolicited publish, an entity providing or operating a service periodically publishes a service without a request from another entity. In Fig. 6(a), the V2X Service/Application of Device A calls the Publish API to the NAN Engine and includes its service name, “com.example.v2xapp”. The NAN Engine periodically transmits publish to surrounding devices even if there is no request from other surrounding devices. At this time, a V2X Device using the same service searches for the service and notifies the V2X Service/Application if it subscribes to the same service based on matching_filter or service name.
2) Solicited publish의 경우 서비스를 검색하는 subscribe의 요청이 있고, 해당 요청의 서비스와 동일한 서비스를 제공/참여하는 기기가 이에 대한 응답으로 publish를 수행하는 방법이다. 그림에서 V2X Device B는 특정 시점에서 V2X Service/Application에서 NAN Engine에 Subscribe API를 호출하게 된다. 이때 서비스 이름은 com.example.v2xapp으로 포함하여 전송한다. 해당 subscribe는 주변에 NAN 기기에 전송되며, 이때 동일한 동일한 서비스를 제공/참여하는 V2X Device A는 서비스 검색의 응답으로 SDF Publish를 응답하게 된다.2) In the case of solicited publish, there is a request from a subscriber to search for a service, and a device that provides/participates in the same service as the service of the request performs a publish in response to this. In the figure, V2X Device B calls the Subscribe API to the NAN Engine from the V2X Service/Application at a certain point in time. At this time, the service name is transmitted including com.example.v2xapp. The subscribe is transmitted to the surrounding NAN devices, and at this time, V2X Device A that provides/participates in the same service responds with SDF Publish in response to the service search.
3) 1)과 2)를 함께 사용하는 방법으로 unsolicited publish를 수행하는 도중에 subscribe 요청이 오는 경우 solicited publish를 응답할 수 있다. 3) If a subscribe request comes while performing an unsolicited publish by using 1) and 2) together, a solicited publish can be responded to.
위와 같은 서비스 검색 완료되는 경우, Device A와 Device B는 추가적인 메시지를 송수신할 수 있다. 이는 SDF Follow-up은 서비스 검색 이후에 서비스에 필요한 추가 정보를 송수신할 수 있다. 예를 들어 V2X 서비스/어플리케이션 간에 위치 정보, 센서 정보 혹은 서비스의 추가적인 정보를 별도 Wi-Fi session establishment 없이 전송할 수 있다.When the above service search is completed, Device A and Device B can send and receive additional messages. This means that SDF Follow-up can send and receive additional information required for the service after the service search. For example, location information, sensor information, or additional information for the service can be sent between V2X services/applications without a separate Wi-Fi session establishment.
서비스 검색에 사용되는 SDF Publish, SDF subscribe, SDF Follow-up 메시지는 NAN 규격의 포맷을 따르며, 표 3에는 V2X 서비스를 지원하기 위해서 해당 주요 설정 값의 primitive 등이 예시되어 있다.The SDF Publish, SDF subscribe, and SDF Follow-up messages used for service discovery follow the format of the NAN standard, and Table 3 shows examples of primitives of the main settings to support V2X services.
NAN SDF Publish:
matching_filter_tx : 제공/참여하는 서비스 응답 조건 matching을 위한 hash 값
matching_filter_rx : subscribe 메시지를 필터하기 위한 hash 값
service_speicif_info : V2X 서비스의 특정 정보 포함
configuration_parameter
- publish type: Both unsolicited and solicited transmissions
- discovery range: any NAN devices within range
- solicited transmission type: unicast or multicast
- Announcement period: reasonable short duration (ex 100ms)
- NAN Ranging flag: set to 1 (NAN ranging is mandatory)
- Awake DW Interval: set to 1, 2, 4, 8 and 16
- Further Service Discovery flag: set to 1
- NAN Discovery flag: set to 0
range_configuration_parameters
- ranging resolution - Determines the accuracy required from the ranging
- raging interval - maximum interval between two ranging measurements
- raging indication condition - Continuous, Ingress, Egress, both_ingress_egress
- geofence description - inner threshold, outer threshold
service_name: A string in UTF-8 format representing the name of the V2X service/application (ex: com.example,v2xapp)
matching_filter_tx: Hash value for matching service response conditions provided/participated in
matching_filter_rx: Hash value for filtering subscribe messages
service_speicif_info: Contains specific information about V2X services
configuration_parameter
- publish type: Both unsolicited and solicited transmissions
- discovery range: any NAN devices within range
- solicited transmission type: unicast or multicast
- Announcement period: reasonable short duration (ex 100ms)
- NAN Ranging flag: set to 1 (NAN ranging is mandatory)
- Awake DW Interval: set to 1, 2, 4, 8 and 16
- Further Service Discovery flag: set to 1
- NAN Discovery flag: set to 0
range_configuration_parameters
- ranging resolution - Determines the accuracy required from the ranging
- raging interval - maximum interval between two ranging measurements
- raging indication condition - Continuous, Ingress, Egress, both_ingress_egress
- geofence description - inner threshold, outer threshold
matching_filter_tx : 제공/참여하는 서비스 응답 조건 matching을 위한 hash 값
matching_filter_rx : subscribe 메시지를 필터하기 위한 hash 값
service_speicif_info : V2X 서비스의 특정 정보 포함
configuration_parameter:
- subscribe type : Passive or Active
- discovery range: any NAN devices within range
- query_period : reasonable period
- NAN Ranging flag: set to 1 (NAN ranging is mandatory)
- Awake DW Interval: set to 1, 2, 4, 8 and 16
- NAN Discovery flag: set to 0
range_configuration_parameters
- ranging resolution - Determines the accuracy required from the ranging
- raging interval - maximum interval between two ranging measurements
- raging indication condition - Continous, Ingress, Egress, both_ingress_egress
- geofence description - inner threshold, outer threshold
service_name: A string in UTF-8 format indicating the name of the V2X service/application (ex: com.example,v2xapp)
matching_filter_tx: Hash value for matching service response conditions provided/participated in
matching_filter_rx: Hash value for filtering subscribe messages
service_speicif_info: Contains specific information about V2X services
configuration_parameter:
- subscribe type: Passive or Active
- discovery range: any NAN devices within range
- query_period: reasonable period
- NAN Ranging flag: set to 1 (NAN ranging is mandatory)
- Awake DW Interval: set to 1, 2, 4, 8 and 16
- NAN Discovery flag: set to 0
range_configuration_parameters
- ranging resolution - Determines the accuracy required from the ranging
- raging interval - maximum interval between two ranging measurements
- raging indication condition - Continous, Ingress, Egress, both_ingress_egress
- geofence description - inner threshold, outer threshold
Instance ID : Publish ID 혹은 Subscribe ID
Requestor Instance ID : Requestor의 Publish ID 혹은 Subscribe ID
Service Control
- 현재 SDF 가 publish, subscribe, follow-up 인지를 나타내는 값으로 follow-up 인 경우 0b10으로 표기함
- Matching filter 존재 여부, Service Response Filter 존재여부, Service Info 존재여부, Discovery Range설정, bind bitmap 존재 여부를 bitmap 형태로 표시
Binding Bitmap : 검색된 서비스와 binding을 위한 값
Matching Filter Length : Matching filter 길이
Matching Filter
Service Response Filter
Service Info Length
Service Info: 서비스의 특정된 데이터 전송 (V2X 서비스 데이터)
Service ID: Hash value of service_name found through service search
Instance ID: Publish ID or Subscribe ID
Requestor Instance ID: Requestor's Publish ID or Subscribe ID
Service Control
- A value indicating whether the current SDF is publish, subscribe, or follow-up. If it is follow-up, it is indicated as 0b10.
- Displays whether a matching filter exists, whether a Service Response Filter exists, whether a Service Info exists, Discovery Range settings, and whether a bind bitmap exists in bitmap format.
Binding Bitmap: Value for binding with the searched service.
Matching Filter Length: Matching filter length
Matching Filter
Service Response Filter
Service Info Length
Service Info: Transmission of service-specific data (V2X service data)
서비스 검색 이후에 NAN SDF Follow-up 메시지에는 검색된 V2X 서비스에 특정된 추가 데이터를 송수신 할 수 있다. NAN SDF Follow-up 메시지는 검색된 서비스의 Service ID와 Instance ID 기반으로 송수신하며 규격상 한번에 보낼 수 있는 메시지의 최대 사이즈는 255byte로 한정된다. 도 16은 NAN Follow-up 메시지 포맷을 통해서 V2X 서비스의 BSM(Basic Safety Message) 혹은 PSM(Personal Safety Message)의 포맷을 보여준다. NAN Service Discovery frame은 IEEE 802.11 public action frame의 형태를 갖게 되며, OUI Type은 0x13으로 NAN 프레임을 header에 명시한다. 또한 하나 이상의 NAN attribute를 포함한다. 아래는 Soft V2X 서비스를 위한 NAN Follow-up 메시지의 실시예를 보여준다. 본 개시에서 제안하는 내용은 NAN Follow-up 메시지를 통해서 V2X에서 사용하는 안전 메시지 (ex BSM; Basic Safety Message 혹은 PSM; Personal Safety Message)를 포함하여 전달하는 방법이다. 혹은 표준에서 정의하는 메시지의 형태에 한정하지 않고 V2X 개체의 위치(위도, 경도, 고도), 속도, 방향, 가속도, 디바이스의 특성 등의 정보를 포함한 메시지를 포함할 수 있다.After service discovery, the NAN SDF Follow-up message can transmit and receive additional data specific to the discovered V2X service. The NAN SDF Follow-up message is transmitted and received based on the Service ID and Instance ID of the discovered service, and the maximum size of the message that can be sent at one time is limited to 255 bytes according to the standard. Fig. 16 shows the format of the BSM (Basic Safety Message) or PSM (Personal Safety Message) of the V2X service through the NAN Follow-up message format. The NAN Service Discovery frame has the form of an IEEE 802.11 public action frame, and the OUI Type specifies the NAN frame in the header as 0x13. It also includes one or more NAN attributes. The following shows an embodiment of the NAN Follow-up message for a Soft V2X service. What is proposed in this disclosure is a method for transmitting a safety message (ex. BSM; Basic Safety Message or PSM; Personal Safety Message) used in V2X through a NAN Follow-up message. Alternatively, it may include messages containing information such as the location (latitude, longitude, altitude), speed, direction, acceleration, and device characteristics of the V2X entity, without being limited to the message format defined in the standard.
이 서비스 검색과정에서 검색 요청자는 검색된 기기가 고정기기인지 이동기기인지 확인할 수 있다. 실시예로 BSM 혹은 PSM을 사용하는 경우, Vehicle의 종류, 즉 V2X 디바이스의 종류를 표기하는 데이터 형태인 BasicVehicleClass 내에 값이 “Other V2X Equipped Device Types”의 경우 고정된 장비의 경우 “infrastructure-TypeUnknown”,”infrastructure-Fixed”,”infrastructure-Movable”같은 종류로 표기될 수 있다. 검색 요청자인 Subscriber의 경우 NAN SDF에 포함된 BSM 혹은 PSM 메시지를 파싱하여 해당 기기의 타입이 고정 기기인 경우, 해당 기기의 BSMcoreData에 포함된 위도, 경도의 값이 신뢰하여 참조할 수 있는 절대위치로 판단한다.During this service search process, the search requester can check whether the searched device is a fixed device or a mobile device. For example, when using BSM or PSM, the value in BasicVehicleClass, which is a data type that indicates the type of vehicle, i.e., the type of V2X device, can be indicated as “Other V2X Equipped Device Types”, “infrastructure-TypeUnknown”, “infrastructure-Fixed”, or “infrastructure-Movable” for fixed equipment. The search requester, the Subscriber, parses the BSM or PSM message included in the NAN SDF, and if the type of the corresponding device is a fixed device, determines that the latitude and longitude values included in the BSMcoreData of the corresponding device are absolute locations that can be reliably referenced.
다른 실시예로 도 6에서 Service Specific Message를 사용하는 경우이다. Service Specific Message의 경우 V2X 서비스 혹은 유사 서비스에서 specific 하게 정의할 수 있으며, 이는 다음 표 4 내지 5에 예시된 것과 같을 수 있다. 해당 값은 서비스, 혹은 시스템에서 정의하는 방법에 따라서 encoding 되고 decoding 될 수 있다.Another example is the case of using the Service Specific Message in Fig. 6. In the case of the Service Specific Message, it can be specifically defined in the V2X service or similar service, and this can be as exemplified in Tables 4 and 5 below. The corresponding value can be encoded and decoded according to the method defined by the service or system.
도 17은 NAN에서 제공하는 서비스의 검색 및 FTM(Fine Timing Measurement) 기반의 거리를 측정하는 과정을 나타낸다. 앞장에서 설명한 Publish와 subscriber를 통해 서비스 검색한 이후에 두 기기는 서로의 거리가 얼마나 떨어졌는지 확인하는 Raging Measurement 동작을 할 수 있다. Raging을 위해서는 IEEE 802.11에서 정의한 FTM을 사용할 수 있으며, NAN(Wi-Fi Aware) 기기는 FTM을 선택적으로 지원할 수 있다. Figure 17 shows the process of searching for services provided by NAN and measuring distance based on FTM (Fine Timing Measurement). After searching for services through the Publisher and Subscriber described in the previous chapter, the two devices can perform Raging Measurement operation to check how far apart they are from each other. For Raging, FTM defined in IEEE 802.11 can be used, and NAN (Wi-Fi Aware) devices can optionally support FTM.
도 17에서 1번 과정은 기존에 이동통신을 이용한 V2X 서비스의 연결 및 서비스 동작에 대한 내용이다.
2번 과정은 앞 절에서 설명한 NAN 서비스 검색 방법을 통해서 1번 과정에서 같이 이동통신을 이용한 V2X 서비스를 NAN 인터페이스를 통해서 검색하는 과정이다. 이때 서비스 검색을 위한 SDF Publish와 SDF Subscribe에 Ranging Information attribute가 포함되어야 한다.
3번 과정이 NAN을 통한 Ranging Measurement 과정이다. 일반적으로 NAN 기기는 FTM 을 시작하는 Initiator와 이에 대한 응답하는 responder 역할을 모두 수행할 수 있으며, 본 실시예에서는 서비스 검색을 구독하는 Subscriber가 NAN Ranging Initiator 역할로 동작한다. Ranging Request와 Ranging Response 이후에 두 기기는 IEEE 802.11에서 정의된 방법에 따라서 Ranging 을 위한 FTM 패킷을 주고 받게 된다. 이 때 패킷 내에 Time stamp를 기반으로 두 기기간의 거리를 계산하게 된다.
이후 4번 과정을 통해서 앞절에서 설명한 SDF Follow-up을 통해서 추가적인 메시지를 주고 받을 수 있다. 이 Follow-up 메시지의 경우 설정이나 메시지 전송 순서에 따라서 Ranging 과정인 3번 이후 혹은 이전에 이루어질 수 있다.Afterwards, through
도 18은 일 실시예에 의한 위치 보정 알고리즘을 나타내는 순서도이다.Fig. 18 is a flowchart showing a position correction algorithm according to one embodiment.
단계 1801과정은 V2X 디바이스가 시작하여 이동 디바이스 여부를 확인하는 과정이다.
단계 1811은 고정 디바이스인 경우 앞절에서 설명한 것과 같이 해당 디바이스의 절대 위치를 설치 시 혹은 설정 시 추가하는 과정이다. 이 절대위치는 고정 디바이스의 실제 위치로 정밀하게 사전에 조정된 위치이다. 해당 위치 정보는 이후 이동기기가 참조하는 목적으로 사용된다.
단계 1812는 고정 디바이스들 혹은 고정 디바이스와 이동 디바이스가 섞여 있는 환경에서 Wi-Fi Aware 클러스터를 구성하는 과정이다.
단계 1813은 고정 디바이스가 해당 V2X 서비스를 solicited 혹은 unsolicited publish를 통해서 출판하는 과정이다.
단계 1814에서 만약 해당 고정 디바이스가 다른 디바이스로부터 subscription을 수신하는지 여부를 확인하다. 만약 subscription을 수신하지 못하였다면 지속해서 대기하면서 publish 과정을 수행한다. 만약 subscription을 수신하면 단계 1815 단계로 이동한다.In
단계 1815는 앞 절에서 설명한 발명에서 제안한 NAN Ranging 과 NAN SDF Follow-up을 통해서 해당 고정 기기의 절대위치와 상대 거리를 계산하기 위해서 송수신 하는 과정이다. Subscription 하는 기기에 대해서 응답이 완료되면 해당 고정기기는 다시 publish을 수행하게 된다.
단계 1821은 해당 V2X 기기가 이동 기기이며, GPS와 같은 측위 인터페이스가 있는 경우 해당 기기의 위치를 확인하는 과정이다. 실시예에서는 LocGPS 위치를 확인하게 된다.
단계 1822는 앞절에서 설명한 주변 NAN Cluster을 검색하고, 해당 클러스터와 동기화 하여 V2X 서비스를 검색하는 과정이다. 이 과정은 Wi-Fi Aware 규격을 따르며, 해당 기기가 수행하는 V2X 서비스/어플리케이션 이름을 포함하여 publish 하게 된다.
단계 1823은 주변에 동일 V2X 서비스를 참여하는 기기를 NAN 서비스 검색을 통해서 찾았는지 여부를 판단한다. 만약 찾지 못하였다면 주기적 혹은 비주기적 서비스 검색을 재실행 할 수 있다.
단계 1824은 주변에 NAN을 지원하는 동일 V2X 서비스를 수행하는 기기를 찾은 경우 해당 기기와 FTM을 통해서 거리를 측정하는 과정이다. 그리고 만약 상대기기가 절대위치 (위도,경도)을 가지고 있는 경우 NAN SDF Follow-up을 통해서 해당 기기의 절대위치를 확인하게 된다.
단계 1825는 이런 서비스 검색을 통해서 주변에 고정기기 혹은 절대위치를 가진 기기 2개 이상을 찾았는지 여부를 확인한다. 앞절에서 설명한 것과 같이 본 발명의 제안은 2개 이상의 절대위치를 가진 기기와 거리를 측정하여 위치를 보정하게 된다.
단계 1826은 2개 이상의 상대기기를 찾은 경우 앞절에서 설명한 것과 같은 원의 방정식을 통해서 원의 접점을 계산한다.
단계 1827은 원의 접점의 개수가 1개 이상인지, 접점이 없는지를 판단하는 과정이다.
단계 1828은 원의 접점이 1개 이상인 경우 FTM 기반한 위치를 찾는 과정이며, 이를 통해서 해당 V2X기기는 LocFTM을 결정할 수 있다.
단계 1829-1은 FTM을 통해서 얻은 위치와 GPS를 통해서 얻은 위치를 기반으로 원의 중심을 구하는 과정이다.Step 1829-1 is the process of finding the center of the circle based on the position obtained through FTM and the position obtained through GPS.
단계 1829-2는 원의 접점이 0개 인 경우이며, 이 경우 앞절에서 설명한 것과 같이 두 고정기기의 연결 직선과 원의 접점 A, B와 GPS 위치를 꼭지점으로 하는 삼각형의 무게중심을 계산한다.Step 1829-2 is for the case where the number of contact points of the circle is 0, in which case the center of gravity of the triangle with the connecting line of the two fixtures and the contact points A, B of the circle and the GPS position as vertices is calculated as described in the previous section.
단계 1831은 실제 세부 위치 보정을 하기 위한 정책을 결정하는 과정이다. AccuracyGPS는 현재 GPS을 통해서 얻은 위치의 정확도이며 GPS 위성의 개수 및 신호의 세기로 결정된다. ThreasholdGPS는 시스템 혹은 구현에서 결정하는 값으로 해당 threshold 보다 정확도가 높다면 GPS을 통해서 확인된 위치가 충분히 정확하다는 의미이다. AccuracyFTM는 현재 Wi-Fi FTM을 통해서 얻은 거리의 정확도이며, FTM의 정확도는 Wi-Fi 대역폭, Delay 등에 따라 달라지게 된다. 만약 이 Accuracy 값이 threshold 보다 크다면 현재 Wi-Fi 연결을 FTM 측정하기에 충분히 빠르기 때문에 충분히 신뢰할 수 있는 거리 측정이 가능하다는 의미이다. (AccuracyGPS > ThresholdGPS)&&(AccuracyFTM > ThresholdFTM) 의미는 두 측위 방법 모두 충분히 정확하다는 의미이다. 즉 이런 경우는 단계 1832으로 진행한다.
단계 1832는 최종 보정된 위치를 계산하는 경우이며, GPS와 FTM 모두 충분히 신뢰할 수 있는 정도라서 기존에 계산한 접점이 1개이상인 경우 FTM-GPS의 원의 중심, 접점이 0개 인 경우 삼각형의 무게중심으로 최종 보정한다.
단계 1841의 동작은 현재 GPS와 FTM의 위치 측위 신뢰도 중에 어는 것이 신뢰도가 높은 지 비교하는 부분이다. 즉 이 참이면 GPS가 FTM보다 정확한 위치 판단이 가능하다는 의미이고, 단계 1842 최종 위치 보정에서 GPS 위치에 가중치를 주어 보정한다. 이 가중치의 계산방법이나 정도는 시스템의 설정이나 구현에 따라 달라지게 된다.The operation of step 1841 is to compare which of the current GPS and FTM positioning reliability is more reliable. That is, If this is true, it means that GPS can determine the location more accurately than FTM, and in
단계 1843은 반대로 GPS보다 FTM의 위치 정확도가 높은 경우이며, 이때는 위치 보정에 있어 GPS 보다 FTM에 대해서 가중치를 두고 위치 보정하게 된다.
실제 환경에서 위성 수신 상태, 전송 환경 등에 따라서 GPS와 FTM 모두 오차를 가지고 있으며, LocFTM(NAN4), LocGPS(NAN4) 모두 정확한 V2X 기기의 위치를 나타내지 못한다. 본 개시에서는 이 두가지 위치 측위 방법의 오차를 최소화하여 실제 위치와 가까운 Locreal 값을 구하는 알고리즘을 제안한다. 이 알고리즘은 GPS와 Wi-Fi Aware을 통한 FTM방식의 위치 측위가 모두 가능한 기기에 적용하다. 본 개시에서는 V2X 서비스에 적용하는 실시예로 주로 설명하였는데, 적용할 수 있는 서비스는 V2X에 한정되지 않으며, 실내외 측위, IoT, 모바일, UAM, 드론, 비행기, 선박 등에 적용 가능하다. In a real environment, both GPS and FTM have errors depending on the satellite reception status, transmission environment, etc., and neither Loc FTM (NAN4) nor Loc GPS (NAN4) can accurately represent the position of a V2X device. In this disclosure, we propose an algorithm that minimizes the error of these two positioning methods and obtains a Loc real value close to the actual position. This algorithm is applicable to a device that can perform both GPS and FTM positioning via Wi-Fi Aware. In this disclosure, an embodiment applied to V2X service has been mainly described, but applicable services are not limited to V2X, and can be applied to indoor/outdoor positioning, IoT, mobile, UAM, drones, airplanes, ships, etc.
또한 실시예에서는 GPS와 Wi-Fi Aware를 통한 측위 방법의 융합 알고리즘을 실시예로 하였으나 발명의 기술은 GPS와 Wi-Fi FTM에 한정하지 않으며, GPS+UWB, UWB+Wi-Fi, Wi-Fi-Bluetooth등 두가지 이상의 측위 방법을 조합하여 사용하는 기술에 모두 적용 가능하다.In addition, although the embodiment exemplifies a fusion algorithm of positioning methods via GPS and Wi-Fi Aware, the technology of the invention is not limited to GPS and Wi-Fi FTM, and can be applied to all technologies that use a combination of two or more positioning methods, such as GPS+UWB, UWB+Wi-Fi, and Wi-Fi-Bluetooth.
본 개시가 적용되는 통신 시스템 예Examples of communication systems to which the present disclosure applies
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, the various descriptions, functions, procedures, proposals, methods and/or operational flowcharts of the present disclosure disclosed in this document may be applied to various fields requiring wireless communication/connectivity (e.g., 5G) between devices.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, more specific examples will be provided with reference to the drawings. In the drawings/descriptions below, the same drawing symbols may illustrate identical or corresponding hardware blocks, software blocks, or functional blocks, unless otherwise described.
도 19은 본 개시에 적용되는 통신 시스템(1)을 예시한다.Fig. 19 illustrates a communication system (1) applied to the present disclosure.
도 19을 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 19, a communication system (1) applied to the present disclosure includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device. Although not limited thereto, the wireless device may include a robot (100a), a vehicle (100b-1, 100b-2), an XR (eXtended Reality) device (100c), a hand-held device (100d), a home appliance (100e), an IoT (Internet of Thing) device (100f), and an AI device/server (400). For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing vehicle-to-vehicle communication, etc. Here, the vehicle may include an Unmanned Aerial Vehicle (UAV) (e.g., a drone). XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices and can be implemented in the form of HMD (Head-Mounted Device), HUD (Head-Up Display) installed in a vehicle, television, smartphone, computer, wearable device, home appliance, digital signage, vehicle, robot, etc. Portable devices can include smartphone, smart pad, wearable device (e.g., smart watch, smart glass), computer (e.g., laptop, etc.). Home appliances can include TV, refrigerator, washing machine, etc. IoT devices can include sensors, smart meters, etc. For example, base stations and networks can also be implemented as wireless devices, and a specific wireless device (200a) can act as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.Wireless devices (100a to 100f) can be connected to a network (300) via a base station (200). Artificial Intelligence (AI) technology can be applied to the wireless devices (100a to 100f), and the wireless devices (100a to 100f) can be connected to an AI server (400) via the network (300). The network (300) can be configured using a 3G network, a 4G (e.g., LTE) network, a 5G (e.g., NR) network, etc. The wireless devices (100a to 100f) can communicate with each other via the base station (200)/network (300), but can also communicate directly (e.g., sidelink communication) without going through the base station/network. For example, vehicles (100b-1, 100b-2) can communicate directly (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to everything) communication). Also, IoT devices (e.g., sensors) can communicate directly with other IoT devices (e.g., sensors) or other wireless devices (100a to 100f).
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/connection (150a, 150b, 150c) can be established between wireless devices (100a to 100f)/base stations (200), and base stations (200)/base stations (200). Here, the wireless communication/connection can be achieved through various wireless access technologies (e.g., 5G NR) such as uplink/downlink communication (150a), sidelink communication (150b) (or, D2D communication), and communication between base stations (150c) (e.g., relay, IAB (Integrated Access Backhaul). Through the wireless communication/connection (150a, 150b, 150c), a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to/from each other. For example, the wireless communication/connection (150a, 150b, 150c) can transmit/receive signals through various physical channels. To this end, at least some of various configuration information setting processes for transmitting/receiving wireless signals, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), and resource allocation processes can be performed based on various proposals of the present disclosure.
본 개시가 적용되는 무선 기기 예Examples of wireless devices to which this disclosure applies
도 20는 본 개시에 적용될 수 있는 무선 기기를 예시한다.FIG. 20 illustrates a wireless device applicable to the present disclosure.
도 20를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 19의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 20, the first wireless device (100) and the second wireless device (200) can transmit and receive wireless signals through various wireless access technologies (e.g., LTE, NR). Here, {the first wireless device (100), the second wireless device (200)} can correspond to {the wireless device (100x), the base station (200)} and/or {the wireless device (100x), the wireless device (100x)} of FIG. 19.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.A first wireless device (100) includes one or more processors (102) and one or more memories (104), and may additionally include one or more transceivers (106) and/or one or more antennas (108). The processor (102) controls the memory (104) and/or the transceiver (106), and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (102) may process information in the memory (104) to generate first information/signal, and then transmit a wireless signal including the first information/signal via the transceiver (106). Additionally, the processor (102) may receive a wireless signal including second information/signal via the transceiver (106), and then store information obtained from signal processing of the second information/signal in the memory (104). The memory (104) may be connected to the processor (102) and may store various information related to the operation of the processor (102). For example, the memory (104) may perform some or all of the processes controlled by the processor (102), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Here, the processor (102) and the memory (104) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR). The transceiver (106) may be connected to the processor (102) and may transmit and/or receive wireless signals via one or more antennas (108). The transceiver (106) may include a transmitter and/or a receiver. The transceiver (106) may be used interchangeably with an RF (Radio Frequency) unit. In the present disclosure, a wireless device may also mean a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device (200) includes one or more processors (202), one or more memories (204), and may additionally include one or more transceivers (206) and/or one or more antennas (208). The processor (202) may be configured to control the memories (204) and/or the transceivers (206), and implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document. For example, the processor (202) may process information in the memory (204) to generate third information/signals, and then transmit a wireless signal including the third information/signals via the transceivers (206). Additionally, the processor (202) may receive a wireless signal including fourth information/signals via the transceivers (206), and then store information obtained from signal processing of the fourth information/signals in the memory (204). The memory (204) may be connected to the processor (202) and may store various information related to the operation of the processor (202). For example, the memory (204) may perform some or all of the processes controlled by the processor (202), or may store software codes including instructions for performing the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in the present document. Here, the processor (202) and the memory (204) may be part of a communication modem/circuit/chip designed to implement wireless communication technology (e.g., LTE, NR). The transceiver (206) may be connected to the processor (202) and may transmit and/or receive wireless signals via one or more antennas (208). The transceiver (206) may include a transmitter and/or a receiver. The transceiver (206) may be used interchangeably with an RF unit. In the present disclosure, a wireless device may also mean a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless device (100, 200) will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors (102, 202). For example, one or more processors (102, 202) may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP). One or more processors (102, 202) may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. One or more processors (102, 202) may generate messages, control information, data, or information according to the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. One or more processors (102, 202) can generate signals (e.g., baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methodologies disclosed herein and provide the signals to one or more transceivers (106, 206). One or more processors (102, 202) can receive signals (e.g., baseband signals) from one or more transceivers (106, 206) and obtain PDUs, SDUs, messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. The one or more processors (102, 202) may be referred to as a controller, a microcontroller, a microprocessor, or a microcomputer. The one or more processors (102, 202) may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPDs), one or more Programmable Logic Devices (PLDs), or one or more Field Programmable Gate Arrays (FPGAs) may be included in the one or more processors (102, 202). The descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc. The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software configured to perform one or more of the following: included in one or more processors (102, 202), or stored in one or more memories (104, 204) and driven by one or more of the processors (102, 202). The descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories (104, 204) may be coupled to one or more processors (102, 202) and may store various forms of data, signals, messages, information, programs, codes, instructions and/or commands. The one or more memories (104, 204) may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media and/or combinations thereof. The one or more memories (104, 204) may be located internally and/or externally to the one or more processors (102, 202). Additionally, the one or more memories (104, 204) may be coupled to the one or more processors (102, 202) via various technologies, such as wired or wireless connections.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers (106, 206) can transmit user data, control information, wireless signals/channels, etc., as described in the methods and/or flowcharts of this document, to one or more other devices. One or more transceivers (106, 206) can receive user data, control information, wireless signals/channels, etc., as described in the descriptions, functions, procedures, suggestions, methods and/or flowcharts of this document, from one or more other devices. For example, one or more transceivers (106, 206) can be coupled to one or more processors (102, 202) and can transmit and receive wireless signals. For example, one or more processors (102, 202) can control one or more transceivers (106, 206) to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors (102, 202) may control one or more transceivers (106, 206) to receive user data, control information, or wireless signals from one or more other devices. Additionally, one or more transceivers (106, 206) may be coupled to one or more antennas (108, 208), and one or more transceivers (106, 206) may be configured to transmit and receive user data, control information, wireless signals/channels, and the like, as described in the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein, via one or more antennas (108, 208). In this document, one or more antennas may be multiple physical antennas, or multiple logical antennas (e.g., antenna ports). One or more transceivers (106, 206) may convert received user data, control information, wireless signals/channels, etc. from RF band signals to baseband signals in order to process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202). One or more transceivers (106, 206) may convert processed user data, control information, wireless signals/channels, etc. from baseband signals to RF band signals using one or more processors (102, 202). For this purpose, one or more transceivers (106, 206) may include an (analog) oscillator and/or filter.
본 개시가 적용되는 차량 또는 자율 주행 차량 예Examples of vehicles or autonomous vehicles to which this disclosure applies
도 21는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.Fig. 21 illustrates a vehicle or autonomous vehicle to which the present disclosure applies. The vehicle or autonomous vehicle may be implemented as a mobile robot, a car, a train, a manned/unmanned aerial vehicle (AV), a ship, etc.
도 21를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. Referring to FIG. 21, a vehicle or autonomous vehicle (100) may include an antenna unit (108), a communication unit (110), a control unit (120), a driving unit (140a), a power supply unit (140b), a sensor unit (140c), and an autonomous driving unit (140d). The antenna unit (108) may be configured as a part of the communication unit (110).
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.The communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g., base stations, road side units, etc.), servers, etc. The control unit (120) can control elements of the vehicle or autonomous vehicle (100) to perform various operations. The control unit (120) can include an ECU (Electronic Control Unit). The drive unit (140a) can drive the vehicle or autonomous vehicle (100) on the ground. The drive unit (140a) can include an engine, a motor, a power train, wheels, brakes, a steering device, etc. The power supply unit (140b) supplies power to the vehicle or autonomous vehicle (100) and can include a wired/wireless charging circuit, a battery, etc. The sensor unit (140c) can obtain vehicle status, surrounding environment information, user information, etc. The sensor unit (140c) may include an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an incline sensor, a weight detection sensor, a heading sensor, a position module, a vehicle forward/backward sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, a light sensor, a pedal position sensor, etc. The autonomous driving unit (140d) may implement a technology for maintaining a driving lane, a technology for automatically controlling speed such as adaptive cruise control, a technology for automatically driving along a set path, a technology for automatically setting a path and driving when a destination is set, etc.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.For example, the communication unit (110) can receive map data, traffic information data, etc. from an external server. The autonomous driving unit (140d) can generate an autonomous driving route and a driving plan based on the acquired data. The control unit (120) can control the driving unit (140a) so that the vehicle or autonomous vehicle (100) moves along the autonomous driving route according to the driving plan (e.g., speed/direction control). During autonomous driving, the communication unit (110) can irregularly/periodically acquire the latest traffic information data from an external server and can acquire surrounding traffic information data from surrounding vehicles. In addition, the sensor unit (140c) can acquire vehicle status and surrounding environment information during autonomous driving. The autonomous driving unit (140d) can update the autonomous driving route and driving plan based on the newly acquired data/information. The communication unit (110) can transmit information on the vehicle location, autonomous driving route, driving plan, etc. to an external server. An external server can predict traffic information data in advance using AI technology, etc. based on information collected from vehicles or autonomous vehicles, and provide the predicted traffic information data to the vehicles or autonomous vehicles.
본 개시가 적용되는 AR/VR 및 차량 예Examples of AR/VR and vehicles to which this disclosure applies
도 22는 본 개시에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.Fig. 22 illustrates a vehicle to which the present disclosure applies. The vehicle may also be implemented as a means of transportation, a train, an aircraft, a ship, etc.
도 22을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. Referring to FIG. 22, the vehicle (100) may include a communication unit (110), a control unit (120), a memory unit (130), an input/output unit (140a), and a position measurement unit (140b).
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.The communication unit (110) can transmit and receive signals (e.g., data, control signals, etc.) with other vehicles or external devices such as base stations. The control unit (120) can control components of the vehicle (100) to perform various operations. The memory unit (130) can store data/parameters/programs/codes/commands that support various functions of the vehicle (100). The input/output unit (140a) can output AR/VR objects based on information in the memory unit (130). The input/output unit (140a) can include a HUD. The position measurement unit (140b) can obtain position information of the vehicle (100). The position information can include absolute position information of the vehicle (100), position information within a driving line, acceleration information, position information with respect to surrounding vehicles, etc. The position measurement unit (140b) can include GPS and various sensors.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다. For example, the communication unit (110) of the vehicle (100) can receive map information, traffic information, etc. from an external server and store them in the memory unit (130). The location measurement unit (140b) can obtain vehicle location information through GPS and various sensors and store them in the memory unit (130). The control unit (120) can generate a virtual object based on the map information, traffic information, vehicle location information, etc., and the input/output unit (140a) can display the generated virtual object on the vehicle window (1410, 1420). In addition, the control unit (120) can determine whether the vehicle (100) is being driven normally within the driving line based on the vehicle location information. If the vehicle (100) abnormally deviates from the driving line, the control unit (120) can display a warning on the vehicle window through the input/output unit (140a). In addition, the control unit (120) can broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit (110). Depending on the situation, the control unit (120) can transmit vehicle location information and information regarding driving/vehicle abnormalities to relevant organizations through the communication unit (110).
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.The embodiments described above can be applied to various mobile communication systems.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2023-0067719 | 2023-05-25 | ||
KR20230067719 | 2023-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024242513A1 true WO2024242513A1 (en) | 2024-11-28 |
Family
ID=93589399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/007174 WO2024242513A1 (en) | 2023-05-25 | 2024-05-27 | Method for measuring location using wi-fi nan in v2x communication |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024242513A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160366578A1 (en) * | 2015-06-15 | 2016-12-15 | Qualcomm Incorporated | Methods and apparatus for wireless discovery location and ranging within a neighborhood aware network |
US20170353981A1 (en) * | 2016-06-03 | 2017-12-07 | Samsung Electronics Co., Ltd. | Method and apparatus for setup of wireless communication |
US20190289603A1 (en) * | 2015-04-20 | 2019-09-19 | Apple Inc. | Neighbor Awareness Networking Ranging |
US20190335404A1 (en) * | 2014-12-01 | 2019-10-31 | Intel Corporation | Exchanging ranging and location information among peer-to-peer devices |
CN106717068B (en) * | 2015-03-20 | 2019-11-29 | 华为技术有限公司 | The distance between a kind of NAN equipment measurement method and NAN equipment |
-
2024
- 2024-05-27 WO PCT/KR2024/007174 patent/WO2024242513A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190335404A1 (en) * | 2014-12-01 | 2019-10-31 | Intel Corporation | Exchanging ranging and location information among peer-to-peer devices |
CN106717068B (en) * | 2015-03-20 | 2019-11-29 | 华为技术有限公司 | The distance between a kind of NAN equipment measurement method and NAN equipment |
US20190289603A1 (en) * | 2015-04-20 | 2019-09-19 | Apple Inc. | Neighbor Awareness Networking Ranging |
US20160366578A1 (en) * | 2015-06-15 | 2016-12-15 | Qualcomm Incorporated | Methods and apparatus for wireless discovery location and ranging within a neighborhood aware network |
US20170353981A1 (en) * | 2016-06-03 | 2017-12-07 | Samsung Electronics Co., Ltd. | Method and apparatus for setup of wireless communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022045798A1 (en) | Network configuration-based sidelink positioning method and apparatus | |
WO2020251318A1 (en) | Prs transmission-based sidelink positioning of server terminal in nr v2x | |
WO2020246842A1 (en) | Sidelink positioning based on prs transmission of single user equipment in nr v2x | |
WO2021141404A1 (en) | Method and apparatus for performing sidelink-based positioning | |
WO2021112649A1 (en) | Method and apparatus for positioning using backscatter tag | |
WO2021125631A1 (en) | Method and apparatus for efficient assistance data transfer in nr positioning | |
WO2021221463A1 (en) | Non-independent unlicensed band-based positioning method and device in nr v2x | |
KR20240128514A (en) | Method of operating a message exchange server related to v2x message transmission and reception and apparatus therefor | |
WO2024242513A1 (en) | Method for measuring location using wi-fi nan in v2x communication | |
WO2021201665A1 (en) | Method and apparatus for performing das-based positioning | |
WO2024177194A1 (en) | Operation method and device for sharing and transferring v2x service-related information item by server and rsu device | |
WO2024158197A1 (en) | Operation method and device of v2x terminal and server related to message issuance and subscription per message transmission period | |
WO2024248218A1 (en) | Method and apparatus for measuring location on basis of soft v2x | |
WO2024155128A1 (en) | Method and device for transmitting and receiving sidelink positioning protocol message in wireless communication system | |
WO2024186184A1 (en) | Method and device for transmitting segmented positioning message in wireless communication system | |
WO2024172536A1 (en) | Method for determining anchor ue for positioning in wireless communication system, and device therefor | |
WO2024147581A1 (en) | Method for performing positioning for low-power terminals in wireless communication system, and apparatus therefor | |
WO2024162758A1 (en) | Method for reporting location measurements for positioning in wireless communication system and device therefor | |
WO2024151059A1 (en) | Method for performing positioning of client ue on basis of sidelink connection list in wireless communication system, and apparatus therefor | |
WO2024191235A1 (en) | Method for managing positioning protocol session and device therefor in wireless communication system | |
WO2024162673A1 (en) | Method for requesting retrieval of location information of user equipment in wireless communication system, and apparatus therefor | |
WO2024248219A1 (en) | Method and apparatus for operating server related to pre-assessment of degree of risk | |
WO2024248220A1 (en) | Method and apparatus for operating terminal supporting soft v2x related to bluetooth low energy (ble) | |
WO2024155011A1 (en) | Method for determining successful transmission of sidelink positioning message in wireless communication system, and device therefor | |
WO2025058269A1 (en) | Method for configuring parameters for positioning session management and device therefor in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24811451 Country of ref document: EP Kind code of ref document: A1 |