[go: up one dir, main page]

WO2024241780A1 - Method for detecting quantity of first structure and quantity of second structure - Google Patents

Method for detecting quantity of first structure and quantity of second structure Download PDF

Info

Publication number
WO2024241780A1
WO2024241780A1 PCT/JP2024/015380 JP2024015380W WO2024241780A1 WO 2024241780 A1 WO2024241780 A1 WO 2024241780A1 JP 2024015380 W JP2024015380 W JP 2024015380W WO 2024241780 A1 WO2024241780 A1 WO 2024241780A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
amount
bound
binding
nucleic acid
Prior art date
Application number
PCT/JP2024/015380
Other languages
French (fr)
Japanese (ja)
Inventor
哲生 鳥巣
進 内山
ソシュ,セレイラス
未香子 ▲高▼倉
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2024241780A1 publication Critical patent/WO2024241780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to a method for detecting the amount of a first structure and the amount of a second structure, a method for evaluating the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, and a kit for use in these methods.
  • Non-Patent Document 2 https://darkhorseconsultinggroup.com/wp-content/uploads/2022/2017DHC_Proposed-DRAFT-Guidance-for-FDA-Consideration.pdf.
  • This method has concerns such as errors in the complete particle/empty particle ratio due to the combination of two different mechanisms, and the need to quantify complete particles and empty particles using samples that are not strictly the same. In addition, performing two measurements requires time and effort.
  • the method of the present invention for detecting the amount of a first structure and the amount of a second structure includes the steps of binding a first label to the first structure, releasing the second structure from the first structure, binding a second label to the second structure, and jointly detecting the amount of the bound first label and the amount of the bound second label, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.
  • the method for assessing the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid includes the steps of immobilizing the viral capsid on a support, indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid, washing away the unbound first label, releasing nucleic acid from the viral capsid, binding a second label to the released nucleic acid, detecting the amount of the bound first label and the amount of the bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount of the bound first label and the amount of the bound second label, wherein the nucleic acid is encapsulated in the viral capsid, and the first label and the second label can be detected together but are different.
  • the kit according to the present invention includes a first label for a first structure, a second label for a second structure, and instructions for detecting the amount of bound first label and the amount of bound second label together, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.
  • the present invention provides the following: [1] A method for detecting an amount of a first structure and an amount of a second structure, the method comprising: Binding a first label to the first structure; Releasing the second structure from the first structure; binding a second label to the second structure and jointly detecting the amount of bound first label and the amount of bound second label; Including, a second structure is contained within the first structure, and the first label and the second label are detectable together but are different; method. [2] The method according to [1], further comprising the step of washing away the first label that has not bound to the first structure.
  • the first structure is selected from the group consisting of a virus particle, a virus capsid, a liposome, a lipid nanoparticle (LNP), and a polymer particle.
  • the virus is selected from the group consisting of adeno-associated virus (AAV), retrovirus, lentivirus, and adenovirus.
  • AAV adeno-associated virus
  • retrovirus retrovirus
  • lentivirus lentivirus
  • adenovirus adenovirus
  • step of binding the first label to the first structure comprises indirect binding via a molecule that specifically binds to one or more first structures, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, or comprises indirect binding via the molecule that specifically binds to the first structure and a secondary antibody that specifically binds to the molecule.
  • step of jointly detecting the amount of bound first label and the amount of bound second label comprises detecting them together using one device or detector.
  • a method for evaluating a ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid comprising: Immobilizing the viral capsid on a support; Indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid; washing away unbound first label; Releasing nucleic acid from the viral capsid; binding a second label to the released nucleic acid; detecting the amount of bound first label and the amount of bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount of bound first label and the amount of bound second label; Including, the nucleic acid is encapsulated in a viral capsid, and the first label and the second label are detectable together but are different, method.
  • a first marker for a first structure a first marker for a first structure; a second label on the second structure and instructions for jointly detecting the amount of bound first label and the amount of bound second label;
  • a detection kit comprising: a second structure is contained within the first structure, and the first label and the second label are detectable together but are different; Detection kit.
  • the method of the present invention includes a step of detecting the amount of the first label bound to the first structure and the amount of the second label bound to the second structure together.
  • the method of the present invention can, for example, reduce the time or effort required to detect the amount of the first structure and the amount of the second structure, reduce the cost of detecting the amount of the first structure and the amount of the second structure, reduce the detection error of the amount of the first structure and the amount of the second structure, eliminate the need to purify the first structure or the second structure from a sample containing impurities, or make it possible to detect the amount of the first structure and the amount of the second structure at low concentrations.
  • Example 1 is a simplified flow chart of one embodiment of the method of the present invention.
  • 1 is a simplified flow chart of one embodiment of the method of the present invention.
  • Test results from Example 1 using AAV8. Test results from Example 2 using AAV2.
  • Test results from Example 3 using a mixture of AAV2 and AAV8.
  • Test results from Example 4 using Quantifluor.
  • Test results from Example 5 using AAV2 containing ssDNA and AAV2 containing scDNA.
  • Test results according to Example 6 using conventional wavelengths of 495 nm and 535 nm and wavelengths of 500 nm and 535 nm by the inventors.
  • A Quantification of capsid titer.
  • B Quantification of genome titer.
  • AAV8 content in unpurified samples was analyzed by three methods: dFLISA, ELISA, and dPCR.
  • dFLISA was used to quantify capsid and genome titers and to calculate the FP/EP ratio of AAV8 content in unpurified samples.
  • the present invention provides a method for detecting the amount (or concentration) of a first structure and the amount (or concentration) of a second structure, the method comprising the steps of binding a first label to the first structure, binding a second label to the second structure, and jointly detecting the amount of bound first label and the amount of bound second label, wherein the first label and the second label can be detected together but are different.
  • the present invention provides a method for detecting the amount (or concentration) of a first structure and the amount (or concentration) of a second structure, the method comprising the steps of binding a first label to the first structure, releasing the second structure from the first structure, binding a second label to the second structure, and jointly detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label, wherein the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.
  • the present invention provides a method for evaluating the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, the method comprising the steps of immobilizing the viral capsid on a support, indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid, washing away the unbound first label, releasing nucleic acid from the viral capsid, binding a second label to the released nucleic acid, detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label, wherein the nucleic acid is encapsulated in the viral capsid, and the first label and the second label can be detected together but are different.
  • the present invention provides a kit comprising a first label on a first structure, a second label on a second structure, and instructions for detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label together, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.
  • the "first structure” may be composed of any material or substance, for example, a protein, lipid, or polymer, or a combination thereof, for example, a virus particle, a virus capsid, a liposome, a lipid nanoparticle (LNP), and a polymer particle.
  • the “first structure” may be used as a tool for treating or diagnosing a disease or for in vivo gene transfer.
  • the "first structure” may include a "second structure”.
  • the “first structure” may not include a "second structure”.
  • the “first structure” may be a "first structure” that includes a "second structure” and/or a "first structure” that does not include a "second structure”.
  • the "first structure” may be bound to a "second structure”.
  • the “first structure” may not be bound to a “second structure”.
  • the “first structure” may be a "first structure” that is bound to a "second structure” and/or a “first structure” that is not bound to a "
  • Viruses include any virus, such as adeno-associated viruses (AAV), retroviruses, lentiviruses and adenoviruses, and those viruses with modified viral capsid proteins.
  • AAV includes natural adeno-associated viruses or recombinant adeno-associated viruses.
  • AAV includes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11.
  • Adeno-associated virus belongs to the Parvoviridae family.
  • the AAV genome consists of a linear single-stranded DNA molecule of approximately 4.7 kilobases (kb) and consists of two major open reading frames encoding the nonstructural Rep (replication) protein and the structural Cap (capsid) protein.
  • Recombinant vectors derived from AAV are used as tools for disease treatment or diagnosis, etc.
  • Adeno-associated virus (AAV) derived viral vectors are used as tools for in vivo gene transfer due to their superior in vivo efficiency, broad tissue tropism and excellent safety profile compared to other vectors.
  • Active (including DNA, etc.) adeno-associated virus (AAV) particles complete particles may be used as tools for disease treatment or diagnosis or in vivo gene transfer.
  • the "second structure” may be composed of any material or ingredient, for example, a nucleic acid, a protein, or a compound, or a combination thereof, for example, DNA, single-stranded DNA (ssDNA), self-complementary DNA (scDNA), RNA, miRNA, lncRNA, peptide, antibody, detection compound, and drug.
  • the "second structure” includes, for example, those that can be applied to the treatment, prevention, or diagnosis of a disease.
  • the disease may be cancer, an autoimmune disease, an infectious disease, etc.
  • the "second structure” may be an introduced gene, a transcription control gene, a gene therapy agent, a nucleic acid encoding a small molecule, a nucleic acid encoding an antibody, a nucleic acid encoding a protein, a small interfering RNA, an antisense RNA, a ribozyme, a nucleic acid encoding a therapeutic protein, a nucleic acid for genome editing, a nucleic acid for gene recombination, and a microRNA (miRNA), etc.
  • the “second structure” may be included in the “first structure”.
  • the “second structure” may be bound to the "first structure”.
  • the term "encompassing" in the context of "a second structure is contained in a first structure,” "a first structure containing a second structure,” or “a first structure not containing a second structure” means a structure or state in which a first structure contains a second structure.
  • a second structure is contained in a first structure means that a second structure is present inside a first structure.
  • the second structure may or may not be attached to the inner surface of the first structure.
  • a first structure not containing a second structure means that a second structure is not present inside the first structure.
  • label includes any detectable signal source, such as fluorescent, visible, optical, colorimetric, dyes, enzymes, GCMS tags, avidin, biotin, and radioactive substances (radioactive labels and radiopaque, etc.).
  • label includes various molecules such as dyes (fluorescent dyes) that emit fluorescent signals, radioactive labels, molecules that emit MRI signals, and molecules that emit ultrasound signals, as well as various microparticles such as iron oxide microparticles, gold microparticles, gold nanorods, and microparticles of metals and metal oxides such as platinum and silver.
  • the "label” can be detected by an apparatus or detector based on the properties, activity, strength, or amount of the label.
  • label may be only a detectable signal source, or may be a protein, antibody, peptide, probe, etc. that has a detectable signal source.
  • the fluorescent dye may be any dye that emits a fluorescent signal, such as commercially available fluorescent dyes, known fluorescent dyes, Alexa Fluor (registered trademark) 647, SYBR (registered trademark) Gold, SYBR (registered trademark) green, QuantiFluor (registered trademark) ssDNA Dye Systems, fluorescein, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 647, Alexa Fluor 680, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, SYBR Gold, SYBR Green I, SYBR Green II, SYBR Safe, or QuantiFluor ssDNA Dye Systems (QuantiFluor dsDNA, RNA or ssDNA System).
  • fluorescent dyes such as commercially available fluorescent dyes, known fluorescent dyes
  • the fluorescent dye can be detected by a light sensor, a light detector, a microscope, a device or a detector, etc., based on the wavelength, characteristic, activity, intensity or amount of the fluorescent signal or fluorescent dye.
  • a light sensor a light detector, a microscope, a device or a detector, etc.
  • Those skilled in the art can appropriately select an optical sensor, optical detector, microscope, device, detector, etc. based on the wavelength, characteristics, activity, intensity, or amount of the fluorescent signal or fluorescent dye.
  • Radioactive labels include any label that emits radioactive substances, for example, commercially available radioactive labels, known radioactive labels, 18F, 32P, 35S, 129I, 131I, 64Cu, or 67Cu. Radioactive labels can be detected by a radiation or radioactivity sensor, radiation or radioactivity detector, device, or detector, etc., based on the characteristics, activity, strength, or amount of the radioactive label. Those skilled in the art can appropriately select a radiation or radioactivity sensor, radiation or radioactivity detector, device, or detector, based on the characteristics, activity, strength, or amount of the radioactive label.
  • a "first label for a first structure” or a “first label” is directly or indirectly bound to a first structure.
  • a "first label for a first structure” or a “first label” may be indirectly bound to a first structure via a molecule that specifically binds to one or more first structures, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide.
  • a "first label for a first structure” or a “first label” may be indirectly bound to a first structure via an antibody that specifically binds to the first structure and a secondary antibody that specifically binds to the antibody.
  • a "first label for a first structure” or a “first label” may be a label that is not destroyed or malfunctioned, or is not easily destroyed or malfunctioned, in a method that includes a step of releasing a second structure from a first structure.
  • the "first label for the first structure” or the “first label” may be a label that is not destroyed or disabled, or is not easily destroyed or disabled, in the step of washing away the first label that is not bound to the first structure when the method includes the step of washing away the first label that is not bound to the first structure.
  • the first structure may have one or more additional labels attached to it in addition to the "first label for the first structure" or the "first label".
  • the "first label for the first structure” or the “first label” may be a fluorescent dye or a radioactive label.
  • the "first label for the first structure” or the “first label” may be, for example, a commercially available fluorescent dye, a known fluorescent dye, Alexa Fluor (registered trademark) 647, fluorescein, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 5, or a similar fluorescent dye.
  • the "second label for the second structure” or “second label” is directly or indirectly bound to the second structure.
  • the "second label for the second structure” or “second label” may be indirectly bound to the second structure via one or more molecules that specifically bind to the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide.
  • the "second label for the second structure” or “second label” may be indirectly bound to the second structure via an antibody that specifically binds to the second structure and a secondary antibody that specifically binds to the antibody.
  • the "second label for the second structure” or “second label” may be a label that generates a different detectable signal when bound to the second structure compared to when not bound to the second structure.
  • the "second label for the second structure” or “second label” may be a label that generates a detectable signal when bound to the second structure, but does not generate a detectable signal when not bound to the second structure.
  • a “second label for a second structure” or a “second label” may be a label that generates a greater or lesser or different detectable signal when bound to the second structure than when not bound to the second structure.
  • the second structure may have one or more additional labels bound to it in addition to the "second label for a second structure" or the "second label”.
  • a “second label for a second structure” or a “second label” may be a fluorescent dye or a radioactive label.
  • the "second label for the second structure” or the “second label” may be, for example, a commercially available fluorescent dye, a known fluorescent dye, SYBR (registered trademark) Gold, SYBR (registered trademark) green, QuantiFluor (registered trademark) ssDNA Dye Systems, fluorescein, SYBR Gold, SYBR Green I, SYBR Green II, SYBR Safe, QuantiFluor ssDNA Dye Systems (QuantiFluor dsDNA, RNA, etc.) or ssDNA System), SYPRO orange, Thioflavin T, SYPRO orange, SYPRO Tangerine, SYPRO Red, SYPRO Ruby, SYTOX Blue, SYTOX Green, SYTOX Orange, SYTOX Red, SYTOX AADvanced, or Hoechst, for example Hoechst
  • the "first label for the first structure” or the "first label” and the “second label for the second structure” or the “second label” are different labels that can be detected together.
  • the "first label” and the “second label” are labels that can be detected together using one or more devices or detectors, and a detection result of each label of the first structure and the second structure can be obtained.
  • the "first label” and the “second label” are fluorescent dyes that emit different fluorescent signals and can be detected together using one or more microscopes, devices or detectors, and a detection result of the fluorescent signal of each fluorescent dye of the first label and the second label can be obtained based on, for example, each wavelength.
  • the "first label” and the "second label” can be detected together using one device or detector.
  • a person skilled in the art can appropriately select the "first label” and the "second label” based on the characteristics of the first structure, the second structure, the first label, the second label, the device, the detector, or the detection result.
  • detecting together means detecting two or more substances to be detected in one space or location that contains them (e.g., one sample, one container, or one well in a plate).
  • detecting the amount of bound first label and the amount of bound second label together may mean detecting the amounts of each of the first label and the second label in one space or location that contains the bound first label and the bound second label (e.g., one sample, one container, or one well in a plate).
  • detecting the amount of bound first label and the amount of bound second label together may mean detecting the amount of each of the first label and the second label simultaneously, or sequentially or sequentially (e.g., detecting the amount of each of the first label and the second label simultaneously, detecting the amount of the first label first and then the amount of the second label, or detecting the amount of the second label first and then the amount of the first label).
  • a “kit” includes a first label for a first structure, a second label for a second structure, and instructions for detecting the amount of bound first label and the amount of bound second label together.
  • the “kit” may be a kit for use in any method of detecting the amount of a first structure and the amount of a second structure described herein.
  • the “kit” may further include any peptide, protein, antibody, nucleic acid, additional label, enzyme, substrate, reagent, buffer, salt, plate, or container, etc.
  • the method of the invention includes a step of immobilizing or binding the first structure and/or the second structure to a support before or after the step of binding the first label and/or the step of binding the second label.
  • the first structure and/or the second structure may be indirectly bound to the support via one or more substances, such as a molecule that specifically binds to the first structure and/or the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide.
  • the step of indirectly immobilizing the first structure and/or the second structure on the support may include (i) attaching to the support a substance capable of binding to the support and capable of binding to the first structure and/or the second structure, such as a molecule that specifically binds to the first structure and/or the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, (ii) washing the support by using a washing buffer, (iii) coating the support by using a blocking buffer, (iv) washing the support by using a washing buffer, (v) binding the first structure and/or the second structure to the substance, such as a molecule, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, and/or (vi) washing the support by using a washing buffer.
  • the step of immobilizing the first structure and/or the second structure on the support may hold or maintain the first structure and/or the second structure on the support.
  • the process of immobilizing the first structure and/or the second structure on the support allows unwanted substances, including buffer and substances that are not bound to the support, such as molecules, e.g., antibodies, antibody fragments, lectins, aptamers, ligands, peptides, or cyclic peptides, unbound first structure and/or unbound second structure, to be washed from the support.
  • the support includes any plate or vessel, e.g., a petri dish, microplate, or vessel for culture, measurement, or ELISA.
  • the support may be of any color, e.g., transparent, translucent, white, or black.
  • the support may be white for chemiluminescence detection or black for fluorescence or chemiluminescence detection.
  • the support may be a black microplate for fluorescent dye detection.
  • the method of the present invention includes a step of binding a first label to a first structure and a step of binding a second label to a second structure.
  • the steps of binding the first label to the first structure and the second label to the second structure may be performed in any order or simultaneously.
  • the steps of binding the first label to the first structure and the second label to the second structure may be performed by first binding the first label to the first structure and then binding the second label to the second structure.
  • the steps of binding the first label to the first structure and the second label to the second structure may be performed by first binding the second label to the second structure and then binding the first label to the first structure.
  • the step of binding the first label to the first structure includes directly or indirectly binding the first label to the first structure.
  • the step of binding the first label to the first structure may include indirectly binding the first label to the first structure via one or more substances, such as a molecule that specifically binds to the first structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide.
  • the step of binding the first label to the first structure may include indirectly binding the first label to the first structure via an antibody that specifically binds to the first structure.
  • the step of binding the first label to the first structure may or may not include washing the support after directly or indirectly binding the first label to the first structure.
  • the step of binding the first label to the first structure may include (i) attaching an antibody capable of specifically binding to the first structure to the first structure, (ii) washing the support by using a wash buffer, (iii) binding the first label to the antibody capable of specifically binding to said first structure, and/or (iv) washing the support by using a wash buffer.
  • the step of binding the first label to the first structure may include indirectly binding the first label to the first structure via an antibody that specifically binds to the first structure and a secondary antibody that specifically binds to said antibody.
  • the step of binding the first label to the first structure may include (i) attaching an antibody capable of specifically binding to the first structure (e.g., an antibody that specifically binds to a virus capsid derived from a mouse) to the first structure, (ii) washing the support by using a washing buffer, (iii) binding a secondary antibody that specifically binds to the antibody having the first label (e.g., an anti-mouse IgG antibody that specifically binds to the antibody derived from a mouse having Alexa Fluor (registered trademark) 647) to the antibody, and/or (iv) washing the support by using a washing buffer.
  • an antibody capable of specifically binding to the first structure e.g., an antibody that specifically binds to a virus capsid derived from a mouse
  • washing buffer e.g., an anti-mouse IgG antibody that specifically binds to the antibody derived from a mouse having Alexa Fluor (registered trademark) 647) to the antibody
  • a washing buffer
  • the step of binding the second label to the second structure includes directly or indirectly binding the second label to the second structure.
  • the step of binding the second label to the second structure may include indirectly binding the second label to the second structure via one or more substances, such as a molecule that specifically binds to the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide.
  • the step of binding the second label to the second structure may include indirectly binding the second label to the second structure via a peptide that specifically binds to the second structure.
  • the step of binding the second label to the second structure may or may not include washing the support after directly or indirectly binding the second label to the second structure.
  • the step of binding the second label to the second structure may include binding a peptide (e.g., SYBR® Gold) that specifically binds to the second structure having the second label to the second structure, and/or (ii) not washing the unbound peptide from the sample.
  • the step of binding the second label to the second structure may include (i) binding a peptide (e.g., SYBR® Gold) that specifically binds to the second structure having the second label to the second structure, and/or (ii) washing the unbound peptide from the sample by using a wash buffer.
  • the method of the present invention includes a step of releasing the second structure from the first structure when the second structure is contained in the first structure.
  • the step of releasing the second structure from the first structure is performed, for example, by using a temperature change, heating, cooling, stirring, pipetting, a chemical, a pH change, an acid or an alkali.
  • a person skilled in the art can appropriately select a step of releasing the second structure from the first structure based on the properties, activity, strength or amount of the "first structure" and the "second structure".
  • the heating may be performed at about 75°C to about 95°C, about 80°C to about 90°C, or about 85°C.
  • the heating may be performed for about 5 minutes to about 25 minutes, about 10 minutes to about 20 minutes, or about 15 minutes.
  • the heating may be performed at about 85°C for about 15 minutes.
  • the step of releasing the second structure from the first structure may be performed before the step of binding the first label to the first structure.
  • the step of releasing the second structure from the first structure may be after the step of binding the first label to the first structure.
  • the step of releasing the second structure from the first structure may be before the step of binding the second label to the second structure.
  • the step of releasing the second structure from the first structure may be after the step of binding the first label to the first structure and before the step of binding the second label to the second structure.
  • the step of releasing the second structure from the first structure makes it easier for the second label to bind to the second structure.
  • the step of releasing the second structure from the first structure allows the second label to bind to the second structure that was included in the first structure.
  • the step of releasing the second structure from the first structure allows the second label to bind to the second structure more accurately or with greater precision.
  • the method of the present invention includes a step of detecting the amount of the bound first label and the amount of the bound second label together.
  • the step of detecting the amount of the bound first label and the amount of the bound second label together includes detecting them together, for example, using one or more devices or detectors.
  • the step of detecting the amount of the bound first label and the amount of the bound second label together includes detecting them together, for example, using one device or detector.
  • the step of detecting the amount of the bound first label and the amount of the bound second label together includes obtaining a detection result of each of the labels, the "first label" and the "second label".
  • the step of detecting the amount of the bound first label and the amount of the bound second label together includes obtaining a detection result of each of the fluorescent signals based on excitation and emission, when the "first label” and the "second label” are fluorescent dyes that emit different fluorescent signals.
  • the detection result of the fluorescent signal may be obtained based on a wavelength of 652 nm (excitation) and/or 680 nm (emission).
  • the detection result of the fluorescent signal may be obtained based on a wavelength of 495 nm (excitation) and/or 535 nm (emission), or based on a wavelength of 500 nm (excitation) and/or 535 nm (emission).
  • one optical sensor, photodetector, microscope, device or detector may be used to obtain detection results of fluorescent signals based on wavelengths of 652 nm (excitation) and/or 680 nm (emission) and detection results of fluorescent signals based on wavelengths of 495 nm (excitation) and/or 535 nm (emission) and/or 500 nm (excitation) and/or 535 nm (emission).
  • the process of detecting the amount of bound first label and the amount of bound second label together can, for example, reduce the time or effort required to detect the amount of the first structure and the amount of the second structure, reduce the cost of detecting the amount of the first structure and the amount of the second structure, reduce the detection error of the amount of the first structure and the amount of the second structure, eliminate the need to purify the first structure or the second structure from a sample containing contaminants, or make it possible to detect the amount of the first structure and the amount of the second structure at low concentrations.
  • the method of the present invention includes a step of calculating or determining the amount (or concentration) of the first structure and the amount (or concentration) of the second structure based on the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label.
  • a person skilled in the art can appropriately calculate or determine the amount (or concentration) of the first structure and the amount (or concentration) of the second structure based on the characteristics of the first structure, the second structure, the label, the device, the detector, or the detection result.
  • the step of calculating or determining the amount (or concentration) of the first structure and the amount (or concentration) of the second structure may include creating a calibration curve of the amount (or concentration) of the first label and the amount (or concentration) of the first structure and/or a calibration curve of the amount (or concentration) of the second label and the amount (or concentration) of the second structure.
  • a calibration standard e.g., a commercially available standard, standard solution, and standard sample
  • Those skilled in the art can appropriately determine the standard for the calibration curve to be used based on the characteristics of the first structure, the second structure, the label, the device, the detector, or the detection result.
  • the standard for the calibration curve may be set for each of the first structure and/or the second structure to be calculated or determined.
  • the amount (or concentration) of one or more first structures and/or the amount (or concentration) of one or more second structures can be calculated or determined by performing a correction by calculation.
  • the amount (or concentration) of two or more second structures can be calculated or determined by using one type of standard for the calibration curve and performing a correction by calculation (for example, based on the correlation between DNA length and fluorescence intensity).
  • the amount (or concentration) of the first structure containing the second structure e.g., a viral capsid containing a nucleic acid
  • the amount (or concentration) of the first structure not containing the second structure e.g., a viral capsid not containing a nucleic acid
  • the amount (or concentration) of the first structure containing the second structure can be determined based on the calculated or determined amount (or concentration) of the second structure.
  • the amount (or concentration) of the first structure not containing the second structure can be determined based on the calculated or determined amount (or concentration) of the second structure from the calculated or determined amount (or concentration) of the first structure.
  • the ratio of the first structure containing the second structure e.g., viral capsids containing nucleic acid
  • the first structure not containing the second structure e.g., viral capsids not containing nucleic acid
  • the percentage (proportion) of the first structure containing the second structure e.g., viral capsids containing nucleic acid
  • the percentage (proportion) of the first structure not containing the second structure e.g., viral capsids not containing nucleic acid
  • the amount (or concentration) of the active viral vector (complete particle) and/or the amount (or concentration) of the inactive viral vector (empty particle) can be determined.
  • the ratio of full particles to empty particles can be evaluated or determined based on the calculated or determined amount (or concentration) of the first structure and the amount (or concentration) of the second structure.
  • the method of the present invention may use ELISA (Enzyme-Linked Immunosorbent Assay), which is an immunological assay.
  • ELISA Enzyme-Linked Immunosorbent Assay
  • the method of the present invention is an application of ELISA, which is an immunological assay, and is called Dual Fluorescence-Linked Immunosorbent Assay (dFLISA).
  • the method of the present invention may include detecting the amount (or concentration) of one or more additional structures (e.g., a third structure and/or a fourth structure) in addition to detecting the amount (or concentration) of the first structure and the amount (or concentration) of the second structure.
  • additional structures e.g., a third structure and/or a fourth structure
  • a sample, a container, or a well in a plate may include one or more additional structures (e.g., a third structure and/or a fourth structure) in addition to the first structure and the second structure.
  • the step of detecting the amount (or concentration) of one or more additional structures may be the same as the method or step of detecting the amount (or concentration) of the first structure and the amount (or concentration) of the second structure described herein.
  • Coating of AAV VHH antibody onto plate 100 ⁇ L of diluted AAV VHH antibody was added to each well. An example is shown below. A sticker was placed on the top surface of the plate and pressed into place with a spatula. Incubated at 4°C for 16 hours.
  • Preparation of 1x PBS Weigh out the reagents and mix them in a 500 mL glass bottle. An example is shown below. The vial was shaken to mix well.
  • Preparation of 1% TWEEN20 in 1x PBS Weigh out the reagents into a 15 mL tube and mix them. An example is shown below. The tube was shaken and mixed well by vortexing.
  • wash buffer 0.05% TWEEN20 in 1x PBS, pH 7.4
  • the reagents were weighed and mixed in a 500 mL glass bottle. An example is shown below. The vial was shaken to mix well.
  • the plate was removed from the refrigerator (4°C).
  • the VHH solution in each well of the plate was removed with a multichannel pipette. After adding 200 ⁇ L of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.
  • Blocking of the plate 200 ⁇ L of blocking buffer was added to each well.
  • a sticker was placed on the top surface of the plate and pressed into place with a spatula. Incubated at 37°C for 1 hour. After incubation, the blocking buffer in each well was removed with a multichannel pipette. After adding 200 ⁇ L of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.
  • Preparation of AAV standard and sample solutions ⁇ Preparation of calibration curve solutions>
  • the AAV sample for the standard curve was diluted in a 1.5 mL microtube. An example is shown below.
  • the diluted AAV standard curve sample was serially diluted as follows to prepare standard curve samples (SD1 to SD7).
  • standard curve samples SD1 to SD7
  • sample AAV 100 ⁇ L of sample AAV was added to each well.
  • An example is shown below.
  • ADK8 anti-AAV8 antibody
  • ADK8 anti-AAV8 antibody
  • Goat Anti-Mouse IgG H&L (Alexa Fluor 647) 100 ⁇ L of Goat Anti-Mouse IgG H&L (Alexa Fluor 647) was added to each well.
  • a sticker was placed on the top surface of the plate and pressed into place with a spatula. The mixture was incubated at 37°C for 1 hour in the dark at 300 rpm. After incubation, the AAV solution in each well was removed with a multichannel pipette. After adding 200 ⁇ L of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.
  • Preparation of SYBR Gold The reagents were weighed out and mixed in a 15 mL tube (1000-fold dilution). An example is shown below. The tube was gently shaken to mix well. The 15 mL tube was covered with aluminum foil.
  • Example 2 The test was carried out in the same manner as in Example 1, except that AAV8 and anti-AAV8 antibody (ADK8) were replaced with AAV2 and anti-AAV2 antibody (A20) shown in the table below. The results are shown in Figure 3.
  • Example 3 AAV8 and anti-AAV8 antibody (ADK8) were tested as in Example 1, using a mixture of AAV2 and AAV8 as shown in the table below, and anti-AAV2 antibody (A20) and anti-AAV8 antibody (ADK8). The results are shown in Figure 4. A dose-response curve was obtained for the total number of AAV8 capsids. Detection of antibodies against individual AAV serotypes (AAV8 & AAV2) was confirmed by the method of the present invention (dFLISA).
  • Example 4 The test was carried out in the same manner as in Example 1, except that SYBR Gold was replaced with QuantiFluor, and proteins were detected using antibodies labeled with HRP (Horse Radish Peroxidase) and absorbance measurements were performed when TMB (3,3',5,5'-tetramethylbenzidine) was added. The results are shown in Figure 5.
  • HRP Hase Radish Peroxidase
  • Example 5 A test was performed in the same manner as in Example 2 using AAV2 containing ssDNA and AAV2 containing scDNA. The results are shown in Figure 6.
  • the fluorescence intensity of AAV2 scDNA was about 1.4-1.6 times that of AAV2 ssDNA. Since scDNA is a long-chain DNA, it may be possible to perform quantification independent of DNA length by appropriately correcting for the DNA length.
  • Example 6 Measurement of DNA fluorescence intensity was performed in the same manner as in Example 2, using conventional wavelengths of 495 nm and 535 nm or wavelengths of 500 nm and 535 nm (optimized conditions) by the inventors. The results are shown in Figure 7. The signal background of the samples was equal or higher under the optimized conditions compared to the conventional wavelengths.
  • Example 7 Tests were performed in the same manner as in Example 2 using a transparent plate (Nunc MaxiSorpTM flat-bottom clear 96-well plate) and a black plate (The Nunc MaxiSorpTM flat-bottom black 96-well plate). The results are shown in FIG. 8. The fluorescence intensity of the sample showed a higher response in the black plate compared to the transparent plate. This result suggests that the black microplate is suitable for providing a signal suitable for the method of the present invention.
  • Example 8 To confirm whether the method of the present invention (dFLISA) can be used to analyze unpurified samples without purification, a spike recovery test was performed. The recovery rate was within ⁇ 25% of the predicted value, meeting the criteria. This indicates that the dFLISA results are not easily affected by contaminants contained in unpurified samples. This indicates that dFLISA is an excellent method for evaluating unpurified AAV samples.
  • the dFLISA method is a valuable and novel method that can be used to accurately quantify the titer of unpurified samples, and is unique in that it can directly quantify the full and empty capsid concentrations and FP/EP ratios of unpurified samples. The results are shown in Figure 9.
  • dFLISA can measure the capsid titer and genome titer of unpurified samples.
  • the capsid titer measured by dFLISA was comparable to that measured by ELISA.
  • the genome titer results by dFLISA were higher than those by dPCR. Considering the high recovery rate in the spike recovery experiment, the dFLISA results are considered reliable. Since previous studies have shown that dPCR can be affected by impurity interference, dFLISA may be a more accurate method to measure the concentration of AAV genome material in unpurified samples compared with the combination of ELISA and dPCR. The results are shown in Figure 10.
  • AAV8-Lot2 was concentrated by ultracentrifugation to final concentrations of 5.36 x 1013 cp/mL and 4.75 x 1013 vg/mL, and then diluted as follows in 1 x PBS (containing 0.05% Tween 20): High concentration (Spike H): 1.07 x 10 cp/mL and 9.50 x 10 vg/mL, medium concentration (Spike M): 7.15 x 10 cp/mL and 6.33 x 10 vg/mL, low concentration (Spike L): 5.36 x 10 cp/mL and 4.75 x 10 vg/mL.
  • Each spike sample solution was added to an unknown concentration unpurified sample (AAV8-Lot4) in a 1:1 volume ratio and mixed, and the prepared spike ratio sample solution was added to each well of the plate in 100 ⁇ L.
  • N 2 analyses were performed.
  • Mixed spike (HM) (1/2) (crude + spike H) - (1/2) (crude + spike L) (Equation 4)
  • the target recovery rate (%) was set within ⁇ 25%.
  • dFLISA Quantification of capsid and genome titers of unpurified samples.
  • dFLISA was performed as described above.
  • AAV8-Lot1 was diluted 60-fold in 1x PBS (containing 0.05% Tween 20) to a final concentration of 2.01 x 1011 cp/mL and 1.81 x 1011 vg/mL, and then serially diluted at a 1:2 ratio to serve as calibration curve standards.
  • Example 9 The fluorescence intensity in the quantification of genomes using fluorescent dyes varies depending on the length of the genome, which is also related to dFLISA.
  • dFLISA fluorescence intensity normalized by concentration
  • a correlation was observed between genome length and fluorescence intensity.
  • Figure 11 Furthermore, when the fluorescence intensity was compared between AAV vectors of different genome lengths (Table 22), the fluorescence intensity was high in samples with long genome lengths, and the ratio of genome length to fluorescence intensity was equivalent to that in Figure 11. From these results, the validity of dFLISA as a method for evaluating the genomes of AAV vectors with various nucleic acids was confirmed. In addition, even if the genome length is different from that of the standard AAV vector, the genome length can be corrected by calculation, and it was shown that it is not necessary to prepare a standard AAV for each AAV with a different genome length.
  • Fluorescence intensity of ssDNA from 1100 bp to 5100 bp was measured using ssDNA 7K ladder (PerkinElmer, Waltham, MA, USA).
  • the ssDNA ladder marker solution was appropriately diluted with Milli-Q and then loaded onto a 1% agarose gel.
  • 10 ⁇ L of sample was added to 2 ⁇ L of EzApplyDNA (6x loading buffer), mixed thoroughly by pipetting, and 10 ⁇ L of the mixture was loaded onto the gel. Electrophoresis was performed at 70 V for 45 min. After electrophoresis, the gel was stained and washed according to the manufacturer's instructions. SYBR Gold Nucleic Acid Gel Staining solution was used to stain the gel. Quantitative analysis of brightness density in the stained gel was performed.
  • MP mass photometry
  • AAV2-Lot1 containing ssDNA was diluted 100-fold in 1x PBS (containing 0.05% Tween 20) to final concentrations of 7.70 x 1010 cp/mL and 6.41 x 1010 vg/mL.
  • a standard curve was prepared by serial dilution in 1:2 ratio steps.
  • AAV2-Lot2 containing scDNA was diluted 100-fold to final concentrations of 2.11 x 1011 cp/mL and 1.93 x 1011 vg/mL.
  • a standard curve was prepared by serial dilution in 1:2 ratio steps.
  • the fluorescence intensity ratios of ssDNA AAV8 and scDNA AAV2 were measured by dFLISA and compared with the fluorescence intensity ratios calculated from the curves.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

[Problem] To provide a method for detecting the quantity of a first structure and the quantity of a second structure, the method comprising a step for detecting the quantity of a bonded first label and the quantity of a bonded second label together. [Solution] Provided is a method for detecting the quantity of a first structure and the quantity of a second structure, the method comprising: a step for bonding a first label to a first structure; a step for releasing a second structure from the first structure; a step for boding a second label to the second structure; and a step for detecting the quantity of the bonded first label and the quantity of the bonded second label together, wherein the second structure is included in the first structure, and the first label and the second label can be detected together, but are different.

Description

第1の構造物の量および第2の構造物の量を検出する方法Method for detecting an amount of a first structure and an amount of a second structure

 本発明は、第1の構造物の量および第2の構造物の量を検出する方法、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法、およびそれらの方法のために用いるキットに関する。 The present invention relates to a method for detecting the amount of a first structure and the amount of a second structure, a method for evaluating the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, and a kit for use in these methods.

 遺伝子治療などに用いられるウイルスベクターは、製造において、活性を持つ(DNA等を含む)粒子(完全粒子)と活性を持たない(DNA等を含まない)粒子(空粒子)のどちらも生成することが知られている。また、精製によってこれら2種類の粒子を完全に分けることも困難であることから、ウイルスベクター製品には通常、完全粒子と空粒子のどちらも含まれている。完全粒子および空粒子の濃度およびそれらの比率は、ウイルスベクターの有効性や安全性に関連することから、出荷時の評価に加えて、製造法開発時などにおいても評価が必要となっている(非特許文献1:Werle AK, Powers TW, Zobel JF, et al. Comparison of analytical techniques to quantitate the capsid content of adeno-associated viral vectors. Mol Ther Methods Clin Dev. 2021;23:254-262. Published 2021 Sep 1. doi:10.1016/j.omtm.2021.08.009)。 It is known that viral vectors used in gene therapy and other applications produce both active (containing DNA, etc.) particles (complete particles) and inactive (not containing DNA, etc.) particles (empty particles) during production. In addition, since it is difficult to completely separate these two types of particles through purification, viral vector products usually contain both complete and empty particles. The concentration and ratio of complete particles and empty particles are related to the efficacy and safety of viral vectors, and therefore need to be evaluated not only at the time of shipment but also during the development of manufacturing methods (Non-patent literature 1: Werle AK, Powers TW, Zobel JF, et al. Comparison of analytical techniques to quantitate the capsid content of adeno-associated viral vectors. Mol Ther Methods Clin Dev. 2021;23:254-262. Published 2021 Sep 1. doi:10.1016/j.omtm.2021.08.009).

 これまでは、ELISA法(Enzyme-linked immuno sorbent assay)により総粒子濃度(完全粒子および空粒子)を決定し、PCR法(Polymerase chain reaction)により核酸濃度を定量し完全粒子濃度を見積もっていた(非特許文献2:https://darkhorseconsultinggroup.com/wp-content/uploads/2022/05/DHC_Proposed-DRAFT-Guidance-for-FDA-Consideration.pdf)。この方法では、2種のメカニズムの異なる手法の組み合わせであることに起因する、完全粒子/空粒子の比率の誤差や、厳密には同一ではない試料を用いて完全粒子と空粒子をそれぞれ定量しなければならないといった懸念点がある。また、2つの測定を行うため、時間と労力も必要である。ELISA法とPCR法の組み合わせの他にも、超遠心分析やクロマトグラフィー法など完全粒子と空粒子を分離定量する手法が提唱されているが、製造法開発の分析などにおいては、事前に精製が必要となるなどの制約がある。加えて、超遠心分析については、高額な装置と習熟した技術が必要となる。 Until now, the total particle concentration (complete and empty particles) was determined by the enzyme-linked immunosorbent assay (ELISA), and the nucleic acid concentration was quantified by the polymerase chain reaction (PCR) to estimate the complete particle concentration (Non-Patent Document 2: https://darkhorseconsultinggroup.com/wp-content/uploads/2022/05/DHC_Proposed-DRAFT-Guidance-for-FDA-Consideration.pdf). This method has concerns such as errors in the complete particle/empty particle ratio due to the combination of two different mechanisms, and the need to quantify complete particles and empty particles using samples that are not strictly the same. In addition, performing two measurements requires time and effort. In addition to the combination of ELISA and PCR, other methods such as ultracentrifugation and chromatography have been proposed to separate and quantify complete particles and empty particles, but these have limitations such as the need for prior purification when used in analysis for manufacturing method development. In addition, ultracentrifugation requires expensive equipment and skilled techniques.

Werle AK, Powers TW, Zobel JF, et al. Comparison of analytical techniques to quantitate the capsid content of adeno-associated viral vectors. Mol Ther Methods Clin Dev. 2021;23:254-262. Published 2021 Sep 1. doi:10.1016/j.omtm.2021.08.009Werle AK, Powers TW, Zobel JF, et al. Comparison of analytical techniques to quantitate the capsid content of adeno-ass associated viral vectors. Mol Ther Methods Clin Dev. 2021;23:254-262. Published 2021 Sep 1. doi:10.1016/j.omtm.2021.08.009 https://darkhorseconsultinggroup.com/wp-content/uploads/2022/05/DHC_Proposed-DRAFT-Guidance-for-FDA-Consideration.pdfhttps://darkhorseconsultinggroup.com/wp-content/uploads/2022/05/DHC_Proposed-DRAFT-Guidance-for-FDA-Consideration.pdf

 しかしながら、従来の、第1の構造物に結合した第1の標識の量および第2の構造物に結合した第2の標識の量を検出する方法または核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法は、第1の構造物またはウイルスカプシドおよび第2の構造物または核酸の量をそれぞれ別々に検出する工程を必要とする。そのため、第1の構造物またはウイルスカプシドに結合した第1の標識の量および第2の構造物または核酸に結合した第2の標識の量を一緒に検出する方法が必要とされている。 However, conventional methods for detecting the amount of a first label bound to a first structure and the amount of a second label bound to a second structure, or methods for evaluating the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, require a step of separately detecting the amount of the first structure or viral capsid and the amount of the second structure or nucleic acid, respectively. Therefore, there is a need for a method for simultaneously detecting the amount of the first label bound to a first structure or viral capsid and the amount of the second label bound to a second structure or nucleic acid.

 本発明による第1の構造物の量および第2の構造物の量を検出する方法は、第1の構造物に第1の標識を結合させる工程、第1の構造物から第2の構造物を放出させる工程、第2の構造物に第2の標識を結合させる工程、および結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、を含み、第2の構造物が、第1の構造物に包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、方法である。 The method of the present invention for detecting the amount of a first structure and the amount of a second structure includes the steps of binding a first label to the first structure, releasing the second structure from the first structure, binding a second label to the second structure, and jointly detecting the amount of the bound first label and the amount of the bound second label, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.

 本発明による核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法は、ウイルスカプシドを支持体に固定させる工程、ウイルスカプシドにウイルスカプシドに結合する抗体を介して間接的に第1の標識を結合させる工程、結合しなかった第1の標識を洗浄する工程、ウイルスカプシドから核酸を放出させる工程、放出した核酸に第2の標識を結合させる工程、結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、および結合した第1の標識の量および結合した第2の標識の量に基づいて、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を計算または決定する工程、を含み、核酸は、ウイルスカプシドに包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、方法である。 The method for assessing the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid according to the present invention includes the steps of immobilizing the viral capsid on a support, indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid, washing away the unbound first label, releasing nucleic acid from the viral capsid, binding a second label to the released nucleic acid, detecting the amount of the bound first label and the amount of the bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount of the bound first label and the amount of the bound second label, wherein the nucleic acid is encapsulated in the viral capsid, and the first label and the second label can be detected together but are different.

 本発明によるキットは、第1の構造物に対する第1の標識、第2の構造物に対する第2の標識、および結合した第1の標識の量および結合した第2の標識の量を、一緒に検出するための説明書、を含む、キットであって、第2の構造物が、第1の構造物に包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、キットである。 The kit according to the present invention includes a first label for a first structure, a second label for a second structure, and instructions for detecting the amount of bound first label and the amount of bound second label together, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.

 すなわち、本発明は以下を提供する:
[1]第1の構造物の量および第2の構造物の量を検出する方法であって、方法は、
第1の構造物に第1の標識を結合させる工程、
第1の構造物から第2の構造物を放出させる工程、
第2の構造物に第2の標識を結合させる工程、および
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、
を含み、
 第2の構造物が、第1の構造物に包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
方法。
[2]第1の構造物に結合しなかった第1の標識を洗浄する工程をさらに含む、[1]に記載の方法。
[3]第1の構造物に結合しなかった第1の標識を洗浄する工程が、第1の構造物に第1の標識を結合させる工程の後に、ならびに第1の構造物から第2の構造物を放出させる工程および第2の構造物に第2の標識を結合させる工程の前に行われる、[2]に記載の方法。
[4]第1の構造物を支持体に固定させる工程をさらに含む、[1]に記載の方法。
[5]第1の構造物が、タンパク質、脂質またはポリマー、またはそれらの組合せで構成される、[1]に記載の方法。
[6]第1の構造物が、ウイルス粒子、ウイルスカプシド、リポソーム、脂質ナノ粒子(LNP)、およびポリマー粒子から成る群から選択される、[1]に記載の方法。
[7]ウイルスが、アデノ随伴ウイルス(AAV)、レトロウイルス、レンチウイルス、およびアデノウイルスから成る群から選択される、[6]に記載の方法。
[8]第2の構造物が、核酸、タンパク質または化合物、またはそれらの組合せで構成される、[1]に記載の方法。
[9]第2の構造物が、DNA、一本鎖DNA(ssDNA)、自己相補的DNA(scDNA)、RNA、miRNA、IncRNA、ペプチド、抗体、検出用化合物および薬物から成る群から選択される、[8]に記載の方法。
[10]第1の標識および第2の標識が、蛍光色素または放射性標識である、[1]に記載の方法。
[11]第1の構造物に第1の標識を結合させる工程が、1つまたは複数の第1の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合させることを含む、または第1の構造物に特異的に結合する前記分子および前記分子に特異的に結合する二次抗体を介して間接的に結合させることを含む、[1]に記載の方法。
[12]結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程が、1つの装置または検出器を用いて一緒に検出することを含む、[1]に記載の方法。
[13]第1の構造物の量および第2の構造物の量が、結合した第1の標識の量および結合した第2の標識の量に基づいて計算または決定される、[1]に記載の方法。
[14]第2の構造物を包含している第1の構造物と第2の構造物を包含していない第1の構造物の比率を計算または決定することをさらに含む、[1]に記載の方法。
[15]核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法であって、方法は、
ウイルスカプシドを支持体に固定させる工程、
ウイルスカプシドにウイルスカプシドに結合する抗体を介して間接的に第1の標識を結合させる工程、
結合しなかった第1の標識を洗浄する工程、
ウイルスカプシドから核酸を放出させる工程、
放出した核酸に第2の標識を結合させる工程、
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、および
結合した第1の標識の量および結合した第2の標識の量に基づいて、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を計算または決定する工程、
を含み、
 核酸は、ウイルスカプシドに包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
方法。
[16]第1の構造物に対する第1の標識、
第2の構造物に対する第2の標識、および
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出するための説明書、
を含む、検出キットであって、
 第2の構造物が、第1の構造物に包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
検出キット。
That is, the present invention provides the following:
[1] A method for detecting an amount of a first structure and an amount of a second structure, the method comprising:
Binding a first label to the first structure;
Releasing the second structure from the first structure;
binding a second label to the second structure and jointly detecting the amount of bound first label and the amount of bound second label;
Including,
a second structure is contained within the first structure, and the first label and the second label are detectable together but are different;
method.
[2] The method according to [1], further comprising the step of washing away the first label that has not bound to the first structure.
[3] The method according to [2], wherein a step of washing away the first label that has not bound to the first structure is performed after the step of binding the first label to the first structure and before the step of releasing the second structure from the first structure and the step of binding the second label to the second structure.
[4] The method according to [1], further comprising a step of fixing the first structure to a support.
[5] The method according to [1], wherein the first structure is composed of a protein, a lipid or a polymer, or a combination thereof.
[6] The method according to [1], wherein the first structure is selected from the group consisting of a virus particle, a virus capsid, a liposome, a lipid nanoparticle (LNP), and a polymer particle.
[7] The method according to [6], wherein the virus is selected from the group consisting of adeno-associated virus (AAV), retrovirus, lentivirus, and adenovirus.
[8] The method according to [1], wherein the second structure is composed of a nucleic acid, a protein or a compound, or a combination thereof.
[9] The method according to [8], wherein the second structure is selected from the group consisting of DNA, single-stranded DNA (ssDNA), self-complementary DNA (scDNA), RNA, miRNA, lncRNA, peptides, antibodies, detection compounds and drugs.
[10] The method according to [1], wherein the first label and the second label are fluorescent dyes or radioactive labels.
[11] The method according to [1], wherein the step of binding the first label to the first structure comprises indirect binding via a molecule that specifically binds to one or more first structures, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, or comprises indirect binding via the molecule that specifically binds to the first structure and a secondary antibody that specifically binds to the molecule.
[12] The method of [1], wherein the step of jointly detecting the amount of bound first label and the amount of bound second label comprises detecting them together using one device or detector.
[13] The method according to [1], wherein the amount of the first structure and the amount of the second structure are calculated or determined based on the amount of the bound first label and the amount of the bound second label.
[14] The method of [1], further comprising calculating or determining a ratio of first structures that include a second structure to first structures that do not include a second structure.
[15] A method for evaluating a ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, the method comprising:
Immobilizing the viral capsid on a support;
Indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid;
washing away unbound first label;
Releasing nucleic acid from the viral capsid;
binding a second label to the released nucleic acid;
detecting the amount of bound first label and the amount of bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount of bound first label and the amount of bound second label;
Including,
the nucleic acid is encapsulated in a viral capsid, and the first label and the second label are detectable together but are different,
method.
[16] a first marker for a first structure;
a second label on the second structure and instructions for jointly detecting the amount of bound first label and the amount of bound second label;
A detection kit comprising:
a second structure is contained within the first structure, and the first label and the second label are detectable together but are different;
Detection kit.

 本発明の方法によれば、第1の構造物に結合した第1の標識の量および第2の構造物に結合した第2の標識の量を、一緒に検出する工程を含む。その結果、本発明の方法は、第1の構造物に結合した第1の標識の量および第2の構造物に結合した第2の標識の量を、別々に検出する工程を含む場合と比べて、例えば、第1の構造物の量および第2の構造物の量を検出するための時間または労力を小さくする、第1の構造物の量および第2の構造物の量を検出するためのコストを小さくする、第1の構造物の量および第2の構造物の量の検出誤差を小さくする、夾雑物が含まれているサンプルから第1の構造物または第2の構造物を精製することを不要にする、または低濃度の第1の構造物の量および第2の構造物の量を検出可能にする。 The method of the present invention includes a step of detecting the amount of the first label bound to the first structure and the amount of the second label bound to the second structure together. As a result, compared to a case where the method of the present invention includes a step of separately detecting the amount of the first label bound to the first structure and the amount of the second label bound to the second structure, the method of the present invention can, for example, reduce the time or effort required to detect the amount of the first structure and the amount of the second structure, reduce the cost of detecting the amount of the first structure and the amount of the second structure, reduce the detection error of the amount of the first structure and the amount of the second structure, eliminate the need to purify the first structure or the second structure from a sample containing impurities, or make it possible to detect the amount of the first structure and the amount of the second structure at low concentrations.

本発明の方法の一態様の簡潔なフローチャート。1 is a simplified flow chart of one embodiment of the method of the present invention. 本発明の方法の一態様の簡潔なフローチャート。1 is a simplified flow chart of one embodiment of the method of the present invention. AAV8を用いた実施例1による試験結果。Test results from Example 1 using AAV8. AAV2を用いた実施例2による試験結果。Test results from Example 2 using AAV2. AAV2およびAAV8の混合物を用いた実施例3による試験結果。Test results from Example 3 using a mixture of AAV2 and AAV8. Quantifluorを用いた実施例4による試験結果。Test results from Example 4 using Quantifluor. ssDNAを含むAAV2とscDNAを含むAAV2を用いた実施例5による試験結果。Test results from Example 5 using AAV2 containing ssDNA and AAV2 containing scDNA. 従来の495nmおよび535nmの波長と発明者らによる500nmおよび535nmの波長を用いた実施例6による試験結果。Test results according to Example 6 using conventional wavelengths of 495 nm and 535 nm and wavelengths of 500 nm and 535 nm by the inventors. 透明なプレートと黒色のプレートを用いた実施例7による試験結果。Test results from Example 7 using clear and black plates. dFLISAの未精製サンプル分析への適用性。(A)カプシド力価の定量。(B)ゲノム力価の定量。(C)完全粒子の割合。スパイク回収のための各種希釈倍率は、dFLISA法で求めた実験値をAUC解析で求めた予測値と比較することで評価した。カプシド力価、ゲノム力価、FP/EP比の3つのパラメータについて、AUCから得られた予測値とdFLISAの値を比較した。結果は、2ウェルからの平均値である。Hは高濃度スパイク、Mは中濃度スパイク、Lは低濃度スパイク。すべてのデータは平均値と標準偏差(n = 2)で示されている。Applicability of dFLISA to the analysis of unpurified samples. (A) Quantification of capsid titer. (B) Quantification of genome titer. (C) Percentage of intact particles. Different dilution factors for spike recovery were evaluated by comparing the experimental values obtained by dFLISA with the predicted values obtained by AUC analysis. The predicted values obtained from AUC were compared with the dFLISA values for three parameters: capsid titer, genome titer, and FP/EP ratio. Results are the average from duplicate wells. H is high spike, M is medium spike, and L is low spike. All data are presented as mean and standard deviation (n = 2). dFLISAの未精製サンプル定量能力の判定。未精製サンプル中のAAV8含量を、dFLISA、ELISA法、dPCR法の3つの方法で分析した。dFLISAでは、カプシドおよびゲノム力価の定量と、未精製サンプル中のAAV8含量のFP/EP比の算出を行った。ELISAはカプシド含量の定量に使用し、独立した測定(n = 2)から算出したSDを使用した。dPCRは未精製サンプル中のゲノム含量を決定するために使用され、独立した3測定(n = 3)から得られたSDを使用した。完全粒子比率はdPCR/ELISAとした。これらの実験で示されたデータはすべて、各測定の繰り返し測定の平均値。Determination of the ability of dFLISA to quantify unpurified samples. AAV8 content in unpurified samples was analyzed by three methods: dFLISA, ELISA, and dPCR. dFLISA was used to quantify capsid and genome titers and to calculate the FP/EP ratio of AAV8 content in unpurified samples. ELISA was used to quantify capsid content with SD calculated from independent measurements (n = 2). dPCR was used to determine genome content in unpurified samples with SD obtained from three independent measurements (n = 3). Complete particle ratio was calculated as dPCR/ELISA. All data presented in these experiments are the average of replicates for each assay. 異なるゲノム長のAAVの蛍光強度の比較。AGEから得られた異なる長さのssDNAの蛍光強度を、MPの結果(相対面積(濃度))で割ったものを、ssDNAラダー標準品の長さに対してプロットした。Comparison of fluorescence intensity of AAV with different genome lengths. The fluorescence intensity of ssDNA with different lengths obtained from AGE was divided by the MP result (relative area (concentration)) and plotted against the length of the ssDNA ladder standard.

 本発明は、一実施形態において、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を検出する方法であって、方法は、第1の構造物に第1の標識を結合させる工程、第2の構造物に第2の標識を結合させる工程、および結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、を含み、第1の標識および第2の標識は、一緒に検出することができるが、異なっている、方法を提供する。 In one embodiment, the present invention provides a method for detecting the amount (or concentration) of a first structure and the amount (or concentration) of a second structure, the method comprising the steps of binding a first label to the first structure, binding a second label to the second structure, and jointly detecting the amount of bound first label and the amount of bound second label, wherein the first label and the second label can be detected together but are different.

 本発明は、一実施形態において、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を検出する方法であって、方法は、第1の構造物に第1の標識を結合させる工程、第1の構造物から第2の構造物を放出させる工程、第2の構造物に第2の標識を結合させる工程、および結合した第1の標識の量(または濃度)および結合した第2の標識の量(または濃度)を、一緒に検出する工程、を含み、第2の構造物が、第1の構造物に包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、方法を提供する。 In one embodiment, the present invention provides a method for detecting the amount (or concentration) of a first structure and the amount (or concentration) of a second structure, the method comprising the steps of binding a first label to the first structure, releasing the second structure from the first structure, binding a second label to the second structure, and jointly detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label, wherein the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.

 本発明は、一実施形態において、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法であって、方法は、ウイルスカプシドを支持体に固定させる工程、ウイルスカプシドにウイルスカプシドに結合する抗体を介して間接的に第1の標識を結合させる工程、結合しなかった第1の標識を洗浄する工程、ウイルスカプシドから核酸を放出させる工程、放出した核酸に第2の標識を結合させる工程、結合した第1の標識の量(または濃度)および結合した第2の標識の量(または濃度)を、一緒に検出する工程、および結合した第1の標識の量(または濃度)および結合した第2の標識の量(または濃度)に基づいて、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を計算または決定する工程、を含み、核酸は、ウイルスカプシドに包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、方法を提供する。 In one embodiment, the present invention provides a method for evaluating the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid, the method comprising the steps of immobilizing the viral capsid on a support, indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid, washing away the unbound first label, releasing nucleic acid from the viral capsid, binding a second label to the released nucleic acid, detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label, wherein the nucleic acid is encapsulated in the viral capsid, and the first label and the second label can be detected together but are different.

 本発明は、一実施形態において、第1の構造物に対する第1の標識、第2の構造物に対する第2の標識、および結合した第1の標識の量(または濃度)および結合した第2の標識の量(または濃度)を、一緒に検出するための説明書、を含む、キットであって、第2の構造物が、第1の構造物に包含されており、そして第1の標識および第2の標識は、一緒に検出することができるが、異なっている、キットを提供する。 In one embodiment, the present invention provides a kit comprising a first label on a first structure, a second label on a second structure, and instructions for detecting the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label together, where the second structure is contained within the first structure, and the first label and the second label are different but can be detected together.

 本明細書において、「第1の構造物」は、あらゆる材料または素材で構成されてよく、例えばタンパク質、脂質またはポリマー、またはそれらの組合せで構成されてよく、例えばウイルス粒子、ウイルスカプシド、リポソーム、脂質ナノ粒子(LNP)、およびポリマー粒子であってよい。「第1の構造物」は、疾患の治療または診断またはインビボ遺伝子導入のためのツールなどとして利用されるものであってよい。「第1の構造物」は、「第2の構造物」を包含していてもよい。「第1の構造物」は、「第2の構造物」を包含していなくてもよい。「第1の構造物」は、「第2の構造物」を包含している「第1の構造物」および/または「第2の構造物」を包含していない「第1の構造物」であってよい。「第1の構造物」は、「第2の構造物」と結合していてもよい。「第1の構造物」は、「第2の構造物」を結合していなくてもよい。「第1の構造物」は、「第2の構造物」と結合している「第1の構造物」および/または「第2の構造物」と結合していない「第1の構造物」であってよい。 In this specification, the "first structure" may be composed of any material or substance, for example, a protein, lipid, or polymer, or a combination thereof, for example, a virus particle, a virus capsid, a liposome, a lipid nanoparticle (LNP), and a polymer particle. The "first structure" may be used as a tool for treating or diagnosing a disease or for in vivo gene transfer. The "first structure" may include a "second structure". The "first structure" may not include a "second structure". The "first structure" may be a "first structure" that includes a "second structure" and/or a "first structure" that does not include a "second structure". The "first structure" may be bound to a "second structure". The "first structure" may not be bound to a "second structure". The "first structure" may be a "first structure" that is bound to a "second structure" and/or a "first structure" that is not bound to a "second structure."

 ウイルスは、あらゆるウイルス、例えばアデノ随伴ウイルス(AAV)、レトロウイルス、レンチウイルスおよびアデノウイルス、および改変されたウイルスカプシドタンパク質を有するこれらのウイルスを含む。AAVは、天然のアデノ随伴ウイルスまたは組換えアデノ随伴ウイルスを含む。AAVは、AAV-1、AAV-2、AAV-3、AAV-4、AAV-5、AAV-6、AAV-7、AAV-8、AAV-9、AAV-10およびAAV-11を含む。 Viruses include any virus, such as adeno-associated viruses (AAV), retroviruses, lentiviruses and adenoviruses, and those viruses with modified viral capsid proteins. AAV includes natural adeno-associated viruses or recombinant adeno-associated viruses. AAV includes AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10 and AAV-11.

 アデノ随伴ウイルス(AAV)は、パルボウイルス科に属する。AAVゲノムは、約4.7キロベース(kb)の直鎖状一本鎖DNA分子からなり、非構造Rep(複製)タンパク質および構造Cap(カプシド)タンパク質をコードする2つの主要なオープンリーディングフレームからなる。AAV由来の組換えベクターは、疾患の治療または診断などのツールとして利用される。アデノ随伴ウイルス(AAV)由来のウイルスベクターは、他のベクターと比較してそれらのインビボでの優れた効率、広範な組織に対するトロピズム及び優れた安全性プロファイルのため、インビボ遺伝子導入のためのツールとして利用される。疾患の治療または診断またはインビボ遺伝子導入のためのツールとして、活性を持つ(DNA等を含む)アデノ随伴ウイルス(AAV)粒子(完全粒子)が使用されてよい。 Adeno-associated virus (AAV) belongs to the Parvoviridae family. The AAV genome consists of a linear single-stranded DNA molecule of approximately 4.7 kilobases (kb) and consists of two major open reading frames encoding the nonstructural Rep (replication) protein and the structural Cap (capsid) protein. Recombinant vectors derived from AAV are used as tools for disease treatment or diagnosis, etc. Adeno-associated virus (AAV) derived viral vectors are used as tools for in vivo gene transfer due to their superior in vivo efficiency, broad tissue tropism and excellent safety profile compared to other vectors. Active (including DNA, etc.) adeno-associated virus (AAV) particles (complete particles) may be used as tools for disease treatment or diagnosis or in vivo gene transfer.

 本明細書において、「第2の構造物」は、あらゆる材料または素材で構成されてよく、例えば核酸、タンパク質または化合物、またはそれらの組合せで構成されてよく、例えばDNA、一本鎖DNA(ssDNA)、自己相補的DNA(scDNA)、RNA、miRNA、IncRNA、ペプチド、抗体、検出用化合物および薬物であってよい。「第2の構造物」は、例えば疾患の治療、予防または診断などに適用できるものを含む。疾患は、がん、自己免疫疾患、感染症などであってよい。「第2の構造物」は、導入遺伝子、転写制御遺伝子、遺伝子治療剤、小分子をコードする核酸、抗体をコードする核酸、タンパク質をコードする核酸、低分子干渉RNA、アンチセンスRNA、リボザイム、治療タンパク質をコードする核酸、ゲノム編集用の核酸、遺伝子組換え用の核酸およびマイクロRNA(miRNA)などであってよい。「第2の構造物」は、「第1の構造物」に包含されていてもよい。「第2の構造物」は、「第1の構造物」と結合されていてもよい。 In this specification, the "second structure" may be composed of any material or ingredient, for example, a nucleic acid, a protein, or a compound, or a combination thereof, for example, DNA, single-stranded DNA (ssDNA), self-complementary DNA (scDNA), RNA, miRNA, lncRNA, peptide, antibody, detection compound, and drug. The "second structure" includes, for example, those that can be applied to the treatment, prevention, or diagnosis of a disease. The disease may be cancer, an autoimmune disease, an infectious disease, etc. The "second structure" may be an introduced gene, a transcription control gene, a gene therapy agent, a nucleic acid encoding a small molecule, a nucleic acid encoding an antibody, a nucleic acid encoding a protein, a small interfering RNA, an antisense RNA, a ribozyme, a nucleic acid encoding a therapeutic protein, a nucleic acid for genome editing, a nucleic acid for gene recombination, and a microRNA (miRNA), etc. The "second structure" may be included in the "first structure". The "second structure" may be bound to the "first structure".

 本明細書において、「第2の構造物が、第1の構造物に包含されている」、「第2の構造物を包含している第1の構造物」、または「第2の構造物を包含していない第1の構造物」などの文脈において、「包含」なる用語は、第1の構造物が第2の構造物を包んでいる構造または状態を意味する。例えば、「第2の構造物が、第1の構造物に包含されている」は、第2の構造物が、第1の構造物の内部に存在している。第2の構造物は、第1の構造物の内面に接着していてもよく、または内面に接着していなくてもよい。例えば、「第2の構造物を包含していない第1の構造物」は、第2の構造物が第1の構造物の内部に存在しない、第1の構造物である。 In this specification, the term "encompassing" in the context of "a second structure is contained in a first structure," "a first structure containing a second structure," or "a first structure not containing a second structure" means a structure or state in which a first structure contains a second structure. For example, "a second structure is contained in a first structure" means that a second structure is present inside a first structure. The second structure may or may not be attached to the inner surface of the first structure. For example, "a first structure not containing a second structure" means that a second structure is not present inside the first structure.

 本明細書において、「標識」は、あらゆる検出可能なシグナル源、例えば蛍光、可視、光学的、比色、色素、酵素、GCMSタグ、アビジン、ビオチンおよび放射性物質(放射性標識および放射線不透過性等)を含む。「標識」は、蛍光信号を発信する色素(蛍光色素)、放射性標識、MRI信号を発信する分子および超音波信号を発信する分子などの種々の分子、ならびに、酸化鉄微粒子、金微粒子、金ナノロッド、白金および銀などの金属や金属酸化物の微粒子などの種々の微粒子を含む。「標識」は、標識の特性、活性、強度または量などに基づいて、装置または検出器などによって検出することができる。当業者は、標識の特性、活性、強度または量などに基づいて、標識、装置または検出器を適宜選択することができる。「標識」は、検出可能なシグナル源のみであってもよく、または、検出可能なシグナル源を有するタンパク質、抗体、ペプチドおよびプローブなどであってもよい。 As used herein, the term "label" includes any detectable signal source, such as fluorescent, visible, optical, colorimetric, dyes, enzymes, GCMS tags, avidin, biotin, and radioactive substances (radioactive labels and radiopaque, etc.). The term "label" includes various molecules such as dyes (fluorescent dyes) that emit fluorescent signals, radioactive labels, molecules that emit MRI signals, and molecules that emit ultrasound signals, as well as various microparticles such as iron oxide microparticles, gold microparticles, gold nanorods, and microparticles of metals and metal oxides such as platinum and silver. The "label" can be detected by an apparatus or detector based on the properties, activity, strength, or amount of the label. Those skilled in the art can appropriately select the label, apparatus, or detector based on the properties, activity, strength, or amount of the label. The "label" may be only a detectable signal source, or may be a protein, antibody, peptide, probe, etc. that has a detectable signal source.

 蛍光色素は、あらゆる蛍光信号を発信する色素、例えば、市販されている蛍光色素、公知の蛍光色素、Alexa Fluor(登録商標) 647、SYBR(登録商標) Gold、SYBR(登録商標) green、QuantiFluor(登録商標) ssDNA Dye Systems、fluorescein、Alexa Fluor 350、Alexa Fluor 405、Alexa Fluor 488、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 647、Alexa Fluor 680、Alaxa Fluor 700、Alexa Fluor 750、Alexa Fluor 790、SYBR Gold、SYBR Green I、SYBR Green II、SYBR Safe、またはQuantiFluor ssDNA Dye Systems(QuantiFluor dsDNA、RNAまたはssDNA System)を含む。蛍光色素は、蛍光信号または蛍光色素の波長、特性、活性、強度または量などに基づいて、光センサー、光検出器、顕微鏡、装置または検出器などによって検出することができる。当業者は、蛍光信号または蛍光色素の波長、特性、活性、強度または量などに基づいて、光センサー、光検出器、顕微鏡、装置または検出器などを適宜選択することができる。 The fluorescent dye may be any dye that emits a fluorescent signal, such as commercially available fluorescent dyes, known fluorescent dyes, Alexa Fluor (registered trademark) 647, SYBR (registered trademark) Gold, SYBR (registered trademark) green, QuantiFluor (registered trademark) ssDNA Dye Systems, fluorescein, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 647, Alexa Fluor 680, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, SYBR Gold, SYBR Green I, SYBR Green II, SYBR Safe, or QuantiFluor ssDNA Dye Systems (QuantiFluor dsDNA, RNA or ssDNA System). The fluorescent dye can be detected by a light sensor, a light detector, a microscope, a device or a detector, etc., based on the wavelength, characteristic, activity, intensity or amount of the fluorescent signal or fluorescent dye. Those skilled in the art can appropriately select an optical sensor, optical detector, microscope, device, detector, etc. based on the wavelength, characteristics, activity, intensity, or amount of the fluorescent signal or fluorescent dye.

 放射性標識は、あらゆる放射性物質を発信する標識、例えば、市販されている放射性標識、公知の放射性標識、18F、32P、35S、129I、131I、64Cu、または67Cuを含む。放射性標識は、放射性標識の特性、活性、強度または量などに基づいて、放射線もしくは放射能センサー、放射線もしくは放射能検出器、装置または検出器などによって検出することができる。当業者は、放射性標識の特性、活性、強度または量などに基づいて、放射線もしくは放射能センサー、放射線もしくは放射能検出器、装置または検出器を適宜選択することができる。 Radioactive labels include any label that emits radioactive substances, for example, commercially available radioactive labels, known radioactive labels, 18F, 32P, 35S, 129I, 131I, 64Cu, or 67Cu. Radioactive labels can be detected by a radiation or radioactivity sensor, radiation or radioactivity detector, device, or detector, etc., based on the characteristics, activity, strength, or amount of the radioactive label. Those skilled in the art can appropriately select a radiation or radioactivity sensor, radiation or radioactivity detector, device, or detector, based on the characteristics, activity, strength, or amount of the radioactive label.

 本明細書において、「第1の構造物に対する第1の標識」または「第1の標識」は、第1の構造物に直接的にまたは間接的に結合する。「第1の構造物に対する第1の標識」または「第1の標識」は、第1の構造物に、1つまたは複数の第1の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合してもよい。「第1の構造物に対する第1の標識」または「第1の標識」は、第1の構造物に、第1の構造物に特異的に結合する抗体および前記抗体に特異的に結合する二次抗体を介して間接的に結合してもよい。「第1の構造物に対する第1の標識」または「第1の標識」は、方法が第1の構造物から第2の構造物を放出させる工程を含む場合、当該工程において破壊または機能不全されない、または破壊または機能不全されにくい標識であってよい。「第1の構造物に対する第1の標識」または「第1の標識」は、方法が第1の構造物に結合しなかった第1の標識を洗浄する工程を含む場合、当該工程において、破壊または機能不全されない、または破壊または機能不全されにくい標識であってよい。第1の構造物は、「第1の構造物に対する第1の標識」または「第1の標識」に加えて、さらなる1つまたは複数の標識を結合されてもよい。「第1の構造物に対する第1の標識」または「第1の標識」は、蛍光色素または放射性標識であってよい。「第1の構造物に対する第1の標識」または「第1の標識」は、例えば、市販されている蛍光色素、公知の蛍光色素、Alexa Fluor(登録商標) 647、fluorescein、Alexa Fluor 350、Alexa Fluor 405、Alexa Fluor 488、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 647、Alexa Fluor 680、Alaxa Fluor 700、Alexa Fluor 750、Alexa Fluor 790、またはTMB(3,3’,5,5’-テトラメチルベンジジン)を含む。当業者は、第1の構造物、第1の標識、装置、検出器、または検出結果の特性などに基づいて、「第1の構造物に対する第1の標識」または「第1の標識」を適宜選択することができる。 As used herein, a "first label for a first structure" or a "first label" is directly or indirectly bound to a first structure. A "first label for a first structure" or a "first label" may be indirectly bound to a first structure via a molecule that specifically binds to one or more first structures, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide. A "first label for a first structure" or a "first label" may be indirectly bound to a first structure via an antibody that specifically binds to the first structure and a secondary antibody that specifically binds to the antibody. A "first label for a first structure" or a "first label" may be a label that is not destroyed or malfunctioned, or is not easily destroyed or malfunctioned, in a method that includes a step of releasing a second structure from a first structure. The "first label for the first structure" or the "first label" may be a label that is not destroyed or disabled, or is not easily destroyed or disabled, in the step of washing away the first label that is not bound to the first structure when the method includes the step of washing away the first label that is not bound to the first structure. The first structure may have one or more additional labels attached to it in addition to the "first label for the first structure" or the "first label". The "first label for the first structure" or the "first label" may be a fluorescent dye or a radioactive label. The "first label for the first structure" or the "first label" may be, for example, a commercially available fluorescent dye, a known fluorescent dye, Alexa Fluor (registered trademark) 647, fluorescein, Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 5, or a similar fluorescent dye. 46, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 647, Alexa Fluor 680, Alexa Fluor 700, Alexa Fluor 750, Alexa Fluor 790, or TMB (3,3',5,5'-tetramethylbenzidine). Those skilled in the art can appropriately select the "first label for the first structure" or the "first label" based on the characteristics of the first structure, the first label, the device, the detector, or the detection result.

 本明細書において、「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に直接的にまたは間接的に結合する。「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に、1つまたは複数の第2の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合してもよい。「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に、第2の構造物に特異的に結合する抗体および前記抗体に特異的に結合する二次抗体を介して間接的に結合してもよい。「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に結合していないときと比べて、第2の構造物に結合したときに異なる検出可能なシグナルを発生する、標識であってよい。「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に結合したとき検出可能なシグナルを発生するが、第2の構造物に結合していないとき検出可能なシグナルを発生しない、標識であってよい。「第2の構造物に対する第2の標識」または「第2の標識」は、第2の構造物に結合していないときと比べて、第2の構造物に結合したときにより大きなもしくはより小さな検出可能なシグナルまたは異なる検出可能なシグナルを発生する、標識であってよい。第2の構造物は、「第2の構造物に対する第2の標識」または「第2の標識」に加えて、さらなる1つまたは複数の標識を結合されてもよい。「第2の構造物に対する第2の標識」または「第2の標識」は、蛍光色素または放射性標識であってよい。「第2の構造物に対する第2の標識」または「第2の標識」は、例えば、市販されている蛍光色素、公知の蛍光色素、SYBR(登録商標) Gold、SYBR(登録商標) green、QuantiFluor(登録商標) ssDNA Dye Systems、fluorescein、SYBR Gold、SYBR Green I、SYBR Green II、SYBR Safe、QuantiFluor ssDNA Dye Systems(QuantiFluor dsDNA、RNAまたはssDNA System)、SYPRO(登録商標) orange、Thioflavin T、SYPRO orange、SYPRO Tangerine、SYPRO Red、SYPRO Ruby、SYTOX(登録商標) Blue、SYTOX(登録商標)Green、SYTOX(登録商標) Orange、SYTOX(登録商標) Red、SYTOX(登録商標) AADvanced(登録商標)、またはHoechst、例えばHoechst33343および33258を含む。当業者は、第2の構造物、第2の標識、装置、検出器、または検出結果の特性などに基づいて、「第2の構造物に対する第2の標識」または「第2の標識」を適宜選択することができる。 As used herein, the "second label for the second structure" or "second label" is directly or indirectly bound to the second structure. The "second label for the second structure" or "second label" may be indirectly bound to the second structure via one or more molecules that specifically bind to the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide. The "second label for the second structure" or "second label" may be indirectly bound to the second structure via an antibody that specifically binds to the second structure and a secondary antibody that specifically binds to the antibody. The "second label for the second structure" or "second label" may be a label that generates a different detectable signal when bound to the second structure compared to when not bound to the second structure. The "second label for the second structure" or "second label" may be a label that generates a detectable signal when bound to the second structure, but does not generate a detectable signal when not bound to the second structure. A "second label for a second structure" or a "second label" may be a label that generates a greater or lesser or different detectable signal when bound to the second structure than when not bound to the second structure. The second structure may have one or more additional labels bound to it in addition to the "second label for a second structure" or the "second label". A "second label for a second structure" or a "second label" may be a fluorescent dye or a radioactive label. The "second label for the second structure" or the "second label" may be, for example, a commercially available fluorescent dye, a known fluorescent dye, SYBR (registered trademark) Gold, SYBR (registered trademark) green, QuantiFluor (registered trademark) ssDNA Dye Systems, fluorescein, SYBR Gold, SYBR Green I, SYBR Green II, SYBR Safe, QuantiFluor ssDNA Dye Systems (QuantiFluor dsDNA, RNA, etc.) or ssDNA System), SYPRO orange, Thioflavin T, SYPRO orange, SYPRO Tangerine, SYPRO Red, SYPRO Ruby, SYTOX Blue, SYTOX Green, SYTOX Orange, SYTOX Red, SYTOX AADvanced, or Hoechst, for example Hoechst 33343 and 33258. Those skilled in the art can appropriately select a "second label for the second structure" or a "second label" based on the characteristics of the second structure, the second label, the device, the detector, or the detection result.

 本明細書において、「第1の構造物に対する第1の標識」または「第1の標識」と「第2の構造物に対する第2の標識」または「第2の標識」は、一緒に検出することができるが、異なっている標識である。例えば、「第1の標識」と「第2の標識」は、1つまたは複数の装置または検出器を用いて一緒に検出することができ、第1の構造物および第2の構造物のそれぞれの標識の検出結果を得ることができる標識である。例えば、「第1の標識」と「第2の標識」は、異なる蛍光信号を発信する蛍光色素であり、1つまたは複数の顕微鏡、装置または検出器を用いて一緒に検出することができ、例えばそれぞれの波長に基づいて、第1の標識および第2の標識のそれぞれの蛍光色素の蛍光信号の検出結果を得ることができる蛍光色素である。例えば、「第1の標識」と「第2の標識」は、1つの装置または検出器を用いて一緒に検出することができる。当業者は、第1の構造物、第2の構造物、第1の標識、第2の標識、装置、検出器、または検出結果の特性などに基づいて、「第1の標識」と「第2の標識」を適宜選択することができる。 In this specification, the "first label for the first structure" or the "first label" and the "second label for the second structure" or the "second label" are different labels that can be detected together. For example, the "first label" and the "second label" are labels that can be detected together using one or more devices or detectors, and a detection result of each label of the first structure and the second structure can be obtained. For example, the "first label" and the "second label" are fluorescent dyes that emit different fluorescent signals and can be detected together using one or more microscopes, devices or detectors, and a detection result of the fluorescent signal of each fluorescent dye of the first label and the second label can be obtained based on, for example, each wavelength. For example, the "first label" and the "second label" can be detected together using one device or detector. A person skilled in the art can appropriately select the "first label" and the "second label" based on the characteristics of the first structure, the second structure, the first label, the second label, the device, the detector, or the detection result.

 本明細書において、「結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する」などの文脈において、「一緒に検出する」は、検出対象となる2つ以上の物質に対して、それらを含む1つの空間または場所(例えば1つのサンプル、1つの容器、またはプレート中の1つのウェル)で検出を行うことを意味する。例えば、「結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する」は、結合した第1の標識および結合した第2の標識を含む1つの空間または場所(例えば1つのサンプル、1つの容器、またはプレート中の1つのウェル)において、第1の標識と第2の標識のそれぞれの量を検出することであってよい。例えば、「結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する」は、同時に、または順にもしくは連続して、第1の標識と第2の標識のそれぞれの量を検出することであってよい(例えば、第1の標識と第2の標識のそれぞれの量を同時に検出する、最初に第1の標識の量を検出し、次に第2の標識の量を検出する、または、最初に第2の標識の量を検出し、次に第1の標識の量を検出する)。 As used herein, in the context of "detecting the amount of bound first label and the amount of bound second label together," "detecting together" means detecting two or more substances to be detected in one space or location that contains them (e.g., one sample, one container, or one well in a plate). For example, "detecting the amount of bound first label and the amount of bound second label together" may mean detecting the amounts of each of the first label and the second label in one space or location that contains the bound first label and the bound second label (e.g., one sample, one container, or one well in a plate). For example, "detecting the amount of bound first label and the amount of bound second label together" may mean detecting the amount of each of the first label and the second label simultaneously, or sequentially or sequentially (e.g., detecting the amount of each of the first label and the second label simultaneously, detecting the amount of the first label first and then the amount of the second label, or detecting the amount of the second label first and then the amount of the first label).

 本明細書において、「キット」は、第1の構造物に対する第1の標識、第2の構造物に対する第2の標識、および結合した第1の標識の量および結合した第2の標識の量を、一緒に検出するための説明書、を含む。「キット」は、本明細書に記載の、第1の構造物の量および第2の構造物の量を検出するあらゆる方法に用いられるためのキットであってよい。「キット」は、任意の、ペプチド、タンパク質、抗体、核酸、さらなる標識、酵素、基質、試薬、バッファー、塩類、プレート、または容器などをさらに含んでもよい。 As used herein, a "kit" includes a first label for a first structure, a second label for a second structure, and instructions for detecting the amount of bound first label and the amount of bound second label together. The "kit" may be a kit for use in any method of detecting the amount of a first structure and the amount of a second structure described herein. The "kit" may further include any peptide, protein, antibody, nucleic acid, additional label, enzyme, substrate, reagent, buffer, salt, plate, or container, etc.

 本明細書において、「約」は、およそ、または~前後、を意味する。数値範囲と合わせて使用される場合、「約」は、その範囲を、指定の数値の境界を上下に拡張してもよい。「約」は、記載される数値の±10%の数値範囲を意味してよい。 As used herein, "about" means approximately, or around. When used in conjunction with a numerical range, "about" may extend that range above and below the boundaries of the stated numerical values. "About" may mean a numerical range of ±10% of the stated numerical value.

 一態様において、本発明の方法は、第1の標識を結合させる工程および/または第2の標識を結合させる工程の前または後に、第1の構造物および/または第2の構造物を支持体に固定または結合させる工程を含む。第1の構造物および/または第2の構造物は、支持体に、1つまたは複数の物質、例えば第1の構造物および/または第2の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合してもよい。第1の構造物および/または第2の構造物を支持体に間接的に固定させる工程は、(i)支持体に、支持体に結合することができ、かつ第1の構造物および/または第2の構造物に結合することができる物質、例えば第1の構造物および/または第2の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを付着させ、(ii)洗浄バッファーを用いることによって、支持体を洗浄し、(iii)ブロッキングバッファーを用いることによって、支持体をコーティングし、(iv)洗浄バッファーを用いることによって、支持体を洗浄し、(v)第1の構造物および/または第2の構造物を、前記物質、例えば分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドに結合させ、および/または(vi)洗浄バッファーを用いることによって、支持体を洗浄してもよい。例えば、第1の構造物および/または第2の構造物を支持体に固定させる工程によって、第1の構造物および/または第2の構造物を支持体に保持または維持することができる。例えば、第1の構造物および/または第2の構造物を支持体に固定させる工程によって、バッファーや支持体に結合しなかった物質、例えば分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチド、結合しなかった第1の構造物および/または結合しなかった第2の構造物などを含む不要な物質を、支持体から洗浄することができる。 In one embodiment, the method of the invention includes a step of immobilizing or binding the first structure and/or the second structure to a support before or after the step of binding the first label and/or the step of binding the second label. The first structure and/or the second structure may be indirectly bound to the support via one or more substances, such as a molecule that specifically binds to the first structure and/or the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide. The step of indirectly immobilizing the first structure and/or the second structure on the support may include (i) attaching to the support a substance capable of binding to the support and capable of binding to the first structure and/or the second structure, such as a molecule that specifically binds to the first structure and/or the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, (ii) washing the support by using a washing buffer, (iii) coating the support by using a blocking buffer, (iv) washing the support by using a washing buffer, (v) binding the first structure and/or the second structure to the substance, such as a molecule, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, and/or (vi) washing the support by using a washing buffer. For example, the step of immobilizing the first structure and/or the second structure on the support may hold or maintain the first structure and/or the second structure on the support. For example, the process of immobilizing the first structure and/or the second structure on the support allows unwanted substances, including buffer and substances that are not bound to the support, such as molecules, e.g., antibodies, antibody fragments, lectins, aptamers, ligands, peptides, or cyclic peptides, unbound first structure and/or unbound second structure, to be washed from the support.

 支持体は、あらゆるプレートまたは容器、例えば、培養用の、測定用の、またはELISA用の、シャーレ、マイクロプレート、または容器を含む。支持体は、あらゆる色、例えば、透明、半透明、白色、または黒色であってよい。支持体は、化学発光の検出のために白色または蛍光もしくは化学蛍光の検出のために黒色であってよい。支持体は、蛍光色素の検出のために黒色マイクロプレートであってよい。 The support includes any plate or vessel, e.g., a petri dish, microplate, or vessel for culture, measurement, or ELISA. The support may be of any color, e.g., transparent, translucent, white, or black. The support may be white for chemiluminescence detection or black for fluorescence or chemiluminescence detection. The support may be a black microplate for fluorescent dye detection.

 一態様において、本発明の方法は、第1の構造物に第1の標識を結合させる工程、および第2の構造物に第2の標識を結合させる工程を含む。第1の構造物に第1の標識を結合させる工程および第2の構造物に第2の標識を結合させる工程は、任意の順番でまたは同時で行われてよい。第1の構造物に第1の標識を結合させる工程および第2の構造物に第2の標識を結合させる工程は、先に第1の構造物に第1の標識を結合させる工程、次に第2の構造物に第2の標識を結合させる工程を行ってもよい。第1の構造物に第1の標識を結合させる工程および第2の構造物に第2の標識を結合させる工程は、先に第2の構造物に第2の標識を結合させる工程、次に第1の構造物に第1の標識を結合させる工程を行ってもよい。 In one embodiment, the method of the present invention includes a step of binding a first label to a first structure and a step of binding a second label to a second structure. The steps of binding the first label to the first structure and the second label to the second structure may be performed in any order or simultaneously. The steps of binding the first label to the first structure and the second label to the second structure may be performed by first binding the first label to the first structure and then binding the second label to the second structure. The steps of binding the first label to the first structure and the second label to the second structure may be performed by first binding the second label to the second structure and then binding the first label to the first structure.

 一態様において、第1の構造物に第1の標識を結合させる工程は、第1の構造物に第1の標識を直接的にまたは間接的に結合させることを含む。第1の構造物に第1の標識を結合させる工程は、第1の構造物に第1の標識を1つまたは複数の物質、例えば第1の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合させることを含んでよい。第1の構造物に第1の標識を結合させる工程は、第1の構造物に第1の標識を、第1の構造物に特異的に結合する1つの抗体を介して間接的に結合させることを含んでよい。第1の構造物に第1の標識を結合させる工程は、第1の構造物に第1の標識を直接的にまたは間接的に結合させた後に、支持体を洗浄しても、または洗浄しなくてもよい。第1の構造物に第1の標識を結合させる工程は、(i)第1の構造物に、第1の構造物に特異的に結合することができる抗体を付着させ、(ii)洗浄バッファーを用いることによって、支持体を洗浄し、(iii)第1の標識を、前記第1の構造物に特異的に結合することができる抗体に結合させ、および/または(iv)洗浄バッファーを用いることによって、支持体を洗浄してもよい。第1の構造物に第1の標識を結合させる工程は、第1の構造物に第1の標識を、第1の構造物に特異的に結合する抗体および前記抗体に特異的に結合する二次抗体を介して間接的に結合させることを含んでよい。第1の構造物に第1の標識を結合させる工程は、(i)第1の構造物に、第1の構造物に特異的に結合することができる抗体(例えば、マウス由来のウイルスカプシドに特異的に結合する抗体)を付着させ、(ii)洗浄バッファーを用いることによって、支持体を洗浄し、(iii)第1の標識を有する前記抗体に特異的に結合する二次抗体(例えば、Alexa Fluor(登録商標) 647を有するマウス由来の前記抗体に特異的に結合する抗マウスIgG抗体)を、前記抗体に結合させ、および/または(iv)洗浄バッファーを用いることによって、支持体を洗浄してもよい。 In one embodiment, the step of binding the first label to the first structure includes directly or indirectly binding the first label to the first structure. The step of binding the first label to the first structure may include indirectly binding the first label to the first structure via one or more substances, such as a molecule that specifically binds to the first structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide. The step of binding the first label to the first structure may include indirectly binding the first label to the first structure via an antibody that specifically binds to the first structure. The step of binding the first label to the first structure may or may not include washing the support after directly or indirectly binding the first label to the first structure. The step of binding the first label to the first structure may include (i) attaching an antibody capable of specifically binding to the first structure to the first structure, (ii) washing the support by using a wash buffer, (iii) binding the first label to the antibody capable of specifically binding to said first structure, and/or (iv) washing the support by using a wash buffer. The step of binding the first label to the first structure may include indirectly binding the first label to the first structure via an antibody that specifically binds to the first structure and a secondary antibody that specifically binds to said antibody. The step of binding the first label to the first structure may include (i) attaching an antibody capable of specifically binding to the first structure (e.g., an antibody that specifically binds to a virus capsid derived from a mouse) to the first structure, (ii) washing the support by using a washing buffer, (iii) binding a secondary antibody that specifically binds to the antibody having the first label (e.g., an anti-mouse IgG antibody that specifically binds to the antibody derived from a mouse having Alexa Fluor (registered trademark) 647) to the antibody, and/or (iv) washing the support by using a washing buffer.

 一態様において、第2の構造物に第2の標識を結合させる工程は、第2の構造物に第2の標識を直接的にまたは間接的に結合させることを含む。第2の構造物に第2の標識を結合させる工程は、第2の構造物に第2の標識を1つまたは複数の物質、例えば第2の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合させることを含んでよい。第2の構造物に第2の標識を結合させる工程は、第2の構造物に第2の標識を、第2の構造物に特異的に結合する1つのペプチドを介して間接的に結合させることを含んでよい。第2の構造物に第2の標識を結合させる工程は、第2の構造物に第2の標識を直接的にまたは間接的に結合させた後に、支持体を洗浄しても、または洗浄しなくてもよい。第2の構造物に第2の標識を結合させる工程は、第2の構造物に、第2の標識を有する前記第2の構造物に特異的に結合するペプチド(例えば、SYBR(登録商標) Gold)を結合させ、および/または(ii)結合しなかったペプチドを、サンプルから洗浄しなくてもよい。第2の構造物に第2の標識を結合させる工程は、(i)第2の構造物に、第2の標識を有する前記第2の構造物に特異的に結合するペプチド(例えば、SYBR(登録商標) Gold)を結合させ、および/または(ii)洗浄バッファーを用いることによって、結合しなかったペプチドを、サンプルから洗浄してもよい。 In one embodiment, the step of binding the second label to the second structure includes directly or indirectly binding the second label to the second structure. The step of binding the second label to the second structure may include indirectly binding the second label to the second structure via one or more substances, such as a molecule that specifically binds to the second structure, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide. The step of binding the second label to the second structure may include indirectly binding the second label to the second structure via a peptide that specifically binds to the second structure. The step of binding the second label to the second structure may or may not include washing the support after directly or indirectly binding the second label to the second structure. The step of binding the second label to the second structure may include binding a peptide (e.g., SYBR® Gold) that specifically binds to the second structure having the second label to the second structure, and/or (ii) not washing the unbound peptide from the sample. The step of binding the second label to the second structure may include (i) binding a peptide (e.g., SYBR® Gold) that specifically binds to the second structure having the second label to the second structure, and/or (ii) washing the unbound peptide from the sample by using a wash buffer.

 一態様において、本発明の方法は、第2の構造物が第1の構造物に包含されている場合、第1の構造物から第2の構造物を放出させる工程を含む。第1の構造物から第2の構造物を放出させる工程は、例えば、温度変化、加熱、冷却、攪拌、ピペッティング、化学物質、pH変化、酸またはアルカリを用いることによって、行われる。当業者は、「第1の構造物」および「第2の構造物」の特性、活性、強度または量などに基づいて、第1の構造物から第2の構造物を放出させる工程を適宜選択することができる。例えば、加熱は、約75℃から約95℃、約80℃から約90℃、または約85℃で行われてもよい。例えば、加熱は、約5分から約25分、約10分から約20分、または約15分で行われてもよい。例えば、加熱は、約85℃で約15分間で行われてもよい。第1の構造物から第2の構造物を放出させる工程は、第1の構造物に第1の標識を結合させる工程の前であってよい。第1の構造物から第2の構造物を放出させる工程は、第1の構造物に第1の標識を結合させる工程の後であってよい。第1の構造物から第2の構造物を放出させる工程は、第2の構造物に第2の標識を結合させる工程の前であってよい。第1の構造物から第2の構造物を放出させる工程は、第1の構造物に第1の標識を結合させる工程の後であり、そして第2の構造物に第2の標識を結合させる工程の前であってよい。例えば、第1の構造物から第2の構造物を放出させる工程によって、第2の標識が第2の構造物に結合しやすくなる。例えば、第1の構造物から第2の構造物を放出させる工程によって、第2の標識が第1の構造物に包含されていた第2の構造物に結合できるようになる。例えば、第1の構造物から第2の構造物を放出させる工程によって、第2の標識が第2の構造物に、より正確に、またはより高精度に結合できるようになる。 In one aspect, the method of the present invention includes a step of releasing the second structure from the first structure when the second structure is contained in the first structure. The step of releasing the second structure from the first structure is performed, for example, by using a temperature change, heating, cooling, stirring, pipetting, a chemical, a pH change, an acid or an alkali. A person skilled in the art can appropriately select a step of releasing the second structure from the first structure based on the properties, activity, strength or amount of the "first structure" and the "second structure". For example, the heating may be performed at about 75°C to about 95°C, about 80°C to about 90°C, or about 85°C. For example, the heating may be performed for about 5 minutes to about 25 minutes, about 10 minutes to about 20 minutes, or about 15 minutes. For example, the heating may be performed at about 85°C for about 15 minutes. The step of releasing the second structure from the first structure may be performed before the step of binding the first label to the first structure. The step of releasing the second structure from the first structure may be after the step of binding the first label to the first structure. The step of releasing the second structure from the first structure may be before the step of binding the second label to the second structure. The step of releasing the second structure from the first structure may be after the step of binding the first label to the first structure and before the step of binding the second label to the second structure. For example, the step of releasing the second structure from the first structure makes it easier for the second label to bind to the second structure. For example, the step of releasing the second structure from the first structure allows the second label to bind to the second structure that was included in the first structure. For example, the step of releasing the second structure from the first structure allows the second label to bind to the second structure more accurately or with greater precision.

 一態様において、本発明の方法は、結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程を含む。結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程は、例えば1つまたは複数の装置または検出器を用いて、一緒に検出することを含む。結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程は、例えば1つの装置または検出器を用いて、一緒に検出することを含む。例えば、結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程は、「第1の標識」と「第2の標識」のそれぞれの標識の検出結果を得ることを含む。例えば、結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程は、「第1の標識」と「第2の標識」が異なる蛍光信号を発信する蛍光色素である場合、励起および発光に基づいて、それぞれの蛍光信号の検出結果を得ることを含む。「第1の標識」がAlexa Fluor(登録商標) 647であるとき、652nm(励起)および/または680nm(発光)の波長に基づいて、蛍光信号の検出結果を得てよい。「第2の標識」がSYBR(登録商標) Goldであるとき、495nm(励起)および/または535nm(発光)の波長に基づいて、または、500nm(励起)および/または535nm(発光)の波長に基づいて、蛍光信号の検出結果を得てよい。「第1の標識」がAlexa Fluor(登録商標) 647であり、そして「第2の標識」がSYBR(登録商標) Goldであるとき、例えば1つの光センサー、光検出器、顕微鏡、装置または検出器を用いて、652nm(励起)および/または680nm(発光)の波長に基づいて蛍光信号の検出結果ならびに495nm(励起)および/または535nm(発光)の波長および/または500nm(励起)および/または535nm(発光)の波長に基づいて蛍光信号の検出結果を得てよい。結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程は、結合した第1の標識の量および結合した第2の標識の量を、別々に(一緒ではなく)検出する工程と比べて、例えば、第1の構造物の量および第2の構造物の量を検出するための時間または労力を小さくする、第1の構造物の量および第2の構造物の量を検出するためのコストを小さくする、第1の構造物の量および第2の構造物の量の検出誤差を小さくする、夾雑物が含まれているサンプルから第1の構造物または第2の構造物を精製することを不要にする、または低濃度の第1の構造物の量および第2の構造物の量を検出可能にする。 In one embodiment, the method of the present invention includes a step of detecting the amount of the bound first label and the amount of the bound second label together. The step of detecting the amount of the bound first label and the amount of the bound second label together includes detecting them together, for example, using one or more devices or detectors. The step of detecting the amount of the bound first label and the amount of the bound second label together includes detecting them together, for example, using one device or detector. For example, the step of detecting the amount of the bound first label and the amount of the bound second label together includes obtaining a detection result of each of the labels, the "first label" and the "second label". For example, the step of detecting the amount of the bound first label and the amount of the bound second label together includes obtaining a detection result of each of the fluorescent signals based on excitation and emission, when the "first label" and the "second label" are fluorescent dyes that emit different fluorescent signals. When the "first label" is Alexa Fluor® 647, the detection result of the fluorescent signal may be obtained based on a wavelength of 652 nm (excitation) and/or 680 nm (emission). When the "second label" is SYBR® Gold, the detection result of the fluorescent signal may be obtained based on a wavelength of 495 nm (excitation) and/or 535 nm (emission), or based on a wavelength of 500 nm (excitation) and/or 535 nm (emission). When the "first label" is Alexa Fluor® 647 and the "second label" is SYBR® Gold, for example, one optical sensor, photodetector, microscope, device or detector may be used to obtain detection results of fluorescent signals based on wavelengths of 652 nm (excitation) and/or 680 nm (emission) and detection results of fluorescent signals based on wavelengths of 495 nm (excitation) and/or 535 nm (emission) and/or 500 nm (excitation) and/or 535 nm (emission). The process of detecting the amount of bound first label and the amount of bound second label together, compared to the process of detecting the amount of bound first label and the amount of bound second label separately (not together), can, for example, reduce the time or effort required to detect the amount of the first structure and the amount of the second structure, reduce the cost of detecting the amount of the first structure and the amount of the second structure, reduce the detection error of the amount of the first structure and the amount of the second structure, eliminate the need to purify the first structure or the second structure from a sample containing contaminants, or make it possible to detect the amount of the first structure and the amount of the second structure at low concentrations.

 一態様において、本発明の方法は、結合した第1の標識の量(または濃度)および結合した第2の標識の量(または濃度)に基づいて、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を計算または決定する工程を含む。当業者は、第1の構造物、第2の構造物、標識、装置、検出器、または検出結果の特性などに基づいて、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を適宜計算または決定することができる。例えば、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を計算または決定する工程は、第1の標識の量(または濃度)および第1の構造物の量(または濃度)の検量線(Calibration curve)および/または第2の標識の量(または濃度)および第2の構造物の量(または濃度)の検量線を作成することを含んでよい。例えば、検量線を作成するために、検量線用の標準品(例えば、市販の標準品、標準液および標準試料)を用いてもよい。当業者は、第1の構造物、第2の構造物、標識、装置、検出器、または検出結果の特性などに基づいて、用いられる検量線用の標準品を適宜決定することができる。例えば、検量線用の標準品は、計算または決定される第1の構造物および/または第2の構造物ごとに標準品を設定してもよい。例えば、第1の構造物および/または第2の構造物と標準品とで長さが異なっていても、計算による補正を行うことによって、1つまたはそれ以上の第1の構造物の量(または濃度)および/または1つまたはそれ以上の第2の構造物の量(または濃度)を計算または決定することができる。例えば、第2の構造物と検量線用の標準品とで長さが異なっていても、1種類の検量線用の標準品を用いることおよび(例えばDNA長と蛍光強度との相関関係に基づいて)計算による補正を行うことによって、2つまたはそれ以上の第2の構造物の量(または濃度)を計算または決定することができる。 In one embodiment, the method of the present invention includes a step of calculating or determining the amount (or concentration) of the first structure and the amount (or concentration) of the second structure based on the amount (or concentration) of the bound first label and the amount (or concentration) of the bound second label. A person skilled in the art can appropriately calculate or determine the amount (or concentration) of the first structure and the amount (or concentration) of the second structure based on the characteristics of the first structure, the second structure, the label, the device, the detector, or the detection result. For example, the step of calculating or determining the amount (or concentration) of the first structure and the amount (or concentration) of the second structure may include creating a calibration curve of the amount (or concentration) of the first label and the amount (or concentration) of the first structure and/or a calibration curve of the amount (or concentration) of the second label and the amount (or concentration) of the second structure. For example, a calibration standard (e.g., a commercially available standard, standard solution, and standard sample) may be used to create a calibration curve. Those skilled in the art can appropriately determine the standard for the calibration curve to be used based on the characteristics of the first structure, the second structure, the label, the device, the detector, or the detection result. For example, the standard for the calibration curve may be set for each of the first structure and/or the second structure to be calculated or determined. For example, even if the length of the first structure and/or the second structure is different from that of the standard, the amount (or concentration) of one or more first structures and/or the amount (or concentration) of one or more second structures can be calculated or determined by performing a correction by calculation. For example, even if the length of the second structure is different from that of the standard for the calibration curve, the amount (or concentration) of two or more second structures can be calculated or determined by using one type of standard for the calibration curve and performing a correction by calculation (for example, based on the correlation between DNA length and fluorescence intensity).

 一態様において、第2の構造物が第1の構造物に包含されている場合、計算または決定された第1の構造物の量(または濃度)および第2の構造物の量(または濃度)に基づいて、第2の構造物を包含している第1の構造物(例えば核酸を含むウイルスカプシド)の量(または濃度)および/または第2の構造物を包含していない第1の構造物(例えば核酸を含まないウイルスカプシド)の量(または濃度)を決定することができる。例えば、計算または決定された第2の構造物の量(または濃度)に基づいて、第2の構造物を包含している第1の構造物(例えば核酸を含むウイルスカプシド)の量(または濃度)を決定することができる。例えば、計算または決定された第1の構造物の量(または濃度)から計算または決定された第2の構造物の量(または濃度)を引くこと(減ずること)に基づいて、第2の構造物を包含していない第1の構造物(例えば核酸を含まないウイルスカプシド)の量(または濃度)を決定することができる。計算または決定された第1の構造物の量(または濃度)および第2の構造物の量(または濃度)に基づいて、第2の構造物を包含している第1の構造物(例えば核酸を含むウイルスカプシド)と第2の構造物を包含していない第1の構造物(例えば核酸を含まないウイルスカプシド)の比率を評価または決定することができる。例えば、計算または決定された第2の構造物の量(または濃度)を計算または決定された第1の構造物の量(または濃度)で割ることに基づいて、第2の構造物を包含している第1の構造物(例えば核酸を含むウイルスカプシド)のパーセント(割合)を決定することができる。例えば、かかるパーセント(割合)に基づいて、第2の構造物を包含していない第1の構造物(例えば核酸を含まないウイルスカプシド)のパーセント(割合)を決定することができる。例えば、計算または決定された第1の構造物の量(または濃度)および第2の構造物の量(または濃度)に基づいて、活性を有するウイルスベクター(完全粒子)の量(または濃度)および/または活性を有さないウイルスベクター(空粒子)の量(または濃度)を決定することができる。例えば、計算または決定された第1の構造物の量(または濃度)および第2の構造物の量(または濃度)に基づいて、完全粒子と空粒子の比率を評価または決定することができる。 In one embodiment, when a second structure is contained in a first structure, the amount (or concentration) of the first structure containing the second structure (e.g., a viral capsid containing a nucleic acid) and/or the amount (or concentration) of the first structure not containing the second structure (e.g., a viral capsid not containing a nucleic acid) can be determined based on the calculated or determined amount (or concentration) of the first structure and the amount (or concentration) of the second structure. For example, the amount (or concentration) of the first structure containing the second structure (e.g., a viral capsid containing a nucleic acid) can be determined based on the calculated or determined amount (or concentration) of the second structure. For example, the amount (or concentration) of the first structure not containing the second structure (e.g., a viral capsid not containing a nucleic acid) can be determined based on the calculated or determined amount (or concentration) of the second structure from the calculated or determined amount (or concentration) of the first structure. Based on the calculated or determined amount (or concentration) of the first structure and the amount (or concentration) of the second structure, the ratio of the first structure containing the second structure (e.g., viral capsids containing nucleic acid) to the first structure not containing the second structure (e.g., viral capsids not containing nucleic acid) can be evaluated or determined. For example, based on dividing the calculated or determined amount (or concentration) of the second structure by the calculated or determined amount (or concentration) of the first structure, the percentage (proportion) of the first structure containing the second structure (e.g., viral capsids containing nucleic acid) can be determined. For example, based on such percentage (proportion), the percentage (proportion) of the first structure not containing the second structure (e.g., viral capsids not containing nucleic acid) can be determined. For example, based on the calculated or determined amount (or concentration) of the first structure and the amount (or concentration) of the second structure, the amount (or concentration) of the active viral vector (complete particle) and/or the amount (or concentration) of the inactive viral vector (empty particle) can be determined. For example, the ratio of full particles to empty particles can be evaluated or determined based on the calculated or determined amount (or concentration) of the first structure and the amount (or concentration) of the second structure.

 一態様において、本発明の方法は、免疫学的測定法であるELISA(酵素結合免疫吸着検定法)を用いてよい。本発明の方法は、免疫学的測定法であるELISAを応用したものであり、二重蛍光結合免疫吸着法((Dual Fluorescence-Linked Immunosorbent Assay(dFLISA))と称する。 In one embodiment, the method of the present invention may use ELISA (Enzyme-Linked Immunosorbent Assay), which is an immunological assay. The method of the present invention is an application of ELISA, which is an immunological assay, and is called Dual Fluorescence-Linked Immunosorbent Assay (dFLISA).

 一態様において、本発明の方法は、第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を検出することに加えて、1つ以上のさらなる構造物(例えば第3の構造物および/または第4の構造物)の量(または濃度)を検出することを含んでもよい。例えば、1つのサンプル、1つの容器、またはプレート中の1つのウェルに第1の構造物および第2の構造物に加えて、1つ以上のさらなる構造物(例えば第3の構造物および/または第4の構造物)を含んでもよい。例えば、1つ以上のさらなる構造物(例えば第3の構造物および/または第4の構造物)の量(または濃度)を検出する工程は、本明細書に記載されている第1の構造物の量(または濃度)および第2の構造物の量(または濃度)を検出する方法または工程と同じであってもよい。 In one embodiment, the method of the present invention may include detecting the amount (or concentration) of one or more additional structures (e.g., a third structure and/or a fourth structure) in addition to detecting the amount (or concentration) of the first structure and the amount (or concentration) of the second structure. For example, a sample, a container, or a well in a plate may include one or more additional structures (e.g., a third structure and/or a fourth structure) in addition to the first structure and the second structure. For example, the step of detecting the amount (or concentration) of one or more additional structures (e.g., a third structure and/or a fourth structure) may be the same as the method or step of detecting the amount (or concentration) of the first structure and the amount (or concentration) of the second structure described herein.

 特に記載がない限り、本明細書で使用される用語は、当技術分野で通常、使用される用語である。 Unless otherwise specified, the terms used in this specification are terms commonly used in the art.

 以下に実施例を示して本発明をさらに具体的かつ詳細に説明するが、本発明の範囲がこれらの実施例に限定されると解すべきではない。 The present invention will be explained in more detail in the following examples, but it should not be understood that the scope of the present invention is limited to these examples.

使用された材料および機器の一覧








List of materials and equipment used








実施例1 Example 1

AAV VHH antibodyの調製
 15 mLチューブに試薬をはかりとり混合した(100倍希釈)。以下に例を示す。
Preparation of AAV VHH antibody The reagents were weighed out and mixed in a 15 mL tube (100-fold dilution). An example is shown below.

AAV VHH antibodyのプレートへのコーティング
 希釈したAAV VHH antibodyを100μLずつ各ウェルに加えた。以下に例を示す。
 プレートの上面にシールを貼り、ヘラで密着させた。
 4℃で16時間インキュベートした。



Coating of AAV VHH antibody onto plate 100 μL of diluted AAV VHH antibody was added to each well. An example is shown below.
A sticker was placed on the top surface of the plate and pressed into place with a spatula.
Incubated at 4°C for 16 hours.



1x PBSの調製
 500 mLガラス瓶に試薬をはかりとり混合した。以下に例を示す。




 ガラス瓶を振り、よく混合した。
Preparation of 1x PBS: Weigh out the reagents and mix them in a 500 mL glass bottle. An example is shown below.




The vial was shaken to mix well.

1 % TWEEN20 in 1x PBSの調製
 15 mLチューブに試薬をはかりとり混合した。以下に例を示す。




 チューブを振り、ボルテックスでよく混合した。
Preparation of 1% TWEEN20 in 1x PBS: Weigh out the reagents into a 15 mL tube and mix them. An example is shown below.




The tube was shaken and mixed well by vortexing.

Wash buffer (0.05% TWEEN20 in 1x PBS, pH 7.4)の調製
 500 mLガラス瓶に試薬をはかりとり混合した。以下に例を示す。




 ガラス瓶を振り、よく混合した。
Preparation of wash buffer (0.05% TWEEN20 in 1x PBS, pH 7.4) The reagents were weighed and mixed in a 500 mL glass bottle. An example is shown below.




The vial was shaken to mix well.

Blocking buffer、Dilution buffer (1% BSA in 0.05 % TWEEN20 of 1x PBS, pH= 7.0)の調製
 50 mLチューブに試薬をはかりとり混合した。以下に例を示す。




 ボルテックスで混合した。
Preparation of blocking buffer and dilution buffer (1% BSA in 0.05% TWEEN20 of 1x PBS, pH= 7.0) The reagents were weighed and mixed in a 50 mL tube. An example is shown below.




Mix by vortexing.

プレートに結合していないVHH抗体の洗浄
 プレートを冷蔵庫(4℃)から取り出した。
 プレートの各ウェル中のVHH溶液をマルチチャンネルピペットで取り除いた。
 200 μLのWash bufferを各ウェルに入れた後、プレートを裏返し、Wash bufferをキムタオルで取り除いた。この操作を3回繰り返した。
Washing of unbound VHH antibodies The plate was removed from the refrigerator (4°C).
The VHH solution in each well of the plate was removed with a multichannel pipette.
After adding 200 μL of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.

プレートのブロッキング
 Blocking bufferを200 μLずつ各ウェルに加えた。
 プレートの上面にシールを貼り、ヘラで密着させた。
 37℃で1時間インキュベートした。
 インキュベーション後、各ウェル中のBlocking bufferをマルチチャンネルピペットで取り除いた。
 200 μLのWash bufferを各ウェルに入れた後、プレートを裏返し、Wash bufferをキムタオルで取り除いた。この操作を3回繰り返した。
Blocking of the plate 200 μL of blocking buffer was added to each well.
A sticker was placed on the top surface of the plate and pressed into place with a spatula.
Incubated at 37°C for 1 hour.
After incubation, the blocking buffer in each well was removed with a multichannel pipette.
After adding 200 μL of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.

AAVの標準溶液とサンプル溶液の調製
<検量線用溶液の調製>
 1.5 mLマイクロチューブで検量線用AAVサンプルを希釈した。以下に例を示す。

 希釈した検量線用AAVサンプルについて、以下のように連続希釈を行い、検量線用サンプル(SD1~SD7)を作成した。




<測定用サンプル溶液の調製>
1.5 mLマイクロチューブで測定用AAVサンプルを希釈した。以下に例を示す。

Preparation of AAV standard and sample solutions <Preparation of calibration curve solutions>
The AAV sample for the standard curve was diluted in a 1.5 mL microtube. An example is shown below.

The diluted AAV standard curve sample was serially diluted as follows to prepare standard curve samples (SD1 to SD7).




<Preparation of sample solution for measurement>
The AAV sample for measurement was diluted in a 1.5 mL microtube. An example is shown below.

サンプルAAVの添加
 サンプルAAVを100 μLずつ各ウェルに加えた。以下に例を示す。




* B:Wash buffer  SD:検量線用サンプル
SP:測定サンプル

 プレートの上面にシールを貼り、ヘラで密着させた。
 37℃で1時間インキュベートした。
 インキュベーション後、各ウェル中のAAV溶液をマルチチャンネルピペットで取り除いた。
 200 μLのWash bufferを各ウェルに入れた後、プレートを裏返し、Wash bufferをキムタオルで取り除いた。この操作を3回繰り返した。
Addition of sample AAV 100 μL of sample AAV was added to each well. An example is shown below.




* B: Wash buffer SD: Standard curve sample
SP: Measurement sample

A sticker was placed on the top surface of the plate and pressed into place with a spatula.
Incubated at 37°C for 1 hour.
After incubation, the AAV solution in each well was removed with a multichannel pipette.
After adding 200 μL of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.

Anti-AAV8 antibody(ADK8)の調製 
 15 mLチューブに試薬をはかりとり混合した(50倍)。以下に例を示す。




 チューブを振り、よく混合した。
Preparation of anti-AAV8 antibody (ADK8)
The reagents were weighed out and mixed in a 15 mL tube (50x). An example is shown below.




The tube was shaken to mix well.

Anti-AAV8 antibody(ADK8)の添加
 調製したADK8を100 μLずつ各ウェルに加えた
 プレートの上面にシールを貼り、ヘラで密着させた。
 37℃で1時間インキュベートした。
 インキュベーション後、各ウェル中のAAV溶液をマルチチャンネルピペットで取り除いた。
 200 μLのWash bufferを各ウェルに入れた後、プレートを裏返し、Wash bufferをキムタオルで取り除いた。この操作を3回繰り返した。
Addition of anti-AAV8 antibody (ADK8) 100 μL of the prepared ADK8 was added to each well. A seal was attached to the top of the plate and pressed firmly with a spatula.
Incubated at 37°C for 1 hour.
After incubation, the AAV solution in each well was removed with a multichannel pipette.
After adding 200 μL of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.

Goat Anti-Mouse IgG H&L (Alexa Fluor 647)の調製
 15 mLチューブに試薬をはかりとり混合した(500倍希釈)。以下に例を示す。




 チューブをゆっくり振り、よく混合した。
 15 mLチューブをアルミホイルで覆った。
Preparation of Goat Anti-Mouse IgG H&L (Alexa Fluor 647) The reagents were weighed out and mixed in a 15 mL tube (500-fold dilution). An example is shown below.




The tube was gently shaken to mix well.
The 15 mL tube was covered with aluminum foil.

Goat Anti-Mouse IgG H&L (Alexa Fluor 647)の添加
 Goat Anti-Mouse IgG H&L (Alexa Fluor 647)を100 μLずつ各ウェルに加えた。
 プレートの上面にシールを貼り、ヘラで密着させた。
 37℃で1時間、遮光、300 rpmでインキュベートした。
 インキュベーション後、各ウェル中のAAV溶液をマルチチャンネルピペットで取り除いた。
 200 μLのWash bufferを各ウェルに入れた後、プレートを裏返し、Wash bufferをキムタオルで取り除いた。この操作を3回繰り返した。
Addition of Goat Anti-Mouse IgG H&L (Alexa Fluor 647) 100 μL of Goat Anti-Mouse IgG H&L (Alexa Fluor 647) was added to each well.
A sticker was placed on the top surface of the plate and pressed into place with a spatula.
The mixture was incubated at 37°C for 1 hour in the dark at 300 rpm.
After incubation, the AAV solution in each well was removed with a multichannel pipette.
After adding 200 μL of wash buffer to each well, the plate was turned over and the wash buffer was removed with a Kimtowel. This operation was repeated three times.

ゲノムの抽出
 1x PBSを100 μLずつ各ウェルに加えた。
 プレートの上面にシールを貼り、ヘラで密着させた。
 85℃で15分インキュベートした。
 インキュベート後、アルミホイルをかぶせ、室温で5分間静置した。
Genome extraction 100 μL of 1x PBS was added to each well.
A sticker was placed on the top surface of the plate and pressed into place with a spatula.
Incubated at 85°C for 15 minutes.
After incubation, the plate was covered with aluminum foil and allowed to stand at room temperature for 5 minutes.

SYBR Goldの調製
 15 mLチューブに試薬をはかりとり混合した(1000倍希釈)。以下に例を示す。




 チューブをゆっくり振り、よく混合した。
 15 mLチューブをアルミホイルで覆った。
Preparation of SYBR Gold: The reagents were weighed out and mixed in a 15 mL tube (1000-fold dilution). An example is shown below.




The tube was gently shaken to mix well.
The 15 mL tube was covered with aluminum foil.

SYBR Goldの添加
 SYBR Goldを10 μLずつ各ウェルに加えた。
 プレートをゆっくり傾けて、混ぜた。
 プレートをアルミホイルで覆い、室内で5分間静置。
Addition of SYBR Gold 10 μL of SYBR Gold was added to each well.
The plate was gently tilted to mix.
Cover the plate with aluminum foil and let sit at room temperature for 5 minutes.

SpectraMax i3xを用いて蛍光強度の測定を行った。
データ解析>検量線用溶液の結果について4パラメータロジステック回帰を行い、検量線を作成した。検量線から各サンプルのCapsid濃度、核酸濃度を決定した。
測定条件




 結果を図2に示す。
Fluorescence intensity was measured using a SpectraMax i3x.
Data Analysis: A 4-parameter logistic regression was performed on the results of the standard curve solution to create a standard curve. The Capsid concentration and nucleic acid concentration of each sample were determined from the standard curve.
Measurement conditions




The results are shown in Figure 2.

実施例2
 AAV8およびAnti-AAV8 antibody(ADK8)を、以下の表に記載のAAV2およびAnti-AAV2 antibody(A20)と置き換えたことを除いて、実施例1と同様に試験を行った。結果を図3に示す。







Example 2
The test was carried out in the same manner as in Example 1, except that AAV8 and anti-AAV8 antibody (ADK8) were replaced with AAV2 and anti-AAV2 antibody (A20) shown in the table below. The results are shown in Figure 3.







実施例3
 AAV8およびAnti-AAV8 antibody(ADK8)を、以下の表に記載のAAV2およびAAV8の混合物ならびにAnti-AAV2 antibody(A20)およびAnti-AAV8 antibody(ADK8)として、実施例1と同様に試験を行った。結果を図4に示す。AAV8のカプシドの総数について、用量-応答曲線を得た。個々のAAV血清型(AAV8 & AAV2)に対する抗体の検出を、本発明の方法(dFLISA)によって確認した。









Figure JPOXMLDOC01-appb-I000022


Example 3
AAV8 and anti-AAV8 antibody (ADK8) were tested as in Example 1, using a mixture of AAV2 and AAV8 as shown in the table below, and anti-AAV2 antibody (A20) and anti-AAV8 antibody (ADK8). The results are shown in Figure 4. A dose-response curve was obtained for the total number of AAV8 capsids. Detection of antibodies against individual AAV serotypes (AAV8 & AAV2) was confirmed by the method of the present invention (dFLISA).









Figure JPOXMLDOC01-appb-I000022


実施例4
 SYBR GoldをQuantiFluorと置き換え、タンパク質の検出にHRP(Horse Radish Peroxidase)で標識した抗体を用いTMB(3,3',5,5'-テトラメチルベンジジン)を加えた際の吸光度測定を用いたことを除いて、実施例1と同様に試験を行った。結果を図5に示す。
Example 4
The test was carried out in the same manner as in Example 1, except that SYBR Gold was replaced with QuantiFluor, and proteins were detected using antibodies labeled with HRP (Horse Radish Peroxidase) and absorbance measurements were performed when TMB (3,3',5,5'-tetramethylbenzidine) was added. The results are shown in Figure 5.

実施例5
 ssDNAを含むAAV2とscDNAを含むAAV2を用いて、実施例2と同様に試験を行った。結果を図6に示す。AAV2 scDNAの蛍光強度は、AAV2 ssDNAに比べて約1.4-1.6倍であった。scDNAは長鎖DNAであるため、DNAの長さについて適切に補正を行うことで、DNA長によらない定量が可能になる可能性がある。
Example 5
A test was performed in the same manner as in Example 2 using AAV2 containing ssDNA and AAV2 containing scDNA. The results are shown in Figure 6. The fluorescence intensity of AAV2 scDNA was about 1.4-1.6 times that of AAV2 ssDNA. Since scDNA is a long-chain DNA, it may be possible to perform quantification independent of DNA length by appropriately correcting for the DNA length.

実施例6
 DNAの蛍光強度の測定について、従来の495nmおよび535nmの波長または発明者らによる(最適化された条件による)500nmおよび535nmの波長を用いて、実施例2と同様に試験を行った。結果を図7に示す。サンプルのシグナルバックグラウンドは、従来の波長と比較して最適化された条件では同等または高くなった。
Example 6
Measurement of DNA fluorescence intensity was performed in the same manner as in Example 2, using conventional wavelengths of 495 nm and 535 nm or wavelengths of 500 nm and 535 nm (optimized conditions) by the inventors. The results are shown in Figure 7. The signal background of the samples was equal or higher under the optimized conditions compared to the conventional wavelengths.

実施例7
 透明なプレート(Nunc MaxiSorpTM flat-bottom clear 96-well plate)および黒色のプレート(The Nunc MaxiSorpTM flat-bottom black 96-well plate)を用いて、実施例2と同様に試験を行った。結果を図8に示す。サンプルの蛍光強度は、透明なプレートと比較して黒色のプレートで高い応答性を示した。この結果から、黒色のマイクロプレートは本発明の方法に適したシグナルを提供するのに適していることが示唆された。
Example 7
Tests were performed in the same manner as in Example 2 using a transparent plate (Nunc MaxiSorpTM flat-bottom clear 96-well plate) and a black plate (The Nunc MaxiSorpTM flat-bottom black 96-well plate). The results are shown in FIG. 8. The fluorescence intensity of the sample showed a higher response in the black plate compared to the transparent plate. This result suggests that the black microplate is suitable for providing a signal suitable for the method of the present invention.

実施例8
 本発明の方法(dFLISA)が精製なしで未精製サンプルの分析に使用できるかどうかを確認するため、スパイク回収試験を行った。回収率は予測値の± 25%以内であり、基準を満たした。このことは、dFLISAの結果が未精製サンプルに含まれる夾雑物の影響を受けにくいことを示している。このことから、dFLISAが精製されていないAAVサンプルを評価する方法として優れていると言える。dFLISA法は未精製サンプルの力価を正確に定量するために使用できる貴重で新規な方法であり、未精製サンプルの完全粒子および空粒子カプシド濃度およびFP/EP比を直接定量できるユニークな方法である。結果を図9に示す。
Example 8
To confirm whether the method of the present invention (dFLISA) can be used to analyze unpurified samples without purification, a spike recovery test was performed. The recovery rate was within ± 25% of the predicted value, meeting the criteria. This indicates that the dFLISA results are not easily affected by contaminants contained in unpurified samples. This indicates that dFLISA is an excellent method for evaluating unpurified AAV samples. The dFLISA method is a valuable and novel method that can be used to accurately quantify the titer of unpurified samples, and is unique in that it can directly quantify the full and empty capsid concentrations and FP/EP ratios of unpurified samples. The results are shown in Figure 9.

 dFLISAでは未精製サンプルのカプシド力価およびゲノム力価を測定することができる。dFLISAで測定されたカプシド力価はELISAで測定されたものと同等であった。しかし、dFLISAによるゲノム力価の結果は、dPCRによる結果よりも高かった。スパイク回収実験における高い回収率を考慮すると、dFLISAの結果は信頼できると考えられる。以前の研究で、dPCRは不純物の干渉の影響を受ける可能性があることが示されているため、dFLISAはELISAとdPCRの組み合わせと比較して、未精製サンプルのAAVゲノム物質の濃度をより正確に測定する方法であると考えられる。結果を図10に示す。 dFLISA can measure the capsid titer and genome titer of unpurified samples. The capsid titer measured by dFLISA was comparable to that measured by ELISA. However, the genome titer results by dFLISA were higher than those by dPCR. Considering the high recovery rate in the spike recovery experiment, the dFLISA results are considered reliable. Since previous studies have shown that dPCR can be affected by impurity interference, dFLISA may be a more accurate method to measure the concentration of AAV genome material in unpurified samples compared with the combination of ELISA and dPCR. The results are shown in Figure 10.

 dFLISAの結果は、未精製試料に含まれる不純物の影響を受けにくく、AAVベクター粒子分析のための信頼できる分析技術であることを示唆している。 The results of dFLISA suggest that it is less affected by impurities present in unpurified samples and is a reliable analytical technique for AAV vector particle analysis.

dFLISAと他の方法による未精製試料の定量性の比較
 dFLISAの方法は前述の通りである。これらの実験では、AAV8-Lot1を最終濃度2.01 x 1011 cp/mLおよび1.81 x 1011 vg/mLに1 x PBS(0.05% Tween 20を含む)で60倍希釈した。その後、1:2の比率で連続希釈を行い、検量線用標準品とした。スパイクサンプルとして、AAV8-Lot2を超遠心で濃縮し、最終濃度を5.36 x 1013 cp/mL、4.75 x 1013 vg/mLとした後、1 x PBS(0.05% Tween 20を含む)で次のとおり希釈した。高濃度(Spike H):1.07 x 1011 cp/mL および 9.50 x 1010 vg/mL、中濃度(Spike M):7.15 x 1010 cp/mL および 6.33 x 1010 vg/mL、低濃度(Spike L):5.36 x 1010 cp/mL および 4.75 x 1010 vg/mL。各スパイクサンプル溶液を濃度未知の未精製サンプル(AAV8-Lot4)に1:1 の容量比で加えて混合し、調製したスパイク比試料溶液をプレートの各ウェルに100 μLずつ添加した。N=2で分析した。以下の式を用いて回収率を評価した: 
混合スパイク(H-M)=(1/2)(未精製+スパイクH)-(1/2)(未精製+スパイクM)(式3)
混合スパイク(H-M)=(1/2)(未精製+スパイクH)-(1/2)(未精製+スパイクL)(式4)
目標回収率(%)は± 25%以内とした。
Comparison of quantification of crude samples by dFLISA and other methods The dFLISA method was as described above. In these experiments, AAV8-Lot1 was diluted 60-fold in 1 x PBS (containing 0.05% Tween 20) to final concentrations of 2.01 x 1011 cp/mL and 1.81 x 1011 vg/mL. Serial dilutions were then performed at a 1:2 ratio to prepare calibration curve standards. For spike samples, AAV8-Lot2 was concentrated by ultracentrifugation to final concentrations of 5.36 x 1013 cp/mL and 4.75 x 1013 vg/mL, and then diluted as follows in 1 x PBS (containing 0.05% Tween 20): High concentration (Spike H): 1.07 x 10 cp/mL and 9.50 x 10 vg/mL, medium concentration (Spike M): 7.15 x 10 cp/mL and 6.33 x 10 vg/mL, low concentration (Spike L): 5.36 x 10 cp/mL and 4.75 x 10 vg/mL. Each spike sample solution was added to an unknown concentration unpurified sample (AAV8-Lot4) in a 1:1 volume ratio and mixed, and the prepared spike ratio sample solution was added to each well of the plate in 100 μL. N=2 analyses were performed. The recovery rate was evaluated using the following formula:
Mixed spike (HM) = (1/2) (crude + spike H) - (1/2) (crude + spike M) (Equation 3)
Mixed spike (HM) = (1/2) (crude + spike H) - (1/2) (crude + spike L) (Equation 4)
The target recovery rate (%) was set within ±25%.

未精製サンプルのカプシドおよびゲノム力価の定量
 上述のとおり、dFLISA を実施した。AAV8-Lot1 を1 x PBS(0.05% Tween 20を含む)で 60 倍希釈し、最終濃度 2.01 x 1011 cp/mL および 1.81 x 1011 vg/mL とし、その後、1:2の比率で連続希釈を行い、検量線標準品とした。その後、未知濃度のAAV8未精製サンプルを、前項で詳述したようにdFLISAを用いて分析した(n=2)。
Quantification of capsid and genome titers of unpurified samples. dFLISA was performed as described above. AAV8-Lot1 was diluted 60-fold in 1x PBS (containing 0.05% Tween 20) to a final concentration of 2.01 x 1011 cp/mL and 1.81 x 1011 vg/mL, and then serially diluted at a 1:2 ratio to serve as calibration curve standards. AAV8 unpurified samples of unknown concentration were then analyzed using dFLISA as detailed in the previous section (n=2).

実施例9
 蛍光色素を用いたゲノムの定量における蛍光強度はゲノムの長さによって異なり、これはdFLISAにも関係する。異なるゲノム長のDNAを用いて、濃度でノーマライズした蛍光強度との相関を比較したところ、ゲノム長と蛍光強度に相関が見られた。結果を図11に示す。さらに、ゲノム長の異なるAAVベクター間の蛍光強度の比較を行ったところ(表22)、ゲノム長が長い試料で蛍光強度が高く、ゲノムの長さと蛍光強度の比は図11と同等であった。これらの結果から。様々な核酸をもつAAVベクターのゲノムを評価する方法としてのdFLISAの妥当性が確認された。加えて、ゲノムの長さが標準AAVベクターの長さと異なっていても、計算によりゲノム長を補正することができ、ゲノム長の異なるAAVごとに標準AAVを調製する必要はないことが示された。
Example 9
The fluorescence intensity in the quantification of genomes using fluorescent dyes varies depending on the length of the genome, which is also related to dFLISA. When the correlation with the fluorescence intensity normalized by concentration was compared using DNA of different genome lengths, a correlation was observed between genome length and fluorescence intensity. The results are shown in Figure 11. Furthermore, when the fluorescence intensity was compared between AAV vectors of different genome lengths (Table 22), the fluorescence intensity was high in samples with long genome lengths, and the ratio of genome length to fluorescence intensity was equivalent to that in Figure 11. From these results, the validity of dFLISA as a method for evaluating the genomes of AAV vectors with various nucleic acids was confirmed. In addition, even if the genome length is different from that of the standard AAV vector, the genome length can be corrected by calculation, and it was shown that it is not necessary to prepare a standard AAV for each AAV with a different genome length.

 ssDNA 7Kラダー(PerkinElmer, Waltham, MA, USA)を用いて、1100 bpから5100 bpまでのssDNAの蛍光強度を測定した。まず、ssDNAラダーマーカー溶液をMilli-Qで適切に希釈してから、1%アガロースゲルにロードした。次に、EzApplyDNA(6×ローディングバッファー)2 μLに、サンプル10 μLを加え、ピペッティングにより十分に混合し、混合物10 μLをゲルにロードした。電気泳動は70Vで45分間行い、電気泳動後、ゲルを染色し、メーカーの指示に従って洗浄した。ゲルの染色にはSYBR Gold Nucleic Acid Gel staining solutionを用いた。染色ゲル内の輝度密度の定量分析を行った。 Fluorescence intensity of ssDNA from 1100 bp to 5100 bp was measured using ssDNA 7K ladder (PerkinElmer, Waltham, MA, USA). First, the ssDNA ladder marker solution was appropriately diluted with Milli-Q and then loaded onto a 1% agarose gel. Next, 10 μL of sample was added to 2 μL of EzApplyDNA (6x loading buffer), mixed thoroughly by pipetting, and 10 μL of the mixture was loaded onto the gel. Electrophoresis was performed at 70 V for 45 min. After electrophoresis, the gel was stained and washed according to the manufacturer's instructions. SYBR Gold Nucleic Acid Gel Staining solution was used to stain the gel. Quantitative analysis of brightness density in the stained gel was performed.

 その後、マスフォトメトリ(MP)測定を行った。MP測定を行う前に、ssDNAラダー溶液を希釈し室温で分析を行った。データ解析はDiscoverMPを用いて行った。 Then, mass photometry (MP) measurements were performed. Before MP measurements, the ssDNA ladder solution was diluted and analyzed at room temperature. Data analysis was performed using DiscoverMP.

 次に、5種類のアガロースゲル電気泳動(AGE)で得られた各ssDNAバンドの蛍光強度をMP面積(%)で割り、ssDNA長の値に対してプロットした。scDNA(3681bp)とssDNA(2521bp)の両方を持つAAVベクターの予想強度も曲線から推定した。 Then, the fluorescence intensity of each ssDNA band obtained from the five agarose gel electrophoresis (AGE) was divided by the MP area (%) and plotted against the ssDNA length value. The expected intensity of the AAV vector carrying both scDNA (3681 bp) and ssDNA (2521 bp) was also estimated from the curve.

 ssDNA と scDNA を含む AAV の蛍光強度を dFLISA を用いて調べた。ssDNAを含むAAV2-Lot1を、7.70 x 1010 cp/mLおよび6.41 x 1010 vg/mLの最終濃度に1 x PBS(0.05% Tween 20含む)で、100倍希釈した。検量線は1:2の比率ステップで連続希釈して作成した。同様に、scDNA を含む AAV2-Lot2 を 100 倍希釈し、最終濃度を 2.11 x 1011 cp/mL および 1.93 x 1011 vg/mL とした。検量線は1:2の比率で連続希釈して作成した。ssDNA AAV8とscDNA AAV2の蛍光強度の比をdFLISAで測定し、曲線から算出される蛍光強度比と比較した。 The fluorescence intensities of AAV containing ssDNA and scDNA were examined using dFLISA. AAV2-Lot1 containing ssDNA was diluted 100-fold in 1x PBS (containing 0.05% Tween 20) to final concentrations of 7.70 x 1010 cp/mL and 6.41 x 1010 vg/mL. A standard curve was prepared by serial dilution in 1:2 ratio steps. Similarly, AAV2-Lot2 containing scDNA was diluted 100-fold to final concentrations of 2.11 x 1011 cp/mL and 1.93 x 1011 vg/mL. A standard curve was prepared by serial dilution in 1:2 ratio steps. The fluorescence intensity ratios of ssDNA AAV8 and scDNA AAV2 were measured by dFLISA and compared with the fluorescence intensity ratios calculated from the curves.

Claims (16)

 第1の構造物の量および第2の構造物の量を検出する方法であって、方法は、
第1の構造物に第1の標識を結合させる工程、
第1の構造物から第2の構造物を放出させる工程、
第2の構造物に第2の標識を結合させる工程、および
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、
を含み、
 第2の構造物が、第1の構造物に包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
方法。
1. A method for detecting an amount of a first structure and an amount of a second structure, the method comprising:
Binding a first label to the first structure;
Releasing the second structure from the first structure;
binding a second label to the second structure and jointly detecting the amount of bound first label and the amount of bound second label;
Including,
a second structure is contained within the first structure, and the first label and the second label are detectable together but are different;
method.
 第1の構造物に結合しなかった第1の標識を洗浄する工程をさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising a step of washing away the first label that is not bound to the first structure.  第1の構造物に結合しなかった第1の標識を洗浄する工程が、第1の構造物に第1の標識を結合させる工程の後に、ならびに第1の構造物から第2の構造物を放出させる工程および第2の構造物に第2の標識を結合させる工程の前に行われる、請求項2に記載の方法。 The method according to claim 2, wherein the step of washing away the first label that is not bound to the first structure is performed after the step of binding the first label to the first structure and before the step of releasing the second structure from the first structure and the step of binding the second label to the second structure.  第1の構造物を支持体に固定させる工程をさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising the step of fixing the first structure to a support.  第1の構造物が、タンパク質、脂質またはポリマー、またはそれらの組合せで構成される、請求項1に記載の方法。 The method of claim 1, wherein the first structure is composed of a protein, a lipid, or a polymer, or a combination thereof.  第1の構造物が、ウイルス粒子、ウイルスカプシド、リポソーム、脂質ナノ粒子(LNP)、およびポリマー粒子から成る群から選択される、請求項1に記載の方法。 The method of claim 1, wherein the first structure is selected from the group consisting of a virus particle, a virus capsid, a liposome, a lipid nanoparticle (LNP), and a polymer particle.  ウイルスが、アデノ随伴ウイルス(AAV)、レトロウイルス、レンチウイルス、およびアデノウイルスから成る群から選択される、請求項6に記載の方法。 The method of claim 6, wherein the virus is selected from the group consisting of an adeno-associated virus (AAV), a retrovirus, a lentivirus, and an adenovirus.  第2の構造物が、核酸、タンパク質または化合物、またはそれらの組合せで構成される、請求項1に記載の方法。 The method of claim 1, wherein the second structure is composed of a nucleic acid, a protein, or a chemical compound, or a combination thereof.  第2の構造物が、DNA、一本鎖DNA(ssDNA)、自己相補的DNA(scDNA)、RNA、miRNA、IncRNA、ペプチド、抗体、検出用化合物および薬物から成る群から選択される、請求項8に記載の方法。 The method of claim 8, wherein the second structure is selected from the group consisting of DNA, single-stranded DNA (ssDNA), self-complementary DNA (scDNA), RNA, miRNA, lncRNA, peptides, antibodies, detection compounds and drugs.  第1の標識および第2の標識が、蛍光色素または放射性標識である、請求項1に記載の方法。 The method of claim 1, wherein the first label and the second label are fluorescent dyes or radioactive labels.  第1の構造物に第1の標識を結合させる工程が、1つまたは複数の第1の構造物に特異的に結合する分子、例えば抗体、抗体フラグメント、レクチン、アプタマー、リガンド、ペプチド、または環状ペプチドを介して間接的に結合させることを含む、または第1の構造物に特異的に結合する前記分子および前記分子に特異的に結合する二次抗体を介して間接的に結合させることを含む、請求項1に記載の方法。 The method of claim 1, wherein the step of binding the first label to the first structure comprises indirectly binding via a molecule that specifically binds to one or more of the first structures, such as an antibody, an antibody fragment, a lectin, an aptamer, a ligand, a peptide, or a cyclic peptide, or indirectly binding via the molecule that specifically binds to the first structure and a secondary antibody that specifically binds to the molecule.  結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程が、1つの装置または検出器を用いて一緒に検出することを含む、請求項1に記載の方法。 The method of claim 1, wherein the step of jointly detecting the amount of bound first label and the amount of bound second label comprises jointly detecting them using a single device or detector.  第1の構造物の量および第2の構造物の量が、結合した第1の標識の量および結合した第2の標識の量に基づいて計算または決定される、請求項1に記載の方法。 The method of claim 1, wherein the amount of the first structure and the amount of the second structure are calculated or determined based on the amount of the bound first label and the amount of the bound second label.  第2の構造物を包含している第1の構造物と第2の構造物を包含していない第1の構造物の比率を計算または決定することをさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising calculating or determining a ratio of first structures that contain second structures to first structures that do not contain second structures.  核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を評価する方法であって、方法は、
ウイルスカプシドを支持体に固定させる工程、
ウイルスカプシドにウイルスカプシドに結合する抗体を介して間接的に第1の標識を結合させる工程、
結合しなかった第1の標識を洗浄する工程、
ウイルスカプシドから核酸を放出させる工程、
放出した核酸に第2の標識を結合させる工程、
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出する工程、および
結合した第1の標識の量および結合した第2の標識の量に基づいて、核酸を含むウイルスカプシドと核酸を含まないウイルスカプシドの比率を計算または決定する工程、
を含み、
 核酸は、ウイルスカプシドに包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
方法。
1. A method for assessing a ratio of viral capsids that contain nucleic acid to viral capsids that do not contain nucleic acid, the method comprising:
Immobilizing the viral capsid on a support;
Indirectly binding a first label to the viral capsid via an antibody that binds to the viral capsid;
washing away unbound first label;
Releasing nucleic acid from the viral capsid;
binding a second label to the released nucleic acid;
detecting the amount of bound first label and the amount of bound second label together, and calculating or determining the ratio of viral capsids containing nucleic acid to viral capsids not containing nucleic acid based on the amount of bound first label and the amount of bound second label;
Including,
the nucleic acid is encapsulated in a viral capsid, and the first label and the second label are detectable together but are different,
method.
 第1の構造物に対する第1の標識、
第2の構造物に対する第2の標識、および
結合した第1の標識の量および結合した第2の標識の量を、一緒に検出するための説明書、
を含む、検出キットであって、
 第2の構造物が、第1の構造物に包含されており、そして
 第1の標識および第2の標識は、一緒に検出することができるが、異なっている、
検出キット。
a first indicator for the first structure;
a second label on the second structure and instructions for jointly detecting the amount of bound first label and the amount of bound second label;
A detection kit comprising:
a second structure is contained within the first structure, and the first label and the second label are detectable together but are different;
Detection kit.
PCT/JP2024/015380 2023-05-25 2024-04-18 Method for detecting quantity of first structure and quantity of second structure WO2024241780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023086052 2023-05-25
JP2023-086052 2023-05-25

Publications (1)

Publication Number Publication Date
WO2024241780A1 true WO2024241780A1 (en) 2024-11-28

Family

ID=93589990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/015380 WO2024241780A1 (en) 2023-05-25 2024-04-18 Method for detecting quantity of first structure and quantity of second structure

Country Status (1)

Country Link
WO (1) WO2024241780A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228800A (en) * 1994-10-31 1996-09-10 Bayer Ag Analytically separating method of virus
JP2000189173A (en) * 1998-11-17 2000-07-11 Cytos Biotechnology Ag Expression cloning process for discovering, characterizing and isolating gene coding for polypeptide having previously decided specific characteristic
JP2005508493A (en) * 2001-06-28 2005-03-31 アドヴァンスト リサーチ アンド テクノロジー インスティテュート、インコーポレイティッド Multicolor quantum dot labeled beads and method for producing the conjugate
JP2017029151A (en) * 2007-07-23 2017-02-09 クロンデイアグ・ゲーエムベーハー Assay
US20170114420A1 (en) * 2014-06-13 2017-04-27 North Carolina State University Aptamers with binding affinity to norovirus
JP2022002529A (en) * 2013-09-06 2022-01-11 ラブラドール ダイアグノスティクス エルエルシー Systems and methods for detecting infectious diseases
JP2023516955A (en) * 2020-02-28 2023-04-21 アナリザ, インコーポレイテッド Systems and methods for determining viruses such as coronaviruses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228800A (en) * 1994-10-31 1996-09-10 Bayer Ag Analytically separating method of virus
JP2000189173A (en) * 1998-11-17 2000-07-11 Cytos Biotechnology Ag Expression cloning process for discovering, characterizing and isolating gene coding for polypeptide having previously decided specific characteristic
JP2005508493A (en) * 2001-06-28 2005-03-31 アドヴァンスト リサーチ アンド テクノロジー インスティテュート、インコーポレイティッド Multicolor quantum dot labeled beads and method for producing the conjugate
JP2017029151A (en) * 2007-07-23 2017-02-09 クロンデイアグ・ゲーエムベーハー Assay
JP2022002529A (en) * 2013-09-06 2022-01-11 ラブラドール ダイアグノスティクス エルエルシー Systems and methods for detecting infectious diseases
US20170114420A1 (en) * 2014-06-13 2017-04-27 North Carolina State University Aptamers with binding affinity to norovirus
JP2023516955A (en) * 2020-02-28 2023-04-21 アナリザ, インコーポレイテッド Systems and methods for determining viruses such as coronaviruses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TARAS PASTERNAK;OLAF TIETZ;KATJA RAPP;MAURA BEGHELDO;ROLAND NITSCHKE;BENEDETTO RUPERTI;KLAUS PALME: "Protocol: an improved and universal procedure for whole-mount immunolocalization in plants", PLANT METHODS, BIOMED CENTRAL, LONDON, GB, vol. 11, no. 1, 28 October 2015 (2015-10-28), GB , pages 50, XP021228831, ISSN: 1746-4811, DOI: 10.1186/s13007-015-0094-2 *

Similar Documents

Publication Publication Date Title
Kim et al. Development of a SARS-CoV-2-specific biosensor for antigen detection using scFv-Fc fusion proteins
Graham et al. The genesis and evolution of bead-based multiplexing
Chang et al. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection
Smith et al. Quantification of adeno-associated virus particles and empty capsids by optical density measurement
JP5766948B2 (en) Use of aptamers in proteomics
KR20220010471A (en) Electrochemiluminescent labeled probes for use in immunoassay methods, methods of use thereof, and kits comprising same
JP5557450B2 (en) Immunoassay for components to be measured
CN107615065B (en) Assessment of biological materials for non-associated virus size particles of viral types of adenovirus or adeno-associated virus
JP5559747B2 (en) Immunoassay method and reagent with suppressed non-specific reaction
Chen et al. Differential diagnosis of PRV-infected versus vaccinated pigs using a novel EuNPs-virus antigen probe-based blocking fluorescent lateral flow immunoassay
Bian et al. Antiviral antibody profiling by high‐density protein arrays
CN114107019B (en) Microfluidic chip for simultaneously detecting nucleic acid and protein, detection method and application
CN107003307B (en) Method for reducing interference
CN105911291A (en) Urine trace protein detection kit and detection method thereof
Sakamaki et al. Bioluminescent enzyme immunoassay for the detection of norovirus capsid antigen
Wu et al. Single-molecule immunoassay technology: Recent advances
Caballos et al. Aptamer‐capped nanoporous anodic alumina for SARS‐CoV‐2 spike protein detection
Yang et al. Rapid quality control assessment of adeno-associated virus vectors Via stunner
Mak et al. Evaluation of automated antigen detection test for detection of SARS-CoV-2
WO2024241780A1 (en) Method for detecting quantity of first structure and quantity of second structure
US20220120759A1 (en) Methods for detection and characterization of anti-viral vector antibodies
JP2023525204A (en) Methods and kits for detecting adeno-associated virus
Takahashi et al. Non-competitive fluorescence polarization immunosensing for CD9 detection using a peptide as a tracer
Lehmusvuori et al. Homogenous M13 bacteriophage quantification assay using switchable lanthanide fluorescence probes
WO2021153659A1 (en) Method for quantifying adeno-associated virus (aav)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24810788

Country of ref document: EP

Kind code of ref document: A1