[go: up one dir, main page]

WO2024241472A1 - Vehicle travel control system - Google Patents

Vehicle travel control system Download PDF

Info

Publication number
WO2024241472A1
WO2024241472A1 PCT/JP2023/019095 JP2023019095W WO2024241472A1 WO 2024241472 A1 WO2024241472 A1 WO 2024241472A1 JP 2023019095 W JP2023019095 W JP 2023019095W WO 2024241472 A1 WO2024241472 A1 WO 2024241472A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
vehicle
shape
connection area
control system
Prior art date
Application number
PCT/JP2023/019095
Other languages
French (fr)
Japanese (ja)
Inventor
恭匡 石川
琢 高浜
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2023/019095 priority Critical patent/WO2024241472A1/en
Publication of WO2024241472A1 publication Critical patent/WO2024241472A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a vehicle driving control system that realizes lane keeping.
  • Patent Document 1 also discloses a system that, when lane markings cannot be recognized due to factors such as snow accumulation, controls the vehicle to target a lane center that is offset to the side of the vehicle's path based on the map, depending on the driver's steering wheel release point.
  • the vehicle drives based on a map.
  • the front and rear lanes are not connected continuously and linearly (such as when the entrance and exit of an intersection are connected with a lateral offset, or when the road shapes are such that they are curved in an L-shape)
  • the steering command output is not output in time, making it difficult to maintain the vehicle in its lane.
  • the present invention was made in consideration of the above problems, and its purpose is to provide a vehicle driving control system that enables lane keeping even on roads where lane keeping control is difficult.
  • the present invention provides a vehicle driving control system including an external recognition sensor that recognizes the surroundings of the vehicle, a lane recognition unit that recognizes the lane in which the vehicle is traveling based on the results recognized by the external recognition sensor, and a lane keeping control unit that performs steering control of the vehicle so that the vehicle travels in the lane recognized by the lane recognition unit.
  • the system further includes a road information acquisition unit that acquires road information including lane shapes, a connection area shape calculation unit that calculates the shape of the connection area based on the road information when the lane has a first lane and a second lane and the first lane and the second lane are connected via a connection area, and a lane shape correction unit that corrects the shape of the lane in accordance with the shape of the connection area, and the lane keeping control unit performs the steering control based on the shape of the lane corrected by the lane shape correction unit when the vehicle travels in the first lane toward the connection area.
  • the present invention makes it possible to maintain lane even on roads where it is difficult to maintain lane using lane keeping control.
  • FIG. 1 is a diagram showing an example of a target route set by lane keeping control in the prior art
  • FIG. 13 is a diagram showing another example of a target route set by lane keeping control in the prior art
  • 1 is a functional block diagram of a vehicle driving control system according to a first embodiment of the present invention
  • 1 is a flowchart showing the process of a vehicle driving control system according to a first embodiment of the present invention.
  • FIG. 10 is a diagram showing a method for calculating a correction amount using both the lateral offset distance and the angle of the "L" in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a method for calculating a correction amount using both the lateral offset distance and the angle of the "L" in the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a target route set in lane keeping control in the first embodiment of the present invention
  • 10 is a flowchart showing the process of a vehicle driving control system according to a second embodiment of the present invention.
  • 11 is a flowchart showing the process of a vehicle driving control system according to a third embodiment of the present invention (1/2).
  • 11 is a flowchart showing the process of a vehicle driving control system according to a third embodiment of the present invention (2/2).
  • 11 is a flowchart showing the process of a vehicle driving control system according to a fourth embodiment of the present invention.
  • FIG. 1 and 2 are diagrams showing an example and another example of a target route set by lane keeping control in the prior art.
  • a first lane 10 and a second lane 11 of a main trunk road are connected via an intersection 12, which is a connecting area.
  • a vehicle 13 is traveling on the first lane 10 toward the intersection 12.
  • a target route 14 of the vehicle 13 is obtained as a broken line connecting node points 16 on the center of the lane, which is the center line of the lane shape (shape sandwiched between white lines 15) of the first lane 10 and the second lane 11.
  • the target route 14 in the intersection 12 is obtained as a line segment connecting node point 16 located at the end of the first lane 10 (entrance of the intersection 12) and node point 16 located at the start of the second lane 11 (exit of the intersection 12).
  • a similar problem may occur if the angle 20 between the line segment extending the lane center of the first lane 10 into the intersection 12 and the line segment extending the lane center of the second lane 11 into the intersection 12 is large (the first lane 10 and the second lane 11 are connected in a "L" shape). Furthermore, although not shown in the figures, a similar problem may occur when the connection area 12 connecting the first lane 10 and the second lane 11 is a branch point where the first lane 10 branches into the second lane 11 and the third lane, or when the first lane 10 and the fourth lane merge into the second lane 11. This embodiment solves this problem.
  • FIG. 3 is a functional block diagram of the vehicle driving control system 1 in the first embodiment.
  • the vehicle driving control system 1 includes an external recognition sensor 101 such as a camera, a yaw rate sensor 102, a vehicle speed sensor 103, a GPS 104, a road information acquisition unit 105, a lane recognition unit 106, a lane shape generation unit 200, a lane keeping control unit 300, and a vehicle control unit 400.
  • the lane shape generation unit 200 and the lane keeping control unit 300 are implemented in an ADAS (Advanced Driver Assistance System) controller, which is a type of ECU (Electronic Control Unit).
  • the vehicle control unit 400 is implemented in a VMC (Vehicle Motion Control) controller, which is a type of ECU.
  • the road information acquisition unit 105 and the lane recognition unit 106 are implemented in another ECU.
  • the lane shape generation unit 200 has a vehicle position estimation unit 201, a connection area vicinity determination unit 202, a connection area shape calculation unit 203, a lane shape correction unit 204, and a lane shape switching unit 205.
  • the lane keeping control unit 300 has a control command value calculation unit 301.
  • the vehicle control unit 400 has an actuator control unit 401.
  • the vehicle position estimation unit 201 calculates the vehicle position using the speed acquired by the vehicle speed sensor 103, the yaw rate acquired by the yaw rate sensor 102, the lane recognition information acquired by the lane recognition unit 106, the road information acquired by the road information acquisition unit 105, the position information acquired by the GPS 104, and the map information.
  • the connection area vicinity determination unit 202 determines whether the vehicle 13 is located near the connection area 12 using the vehicle position and the map information. If the vehicle 13 is located within the connection area 12, the connection area shape calculation unit 203 calculates the shape of the connection area 12 using the vehicle position and the map information.
  • the lane shape correction unit 204 corrects the lane shape using the connection area shape obtained by the connection area shape calculation unit 203.
  • the lane shape switching unit 205 outputs the corrected lane shape to the lane keeping control unit 300 when the vehicle 13 is present near the connection area 12, and outputs the lane shape recognized by the lane recognition unit 106 to the lane keeping control unit 300 in other cases.
  • the control command value calculation unit 301 uses the lane shape output from the lane shape switching unit 205 to calculate a control command value (lane keeping control command value) for implementing lane keeping control, and outputs it to the vehicle control unit 400.
  • the actuator control unit 401 operates a steering actuator (not shown) of the host vehicle 13 according to the lane keeping control command value.
  • FIG. 4 is a flowchart showing the processing of the vehicle driving control system 1 in the first embodiment. Each step will be explained in order below.
  • step S101 the vehicle position estimation unit 201 reads the position, speed, yaw rate, white line recognition status by the camera, and map information of the vehicle 13.
  • white line recognition is performed by the camera, but white lines may also be detected by LiDAR, and road structures such as guardrails may be detected instead of white lines.
  • step S102 the vehicle position estimation unit 201 determines whether or not the camera has detected a white line. If the camera has not detected a white line, the process proceeds to step S103; if the camera has detected a white line, the process proceeds to step S104.
  • step S103 the vehicle position estimation unit 201 uses the speed, yaw rate, and map information of the vehicle 13 to calculate the current lateral position to the white line, the yaw angle from the white line, and the curvature of the white line by odometry.
  • the yaw angle ⁇ from the white line is corrected based on the future road shape as follows:
  • step S104 the vehicle position estimation unit 201 reads the lateral position to the white line, the yaw angle from the white line, and the curvature of the white line from the camera.
  • step S105 the vehicle position estimation unit 201 estimates the position of the vehicle 13 in the latitude and longitude directions on the map using the position, speed, yaw rate, lane shape, and map information of the vehicle 13 read in step S101.
  • the vehicle position is estimated by, for example, assuming that the lane center recognized by the camera is the lane center on the map, and calculating the position of the vehicle 13 in the latitude and longitude directions on the map from its relative position to the lane center recognized by the camera using the position of the lane center on the map.
  • the position of the vehicle 13 is determined using dead reckoning.
  • step S106 the connection area vicinity determination unit 202 uses the map information read in step S101 and the vehicle position estimated in step S105 to calculate the distance to the start point of the intersection 12 and the distance from the end point of the intersection 12. These distances are calculated, for example, as the two-dimensional Euclidean distance between the vehicle position and the start point or end point of the intersection.
  • step S107 the connection area vicinity determination unit 202 determines whether or not the vehicle 13 is near the intersection 12, using the vehicle position estimated in step S105 and the distance to the start point and the distance from the end point of the intersection 12 calculated in step S106. For example, if the distance to the start point of the intersection or the distance to the end point is less than a predetermined value, the vehicle 13 is determined to be near the intersection 12. If it is determined that the vehicle 13 is near the intersection, the process proceeds to step S108, and if not, the process proceeds to step S111.
  • step S108 the connection area shape calculation unit 203 uses the map information read in step S101 and the vehicle position estimated in step S105 to determine whether the intersection pattern is offset, dogleg, or other.
  • the intersection pattern is determined, for example, using the lateral offset distance 19 as shown in FIG. 1 and the angle 20 of the entrance and exit of the intersection 12 as shown in FIG. 2, and if the lateral offset distance 19 is equal to or less than a first predetermined value and the angle 20 is equal to or less than a second predetermined value, the intersection is determined to be "other.”
  • the lane shape correction unit 204 corrects the lane shape in the left-right direction (lateral direction) of the vehicle path in the correction section (shown in FIG. 6), which is a predetermined lane section including the connection area 12, based on the intersection pattern determined in step S108.
  • the amount of correction in the left-right direction (lateral direction) is determined to be proportional to the lateral offset distance 19 in the case of an intersection with an "offset", and to the angle 20 in the case of an "L-shaped" intersection.
  • the correction amount may be calculated as shown in FIG. 5 using both the lateral offset distance 19 and the angle 20 of the "L-shaped".
  • an upper limit is set for the correction amount so that the lane center (target route) in the lane shape after correction does not protrude into an adjacent lane in the lane shape before correction, or does not collide with a surrounding vehicle.
  • the lane shape is then corrected using the left-right correction amount.
  • step S110 the lane shape switching unit 205 inputs the lane shape corrected in step S109 to the lane keeping control unit 300.
  • step S111 the lane shape switching unit 205 inputs the lane shape obtained in step S103 or S104 to the lane keeping control unit 300.
  • step S112 the control command value calculation unit 301 sets the center line (lane center) of the lane shape input in step S110 or S111 as the target route, and calculates a lane keeping control command value for implementing steering control so that the host vehicle 13 travels along the target route.
  • FIG. 6 is a diagram showing an example of a target route set by lane keeping control in the first embodiment.
  • the lane shape shown in FIG. 6 is the same as that shown in FIG. 1.
  • the lane shape is a shape shifted to the left by a correction amount corresponding to the lateral offset distance 19 in the correction section, which is a specified lane section including the connection area 12.
  • the target route 14a in the corrected lane shape is obtained as a broken line or curve passing through node point 16 in the lane shape outside the correction section and node point 16a in the lane shape within the correction section. In this way, the target route 14a is set so that the steering wheel is turned in advance just before the intersection 12.
  • a vehicle driving control system 1 includes an external environment recognition sensor 101 that recognizes the surroundings of the vehicle 13, a lane recognition unit 106 that recognizes the lane in which the vehicle 13 is traveling based on the results of the recognition by the external environment recognition sensor 101, and a lane keeping control unit 300 that controls the vehicle 13 so that the vehicle 13 travels within the lane recognized by the lane recognition unit 106.
  • the vehicle driving control system 1 includes a road information acquisition unit 105 that acquires road information including lane shapes, and a lane information acquisition unit 300 that acquires road information including lane shapes, and the lane includes a first lane 10 and a second lane 11,
  • the system is equipped with a connection area shape calculation unit 203 that calculates the shape of the connection area 12 based on the road information, and a lane shape correction unit 204 that corrects the shape of the lane in accordance with the shape of the connection area 12.
  • the lane keeping control unit 300 performs lane keeping control in accordance with the lane shape corrected by the lane shape correction unit 204.
  • a target route for the vehicle 13 is set so that the steering wheel is turned before the vehicle enters the connection area 12, making it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12.
  • the lane shape correction unit 204 also corrects the shape of the lane by determining the amount of correction in the direction perpendicular to the traveling direction of the vehicle 13 on the lane and the correction section, which is the lane section in which the shape of the lane is corrected. This makes it possible to simplify the method of correcting the vehicle line shape.
  • the lane shape correction unit 204 in the first embodiment determines the correction amount based on a lateral offset distance 19, which is the distance between a line segment 17 extending the lane center of the first lane 10 into the connection area 12 and a line segment 18 extending the lane center of the second lane 11 into the connection area 12. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected by being offset laterally via the connection area 12.
  • the lane shape correction unit 204 in the first embodiment determines the correction amount based on the angle 20 between the line segment extending from the lane center of the first lane 10 into the connection area 12 and the line segment extending from the lane center of the second lane 11 into the connection area 12. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected in a dogleg shape via the connection area 12.
  • connection area 12 in the first embodiment is either an intersection 12 connecting the first lane 10 and the second lane 11, a branch point where the first lane 10 branches into the second lane 11 and the third lane, or a merging point where the first lane 10 and the fourth lane merge into the second lane 11. This makes it possible to maintain lane status even on a road where the first lane 10 and the second lane 11 are connected via an intersection 12, a branch point, or a merging point.
  • the correction section of the vehicle alignment is constant regardless of the speed of the host vehicle 13, so if the speed of the host vehicle 13 is high, steering control may not be possible in time, and if the speed of the host vehicle 13 is low, the timing to start steering control may be too early. This embodiment solves this problem.
  • FIG. 7 is a flowchart showing the processing of the vehicle driving control system 1 in the second embodiment. Steps S201 to S208 and S210 to S213 in FIG. 7 are similar to steps S101 to S108 and S110 to S113 (shown in FIG. 4) in the first embodiment, so a description thereof will be omitted.
  • step S209 the lane shape correction unit 204 corrects the lane shape to the left or right of the vehicle's path based on the speed of the vehicle 13 read in step S201 and the intersection pattern determined in step S208.
  • the amount of correction to the vehicle shape is set to be proportional to the angle 20 (shown in FIG. 2) between the intersection entrance and the intersection exit in the case of a "L-shaped" intersection, for example.
  • an upper limit is set to the amount of correction, as in step S109.
  • the correction section of the vehicle shape is set to be larger (for example, extending toward the front side of the intersection 12) in proportion to the speed of the vehicle 13, for example.
  • the lane center in the corrected lane shape is set as a new target route.
  • the lane shape correction unit in the second embodiment determines a correction section, which is a lane section for correcting the lane shape, based on the speed of the host vehicle 13.
  • the correction section of the vehicle lane shape is determined based on the current speed of the vehicle 13. Therefore, if other vehicles are traveling slowly in a traffic jam ahead at the intersection, the correction section of the vehicle lane shape will be determined to be longer based on the current speed of the vehicle 13, even though the vehicle 13 will decelerate in the future, and the timing to start steering control may be too early. This embodiment solves this problem.
  • FIGS. 8 and 9 are flowcharts showing the processing of the vehicle driving control system 1 in the third embodiment. Steps S302 to S308 and S312 to S315 in FIG. 8 and FIG. 9 are similar to steps S202 to S208 and S210 to S213 (shown in FIG. 7) in the second embodiment, so their explanation will be omitted.
  • step S301 the vehicle position estimation unit 201 reads the position, speed, and yaw rate of the vehicle 13, the white line recognition status by the camera, the positions and speeds of other vehicles by the camera, map information, and the set route.
  • step S309 the lane shape correction unit 204 determines whether other vehicles are traveling smoothly or not ahead of the intersection that can be obtained from the set route read in step S301. Here, for example, it determines whether there are no other vehicles ahead of the intersection from the position of the other vehicles, and whether they are traveling smoothly from the speed of the other vehicles. Here, if other vehicles are traveling smoothly or not ahead of the intersection, the process proceeds to step S310, and if not, the process proceeds to step S311.
  • step S310 the lane shape correction unit 204 corrects the lane shape calculated in step S303 or S304 based on the speed of the vehicle 13 and the intersection pattern, similar to step S209. That is, it determines the amount of lateral correction based on the intersection pattern, and determines the correction section based on the current speed of the vehicle 13.
  • step S311 the lane shape correction unit 204 corrects the lane shape calculated in step S303 or S304 based on the predicted future speed of the vehicle 13 and the intersection pattern. That is, the amount of lateral correction is determined based on the intersection pattern, and the correction section is determined based on the predicted future speed of the vehicle 13. At this time, an upper limit is set for the correction amount as in step S209.
  • the correction section is determined to be a speed lower than the current speed of the vehicle 13, for example, proportional to the speed of the other vehicle, for example, predicting that the vehicle 13 will decelerate to follow another vehicle traveling at a low speed ahead of the intersection 12. Thereafter, as in step S209, the lane center in the corrected lane shape is set as a new target route.
  • the correction section may be determined based on the surrounding traffic conditions, driving route, or legal speed that can be acquired from the road information acquisition unit 105.
  • the lane shape correction unit 204 in the third embodiment determines a correction section, which is a lane section in which the lane shape is to be corrected, based on the speed of the vehicle 13 and the traffic conditions around the vehicle 13 acquired by the external environment recognition sensor 101.
  • the third embodiment configured as described above, lane keeping is possible even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed of the vehicle 13 and the surrounding traffic conditions.
  • the lane shape correction unit 204 in the third embodiment determines the correction section based on the speed of the vehicle 13 and the driving route that can be acquired from the road information acquisition unit 105. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed and driving route of the vehicle 13.
  • the lane shape correction unit 204 in the third embodiment determines the correction section based on the speed of the vehicle 13 and the legal speed limits of the first lane 10 and the second lane 11 that can be acquired from the road information acquisition unit 105. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed of the vehicle 13 and the legal speed limit.
  • the lane center in the corrected lane shape is set as the new target route, whereas in this embodiment, the target route is not changed and the vehicle position is corrected to make the vehicle 13 travel on the lane center in the corrected lane shape.
  • FIG. 10 is a flowchart showing the processing of the vehicle driving control system 1 in the fourth embodiment. Steps S401 to S408 and S412 in FIG. 10 are similar to steps S101 to S108 and S113 (shown in FIG. 4) in the first embodiment, so a description thereof will be omitted.
  • step S409 the lane shape correction unit 204 corrects the vehicle position according to the amount of lateral correction of the vehicle lane shape. Specifically, the vehicle position is moved by the amount of correction in the direction opposite to the correction direction of the vehicle lane shape. After executing step S409, the process proceeds to step S410.
  • step S410 the lane shape obtained in step S403 or S404 is input to the lane keeping control unit 300.
  • step S411 the control command value calculation unit 301 sets the center line (lane center) of the lane shape input in step S410 as the target route, and calculates a lane keeping control command value for performing steering control so that the host vehicle 13 travels along the target route.
  • the lane keeping control command value is calculated so that the host vehicle position after correction is located on the lane center of the lane shape before correction. In other words, this means that the lane keeping control command value is calculated so that the host vehicle position before correction is located on the lane center of the lane shape after correction.
  • the present invention is not limited to the above-mentioned embodiments and includes various modified examples.
  • the above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all of the configurations described. It is also possible to add part of the configuration of one embodiment to the configuration of another embodiment, and it is also possible to delete part of the configuration of one embodiment or replace it with part of another embodiment.
  • 1...vehicle driving control system 10...first lane, 11...second lane, 12...intersection (connection area), 13...own vehicle, 14, 14a...target route, 15...white line, 16, 16a...node point, 17, 18...line segment, 19...lateral offset distance, 20...angle, 101...external environment recognition sensor, 102...yaw rate sensor, 103...vehicle speed sensor, 105...road information acquisition unit, 106...lane recognition unit, 200...lane shape generation unit, 201...own vehicle position estimation unit, 202...connection area vicinity determination unit, 203...connection area shape calculation unit, 204...lane shape correction unit, 205...lane shape switching unit, 300...lane keeping control unit, 301...control command value calculation unit, 400...vehicle control unit, 401...actuator control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The purpose of the present invention is to provide a vehicle travel control system that enables lane keeping even on roads where lane keeping via lane-keeping control is difficult. For this purpose, a vehicle travel control system 1 comprises: a road information acquisition unit 105 that acquires road information including a lane shape; a connection area shape calculation unit 203 that, when a lane in which a host vehicle 13 travels has a first lane 10, a second lane 11, and a connection area 12 connecting the first lane 10 and the second lane 11, calculates the shape of the connection area 12 on the basis of the road information; and a lane shape correction unit 204 that corrects the shape of the lane in accordance with the shape of the connection area 12. A lane-keeping control unit 300 performs lane-keeping control in accordance with the lane shape corrected by the lane shape correction unit 204 when the host vehicle 13 travels in the first lane 10 toward the connection area 12.

Description

車両走行制御システムVehicle Driving Control System

 本発明は、車線維持を実現する車両走行制御システムに関する。 The present invention relates to a vehicle driving control system that realizes lane keeping.

 車線維持機能による利便性の向上は幹線道路などでも要望されているが、交差点付近では白線が無いため、そのエリアをオドメトリで補間して地図に基づいて走行する技術が知られている。 The improved convenience of lane-keeping functions is also in demand on major roads, but since there are no white lines near intersections, a technology is known that uses odometry to interpolate between these areas and navigate based on a map.

 また、特許文献1には、積雪などの要因で車線の区画線を認識できない場合に、地図に基づく車線中心に対して、ドライバのハンドルの開放点によって自車進路の側方にオフセットした車線中心を目標として制御するシステムが開示されている。 Patent Document 1 also discloses a system that, when lane markings cannot be recognized due to factors such as snow accumulation, controls the vehicle to target a lane center that is offset to the side of the vehicle's path based on the map, depending on the driver's steering wheel release point.

特開2018-173304号公報JP 2018-173304 A

 従来技術では、白線が認識できない場合には地図に基づいて走行するが、前後の車線が連続的かつ直線的に接続されていない箇所(交差点の入口と出口が、横方向のオフセットを持って接続される場合や、「くの字」に湾曲して接続される場合などの道路形状)では、地図上の道路に追従制御を実施してもステアリング指令の出力が間に合わず、車線維持が困難である。  With conventional technology, when white lines cannot be recognized, the vehicle drives based on a map. However, in areas where the front and rear lanes are not connected continuously and linearly (such as when the entrance and exit of an intersection are connected with a lateral offset, or when the road shapes are such that they are curved in an L-shape), even if the vehicle performs control to follow the road on the map, the steering command output is not output in time, making it difficult to maintain the vehicle in its lane.

 また、特許文献1のように自車の横方向の補正を実施する方法を用いた場合でも、道路形状は時々刻々と変化するため、ドライバのハンドルの開放点を求めることができない。 Even if a method for performing lateral correction of the vehicle is used as in Patent Document 1, the road shape changes from moment to moment, so the point at which the driver releases the steering wheel cannot be determined.

 本発明は、上記の課題に鑑みてなされたものであり、その目的は、車線維持制御による車線維持が困難な道路でも車線維持を可能とする車両走行制御システムを提供することにある。 The present invention was made in consideration of the above problems, and its purpose is to provide a vehicle driving control system that enables lane keeping even on roads where lane keeping control is difficult.

 上記目的を達成するために、本発明は、自車の周辺を認識する外界認識センサと、前記外界認識センサが認識した結果から前記自車が走行する車線を認識する車線認識部と、前記車線認識部が認識した車線を前記自車が走行するように前記自車のステアリング制御を行う車線維持制御部とを備えた車両走行制御システムにおいて、車線形状を含む道路情報を取得する道路情報取得部と、前記車線が第1車線と第2車線とを有し、かつ前記第1車線と前記第2車線とが接続エリアを介して接続されている場合に、前記道路情報に基づいて前記接続エリアの形状を算出する接続エリア形状算出部と、前記接続エリアの形状に応じて前記車線の形状を補正する車線形状補正部とを備え、前記車線維持制御部は、前記自車が前記第1車線を前記接続エリアへ向かって走行する場合に、前記車線形状補正部によって補正された前記車線の形状に基づいて前記ステアリング制御を行うものとする。 In order to achieve the above object, the present invention provides a vehicle driving control system including an external recognition sensor that recognizes the surroundings of the vehicle, a lane recognition unit that recognizes the lane in which the vehicle is traveling based on the results recognized by the external recognition sensor, and a lane keeping control unit that performs steering control of the vehicle so that the vehicle travels in the lane recognized by the lane recognition unit. The system further includes a road information acquisition unit that acquires road information including lane shapes, a connection area shape calculation unit that calculates the shape of the connection area based on the road information when the lane has a first lane and a second lane and the first lane and the second lane are connected via a connection area, and a lane shape correction unit that corrects the shape of the lane in accordance with the shape of the connection area, and the lane keeping control unit performs the steering control based on the shape of the lane corrected by the lane shape correction unit when the vehicle travels in the first lane toward the connection area.

 本発明によれば、車線維持制御による車線維持が困難な道路でも車線維持が可能となる。 The present invention makes it possible to maintain lane even on roads where it is difficult to maintain lane using lane keeping control.

従来技術における車線維持制御にて設定される目標経路の一例を示す図FIG. 1 is a diagram showing an example of a target route set by lane keeping control in the prior art; 従来技術における車線維持制御にて設定される目標経路の他の例を示す図FIG. 13 is a diagram showing another example of a target route set by lane keeping control in the prior art; 本発明の第1の実施例における車両走行制御システムの機能ブロック図1 is a functional block diagram of a vehicle driving control system according to a first embodiment of the present invention; 本発明の第1の実施例における車両走行制御システムの処理を示すフローチャート1 is a flowchart showing the process of a vehicle driving control system according to a first embodiment of the present invention. 本発明の第1の実施例における横方向オフセット距離と「くの字」の角度の両方を用いた補正量の算出方法を示す図FIG. 10 is a diagram showing a method for calculating a correction amount using both the lateral offset distance and the angle of the "L" in the first embodiment of the present invention. 本発明の第1の実施例における車線維持制御にて設定される目標経路の一例を示す図FIG. 2 is a diagram showing an example of a target route set in lane keeping control in the first embodiment of the present invention; 本発明の第2の実施例における車両走行制御システムの処理を示すフローチャート10 is a flowchart showing the process of a vehicle driving control system according to a second embodiment of the present invention. 本発明の第3の実施例における車両走行制御システムの処理を示すフローチャート(1/2)11 is a flowchart showing the process of a vehicle driving control system according to a third embodiment of the present invention (1/2). 本発明の第3の実施例における車両走行制御システムの処理を示すフローチャート(2/2)11 is a flowchart showing the process of a vehicle driving control system according to a third embodiment of the present invention (2/2). 本発明の第4の実施例における車両走行制御システムの処理を示すフローチャート11 is a flowchart showing the process of a vehicle driving control system according to a fourth embodiment of the present invention.

 以下、本発明の実施形態について図面を参照して説明する。各図中、同等の部材には同一の符号を付し、重複した説明は省略する。 Below, an embodiment of the present invention will be described with reference to the drawings. In each drawing, the same reference numerals are used for equivalent components, and duplicated explanations will be omitted.

 本発明の第1の実施例について、図1から図6を用いて説明する。 The first embodiment of the present invention will be described with reference to Figures 1 to 6.

 図1および図2は、従来技術における車線維持制御にて設定される目標経路の一例および他の例を示す図である。図1および図2において、主要幹線道路の第1車線10と第2車線11とは、接続エリアである交差点12を介して接続されている。自車13は、第1車線10を交差点12へ向かって走行している。自車13の目標経路14は、第1車線10および第2車線11の車線形状(白線15で挟まれた形状)の中心線である車線中心上のノード点16を接続した折れ線として得られる。交差点12内には白線が引かれていないため、交差点12内の目標経路14は、第1車線10の終端(交差点12の入口)に位置するノード点16と第2車線11の始端(交差点12の出口)に位置するノード点16とを接続した線分として得られる。 1 and 2 are diagrams showing an example and another example of a target route set by lane keeping control in the prior art. In FIG. 1 and FIG. 2, a first lane 10 and a second lane 11 of a main trunk road are connected via an intersection 12, which is a connecting area. A vehicle 13 is traveling on the first lane 10 toward the intersection 12. A target route 14 of the vehicle 13 is obtained as a broken line connecting node points 16 on the center of the lane, which is the center line of the lane shape (shape sandwiched between white lines 15) of the first lane 10 and the second lane 11. Since no white lines are drawn in the intersection 12, the target route 14 in the intersection 12 is obtained as a line segment connecting node point 16 located at the end of the first lane 10 (entrance of the intersection 12) and node point 16 located at the start of the second lane 11 (exit of the intersection 12).

 図1に示すように、第1車線10の車線中心を交差点12内に延長した線分17と、第2車線11の車線中心を交差点12内に延長した線分18との距離である横方向オフセット距離19が大きい(第1車線10と第2車線11とが横方向にオフセットして接続されている)場合は、自車13が交差点12に進入してから交差点出口に向けてステアリング制御が実施されるため、自車13の挙動が遅れ、自車13が第2車線11を逸脱して隣接車線に進入してしまうおそれがある。また、図2に示すように、第1車線10の車線中心を交差点12内に延長した線分と、第2車線11の車線中心を交差点12内に延長した線分との角度20が大きい(第1車線10と第2車線11とが「くの字」に接続されている)場合も同様の課題が発生し得る。さらに、図示は省略するが、第1車線10と第2車線11とを接続する接続エリア12が、第1車線10が第2車線11と第3車線とに分岐する分岐地点である場合、または、第1車線10と第4車線とが第2車線11に合流する合流地点である場合も同様の課題が発生し得る。本実施例はこの課題を解決するものである。 1, if the lateral offset distance 19 between the line segment 17 extending the lane center of the first lane 10 into the intersection 12 and the line segment 18 extending the lane center of the second lane 11 into the intersection 12 is large (the first lane 10 and the second lane 11 are connected with a lateral offset), the vehicle 13 enters the intersection 12 and then undergoes steering control toward the intersection exit, which may delay the behavior of the vehicle 13 and cause the vehicle 13 to deviate from the second lane 11 and enter an adjacent lane. Also, as shown in FIG. 2, a similar problem may occur if the angle 20 between the line segment extending the lane center of the first lane 10 into the intersection 12 and the line segment extending the lane center of the second lane 11 into the intersection 12 is large (the first lane 10 and the second lane 11 are connected in a "L" shape). Furthermore, although not shown in the figures, a similar problem may occur when the connection area 12 connecting the first lane 10 and the second lane 11 is a branch point where the first lane 10 branches into the second lane 11 and the third lane, or when the first lane 10 and the fourth lane merge into the second lane 11. This embodiment solves this problem.

 図3は、第1の実施例における車両走行制御システム1の機能ブロック図である。車両走行制御システム1は、カメラ等の外界認識センサ101と、ヨーレートセンサ102と、車速センサ103と、GPS104と、道路情報取得部105と、車線認識部106と、車線形状生成部200と、車線維持制御部300と、車両制御部400とを備えている。車線形状生成部200および車線維持制御部300は、ECU(Electronic Control Unit)の一種であるADAS(Advanced Driver Assistance System)コントローラに実装される。車両制御部400は、ECUの一種であるVMC(Vehicle Motion Control)コントローラに実装される。道路情報取得部105および車線認識部106は、他のECUに実装される。 Figure 3 is a functional block diagram of the vehicle driving control system 1 in the first embodiment. The vehicle driving control system 1 includes an external recognition sensor 101 such as a camera, a yaw rate sensor 102, a vehicle speed sensor 103, a GPS 104, a road information acquisition unit 105, a lane recognition unit 106, a lane shape generation unit 200, a lane keeping control unit 300, and a vehicle control unit 400. The lane shape generation unit 200 and the lane keeping control unit 300 are implemented in an ADAS (Advanced Driver Assistance System) controller, which is a type of ECU (Electronic Control Unit). The vehicle control unit 400 is implemented in a VMC (Vehicle Motion Control) controller, which is a type of ECU. The road information acquisition unit 105 and the lane recognition unit 106 are implemented in another ECU.

 車線形状生成部200は、自車位置推定部201と、接続エリア付近判定部202と、接続エリア形状算出部203と、車線形状補正部204と、車線形状切替部205とを有する。車線維持制御部300は、制御指令値算出部301を有する。車両制御部400は、アクチュエータ制御部401を有する。 The lane shape generation unit 200 has a vehicle position estimation unit 201, a connection area vicinity determination unit 202, a connection area shape calculation unit 203, a lane shape correction unit 204, and a lane shape switching unit 205. The lane keeping control unit 300 has a control command value calculation unit 301. The vehicle control unit 400 has an actuator control unit 401.

 自車位置推定部201は、車速センサ103で取得した速度と、ヨーレートセンサ102で取得したヨーレートと、車線認識部106で取得した車線認識情報と、道路情報取得部105で取得した道路情報と、GPS104で取得した位置情報と、地図情報とを用いて、自車位置を算出する。接続エリア付近判定部202は、自車位置と地図情報とを用いて、自車13が接続エリア12付近に存在するか否かを判定する。接続エリア形状算出部203は、自車13が接続エリア12内に存在する場合に、自車位置と地図情報とを用いて、接続エリア12の形状を算出する。車線形状補正部204は、接続エリア形状算出部203にて得られた接続エリア形状を用いて、車線形状を補正する。車線形状切替部205は、接続エリア12付近に自車13が存在する場合に補正した車線形状を車線維持制御部300に出力し、それ以外の場合には車線認識部106で認識した車線形状を車線維持制御部300に出力する。 The vehicle position estimation unit 201 calculates the vehicle position using the speed acquired by the vehicle speed sensor 103, the yaw rate acquired by the yaw rate sensor 102, the lane recognition information acquired by the lane recognition unit 106, the road information acquired by the road information acquisition unit 105, the position information acquired by the GPS 104, and the map information. The connection area vicinity determination unit 202 determines whether the vehicle 13 is located near the connection area 12 using the vehicle position and the map information. If the vehicle 13 is located within the connection area 12, the connection area shape calculation unit 203 calculates the shape of the connection area 12 using the vehicle position and the map information. The lane shape correction unit 204 corrects the lane shape using the connection area shape obtained by the connection area shape calculation unit 203. The lane shape switching unit 205 outputs the corrected lane shape to the lane keeping control unit 300 when the vehicle 13 is present near the connection area 12, and outputs the lane shape recognized by the lane recognition unit 106 to the lane keeping control unit 300 in other cases.

 制御指令値算出部301は、車線形状切替部205から出力された車線形状を用いて、車線維持制御を実施するための制御指令値(車線維持制御指令値)を算出し、車両制御部400に出力する。アクチュエータ制御部401は、車線維持制御指令値に従って、自車13の操舵アクチュエータ(図示せず)を作動させる。 The control command value calculation unit 301 uses the lane shape output from the lane shape switching unit 205 to calculate a control command value (lane keeping control command value) for implementing lane keeping control, and outputs it to the vehicle control unit 400. The actuator control unit 401 operates a steering actuator (not shown) of the host vehicle 13 according to the lane keeping control command value.

 図4は、第1の実施例における車両走行制御システム1の処理を示すフローチャートである。以下、各ステップについて順に説明する。 FIG. 4 is a flowchart showing the processing of the vehicle driving control system 1 in the first embodiment. Each step will be explained in order below.

 ステップS101では、自車位置推定部201は、自車13の位置、速度、ヨーレート、カメラによる白線認識状況および地図情報を読み込む。なお、以下の実施例では何れもカメラから白線認識を行うが、LiDARにより白線を検出しても良く、また、白線の代わりにガードレールなどの道路構造物を検出しても良い。 In step S101, the vehicle position estimation unit 201 reads the position, speed, yaw rate, white line recognition status by the camera, and map information of the vehicle 13. Note that in all of the following examples, white line recognition is performed by the camera, but white lines may also be detected by LiDAR, and road structures such as guardrails may be detected instead of white lines.

 ステップS102では、自車位置推定部201は、カメラが白線を検出しているか否かを判定する。白線を検出していない場合はステップS103へ、検出している場合はステップS104へ、それぞれ進む。 In step S102, the vehicle position estimation unit 201 determines whether or not the camera has detected a white line. If the camera has not detected a white line, the process proceeds to step S103; if the camera has detected a white line, the process proceeds to step S104.

 ステップS103では、自車位置推定部201は、自車13の速度、ヨーレート、および地図情報を用いて、オドメトリにて現在の白線までの横位置、白線からのヨー角、白線の曲率を算出する。このとき、白線からのヨー角θは将来の道路形状に基づいて、次式のように補正する。 In step S103, the vehicle position estimation unit 201 uses the speed, yaw rate, and map information of the vehicle 13 to calculate the current lateral position to the white line, the yaw angle from the white line, and the curvature of the white line by odometry. At this time, the yaw angle θ from the white line is corrected based on the future road shape as follows:

 θ=θ+κs
ここで、κは将来の道路の曲率[1/m]、sは前回計算時からの自車の走行距離[m]である。
θ=θ+κs
Here, κ is the curvature of the future road [1/m], and s is the travel distance of the host vehicle since the previous calculation [m].

 ステップS104では、自車位置推定部201は、白線までの横位置、白線からのヨー角、白線の曲率をカメラから読み込む。 In step S104, the vehicle position estimation unit 201 reads the lateral position to the white line, the yaw angle from the white line, and the curvature of the white line from the camera.

 ステップS105では、自車位置推定部201は、ステップS101で読み込んだ自車13の位置と速度、ヨーレート、車線形状、および地図情報を用いて、地図上の緯度・経度方向の自車13の位置を推定する。自車位置の推定は、例えばカメラが認識した車線中心が地図の車線中心であるとして、カメラが認識した車線中心に対する相対位置から、地図の車線中心の位置を用いて地図上の緯度・経度方向の自車13の位置を算出することにより行う。また、白線をロストした後は、デッドレコニングを用いて自車13の位置を求める。 In step S105, the vehicle position estimation unit 201 estimates the position of the vehicle 13 in the latitude and longitude directions on the map using the position, speed, yaw rate, lane shape, and map information of the vehicle 13 read in step S101. The vehicle position is estimated by, for example, assuming that the lane center recognized by the camera is the lane center on the map, and calculating the position of the vehicle 13 in the latitude and longitude directions on the map from its relative position to the lane center recognized by the camera using the position of the lane center on the map. In addition, after the white line is lost, the position of the vehicle 13 is determined using dead reckoning.

 ステップS106では、接続エリア付近判定部202は、ステップS101で読み込んだ地図情報と、ステップS105で推定した自車位置とを用いて、交差点12の開始地点までの距離と、交差点12の終了地点からの距離とを算出する。これらの距離は、例えば自車位置と、交差点の開始地点または終了地点との2次元ユークリッド距離として算出する。 In step S106, the connection area vicinity determination unit 202 uses the map information read in step S101 and the vehicle position estimated in step S105 to calculate the distance to the start point of the intersection 12 and the distance from the end point of the intersection 12. These distances are calculated, for example, as the two-dimensional Euclidean distance between the vehicle position and the start point or end point of the intersection.

 ステップS107では、接続エリア付近判定部202は、ステップS105で推定した自車位置と、ステップS106で算出した交差点12の開始地点までの距離と終了地点からの距離とを用いて、自車13が交差点12付近に存在するか否かを判定する。この判定は、例えば交差点開始地点までの距離、または終了地点までの距離が所定値以下ならば、自車13は交差点12付近に存在すると判定する。ここで、自車13が交差点付近に存在すると判定した場合はステップS108へ、そうでない場合はステップS111へ、それぞれ進む。 In step S107, the connection area vicinity determination unit 202 determines whether or not the vehicle 13 is near the intersection 12, using the vehicle position estimated in step S105 and the distance to the start point and the distance from the end point of the intersection 12 calculated in step S106. For example, if the distance to the start point of the intersection or the distance to the end point is less than a predetermined value, the vehicle 13 is determined to be near the intersection 12. If it is determined that the vehicle 13 is near the intersection, the process proceeds to step S108, and if not, the process proceeds to step S111.

 ステップS108では、接続エリア形状算出部203は、ステップS101で読み込んだ地図情報と、ステップS105で推定した自車位置とを用いて、交差点のパターンをオフセット、くの字、その他のいずれかに判別する。交差点パターンの判別は、例えば図1に示すような横方向オフセット距離19や図2に示すような交差点12の入口と出口の角度20を用いて実施され、横方向オフセット距離19が第1所定値以下でかつ角度20が第2所定値以下の場合には、「その他」の交差点と判別する。 In step S108, the connection area shape calculation unit 203 uses the map information read in step S101 and the vehicle position estimated in step S105 to determine whether the intersection pattern is offset, dogleg, or other. The intersection pattern is determined, for example, using the lateral offset distance 19 as shown in FIG. 1 and the angle 20 of the entrance and exit of the intersection 12 as shown in FIG. 2, and if the lateral offset distance 19 is equal to or less than a first predetermined value and the angle 20 is equal to or less than a second predetermined value, the intersection is determined to be "other."

 ステップS109では、車線形状補正部204は、ステップS108で判別した交差点パターンに基づいて、接続エリア12を含む所定の車線区間である補正区間(図6に示す)において、車線形状を自車進路の左右方向(横方向)に補正する。左右方向(横方向)の補正量は、「オフセット」のある交差点の場合は横方向オフセット距離19に比例するように決定し、「くの字」の交差点の場合は角度20に比例するように決定する。また、「オフセット」と「くの字」が組み合わさった交差点の場合には、横方向オフセット距離19と「くの字」の角度20の両方を用いて図5のように補正量を算出してもよい。この時、補正後の車線形状における車線中心(目標経路)が補正前の車線形状における隣接車線へはみ出さないように、または周辺車両へ衝突しないように、補正量に上限を設ける。その後、左右方向の補正量を用いて車線形状を補正する。 In step S109, the lane shape correction unit 204 corrects the lane shape in the left-right direction (lateral direction) of the vehicle path in the correction section (shown in FIG. 6), which is a predetermined lane section including the connection area 12, based on the intersection pattern determined in step S108. The amount of correction in the left-right direction (lateral direction) is determined to be proportional to the lateral offset distance 19 in the case of an intersection with an "offset", and to the angle 20 in the case of an "L-shaped" intersection. In addition, in the case of an intersection where an "offset" and a "L-shaped" are combined, the correction amount may be calculated as shown in FIG. 5 using both the lateral offset distance 19 and the angle 20 of the "L-shaped". At this time, an upper limit is set for the correction amount so that the lane center (target route) in the lane shape after correction does not protrude into an adjacent lane in the lane shape before correction, or does not collide with a surrounding vehicle. The lane shape is then corrected using the left-right correction amount.

 ステップS110では、車線形状切替部205は、ステップS109で補正した車線形状を車線維持制御部300へ入力する。 In step S110, the lane shape switching unit 205 inputs the lane shape corrected in step S109 to the lane keeping control unit 300.

 ステップS111では、車線形状切替部205は、ステップS103またはS104で得られた車線形状を車線維持制御部300へ入力する。 In step S111, the lane shape switching unit 205 inputs the lane shape obtained in step S103 or S104 to the lane keeping control unit 300.

 ステップS112では、制御指令値算出部301は、ステップS110またはS111で入力された車線形状の中心線(車線中心)を目標経路に設定し、当該目標経路上を自車13が走行するようなステアリング制御を実施するための車線維持制御指令値を算出する。 In step S112, the control command value calculation unit 301 sets the center line (lane center) of the lane shape input in step S110 or S111 as the target route, and calculates a lane keeping control command value for implementing steering control so that the host vehicle 13 travels along the target route.

 ステップS113では、アクチュエータ制御部401は、車線維持制御指令値に従って操舵アクチュエータを作動させる。 In step S113, the actuator control unit 401 operates the steering actuator according to the lane keeping control command value.

 図6は、第1の実施例における車線維持制御にて設定される目標経路の一例を示す図である。図6に示す車線形状は、図1に示したものと同一である。車線形状は、接続エリア12を含む所定の車線区間である補正区間において、横方向オフセット距離19に応じた補正量だけ左方向に移動させた形状となる。補正後の車線形状における目標経路14aは、補正区間外の車線形状におけるノード点16と補正区間内の車線形状におけるノード点16aとを通る折れ線または曲線として得られる。これにより、交差点12の手前から事前にステアリングを切るような目標経路14aが設定される。 FIG. 6 is a diagram showing an example of a target route set by lane keeping control in the first embodiment. The lane shape shown in FIG. 6 is the same as that shown in FIG. 1. The lane shape is a shape shifted to the left by a correction amount corresponding to the lateral offset distance 19 in the correction section, which is a specified lane section including the connection area 12. The target route 14a in the corrected lane shape is obtained as a broken line or curve passing through node point 16 in the lane shape outside the correction section and node point 16a in the lane shape within the correction section. In this way, the target route 14a is set so that the steering wheel is turned in advance just before the intersection 12.

 (まとめ)
 第1の実施例では、自車13の周辺を認識する外界認識センサ101と、外界認識センサ101が認識した結果から自車13が走行する車線を認識する車線認識部106と、車線認識部106が認識した車線内で自車13が走行するように自車13を制御する車線維持制御部300とを備えた車両走行制御システム1において、車線形状を含む道路情報を取得する道路情報取得部105と、前記車線が第1車線10と第2車線11とを有し、かつ第1車線10と第2車線11とが接続エリア12を介して接続されている場合に、前記道路情報に基づいて接続エリア12の形状を算出する接続エリア形状算出部203と、接続エリア12の形状に応じて前記車線の形状を補正する車線形状補正部204とを備え、車線維持制御部300は、自車13が接続エリア12へ向かって第1車線10を走行する際に、車線形状補正部204によって補正された車線形状に従って車線維持制御を行う。
(summary)
In the first embodiment, a vehicle driving control system 1 includes an external environment recognition sensor 101 that recognizes the surroundings of the vehicle 13, a lane recognition unit 106 that recognizes the lane in which the vehicle 13 is traveling based on the results of the recognition by the external environment recognition sensor 101, and a lane keeping control unit 300 that controls the vehicle 13 so that the vehicle 13 travels within the lane recognized by the lane recognition unit 106. The vehicle driving control system 1 includes a road information acquisition unit 105 that acquires road information including lane shapes, and a lane information acquisition unit 300 that acquires road information including lane shapes, and the lane includes a first lane 10 and a second lane 11, When the first lane 10 and the second lane 11 are connected via a connection area 12, the system is equipped with a connection area shape calculation unit 203 that calculates the shape of the connection area 12 based on the road information, and a lane shape correction unit 204 that corrects the shape of the lane in accordance with the shape of the connection area 12.When the vehicle 13 travels on the first lane 10 toward the connection area 12, the lane keeping control unit 300 performs lane keeping control in accordance with the lane shape corrected by the lane shape correction unit 204.

 以上のように構成した第1の実施例によれば、接続エリア12に進入する以前からステアリングを切るような自車13の目標経路が設定されるため、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 According to the first embodiment configured as described above, a target route for the vehicle 13 is set so that the steering wheel is turned before the vehicle enters the connection area 12, making it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12.

 また、車線形状補正部204は、前記車線の自車13の進行方向と直交する方向の補正量と、前記車線の形状を補正する車線区間である補正区間とを決定することにより前記車線の形状を補正する。これにより、車線形状の補正方法を簡素化することが可能となる。 The lane shape correction unit 204 also corrects the shape of the lane by determining the amount of correction in the direction perpendicular to the traveling direction of the vehicle 13 on the lane and the correction section, which is the lane section in which the shape of the lane is corrected. This makes it possible to simplify the method of correcting the vehicle line shape.

 また、第1の実施例における車線形状補正部204は、第1車線10の車線中心を接続エリア12内に延長した線分17と、第2車線11の車線中心を接続エリア12内に延長した線分18との距離である横方向オフセット距離19に基づいて前記補正量を決定する。これにより、第1車線10と第2車線11とが接続エリア12を介して横方向にオフセットして接続される道路でも車線維持が可能となる。 In addition, the lane shape correction unit 204 in the first embodiment determines the correction amount based on a lateral offset distance 19, which is the distance between a line segment 17 extending the lane center of the first lane 10 into the connection area 12 and a line segment 18 extending the lane center of the second lane 11 into the connection area 12. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected by being offset laterally via the connection area 12.

 また、第1の実施例における車線形状補正部204は、第1車線10の車線中心を接続エリア12内に延長した線分と、第2車線11の車線中心を接続エリア12内に延長した線分との角度20に基づいて前記補正量を決定する。これにより、第1車線10と第2車線11とが接続エリア12を介して「くの字」に接続される道路でも車線維持が可能となる。 In addition, the lane shape correction unit 204 in the first embodiment determines the correction amount based on the angle 20 between the line segment extending from the lane center of the first lane 10 into the connection area 12 and the line segment extending from the lane center of the second lane 11 into the connection area 12. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected in a dogleg shape via the connection area 12.

 また、第1の実施例における車線形状補正部204は、第1車線10の車線中心を接続エリア12内に延長した線分17と、第2車線11の車線中心を接続エリア12内に延長した線分18との距離である横方向オフセット距離19が第1所定値以下であり、かつ、第1車線10の車線中心を接続エリア12内に延長した線分と、第2車線11の車線中心を接続エリア12内に延長した線分との角度20が第2所定値以下である場合に、前記車線の曲率に基づいて前記補正量を決定する。これにより、第1車線10と第2車線11とが接続エリア12を介して曲率を有して接続される道路でも車線維持が可能となる。 In addition, the lane shape correction unit 204 in the first embodiment determines the correction amount based on the curvature of the lane when the lateral offset distance 19, which is the distance between the line segment 17 extending the lane center of the first lane 10 into the connection area 12 and the line segment 18 extending the lane center of the second lane 11 into the connection area 12, is less than or equal to a first predetermined value, and the angle 20 between the line segment extending the lane center of the first lane 10 into the connection area 12 and the line segment extending the lane center of the second lane 11 into the connection area 12 is less than or equal to a second predetermined value. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12 with a curvature.

 また、第1の実施例における接続エリア12は、第1車線10と第2車線11とを接続する交差点12、第1車線10が第2車線11と第3車線とに分岐する分岐地点、および第1車線10と第4車線とが第2車線11に合流する合流地点のいずれかである。これにより、第1車線10と第2車線11とが交差点12、分岐地点、または合流地点を介して接続された道路でも車線維持が可能となる。 In addition, the connection area 12 in the first embodiment is either an intersection 12 connecting the first lane 10 and the second lane 11, a branch point where the first lane 10 branches into the second lane 11 and the third lane, or a merging point where the first lane 10 and the fourth lane merge into the second lane 11. This makes it possible to maintain lane status even on a road where the first lane 10 and the second lane 11 are connected via an intersection 12, a branch point, or a merging point.

 本発明の第2の実施例について、第1の実施例との相違点を中心に説明する。 The second embodiment of the present invention will be explained, focusing on the differences from the first embodiment.

 第1の実施例では、自車13の速度に関わらず、車線形状の補正区間が一定であるため、自車13の速度が大きい場合はステアリング制御が間に合わず、自車13の速度が小さい場合はステアリング制御を開始するタイミングが早過ぎてしまう可能性がある。本実施例はこの課題を解決するものである。 In the first embodiment, the correction section of the vehicle alignment is constant regardless of the speed of the host vehicle 13, so if the speed of the host vehicle 13 is high, steering control may not be possible in time, and if the speed of the host vehicle 13 is low, the timing to start steering control may be too early. This embodiment solves this problem.

 図7は、第2の実施例における車両走行制御システム1の処理を示すフローチャートである。図7中のステップS201~S208,S210~S213については、第1の実施例におけるステップS101~S108,S110~S113(図4に示す)と同様のため、説明は省略する。 FIG. 7 is a flowchart showing the processing of the vehicle driving control system 1 in the second embodiment. Steps S201 to S208 and S210 to S213 in FIG. 7 are similar to steps S101 to S108 and S110 to S113 (shown in FIG. 4) in the first embodiment, so a description thereof will be omitted.

 ステップS209では、車線形状補正部204は、ステップS201で読み込んだ自車13の速度と、ステップS208で判別した交差点パターンとに基づいて、車線形状を自車進路の左右方向に補正する。車線形状の補正量は、例えば「くの字」の交差点なら交差点入口と交差点出口の角度20(図2に示す)に比例するように設定する。この時、ステップS109と同様に補正量に上限を設ける。また、車線形状の補正区間は、例えば自車13の速度に比例して大きくなる(例えば交差点12の手前側に延びる)ように設定する。その後、ステップS109と同様に、補正後の車線形状における車線中心を新たな目標経路に設定する。 In step S209, the lane shape correction unit 204 corrects the lane shape to the left or right of the vehicle's path based on the speed of the vehicle 13 read in step S201 and the intersection pattern determined in step S208. The amount of correction to the vehicle shape is set to be proportional to the angle 20 (shown in FIG. 2) between the intersection entrance and the intersection exit in the case of a "L-shaped" intersection, for example. At this time, an upper limit is set to the amount of correction, as in step S109. In addition, the correction section of the vehicle shape is set to be larger (for example, extending toward the front side of the intersection 12) in proportion to the speed of the vehicle 13, for example. Thereafter, as in step S109, the lane center in the corrected lane shape is set as a new target route.

 (まとめ)
 第2の実施例における車線形状補正部は、自車13の速度に基づいて、車線形状を補正する車線区間である補正区間を決定する。
(summary)
The lane shape correction unit in the second embodiment determines a correction section, which is a lane section for correcting the lane shape, based on the speed of the host vehicle 13.

 以上のように構成した第2の実施例によれば、自車13の速度に関わらず、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 According to the second embodiment configured as described above, lane keeping is possible even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed of the vehicle 13.

 本発明の第3の実施例について、第2の実施例との相違点を中心に説明する。 The third embodiment of the present invention will be explained, focusing on the differences from the second embodiment.

 第2の実施例では、現在の自車13の速度に基づいて車線形状の補正区間を決定する。そのため、交差点前方で他車両が渋滞ぎみに低速走行していた場合は、自車13が将来的に減速することになるにも関わらず、車線形状の補正区間が現在の自車13の速度に基づいて長めに決定されることとなり、ステアリング制御を開始するタイミングが早過ぎてしまう可能性がある。本実施例はこの課題を解決するものである。 In the second embodiment, the correction section of the vehicle lane shape is determined based on the current speed of the vehicle 13. Therefore, if other vehicles are traveling slowly in a traffic jam ahead at the intersection, the correction section of the vehicle lane shape will be determined to be longer based on the current speed of the vehicle 13, even though the vehicle 13 will decelerate in the future, and the timing to start steering control may be too early. This embodiment solves this problem.

 図8および図9は、第3の実施例における車両走行制御システム1の処理を示すフローチャートである。図8および図9中のステップS302~S308,S312~S315については、第2の実施例におけるステップS202~S208,S210~S213(図7に示す)と同様のため、説明は省略する。 FIGS. 8 and 9 are flowcharts showing the processing of the vehicle driving control system 1 in the third embodiment. Steps S302 to S308 and S312 to S315 in FIG. 8 and FIG. 9 are similar to steps S202 to S208 and S210 to S213 (shown in FIG. 7) in the second embodiment, so their explanation will be omitted.

 ステップS301では、自車位置推定部201は、自車13の位置、速度、ヨーレート、カメラによる白線認識状況、カメラによる他車両の位置や速度、地図情報、および設定された経路を読み込む。 In step S301, the vehicle position estimation unit 201 reads the position, speed, and yaw rate of the vehicle 13, the white line recognition status by the camera, the positions and speeds of other vehicles by the camera, map information, and the set route.

 ステップS309では、車線形状補正部204は、ステップS301で読み込んだ、設定された経路から取得できる交差点の前方において、他車両がスムーズに走行している、または他車両が存在しないか否かを判定する。ここでは例えば、他車両の位置から交差点前方に他車両がいないか否か、他車両の速度からスムーズに走行しているか否かをそれぞれ判定する。ここで、交差点の前方において他車両がスムーズに走行している、または他車両が存在しない場合はステップS310へ、そうでなければステップS311へ、それぞれ進む。 In step S309, the lane shape correction unit 204 determines whether other vehicles are traveling smoothly or not ahead of the intersection that can be obtained from the set route read in step S301. Here, for example, it determines whether there are no other vehicles ahead of the intersection from the position of the other vehicles, and whether they are traveling smoothly from the speed of the other vehicles. Here, if other vehicles are traveling smoothly or not ahead of the intersection, the process proceeds to step S310, and if not, the process proceeds to step S311.

 ステップS310では、車線形状補正部204は、ステップS209と同様に、自車13の速度と交差点パターンとに基づいて、ステップS303またはS304で算出した車線形状を補正する。すなわち、交差点パターンに基づいて横方向の補正量を決定し、現在の自車13の速度に基づいて補正区間を決定する。 In step S310, the lane shape correction unit 204 corrects the lane shape calculated in step S303 or S304 based on the speed of the vehicle 13 and the intersection pattern, similar to step S209. That is, it determines the amount of lateral correction based on the intersection pattern, and determines the correction section based on the current speed of the vehicle 13.

 ステップS311では、車線形状補正部204は、予測される将来の自車13の速度と交差点パターンとに基づいて、ステップS303またはS304で算出した車線形状を補正する。すなわち、交差点パターンに基づいて横方向の補正量を決定し、予測される将来の自車13の速度に基づいて補正区間を決定する。この時、ステップS209と同様に補正量に上限を設ける。補正区間は、例えば交差点12の前方で低速走行する他車両に追従するため自車13が減速することを予測して、現在の自車13の速度よりも低い速度、例えば他車両の速度に比例するように決定される。その後、ステップS209と同様に、補正後の車線形状における車線中心を新たな目標経路に設定する。なお、補正区間は、道路情報取得部105から取得できる周辺の交通状態、走行ルート、または法定速度に基づいて決定しても良い。 In step S311, the lane shape correction unit 204 corrects the lane shape calculated in step S303 or S304 based on the predicted future speed of the vehicle 13 and the intersection pattern. That is, the amount of lateral correction is determined based on the intersection pattern, and the correction section is determined based on the predicted future speed of the vehicle 13. At this time, an upper limit is set for the correction amount as in step S209. The correction section is determined to be a speed lower than the current speed of the vehicle 13, for example, proportional to the speed of the other vehicle, for example, predicting that the vehicle 13 will decelerate to follow another vehicle traveling at a low speed ahead of the intersection 12. Thereafter, as in step S209, the lane center in the corrected lane shape is set as a new target route. The correction section may be determined based on the surrounding traffic conditions, driving route, or legal speed that can be acquired from the road information acquisition unit 105.

 (まとめ)
 第3の実施例における車線形状補正部204は、自車13の速度と、外界認識センサ101で取得した自車13の周辺の交通状態とに基づいて、車線形状を補正する車線区間である補正区間を決定する。
(summary)
The lane shape correction unit 204 in the third embodiment determines a correction section, which is a lane section in which the lane shape is to be corrected, based on the speed of the vehicle 13 and the traffic conditions around the vehicle 13 acquired by the external environment recognition sensor 101.

 以上のように構成した第3の実施例によれば、自車13の速度および周辺の交通状態に関わらず、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 According to the third embodiment configured as described above, lane keeping is possible even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed of the vehicle 13 and the surrounding traffic conditions.

 また、第3の実施例における車線形状補正部204は、自車13の速度と、道路情報取得部105から取得できる走行ルートとに基づいて補正区間を決定する。これにより、自車13の速度および走行ルートに関わらず、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 In addition, the lane shape correction unit 204 in the third embodiment determines the correction section based on the speed of the vehicle 13 and the driving route that can be acquired from the road information acquisition unit 105. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed and driving route of the vehicle 13.

 また、第3の実施例における車線形状補正部204は、自車13の速度と、道路情報取得部105から取得できる第1車線10および第2車線11の法定速度とに基づいて補正区間を決定する。これにより、自車13の速度および法定速度に関わらず、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 In addition, the lane shape correction unit 204 in the third embodiment determines the correction section based on the speed of the vehicle 13 and the legal speed limits of the first lane 10 and the second lane 11 that can be acquired from the road information acquisition unit 105. This makes it possible to maintain the lane even on a road where the first lane 10 and the second lane 11 are connected via the connection area 12, regardless of the speed of the vehicle 13 and the legal speed limit.

 本発明の第4の実施例について、第1の実施例との相違点を中心に説明する。 The fourth embodiment of the present invention will be explained, focusing on the differences from the first embodiment.

 第1の実施例では、補正後の車線形状における車線中心を新たな目標経路とするのに対し、本実施例では、目標経路は変更せず、自車位置を補正することにより、補正後の車線形状における車線中心上を自車13に走行させる。 In the first embodiment, the lane center in the corrected lane shape is set as the new target route, whereas in this embodiment, the target route is not changed and the vehicle position is corrected to make the vehicle 13 travel on the lane center in the corrected lane shape.

 図10は、第4の実施例における車両走行制御システム1の処理を示すフローチャートである。図10中のステップS401~S408,S412については、第1の実施例におけるステップS101~S108,S113(図4に示す)と同様のため、説明は省略する。 FIG. 10 is a flowchart showing the processing of the vehicle driving control system 1 in the fourth embodiment. Steps S401 to S408 and S412 in FIG. 10 are similar to steps S101 to S108 and S113 (shown in FIG. 4) in the first embodiment, so a description thereof will be omitted.

 ステップS409では、車線形状補正部204は、車線形状の横方向の補正量に応じて自車位置を補正する。具体的には、自車位置を車線形状の補正方向とは反対方向に補正量分だけ移動させる。ステップS409を実行した後は、ステップS410へ進む。 In step S409, the lane shape correction unit 204 corrects the vehicle position according to the amount of lateral correction of the vehicle lane shape. Specifically, the vehicle position is moved by the amount of correction in the direction opposite to the correction direction of the vehicle lane shape. After executing step S409, the process proceeds to step S410.

 ステップS410では、ステップS403またはS404で得られた車線形状を車線維持制御部300へ入力する。 In step S410, the lane shape obtained in step S403 or S404 is input to the lane keeping control unit 300.

 ステップS411では、制御指令値算出部301は、ステップS410で入力された車線形状の中心線(車線中心)を目標経路に設定し、当該目標経路上を自車13が走行するようなステアリング制御を実施するための車線維持制御指令値を算出する。この時、ステップS409で自車位置が補正されていた場合は、補正後の自車位置が補正前の車線形状における車線中心上に位置するように車線維持制御指令値が算出される。すなわち、補正前の自車位置が補正後の車線形状における車線中心上に位置するように車線維持制御指令値が算出されることを意味する。 In step S411, the control command value calculation unit 301 sets the center line (lane center) of the lane shape input in step S410 as the target route, and calculates a lane keeping control command value for performing steering control so that the host vehicle 13 travels along the target route. At this time, if the host vehicle position has been corrected in step S409, the lane keeping control command value is calculated so that the host vehicle position after correction is located on the lane center of the lane shape before correction. In other words, this means that the lane keeping control command value is calculated so that the host vehicle position before correction is located on the lane center of the lane shape after correction.

 以上のように構成した第4の実施例においても、第1の実施例と同様に、第1車線10と第2車線11とが接続エリア12を介して接続される道路でも車線維持が可能となる。 In the fourth embodiment configured as described above, as in the first embodiment, lane keeping is possible even on a road where the first lane 10 and the second lane 11 are connected via a connection area 12.

 以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。 Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the above-mentioned embodiments and includes various modified examples. For example, the above-mentioned embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all of the configurations described. It is also possible to add part of the configuration of one embodiment to the configuration of another embodiment, and it is also possible to delete part of the configuration of one embodiment or replace it with part of another embodiment.

 1…車両走行制御システム、10…第1車線、11…第2車線、12…交差点(接続エリア)、13…自車、14,14a…目標経路、15…白線、16,16a…ノード点、17,18…線分、19…横方向オフセット距離、20…角度、101…外界認識センサ、102…ヨーレートセンサ、103…車速センサ、105…道路情報取得部、106…車線認識部、200…車線形状生成部、201…自車位置推定部、202…接続エリア付近判定部、203…接続エリア形状算出部、204…車線形状補正部、205…車線形状切替部、300…車線維持制御部、301…制御指令値算出部、400…車両制御部、401…アクチュエータ制御部。 1...vehicle driving control system, 10...first lane, 11...second lane, 12...intersection (connection area), 13...own vehicle, 14, 14a...target route, 15...white line, 16, 16a...node point, 17, 18...line segment, 19...lateral offset distance, 20...angle, 101...external environment recognition sensor, 102...yaw rate sensor, 103...vehicle speed sensor, 105...road information acquisition unit, 106...lane recognition unit, 200...lane shape generation unit, 201...own vehicle position estimation unit, 202...connection area vicinity determination unit, 203...connection area shape calculation unit, 204...lane shape correction unit, 205...lane shape switching unit, 300...lane keeping control unit, 301...control command value calculation unit, 400...vehicle control unit, 401...actuator control unit.

Claims (10)

 自車の周辺を認識する外界認識センサと、
 前記外界認識センサが認識した結果から前記自車が走行する車線を認識する車線認識部と、
 前記車線認識部が認識した車線を前記自車が走行するように前記自車のステアリング制御を行う車線維持制御部とを備えた車両走行制御システムにおいて、
 車線形状を含む道路情報を取得する道路情報取得部と、
 前記車線が第1車線と第2車線とを有し、かつ前記第1車線と前記第2車線とが接続エリアを介して接続されている場合に、前記道路情報に基づいて前記接続エリアの形状を算出する接続エリア形状算出部と、
 前記接続エリアの形状に応じて前記車線の形状を補正する車線形状補正部とを備え、
 前記車線維持制御部は、前記自車が前記第1車線を前記接続エリアに向かって走行する場合に、前記車線形状補正部によって補正された前記車線の形状に基づいて前記ステアリング制御を行う
 ことを特徴とする車両走行制御システム。
An external recognition sensor that recognizes the surroundings of the vehicle;
A lane recognition unit that recognizes the lane in which the vehicle is traveling based on the results recognized by the external environment recognition sensor;
a lane keeping control unit that performs steering control of the host vehicle so that the host vehicle travels along the lane recognized by the lane recognition unit,
a road information acquisition unit for acquiring road information including lane shapes;
a connection area shape calculation unit that calculates a shape of the connection area based on the road information when the lanes include a first lane and a second lane, and the first lane and the second lane are connected via a connection area;
a lane shape correction unit that corrects the shape of the lane according to the shape of the connection area,
the lane keeping control unit performs the steering control based on the shape of the lane corrected by the lane shape correction unit when the host vehicle travels along the first lane toward the connection area.
 請求項1に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記車線の前記自車の進行方向と直交する方向の補正量と、前記車線の形状を補正する車線区間である補正区間とを決定することにより前記車線の形状を補正する
 ことを特徴とする車両走行制御システム。
2. The vehicle driving control system according to claim 1,
the lane shape correction unit corrects the shape of the lane by determining an amount of correction of the lane in a direction perpendicular to a traveling direction of the vehicle and a correction section, which is a lane section in which the shape of the lane is corrected.
 請求項2に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記第1車線の車線中心を前記接続エリア内に延長した線分と、前記第2車線の車線中心を前記接続エリア内に延長した線分との距離である横方向オフセット距離に基づいて前記補正量を決定する
 ことを特徴とする車両走行制御システム。
3. The vehicle driving control system according to claim 2,
the lane shape correction unit determines the correction amount based on a lateral offset distance, which is a distance between a line segment extending from a lane center of the first lane into the connection area and a line segment extending from a lane center of the second lane into the connection area.
 請求項2に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記第1車線の車線中心を前記接続エリア内に延長した線分と、前記第2車線の車線中心を前記接続エリア内に延長した線分との角度に基づいて前記補正量を決定する
 ことを特徴とする車両走行制御システム。
3. The vehicle driving control system according to claim 2,
the lane shape correction unit determines the correction amount based on an angle between a line segment extending a lane center of the first lane into the connection area and a line segment extending a lane center of the second lane into the connection area.
 請求項2に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記第1車線の車線中心を前記接続エリア内に延長した線分と、前記第2車線の車線中心を前記接続エリア内に延長した線分との距離である横方向オフセット距離が第1所定値以下であり、かつ、前記第1車線の車線中心を前記接続エリア内に延長した線分と、前記第2車線の車線中心を前記接続エリア内に延長した線分との角度が第2所定値以下である場合に、前記車線の曲率に基づいて前記補正量を決定する
 ことを特徴とする車両走行制御システム。
3. The vehicle driving control system according to claim 2,
the lane shape correction unit determines the correction amount based on a curvature of the lane when a lateral offset distance, which is a distance between a line segment extending the lane center of the first lane into the connection area and a line segment extending the lane center of the second lane into the connection area, is equal to or less than a first predetermined value, and an angle between the line segment extending the lane center of the first lane into the connection area and the line segment extending the lane center of the second lane into the connection area is equal to or less than a second predetermined value.
 請求項2に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記自車の速度に基づいて前記補正区間を決定する
 ことを特徴とする車両走行制御システム。
3. The vehicle driving control system according to claim 2,
The vehicle driving control system according to claim 1, wherein the lane shape correction unit determines the correction section based on a speed of the host vehicle.
 請求項6に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記自車の速度と、前記外界認識センサで取得した前記自車の周辺の交通状態とに基づいて前記補正区間を決定する
 ことを特徴とする車両走行制御システム。
7. The vehicle driving control system according to claim 6,
The vehicle driving control system according to claim 1, wherein the lane shape correction unit determines the correction section based on a speed of the vehicle and a traffic state around the vehicle acquired by the external environment recognition sensor.
 請求項6に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記自車の速度と、前記道路情報取得部から取得できる走行ルートとに基づいて前記補正区間を決定する
 ことを特徴とする車両走行制御システム。
7. The vehicle driving control system according to claim 6,
The vehicle driving control system according to claim 1, wherein the lane shape correction unit determines the correction section based on a speed of the host vehicle and a driving route that can be acquired from the road information acquisition unit.
 請求項6に記載の車両走行制御システムにおいて、
 前記車線形状補正部は、前記自車の速度と、前記道路情報取得部から取得できる前記第1車線および前記第2車線の法定速度とに基づいて前記補正区間を決定する
 ことを特徴とする車両走行制御システム。
7. The vehicle driving control system according to claim 6,
The vehicle driving control system according to claim 1, wherein the lane shape correction unit determines the correction section based on a speed of the vehicle and legal speed limits of the first lane and the second lane that can be acquired from the road information acquisition unit.
 請求項1に記載の車両走行制御システムにおいて、
 前記接続エリアは、前記第1車線と前記第2車線とを接続する交差点、前記第1車線が前記第2車線と第3車線とに分岐する分岐地点、および前記第1車線と第4車線とが前記第2車線に合流する合流地点のいずれかである
 ことを特徴とする車両走行制御システム。
2. The vehicle driving control system according to claim 1,
the connection area being any one of an intersection connecting the first lane and the second lane, a branching point where the first lane branches into the second lane and a third lane, and a merging point where the first lane and a fourth lane merge into the second lane.
PCT/JP2023/019095 2023-05-23 2023-05-23 Vehicle travel control system WO2024241472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019095 WO2024241472A1 (en) 2023-05-23 2023-05-23 Vehicle travel control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019095 WO2024241472A1 (en) 2023-05-23 2023-05-23 Vehicle travel control system

Publications (1)

Publication Number Publication Date
WO2024241472A1 true WO2024241472A1 (en) 2024-11-28

Family

ID=93589207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019095 WO2024241472A1 (en) 2023-05-23 2023-05-23 Vehicle travel control system

Country Status (1)

Country Link
WO (1) WO2024241472A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143504A (en) * 2008-12-22 2010-07-01 Hitachi Automotive Systems Ltd Vehicle driving support system and navigation device
JP2014210456A (en) * 2013-04-17 2014-11-13 本田技研工業株式会社 Steering control device for vehicle
WO2017047261A1 (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Lane change control device
WO2021166410A1 (en) * 2020-02-17 2021-08-26 日立Astemo株式会社 Travel assistance device
JP2021169291A (en) * 2020-04-17 2021-10-28 株式会社Subaru Drive assist device for vehicle
WO2023037758A1 (en) * 2021-09-09 2023-03-16 日立Astemo株式会社 Vehicle control device, vehicle control method, and vehicle control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143504A (en) * 2008-12-22 2010-07-01 Hitachi Automotive Systems Ltd Vehicle driving support system and navigation device
JP2014210456A (en) * 2013-04-17 2014-11-13 本田技研工業株式会社 Steering control device for vehicle
WO2017047261A1 (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Lane change control device
WO2021166410A1 (en) * 2020-02-17 2021-08-26 日立Astemo株式会社 Travel assistance device
JP2021169291A (en) * 2020-04-17 2021-10-28 株式会社Subaru Drive assist device for vehicle
WO2023037758A1 (en) * 2021-09-09 2023-03-16 日立Astemo株式会社 Vehicle control device, vehicle control method, and vehicle control system

Similar Documents

Publication Publication Date Title
US10858012B2 (en) Autonomous driving assistance device and computer program
CN110546461B (en) Driving control method and driving control device
RU2738491C1 (en) Method for correction of position error and device for correction of position error in vehicle with driving assistance
RU2741126C1 (en) Motion control method and vehicle movement control device by means of driving
US10782683B2 (en) Vehicle control device
CN107433948B (en) Path guidance device and path guidance method
US10479362B2 (en) Autonomous driving assistance system, autonomous driving assistance method, and computer program
JP4037722B2 (en) Outside-of-vehicle monitoring device and travel control device equipped with this out-of-vehicle monitoring device
RU2741130C1 (en) Method of facilitating movement and device facilitating movement
JP7172287B2 (en) Autonomous driving system
JP6825081B2 (en) Vehicle control device and vehicle control method
JP2003308598A (en) Outside-vehicle monitoring device and travel control device provided with the outside-vehicle monitoring device
JP7293635B2 (en) Autonomous driving system
US20190258259A1 (en) Vehicle control device
JP2018173834A (en) Vehicle controller
US11780474B2 (en) Vehicle travel control method and vehicle travel control device
JP7202982B2 (en) Driving support method and driving support device
JP2018173534A (en) Map generation method and map generation device
EP3842315B1 (en) Autonomous driving vehicle three-point turn
CN115379975A (en) Vehicle motion control device and vehicle motion control method
WO2018211645A1 (en) Driving assistance method and driving assistance apparatus
JP4176616B2 (en) Vehicle travel control device
WO2024241472A1 (en) Vehicle travel control system
JP7599964B2 (en) Vehicle driving control method and driving control device
JP7599965B2 (en) Vehicle driving control method and driving control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23938442

Country of ref document: EP

Kind code of ref document: A1