[go: up one dir, main page]

WO2024241163A1 - Memory element - Google Patents

Memory element Download PDF

Info

Publication number
WO2024241163A1
WO2024241163A1 PCT/IB2024/054783 IB2024054783W WO2024241163A1 WO 2024241163 A1 WO2024241163 A1 WO 2024241163A1 IB 2024054783 W IB2024054783 W IB 2024054783W WO 2024241163 A1 WO2024241163 A1 WO 2024241163A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transistor
conductive layer
insulating layer
memory element
Prior art date
Application number
PCT/IB2024/054783
Other languages
French (fr)
Japanese (ja)
Inventor
古谷一馬
齋藤利彦
宮田翔希
八窪裕人
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024241163A1 publication Critical patent/WO2024241163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D48/00Individual devices not covered by groups H10D1/00 - H10D44/00
    • H10D48/40Devices controlled by magnetic fields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/20Spin-polarised current-controlled devices

Definitions

  • One aspect of the present invention relates to a memory element.
  • An object of one embodiment of the present invention is to provide a memory element with a reduced occupancy area.
  • an object of the present invention is to provide a memory element with high reliability.
  • an object of the present invention is to provide a memory element with low power consumption.
  • an object of the present invention is to provide a new memory element.
  • an object of the present invention is to provide a memory device with a reduced occupancy area.
  • an object of the present invention is to provide a memory device with high memory density (storage capacity per unit area).
  • an object of the present invention is to provide a memory device with high reliability.
  • an object of the present invention is to provide a memory device with low power consumption.
  • an object of the present invention is to provide a new memory device.
  • problems associated with one embodiment of the present invention are not limited to the problems listed above.
  • the problems listed above do not preclude the existence of other problems.
  • the other problems are problems not mentioned in this section, which will be described below. Problems not mentioned in this section can be derived by a person skilled in the art from the description in the specification or drawings, etc., and can be appropriately extracted from these descriptions. Note that one embodiment of the present invention does not need to solve all of the problems listed above and other problems.
  • One embodiment of the present invention solves at least one of the problems listed above and other problems.
  • One aspect of the present invention is a memory element having a conductive layer, a magnetic tunnel junction element, and a transistor, the magnetic tunnel junction element being provided overlapping the conductive layer, one of the source electrode or drain electrode of the transistor being electrically connected to the conductive layer, one of the source electrode or drain electrode of the transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the transistor having a region below the insulating layer, and the channel formation region of the transistor having a region along the side of the insulating layer.
  • the resistance value of the magnetic tunnel junction element is controlled by the direction of the current supplied to the conductive layer via the transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the transistor.
  • the conductive layer may have a region in contact with the semiconductor layer of the transistor.
  • Another aspect of the present invention is a memory element having a conductive layer, a magnetic tunnel junction element, a first transistor, and a second transistor, the magnetic tunnel junction element being provided overlapping the conductive layer, one of the source electrode or drain electrode of the first transistor being electrically connected to one of the source electrode or drain electrode of the second transistor through at least a region of the conductive layer that overlaps with the magnetic tunnel junction element, one of the source electrode or drain electrode of the first transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the first transistor having a region below the insulating layer, the channel formation region of the first transistor having a region along a first side of the insulating layer, one of the source electrode or drain electrode of the second transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the second transistor having a region below the insulating layer, and the channel formation region of the second transistor having a region along a second side of the insulating layer.
  • the resistance value of the magnetic tunnel junction element is controlled by the direction of the current supplied to the conductive layer via the first transistor or the second transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the first transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the second transistor.
  • the conductive layer may have a region in contact with the semiconductor layer of the first transistor, or may have a region in contact with the semiconductor layer of the second transistor.
  • a memory element with a reduced occupancy area can be provided.
  • a memory element with high reliability can be provided.
  • a memory element with low power consumption can be provided.
  • a new memory element can be provided.
  • a memory device with a reduced occupancy area can be provided.
  • a memory device with high memory density can be provided.
  • a memory device with high reliability can be provided.
  • a memory device with low power consumption can be provided.
  • a new memory device can be provided.
  • the effects of one embodiment of the present invention are not limited to the effects listed above.
  • the effects listed above do not preclude the existence of other effects. Therefore, one embodiment of the present invention may not have the effects listed above.
  • the other effects are effects not mentioned in this section, which will be described below. Those skilled in the art can derive the other effects from the description in the specification or drawings, etc., and can be appropriately extracted from these descriptions.
  • One embodiment of the present invention has at least one of the effects listed above and other effects.
  • FIG 1A is a plan view of a memory element
  • FIG IB is a cross-sectional view of the memory element.
  • 2A to 2C are equivalent circuit diagrams of a memory element.
  • 3A and 3B are plan and cross-sectional views of a memory element.
  • 4A is a cross-sectional view of a memory element, and
  • FIG 4B is an equivalent circuit diagram of the memory element.
  • 5A and 5B are plan and cross-sectional views of a memory element.
  • 6A and 6B are plan and cross-sectional views of a memory element.
  • 7A and 7B are plan and cross-sectional views of a memory element.
  • 8A is a cross-sectional view of a memory element, and FIG 8B is an equivalent circuit diagram of the memory element.
  • FIG. 10 is a cross-sectional view of a memory element.
  • 11A is a plan view of a memory element, and FIG 11B is a cross-sectional view of the memory element.
  • 12A is a plan view of a memory element, and FIG 12B is a cross-sectional view of the memory element.
  • 13A is a cross-sectional view of a memory element, and FIG 13B is an equivalent circuit diagram of the memory element.
  • FIG. 14 is a cross-sectional view of a memory element.
  • FIG. 15 is a cross-sectional view of a memory element.
  • 16A to 16E are diagrams illustrating examples of the structure of transistors.
  • FIG. 17A and 17B are diagrams illustrating examples of the configuration of a transistor.
  • FIG. 18 is a diagram illustrating an example of the configuration of a transistor.
  • 19A and 19B are diagrams illustrating examples of the configuration of a transistor.
  • 20A to 20C are diagrams illustrating a storage device.
  • FIG. 21 is a diagram illustrating an example of the configuration of a storage device.
  • FIG. 22 is a perspective view of the semiconductor device.
  • 23A and 23B are diagrams showing various storage devices by hierarchical level.
  • 24A to 24J are perspective views or schematic diagrams illustrating an example of an electronic device.
  • 25A to 25C are diagrams illustrating an example of an electronic device.
  • a semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having such a circuit, etc. It also refers to any device that can function by utilizing semiconductor characteristics.
  • a semiconductor element transistor, diode, photodiode, etc.
  • an integrated circuit, a chip including an integrated circuit, and an electronic component that houses a chip in a package are examples of semiconductor devices.
  • memory devices, display devices, light-emitting devices, lighting devices, electronic devices, etc. may themselves be semiconductor devices and may have semiconductor devices.
  • ordinal numbers "first,” “second,” and “third” are used to avoid confusion between components. Therefore, they do not limit the number of components. Furthermore, they do not limit the order of the components. For example, a component referred to as “first” in one embodiment of this specification may be a component referred to as “second” in another embodiment or in the claims. Also, for example, a component referred to as “first” in one embodiment of this specification may be omitted in another embodiment or in the claims.
  • electrode B on insulating layer A does not require that electrode B be formed in direct contact with insulating layer A, and does not exclude the inclusion of other components between insulating layer A and electrode B.
  • electrode B overlapping insulating layer A does not limit the state in which electrode B is formed on insulating layer A, but does not exclude the state in which electrode B is formed under insulating layer A, the state in which electrode B is formed on the right (or left) side of insulating layer A, etc.
  • electrode B adjacent to insulating layer A does not require that insulating layer A and electrode B are formed in direct contact, and does not exclude the inclusion of other components between insulating layer A and electrode B.
  • the terms “film” and “layer” can be interchanged depending on the situation.
  • the term “conductive layer” may be changed to the term “conductive film”.
  • the term “insulating film” may be changed to the term “insulating layer”.
  • the term “film” and “layer” it is possible to replace the terms “film” and “layer” with other terms without using the terms.
  • the term “conductive layer” or “conductive film” may be changed to the term “conductor”.
  • the term “conductor” may be changed to the term “conductive layer” or “conductive film”.
  • the term “insulating layer” or “insulating film” may be changed to the term “insulator”.
  • the term “insulator” may be changed to the term "insulating layer” or "insulating film”.
  • voltage refers to the potential difference between two points, and potential refers to the electrostatic energy (electrical potential energy) of a unit charge in an electrostatic field at a certain point.
  • potential refers to the electrostatic energy (electrical potential energy) of a unit charge in an electrostatic field at a certain point.
  • a reference potential e.g., ground potential
  • potential and voltage are often used as synonyms. For this reason, in this specification and elsewhere, potential may be read as voltage, and voltage may be read as potential, unless otherwise specified.
  • Electrode may be used as a part of “wiring”, and vice versa.
  • the terms “electrode” and “wiring” include cases where multiple “electrodes” or “wirings” are formed integrally.
  • terminal may be used as a part of “wiring” or “electrode”, and vice versa.
  • terminal includes cases where multiple “electrodes”, “wiring”, “terminals”, etc. are formed integrally.
  • an “electrode” can be a part of a “wiring” or “terminal”, and for example, a “terminal” can be a part of a “wiring” or “electrode”.
  • terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as "region” depending on the circumstances.
  • wiring may be changed to “signal line”.
  • the term “wiring” may be changed to "power line”.
  • the opposite is also true, and terms such as “signal line” and “power line” may be changed to “wiring”.
  • Terms such as “power line” may be changed to “signal line”.
  • the opposite is also true, and terms such as “signal line” may be changed to “power line”.
  • the term “potential” applied to the wiring may be changed to “signal” depending on the circumstances. The opposite is also true, and terms such as “signal” may be changed to “potential”.
  • X and Y are connected, this includes the case where X and Y are electrically connected and the case where X and Y are functionally connected.
  • X and Y are objects (e.g., devices, elements, circuits, wiring, electrodes, terminals, conductive films, layers, etc.). Therefore, this is not limited to a specific connection relationship, for example, a connection relationship shown in a figure or text, but also includes connection relationships other than those shown in a figure or text.
  • cases where X and Y are electrically connected include cases where X and Y are directly connected in the equivalent circuit, and cases where one or more elements (e.g., switches, transistors, inductors, resistive elements, etc.) that enable the electrical connection between X and Y are connected between X and Y.
  • elements e.g., switches, transistors, inductors, resistive elements, etc.
  • one or more circuits that enable the functional connection between X and Y for example, logic circuits (inverters, NAND circuits, NOR circuits, etc.), signal conversion circuits (DA conversion circuits, AD conversion circuits, gamma correction circuits, etc.), potential level conversion circuits (power supply circuits (boosting circuits, step-down circuits, etc.), level shifter circuits that change the potential level of a signal, etc.), voltage sources, current sources, switching circuits, amplifier circuits (circuits that can increase the signal amplitude or current amount, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, memory circuits, control circuits, etc.) can be connected between X and Y.
  • logic circuits inverters, NAND circuits, NOR circuits, etc.
  • signal conversion circuits DA conversion circuits, AD conversion circuits, gamma correction circuits, etc.
  • potential level conversion circuits power supply circuits (boosting circuits, step-down circuits
  • arrows indicating the X direction, Y direction, and Z direction may be used.
  • the "X direction” is the direction along the X axis, and the forward direction and the reverse direction may not be distinguished unless explicitly stated.
  • the X direction, Y direction, and Z direction are directions that intersect with each other. More specifically, the X direction, Y direction, and Z direction are directions that are perpendicular to each other.
  • opening 162 may be referred to as opening 162a, opening 162b, opening 162c, etc.
  • FIGS. 1A and 1B are schematic diagrams illustrating a configuration example of the memory element 100A, which is a type of semiconductor device.
  • Figure 1A is a plan view of the memory element 100A.
  • Figure 1B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in Figure 1A.
  • the memory element 100A includes a resistance change element 600, a transistor 233, and a transistor 234.
  • the resistance change element 600 includes an MTJ (Magnetic Tunnel Junction) element (also called a “magnetic tunnel junction element”) 620 and a conductive layer 610.
  • MTJ Magnetic Tunnel Junction
  • MTJ elements are known as two-terminal memory elements (also called “STT-MTJ elements”) that use the spin torque transfer (STT) method to read and write data, and three-terminal memory elements (also called “SOT-MTJ elements”) that use the spin orbit torque (SOT) method to read and write data.
  • STT-MTJ elements have more terminals than STT-MTJ elements, and therefore occupy a larger area than STT-MTJ elements.
  • SOT-MTJ elements have a faster write speed and higher rewrite resistance than STT-MTJ elements.
  • STT-MRAM Spin Transfer Torque-Magnetoresistive Random Access Memory
  • SOT-MRAM Spin Orbit Torque-Magnetoresistive Random Access Memory
  • the memory element 100A is a three-terminal type memory element that functions as an SOT-MTJ element.
  • the memory element 100A according to one embodiment of the invention is a non-volatile memory element, and can retain written data for a long period of time even if the power supply is stopped.
  • the memory element 100A has a conductive layer 155a and a conductive layer 155b over an insulating layer 154.
  • an insulating layer 157 is provided over the insulating layer 154, the conductive layer 155a, and the conductive layer 155b, an insulating layer 158 is provided over the insulating layer 157, and an insulating layer 159 is provided over the insulating layer 158.
  • the insulating layer 157, the insulating layer 158, and the insulating layer 159 may be collectively referred to as an insulating layer 156 or a spacer layer.
  • a conductive layer 161a and a conductive layer 161b are provided over the insulating layer 159.
  • conductive layer 161a, insulating layer 159, insulating layer 158, and insulating layer 157 have opening 162a.
  • conductive layer 161b, insulating layer 159, insulating layer 158, and insulating layer 157 have opening 162b.
  • a semiconductor layer 163a is provided on the opening 162a to cover the opening 162a
  • a semiconductor layer 163b is provided on the opening 162b to cover the opening 162b.
  • the semiconductor layer 163a has a region that overlaps with the bottom of the opening 162a and a region that overlaps with the side of the opening 162a.
  • the semiconductor layer 163a has a region that contacts the side of the insulating layer 156 in the opening 162a. That is, the semiconductor layer 163a has a region that contacts the side of the insulating layer 157, a region that contacts the side of the insulating layer 158, and a region that contacts the side of the insulating layer 159 in the opening 162a.
  • the semiconductor layer 163a also has a region in contact with the conductive layer 155a and a region in contact with the conductive layer 161a. That is, a part of the semiconductor layer 163a is electrically connected to the conductive layer 155a, and another part of the semiconductor layer 163a is electrically connected to the conductive layer 161a.
  • the semiconductor layer 163a may also have a region that extends beyond the end of the conductive layer 161a (see FIG. 1A).
  • the semiconductor layer 163b has a region that overlaps with the bottom of the opening 162b and a region that overlaps with the side of the opening 162b.
  • the semiconductor layer 163b has a region that contacts the side of the insulating layer 156 in the opening 162b. That is, the semiconductor layer 163b has a region that contacts the side of the insulating layer 157, a region that contacts the side of the insulating layer 158, and a region that contacts the side of the insulating layer 159.
  • the semiconductor layer 163b has a region in contact with the conductive layer 155b and a region in contact with the conductive layer 161b. That is, a part of the semiconductor layer 163b is electrically connected to the conductive layer 155b, and another part of the semiconductor layer 163b is electrically connected to the conductive layer 161b.
  • the semiconductor layer 163b may also have a region that extends beyond the end of the conductive layer 161b (see FIG. 1A).
  • an insulating layer 164 is provided on the insulating layer 159, the conductive layer 161a, the conductive layer 161b, the semiconductor layer 163a, and the semiconductor layer 163b.
  • a conductive layer 165a and a conductive layer 165b are provided on the insulating layer 164.
  • the conductive layer 165a has a region that overlaps with the opening 162a, and in this region, the conductive layer 165a has a region that overlaps with the side and bottom of the opening 162a through the insulating layer 164 and the semiconductor layer 163a.
  • the conductive layer 165b has a region that overlaps with the opening 162b, and in this region, the conductive layer 165b has a region that overlaps with the side and bottom of the opening 162b through the insulating layer 164 and the semiconductor layer 163b.
  • the configuration example shown in Figures 1A and 1B shows an example in which a part of the conductive layer 165 functions as the conductive layer 165a, and another part functions as the conductive layer 165b. Therefore, in this specification, the conductive layer 165 may include the conductive layer 165a and the conductive layer 165b.
  • the thickness of the semiconductor layer 163 is preferably 1 nm or more and 20 nm or less, more preferably 3 nm or more and 15 nm or less, more preferably 5 nm or more and 12 nm or less, and even more preferably 5 nm or more and 10 nm or less.
  • the thickness of the insulating layer 164 is preferably 0.5 nm or more and 15 nm or less, more preferably 0.5 nm or more and 12 nm or less, and even more preferably 0.5 nm or more and 10 nm or less. It is sufficient that at least a part of the insulating layer 164 has a region with the above-mentioned thickness.
  • an insulating layer 166 is provided on the insulating layer 164. It is preferable that the positions (positions in the Z direction) of the upper surfaces of the conductive layer 165a, the conductive layer 165b, and the insulating layer 166 are aligned or approximately aligned. For example, the positions of the upper surfaces of the conductive layer 165 and the insulating layer 166 can be aligned or approximately aligned by performing a chemical mechanical polishing process (CMP (Chemical Mechanical Polishing) process). By aligning or approximately aligning the positions of the upper surfaces of the conductive layer 165 and the insulating layer 166, the coverage of the insulating layer and the conductive layer formed later can be improved.
  • CMP Chemical Mechanical Polishing
  • it has an insulating layer 167 on the conductive layer 165 and the insulating layer 166, and a conductive layer 610 on the insulating layer 167. Also, in the region overlapping with the conductive layer 161a when viewed from the Z direction, it has a conductive layer 168a penetrating the insulating layer 167, the insulating layer 166, and the insulating layer 164. Also, in the region overlapping with the conductive layer 161b when viewed from the Z direction, it has a conductive layer 168b penetrating the insulating layer 167, the insulating layer 166, and the insulating layer 164.
  • the conductive layer 168a is electrically connected to the first region 611 of the conductive layer 610, and the conductive layer 168b is electrically connected to the second region 612 of the conductive layer 610. Therefore, the conductive layer 610 is electrically connected to the conductive layer 161a through the conductive layer 168a. Also, the conductive layer 610 is electrically connected to the conductive layer 161b through the conductive layer 168b. Conductive layer 168a and conductive layer 168b each function as a contact plug.
  • the conductive layer 610 has an MTJ element 620 in a region that does not overlap with the conductive layers 168a and 168b.
  • the region on the conductive layer 610 where the MTJ element 620 overlaps is sometimes called a third region 613.
  • the third region 613 is located between the first region 611 and the second region 612. More specifically, when viewed from the Z direction, the third region 613 is located midway along the path that connects the first region 611 to the second region 612 along the conductive layer 610.
  • the MTJ element 620 has a first magnetic layer 601, an insulating layer 602, and a second magnetic layer 603.
  • the first magnetic layer 601 is provided overlapping a conductive layer 610.
  • the insulating layer 602 is provided on the first magnetic layer 601, and the second magnetic layer 603 is provided on the insulating layer 602.
  • the first magnetic layer 601 and the second magnetic layer 603 have an overlapping region with the insulating layer 602 interposed therebetween.
  • an insulating layer 614 is provided on the insulating layer 167, the conductive layer 610, and the MTJ element 620.
  • an insulating layer 615 is provided on the insulating layer 614. In the region overlapping with the second magnetic layer 603, a conductive layer 616 is provided that penetrates the insulating layer 615 and the insulating layer 614.
  • a conductive layer 617 is provided on the insulating layer 615 and the conductive layer 616.
  • the conductive layer 617 is electrically connected to the second magnetic layer 603 via the conductive layer 616.
  • the conductive layer 616 functions as a contact plug.
  • the conductive layer 165 functions as a wiring WL for writing data to the memory element 100A and controlling the reading of data from the memory element 100A.
  • the on and off states of the transistors 233 and 234 can be controlled by the potential supplied to the conductive layer 165.
  • the conductive layer 617 functions as a wiring RBL for reading data.
  • the conductive layer 155a functions as a wiring WBLa for writing data, and the conductive layer 155b functions as a wiring WBLb for writing data.
  • the data to be written to the memory element 100A is determined by the direction of the current flowing between the wiring WBLa and the wiring WBLb.
  • the memory element 100A When viewed from the Z direction, the memory element 100A has a transistor 233, a resistance change element 600, and a transistor 234, each of which has an area overlapping with the conductive layer 617, and which are arranged in a straight line (see FIG. 1A). By overlapping the transistor 233, the resistance change element 600, and the transistor 234 with the conductive layer 617, the area occupied by the memory element 100A can be reduced.
  • the conductive layer 161a functions as one of the source electrode or drain electrode of the transistor 233, and the conductive layer 155a functions as the other of the source electrode or drain electrode of the transistor 233. More specifically, a region of the conductive layer 161a in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. In addition, a region of the conductive layer 155a in contact with the semiconductor layer 163a functions as the other of the source electrode or drain electrode of the transistor 233.
  • the conductive layer 161b functions as one of the source electrode or drain electrode of the transistor 234, and the conductive layer 155b functions as the other of the source electrode or drain electrode of the transistor 234. More specifically, a region of the conductive layer 161b in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234. In addition, a region of the conductive layer 155b in contact with the semiconductor layer 163b functions as the other of the source electrode or drain electrode of the transistor 234.
  • Transistor 233 and transistor 234 function as vertical transistors (transistors whose channel length direction has a component in the Z direction, the height direction, or a direction perpendicular to the surface on which the transistor is formed). Vertical transistors will be described in detail later.
  • transistors having an oxide semiconductor in a channel formation region also referred to as "OS transistors"
  • OS transistors transistors having an oxide semiconductor in a channel formation region
  • leakage current can be significantly reduced when the memory element 100A is in a standby state (a state in which data is not written or read). Therefore, the power consumption of the memory element 100A can be reduced.
  • crosstalk due to leakage current between the multiple memory elements 100A is less likely to occur by using OS transistors as transistors constituting the memory elements 100A. Therefore, the reliability of the memory device can be improved.
  • the conductive layer 165 and the conductive layer 617 each extend in the X direction.
  • the conductive layer 155a and the conductive layer 155b each extend in the Y direction.
  • the conductive layer 165 functioning as the wiring WL preferably intersects with at least one of the wiring WBLa and the wiring WBLb.
  • the conductive layer 617 functioning as the wiring RBL preferably intersects with at least one of the conductive layer 155a functioning as the wiring WBLa and the conductive layer 155b functioning as the wiring WBLb. Note that the wiring WBLa and the wiring WBLb do not have to extend parallel to each other.
  • Figure 2A shows an equivalent circuit diagram of memory element 100A.
  • the variable resistance element 600 is composed of an MTJ element 620 and a conductive layer 610.
  • a material that generates the spin Hall effect is used as the conductive layer 610.
  • the metal material include tungsten, platinum, and tantalum. Ruthenium oxide may also be used.
  • the conductive layer 610 may also have a topological insulator that generates the spin Hall effect, and in this case, an alloy of bismuth and antimony, an alloy of bismuth and selenium, or the like may be used.
  • the first magnetic layer 601 functions as a free layer in the MTJ element 620.
  • the first magnetic layer 601 can have a magnetic moment state that is parallel or antiparallel to the magnetization direction of the second magnetic layer 603.
  • the ferromagnetic material used in the first magnetic layer 601 is preferably, for example, a material whose magnetization is reversed by a small spin current. It is also preferable that the material is one in which magnetization reversal is unlikely to occur due to thermal energy.
  • the ferromagnetic material used in the first magnetic layer 601 can be, for example, an alloy of one or more of iron, cobalt, and nickel. For example, an alloy of cobalt, iron, and boron (CoFeB) can be used.
  • Other examples include an alloy of manganese and gallium (MgGa) and an alloy of manganese and germanium (MgGe).
  • the magnetic moment of the first magnetic layer 601 is subjected to a spin torque by the spin current generated in the conductive layer 610.
  • the magnetization direction of the magnetic moment of the first magnetic layer 601 is reversed when the spin torque exceeds a threshold value.
  • a current is passed from the first region 611 to the second region 612 of the conductive layer 610, and the magnetization direction of the first magnetic layer 601 can be determined by the direction of the current.
  • 1 bit of data can be recorded in the MTJ element 620 by setting the magnetization directions of the first magnetic layer 601 and the second magnetic layer 603 to be parallel as data "0" and antiparallel as data "1.”
  • the insulating layer 602 functions as a tunnel insulating layer in the MTJ element 620.
  • the insulating layer 602 can pass a tunnel current by applying a voltage between the first magnetic layer 601 and the second magnetic layer 603.
  • the electrical resistance value of the MTJ element 620 changes depending on the direction of the magnetic moment of the first magnetic layer 601. Specifically, the electrical resistance value of the MTJ element 620 changes depending on whether the magnetization directions of the first magnetic layer 601 and the second magnetic layer 603 are parallel or antiparallel. This phenomenon is called the tunnel magnetoresistance effect (TMR effect).
  • TMR effect tunnel magnetoresistance effect
  • the magnitude of the TMR effect is expressed as the difference between the resistance value when the magnetization directions are parallel and antiparallel divided by the resistance value when the magnetization directions are parallel (magnetic resistance ratio, also called "MR ratio").
  • MR ratio magnetic resistance ratio
  • the MTJ element is sometimes called a TMR element because it is an element that utilizes the TMR effect.
  • magnesium oxide, aluminum oxide, etc. can be used as the insulating layer 602 that functions as a tunnel insulating layer.
  • the second magnetic layer 603 functions as a fixed layer (or a "reference layer") in the MTJ element 620.
  • the second magnetic layer 603 has a ferromagnetic material. Note that the ferromagnetic material of the second magnetic layer 603 has a fixed magnetization direction, unlike the ferromagnetic material of the first magnetic layer 601.
  • the ferromagnetic material used for the second magnetic layer 603 can be, for example, the same ferromagnetic material as the first magnetic layer 601.
  • a high level potential (potential H) is applied to the wiring WL to turn on the transistors 233 and 234.
  • a level potential (potential L) is applied to the wiring WBLb, and a first potential, which is a potential higher than the potential L, is applied to the wiring WBLa.
  • a current according to the potential difference flows from the first region 611 to the second region 612 of the conductive layer 610.
  • a spin current is generated in the conductive layer 610, and the magnetization direction of the first magnetic layer 601 is determined by the spin current.
  • the potential L is applied to the wiring WBLa and the first potential is applied to the wiring WBLb, the direction of the current flowing through the conductive layer 610 is reversed. Then, the magnetization direction of the first magnetic layer 601 is also reversed.
  • the magnetization direction of the ferromagnetic material in the first magnetic layer 601 is controlled by the direction of the current flowing through the conductive layer 610.
  • data "0" or data "1" can be selected and written to the memory element 100A.
  • the electrical resistance value of the MTJ element 620 changes depending on the magnetization direction of the first magnetic layer 601. Therefore, the MTJ element 620 can be represented as a variable resistor, as shown in the equivalent circuit diagram of FIG. 2B.
  • Fig. 3A and 3B show a configuration example of a memory element 100B in which the transistor 234 is removed from the memory element 100A.
  • Fig. 3A is a plan view of the memory element 100B.
  • Fig. 3B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in Fig. 3A.
  • the equivalent circuit diagram of Fig. 2C is an equivalent circuit diagram of the memory element 100B. In order to reduce repetition of explanation, differences from the memory element 100A will be mainly described.
  • this embodiment shows a configuration in which transistor 234 is removed and transistor 233 is left as memory element 100B, a configuration in which transistor 233 is removed and transistor 234 is left may also be used.
  • the memory element 100B shown in Figures 3A and 3B has a configuration in which the conductive layer 155b, the opening 162b, and the semiconductor layer 163b are removed from the memory element 100A. Since the memory element 100B has fewer components than the memory element 100A, the area occupied by the memory element can be further reduced.
  • a reference potential for example, a ground potential (GND) or a common potential (COM)
  • GND ground potential
  • COM common potential
  • the memory element 100B requires more power supply for driving than the memory element 100A.
  • the reference potential is a fixed potential
  • the amplitude of the voltage applied between the source and drain of the transistor 233 is larger than that of the memory element 100A.
  • the OS transistor has a high withstand voltage between the source and drain (also referred to as a drain withstand voltage).
  • a drain withstand voltage also referred to as a drain withstand voltage
  • FIG. 4A shows an example of a cross-sectional configuration of a memory element in which a transistor 235 is electrically connected to the conductive layer 617.
  • Figure 4B shows an equivalent circuit diagram corresponding to the example cross-sectional configuration.
  • the conductive layer 617 is electrically connected to the conductive layer 161c. Specifically, the conductive layer 617 is electrically connected to the conductive layer 161c through the conductive layer 632, the conductive layer 631, and the conductive layer 168c.
  • the conductive layer 161c functions as one of the source electrode or drain electrode of the transistor 235.
  • the conductive layer 155c functions as the other of the source electrode or drain electrode of the transistor 235.
  • the conductive layer 161c can be formed at the same time as the conductive layer 161a using the same material and in the same process.
  • the conductive layer 155c can be formed at the same time as the conductive layer 155a using the same material and in the same process.
  • the conductive layer 165c functions as the gate electrode of the transistor 235.
  • the conductive layer 165c can be formed at the same time as the conductive layer 165a using the same material and in the same process.
  • the opening 162c can be formed in the same manner as the opening 162a.
  • the semiconductor layer 163c can be formed at the same time as the semiconductor layer 163a using the same material and in the same process.
  • Transistor 235 can be formed at the same time as transistor 233 using the same materials and in the same process.
  • conductive layer 155a, conductive layer 155b, and conductive layer 155c may be referred to as conductive layer 155.
  • conductive layer 161a, conductive layer 161b, and conductive layer 161c may be referred to as conductive layer 161.
  • opening 162a, opening 162b, and opening 162c may be referred to as opening 162.
  • semiconductor layer 163a, semiconductor layer 163b, and semiconductor layer 163c may be referred to as semiconductor layer 163.
  • a conductive layer 631 is provided on the insulating layer 167.
  • the conductive layer 631 can be formed in the same process and at the same time as the conductive layer 610 using the same material.
  • the conductive layer 632 is provided so as to penetrate the insulating layer 615 and the insulating layer 614.
  • the conductive layer 632 can be formed in the same process and at the same time as the conductive layer 616 using the same material.
  • the conductive layer 168c is provided so as to penetrate the insulating layer 167, the insulating layer 166, and the insulating layer 164.
  • the conductive layer 168c can be formed in the same process and at the same time as the conductive layer 168a using the same material.
  • FIG. 5A and 5B show a configuration example of a memory element 100C.
  • the memory element 100C is a modified example of the memory element 100A.
  • FIG. 5A is a plan view of the memory element 100C.
  • FIG. 5B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 5A.
  • differences from the memory element 100A will be mainly described.
  • the memory element 100C has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 233, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 234. Specifically, a region of the conductive layer 610 in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. A region of the conductive layer 610 in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234.
  • the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as a source electrode or drain electrode of a transistor, the formation of the conductive layer 161a and the conductive layer 161b is unnecessary. This improves the productivity of the memory element 100C and reduces the manufacturing cost. This improves the productivity of a semiconductor device including the memory element 100C and reduces the manufacturing cost.
  • a region of the conductive layer 610 used as one of the source electrode or drain electrode of the transistor 233 functions as the first region 611.
  • a region of the conductive layer 610 used as one of the source electrode or drain electrode of the transistor 234 functions as the second region 612.
  • a part of the insulating layer 614 is used as a gate insulating layer for the transistor 233, and another part of the insulating layer 614 is used as a gate insulating layer for the transistor 234.
  • the memory element 100C has a conductive layer 618a that penetrates the insulating layer 615 in a region that overlaps with the conductive layer 165a when viewed from the Z direction.
  • the memory element 100C has a conductive layer 618b that penetrates the insulating layer 615 in a region that overlaps with the conductive layer 165b when viewed from the Z direction.
  • the conductive layer 618 (conductive layer 618a and conductive layer 618b) can be formed simultaneously in the same process using the same material as the conductive layer 616. Therefore, no new manufacturing process is required to form the conductive layer 618.
  • the conductive layer 618 also functions as a contact plug.
  • a conductive layer 619 is provided over the insulating layer 615, the conductive layer 618a, and the conductive layer 618b.
  • the conductive layer 619 can be formed simultaneously with and in the same process as the conductive layer 617 using the same material. Therefore, no additional manufacturing process is required to form the conductive layer 619.
  • the transistor 233, the resistance change element 600, and the transistor 234 are arranged in a line when viewed from the Z direction, but the transistor 233, the resistance change element 600, and the transistor 234 do not have to be arranged in a line.
  • the conductive layer 610 has a bent portion when viewed from the Z direction.
  • the conductive layer 610 is U-shaped when viewed from the Z direction.
  • the transistor 233 and the transistor 234 each have an area that overlaps with the conductive layer 619 when viewed from the Z direction.
  • the resistance change element 600 has an area that overlaps with the conductive layer 617.
  • conductive layer 165a and conductive layer 165b do not overlap conductive layer 617. Therefore, the parasitic capacitance generated between conductive layer 617 and conductive layer 165a, and the parasitic capacitance generated between conductive layer 617 and conductive layer 165b are reduced. By reducing the parasitic capacitance, power consumption is reduced. In addition, the signal delay time is shortened, and the operating speed is improved.
  • Figure 6A is a plan view of a memory element 100C different from that in Figure 5A.
  • Figure 6B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in Figure 6A.
  • the configuration of memory element 100C reduces the area occupied and also reduces the number of manufacturing steps. This improves the productivity of memory element 100C and reduces manufacturing costs. This improves the productivity of a semiconductor device including memory element 100C and reduces manufacturing costs.
  • the memory element 100C may be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.
  • FIG. 7A and 7B show a configuration example of a memory element 100D.
  • the memory element 100D is a modified example of the memory element 100A.
  • FIG. 7A is a plan view of the memory element 100D.
  • FIG. 7B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 7A.
  • differences from the memory element 100A will be mainly described.
  • Transistor 233 and transistor 234 may be provided in a layer above resistance change element 600.
  • Memory element 100D has transistor 233 and transistor 234 on resistance change element 600.
  • memory element 100D has insulating layer 154 on insulating layer 615.
  • conductive layer 617, conductive layer 155a, and conductive layer 155b are provided on insulating layer 154.
  • conductive layer 155a and conductive layer 155b can be formed simultaneously in the same process using the same material as conductive layer 617.
  • the memory element 100D has an insulating layer 157 on the insulating layer 154, the conductive layer 155a, the conductive layer 155b, and the conductive layer 617.
  • the conductive layer 618a and the conductive layer 618b are provided penetrating the insulating layer 614, the insulating layer 615, and the insulating layer 154.
  • the conductive layer 155a is electrically connected to the conductive layer 610 through the conductive layer 618a.
  • the conductive layer 155b is electrically connected to the conductive layer 610 through the conductive layer 618b.
  • the conductive layer 618a is electrically connected to the first region 611 of the conductive layer 610
  • the conductive layer 618b is electrically connected to the second region 612 of the conductive layer 610.
  • the conductive layer 155a can be referred to as one of the source electrode or drain electrode of the transistor 233.
  • the conductive layer 161a can be referred to as the other of the source electrode or drain electrode of the transistor 233.
  • the conductive layer 155b can be referred to as one of the source electrode or drain electrode of the transistor 234.
  • the conductive layer 161b can be referred to as the other of the source electrode or drain electrode of the transistor 234.
  • conductive layer 155a and conductive layer 155b can be simultaneously formed in the same process using the same material as conductive layer 617, so the number of manufacturing steps is reduced compared to memory element 100A. This improves the productivity of memory element 100D and reduces manufacturing costs. This improves the productivity of a semiconductor device including memory element 100D and reduces manufacturing costs.
  • FIG. 8A shows an example of a cross-sectional configuration of a memory element in which a transistor 235 is electrically connected to the conductive layer 617 of the memory element 100D.
  • Figure 8B shows an equivalent circuit diagram corresponding to the example cross-sectional configuration.
  • the conductive layer 617 of the memory element 100D is electrically connected to the conductive layer 155c.
  • the conductive layer 155c can be one of the source electrode or drain electrode of the transistor 235.
  • the conductive layer 161c can be the other of the source electrode or drain electrode of the transistor 235.
  • the memory element 100D may also be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.
  • the transistor 233, the transistor 234, and the resistance change element 600 may be provided over the same layer.
  • 9A and 9B show a configuration example of a memory element 100E.
  • the transistor 233, the transistor 234, and the resistance change element 600 are provided over an insulating layer 154.
  • the memory element 100E shown in Figures 9A and 9B is a modified example of memory element 100A.
  • Memory element 100E is also a modified example of memory element 100C and also a modified example of memory element 100D.
  • Figure 9A is a plan view of memory element 100E.
  • Figure 9B is a cross-sectional view of the portion indicated by the dashed dotted line A1-A2 in Figure 9A. In order to reduce repetition of explanation, differences from memory element 100A, memory element 100C, or memory element 100D will be mainly described.
  • the memory element 100E has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 233, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 234. Specifically, in the memory element 100E, a region of the conductive layer 610 in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. In addition, in the memory element 100E, a region of the conductive layer 610 in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234.
  • the conductive layer 161a can be referred to as the other of the source electrode or drain electrode of the transistor 233.
  • the conductive layer 161b can be referred to as the other of the source electrode or drain electrode of the transistor 234.
  • the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as a source electrode or drain electrode of the transistor, the formation of the conductive layer 155a and the conductive layer 155b is unnecessary. Therefore, the productivity of the memory element 100E can be improved.
  • the memory element 100E has a conductive layer 610 on the insulating layer 154, and an MTJ element 620 on the conductive layer 610. Also, an insulating layer 158 is on the insulating layer 154, the MTJ element 620, and the insulating layer 614. In the configuration shown in Figures 9A and 9B, the insulating layer 158 and the insulating layer 614 correspond to the insulating layer 156. Note that the memory element 100E shown in Figures 9A and 9B does not have the insulating layer 157 and the insulating layer 159, but the insulating layer 157 and the insulating layer 159 may be provided as in the other exemplary memory elements. Also, the insulating layer 157 may be provided instead of the insulating layer 614.
  • the memory element 100E shown in Figures 9A and 9B has a conductive layer 168 that penetrates the insulating layer 167, the insulating layer 166, the insulating layer 164, the insulating layer 158, and the insulating layer 614 in the region that overlaps with the MTJ element 620 when viewed from the Z direction.
  • a conductive layer 617 is provided on the insulating layer 167. The conductive layer 617 is electrically connected to the MTJ element 620 via the conductive layer 168.
  • the region of the conductive layer 610 that overlaps with the opening 162a when viewed from the Z direction functions as the first region 611.
  • the conductive layer 610 is connected to the semiconductor layer 163a. Therefore, the first region 611 of the conductive layer 610 corresponds to the conductive layer 155a described above.
  • the region of the conductive layer 610 that overlaps with the opening 162b when viewed from the Z direction functions as the second region 612.
  • the conductive layer 610 is connected to the semiconductor layer 163b. Therefore, the second region 612 of the conductive layer 610 corresponds to the conductive layer 155b described above.
  • a transistor 236 electrically connected to the conductive layer 617 may be provided in a layer above the resistance change element 600.
  • FIG. 10 shows a cross-sectional configuration example in which a transistor 236 is provided above the memory element 100A or the memory element 100B.
  • insulating layer 257, insulating layer 258, and insulating layer 259 are provided on conductive layer 617, and conductive layer 261c is provided on insulating layer 259.
  • insulating layer 257, insulating layer 258, and insulating layer 259 may be collectively referred to as insulating layer 256 or spacer layer.
  • conductive layer 261c, insulating layer 259, insulating layer 258, and insulating layer 257 have opening 262c.
  • semiconductor layer 263c is provided on opening 262c to cover opening 262c.
  • an insulating layer 264 is provided on the insulating layer 259, the conductive layer 261c, and the semiconductor layer 263c.
  • a conductive layer 265c is provided on the insulating layer 264.
  • the conductive layer 265c has an area that overlaps with the opening 262c, and in this area, has an area that overlaps with the side and bottom of the opening 262c via the insulating layer 264 and the semiconductor layer 263c.
  • an insulating layer 266 is provided on the insulating layer 264. Note that it is preferable that the positions (positions in the Z direction) of the upper surfaces of the conductive layer 265c and the insulating layer 266 are aligned or approximately aligned.
  • an insulating layer 267 is provided on the conductive layer 265c and the insulating layer 266.
  • Transistor 236 functions in the same manner as transistor 235.
  • insulating layer 257 corresponds to insulating layer 157
  • insulating layer 258 corresponds to insulating layer 158
  • insulating layer 259 corresponds to insulating layer 159
  • insulating layer 256 corresponds to insulating layer 156.
  • Conductive layer 261c corresponds to conductive layer 161c
  • opening 262c corresponds to opening 162c.
  • Semiconductor layer 263c corresponds to semiconductor layer 163c
  • insulating layer 264 corresponds to insulating layer 164
  • conductive layer 265c corresponds to conductive layer 165c.
  • Insulating layer 266 corresponds to insulating layer 166
  • insulating layer 267 corresponds to insulating layer 167.
  • transistor 236 can also be a vertical transistor, like transistors 233 and 234.
  • a part of the conductive layer 617 functions as one of the source electrode or drain electrode of the transistor 236. More specifically, a region of the conductive layer 617 in contact with the semiconductor layer 263c functions as one of the source electrode or drain electrode of the transistor 236.
  • the conductive layer 261c functions as the other of the source electrode or drain electrode of the transistor 236.
  • the conductive layer 265c functions as the gate electrode of the transistor 236.
  • the transistors 233 to 236 are thin film transistors, they can be provided on the same layer or on different layers. For example, the transistor 236 can be stacked on top of the transistor 233. This increases the design freedom of the memory element. In addition, the design freedom of the semiconductor device can be increased.
  • the memory element 100E may be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.
  • FIG. 11A and 11B show a configuration example of a memory element 100F.
  • the memory element 100F is a modified example of the memory element 100A.
  • FIG. 11A is a plan view of the memory element 100F.
  • FIG. 11B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 11A.
  • differences from the memory element 100A will be mainly described.
  • Memory element 100F has transistor 333 instead of transistor 233, and has transistor 334 instead of transistor 234.
  • Transistors 333 and 334 are also vertical transistors like transistors 233 and 234.
  • transistor 233 a part of conductive layer 165a functioning as a gate electrode is provided inside opening 162a.
  • conductive layer 175a functioning as a gate electrode is provided outside opening 162a when viewed from the Z direction.
  • transistor 234 a part of conductive layer 165b functioning as a gate electrode is provided inside opening 162b.
  • transistor 334 conductive layer 175b functioning as a gate electrode is provided outside opening 162b when viewed from the Z direction.
  • the conductive layer 165 functioning as the gate electrode is less likely to be formed inside opening 162.
  • the conductive layer 175 functioning as the gate electrode is outside opening 162, so the above-mentioned concern does not arise. Therefore, it is easy to reduce the area and miniaturize the memory element, and the design freedom can be increased.
  • the memory density of a memory device using a memory element according to one embodiment of the present invention can be further increased.
  • the memory element 100F shown in Figures 11A and 11B has conductive layers 175a and 175b on the insulating layer 157, has an insulating layer 159 on the conductive layers 175a and 175b, and has conductive layers 161a and 161b on the insulating layer 159.
  • opening 162a penetrating conductive layer 161a, insulating layer 159, conductive layer 175a, and insulating layer 157.
  • opening 162a there is an insulating layer 181a including a region overlapping with the side of opening 162a.
  • Insulating layer 181a has a region overlapping with the side of conductive layer 161a, a region overlapping with the side of insulating layer 159, a region overlapping with the side of conductive layer 175a, and a region overlapping with the side of insulating layer 157.
  • a semiconductor layer 163a is provided on the opening 162a to cover the opening 162a.
  • the semiconductor layer 163a has a region that overlaps with a side surface of the insulating layer 159, a region that overlaps with a side surface of the conductive layer 175a, and a region that overlaps with a side surface of the insulating layer 157, via the insulating layer 181a.
  • the semiconductor layer 163a also has a region that contacts the conductive layer 155a and a region that contacts the conductive layer 161a.
  • the insulating layer 181a functions as a gate insulating layer for the transistor 333, and the conductive layer 175a functions as a gate electrode for the transistor 333.
  • opening 162b penetrating conductive layer 161b, insulating layer 159, conductive layer 175b, and insulating layer 157.
  • opening 162b there is an insulating layer 181b including a region overlapping with the side of opening 162b.
  • Insulating layer 181b has a region overlapping with the side of conductive layer 161b, a region overlapping with the side of insulating layer 159, a region overlapping with the side of conductive layer 175b, and a region overlapping with the side of insulating layer 157.
  • a semiconductor layer 163b is provided on the opening 162b to cover the opening 162b.
  • the semiconductor layer 163b has a region that overlaps with a side surface of the insulating layer 159, a region that overlaps with a side surface of the conductive layer 175b, and a region that overlaps with a side surface of the insulating layer 157, via the insulating layer 181b.
  • the semiconductor layer 163b also has a region that contacts the conductive layer 155b and a region that contacts the conductive layer 161b.
  • the insulating layer 181b functions as a gate insulating layer for the transistor 334, and the conductive layer 175b functions as a gate electrode for the transistor 334.
  • the conductive layer 175 and the conductive layer 617 each extend in the X direction.
  • a part of the conductive layer 175 functions as the conductive layer 175a, and another part of the conductive layer 175 functions as the conductive layer 175b.
  • the conductive layer 175 functions as the wiring WL. As described above, it is preferable that the wiring WL intersect with at least one of the wiring WBLa or the wiring WBLb.
  • the memory element 100F may be configured without either the transistor 333 or the transistor 334, as in the memory element 100B shown in Figures 3A and 3B.
  • FIG. 12A and 12B show a configuration example of a memory element 100G.
  • the memory element 100G is a modified example of the memory element 100C and is also a modified example of the memory element 100F.
  • FIG. 12A is a plan view of the memory element 100G.
  • FIG. 12B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 12A.
  • differences from the memory element 100C or the memory element 100F will be mainly described.
  • the memory element 100G has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 333, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 334.
  • the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as the source electrode or drain electrode of the transistor, the formation of the conductive layer 161a and the conductive layer 161b is unnecessary. This improves the productivity of the memory element 100G and reduces the manufacturing cost. This improves the productivity of a semiconductor device including the memory element 100G and reduces the manufacturing cost.
  • the memory element 100G may be configured without either the transistor 333 or the transistor 334, as in the memory element 100B shown in Figures 3A and 3B.
  • FIG. 13A shows a cross-sectional configuration example of a memory element in which a transistor 335 is electrically connected to the conductive layer 617.
  • FIG. 13B shows an equivalent circuit diagram corresponding to the cross-sectional configuration example.
  • the description of FIG. 13 may refer to the description of FIG. 4.
  • the transistor 335 can be formed at the same time as the transistor 333 shown in the configuration of the memory element 100F using the same material and in the same process.
  • the conductive layer 175c of the transistor 335 can be formed at the same time as the conductive layer 175a of the transistor 333 using the same material and in the same process.
  • the opening 162c of the transistor 335 can be formed in the same manner as the opening 162a of the transistor 333.
  • the insulating layer 181c of the transistor 335 can be formed at the same time as the insulating layer 181a of the transistor 333 using the same material and in the same process. Note that in this specification, the insulating layers 181a, 181b, and 181c may be referred to as the insulating layer 181.
  • FIG. 14 shows a cross-sectional configuration example in which a transistor 336 is provided above the memory element 100F.
  • the transistor 336 is electrically connected to the resistance change element 600 via the conductive layer 617. Note that in order to reduce repetition of the description, mainly differences from the configuration already described will be described. The description of FIG. 14 may be explained with reference to the description of FIG. 10, etc.
  • insulating layer 257 and insulating layer 259 are provided on conductive layer 617, and conductive layer 261c is provided on insulating layer 259.
  • conductive layer 261c, insulating layer 259, conductive layer 275c, and insulating layer 257 have opening 262c.
  • semiconductor layer 263c is provided on opening 262c to cover opening 262c.
  • the opening 262c has an insulating layer 281c that includes a region that overlaps with the side of the opening 262c.
  • the insulating layer 281c has a region that overlaps with the side of the conductive layer 261c, a region that overlaps with the side of the insulating layer 259, a region that overlaps with the side of the conductive layer 275c, and a region that overlaps with the side of the insulating layer 257.
  • the conductive layer 275c corresponds to the conductive layer 175c in the transistor 335.
  • an insulating layer 264 is provided over the insulating layer 259, the conductive layer 261c, and the semiconductor layer 263c.
  • an insulating layer 266 is provided over the insulating layer 264. Note that the surface of the insulating layer 266 is preferably flat.
  • the transistor 336 functions in the same manner as the transistor 335.
  • a part of the conductive layer 617 functions as one of the source electrode and the drain electrode. More specifically, a region of the conductive layer 617 in contact with the semiconductor layer 263c functions as one of the source electrode and the drain electrode of the transistor 336.
  • the conductive layer 261c functions as the other of the source electrode and the drain electrode.
  • the conductive layer 275c functions as the gate electrode of the transistor 336.
  • the transistors 333 to 336 are thin film transistors, they can be provided on the same layer or on different layers.
  • the transistor 336 can be provided on the transistor 333. This increases the design freedom of the memory element. In addition, the design freedom of the semiconductor device can be increased.
  • a transistor 236 can be provided instead of the transistor 336.
  • the transistor 236 can be used as the conductive layer 617.
  • the transistor 333 as the transistor connected to the conductive layer 610 and the transistor 236 as the transistor connected to the conductive layer 617, a memory device with high memory density and high operating speed can be realized.
  • the transistor connected to the conductive layer 617 is not limited to a vertical transistor.
  • transistors of various structures can be used, such as a top-gate type (e.g., a planar type, a staggered type, etc.), a bottom-gate type (e.g., an inverted planar type, an inverted staggered type, etc.), a dual-gate type (a structure in which gates are arranged on both sides (e.g., above and below) of a channel formation region), a FIN type, a TRI-GATE type, etc.
  • a top-gate type e.g., a planar type, a staggered type, etc.
  • a bottom-gate type e.g., an inverted planar type, an inverted staggered type, etc.
  • a dual-gate type a structure in which gates are arranged on both sides (e.g., above and below) of a channel formation region
  • FIN type e.g., a TRI-
  • the transistor connected to the conductive layer 617 may be a transistor of a different conductivity type from the transistors 233 and 234.
  • the transistor connected to the conductive layer 617 may be a transistor of a different conductivity type from the transistors 333 and 334.
  • the conductive layer 161a functions as one of a source electrode or a drain electrode of the transistor 233.
  • the conductive layer 155a functions as the other of the source electrode or the drain electrode of the transistor 233.
  • the semiconductor layer 163a functions as a semiconductor layer of the transistor 233.
  • the insulating layer 164 functions as a gate insulating layer of the transistor 233, and the conductive layer 165a functions as a gate electrode of the transistor 233.
  • the conductive layer 161b functions as one of the source electrode and drain electrode of the transistor 234.
  • the conductive layer 155b functions as the other of the source electrode and drain electrode of the transistor 234.
  • the semiconductor layer 163b functions as the semiconductor layer of the transistor 234.
  • the insulating layer 164 functions as the gate insulating layer of the transistor 234, and the conductive layer 165b functions as the gate electrode of the transistor 234.
  • Transistors 233 and 234 shown in Figures 1A and 1B are transistors whose source and drain electrodes are arranged in the Z direction. That is, the sources and drains of transistors 233 and 234 are arranged at different heights. In other words, the sources and drains of transistors 233 and 234 are arranged at different positions in the Z direction. Such transistors are also called “vertical channel transistors,” “vertical channel transistors,” “vertical transistors,” or “Vertical Field Effect Transistors (VFETs).”
  • vertical transistors can be used for the transistors 235 and 236 shown in this specification. Also, vertical transistors can be used for the transistors 333 to 336 shown in this specification.
  • a vertical transistor can occupy a smaller area than a conventional transistor (e.g., a planar transistor) in which a channel formation region, a source region, and a drain region are separately provided on the XY plane. Therefore, by using a vertical channel transistor, the area occupied by the memory element 100 (memory elements 100A to 100G) can be reduced. Therefore, the area occupied by a memory device including the memory element 100 can be reduced. Also, the memory density of the memory device including the memory element 100 can be increased. Also, the memory capacity per unit area of a semiconductor device using the memory element 100 can be increased. Also, by using a vertical channel transistor in a semiconductor device, the area of the semiconductor device can be reduced and the semiconductor device can be highly integrated.
  • the channel length is limited by the exposure limit of photolithography.
  • the channel formation region is formed along the side of the insulating layer 156 or the insulating layer 158. Therefore, the channel length can be set by the film thickness of the insulating layer 156 or the insulating layer 158. Therefore, the channel length of the transistor can be made into a very fine structure (for example, 1 nm to 60 nm, 1 nm to 50 nm, 1 nm to 40 nm, 1 nm to 30 nm, 1 nm to 20 nm, or 1 nm to 10 nm) that is less than the exposure limit of photolithography.
  • the on-current of the transistor 233 and the transistor 234 increases, and the frequency characteristics can be improved.
  • the vertical transistor has a structure that makes it easy to reduce the channel length, it is a structure that makes it easy to increase the on-current (reduce the on-resistance).
  • Transistors 233 to 236 and transistors 333 to 336 may be n-channel transistors or p-channel transistors.
  • N-channel transistors have a larger on-state current than p-channel transistors, and therefore the data writing speed and data reading speed can be improved.
  • p-channel transistors are easier to realize as normally-off transistors (transistors that are turned off when the voltage between the source and gate is 0 V) than n-channel transistors, and therefore the operating state (on or off) of the transistors can be easily controlled, the operation of the semiconductor device can be stabilized, and the reliability of the semiconductor device can be improved.
  • the transistors 233 and 234 since the operating states of the transistors 233 and 234 are switched simultaneously, it is preferable that the transistors 233 and 234 have the same conductivity type.
  • the transistors 233 and 234 By using the transistors 233 and 234 as transistors of the same conductivity type, both transistors can be controlled simultaneously by one wiring, and therefore the area occupied by the memory element according to one embodiment of the present invention can be reduced.
  • the transistors 333 and 334 have the same conductivity type.
  • the substrate may be determined in consideration of the presence or absence of light transmission, heat resistance to a degree that can withstand heat treatment, and the like, depending on the purpose.
  • an insulating substrate, a semiconductor substrate, or a conductive substrate may be used.
  • a glass substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • a ceramic substrate such as barium borosilicate glass or aluminoborosilicate glass
  • Semiconductor substrates include, for example, semiconductor substrates made of silicon or germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • semiconductor substrates having an insulating region inside the aforementioned semiconductor substrate such as SOI (Silicon On Insulator) substrates.
  • the semiconductor substrate may be a single crystal semiconductor or a polycrystalline semiconductor.
  • Conductive substrates include graphite substrates, metal substrates, alloy substrates, conductive resin substrates, etc., as well as substrates having metal nitrides and substrates having metal oxides. Furthermore, there are substrates in which a conductive layer or a semiconductor layer is provided on an insulator substrate, substrates in which a conductive layer or an insulating layer is provided on a semiconductor substrate, and substrates in which a semiconductor layer or an insulating layer is provided on a conductive substrate.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile, acrylic resins, polyimide, polymethyl methacrylate, polycarbonate (PC), polyethersulfone (PES), polyamides (nylon, aramid, etc.), polysiloxane, cycloolefin resins, polystyrene, polyamideimide, polyurethane, polyvinyl chloride, polyvinylidene chloride, polypropylene, polytetrafluoroethylene (PTFE), ABS resins, and cellulose nanofibers.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • polyamides nylon, aramid, etc.
  • polysiloxane polystyrene
  • polyamideimide polyurethane
  • polyvinyl chloride polyvinylidene chloride
  • PTFE polytetrafluoroethylene
  • a lightweight semiconductor device can be provided.
  • a semiconductor device that is resistant to impacts can be provided.
  • a semiconductor device that is less likely to break can be provided.
  • elements may be provided on these substrates.
  • Elements that may be provided on the substrate include capacitance elements, resistance elements, switching elements, light-emitting elements, memory elements, etc.
  • an oxide, a nitride, an oxynitride, a nitride oxide, a metal oxide, a metal oxynitride, a metal nitride oxide, or the like having insulating properties can be used.
  • an insulating material selected from aluminum nitride, aluminum oxide, aluminum nitride oxide, aluminum oxynitride, magnesium oxide, silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, aluminum silicate, or the like is used in a single layer or a stacked layer.
  • a plurality of oxide materials, nitride materials, oxynitride materials, and nitride oxide materials may be used.
  • an oxynitride refers to a material that contains more nitrogen than oxygen.
  • An oxynitride refers to a material that contains more oxygen than nitrogen.
  • the content of each element can be measured, for example, by Rutherford backscattering spectrometry (RBS).
  • the parasitic capacitance generated between wirings can be reduced. Therefore, it is advisable to select a material according to the function required for the insulating layer.
  • materials with a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxide nitrides containing aluminum and hafnium, oxides containing silicon and hafnium, oxide nitrides containing silicon and hafnium, and nitrides containing silicon and hafnium.
  • Materials with low dielectric constants include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with added fluorine, silicon oxide with added carbon, silicon oxide with added carbon and nitrogen, silicon oxide with voids, and resin.
  • the method for forming the insulating material is not particularly limited, and various methods such as vapor deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), sputtering, and spin coating can be used.
  • the insulating layer 154 and the insulating layer 167 are preferably formed using an insulating material that is difficult for impurities to permeate.
  • an insulating material containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum may be used in a single layer or a stacked layer.
  • Examples of insulating materials that are difficult for impurities to permeate include aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, and silicon nitride.
  • an insulating layer that can function as a planarizing layer may be used as the insulating layer.
  • materials that function as a planarizing layer include acrylic resin, polyimide, epoxy resin, polyamide, polyimide amide, siloxane resin, benzocyclobutene resin, phenolic resin, and precursors thereof.
  • low-k materials low dielectric constant materials; materials with a small relative dielectric constant
  • siloxane resin PSG (phosphorus glass), BPSG (borophosphorus glass), and the like can be used. Note that multiple insulating layers made of these materials may be stacked.
  • the siloxane resin corresponds to a resin containing Si-O-Si bonds formed using a siloxane-based material as a starting material.
  • the siloxane resin may use an organic group (e.g., an alkyl group or an aryl group) or a fluoro group as a substituent.
  • the organic group may also have a fluoro group.
  • tantalum nitride titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are conductive materials that are difficult to oxidize, or materials that maintain conductivity even when oxygen is absorbed, so they are preferable.
  • semiconductors with high electrical conductivity such as polycrystalline silicon containing impurity elements such as phosphorus, and silicides such as nickel silicide may be used.
  • the method of forming the conductive material is not particularly limited, and various formation methods such as evaporation, ALD, CVD, sputtering, and spin coating can be used.
  • a Cu-X alloy (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti) may be used as the conductive material.
  • a layer formed of a Cu-X alloy can be processed by a wet etching process, which makes it possible to reduce manufacturing costs.
  • an aluminum alloy containing one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium may be used as the conductive material.
  • a conductive material that can be used for the conductive layer a conductive material containing oxygen, such as indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium tin oxide with added silicon oxide, can be used.
  • a conductive material containing nitrogen such as titanium nitride, tantalum nitride, or tungsten nitride, can be used.
  • the conductive layer can have a layered structure in which a conductive material containing oxygen, a conductive material containing nitrogen, or a material containing the above-mentioned metal element is appropriately combined.
  • the conductive layer may have a single-layer structure of an aluminum layer containing silicon, a two-layer structure in which a titanium layer is laminated on an aluminum layer, a two-layer structure in which a titanium layer is laminated on a titanium nitride layer, a two-layer structure in which a tungsten layer is laminated on a titanium nitride layer, a two-layer structure in which a tungsten layer is laminated on a tantalum nitride layer, or a three-layer structure in which a titanium layer is laminated on an aluminum layer on the titanium layer, and a titanium layer is further laminated on the aluminum layer.
  • the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element and a conductive material containing oxygen.
  • the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element and a conductive material containing nitrogen.
  • the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen.
  • the conductive layer may have a three-layer structure in which a conductive layer containing at least one of indium or zinc and oxygen is laminated on a conductive layer containing copper, and a conductive layer containing at least one of indium or zinc and oxygen is further laminated on top of that.
  • multiple conductive layers containing at least one of indium or zinc and oxygen may be laminated as the conductive layer.
  • semiconductor layer a single crystal semiconductor, a polycrystalline semiconductor, a microcrystalline semiconductor, an amorphous semiconductor, or the like can be used alone or in combination.
  • semiconductor material not only a single semiconductor whose main component is a single element (e.g., silicon, germanium, etc.) but also a compound semiconductor (e.g., silicon germanium, silicon carbide, gallium arsenide, nitride semiconductor, etc.) can be used.
  • compound semiconductor an organic material having semiconductor properties or a metal oxide having semiconductor properties (also called an "oxide semiconductor" can be used. Note that these semiconductor materials may contain impurities as dopants.
  • the semiconductor layer may be made of single crystal silicon, polycrystalline silicon, microcrystalline silicon, or amorphous silicon.
  • polycrystalline silicon for example, low temperature polysilicon (LTPS) may be used.
  • Transistors that use amorphous silicon for the semiconductor layer can be formed on large glass substrates and can be manufactured at low cost. Transistors that use polycrystalline silicon for the semiconductor layer have high field effect mobility and can operate at high speed. Transistors that use microcrystalline silicon for the semiconductor layer have higher field effect mobility and can operate at high speed than transistors that use amorphous silicon.
  • the semiconductor layer may have a layered material that functions as a semiconductor.
  • a layered material is a general term for a group of materials that have a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds weaker than covalent or ionic bonds, such as van der Waals forces.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity.
  • Examples of the layered material include graphene, silicene, and chalcogenides.
  • Chalcogenides are compounds containing chalcogen (an element belonging to Group 16).
  • Examples of the chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • transition metal chalcogenides that can be used as the semiconductor layer of a transistor include molybdenum sulfide (representatively MoS 2 ), molybdenum selenide (representatively MoSe 2 ), molybdenum tellurium (representatively MoTe 2 ), tungsten sulfide (representatively WS 2 ), tungsten selenide (representatively WSe 2 ), tungsten tellurium (representatively WTe 2 ), hafnium sulfide (representatively HfS 2 ), hafnium selenide (representatively HfSe 2 ), zirconium sulfide (representatively ZrS 2 ), zirconium selenide (representatively ZrSe 2 ), and the like.
  • a transistor having an oxide semiconductor in a channel formation region (also referred to as an "OS transistor") has an extremely low off-state current.
  • the off-state current value of an OS transistor per 1 ⁇ m of channel width in a room temperature environment can be 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A) or less.
  • the OS transistor operates stably even in a high-temperature environment, has little fluctuation in characteristics, and has high reliability.
  • the off-state current of an OS transistor hardly increases even in a high-temperature environment of 125° C. or more and 200° C. or less.
  • the on-state current is not easily decreased even in a high-temperature environment. Thus, good switching operation can be achieved even in a high-temperature environment.
  • OS transistors have a high drain withstand voltage. Therefore, a semiconductor device using an OS transistor has stable operation and high reliability even when driven at a high voltage.
  • metal oxides used in oxide semiconductors include indium oxide, gallium oxide, and zinc oxide.
  • Metal oxides used in oxide semiconductors preferably contain at least indium (In) or zinc (Zn).
  • Metal oxides used in oxide semiconductors preferably contain two or three elements selected from indium, element M, and zinc.
  • Element M is a metal element or semimetal element that has a high bond energy with oxygen, for example, a metal element or semimetal element that has a higher bond energy with oxygen than indium.
  • element M examples include aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, calcium, strontium, barium, boron, silicon, germanium, and antimony.
  • the element M contained in the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and even more preferably gallium.
  • metal elements and metalloid elements may be collectively referred to as "metal elements," and the "metal elements" described in this specification and the like may include metalloid elements.
  • metal oxides used in oxide semiconductors include indium oxide (In oxide), indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as "GZO”), aluminum zinc oxide (Al-Zn oxide, also written as "AZO"), Indium aluminum zinc oxide (In-Al-Zn oxide, also written as "IAZO"), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as "IGZO"), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide, also written as "IGZTO”), indium gallium
  • the field-effect mobility of the OS transistor can be increased.
  • the metal oxide may have one or more metal elements having a higher period number in the periodic table instead of indium.
  • the metal oxide may have one or more metal elements having a higher period number in the periodic table in addition to indium.
  • the greater the overlap of the orbits of the metal elements the greater the carrier conduction in the metal oxide tends to be. Therefore, by including a metal element having a higher period number in the periodic table, the field effect mobility of the transistor may be increased.
  • Examples of metal elements having a higher period number in the periodic table include metal elements belonging to the fifth period and metal elements belonging to the sixth period.
  • the metal elements include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may also contain one or more nonmetallic elements.
  • the field effect mobility of the transistor may be increased.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the formation of oxygen vacancies in the metal oxide can be suppressed. Therefore, carrier generation due to oxygen vacancies can be suppressed, and a transistor with a small off-current can be obtained. Furthermore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
  • the electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the semiconductor layer. Therefore, by varying the composition of the metal oxide depending on the electrical characteristics and reliability required of the transistor, a semiconductor device that combines excellent electrical characteristics and high reliability can be realized.
  • a metal oxide in which the atomic ratio of indium is equal to or greater than the atomic ratio of zinc may be used.
  • a metal oxide in which the atomic ratio of indium is equal to or greater than the atomic ratio of tin may be used.
  • a metal oxide in which the atomic ratio of indium is higher than that of tin may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of tin.
  • a metal oxide in which the atomic ratio of indium is higher than that of aluminum may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of aluminum.
  • a metal oxide in which the atomic ratio of indium to the number of atoms of the metal element is higher than the atomic ratio of gallium may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of gallium.
  • In-M-Zn oxide is used for the semiconductor layer of an OS transistor
  • a metal oxide in which the atomic ratio of indium to the number of atoms of the metal element is higher than the atomic ratio of element M may be used. Furthermore, it is more preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of element M.
  • the composition close thereto includes a range of ⁇ 30% of the desired atomic ratio. It is also preferable to use gallium as the element M.
  • the sum of the atomic ratios of the metal elements can be the atomic ratio of element M.
  • the sum of the atomic ratio of gallium and the atomic ratio of aluminum can be the atomic ratio of element M.
  • the atomic ratios of indium, element M, and zinc are within the above-mentioned range.
  • a metal oxide in which the ratio of the number of indium atoms to the sum of the atomic numbers of the metal elements among the main component elements contained in the metal oxide is 30 atomic % or more and 100 atomic %, preferably 30 atomic % or more and 95 atomic %, more preferably 35 atomic % or more and 95 atomic %, more preferably 35 atomic % or more and 90 atomic %, more preferably 40 atomic % or more and 90 atomic %, more preferably 45 atomic % or more and 90 atomic %, more preferably 50 atomic % or more and 80 atomic %, more preferably 60 atomic % or more and 80 atomic %, more preferably 70 atomic % or more and 80 atomic %.
  • In-M-Zn oxide it is preferable that the ratio of the number of indium atoms to the total number of atoms of indium, element M, and zinc is in the above-mentioned
  • the field-effect mobility of an OS transistor can be increased by increasing the ratio of the number of indium atoms to the sum of the number of atoms of the metal elements among the main component elements contained in the metal oxide.
  • a circuit capable of high-speed operation can be manufactured. Furthermore, the area occupied by the circuit can be reduced.
  • composition of metal oxides can be analyzed using, for example, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), or inductively coupled plasma-atomic emission spectrometry (ICP-AES).
  • EDX energy dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • ICP-AES inductively coupled plasma-atomic emission spectrometry
  • a combination of these techniques may be used for the analysis.
  • the actual content may differ from the content obtained by analysis due to the influence of analytical accuracy. For example, if the content of element M is low, the content of element M obtained by analysis may be lower than the actual content.
  • the metal oxide is preferably formed by sputtering or ALD.
  • the atomic ratio of the target may differ from the atomic ratio of the metal oxide.
  • the atomic ratio of zinc in the metal oxide may be smaller than the atomic ratio of the target.
  • the atomic ratio of zinc in the metal oxide may be about 40% to 90% of the atomic ratio of zinc contained in the target.
  • the above atomic ratio is not limited to the atomic ratio of the formed metal oxide film, but may be the atomic ratio of the sputtering target used to form the metal oxide film.
  • GBT Gate Bias Temperature
  • PBTS Positive Bias Temperature Stress
  • NBTS Negative Bias Temperature Stress
  • the PBTS test and NBTS test performed under light irradiation are called the PBTIS (Positive Bias Temperature Illumination Stress) test and the NBTIS (Negative Bias Temperature Illumination Stress) test, respectively.
  • PBTIS Positive Bias Temperature Illumination Stress
  • NBTIS Negative Bias Temperature Illumination Stress
  • n-type transistors In the case of n-type transistors, a positive potential is applied to the gate when the transistor is turned on, so the amount of variation in threshold voltage during PBTS testing is one of the important items to note as an indicator of the reliability of the transistor.
  • a transistor with high reliability when a positive bias is applied can be obtained.
  • a transistor with a small amount of variation in threshold voltage in a PBTS test can be obtained.
  • defect levels at or near the interface between the semiconductor layer and the gate insulating layer are defect levels at or near the interface between the semiconductor layer and the gate insulating layer.
  • the reason why the use of a metal oxide that does not contain gallium or has a low gallium content in the semiconductor layer can suppress the variation in threshold voltage in the PBTS test is thought to be, for example, as follows.
  • the gallium contained in the metal oxide has the property of attracting oxygen more easily than other metal elements (e.g., indium or zinc). Therefore, it is presumed that at the interface between the metal oxide containing a large amount of gallium and the gate insulating layer, gallium combines with excess oxygen in the gate insulating layer, making it easier to create carrier (here, electron) trap sites. Therefore, it is thought that when a positive potential is applied to the gate, carriers are trapped at the interface between the semiconductor layer and the gate insulating layer, causing the threshold voltage to vary.
  • a metal oxide in which the atomic ratio of indium is higher than that of gallium can be applied to the semiconductor layer. It is more preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of gallium. In other words, it is preferable to apply a metal oxide in which the atomic ratios of metal elements satisfy In>Ga and Zn>Ga to the semiconductor layer.
  • the semiconductor layer of the OS transistor preferably uses a metal oxide in which the ratio of the number of gallium atoms to the number of atoms of the contained metal element is higher than 0 atomic % and 50 atomic % or less, preferably 0.1 atomic % to 40 atomic % or less, more preferably 0.1 atomic % to 35 atomic % or less, more preferably 0.1 atomic % to 30 atomic % or less, more preferably 0.1 atomic % to 25 atomic % or less, more preferably 0.1 atomic % to 20 atomic % or less, more preferably 0.1 atomic % to 15 atomic % or less, and more preferably 0.1 atomic % to 10 atomic % or less.
  • a metal oxide that does not contain gallium may be applied to the semiconductor layer of an OS transistor.
  • In-Zn oxide may be applied to the semiconductor layer.
  • the field effect mobility of the transistor can be increased by increasing the atomic ratio of indium to the atomic number of metal elements contained in the metal oxide.
  • the metal oxide becomes highly crystalline, so that the fluctuation in the electrical characteristics of the transistor is suppressed and the reliability can be increased.
  • a metal oxide that does not contain gallium and zinc, such as indium oxide may be applied to the semiconductor layer. By using a metal oxide that does not contain gallium, the fluctuation in the threshold voltage, particularly in a PBTS test, can be made extremely small.
  • an oxide containing indium and zinc can be used for the semiconductor layer.
  • gallium has been used as a representative example, the present invention can also be applied to the case where element M is used instead of gallium. It is preferable to use a metal oxide in which the atomic ratio of indium is higher than the atomic ratio of element M for the semiconductor layer. It is also preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of element M.
  • the semiconductor layer may have a stacked structure having two or more metal oxide layers.
  • the two or more metal oxide layers of the semiconductor layer may have the same or approximately the same composition.
  • the two or more metal oxide layers in the semiconductor layer may have different compositions.
  • gallium or aluminum as the element M.
  • a laminate structure of any one selected from indium oxide, indium gallium oxide, and IGZO and any one selected from IAZO, IAGZO, and ITZO (registered trademark) may be used.
  • the semiconductor layer is preferably a crystalline metal oxide layer.
  • a metal oxide layer having a CAAC (c-axis aligned crystalline) structure, a polycrystalline (polycrystalline) structure, a nanocrystalline (nc: nanocrystalline) structure, or the like can be used.
  • the CAAC structure is a crystal structure in which multiple microcrystals (typically multiple IGZO microcrystals) have a c-axis orientation, and the multiple microcrystals are connected without being oriented in the a-b plane.
  • the CAAC structure has fewer crystal grain boundaries and grains in the a-b plane than the polycrystalline structure, and therefore a highly reliable semiconductor device can be realized.
  • the semiconductor layer of the OS transistor may have a stacked structure of two or more metal oxide layers with different crystallinity.
  • a stacked structure of a first metal oxide layer and a second metal oxide layer provided on the first metal oxide layer may be used, and the second metal oxide layer may have a region with higher crystallinity than the first metal oxide layer.
  • the second metal oxide layer may have a region with lower crystallinity than the first metal oxide layer.
  • the two or more metal oxide layers in the semiconductor layer may have the same or approximately the same composition.
  • the same sputtering target can be used to form the stacked structure, which can reduce manufacturing costs.
  • the same sputtering target may be used to form a stacked structure of two or more metal oxide layers with different crystallinity by changing the oxygen flow rate ratio. Note that the two or more metal oxide layers in the semiconductor layer may have different compositions.
  • the oxide semiconductor in the region in contact with the insulating layer becomes n-type and can function as a source region or a drain region.
  • a material containing silicon, nitrogen, and hydrogen may be used for the insulating layer.
  • silicon nitride containing hydrogen, silicon nitride oxide containing hydrogen, or the like may be used.
  • each of insulating layer 157 and insulating layer 159 is preferably 1 nm or more and 15 nm or less, more preferably 2 nm or more and 10 nm or less, more preferably 3 nm or more and 7 nm or less, and even more preferably 3 nm or more and 5 nm or less.
  • a region of semiconductor layer 163 in contact with insulating layer 157 containing hydrogen and a region in contact with insulating layer 159 containing hydrogen function as a source region or a drain region.
  • the thickness of the insulating layer 158 is preferably 1 nm or more and 50 nm or less, more preferably 2 nm or more and 30 nm or less, and even more preferably 3 nm or more and 20 nm or less.
  • the film thicknesses of insulating layers 157, 158, and 159 may be set appropriately according to the characteristics desired for the transistor.
  • insulating layers 157, 158, and 159 it is preferable to deposit insulating layers 157, 158, and 159 in succession without exposing them to the atmospheric environment in between.
  • insulating layers 157, 158, and 159 it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the interface between insulating layers 157 and 158 and their vicinity, and to the interface between insulating layers 158 and 159 and their vicinity.
  • the conductive layer 155 in contact with the semiconductor layer 163 and the conductive layer 161 in contact with the semiconductor layer 163 are made of a conductive material that makes the oxide semiconductor n-type.
  • a conductive material containing nitrogen may be used.
  • a conductive material containing titanium or tantalum and nitrogen may be used.
  • Another conductive material may be provided over the conductive material containing nitrogen.
  • an oxide semiconductor is used for the semiconductor layer 163 of the transistors 233 to 236, it is preferable to use a material in which hydrogen is reduced and which contains oxygen for the insulating layer 158.
  • a material containing silicon and oxygen may be used. Specifically, silicon oxide, silicon oxynitride, or the like may be used. Since hydrogen is an impurity element in an oxide semiconductor, when the semiconductor layer 163 which is an oxide semiconductor is in contact with the insulating layer 158 in which hydrogen is reduced, the semiconductor layer 163 is less likely to become n-type. Furthermore, when the semiconductor layer 163 which is an oxide semiconductor is in contact with the insulating layer 158 which contains oxygen, oxygen vacancies in the semiconductor layer 163 are reduced, and the characteristics of the transistor are stabilized, leading to improved reliability.
  • the semiconductor layer 163 is not in contact with the insulating layer 157 and the insulating layer 159. In the structures of the transistors 333 to 336, the semiconductor layer 163 is in contact with the insulating layer 181a and the insulating layer 164.
  • an oxide semiconductor is used for the semiconductor layer 163 of the transistors 333 to 336, it is preferable to use a material in which hydrogen is reduced and which contains oxygen for each of the insulating layer 181a and the insulating layer 164.
  • the insulating layer 158 preferably contains excess oxygen.
  • excess oxygen refers to oxygen that is released by heating.
  • a material containing excess oxygen is used for the insulating layer 158, it is preferable to use a material through which oxygen is unlikely to permeate for the insulating layer 157 and the insulating layer 159.
  • a material through which oxygen is unlikely to permeate for example, an oxide containing one or both of aluminum and hafnium, a nitride of silicon, or the like can be used.
  • a structure may be used in which an insulating layer (insulating layer 158) containing silicon and oxygen is provided between two insulating layers (insulating layer 157 and insulating layer 159) containing silicon and nitrogen.
  • the insulating layer 181 contain excess oxygen.
  • the insulating layer 164 in contact with the semiconductor layer 163 also contain excess oxygen.
  • the region of the semiconductor layer 163 in contact with the conductive layer 161 and the region of the semiconductor layer 163 in contact with the insulating layer 159 function as one of the source (source region) and the drain (drain region).
  • the region of the semiconductor layer 163 in contact with the conductive layer 155 and the region of the semiconductor layer 163 in contact with the insulating layer 157 function as the other of the source (source region) and the drain (drain region).
  • Figure 16A shows an enlarged cross-section of the transistor 233 shown in Figure 1B.
  • the transistor 233 which is a VFET
  • the length of the side of the insulating layer 158 at the opening 162a when viewed from the X direction or the Y direction becomes the channel length L (channel length L1). Therefore, the channel length L of the transistor 233 is determined according to the thickness t1 of the insulating layer 158.
  • the insulating layer 157 and the insulating layer 159 may be made of a material that does not contain hydrogen or contains very little hydrogen.
  • silicon nitride containing very little hydrogen or silicon nitride oxide containing very little hydrogen may be used.
  • the region where the semiconductor layer 163a is in contact with the insulating layer 157 and the region where the semiconductor layer 163a is in contact with the insulating layer 159 are not made n-type. Therefore, the region of the semiconductor layer 163a in contact with the conductive layer 161a functions as one of the source (source region) and the drain (drain region).
  • the region of the semiconductor layer 163a in contact with the conductive layer 155a functions as the other of the source (source region) and the drain (drain region).
  • the region of the semiconductor layer 163a in contact with the side of the insulating layer 158 functions as a channel formation region.
  • the channel length L of transistor 233 is determined according to thickness t2, which is the sum of the thicknesses of insulating layers 157, 158, and 159.
  • FIG. 17A and 17B show a modified example of FIG. 16A.
  • only insulating layer 158 may be provided without providing insulating layer 157 and insulating layer 159, and insulating layer 158 may be in contact with conductive layer 155a and conductive layer 161a (see FIG. 17A).
  • the length of the side surface of insulating layer 158 in opening 162a when viewed from the X direction or Y direction becomes channel length L (channel length L2). Therefore, the channel length L of transistor 233 is determined according to the thickness of insulating layer 158.
  • insulating layer 158 may be called insulating layer 156. Note that channel length L2 shown in FIG. 17A is synonymous with channel length L2 shown in FIG. 16A, and thickness t2 shown in FIG. 17A is synonymous with thickness t2 shown in FIG. 16A.
  • the hydrogen contained in the insulating layers 157 and 159 will combine with the excess oxygen contained in the insulating layer 158, and sufficient hydrogen will not be supplied to the region of the semiconductor layer 163a in contact with the insulating layer 157 and the region of the semiconductor layer 163a in contact with the insulating layer 159, making it difficult to make the semiconductor layer 163a n-type. Similarly, sufficient oxygen will not be supplied to the region of the semiconductor layer 163a in contact with the insulating layer 158.
  • insulating layer 171 which is difficult for oxygen and nitrogen to permeate, may be provided between insulating layer 157 and insulating layer 158, and insulating layer 172, which is difficult for oxygen and nitrogen to permeate, may be provided between insulating layer 159 and insulating layer 158 (see FIG. 17B).
  • the material that is difficult for oxygen and nitrogen to permeate may be realized using, for example, silicon nitride.
  • insulating layer 157, insulating layer 171, insulating layer 158, insulating layer 172, and insulating layer 159 may be collectively referred to as insulating layer 156.
  • the channel length L of transistor 233 is determined according to thickness t3, which is the sum of the thicknesses of insulating layer 171, insulating layer 158, and insulating layer 172.
  • the channel length L of the transistor 233 is determined according to the thickness of the insulating layer provided between the conductive layer 161a and the conductive layer 155a. Therefore, a transistor with a short channel length L can be manufactured with high precision. In addition, the characteristic variation between multiple transistors is also reduced. Therefore, the operation of a semiconductor device including the transistor 233 is stabilized, and the reliability can be improved. Furthermore, the reduction in the characteristic variation increases the degree of freedom in the circuit design of the semiconductor device, and the operating voltage can also be reduced. Therefore, the power consumption of the semiconductor device can be reduced.
  • insulating layer 157, insulating layer 158, insulating layer 159) or five insulating layers (insulating layer 157, insulating layer 158, insulating layer 159, insulating layer 171, insulating layer 172) between conductive layer 155a and conductive layer 161a is shown, but the number of insulating layers between conductive layer 155a and conductive layer 161a is not limited to this.
  • the number of insulating layers between conductive layer 155a and conductive layer 161a may be one or two, or may be four or six or more.
  • the taper angle ⁇ of the side of the opening 162a i.e., the taper angle ⁇ of each of the side of the insulating layer 157, insulating layer 158, and insulating layer 159, may be set to 45 degrees or more and 90 degrees or less, preferably 50 degrees or more and 75 degrees or less.
  • the taper angle ⁇ of the side of a layer refers to the angle between the bottom surface of the layer and the side surface (see FIG. 16A).
  • the side of the opening 162a may be perpendicular or approximately perpendicular to the surface on which the opening 162a is formed (for example, the top surface of the conductive layer 155a).
  • the side of the opening 162a By making the side of the opening 162a perpendicular or approximately perpendicular, the area occupied by the transistor 233 can be reduced. Therefore, the area occupied by the memory element including the transistor 233 can be reduced.
  • the perimeter of the opening 162a when viewed from the Z direction is the channel width W of the transistor 233 (see FIG. 16B).
  • the perimeter may be determined, for example, at a position halfway to the thickness t1 or halfway to the thickness t2 of the insulating layer 158. If necessary, the perimeter of any position of the opening 162a may be taken as the channel width W.
  • the perimeter of the bottom of the opening 162a may be taken as the channel width W, or the perimeter of the top of the opening 162a may be taken as the channel width W.
  • the channel length L is preferably at least smaller than the channel width W.
  • the channel length L is 0.1 to 0.99 times, preferably 0.5 to 0.8 times, the channel width W.
  • the outline (planar shape) of the opening 162a viewed from the Z direction is shown as a circle, but is not limited to this.
  • the outline of the opening 162a viewed from the Z direction may be an ellipse (see FIG. 16C) or a rectangle (see FIG. 16D).
  • FIG. 16D shows a rectangle with curved corners.
  • the outline of the opening 162a viewed from the Z direction may be a shape that includes one or both of straight and curved portions (see FIG. 16E).
  • the opening 162a is fine.
  • the maximum width of the opening 162a as viewed from the Z direction is preferably 60 nm or less, more preferably 50 nm or less, even more preferably 40 nm or less, and most preferably 30 nm or less.
  • the maximum width of the opening 162a as viewed from the Z direction may be 20 nm or less.
  • the minimum width of the opening 162a as viewed from the Z direction is 1 nm or more, and more preferably 5 nm or more.
  • transistors 234 to 236 have the same structure as transistor 233. To reduce repetition of the explanation, the explanation of transistors 234 to 236 will be omitted.
  • FIG 19A shows an enlarged cross-section of transistor 333 shown in Figure 11B.
  • Transistor 333 is also a modified example of transistor 233.
  • transistor 333 which is a VFET
  • the length of the side of conductive layer 175a in opening 162a becomes channel length L (channel length L4) when viewed from the X direction or Y direction. Therefore, the channel length L of transistor 333 is determined according to thickness t4 of conductive layer 175a.
  • the region of semiconductor layer 163a that overlaps with conductive layer 175a functions as a channel formation region.
  • the transistor 333 has a structure in which the channel formation region is electrically surrounded by the electric field of the conductive layer 175a that functions as the gate electrode, so it can also be said to have a GAA (Gate All Around) structure.
  • GAA Gate All Around
  • Figure 19B shows a modified example of Figure 19A.
  • the transistor 333 may have a conductive layer 165 on the insulating layer 164 in a region overlapping with the opening 162a when viewed from the Z direction.
  • both the conductive layer 165 and the conductive layer 175 can function as gate electrodes.
  • one of the conductive layer 165 or the conductive layer 175 may be called a "gate electrode” and the other may be called a "back gate electrode.”
  • one of the conductive layer 165 or the conductive layer 175 may be called a "first gate electrode” and the other may be called a "second gate electrode.”
  • the conductive layer 165 may be called a "gate electrode” and the conductive layer 175 may be called a "back gate electrode.”
  • the gate electrode and the back gate electrode are arranged so as to sandwich the semiconductor layer between them. Both the gate electrode and the back gate electrode are formed of a conductive layer.
  • the potential of the back gate electrode may be the same as that of the gate electrode, or may be GND or any other potential.
  • the threshold voltage of the transistor can be changed by changing the potential of the back gate electrode independently of the gate electrode.
  • the gate electrode and the back gate electrode are formed of a conductor, they have a function of preventing an electric field generated outside the transistor from acting on the semiconductor in which the channel is formed (particularly an electric field shielding function against static electricity, etc.). By providing a back gate electrode in addition to the gate electrode, the characteristic variation between transistors can be reduced.
  • the distance from the upper surface of the conductive layer 155a to the upper surface of the conductive layer 161a when viewed from the X direction or the Y direction is the channel length L (channel length L5).
  • the total length of each side of the insulating layer 157, the conductive layer 175a, the insulating layer 159, and the conductive layer 161a in the opening 162a is the channel length L5.
  • the channel formation region of the transistor 333 has a region along the side of the insulating layer 157, a region along the side of the conductive layer 175a, a region along the side of the insulating layer 159, and a region along the side of the conductive layer 161a.
  • the channel length L of the transistor 333 shown in FIG. 19B is determined according to the thickness t5 obtained by adding up the thicknesses of the insulating layer 157, the conductive layer 175a, the insulating layer 159, and the conductive layer 161a.
  • transistors 334 to 336 have the same structure as transistor 333. To reduce repetition of the description, the description of transistors 334 to 336 will be omitted.
  • ⁇ Storage device 300> 20A is a block diagram illustrating a configuration example of a memory device 300 including the memory element 100 of one embodiment of the present invention.
  • the memory cell array 200 includes a plurality of memory elements 100 arranged in a matrix of m rows and n columns (m and n are each an integer greater than or equal to 1). By arranging a plurality of memory elements 100 in a matrix, a memory device with a large memory capacity can be realized.
  • the memory element 100 in the first row and first column is indicated as memory element 100[1,1]
  • the memory element 100 in the mth row and nth column is indicated as memory element 100[m,n]
  • the memory element 100 in the mth row and first column is indicated as memory element 100[m,1]
  • the memory element 100 in the first row and nth column is indicated as memory element 100[1,n]
  • the memory element 100 in the mth row and nth column is indicated as memory element 100[m,n]
  • the memory element 100 in the ith row and jth column is indicated as memory element 100[i,j].
  • i is an integer of 1 to m indicating an arbitrary row
  • j is an integer of 1 to n indicating an arbitrary column.
  • rows and columns extend in directions perpendicular to each other.
  • the X direction (direction along the X axis) is referred to as the "row” and the Y direction (direction along the Y axis) is referred to as the "column”, but the X direction may be referred to as the “column” and the Y direction as the "row”.
  • the drive circuit 21 has a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31.
  • the peripheral circuit 31 has a peripheral circuit 41, a control circuit 32, and a voltage generation circuit 33.
  • each circuit, signal, and voltage can be selected or removed as needed. Alternatively, other circuits or other signals may be added.
  • Signals BW, CE, GW, CLK, WAKE, ADDR, WDA, PON1, and PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • signals BW, CE, and GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signals PON1 and PON2 are power gating control signals. Signals PON1 and PON2 may be generated by control circuit 32.
  • the control circuit 32 is a logic circuit that has the function of controlling the overall operation of the memory device 300. For example, the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 300. Alternatively, the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 300.
  • the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the voltage generation circuit 33 has a function of generating a voltage.
  • the signal WAKE has a function of controlling the input of the signal CLK to the voltage generation circuit 33. For example, when a signal of potential H is applied to the signal WAKE, the signal CLK is input to the voltage generation circuit 33, and the voltage generation circuit 33 generates a voltage.
  • the peripheral circuit 41 is a circuit for writing and reading data to the memory element 100.
  • the peripheral circuit 41 has a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, and an output circuit 48.
  • the row decoder 42 and the column decoder 44 have the function of decoding the signal ADDR.
  • the row decoder 42 is a circuit for specifying the row to be accessed
  • the column decoder 44 is a circuit for specifying the column to be accessed.
  • the row driver 43 has the function of selecting the wiring specified by the row decoder 42.
  • the column driver 45 has the function of writing data to the memory element 100, reading data from the memory element 100, and retaining the read data.
  • the input circuit 47 has a function of holding a signal WDA.
  • the data held by the input circuit 47 is output to the column driver 45.
  • the output data of the input circuit 47 is the data (Din) to be written to the memory element 100.
  • the data (Dout) read from the memory element 100 by the column driver 45 is output to the output circuit 48.
  • the output circuit 48 has a function of holding Dout.
  • the output circuit 48 has a function of outputting Dout to the outside of the memory device 300.
  • the data output from the output circuit 48 is the signal RDA.
  • PSW22 has a function of controlling the supply of VDD to the peripheral circuit 31.
  • PSW23 has a function of controlling the supply of VHM to the row driver 43.
  • the high power supply potential of the memory device 300 is VDD
  • the low power supply potential is GND (ground potential).
  • VHM is a high power supply potential used to set the word line to potential H, and is higher than VDD.
  • the on/off of PSW22 is controlled by signal PON1, and the on/off of PSW23 is controlled by signal PON2.
  • the number of power domains to which VDD is supplied in the peripheral circuit 31 is one, but it is also possible to have multiple power domains. In this case, a power switch can be provided for each power supply domain.
  • the memory cell array 200 and the drive circuit 21 may be stacked. By stacking the memory cell array 200 and the drive circuit 21, the area occupied by the memory device 300 can be reduced.
  • the memory device 300 has a stacked structure of layers 10 and 20, the drive circuit 21 is formed in layer 10, and the memory cell array 200 is formed in layer 20.
  • a silicon substrate may be used as layer 10, and drive circuit 21 may be formed on the silicon substrate.
  • transistors that have silicon in their channel formation regions Si transistors
  • single-crystal Si transistors that have single-crystal semiconductor in their channel formation regions and have high operating speeds may be used as transistors that make up drive circuit 21.
  • an SOI substrate may be used as the layer 10.
  • a SIMOX (Separation by Implanted Oxygen) substrate formed by implanting oxygen ions into a mirror-polished wafer and then heating it at a high temperature to form an oxide layer at a certain depth from the surface and eliminate defects in the surface layer
  • a Smart Cut method in which a semiconductor substrate is cleaved by utilizing the growth of microvoids formed by hydrogen ion implantation through heat treatment, an ELTRAN method (registered trademark: Epitaxial Layer Transfer), or the like may be used.
  • a Si transistor fabricated using an SOI substrate has reduced parasitic capacitance and can achieve high-speed operation.
  • the OS transistor constituting the memory element 100 is a thin film transistor, and therefore can be easily provided as layer 20 overlapping layer 10.
  • the operation of OS transistors is stable even in high-temperature environments, and there is little fluctuation in characteristics. Therefore, even if a memory cell array 200 including an OS transistor is provided overlapping a driver circuit 21 including a Si transistor, it is not easily affected by heat generated by the driver circuit 21, and high reliability can be obtained.
  • a layer 20 including a memory cell array 200 may be repeatedly stacked on a layer 10 including a drive circuit 21.
  • FIG. 20C shows an example in which k layers (k is an integer of 2 or more) of layers 20 are stacked on a layer 10.
  • the layer 20 provided as the first layer on the layer 10 is indicated as layer 20[1], and the layer 20 provided as the kth layer is indicated as layer 20[k].
  • the layer 10 including the drive circuit 21 and the layer 20 including the memory cell array 200 By stacking the layer 10 including the drive circuit 21 and the layer 20 including the memory cell array 200, the signal propagation distance between the drive circuit 21 and the memory cell array 200 can be shortened. Therefore, the parasitic resistance and parasitic capacitance between the drive circuit 21 and the memory cell array 200 are reduced, and power consumption and signal delay can be reduced.
  • the memory device 300 can be made smaller. In addition, the memory capacity per unit area can be increased.
  • Figure 21 shows a more specific example of the stacked configuration of the memory device 300.
  • the configuration shown in Figures 1A and 1B is shown as an example of the memory element 100 included in layer 20. To reduce repetition, the description of the memory element 100 will be omitted here.
  • the 21 also illustrates a transistor 800 as an example of a transistor included in the driver circuit 21.
  • the transistor 800 is provided on a substrate 371 and has a conductive layer 376 functioning as a gate, an insulating layer 375 functioning as a gate insulating layer, a semiconductor region 373 formed of a part of the substrate 371, and low-resistance regions 374a and 374b functioning as source and drain regions.
  • the transistor 800 may be a p-channel transistor or an n-channel transistor.
  • a single crystal silicon substrate can be used as the substrate 371.
  • the semiconductor region 373 (part of the substrate 371) where the channel is formed has a convex shape.
  • a conductive layer 376 is provided so as to cover the side and top surface of the semiconductor region 373 via an insulating layer 375.
  • the conductive layer 376 may be made of a material that adjusts the work function.
  • Such a transistor 800 is also called a FIN type transistor because it uses the convex portion of the semiconductor substrate.
  • an insulating layer that contacts the upper part of the convex portion and functions as a mask for forming the convex portion may be provided.
  • a semiconductor film having a convex shape may be formed by processing an SOI substrate.
  • transistor 800 shown in FIG. 21 is just an example, and the structure is not limited thereto. An appropriate transistor may be used depending on the circuit configuration or driving method.
  • Layer 10 and layer 20 may be provided with a wiring layer and an interlayer insulating layer, including a conductive layer such as a contact plug. Also, multiple wiring layers may be provided depending on the design. Also, in this specification, the wiring and the contact plug electrically connected to the wiring may be integrated. That is, a part of the conductive layer may function as the wiring, and another part of the conductive layer may function as the contact plug.
  • insulating layer 390, insulating layer 391, insulating layer 393, and insulating layer 394 are stacked in this order as an interlayer insulating layer.
  • conductive layer 392 is provided penetrating insulating layer 390 and insulating layer 391.
  • conductive layer 395 is provided penetrating insulating layer 393 and insulating layer 394.
  • the insulating layer that functions as an interlayer insulating layer may also function as a planarizing film that covers the uneven shape below it.
  • a CMP process or the like may be performed on the upper surface of the insulating layer 391 to improve flatness.
  • An interlayer insulating layer and a wiring layer may be provided on the insulating layer 394 and the conductive layer 395.
  • insulating layer 396, insulating layer 381, insulating layer 382, insulating layer 383, insulating layer 384, insulating layer 385, insulating layer 386, and insulating layer 387 are stacked in order on the insulating layer 394 and the conductive layer 395.
  • a conductive layer 361 penetrating the insulating layer 396 and the insulating layer 381 a conductive layer 362 penetrating the insulating layer 382, a conductive layer 363 penetrating the insulating layer 383, a conductive layer 364 penetrating the insulating layer 384, a conductive layer 365 penetrating the insulating layer 385, a conductive layer 366 penetrating the insulating layer 386, and a conductive layer 367 penetrating the insulating layer 387.
  • the low resistance region 374b of the transistor 800 and the conductive layer 155b of the transistor 234 are electrically connected through the conductive layer 392, the conductive layer 395, the conductive layer 361, the conductive layer 362, the conductive layer 363, the conductive layer 364, the conductive layer 365, the conductive layer 366, and the conductive layer 367.
  • the conductive layer 392, the conductive layer 395, the conductive layer 361, the conductive layer 362, the conductive layer 363, the conductive layer 364, the conductive layer 365, the conductive layer 366, and the conductive layer 367 function as contact plugs or wiring.
  • FIG. 22 shows a schematic perspective view of a processing device 1100, which is a type of semiconductor device.
  • the processing device 1100 has a layer 20 including a memory cell array 200 including a memory element 100, which is stacked on the layer 10.
  • the layers 10 and 20 are shown separately in FIG. 22.
  • the arithmetic processing device 1100 shown in FIG. 22 has a driver circuit 21, an ALU 1191 (ALU: Arithmetic Logic Unit, arithmetic circuit), an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, a bus interface 1198), a cache 1199, and a cache interface 1189 in layer 10. It may also have a rewritable ROM and a ROM interface. The cache 1199 and the cache interface 1189 may be provided on a separate chip.
  • the arithmetic processing device 1100 shown in FIG. 22 functions, for example, as a central processing unit (CPU: Central Processing Unit).
  • CPU Central Processing Unit
  • the cache 1199 is connected to a main memory provided on a separate chip via a cache interface 1189.
  • the cache interface 1189 has a function of supplying a portion of the data stored in the main memory to the cache 1199.
  • the cache 1199 has a function of storing that data.
  • the arithmetic processing device 1100 shown in FIG. 22 is merely one example of a simplified configuration, and the actual arithmetic processing device 1100 has a wide variety of configurations depending on its application.
  • the arithmetic processing device 1100 shown in FIG. 22 may be configured as one core, and may include multiple such cores, each of which operates in parallel, that is, a configuration like a GPU (Graphics Processing Unit).
  • the number of bits that the arithmetic processing device 1100 can handle in its internal arithmetic circuit and data bus can be, for example, 8 bits, 16 bits, 32 bits, 64 bits, etc.
  • Instructions input to the arithmetic processing unit 1100 via the bus interface 1198 are input to the instruction decoder 1193, decoded, and then input to the ALU controller 1192, the interrupt controller 1194, the register controller 1197, and the timing controller 1195.
  • the ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195 perform various controls based on the decoded instructions. Specifically, the ALU controller 1192 generates signals for controlling the operation of the ALU 1191. Furthermore, while the arithmetic processing device 1100 is executing a program, the interrupt controller 1194 determines and processes interrupt requests from external input/output devices and peripheral circuits based on their priority and mask state. The register controller 1197 generates an address for the register 1196, and reads or writes to the register 1196 depending on the state of the arithmetic processing device 1100.
  • the timing controller 1195 also generates signals that control the timing of the operations of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197.
  • the timing controller 1195 includes an internal clock generating unit that generates an internal clock signal based on a reference clock signal, and supplies the internal clock signal to the various circuits described above.
  • the register controller 1197 selects the holding operation in the register 1196 according to instructions from the ALU 1191. That is, it selects whether the memory cells in the register 1196 will hold data using flip-flops or using capacitive elements. If holding data using flip-flops is selected, a power supply potential is supplied to the memory cells in the register 1196. If holding data in capacitive elements is selected, the data is rewritten to the capacitive elements, and the supply of power supply potential to the memory cells in the register 1196 can be stopped.
  • the arithmetic processing device 1100 shown in FIG. 22 has a memory device that functions as a register 1196 and a cache 1199.
  • the memory device may be a memory cell array 200 including a memory element 100 according to one embodiment of the present invention.
  • connection distance between the two can be shortened.
  • parasitic resistance and parasitic capacitance are reduced. This makes it possible to increase the communication speed between the two. In addition, power consumption can be reduced.
  • the memory element 100 is a non-volatile memory element. Therefore, a part or all of the memory cell array 200 can be used as storage. Further, a part or all of the memory cell array 200 can be used as a main memory. Further, a part or all of the memory cell array 200 can be used as a cache memory.
  • a portion of the memory cell array 200 can function as a main memory, and another portion can function as storage.
  • the memory cell array 200 including the memory element 100 according to one aspect of the present invention can function as a cache, a main memory, and a storage.
  • the memory cell array 200 including the memory element 100 according to one aspect of the present invention can function as a universal memory, for example.
  • the storage capacity of the cache 1199 can be supplemented by using part or all of the memory cell array 200 including the storage element 100 according to one embodiment of the present invention.
  • the operation of the other may be stopped until the processing is completed, resulting in a wait time.
  • the aforementioned wait time can be eliminated by temporarily storing the data to be exchanged in the memory cell array 200 including the storage element 100 according to one embodiment of the present invention. This can improve the operating efficiency of the arithmetic processing device.
  • the memory element 100 is suitable for power gating, which temporarily stops the supply of power to an inactive arithmetic circuit to reduce power consumption.
  • a normally-off processor using power gating is sometimes called a "normally-off processor" or “Noff processor.”
  • Noff processor In a normally-off processor, data required for recovery must be saved to a non-volatile memory before the power supply is stopped, and must be read out at the time of recovery.
  • the memory element 100 according to one embodiment of the present invention is a non-volatile memory element and can be stacked on the arithmetic processing device, so that a normally-off processor with high save and recovery speeds can be realized without increasing the area occupied by the arithmetic processing device.
  • Figure 23A shows various memory devices used in semiconductor devices by layer. The higher the layer, the faster the operating speed is required for the memory device, and the lower the layer, the larger the memory capacity and higher the memory density are required for the memory device. From the top layer, Figure 23A shows memory integrated as a register in a processor such as a CPU, SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and 3D NAND memory.
  • a processor such as a CPU, SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and 3D NAND memory.
  • Registers also have the function of storing setting information for the processor.
  • SRAM is used, for example, in caches.
  • Caches have the function of duplicating and storing part of the data stored in main memory. By duplicating frequently used data and storing it in the cache, the speed of accessing the data can be increased.
  • the storage capacity required for a cache is smaller than that of main memory, but it is required to operate at a faster speed than main memory.
  • data rewritten in the cache is duplicated and supplied to the main memory.
  • DRAM is used, for example, as a main memory.
  • the main memory has a function of holding programs and data read from storage.
  • the memory density of DRAM is approximately 0.1 to 0.3 Gbit/ mm2 .
  • 3D NAND memory is used, for example, for storage.
  • Storage has a function of holding data that needs to be stored for a long time and various programs used in a processing unit. Therefore, storage requires a larger memory capacity and a higher memory density than an operating speed.
  • the memory density of a memory device used for storage is approximately 0.6 to 6.0 Gbit/ mm2 .
  • a storage device has a high operating speed and is capable of retaining data for a long period of time.
  • a storage device is suitable as a storage device located in a boundary area 901 that includes both the hierarchical level where the cache is located and the hierarchical level where the main memory is located.
  • a storage device is also suitable as a storage device located in a boundary area 902 that includes both the hierarchical level where the main memory is located and the hierarchical level where the storage is located.
  • a storage device is suitable for both the hierarchical level where main memory is located and the hierarchical level where storage is located. Further, a storage device according to one aspect of the present invention is suitable for the hierarchical level where cache is located.
  • Figure 23B shows various hierarchical levels of storage devices different from those shown in Figure 23A.
  • FIG. 23B from the top layer, a memory embedded as a register in an arithmetic processing device such as a CPU, an SRAM used as a cache, and a memory device 300 according to one embodiment of the present invention are shown.
  • the memory device 300 according to one embodiment of the present invention can be used for the cache, main memory, and storage. Note that when a high-speed memory of 1 GHz or more is required as the cache, the cache is embedded in an arithmetic processing device such as a CPU.
  • the memory device 300 including a memory element can be applied to, for example, memory devices of various electronic devices (e.g., information terminals, computers, smartphones, e-book terminals, digital still cameras, video cameras, recording and playback devices, navigation systems, game consoles, etc.). It can also be used in image sensors, IoT (Internet of Things), healthcare-related devices, etc. Note that here, the term "computer” includes tablet computers, notebook computers, and desktop computers, as well as large computers such as server systems.
  • FIGS. 24A to 24J each illustrate an electronic device including an electronic component 4700 including a memory device according to one embodiment of the present invention.
  • [mobile phone] 24A is a mobile phone (smartphone), which is a type of information terminal.
  • the information terminal 5500 includes a housing 5510, a display unit 5511, and an electronic component 4700.
  • a touch panel is provided on the display unit 5511, and a button is provided on the housing 5510.
  • the information terminal 5500 can store temporary files (e.g., cache when using a web browser) generated when an application is executed in an electronic component 4700 including a storage device according to one embodiment of the present invention.
  • temporary files e.g., cache when using a web browser
  • [Wearable devices] 24B illustrates an information terminal 5900, which is an example of a wearable terminal.
  • the information terminal 5900 includes a housing 5901, a display portion 5902, operation switches 5903 and 5904, a band 5905, the electronic components 4700, and the like.
  • the wearable terminal can store temporary files generated when an application is executed in an electronic component 4700 including a memory device according to one embodiment of the present invention.
  • the desktop information terminal 5300 includes a main body 5301 of the information terminal, a display unit 5302, a keyboard 5303, and electronic components 4700.
  • the desktop information terminal 5300 can store temporary files generated when an application is executed in an electronic component 4700 that includes a storage device according to one embodiment of the present invention.
  • a smartphone, a wearable terminal, and a desktop information terminal are shown as examples of electronic devices in FIGS. 24A to 24C, respectively, but information terminals other than smartphones, wearable terminals, and desktop information terminals can also be applied.
  • information terminals other than smartphones, wearable terminals, and desktop information terminals include PDAs (Personal Digital Assistants), notebook information terminals, and workstations.
  • [electric appliances] 24D illustrates an electric refrigerator-freezer 5800 as an example of an electric appliance.
  • the electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator compartment door 5802, a freezer compartment door 5803, and electronic components 4700.
  • the electric refrigerator-freezer 5800 is an electric refrigerator-freezer compatible with IoT.
  • a storage device can be applied to an electric refrigerator-freezer 5800.
  • the electric refrigerator-freezer 5800 can transmit and receive information such as ingredients stored in the electric refrigerator-freezer 5800 and the expiration date of the ingredients to an information terminal or the like via the Internet or the like.
  • the electric refrigerator-freezer 5800 can store a temporary file generated when transmitting the information in an electronic component 4700 including a storage device according to one embodiment of the present invention.
  • an electric refrigerator-freezer has been described as an electrical appliance, but other electrical appliances include, for example, vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, induction cookers, water servers, air conditioners and other heating and cooling appliances, washing machines, dryers, and audiovisual equipment.
  • [Gaming consoles] 24E shows a portable game machine 5200, which is an example of a game machine.
  • the portable game machine 5200 includes a housing 5201, a display portion 5202, a button 5203, an electronic component 4700, and the like.
  • FIG. 24F illustrates a stationary game machine 7500, which is an example of a game machine.
  • the stationary game machine 7500 has a main body 7520, electronic components 4700, and a controller 7522.
  • the controller 7522 can be connected to the main body 7520 wirelessly or by wire.
  • the controller 7522 can include a display unit that displays game images, a touch panel and stick that serve as an input interface other than buttons, a rotary knob, a sliding knob, and the like.
  • the shape of the controller 7522 is not limited to the shape shown in FIG. 24F, and the shape of the controller 7522 may be changed in various ways depending on the genre of the game.
  • a controller with a trigger as a button and a shape imitating a gun can be used.
  • a controller with a shape imitating a musical instrument, a musical device, or the like can be used.
  • a stationary game console may not use a controller, but may instead be equipped with a camera, depth sensor, microphone, etc., and be operated by the game player's gestures, voice, etc.
  • the images from the above-mentioned game machines can be output by display devices such as television sets, personal computer displays, game displays, and head-mounted displays.
  • a storage device By applying a storage device according to one embodiment of the present invention to the portable game machine 5200 or the stationary game machine 7500, it is possible to realize a portable game machine 5200 or a stationary game machine 7500 with low power consumption.
  • the reduction in power consumption leads to a reduction in heat generation from the circuit, and therefore the influence of heat generation on the circuit itself, peripheral circuits, and modules is reduced.
  • the electronic component 4700 of the portable game console 5200 or the stationary game console 7500 can store temporary files and the like necessary for calculations that occur during game execution.
  • FIG. 24E shows a portable game machine
  • FIG. 24F shows a stationary game machine for home use.
  • electronic devices according to one embodiment of the present invention are not limited to this. Examples of electronic devices according to one embodiment of the present invention include arcade game machines installed in entertainment facilities (game centers, amusement parks, etc.) and pitching machines for batting practice installed in sports facilities.
  • the storage device described in the above embodiment can be applied to a moving object such as an automobile and the vicinity of the driver's seat of the automobile.
  • Figure 24G shows an automobile 5700, which is an example of a moving object.
  • the automobile 5700 has electronic components 4700.
  • an instrument panel Around the driver's seat of the automobile 5700, there is an instrument panel that provides various information such as driving speed, engine RPM, mileage, remaining fuel, gear status, and air conditioning settings.
  • a display device that shows this information.
  • the electronic component 4700 including a storage device can hold information necessary for an automatic driving system of the automobile 5700, a system that provides road guidance, hazard prediction, and the like. Information such as road guidance and hazard prediction may be displayed on the display device of the automobile 5700. Furthermore, the electronic component 4700 including a storage device according to one embodiment of the present invention may hold image capture information from a driving recorder installed in the automobile 5700.
  • moving bodies are not limited to automobiles.
  • moving bodies can also include trains, monorails, ships, and flying bodies (helicopters, unmanned aerial vehicles (drones), airplanes, and rockets).
  • FIG. 24H illustrates a digital camera 6240 as an example of an imaging device.
  • the digital camera 6240 includes a housing 6241, a display unit 6242, an operation switch 6243, a shutter button 6244, an electronic component 4700, and the like, and a detachable lens 6246 is attached to the digital camera 6240.
  • the digital camera 6240 is configured such that the lens 6246 can be detached from the housing 6241 and replaced, but the lens 6246 and the housing 6241 may be integrated.
  • the digital camera 6240 may be configured such that a strobe device, a viewfinder, and the like can be separately attached.
  • the electronic component 4700 including a memory device By applying the electronic component 4700 including a memory device according to one embodiment of the present invention to the digital camera 6240, it is possible to realize a digital camera 6240 with low power consumption.
  • the reduction in power consumption leads to a reduction in heat generation from the circuit, and therefore the influence of heat generation on the circuit itself, peripheral circuits, and modules is reduced.
  • FIG. 24I illustrates a video camera 6300, which is an example of an imaging device.
  • the video camera 6300 includes a first housing 6301, a second housing 6302, a display unit 6303, an operation switch 6304, a lens 6305, a connection unit 6306, an electronic component 4700, and the like.
  • the operation switch 6304 and the lens 6305 are provided in the first housing 6301, and the display unit 6303 is provided in the second housing 6302.
  • the first housing 6301 and the second housing 6302 are connected by a connection unit 6306, and the angle between the first housing 6301 and the second housing 6302 can be changed by the connection unit 6306.
  • the image on the display unit 6303 may be switched according to the angle between the first housing 6301 and the second housing 6302 at the connection unit 6306.
  • the video camera 6300 can store temporary files generated during encoding.
  • FIG. 24J is a schematic cross-sectional view showing an example of an ICD.
  • An ICD main body 5400 includes at least a battery 5401, an electronic component 4700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, a wire 5403 to the right ventricle, and the electronic component 4700.
  • the ICD body 5400 is placed in the body by surgery, and the two wires are passed through the subclavian vein 5405 and superior vena cava 5406 of the human body so that one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium.
  • the ICD main body 5400 functions as a pacemaker and paces the heart when the heart rate falls outside a specified range. If the heart rate does not improve through pacing (fast ventricular tachycardia or ventricular fibrillation, for example), treatment is provided by administering an electric shock.
  • pacing fast ventricular tachycardia or ventricular fibrillation, for example
  • the ICD main body 5400 must constantly monitor the heart rate to perform appropriate pacing and electric shocks. For this reason, the ICD main body 5400 has a sensor for detecting the heart rate.
  • the ICD main body 5400 can also store heart rate data acquired by the sensor, the number of times pacing treatment has been performed, the time, etc., in the electronic component 4700 including a memory device according to one aspect of the present invention.
  • the antenna 5404 can receive power, which is then charged into the battery 5401.
  • the ICD main body 5400 also has multiple batteries, which can increase safety. Specifically, even if some of the batteries in the ICD main body 5400 become unusable, the remaining batteries can continue to function, so the ICD main body 5400 also functions as an auxiliary power source.
  • an antenna that can transmit physiological signals may be provided, and a system may be configured to monitor cardiac activity such that physiological signals such as pulse rate, respiratory rate, heart rate, and body temperature can be confirmed on an external monitor device.
  • [Calculator] 25A is an example of a large-scale computer.
  • the computer 5600 includes a rack 5610 and a plurality of rack-mounted computers 5620 stored therein.
  • the computer 5620 can have the configuration shown in the perspective view of FIG. 25B, for example.
  • the computer 5620 has a motherboard 5630, which has multiple slots 5631 and multiple connection terminals.
  • a PC card 5621 is inserted into the slot 5631.
  • the PC card 5621 has connection terminals 5623, 5624, and 5625, each of which is connected to the motherboard 5630.
  • the PC card 5621 shown in FIG. 25C is an example of a processing board equipped with a CPU, a GPU, a storage device, and the like.
  • the PC card 5621 has a board 5622.
  • the board 5622 also has a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629.
  • FIG. 25C illustrates semiconductor devices other than the semiconductor device 5626, the semiconductor device 5627, and the semiconductor device 5628, but for those semiconductor devices, the following description of the semiconductor device 5626, the semiconductor device 5627, and the semiconductor device 5628 may be referred to.
  • connection terminal 5629 has a shape that allows it to be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • An example of the standard for the connection terminal 5629 is PCIe.
  • Connection terminals 5623, 5624, and 5625 can be interfaces for supplying power to PC card 5621, inputting signals, and the like. They can also be interfaces for outputting signals calculated by PC card 5621, and the like. Examples of standards for connection terminals 5623, 5624, and 5625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). In addition, when a video signal is output from connection terminals 5623, 5624, and 5625, examples of standards for each include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and the semiconductor device 5626 and the board 5622 can be electrically connected by inserting the terminal into a socket (not shown) provided on the board 5622.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 can be electrically connected to the terminals by, for example, reflow soldering to wiring on the board 5622.
  • Examples of the semiconductor device 5627 include a field programmable gate array (FPGA), a GPU, and a CPU.
  • FPGA field programmable gate array
  • GPU GPU
  • CPU central processing unit
  • the electronic component 4700 including a memory device according to one embodiment of the present invention can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has multiple terminals, and the semiconductor device 5628 and the board 5622 can be electrically connected to the terminals by, for example, reflow soldering to wiring on the board 5622.
  • An example of the semiconductor device 5628 is a memory device.
  • the electronic component 4700 including the memory device of one embodiment of the present invention can be used as the semiconductor device 5628.
  • the computer 5600 can also function as a parallel computer. By using the computer 5600 as a parallel computer, it is possible to perform large-scale calculations required for, for example, artificial intelligence learning and inference.
  • the electronic devices can be made smaller, faster, or consume less power.
  • the memory device according to one embodiment of the present invention consumes less power, so heat generation from the circuit can be reduced. Therefore, adverse effects of the heat on the circuit itself, peripheral circuits, and modules can be reduced.
  • electronic devices that operate stably even in high-temperature environments can be realized. Therefore, the reliability of the electronic devices can be improved.

Landscapes

  • Mram Or Spin Memory Techniques (AREA)

Abstract

The present invention provides a memory element with a reduced occupied area. A vertical-channel transistor is used as a transistor connected to a memory element, namely a spin-orbit torque magnetic tunnel junction element (SOT-MTJ element). Using a vertical-channel transistor allows for a reduction in the area occupied by the memory element. In addition, by using an oxide semiconductor in the channel formation region of the vertical-channel transistor, write and read operations are stable even in high-temperature environments, and a highly reliable memory element can be achieved.

Description

記憶素子Memory element

本発明の一態様は、記憶素子に関する。 One aspect of the present invention relates to a memory element.

なお本発明の一態様は、上記の技術分野に限定されない。本明細書で開示する発明の技術分野は、物、動作方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、撮像装置、記憶装置(メモリ)、信号処理装置、センサ、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、またはそれらの検査方法を一例として挙げることができる。 Note that one aspect of the present invention is not limited to the above technical field. The technical field of the invention disclosed in this specification relates to an object, an operating method, or a manufacturing method. Alternatively, one aspect of the present invention relates to a process, a machine, manufacture, or a composition of matter. Therefore, more specifically, examples of the technical field of one aspect of the present invention disclosed in this specification include semiconductor devices, display devices, light-emitting devices, power storage devices, imaging devices, memory devices (memories), signal processing devices, sensors, processors, electronic devices, systems, driving methods thereof, manufacturing methods thereof, and inspection methods thereof.

近年、扱われるデータ量の増大に伴って、より大きな記憶容量を有する記憶装置が求められている。単位面積あたりの記憶容量を増加させるためには、3D NAND型の記憶装置などのように、記憶素子(「メモリセル」ともいう。)を積層して形成することが有効である(特許文献1乃至特許文献3参照)。記憶素子を積層して設けることにより、単位面積当たりの記憶容量をメモリセルの積層数に応じて増加させることができる。 In recent years, with the increase in the amount of data being handled, there is a demand for storage devices with larger storage capacities. In order to increase the storage capacity per unit area, it is effective to form memory elements (also called "memory cells") in a stacked manner, such as in 3D NAND type storage devices (see Patent Documents 1 to 3). By stacking memory elements, the storage capacity per unit area can be increased according to the number of stacked memory cells.

米国特許出願公開2011/0065270号明細書US Patent Application Publication No. 2011/0065270 米国特許出願公開2016/0149004号明細書US Patent Application Publication No. 2016/0149004 米国特許出願公開2013/0069052号明細書US Patent Application Publication No. 2013/0069052

単位面積あたりの記憶容量を増加させるためには、記憶素子の積層だけでなく、1つの記憶素子の占有面積の低減も重要である。 In order to increase the memory capacity per unit area, it is important not only to stack memory elements, but also to reduce the area occupied by each memory element.

本発明の一態様は、占有面積が低減された記憶素子を提供することを課題の一とする。または、信頼性が高い記憶素子を提供することを課題の一とする。または、消費電力が少ない記憶素子を提供することを課題の一とする。または、新規な記憶素子を提供することを課題の一とする。または、占有面積が低減された記憶装置を提供することを課題の一とする。または、記憶密度(単位面積当たりの記憶容量)が高い記憶装置を提供することを課題の一とする。または、信頼性が高い記憶装置を提供することを課題の一とする。または、消費電力が少ない記憶装置を提供することを課題の一とする。または、新規な記憶装置を提供することを課題の一とする。 An object of one embodiment of the present invention is to provide a memory element with a reduced occupancy area. Alternatively, an object of the present invention is to provide a memory element with high reliability. Alternatively, an object of the present invention is to provide a memory element with low power consumption. Alternatively, an object of the present invention is to provide a new memory element. Alternatively, an object of the present invention is to provide a memory device with a reduced occupancy area. Alternatively, an object of the present invention is to provide a memory device with high memory density (storage capacity per unit area). Alternatively, an object of the present invention is to provide a memory device with high reliability. Alternatively, an object of the present invention is to provide a memory device with low power consumption. Alternatively, an object of the present invention is to provide a new memory device.

なお、本発明の一態様に係る課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお、他の課題とは、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書または図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題および他の課題の全てを解決する必要はない。本発明の一態様は、上記列挙した課題および他の課題のうち、少なくとも一つの課題を解決するものである。 Note that the problems associated with one embodiment of the present invention are not limited to the problems listed above. The problems listed above do not preclude the existence of other problems. Note that the other problems are problems not mentioned in this section, which will be described below. Problems not mentioned in this section can be derived by a person skilled in the art from the description in the specification or drawings, etc., and can be appropriately extracted from these descriptions. Note that one embodiment of the present invention does not need to solve all of the problems listed above and other problems. One embodiment of the present invention solves at least one of the problems listed above and other problems.

(1)本発明の一態様は、導電層と、磁気トンネル接合素子と、トランジスタと、を有し、磁気トンネル接合素子は導電層と重ねて設けられ、トランジスタのソース電極またはドレイン電極の一方は、導電層と電気的に接続され、トランジスタのソース電極またはドレイン電極の一方は、絶縁層の上の領域を有し、トランジスタのソース電極またはドレイン電極の他方は、絶縁層の下の領域を有し、トランジスタのチャネル形成領域は、絶縁層の側面に沿う領域を有する記憶素子である。 (1) One aspect of the present invention is a memory element having a conductive layer, a magnetic tunnel junction element, and a transistor, the magnetic tunnel junction element being provided overlapping the conductive layer, one of the source electrode or drain electrode of the transistor being electrically connected to the conductive layer, one of the source electrode or drain electrode of the transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the transistor having a region below the insulating layer, and the channel formation region of the transistor having a region along the side of the insulating layer.

また、(1)において、磁気トンネル接合素子の抵抗値は、トランジスタを介して導電層に供給される電流の向きで制御される。トランジスタの半導体層として酸化物半導体を用いることが好ましい。また、導電層はトランジスタの半導体層と接する領域を有してもよい。 In addition, in (1), the resistance value of the magnetic tunnel junction element is controlled by the direction of the current supplied to the conductive layer via the transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the transistor. In addition, the conductive layer may have a region in contact with the semiconductor layer of the transistor.

(2)本発明の別の一態様は、導電層と、磁気トンネル接合素子と、第1トランジスタと、第2トランジスタと、を有し、磁気トンネル接合素子は導電層と重ねて設けられ、第1トランジスタのソース電極またはドレイン電極の一方は、少なくとも導電層の磁気トンネル接合素子と重なる領域を介して、第2トランジスタのソース電極またはドレイン電極の一方と電気的に接続され、第1トランジスタのソース電極またはドレイン電極の一方は、絶縁層の上の領域を有し、第1トランジスタのソース電極またはドレイン電極の他方は、絶縁層の下の領域を有し、第1トランジスタのチャネル形成領域は、絶縁層の第1側面に沿う領域を有し、第2トランジスタのソース電極またはドレイン電極の一方は、絶縁層の上の領域を有し、第2トランジスタのソース電極またはドレイン電極の他方は、絶縁層の下の領域を有し、第2トランジスタのチャネル形成領域は、絶縁層の第2側面に沿う領域を有する記憶素子である。 (2) Another aspect of the present invention is a memory element having a conductive layer, a magnetic tunnel junction element, a first transistor, and a second transistor, the magnetic tunnel junction element being provided overlapping the conductive layer, one of the source electrode or drain electrode of the first transistor being electrically connected to one of the source electrode or drain electrode of the second transistor through at least a region of the conductive layer that overlaps with the magnetic tunnel junction element, one of the source electrode or drain electrode of the first transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the first transistor having a region below the insulating layer, the channel formation region of the first transistor having a region along a first side of the insulating layer, one of the source electrode or drain electrode of the second transistor having a region above the insulating layer, the other of the source electrode or drain electrode of the second transistor having a region below the insulating layer, and the channel formation region of the second transistor having a region along a second side of the insulating layer.

また、(2)において、磁気トンネル接合素子の抵抗値は、第1トランジスタまたは第2トランジスタを介して導電層に供給される電流の向きで制御される。トランジスタの半導体層として酸化物半導体を用いることが好ましい。第1トランジスタの半導体層として酸化物半導体を用いることが好ましい。第2トランジスタの半導体層として酸化物半導体を用いることが好ましい。導電層は、第1トランジスタの半導体層と接する領域を有してもよく、第2トランジスタの半導体層と接する領域を有してもよい。 In addition, in (2), the resistance value of the magnetic tunnel junction element is controlled by the direction of the current supplied to the conductive layer via the first transistor or the second transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the first transistor. It is preferable to use an oxide semiconductor as the semiconductor layer of the second transistor. The conductive layer may have a region in contact with the semiconductor layer of the first transistor, or may have a region in contact with the semiconductor layer of the second transistor.

本発明の一態様によれば、占有面積が低減された記憶素子を提供できる。または、信頼性が高い記憶素子を提供できる。または、消費電力が少ない記憶素子を提供できる。または、新規な記憶素子を提供できる。または、占有面積が低減された記憶装置を提供できる。または、記憶密度が高い記憶装置を提供できる。または、信頼性が高い記憶装置を提供できる。または、消費電力が少ない記憶装置を提供できる。または、新規な記憶装置を提供できる。 According to one aspect of the present invention, a memory element with a reduced occupancy area can be provided. Or a memory element with high reliability can be provided. Or a memory element with low power consumption can be provided. Or a new memory element can be provided. Or a memory device with a reduced occupancy area can be provided. Or a memory device with high memory density can be provided. Or a memory device with high reliability can be provided. Or a memory device with low power consumption can be provided. Or a new memory device can be provided.

なお、本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。従って本発明の一態様は、上記列挙した効果を有さない場合もある。なお、他の効果とは、以下の記載で述べる、本項目で言及していない効果である。他の効果は、当業者であれば明細書または図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。本発明の一態様は、上記列挙した効果、および他の効果のうち、少なくとも一つの効果を有するものである。 Note that the effects of one embodiment of the present invention are not limited to the effects listed above. The effects listed above do not preclude the existence of other effects. Therefore, one embodiment of the present invention may not have the effects listed above. Note that the other effects are effects not mentioned in this section, which will be described below. Those skilled in the art can derive the other effects from the description in the specification or drawings, etc., and can be appropriately extracted from these descriptions. One embodiment of the present invention has at least one of the effects listed above and other effects.

図1Aは、記憶素子の平面図である。図1Bは、記憶素子の断面図である。
図2A乃至図2Cは、記憶素子の等価回路図である。
図3Aは、記憶素子の平面図である。図3Bは、記憶素子の断面図である。
図4Aは、記憶素子の断面図である。図4Bは、記憶素子の等価回路図である。
図5Aは、記憶素子の平面図である。図5Bは、記憶素子の断面図である。
図6Aは、記憶素子の平面図である。図6Bは、記憶素子の断面図である。
図7Aは、記憶素子の平面図である。図7Bは、記憶素子の断面図である。
図8Aは、記憶素子の断面図である。図8Bは、記憶素子の等価回路図である。
図9Aは、記憶素子の平面図である。図9Bは、記憶素子の断面図である。
図10は、記憶素子の断面図である。
図11Aは、記憶素子の平面図である。図11Bは、記憶素子の断面図である。
図12Aは、記憶素子の平面図である。図12Bは、記憶素子の断面図である。
図13Aは、記憶素子の断面図である。図13Bは、記憶素子の等価回路図である。
図14は、記憶素子の断面図である。
図15は、記憶素子の断面図である。
図16A乃至図16Eは、トランジスタの構成例を説明する図である。
図17Aおよび図17Bは、トランジスタの構成例を説明する図である。
図18は、トランジスタの構成例を説明する図である。
図19Aおよび図19Bは、トランジスタの構成例を説明する図である。
図20A乃至図20Cは、記憶装置を説明する図である。
図21は、記憶装置の構成例を説明する図である。
図22は、半導体装置の斜視図である。
図23Aおよび図23Bは、各種の記憶装置を階層ごとに示す図である。
図24A乃至図24Jは、電子機器の一例を説明する斜視図、または、模式図である。
図25A乃至図25Cは、電子機器の一例を説明する図である。
1A is a plan view of a memory element, and FIG IB is a cross-sectional view of the memory element.
2A to 2C are equivalent circuit diagrams of a memory element.
3A and 3B are plan and cross-sectional views of a memory element.
4A is a cross-sectional view of a memory element, and FIG 4B is an equivalent circuit diagram of the memory element.
5A and 5B are plan and cross-sectional views of a memory element.
6A and 6B are plan and cross-sectional views of a memory element.
7A and 7B are plan and cross-sectional views of a memory element.
8A is a cross-sectional view of a memory element, and FIG 8B is an equivalent circuit diagram of the memory element.
9A and 9B are plan and cross-sectional views of a memory element.
FIG. 10 is a cross-sectional view of a memory element.
11A is a plan view of a memory element, and FIG 11B is a cross-sectional view of the memory element.
12A is a plan view of a memory element, and FIG 12B is a cross-sectional view of the memory element.
13A is a cross-sectional view of a memory element, and FIG 13B is an equivalent circuit diagram of the memory element.
FIG. 14 is a cross-sectional view of a memory element.
FIG. 15 is a cross-sectional view of a memory element.
16A to 16E are diagrams illustrating examples of the structure of transistors.
17A and 17B are diagrams illustrating examples of the configuration of a transistor.
FIG. 18 is a diagram illustrating an example of the configuration of a transistor.
19A and 19B are diagrams illustrating examples of the configuration of a transistor.
20A to 20C are diagrams illustrating a storage device.
FIG. 21 is a diagram illustrating an example of the configuration of a storage device.
FIG. 22 is a perspective view of the semiconductor device.
23A and 23B are diagrams showing various storage devices by hierarchical level.
24A to 24J are perspective views or schematic diagrams illustrating an example of an electronic device.
25A to 25C are diagrams illustrating an example of an electronic device.

以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。 The following describes the embodiments with reference to the drawings. However, it will be readily understood by those skilled in the art that the embodiments can be implemented in many different ways, and that the form and details can be modified in various ways without departing from the spirit and scope of the invention. Therefore, the present invention should not be interpreted as being limited to the description of the embodiments below.

本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップ、パッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置および電子機器等は、それ自体が半導体装置であり、かつ、半導体装置を有している場合がある。 In this specification, a semiconductor device is a device that utilizes semiconductor characteristics, and refers to a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having such a circuit, etc. It also refers to any device that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip including an integrated circuit, and an electronic component that houses a chip in a package are examples of semiconductor devices. Also, memory devices, display devices, light-emitting devices, lighting devices, electronic devices, etc. may themselves be semiconductor devices and may have semiconductor devices.

本明細書に係る図面等において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもその大きさもしくは縦横比などに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状、値などに限定されない。 In the drawings and the like relating to this specification, the size, layer thickness, or area may be exaggerated for clarity. Therefore, the size or aspect ratio is not necessarily limited. Note that the drawings are schematic representations of ideal examples, and the shapes, values, etc. shown in the drawings are not limited.

なお、実施の形態の発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。また、図面を理解しやすくするため、斜視図、平面図などにおいて、一部の構成要素の記載を省略している場合がある。 In the configuration of the invention in the embodiment, the same parts or parts having similar functions are denoted by the same reference numerals in different drawings, and repeated explanations may be omitted. Also, when referring to similar functions, the same hatching pattern may be used and no particular reference numeral may be given. Also, to make the drawings easier to understand, the illustrations of some components may be omitted in perspective views, plan views, etc.

本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書などの実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲などにおいて「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲などにおいて省略することもありうる。 In this specification, the ordinal numbers "first," "second," and "third" are used to avoid confusion between components. Therefore, they do not limit the number of components. Furthermore, they do not limit the order of the components. For example, a component referred to as "first" in one embodiment of this specification may be a component referred to as "second" in another embodiment or in the claims. Also, for example, a component referred to as "first" in one embodiment of this specification may be omitted in another embodiment or in the claims.

本明細書等において、「上に」、「下に」、「上方に」、「下方に」などの配置を示す語句は、構成要素同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成要素同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。 In this specification, terms indicating position such as "above," "below," "upward," and "below" may be used for convenience in describing the positional relationship between components with reference to the drawings. Furthermore, the positional relationship between components changes as appropriate depending on the direction in which each configuration is depicted. Therefore, terms are not limited to those described in the specification, and can be rephrased appropriately depending on the situation. For example, the expression "insulator located on the upper surface of a conductor" can be rephrased as "insulator located on the lower surface of a conductor" by rotating the orientation of the drawing shown by 180 degrees.

また、「上」および「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。 Furthermore, the terms "above" and "below" do not limit the positional relationship of components to being directly above or below and in direct contact. For example, the expression "electrode B on insulating layer A" does not require that electrode B be formed in direct contact with insulating layer A, and does not exclude the inclusion of other components between insulating layer A and electrode B.

本明細書等において、「重なる」などの用語は、構成要素の積層順などの状態を限定するものではない。例えば、「絶縁層Aに重なる電極B」の表現であれば、絶縁層Aの上に電極Bが形成されている状態に限らず、絶縁層Aの下に電極Bが形成されている状態、絶縁層Aの右側(もしくは左側)に電極Bが形成されている状態などを除外しない。 In this specification, terms such as "overlap" do not limit the state of the stacking order of components. For example, the expression "electrode B overlapping insulating layer A" does not limit the state in which electrode B is formed on insulating layer A, but does not exclude the state in which electrode B is formed under insulating layer A, the state in which electrode B is formed on the right (or left) side of insulating layer A, etc.

本明細書等において、「隣接」および「近接」の用語は、構成要素が直接接していることを限定するものではない。例えば、「絶縁層Aに隣接する電極B」の表現であれば、絶縁層Aと電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bの間に他の構成要素を含むものを除外しない。 In this specification, the terms "adjacent" and "close to" do not limit components to being in direct contact. For example, the expression "electrode B adjacent to insulating layer A" does not require that insulating layer A and electrode B are formed in direct contact, and does not exclude the inclusion of other components between insulating layer A and electrode B.

本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。または、場合によっては、または、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」または「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。または、「導電体」という用語を、「導電層」または「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁層」または「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。または、「絶縁体」という用語を、「絶縁層」または「絶縁膜」という用語に変更することが可能な場合がある。 In this specification and the like, the terms "film" and "layer" can be interchanged depending on the situation. For example, the term "conductive layer" may be changed to the term "conductive film". Or, for example, the term "insulating film" may be changed to the term "insulating layer". Or, depending on the situation, it is possible to replace the terms "film" and "layer" with other terms without using the terms. For example, the term "conductive layer" or "conductive film" may be changed to the term "conductor". Or, the term "conductor" may be changed to the term "conductive layer" or "conductive film". Or, for example, the term "insulating layer" or "insulating film" may be changed to the term "insulator". Or, the term "insulator" may be changed to the term "insulating layer" or "insulating film".

なお、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書などでは、明示する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。 Note that voltage refers to the potential difference between two points, and potential refers to the electrostatic energy (electrical potential energy) of a unit charge in an electrostatic field at a certain point. However, in general, the potential difference between the potential at a certain point and a reference potential (e.g., ground potential) is simply called potential or voltage, and potential and voltage are often used as synonyms. For this reason, in this specification and elsewhere, potential may be read as voltage, and voltage may be read as potential, unless otherwise specified.

本明細書等において「電極」「配線」「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」または「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」「配線」「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」または「端子」の一部とすることができ、また、例えば、「端子」は「配線」または「電極」の一部とすることができる。また、「電極」「配線」「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。 In this specification, terms such as "electrode", "wiring", and "terminal" do not limit the functions of these components. For example, "electrode" may be used as a part of "wiring", and vice versa. Furthermore, the terms "electrode" and "wiring" include cases where multiple "electrodes" or "wirings" are formed integrally. Furthermore, for example, "terminal" may be used as a part of "wiring" or "electrode", and vice versa. Furthermore, the term "terminal" includes cases where multiple "electrodes", "wiring", "terminals", etc. are formed integrally. Therefore, for example, an "electrode" can be a part of a "wiring" or "terminal", and for example, a "terminal" can be a part of a "wiring" or "electrode". Furthermore, terms such as "electrode", "wiring", and "terminal" may be replaced with terms such as "region" depending on the circumstances.

本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、または、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。 In this specification, terms such as "wiring", "signal line", and "power line" may be interchangeable depending on the circumstances. For example, the term "wiring" may be changed to "signal line". For example, the term "wiring" may be changed to "power line". The opposite is also true, and terms such as "signal line" and "power line" may be changed to "wiring". Terms such as "power line" may be changed to "signal line". The opposite is also true, and terms such as "signal line" may be changed to "power line". The term "potential" applied to the wiring may be changed to "signal" depending on the circumstances. The opposite is also true, and terms such as "signal" may be changed to "potential".

本明細書において、XとYとが接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、を含むものとする。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層等)であるとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも含むものとする。 In this specification, when it is explicitly stated that X and Y are connected, this includes the case where X and Y are electrically connected and the case where X and Y are functionally connected. Here, X and Y are objects (e.g., devices, elements, circuits, wiring, electrodes, terminals, conductive films, layers, etc.). Therefore, this is not limited to a specific connection relationship, for example, a connection relationship shown in a figure or text, but also includes connection relationships other than those shown in a figure or text.

XとYとが電気的に接続されている場合の一例としては、等価回路においてXとYとが直接接続されている場合と、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、インダクタ、抵抗素子等)が、XとYとの間に1個以上接続されている場合がある。 Examples of cases where X and Y are electrically connected include cases where X and Y are directly connected in the equivalent circuit, and cases where one or more elements (e.g., switches, transistors, inductors, resistive elements, etc.) that enable the electrical connection between X and Y are connected between X and Y.

XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路等)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路等)、電位レベル変換回路(電源回路(昇圧回路、降圧回路等)、信号の電位レベルを変えるレベルシフタ回路等)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量等を大きくできる回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路等)、信号生成回路、記憶回路、制御回路等)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。 As an example of a case where X and Y are functionally connected, one or more circuits that enable the functional connection between X and Y (for example, logic circuits (inverters, NAND circuits, NOR circuits, etc.), signal conversion circuits (DA conversion circuits, AD conversion circuits, gamma correction circuits, etc.), potential level conversion circuits (power supply circuits (boosting circuits, step-down circuits, etc.), level shifter circuits that change the potential level of a signal, etc.), voltage sources, current sources, switching circuits, amplifier circuits (circuits that can increase the signal amplitude or current amount, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, memory circuits, control circuits, etc.) can be connected between X and Y. As an example, even if another circuit is sandwiched between X and Y, if a signal output from X is transmitted to Y, X and Y are considered to be functionally connected.

本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」、「均一」(これらの同意語を含む)などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。 In this specification and elsewhere, when referring to counting values and measurement values, terms such as "same," "equal," "uniform" (including synonyms thereof) are used, and unless otherwise specified, this includes an error of plus or minus 20%.

また、本明細書に係る図面等において、X方向、Y方向、およびZ方向を示す矢印を付す場合がある。本明細書等において、「X方向」とはX軸に沿う方向であり、明示する場合を除き順方向と逆方向を区別しない場合がある。「Y方向」および「Z方向」についても同様である。また、X方向、Y方向、およびZ方向は、それぞれが互いに交差する方向である。より具体的には、X方向、Y方向、およびZ方向は、それぞれが互いに直交する方向である。 In addition, in the drawings and the like relating to this specification, arrows indicating the X direction, Y direction, and Z direction may be used. In this specification, the "X direction" is the direction along the X axis, and the forward direction and the reverse direction may not be distinguished unless explicitly stated. The same applies to the "Y direction" and "Z direction." In addition, the X direction, Y direction, and Z direction are directions that intersect with each other. More specifically, the X direction, Y direction, and Z direction are directions that are perpendicular to each other.

本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“A”、“b”、“_1”、“[n]”、“[m,n]”などの識別用の符号を付記して記載する場合がある。例えば、開口162を、開口162a、開口162b、開口162cなどと示す場合がある。 In this specification and the like, when the same reference numeral is used for multiple elements, particularly when it is necessary to distinguish between them, the reference numeral may be accompanied by an identifying reference numeral such as "A", "b", "_1", "[n]", "[m, n]", etc. For example, opening 162 may be referred to as opening 162a, opening 162b, opening 162c, etc.

(実施の形態1)
本発明の一態様に係る記憶素子100Aについて説明する。図1Aおよび図1Bは、半導体装置の一種である記憶素子100Aの構成例を説明する模式図である。図1Aは、記憶素子100Aの平面図である。また、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図である。
(Embodiment 1)
A memory element 100A according to one embodiment of the present invention will be described. Figures 1A and 1B are schematic diagrams illustrating a configuration example of the memory element 100A, which is a type of semiconductor device. Figure 1A is a plan view of the memory element 100A. Figure 1B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in Figure 1A.

本発明の一態様に係る記憶素子100Aは、抵抗変化素子600と、トランジスタ233と、トランジスタ234と、を有する。抵抗変化素子600は、MTJ(Magnetic tunnel junciton)素子(「磁気トンネル接合素子」ともいう)620と、導電層610と、を有する。 The memory element 100A according to one embodiment of the present invention includes a resistance change element 600, a transistor 233, and a transistor 234. The resistance change element 600 includes an MTJ (Magnetic Tunnel Junction) element (also called a "magnetic tunnel junction element") 620 and a conductive layer 610.

MTJ素子は、スピントルク注入(STT:Spin Transfer Torque)方式でデータの読み書きを行う2端子型の記憶素子(「STT−MTJ素子」ともいう)と、スピン軌道トルク(SOT:Spin Orbit Torque)方式でデータの読み書きを行う3端子型の記憶素子(「SOT−MTJ素子」ともいう)が知られている。SOT−MTJ素子はSTT−MTJ素子よりも端子数が多いため、STT−MTJ素子よりも占有面積が大きくなる。その一方で、SOT−MTJ素子は、STT−MTJ素子よりも書き込み速度が速く、書き換え耐性が高い。 MTJ elements are known as two-terminal memory elements (also called "STT-MTJ elements") that use the spin torque transfer (STT) method to read and write data, and three-terminal memory elements (also called "SOT-MTJ elements") that use the spin orbit torque (SOT) method to read and write data. SOT-MTJ elements have more terminals than STT-MTJ elements, and therefore occupy a larger area than STT-MTJ elements. On the other hand, SOT-MTJ elements have a faster write speed and higher rewrite resistance than STT-MTJ elements.

なお、複数のSTT−MTJ素子を用いて構成された記憶装置は、STT−MRAM(Spin Transfer Torque−Magnetoresistive Random Access Memory)と呼ばれる。また、複数のSOT−MTJ素子を用いて構成された記憶装置は、SOT−MRAM(Spin Orbit Torque−Magnetoresistive Random Access Memory)と呼ばれる。 Note that a memory device constructed using multiple STT-MTJ elements is called an STT-MRAM (Spin Transfer Torque-Magnetoresistive Random Access Memory). A memory device constructed using multiple SOT-MTJ elements is called an SOT-MRAM (Spin Orbit Torque-Magnetoresistive Random Access Memory).

発明の一態様に係る記憶素子100Aは、SOT−MTJ素子として機能する3端子型の記憶素子である。本発明の一態様に係る記憶素子100Aは不揮発性の記憶素子であり、電力供給が停止しても、書き込まれたデータを長期間保持できる。 The memory element 100A according to one embodiment of the invention is a three-terminal type memory element that functions as an SOT-MTJ element. The memory element 100A according to one embodiment of the invention is a non-volatile memory element, and can retain written data for a long period of time even if the power supply is stopped.

<記憶素子の構成例>
図1Aおよび図1Bに示した記憶素子100Aの構成例について説明する。記憶素子100Aは、絶縁層154の上に、導電層155aおよび導電層155bを有する。また、絶縁層154、導電層155a、および導電層155bの上に、絶縁層157を有し、絶縁層157の上に絶縁層158を有し、絶縁層158の上に絶縁層159を有する。なお、絶縁層157、絶縁層158、および絶縁層159をまとめて、絶縁層156またはスペーサ層と呼ぶ場合がある。また、絶縁層159の上に導電層161aおよび導電層161bを有する。
<Configuration example of memory element>
A configuration example of the memory element 100A shown in Figures 1A and 1B will be described. The memory element 100A has a conductive layer 155a and a conductive layer 155b over an insulating layer 154. In addition, an insulating layer 157 is provided over the insulating layer 154, the conductive layer 155a, and the conductive layer 155b, an insulating layer 158 is provided over the insulating layer 157, and an insulating layer 159 is provided over the insulating layer 158. Note that the insulating layer 157, the insulating layer 158, and the insulating layer 159 may be collectively referred to as an insulating layer 156 or a spacer layer. In addition, a conductive layer 161a and a conductive layer 161b are provided over the insulating layer 159.

また、Z方向から見て導電層155aの一部と重なる領域において、導電層161a、絶縁層159、絶縁層158、および絶縁層157に開口162aを有する。また、Z方向から見て導電層155bの一部と重なる領域において、導電層161b、絶縁層159、絶縁層158、および絶縁層157に開口162bを有する。 In addition, in a region overlapping with a portion of conductive layer 155a when viewed from the Z direction, conductive layer 161a, insulating layer 159, insulating layer 158, and insulating layer 157 have opening 162a. In addition, in a region overlapping with a portion of conductive layer 155b when viewed from the Z direction, conductive layer 161b, insulating layer 159, insulating layer 158, and insulating layer 157 have opening 162b.

また、開口162a上に開口162aを覆う半導体層163aを有し、開口162b上に開口162bを覆う半導体層163bを有する。 In addition, a semiconductor layer 163a is provided on the opening 162a to cover the opening 162a, and a semiconductor layer 163b is provided on the opening 162b to cover the opening 162b.

半導体層163aは、開口162aの底部と重なる領域と、開口162aの側面と重なる領域と、を有する。半導体層163aは、開口162aにおいて絶縁層156の側面と接する領域を有する。すなわち、半導体層163aは、開口162aにおいて、絶縁層157の側面と接する領域と、絶縁層158の側面と接する領域と、絶縁層159の側面と接する領域と、を有する。 The semiconductor layer 163a has a region that overlaps with the bottom of the opening 162a and a region that overlaps with the side of the opening 162a. The semiconductor layer 163a has a region that contacts the side of the insulating layer 156 in the opening 162a. That is, the semiconductor layer 163a has a region that contacts the side of the insulating layer 157, a region that contacts the side of the insulating layer 158, and a region that contacts the side of the insulating layer 159 in the opening 162a.

また、半導体層163aは導電層155aと接する領域と、導電層161aと接する領域を有する。すなわち、半導体層163aの一部が導電層155aと電気的に接続し、半導体層163aの他の一部が導電層161aと電気的に接続する。また、半導体層163aは、導電層161aの端部を越えて延在する領域を有してもよい(図1A参照)。 The semiconductor layer 163a also has a region in contact with the conductive layer 155a and a region in contact with the conductive layer 161a. That is, a part of the semiconductor layer 163a is electrically connected to the conductive layer 155a, and another part of the semiconductor layer 163a is electrically connected to the conductive layer 161a. The semiconductor layer 163a may also have a region that extends beyond the end of the conductive layer 161a (see FIG. 1A).

半導体層163bは、開口162bの底部と重なる領域と、開口162bの側面と重なる領域と、を有する。半導体層163bは、開口162bにおいて絶縁層156の側面と接する領域を有する。すなわち、半導体層163bは、絶縁層157の側面と接する領域と、絶縁層158の側面と接する領域と、絶縁層159の側面と接する領域と、を有する。 The semiconductor layer 163b has a region that overlaps with the bottom of the opening 162b and a region that overlaps with the side of the opening 162b. The semiconductor layer 163b has a region that contacts the side of the insulating layer 156 in the opening 162b. That is, the semiconductor layer 163b has a region that contacts the side of the insulating layer 157, a region that contacts the side of the insulating layer 158, and a region that contacts the side of the insulating layer 159.

また、半導体層163bは導電層155bと接する領域と、導電層161bと接する領域を有する。すなわち、半導体層163bの一部が導電層155bと電気的に接続し、半導体層163bの他の一部が導電層161bと電気的に接続する。また、半導体層163bは、導電層161bの端部を越えて延在する領域を有してもよい(図1A参照)。 The semiconductor layer 163b has a region in contact with the conductive layer 155b and a region in contact with the conductive layer 161b. That is, a part of the semiconductor layer 163b is electrically connected to the conductive layer 155b, and another part of the semiconductor layer 163b is electrically connected to the conductive layer 161b. The semiconductor layer 163b may also have a region that extends beyond the end of the conductive layer 161b (see FIG. 1A).

また、絶縁層159、導電層161a、導電層161b、半導体層163a、および半導体層163bの上に絶縁層164を有する。また、絶縁層164の上に導電層165aおよび導電層165bを有する。導電層165aは開口162aと重なる領域を有し、当該領域において、絶縁層164および半導体層163aを介して、開口162aの側面および底部と重なる領域を有する。導電層165bは開口162bと重なる領域を有し、当該領域において、絶縁層164および半導体層163bを介して開口162bの側面および底部と重なる領域を有する。なお、図1Aおよび図1Bに示す構成例では、導電層165の一部が導電層165aとして機能し、他の一部が導電層165bとして機能する例を示している。よって、本明細書において、導電層165に、導電層165aおよび導電層165bを含む場合がある。 In addition, an insulating layer 164 is provided on the insulating layer 159, the conductive layer 161a, the conductive layer 161b, the semiconductor layer 163a, and the semiconductor layer 163b. In addition, a conductive layer 165a and a conductive layer 165b are provided on the insulating layer 164. The conductive layer 165a has a region that overlaps with the opening 162a, and in this region, the conductive layer 165a has a region that overlaps with the side and bottom of the opening 162a through the insulating layer 164 and the semiconductor layer 163a. The conductive layer 165b has a region that overlaps with the opening 162b, and in this region, the conductive layer 165b has a region that overlaps with the side and bottom of the opening 162b through the insulating layer 164 and the semiconductor layer 163b. Note that the configuration example shown in Figures 1A and 1B shows an example in which a part of the conductive layer 165 functions as the conductive layer 165a, and another part functions as the conductive layer 165b. Therefore, in this specification, the conductive layer 165 may include the conductive layer 165a and the conductive layer 165b.

半導体層163の膜厚は、1nm以上20nm以下が好ましく、3nm以上15nm以下がより好ましく、5nm以上12nm以下がより好ましく、5nm以上10nm以下がさらに好ましい。絶縁層164の膜厚は、0.5nm以上15nm以下とするのが好ましく、0.5nm以上12nm以下とするのがより好ましく、0.5nm以上10nm以下とすることがさらに好ましい。絶縁層164は、少なくとも一部において、上記のような膜厚の領域を有していればよい。 The thickness of the semiconductor layer 163 is preferably 1 nm or more and 20 nm or less, more preferably 3 nm or more and 15 nm or less, more preferably 5 nm or more and 12 nm or less, and even more preferably 5 nm or more and 10 nm or less. The thickness of the insulating layer 164 is preferably 0.5 nm or more and 15 nm or less, more preferably 0.5 nm or more and 12 nm or less, and even more preferably 0.5 nm or more and 10 nm or less. It is sufficient that at least a part of the insulating layer 164 has a region with the above-mentioned thickness.

また、絶縁層164の上に絶縁層166を有する。なお、導電層165a、導電層165b、および絶縁層166の上面の位置(Z方向の位置)は、一致または略一致させることが好ましい。例えば、化学機械研磨処理(CMP(Chemical Mechanical Polishing)処理)などを行うことにより、導電層165および絶縁層166の上面の位置を一致または略一致させることができる。導電層165および絶縁層166の上面の位置を一致または略一致させることで、この後形成される絶縁層および導電層の被覆性を高めることができる。 In addition, an insulating layer 166 is provided on the insulating layer 164. It is preferable that the positions (positions in the Z direction) of the upper surfaces of the conductive layer 165a, the conductive layer 165b, and the insulating layer 166 are aligned or approximately aligned. For example, the positions of the upper surfaces of the conductive layer 165 and the insulating layer 166 can be aligned or approximately aligned by performing a chemical mechanical polishing process (CMP (Chemical Mechanical Polishing) process). By aligning or approximately aligning the positions of the upper surfaces of the conductive layer 165 and the insulating layer 166, the coverage of the insulating layer and the conductive layer formed later can be improved.

また、導電層165および絶縁層166の上に絶縁層167を有し、絶縁層167の上に導電層610を有する。また、Z方向から見て導電層161aと重なる領域において、絶縁層167、絶縁層166、および絶縁層164を貫通する導電層168aを有する。また、Z方向から見て導電層161bと重なる領域において、絶縁層167、絶縁層166、および絶縁層164を貫通する導電層168bを有する。導電層168aは導電層610の第1領域611と電気的に接続され、導電層168bは導電層610の第2領域612と電気的に接続される。よって、導電層610は、導電層168aを介して導電層161aと電気的に接続する。また、導電層610は、導電層168bを介して導電層161bと電気的に接続する。導電層168aおよび導電層168bは、それぞれがコンタクトプラグとして機能する。 Also, it has an insulating layer 167 on the conductive layer 165 and the insulating layer 166, and a conductive layer 610 on the insulating layer 167. Also, in the region overlapping with the conductive layer 161a when viewed from the Z direction, it has a conductive layer 168a penetrating the insulating layer 167, the insulating layer 166, and the insulating layer 164. Also, in the region overlapping with the conductive layer 161b when viewed from the Z direction, it has a conductive layer 168b penetrating the insulating layer 167, the insulating layer 166, and the insulating layer 164. The conductive layer 168a is electrically connected to the first region 611 of the conductive layer 610, and the conductive layer 168b is electrically connected to the second region 612 of the conductive layer 610. Therefore, the conductive layer 610 is electrically connected to the conductive layer 161a through the conductive layer 168a. Also, the conductive layer 610 is electrically connected to the conductive layer 161b through the conductive layer 168b. Conductive layer 168a and conductive layer 168b each function as a contact plug.

また、Z方向から見て、導電層610上の、導電層168aと導電層168bに重ならない領域にMTJ素子620を有する。なお、導電層610上のMTJ素子620が重なる領域を第3領域613と言う場合がある。第3領域613は、第1領域611と第2領域612の間に位置する。より具体的には、Z方向から見て、第1領域611から第2領域612までを導電層610に沿って結ぶ経路の途中に、第3領域613を有する。 In addition, when viewed from the Z direction, the conductive layer 610 has an MTJ element 620 in a region that does not overlap with the conductive layers 168a and 168b. The region on the conductive layer 610 where the MTJ element 620 overlaps is sometimes called a third region 613. The third region 613 is located between the first region 611 and the second region 612. More specifically, when viewed from the Z direction, the third region 613 is located midway along the path that connects the first region 611 to the second region 612 along the conductive layer 610.

MTJ素子620は、第1磁性層601と、絶縁層602と、第2磁性層603と、を有する。第1磁性層601は導電層610と重ねて設けられている。また絶縁層602は第1磁性層601上に設けられ、第2磁性層603は絶縁層602上に設けられている。第1磁性層601と第2磁性層603は、絶縁層602を介して互いに重なる領域を有する。 The MTJ element 620 has a first magnetic layer 601, an insulating layer 602, and a second magnetic layer 603. The first magnetic layer 601 is provided overlapping a conductive layer 610. The insulating layer 602 is provided on the first magnetic layer 601, and the second magnetic layer 603 is provided on the insulating layer 602. The first magnetic layer 601 and the second magnetic layer 603 have an overlapping region with the insulating layer 602 interposed therebetween.

また、絶縁層167、導電層610、およびMTJ素子620の上に絶縁層614を有する。また、絶縁層614の上に絶縁層615を有する。第2磁性層603と重なる領域において、絶縁層615および絶縁層614を貫通する導電層616を有する。 In addition, an insulating layer 614 is provided on the insulating layer 167, the conductive layer 610, and the MTJ element 620. In addition, an insulating layer 615 is provided on the insulating layer 614. In the region overlapping with the second magnetic layer 603, a conductive layer 616 is provided that penetrates the insulating layer 615 and the insulating layer 614.

また、絶縁層615および導電層616の上に導電層617を有する。導電層617は導電層616を介して第2磁性層603と電気的に接続される。導電層616は、コンタクトプラグとして機能する。 In addition, a conductive layer 617 is provided on the insulating layer 615 and the conductive layer 616. The conductive layer 617 is electrically connected to the second magnetic layer 603 via the conductive layer 616. The conductive layer 616 functions as a contact plug.

導電層165は、記憶素子100Aへのデータを書き込み、および記憶素子100Aからのデータの読み出しを制御するための配線WLとして機能する。導電層165に供給される電位によって、トランジスタ233およびトランジスタ234の、オン状態とオフ状態を制御できる。導電層617は、データの読み出しを行うための配線RBLとして機能する。導電層155aはデータの書き込みを行うための配線WBLaとして機能し、導電層155bはデータの書き込みを行うための配線WBLbとして機能する。配線WBLaと配線WBLbの間に流れる電流の向きによって、記憶素子100Aに書き込むデータが決定される。 The conductive layer 165 functions as a wiring WL for writing data to the memory element 100A and controlling the reading of data from the memory element 100A. The on and off states of the transistors 233 and 234 can be controlled by the potential supplied to the conductive layer 165. The conductive layer 617 functions as a wiring RBL for reading data. The conductive layer 155a functions as a wiring WBLa for writing data, and the conductive layer 155b functions as a wiring WBLb for writing data. The data to be written to the memory element 100A is determined by the direction of the current flowing between the wiring WBLa and the wiring WBLb.

記憶素子100Aは、Z方向から見て、トランジスタ233、抵抗変化素子600、およびトランジスタ234のそれぞれが導電層617と重なる領域を有し、一直線上に並んで配置されている(図1A参照)。トランジスタ233、抵抗変化素子600、およびトランジスタ234と導電層617を重ねて設けることで、記憶素子100Aの占有面積を低減できる。 When viewed from the Z direction, the memory element 100A has a transistor 233, a resistance change element 600, and a transistor 234, each of which has an area overlapping with the conductive layer 617, and which are arranged in a straight line (see FIG. 1A). By overlapping the transistor 233, the resistance change element 600, and the transistor 234 with the conductive layer 617, the area occupied by the memory element 100A can be reduced.

導電層161aはトランジスタ233のソース電極またはドレイン電極の一方として機能し、導電層155aはトランジスタ233のソース電極またはドレイン電極の他方として機能する。より具体的には、導電層161aの半導体層163aと接する領域が、トランジスタ233のソース電極またはドレイン電極の一方として機能する。また、導電層155aの半導体層163aと接する領域が、トランジスタ233のソース電極またはドレイン電極の他方として機能する。 The conductive layer 161a functions as one of the source electrode or drain electrode of the transistor 233, and the conductive layer 155a functions as the other of the source electrode or drain electrode of the transistor 233. More specifically, a region of the conductive layer 161a in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. In addition, a region of the conductive layer 155a in contact with the semiconductor layer 163a functions as the other of the source electrode or drain electrode of the transistor 233.

導電層161bはトランジスタ234のソース電極またはドレイン電極の一方として機能し、導電層155bはトランジスタ234のソース電極またはドレイン電極の他方として機能する。より具体的には、導電層161bの半導体層163bと接する領域が、トランジスタ234のソース電極またはドレイン電極の一方として機能する。また、導電層155bの半導体層163bと接する領域が、トランジスタ234のソース電極またはドレイン電極の他方として機能する。 The conductive layer 161b functions as one of the source electrode or drain electrode of the transistor 234, and the conductive layer 155b functions as the other of the source electrode or drain electrode of the transistor 234. More specifically, a region of the conductive layer 161b in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234. In addition, a region of the conductive layer 155b in contact with the semiconductor layer 163b functions as the other of the source electrode or drain electrode of the transistor 234.

トランジスタ233およびトランジスタ234は、縦型トランジスタ(チャネル長方向が、Z方向、高さ方向、またはトランジスタの被形成面に対して垂直な方向の成分を有するトランジスタ)として機能する。なお、縦型トランジスタについては、追って詳細に説明する。 Transistor 233 and transistor 234 function as vertical transistors (transistors whose channel length direction has a component in the Z direction, the height direction, or a direction perpendicular to the surface on which the transistor is formed). Vertical transistors will be described in detail later.

また、トランジスタ233およびトランジスタ234として、チャネル形成領域に酸化物半導体を有するトランジスタ(「OSトランジスタ」ともいう)を用いることが好ましい。OSトランジスタはオフ電流が著しく少ないため、記憶素子100Aが待機状態(データの書き込みまたはデータの読み出しが行われない状態)のときの漏れ電流を著しく低減できる。よって、記憶素子100Aの消費電力を低減できる。また、複数の記憶素子100Aをマトリクス状に配置して記憶装置に用いる場合、記憶素子100Aを構成するトランジスタにOSトランジスタを用いることで、複数の記憶素子100A間の漏れ電流に起因するクロストークが生じにくくなる。よって、当該記憶装置の信頼性を高めることができる。 Furthermore, it is preferable to use transistors having an oxide semiconductor in a channel formation region (also referred to as "OS transistors") as the transistors 233 and 234. Since the off-state current of an OS transistor is extremely small, leakage current can be significantly reduced when the memory element 100A is in a standby state (a state in which data is not written or read). Therefore, the power consumption of the memory element 100A can be reduced. Furthermore, when multiple memory elements 100A are arranged in a matrix and used in a memory device, crosstalk due to leakage current between the multiple memory elements 100A is less likely to occur by using OS transistors as transistors constituting the memory elements 100A. Therefore, the reliability of the memory device can be improved.

また、記憶素子100Aは、導電層165と導電層617のそれぞれがX方向に延在している。また、記憶素子100Aは、導電層155aと導電層155bのそれぞれがY方向に延在している。配線WLとして機能する導電層165は、配線WBLaまたは配線WBLbの少なくとも一方と交差することが好ましい。また、配線RBLとして機能する導電層617は、配線WBLaとして機能する導電層155aまたは配線WBLbとして機能する導電層155bの少なくとも一方と交差することが好ましい。なお、配線WBLaと配線WBLbは、互いに平行して延在していなくてもよい。 In addition, in the memory element 100A, the conductive layer 165 and the conductive layer 617 each extend in the X direction. In addition, in the memory element 100A, the conductive layer 155a and the conductive layer 155b each extend in the Y direction. The conductive layer 165 functioning as the wiring WL preferably intersects with at least one of the wiring WBLa and the wiring WBLb. In addition, the conductive layer 617 functioning as the wiring RBL preferably intersects with at least one of the conductive layer 155a functioning as the wiring WBLa and the conductive layer 155b functioning as the wiring WBLb. Note that the wiring WBLa and the wiring WBLb do not have to extend parallel to each other.

図2Aに記憶素子100Aの等価回路図を示す。 Figure 2A shows an equivalent circuit diagram of memory element 100A.

<抵抗変化素子>
抵抗変化素子600の構成について説明する。前述した通り、抵抗変化素子600は、MTJ素子620および導電層610で構成される。導電層610として、スピンホール効果が起きる材料を用いる。具体的には、当該金属材料としては、スピン軌道相互作用が強い金属材料を用いることが好ましい。当該金属材料としては、例えば、タングステン、白金、タンタルなどが挙げられる。また、ルテニウム酸化物を用いてもよい。また、導電層610として、スピンホール効果を起こすトポロジカル絶縁体を有してもよく、この場合、ビスマスとアンチモンの合金、ビスマスとセレンの合金などを用いてもよい。
<Resistance change element>
The configuration of the variable resistance element 600 will be described. As described above, the variable resistance element 600 is composed of an MTJ element 620 and a conductive layer 610. A material that generates the spin Hall effect is used as the conductive layer 610. Specifically, it is preferable to use a metal material that has a strong spin-orbit interaction as the metal material. Examples of the metal material include tungsten, platinum, and tantalum. Ruthenium oxide may also be used. The conductive layer 610 may also have a topological insulator that generates the spin Hall effect, and in this case, an alloy of bismuth and antimony, an alloy of bismuth and selenium, or the like may be used.

第1磁性層601は、MTJ素子620における自由層として機能する。第1磁性層601は、第2磁性層603の磁化方向と平行、または反平行となる磁気モーメントの状態をとることができる。第1磁性層601に用いる強磁性体としては、例えば、当該強磁性体の磁化が、小さいスピン流で反転する材料であることが好ましい。また、熱エネルギーで磁化反転が起こりにくい材料であることが好ましい。第1磁性層601に用いる強磁性体としては、例えば、鉄、コバルト、ニッケルから選ばれた一種、または二種以上の合金を用いることができる。例えば、コバルトと鉄とホウ素の合金(CoFeB)を用いることができる。また、マンガンとガリウムの合金(MgGa)、マンガンとゲルマニウム(MgGe)の合金などが挙げられる。 The first magnetic layer 601 functions as a free layer in the MTJ element 620. The first magnetic layer 601 can have a magnetic moment state that is parallel or antiparallel to the magnetization direction of the second magnetic layer 603. The ferromagnetic material used in the first magnetic layer 601 is preferably, for example, a material whose magnetization is reversed by a small spin current. It is also preferable that the material is one in which magnetization reversal is unlikely to occur due to thermal energy. The ferromagnetic material used in the first magnetic layer 601 can be, for example, an alloy of one or more of iron, cobalt, and nickel. For example, an alloy of cobalt, iron, and boron (CoFeB) can be used. Other examples include an alloy of manganese and gallium (MgGa) and an alloy of manganese and germanium (MgGe).

第1磁性層601の磁気モーメントは、導電層610で発生するスピン流によって、スピントルクを受ける。第1磁性層601の磁気モーメントは、当該スピントルクがしきい値を超えることで磁化方向が反転する。つまり、導電層610の第1領域611から第2領域612に電流を流し、当該電流の向きによって、第1磁性層601の磁化方向を決定できる。例えば、第1磁性層601と第2磁性層603の磁化方向が平行である場合をデータ“0”とし、反平行である場合をデータ“1”とすることで、1bitのデータをMTJ素子620に記録できる。 The magnetic moment of the first magnetic layer 601 is subjected to a spin torque by the spin current generated in the conductive layer 610. The magnetization direction of the magnetic moment of the first magnetic layer 601 is reversed when the spin torque exceeds a threshold value. In other words, a current is passed from the first region 611 to the second region 612 of the conductive layer 610, and the magnetization direction of the first magnetic layer 601 can be determined by the direction of the current. For example, 1 bit of data can be recorded in the MTJ element 620 by setting the magnetization directions of the first magnetic layer 601 and the second magnetic layer 603 to be parallel as data "0" and antiparallel as data "1."

絶縁層602は、MTJ素子620におけるトンネル絶縁層として機能する。絶縁層602は、第1磁性層601と第2磁性層603との間に電圧が印加されることによって、トンネル電流を流すことができる。このとき、第1磁性層601の磁気モーメントの向きによって、MTJ素子620の電気抵抗値が変化する。具体的には、第1磁性層601と第2磁性層603のそれぞれの磁化方向が平行であるか、反平行であるかによって、MTJ素子620の電気抵抗値が変化する。このような現象をトンネル磁気抵抗効果(TMR効果)という。TMR効果の大きさは、磁化方向が平行である時の抵抗値と反平行である時の抵抗値の差を、磁化方向が平行である時の抵抗値で割った値(磁気抵抗比。「MR比」ともいう。)で表される。なお、MTJ素子はTMR効果を利用した素子であることから、TMR素子と呼ばれる場合がある。 The insulating layer 602 functions as a tunnel insulating layer in the MTJ element 620. The insulating layer 602 can pass a tunnel current by applying a voltage between the first magnetic layer 601 and the second magnetic layer 603. At this time, the electrical resistance value of the MTJ element 620 changes depending on the direction of the magnetic moment of the first magnetic layer 601. Specifically, the electrical resistance value of the MTJ element 620 changes depending on whether the magnetization directions of the first magnetic layer 601 and the second magnetic layer 603 are parallel or antiparallel. This phenomenon is called the tunnel magnetoresistance effect (TMR effect). The magnitude of the TMR effect is expressed as the difference between the resistance value when the magnetization directions are parallel and antiparallel divided by the resistance value when the magnetization directions are parallel (magnetic resistance ratio, also called "MR ratio"). Note that the MTJ element is sometimes called a TMR element because it is an element that utilizes the TMR effect.

トンネル絶縁層として機能する絶縁層602としては、例えば、酸化マグネシウム、酸化アルミニウム等を用いることができる。特に、結晶性を有する酸化マグネシウムを用いることが好ましい。トンネル絶縁層に結晶性を有する酸化マグネシウムを用いることで、高いMR比の実現が容易となる。 For example, magnesium oxide, aluminum oxide, etc. can be used as the insulating layer 602 that functions as a tunnel insulating layer. In particular, it is preferable to use magnesium oxide that has crystallinity. By using magnesium oxide that has crystallinity for the tunnel insulating layer, it becomes easier to achieve a high MR ratio.

第2磁性層603は、MTJ素子620における固定層(または、「参照層」ともいう。)として機能する。第2磁性層603は、強磁性体を有する。なお、第2磁性層603の強磁性体は、第1磁性層601の強磁性体と異なり、磁化方向が固定されているものとする。第2磁性層603に用いる強磁性体として、例えば、第1磁性層601と同様の強磁性体を用いることができる。 The second magnetic layer 603 functions as a fixed layer (or a "reference layer") in the MTJ element 620. The second magnetic layer 603 has a ferromagnetic material. Note that the ferromagnetic material of the second magnetic layer 603 has a fixed magnetization direction, unlike the ferromagnetic material of the first magnetic layer 601. The ferromagnetic material used for the second magnetic layer 603 can be, for example, the same ferromagnetic material as the first magnetic layer 601.

なお、MTJ素子620に含まれる強磁性体材料およびトンネル絶縁層材料は、MTJ素子620のMR比が大きくなるように、組み合わせることが好ましい。 Note that it is preferable to combine the ferromagnetic material and the tunnel insulating layer material contained in the MTJ element 620 so as to increase the MR ratio of the MTJ element 620.

<記憶素子の動作例>
ここで、図2Aの等価回路図を用いて、記憶素子100Aにおける、データの書き込み方法の一例、および読み出し方法の一例を説明する。なお、配線WBLbには、一例として、低レベル電位(電位L)が与えられているものとする。
<Example of operation of memory element>
Here, an example of a method for writing data to and reading data from the memory element 100A will be described with reference to the equivalent circuit diagram in FIG. 2A. Note that, as an example, a low-level potential (potential L) is applied to the wiring WBLb.

[データ書き込み]
記憶素子100Aにデータを書き込む場合は、まず、配線WLに高レベル電位(電位H)を与えてトランジスタ233およびトランジスタ234をオン状態にする。次に、配線WBLbにレベル電位(電位L)を与え、配線WBLaに、電位Lよりも高い電位である第1電位を与える。これにより、導電層610の第1領域611から第2領域612に、電位差に応じた電流が流れる。すると、導電層610にスピン流が発生し、当該スピン流によって第1磁性層601の磁化方向が決定される。また、配線WBLaに電位Lを与え、配線WBLbに、第1電位を与えると、導電層610に流れる電流の向きが逆になる。すると、第1磁性層601の磁化方向も逆になる。
[Data Write]
When writing data to the memory element 100A, first, a high level potential (potential H) is applied to the wiring WL to turn on the transistors 233 and 234. Next, a level potential (potential L) is applied to the wiring WBLb, and a first potential, which is a potential higher than the potential L, is applied to the wiring WBLa. As a result, a current according to the potential difference flows from the first region 611 to the second region 612 of the conductive layer 610. Then, a spin current is generated in the conductive layer 610, and the magnetization direction of the first magnetic layer 601 is determined by the spin current. Also, when the potential L is applied to the wiring WBLa and the first potential is applied to the wiring WBLb, the direction of the current flowing through the conductive layer 610 is reversed. Then, the magnetization direction of the first magnetic layer 601 is also reversed.

このように、第1磁性層601の強磁性体の磁化方向は、導電層610に流れる電流の向きによって制御される。導電層610に流れる電流の向きを制御することによって、データ“0”またはデータ“1”を選択して記憶素子100Aに書き込むことができる。 In this way, the magnetization direction of the ferromagnetic material in the first magnetic layer 601 is controlled by the direction of the current flowing through the conductive layer 610. By controlling the direction of the current flowing through the conductive layer 610, data "0" or data "1" can be selected and written to the memory element 100A.

[データ読み出し]
記憶素子100Aからデータを読み出すとき、配線WBLaおよび配線WBLbに電位Lを与える。また、配線WLに電位Hを与えてトランジスタ233およびトランジスタ234をオン状態にする。次に、配線RBLに電位Lよりも高く、第1電位よりも低い第2電位を与える。すると、配線RBLと配線WBLaの間および配線RBLと配線WBLbの間に電流が流れる。このとき、第1磁性層601と第2磁性層603のそれぞれの磁化方向が平行であるか、反平行であるかによって、MTJ素子620の電気抵抗値が変化する。よって、MTJ素子620の絶縁層602に流れるトンネル電流の量も変化する。配線RBL、配線WBLa、または配線WBLbのうち、少なくとも1つに流れる電流量を測定することで、記憶素子100Aに書き込まれたデータを読み出すことができる。
[Data Read]
When data is read from the memory element 100A, a potential L is applied to the wiring WBLa and the wiring WBLb. A potential H is also applied to the wiring WL to turn on the transistors 233 and 234. Next, a second potential higher than the potential L and lower than the first potential is applied to the wiring RBL. Then, a current flows between the wiring RBL and the wiring WBLa and between the wiring RBL and the wiring WBLb. At this time, the electric resistance value of the MTJ element 620 changes depending on whether the magnetization directions of the first magnetic layer 601 and the second magnetic layer 603 are parallel or antiparallel. Therefore, the amount of tunnel current flowing through the insulating layer 602 of the MTJ element 620 also changes. By measuring the amount of current flowing through at least one of the wiring RBL, the wiring WBLa, and the wiring WBLb, the data written in the memory element 100A can be read.

MTJ素子620は第1磁性層601の磁化方向によって電気抵抗値が変化する。よって、図2Bの等価回路図のように、MTJ素子620を可変抵抗として表すことができる。 The electrical resistance value of the MTJ element 620 changes depending on the magnetization direction of the first magnetic layer 601. Therefore, the MTJ element 620 can be represented as a variable resistor, as shown in the equivalent circuit diagram of FIG. 2B.

<記憶素子の変形例1>
図2Cの等価回路図で示すように、トランジスタ234を設けない構成にしてもよい。図3Aおよび図3Bに、記憶素子100Aからトランジスタ234を除いた記憶素子100Bの構成例を示す。図3Aは、記憶素子100Bの平面図である。また、図3Bは、図3AにA1−A2の一点鎖線で示す部位の断面図である。図2Cの等価回路図は、記憶素子100Bの等価回路図である。説明の繰り返しを低減するため、主に記憶素子100Aと異なる点について説明する。
<Modification 1 of memory element>
As shown in the equivalent circuit diagram of Fig. 2C, a configuration may be adopted in which the transistor 234 is not provided. Figs. 3A and 3B show a configuration example of a memory element 100B in which the transistor 234 is removed from the memory element 100A. Fig. 3A is a plan view of the memory element 100B. Fig. 3B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in Fig. 3A. The equivalent circuit diagram of Fig. 2C is an equivalent circuit diagram of the memory element 100B. In order to reduce repetition of explanation, differences from the memory element 100A will be mainly described.

なお、本実施の形態では、記憶素子100Bとしてトランジスタ234を除いてトランジスタ233を残す構成を示しているが、トランジスタ233を除いてトランジスタ234を残す構成であっても構わない。 Note that, although this embodiment shows a configuration in which transistor 234 is removed and transistor 233 is left as memory element 100B, a configuration in which transistor 233 is removed and transistor 234 is left may also be used.

図3Aおよび図3Bに示す記憶素子100Bは、記憶素子100Aから導電層155b、開口162b、および半導体層163bを除いた構成を有する。記憶素子100Bは記憶素子100Aよりも構成要素が少ないため、記憶素子の占有面積をさらに低減できる。 The memory element 100B shown in Figures 3A and 3B has a configuration in which the conductive layer 155b, the opening 162b, and the semiconductor layer 163b are removed from the memory element 100A. Since the memory element 100B has fewer components than the memory element 100A, the area occupied by the memory element can be further reduced.

記憶素子100Bでは、導電層161bを介して、導電層610の第2領域612に基準電位(例えば、接地電位(GND)または共通電位(COM)など)が与えられる。データの書き込み時は、書き込むデータの値に応じて導電層610に流れる電流の向きを変える必要がある。すなわち、配線WBLaに基準電位よりも高い電位もしくは低い電位を与える必要がある。このため、記憶素子100Bでは、記憶素子100Aよりも駆動に必要な電源が増えてしまう。また、基準電位が固定電位である場合、トランジスタ233のソースとドレインの間に印加される電圧の振幅が、記憶素子100Aよりも大きくなる。よって、トランジスタ233としてOSトランジスタを用いることが好ましい。OSトランジスタは、ソースとドレインとの間の耐圧(ドレイン耐圧ともいう)が高い。トランジスタ233にOSトランジスタを用いることで、高電圧で駆動する場合においても動作が安定し、高い信頼性が得られる。 In the memory element 100B, a reference potential (for example, a ground potential (GND) or a common potential (COM)) is applied to the second region 612 of the conductive layer 610 through the conductive layer 161b. When writing data, it is necessary to change the direction of the current flowing through the conductive layer 610 depending on the value of the data to be written. That is, it is necessary to apply a potential higher or lower than the reference potential to the wiring WBLa. For this reason, the memory element 100B requires more power supply for driving than the memory element 100A. In addition, when the reference potential is a fixed potential, the amplitude of the voltage applied between the source and drain of the transistor 233 is larger than that of the memory element 100A. Therefore, it is preferable to use an OS transistor as the transistor 233. The OS transistor has a high withstand voltage between the source and drain (also referred to as a drain withstand voltage). By using an OS transistor as the transistor 233, the operation is stable even when driven at a high voltage, and high reliability is obtained.

配線RBLとして機能する導電層617に、選択用のトランジスタを接続することで、任意の配線RBLを選択して、選択された配線RBLに接続されている記憶素子100Aまたは記憶素子100Bが保持しているデータを読み出すことができる。図4Aに、導電層617にトランジスタ235が電気的に接続された記憶素子の断面構成例を示す。また、図4Bに、当該断面構成例に相当する等価回路図を示す。 By connecting a selection transistor to the conductive layer 617 that functions as the wiring RBL, an arbitrary wiring RBL can be selected and data stored in the memory element 100A or memory element 100B connected to the selected wiring RBL can be read. Figure 4A shows an example of a cross-sectional configuration of a memory element in which a transistor 235 is electrically connected to the conductive layer 617. Figure 4B shows an equivalent circuit diagram corresponding to the example cross-sectional configuration.

図4Aにおいて、導電層617は導電層161cと電気的に接続されている。具体的には、導電層617は導電層632、導電層631、および導電層168cを介して導電層161cと電気的に接続されている。導電層161cはトランジスタ235のソース電極またはドレイン電極の一方として機能する。また、導電層155cはトランジスタ235のソース電極またはドレイン電極の他方として機能する。導電層161cは、導電層161aと同じ材料を用いて同じ工程で同時に形成できる。導電層155cは、導電層155aと同じ材料を用いて同じ工程で同時に形成できる。導電層165cはトランジスタ235のゲート電極として機能する。導電層165cは導電層165aと同じ材料を用いて同じ工程で同時に形成できる。開口162cは開口162aと同様に形成できる。半導体層163cは半導体層163aと同じ材料を用いて同じ工程で同時に形成できる。トランジスタ235は、トランジスタ233と同じ材料を用いて同じ工程で同時に形成できる。 In FIG. 4A, the conductive layer 617 is electrically connected to the conductive layer 161c. Specifically, the conductive layer 617 is electrically connected to the conductive layer 161c through the conductive layer 632, the conductive layer 631, and the conductive layer 168c. The conductive layer 161c functions as one of the source electrode or drain electrode of the transistor 235. The conductive layer 155c functions as the other of the source electrode or drain electrode of the transistor 235. The conductive layer 161c can be formed at the same time as the conductive layer 161a using the same material and in the same process. The conductive layer 155c can be formed at the same time as the conductive layer 155a using the same material and in the same process. The conductive layer 165c functions as the gate electrode of the transistor 235. The conductive layer 165c can be formed at the same time as the conductive layer 165a using the same material and in the same process. The opening 162c can be formed in the same manner as the opening 162a. The semiconductor layer 163c can be formed at the same time as the semiconductor layer 163a using the same material and in the same process. Transistor 235 can be formed at the same time as transistor 233 using the same materials and in the same process.

なお、本明細書において、導電層155a、導電層155b、および導電層155cを導電層155と呼ぶ場合がある。また、本明細書において、導電層161a、導電層161b、および導電層161cを導電層161と呼ぶ場合がある。また、本明細書において、開口162a、開口162b、および開口162cを開口162と呼ぶ場合がある。また、本明細書において、半導体層163a、半導体層163b、および半導体層163cを半導体層163と呼ぶ場合がある。 Note that in this specification, conductive layer 155a, conductive layer 155b, and conductive layer 155c may be referred to as conductive layer 155. Also, in this specification, conductive layer 161a, conductive layer 161b, and conductive layer 161c may be referred to as conductive layer 161. Also, in this specification, opening 162a, opening 162b, and opening 162c may be referred to as opening 162. Also, in this specification, semiconductor layer 163a, semiconductor layer 163b, and semiconductor layer 163c may be referred to as semiconductor layer 163.

絶縁層167の上に導電層631を有する。導電層631は、導電層610と同じ材料を用いて同じ工程で同時に形成できる。導電層632は、絶縁層615および絶縁層614を貫通して設けられている。導電層632は、導電層616と同じ材料を用いて同じ工程で同時に形成できる。導電層168cは、絶縁層167、絶縁層166、および絶縁層164を貫通して設けられている。導電層168cは、導電層168aと同じ材料を用いて同じ工程で同時に形成できる。 A conductive layer 631 is provided on the insulating layer 167. The conductive layer 631 can be formed in the same process and at the same time as the conductive layer 610 using the same material. The conductive layer 632 is provided so as to penetrate the insulating layer 615 and the insulating layer 614. The conductive layer 632 can be formed in the same process and at the same time as the conductive layer 616 using the same material. The conductive layer 168c is provided so as to penetrate the insulating layer 167, the insulating layer 166, and the insulating layer 164. The conductive layer 168c can be formed in the same process and at the same time as the conductive layer 168a using the same material.

<記憶素子の変形例2>
図5Aおよび図5Bに、記憶素子100Cの構成例を示す。記憶素子100Cは、記憶素子100Aの変形例である。図5Aは、記憶素子100Cの平面図である。また、図5Bは、図5AにA1−A2の一点鎖線で示す部位の断面図である。説明の繰り返しを低減するため、主に記憶素子100Aと異なる点について説明する。
<Modification 2 of memory element>
5A and 5B show a configuration example of a memory element 100C. The memory element 100C is a modified example of the memory element 100A. FIG. 5A is a plan view of the memory element 100C. FIG. 5B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 5A. In order to reduce repetition of explanation, differences from the memory element 100A will be mainly described.

記憶素子100Cは、導電層610の一部をトランジスタ233のソース電極またはドレイン電極の一方として用い、導電層610の他の一部をトランジスタ234のソース電極またはドレイン電極の一方として用いる構成を有する。具体的には、導電層610の半導体層163aと接する領域が、トランジスタ233のソース電極またはドレイン電極の一方として機能する。また、導電層610の半導体層163bと接する領域が、トランジスタ234のソース電極またはドレイン電極の一方として機能する。 The memory element 100C has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 233, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 234. Specifically, a region of the conductive layer 610 in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. A region of the conductive layer 610 in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234.

導電層610を、スピンホール効果を生じさせる層としてだけでなく、トランジスタのソース電極またはドレイン電極として機能させることにより、導電層161aおよび導電層161bの形成が不要になる。よって、記憶素子100Cの生産性が向上し、製造コストが低減される。よって、記憶素子100Cを含む半導体装置の生産性が向上し、製造コストが低減される。 By making the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as a source electrode or drain electrode of a transistor, the formation of the conductive layer 161a and the conductive layer 161b is unnecessary. This improves the productivity of the memory element 100C and reduces the manufacturing cost. This improves the productivity of a semiconductor device including the memory element 100C and reduces the manufacturing cost.

なお、記憶素子100Cの構成では、導電層610のトランジスタ233のソース電極またはドレイン電極の一方として用いる領域が、第1領域611として機能する。また、記憶素子100Cの構成では、導電層610のトランジスタ234のソース電極またはドレイン電極の一方として用いる領域が、第2領域612として機能する。 In the configuration of the memory element 100C, a region of the conductive layer 610 used as one of the source electrode or drain electrode of the transistor 233 functions as the first region 611. In addition, in the configuration of the memory element 100C, a region of the conductive layer 610 used as one of the source electrode or drain electrode of the transistor 234 functions as the second region 612.

また、図5Aおよび図5Bに示す記憶素子100Cの構成では、導電層161aおよび導電層161b以外にも、絶縁層166、絶縁層167、導電層168a、導電層168b、および絶縁層164の形成が不要になる。よって、記憶素子100Cの生産性をさらに高めることができる。 In addition, in the configuration of memory element 100C shown in Figures 5A and 5B, in addition to conductive layer 161a and conductive layer 161b, it is not necessary to form insulating layer 166, insulating layer 167, conductive layer 168a, conductive layer 168b, and insulating layer 164. Therefore, the productivity of memory element 100C can be further improved.

また、図5Aおよび図5Bに示す記憶素子100Cの構成では、絶縁層614の一部をトランジスタ233のゲート絶縁層として用い、絶縁層614の他の一部をトランジスタ234のゲート絶縁層として用いている。 In addition, in the configuration of the memory element 100C shown in Figures 5A and 5B, a part of the insulating layer 614 is used as a gate insulating layer for the transistor 233, and another part of the insulating layer 614 is used as a gate insulating layer for the transistor 234.

また、記憶素子100Cは、Z方向から見て導電層165aと重なる領域において、絶縁層615を貫通する導電層618aを有する。また、Z方向から見て導電層165bと重なる領域において、絶縁層615を貫通する導電層618bを有する。導電層618(導電層618aおよび導電層618b)は、導電層616と同じ材料を用いて同じ工程で同時に形成できる。よって、導電層618を形成するための新たな作製工程は生じない。導電層616と同様に、導電層618もコンタクトプラグとして機能する。 In addition, the memory element 100C has a conductive layer 618a that penetrates the insulating layer 615 in a region that overlaps with the conductive layer 165a when viewed from the Z direction. In addition, the memory element 100C has a conductive layer 618b that penetrates the insulating layer 615 in a region that overlaps with the conductive layer 165b when viewed from the Z direction. The conductive layer 618 (conductive layer 618a and conductive layer 618b) can be formed simultaneously in the same process using the same material as the conductive layer 616. Therefore, no new manufacturing process is required to form the conductive layer 618. Like the conductive layer 616, the conductive layer 618 also functions as a contact plug.

また、絶縁層615、導電層618aおよび導電層618bの上に導電層619を有する。導電層619は、導電層617と同じ材料を用いて同じ工程で同時に形成できる。よって、導電層619を形成するための新たな作製工程は生じない。 In addition, a conductive layer 619 is provided over the insulating layer 615, the conductive layer 618a, and the conductive layer 618b. The conductive layer 619 can be formed simultaneously with and in the same process as the conductive layer 617 using the same material. Therefore, no additional manufacturing process is required to form the conductive layer 619.

記憶素子100Aおよび記憶素子100Bでは、Z方向から見て、トランジスタ233、抵抗変化素子600、およびトランジスタ234のそれぞれが一直線上に並んで配置されていたが、トランジスタ233、抵抗変化素子600、およびトランジスタ234のそれぞれは一直線上に並んで配置されなくてもよい。記憶素子100Cは、Z方向から見て、導電層610が屈曲部を有している。図5Aでは、Z方向から見て、導電層610がU字形状になっている。記憶素子100Cは、Z方向から見て、トランジスタ233およびトランジスタ234のそれぞれは、導電層619と重なる領域を有する。また、抵抗変化素子600は導電層617と重なる領域を有する。 In the memory element 100A and the memory element 100B, the transistor 233, the resistance change element 600, and the transistor 234 are arranged in a line when viewed from the Z direction, but the transistor 233, the resistance change element 600, and the transistor 234 do not have to be arranged in a line. In the memory element 100C, the conductive layer 610 has a bent portion when viewed from the Z direction. In FIG. 5A, the conductive layer 610 is U-shaped when viewed from the Z direction. In the memory element 100C, the transistor 233 and the transistor 234 each have an area that overlaps with the conductive layer 619 when viewed from the Z direction. Also, the resistance change element 600 has an area that overlaps with the conductive layer 617.

記憶素子100Cでは、Z方向から見て、導電層165aおよび導電層165bと、導電層617が重ならない。よって、導電層617と導電層165aの間に生じる寄生容量、および導電層617と導電層165bの間に生じる寄生容量が低減される。寄生容量が低減されることによって、消費電力が低減される。また、信号の遅延時間が短くなり動作速度が向上する。 In memory element 100C, when viewed from the Z direction, conductive layer 165a and conductive layer 165b do not overlap conductive layer 617. Therefore, the parasitic capacitance generated between conductive layer 617 and conductive layer 165a, and the parasitic capacitance generated between conductive layer 617 and conductive layer 165b are reduced. By reducing the parasitic capacitance, power consumption is reduced. In addition, the signal delay time is shortened, and the operating speed is improved.

また、図6Aおよび図6Bに示すように、導電層619、導電層618a、および導電層618bの形成を省略してもよい。図6Aは、図5Aと異なる記憶素子100Cの平面図である。また、図6Bは、図6AにA1−A2の一点鎖線で示す部位の断面図である。 Also, as shown in Figures 6A and 6B, the formation of the conductive layer 619, the conductive layer 618a, and the conductive layer 618b may be omitted. Figure 6A is a plan view of a memory element 100C different from that in Figure 5A. Also, Figure 6B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in Figure 6A.

記憶素子100Cの構成では、占有面積の低減に加え、作製工程数も低減される。よって、記憶素子100Cの生産性が向上し、製造コストが低減される。よって、記憶素子100Cを含む半導体装置の生産性が向上し、製造コストが低減される。 The configuration of memory element 100C reduces the area occupied and also reduces the number of manufacturing steps. This improves the productivity of memory element 100C and reduces manufacturing costs. This improves the productivity of a semiconductor device including memory element 100C and reduces manufacturing costs.

また、記憶素子100Cにおいても、図3Aおよび図3Bに示した記憶素子100Bのように、トランジスタ233またはトランジスタ234の一方を設けない構成としてもよい。 Furthermore, the memory element 100C may be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.

<記憶素子の変形例3>
図7Aおよび図7Bに、記憶素子100Dの構成例を示す。記憶素子100Dは、記憶素子100Aの変形例である。図7Aは、記憶素子100Dの平面図である。また、図7Bは、図7AにA1−A2の一点鎖線で示す部位の断面図である。説明の繰り返しを低減するため、主に記憶素子100Aと異なる点について説明する。
<Modification 3 of memory element>
7A and 7B show a configuration example of a memory element 100D. The memory element 100D is a modified example of the memory element 100A. FIG. 7A is a plan view of the memory element 100D. FIG. 7B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 7A. In order to reduce repetition of explanation, differences from the memory element 100A will be mainly described.

トランジスタ233およびトランジスタ234は、抵抗変化素子600よりも上の層に設けても構わない。記憶素子100Dは、抵抗変化素子600の上に、トランジスタ233およびトランジスタ234を有する。具体的には、記憶素子100Dでは、絶縁層615の上に絶縁層154を有する。また、絶縁層154の上に導電層617、導電層155a、および導電層155bを有する。記憶素子100Dの構成では、導電層155aおよび導電層155bを、導電層617と同じ材料を用いて同じ工程で同時に形成できる。 Transistor 233 and transistor 234 may be provided in a layer above resistance change element 600. Memory element 100D has transistor 233 and transistor 234 on resistance change element 600. Specifically, memory element 100D has insulating layer 154 on insulating layer 615. Also, conductive layer 617, conductive layer 155a, and conductive layer 155b are provided on insulating layer 154. In the configuration of memory element 100D, conductive layer 155a and conductive layer 155b can be formed simultaneously in the same process using the same material as conductive layer 617.

また、記憶素子100Dは、絶縁層154、導電層155a、導電層155b、および導電層617の上に絶縁層157を有する。 In addition, the memory element 100D has an insulating layer 157 on the insulating layer 154, the conductive layer 155a, the conductive layer 155b, and the conductive layer 617.

また、記憶素子100Dでは、導電層618aおよび導電層618bが、絶縁層614、絶縁層615、および絶縁層154を貫通して設けられている。記憶素子100Dでは、導電層155aは導電層618aを介して導電層610と電気的に接続される。また、導電層155bは導電層618bを介して導電層610と電気的に接続される。導電層618aは、導電層610の第1領域611と電気的に接続され、導電層618bは、導電層610の第2領域612と電気的に接続される。 In addition, in the memory element 100D, the conductive layer 618a and the conductive layer 618b are provided penetrating the insulating layer 614, the insulating layer 615, and the insulating layer 154. In the memory element 100D, the conductive layer 155a is electrically connected to the conductive layer 610 through the conductive layer 618a. In addition, the conductive layer 155b is electrically connected to the conductive layer 610 through the conductive layer 618b. The conductive layer 618a is electrically connected to the first region 611 of the conductive layer 610, and the conductive layer 618b is electrically connected to the second region 612 of the conductive layer 610.

記憶素子100Dでは、導電層155aをトランジスタ233のソース電極またはドレイン電極の一方と言うことができる。また、導電層161aをトランジスタ233のソース電極またはドレイン電極の他方と言うことができる。同様に、記憶素子100Dでは、導電層155bをトランジスタ234のソース電極またはドレイン電極の一方と言うことができる。また、導電層161bをトランジスタ234のソース電極またはドレイン電極の他方と言うことができる。 In the memory element 100D, the conductive layer 155a can be referred to as one of the source electrode or drain electrode of the transistor 233. The conductive layer 161a can be referred to as the other of the source electrode or drain electrode of the transistor 233. Similarly, in the memory element 100D, the conductive layer 155b can be referred to as one of the source electrode or drain electrode of the transistor 234. The conductive layer 161b can be referred to as the other of the source electrode or drain electrode of the transistor 234.

記憶素子100Dの構成では、導電層155aおよび導電層155bを、導電層617と同じ材料を用いて同じ工程で同時に形成できるため、記憶素子100Aよりも作製工程数が低減される。よって、記憶素子100Dの生産性が向上し、製造コストが低減される。よって、記憶素子100Dを含む半導体装置の生産性が向上し、製造コストが低減される。 In the configuration of memory element 100D, conductive layer 155a and conductive layer 155b can be simultaneously formed in the same process using the same material as conductive layer 617, so the number of manufacturing steps is reduced compared to memory element 100A. This improves the productivity of memory element 100D and reduces manufacturing costs. This improves the productivity of a semiconductor device including memory element 100D and reduces manufacturing costs.

配線RBLとして機能する導電層617に、選択用のトランジスタを接続することで、任意の配線RBLを選択して、選択された配線RBLに接続されている記憶素子100Dが保持しているデータを読み出すことができる。図8Aに、記憶素子100Dの導電層617にトランジスタ235が電気的に接続された記憶素子の断面構成例を示す。また、図8Bに、当該断面構成例に相当する等価回路図を示す。 By connecting a selection transistor to the conductive layer 617 that functions as the wiring RBL, an arbitrary wiring RBL can be selected and data held in the memory element 100D connected to the selected wiring RBL can be read. Figure 8A shows an example of a cross-sectional configuration of a memory element in which a transistor 235 is electrically connected to the conductive layer 617 of the memory element 100D. Also, Figure 8B shows an equivalent circuit diagram corresponding to the example cross-sectional configuration.

図8Aにおいて、記憶素子100Dの導電層617は導電層155cと電気的に接続されている。前述したトランジスタ233およびトランジスタ234と同様に、記憶素子100Dでは、導電層155cをトランジスタ235のソース電極またはドレイン電極の一方と言うことができる。また、導電層161cをトランジスタ235のソース電極またはドレイン電極の他方と言うことができる。 In FIG. 8A, the conductive layer 617 of the memory element 100D is electrically connected to the conductive layer 155c. As in the above-described transistors 233 and 234, in the memory element 100D, the conductive layer 155c can be one of the source electrode or drain electrode of the transistor 235. Also, the conductive layer 161c can be the other of the source electrode or drain electrode of the transistor 235.

また、記憶素子100Dにおいても、図3Aおよび図3Bに示した記憶素子100Bのように、トランジスタ233またはトランジスタ234の一方を設けない構成としてもよい。 In addition, the memory element 100D may also be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.

<記憶素子の変形例4>
トランジスタ233、トランジスタ234、および抵抗変化素子600を、同じ層上に設けてもよい。図9Aおよび図9Bに、記憶素子100Eの構成例を示す。図9Aおよび図9Bに示す記憶素子100Eでは、トランジスタ233、トランジスタ234、および抵抗変化素子600が、絶縁層154上に設けられている。
<Modification 4 of memory element>
The transistor 233, the transistor 234, and the resistance change element 600 may be provided over the same layer. 9A and 9B show a configuration example of a memory element 100E. In the memory element 100E shown in FIG. 9A and FIG. 9B, the transistor 233, the transistor 234, and the resistance change element 600 are provided over an insulating layer 154.

図9Aおよび図9Bに示す記憶素子100Eは、記憶素子100Aの変形例である。また、記憶素子100Eは、記憶素子100Cの変形例であり、記憶素子100Dの変形例でもある。図9Aは、記憶素子100Eの平面図である。また、図9Bは、図9AにA1−A2の一点鎖線で示す部位の断面図である。説明の繰り返しを低減するため、主に記憶素子100A、記憶素子100C、または記憶素子100Dと異なる点について説明する。 The memory element 100E shown in Figures 9A and 9B is a modified example of memory element 100A. Memory element 100E is also a modified example of memory element 100C and also a modified example of memory element 100D. Figure 9A is a plan view of memory element 100E. Figure 9B is a cross-sectional view of the portion indicated by the dashed dotted line A1-A2 in Figure 9A. In order to reduce repetition of explanation, differences from memory element 100A, memory element 100C, or memory element 100D will be mainly described.

記憶素子100Eは、導電層610の一部をトランジスタ233のソース電極またはドレイン電極の一方として用い、導電層610の他の一部をトランジスタ234のソース電極またはドレイン電極の一方として用いる構成を有する。具体的には、記憶素子100Eにおいて、導電層610の半導体層163aと接する領域が、トランジスタ233のソース電極またはドレイン電極の一方として機能する。また、記憶素子100Eにおいて、導電層610の半導体層163bと接する領域が、トランジスタ234のソース電極またはドレイン電極の一方として機能する。 The memory element 100E has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 233, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 234. Specifically, in the memory element 100E, a region of the conductive layer 610 in contact with the semiconductor layer 163a functions as one of the source electrode or drain electrode of the transistor 233. In addition, in the memory element 100E, a region of the conductive layer 610 in contact with the semiconductor layer 163b functions as one of the source electrode or drain electrode of the transistor 234.

記憶素子100Dと同様に、記憶素子100Eにおいても、導電層161aをトランジスタ233のソース電極またはドレイン電極の他方と言うことができる。また、導電層161bをトランジスタ234のソース電極またはドレイン電極の他方と言うことができる。 Similar to the memory element 100D, in the memory element 100E, the conductive layer 161a can be referred to as the other of the source electrode or drain electrode of the transistor 233. Also, the conductive layer 161b can be referred to as the other of the source electrode or drain electrode of the transistor 234.

導電層610を、スピンホール効果を生じさせる層としてだけでなく、トランジスタのソース電極またはドレイン電極として機能させることにより、導電層155aおよび導電層155bの形成が不要になる。よって、記憶素子100Eの生産性を高めることができる。 By making the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as a source electrode or drain electrode of the transistor, the formation of the conductive layer 155a and the conductive layer 155b is unnecessary. Therefore, the productivity of the memory element 100E can be improved.

記憶素子100Eは、絶縁層154の上に導電層610を有し、導電層610の上にMTJ素子620を有する。また、絶縁層154、MTJ素子620、および絶縁層614の上に絶縁層158を有する。図9Aおよび図9Bに示す構成では、絶縁層158および絶縁層614が絶縁層156に相当する。なお、図9Aおよび図9Bに示す記憶素子100Eでは、絶縁層157および絶縁層159を設けていないが、他に例示する記憶素子と同様に、絶縁層157および絶縁層159を設けてもよい。また、絶縁層614に換えて絶縁層157を設けてもよい。 The memory element 100E has a conductive layer 610 on the insulating layer 154, and an MTJ element 620 on the conductive layer 610. Also, an insulating layer 158 is on the insulating layer 154, the MTJ element 620, and the insulating layer 614. In the configuration shown in Figures 9A and 9B, the insulating layer 158 and the insulating layer 614 correspond to the insulating layer 156. Note that the memory element 100E shown in Figures 9A and 9B does not have the insulating layer 157 and the insulating layer 159, but the insulating layer 157 and the insulating layer 159 may be provided as in the other exemplary memory elements. Also, the insulating layer 157 may be provided instead of the insulating layer 614.

また、図9Aおよび図9Bに示す記憶素子100Eでは、Z方向から見てMTJ素子620と重なる領域において、絶縁層167、絶縁層166、絶縁層164、絶縁層158、および絶縁層614を貫通する導電層168を有する。また、絶縁層167の上に導電層617を有する。導電層617は、導電層168を介してMTJ素子620と電気的に接続される。 In addition, the memory element 100E shown in Figures 9A and 9B has a conductive layer 168 that penetrates the insulating layer 167, the insulating layer 166, the insulating layer 164, the insulating layer 158, and the insulating layer 614 in the region that overlaps with the MTJ element 620 when viewed from the Z direction. Also, a conductive layer 617 is provided on the insulating layer 167. The conductive layer 617 is electrically connected to the MTJ element 620 via the conductive layer 168.

また、図9Aおよび図9Bに示す記憶素子100Eでは、Z方向から見て導電層610の開口162aと重なる領域が第1領域611として機能する。第1領域611において、導電層610は半導体層163aと接続される。よって、導電層610の第1領域611が、前述の導電層155aに相当する。 In addition, in the memory element 100E shown in Figures 9A and 9B, the region of the conductive layer 610 that overlaps with the opening 162a when viewed from the Z direction functions as the first region 611. In the first region 611, the conductive layer 610 is connected to the semiconductor layer 163a. Therefore, the first region 611 of the conductive layer 610 corresponds to the conductive layer 155a described above.

また、図9Aおよび図9Bに示す記憶素子100Eでは、Z方向から見て導電層610の開口162bと重なる領域が第2領域612として機能する。第2領域612において、導電層610は半導体層163bと接続される。よって、導電層610の第2領域612が、前述の導電層155bに相当する。 In addition, in the memory element 100E shown in Figures 9A and 9B, the region of the conductive layer 610 that overlaps with the opening 162b when viewed from the Z direction functions as the second region 612. In the second region 612, the conductive layer 610 is connected to the semiconductor layer 163b. Therefore, the second region 612 of the conductive layer 610 corresponds to the conductive layer 155b described above.

また、図9Aおよび図9Bに示す記憶素子100Eの構成では、導電層155a、導電層155bなど以外にも、絶縁層615、導電層616、および導電層619の形成が不要になる。よって、記憶素子100Eの生産性がさらに向上し、製造コストもさらに低減される。よって、記憶素子100Eを含む半導体装置の生産性がさらに向上し、製造コストがさらに低減される。 In addition, in the configuration of the memory element 100E shown in Figures 9A and 9B, in addition to the conductive layer 155a, the conductive layer 155b, etc., it is not necessary to form the insulating layer 615, the conductive layer 616, and the conductive layer 619. This further improves the productivity of the memory element 100E and further reduces the manufacturing cost. This further improves the productivity of the semiconductor device including the memory element 100E and further reduces the manufacturing cost.

また、前述した記憶素子100Aまたは記憶素子100Bにおいても、抵抗変化素子600よりも上の層に、導電層617と電気的に接続するトランジスタ236を設けてもよい。一例として、図10に、記憶素子100Aまたは記憶素子100Bの上にトランジスタ236を設けた断面構成例を示す。 Also, in the memory element 100A or the memory element 100B described above, a transistor 236 electrically connected to the conductive layer 617 may be provided in a layer above the resistance change element 600. As an example, FIG. 10 shows a cross-sectional configuration example in which a transistor 236 is provided above the memory element 100A or the memory element 100B.

図10では、導電層617の上に絶縁層257、絶縁層258、および絶縁層259が設けられ、絶縁層259の上に導電層261cを有する。なお、絶縁層257、絶縁層258、および絶縁層259をまとめて、絶縁層256またはスペーサ層と呼ぶ場合がある。また、Z方向から見て導電層617の一部と重なる領域において、導電層261c、絶縁層259、絶縁層258、および絶縁層257に開口262cを有する。また、開口262c上に開口262cを覆う半導体層263cを有する。 In FIG. 10, insulating layer 257, insulating layer 258, and insulating layer 259 are provided on conductive layer 617, and conductive layer 261c is provided on insulating layer 259. Note that insulating layer 257, insulating layer 258, and insulating layer 259 may be collectively referred to as insulating layer 256 or spacer layer. Also, in the region overlapping with a part of conductive layer 617 when viewed from the Z direction, conductive layer 261c, insulating layer 259, insulating layer 258, and insulating layer 257 have opening 262c. Also, semiconductor layer 263c is provided on opening 262c to cover opening 262c.

また、絶縁層259、導電層261c、および半導体層263cの上に絶縁層264を有する。また、絶縁層264の上に導電層265cを有する。導電層265cは開口262cと重なる領域を有し、当該領域において、絶縁層264および半導体層263cを介して、開口262cの側面および底部と重なる領域を有する。また、絶縁層264の上に絶縁層266を有する。なお、導電層265cおよび絶縁層266の上面の位置(Z方向の位置)は、一致または略一致させることが好ましい。また、図10では、導電層265cおよび絶縁層266の上に絶縁層267を有する。 In addition, an insulating layer 264 is provided on the insulating layer 259, the conductive layer 261c, and the semiconductor layer 263c. In addition, a conductive layer 265c is provided on the insulating layer 264. The conductive layer 265c has an area that overlaps with the opening 262c, and in this area, has an area that overlaps with the side and bottom of the opening 262c via the insulating layer 264 and the semiconductor layer 263c. In addition, an insulating layer 266 is provided on the insulating layer 264. Note that it is preferable that the positions (positions in the Z direction) of the upper surfaces of the conductive layer 265c and the insulating layer 266 are aligned or approximately aligned. In addition, in FIG. 10, an insulating layer 267 is provided on the conductive layer 265c and the insulating layer 266.

トランジスタ236は、トランジスタ235と同様に機能する。よって、絶縁層257は絶縁層157に相当し、絶縁層258は絶縁層158に相当し、絶縁層259は絶縁層159に相当し、絶縁層256は絶縁層156に相当する。また、導電層261cは導電層161cに相当し、開口262cは開口162cに相当する。また、半導体層263cは半導体層163cに相当し、絶縁層264は絶縁層164に相当し、導電層265cは導電層165cに相当する。また、絶縁層266は絶縁層166に相当し、絶縁層267は絶縁層167に相当する。よって、トランジスタ236も、トランジスタ233およびトランジスタ234と同様に縦型トランジスタとすることができる。 Transistor 236 functions in the same manner as transistor 235. Thus, insulating layer 257 corresponds to insulating layer 157, insulating layer 258 corresponds to insulating layer 158, insulating layer 259 corresponds to insulating layer 159, and insulating layer 256 corresponds to insulating layer 156. Conductive layer 261c corresponds to conductive layer 161c, and opening 262c corresponds to opening 162c. Semiconductor layer 263c corresponds to semiconductor layer 163c, insulating layer 264 corresponds to insulating layer 164, and conductive layer 265c corresponds to conductive layer 165c. Insulating layer 266 corresponds to insulating layer 166, and insulating layer 267 corresponds to insulating layer 167. Thus, transistor 236 can also be a vertical transistor, like transistors 233 and 234.

トランジスタ236において、導電層617の一部がトランジスタ236のソース電極またはドレイン電極の一方として機能する。より具体的には、導電層617の半導体層263cと接する領域が、トランジスタ236のソース電極またはドレイン電極の一方として機能する。また、導電層261cがトランジスタ236のソース電極またはドレイン電極の他方として機能する。また、導電層265cがトランジスタ236のゲート電極として機能する。 In the transistor 236, a part of the conductive layer 617 functions as one of the source electrode or drain electrode of the transistor 236. More specifically, a region of the conductive layer 617 in contact with the semiconductor layer 263c functions as one of the source electrode or drain electrode of the transistor 236. The conductive layer 261c functions as the other of the source electrode or drain electrode of the transistor 236. The conductive layer 265c functions as the gate electrode of the transistor 236.

トランジスタ233乃至トランジスタ236は、薄膜トランジスタであるため、それぞれを同じ層の上に設けることもできるし、異なる層の上に設けることもできる。例えば、トランジスタ233の上にトランジスタ236を重ねて設けることができる。よって、記憶素子の設計自由度を高めることができる。また、半導体装置の設計自由度を高めることができる。 Because the transistors 233 to 236 are thin film transistors, they can be provided on the same layer or on different layers. For example, the transistor 236 can be stacked on top of the transistor 233. This increases the design freedom of the memory element. In addition, the design freedom of the semiconductor device can be increased.

また、記憶素子100Eにおいても、図3Aおよび図3Bに示した記憶素子100Bのように、トランジスタ233またはトランジスタ234の一方を設けない構成としてもよい。 In addition, the memory element 100E may be configured without either the transistor 233 or the transistor 234, as in the memory element 100B shown in Figures 3A and 3B.

<記憶素子の変形例5>
図11Aおよび図11Bに、記憶素子100Fの構成例を示す。記憶素子100Fは、記憶素子100Aの変形例である。図11Aは、記憶素子100Fの平面図である。また、図11Bは、図11AにA1−A2の一点鎖線で示す部位の断面図である。説明の繰り返しを低減するため、主に記憶素子100Aと異なる点について説明する。
<Modification 5 of memory element>
11A and 11B show a configuration example of a memory element 100F. The memory element 100F is a modified example of the memory element 100A. FIG. 11A is a plan view of the memory element 100F. FIG. 11B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 11A. In order to reduce repetition of explanation, differences from the memory element 100A will be mainly described.

記憶素子100Fは、トランジスタ233に換えてトランジスタ333を有し、トランジスタ234に換えてトランジスタ334を有する。トランジスタ333およびトランジスタ334も、トランジスタ233およびトランジスタ234と同じ縦型トランジスタである。 Memory element 100F has transistor 333 instead of transistor 233, and has transistor 334 instead of transistor 234. Transistors 333 and 334 are also vertical transistors like transistors 233 and 234.

トランジスタ233ではゲート電極として機能する導電層165aの一部が開口162aの内側に設けられていた。一方で、トランジスタ333は、Z方向から見て、ゲート電極として機能する導電層175aが開口162aの外側に設けられている。また、トランジスタ234ではゲート電極として機能する導電層165bの一部が開口162bの内側に設けられていた。一方で、トランジスタ334は、Z方向から見て、ゲート電極として機能する導電層175bが開口162bの外側に設けられている。 In transistor 233, a part of conductive layer 165a functioning as a gate electrode is provided inside opening 162a. On the other hand, in transistor 333, conductive layer 175a functioning as a gate electrode is provided outside opening 162a when viewed from the Z direction. Also, in transistor 234, a part of conductive layer 165b functioning as a gate electrode is provided inside opening 162b. On the other hand, in transistor 334, conductive layer 175b functioning as a gate electrode is provided outside opening 162b when viewed from the Z direction.

トランジスタ233およびトランジスタ234に示した構造の場合、記憶素子の微細化を目的としてZ方向から見た開口162の幅(開口162が円形である場合は直径。)を小さくすると、ゲート電極として機能する導電層165が開口162の内側に形成されにくくなる。トランジスタ333およびトランジスタ334として示した構造の場合、ゲート電極として機能する導電層175が開口162の外側にあるため、前述の懸念が生じない。よって、記憶素子の省面積化および微細化が容易であり、設計自由度を高めることができる。また、本発明の一態様に係る記憶素子を用いた記憶装置の記憶密度をより高めることができる。 In the case of the structures shown in transistors 233 and 234, if the width of opening 162 as viewed in the Z direction (or the diameter if opening 162 is circular) is reduced in order to miniaturize the memory element, the conductive layer 165 functioning as the gate electrode is less likely to be formed inside opening 162. In the case of the structures shown in transistors 333 and 334, the conductive layer 175 functioning as the gate electrode is outside opening 162, so the above-mentioned concern does not arise. Therefore, it is easy to reduce the area and miniaturize the memory element, and the design freedom can be increased. In addition, the memory density of a memory device using a memory element according to one embodiment of the present invention can be further increased.

図11Aおよび図11Bに示す記憶素子100Fでは、絶縁層157の上に導電層175aおよび導電層175bを有し、導電層175aおよび導電層175bの上に絶縁層159を有し、絶縁層159の上に導電層161aおよび導電層161bを有する。 The memory element 100F shown in Figures 11A and 11B has conductive layers 175a and 175b on the insulating layer 157, has an insulating layer 159 on the conductive layers 175a and 175b, and has conductive layers 161a and 161b on the insulating layer 159.

また、導電層155aと重なる領域において、導電層161a、絶縁層159、導電層175a、および絶縁層157を貫通する開口162aを有する。開口162aにおいて、開口162aの側面と重なる領域を含む絶縁層181aを有する。絶縁層181aは、導電層161aの側面と重なる領域と、絶縁層159の側面と重なる領域と、導電層175aの側面と重なる領域と、絶縁層157の側面と重なる領域と、を有する。 In addition, in the region overlapping with conductive layer 155a, there is an opening 162a penetrating conductive layer 161a, insulating layer 159, conductive layer 175a, and insulating layer 157. In opening 162a, there is an insulating layer 181a including a region overlapping with the side of opening 162a. Insulating layer 181a has a region overlapping with the side of conductive layer 161a, a region overlapping with the side of insulating layer 159, a region overlapping with the side of conductive layer 175a, and a region overlapping with the side of insulating layer 157.

また、開口162a上に開口162aを覆う半導体層163aを有する。開口162aにおいて、半導体層163aは、絶縁層181aを介して、絶縁層159の側面と重なる領域と、導電層175aの側面と重なる領域と、絶縁層157の側面と重なる領域と、を有する。また、半導体層163aは、導電層155aと接する領域と、導電層161aと接する領域と、を有する。絶縁層181aはトランジスタ333のゲート絶縁層として機能し、導電層175aはトランジスタ333のゲート電極として機能する。 In addition, a semiconductor layer 163a is provided on the opening 162a to cover the opening 162a. In the opening 162a, the semiconductor layer 163a has a region that overlaps with a side surface of the insulating layer 159, a region that overlaps with a side surface of the conductive layer 175a, and a region that overlaps with a side surface of the insulating layer 157, via the insulating layer 181a. The semiconductor layer 163a also has a region that contacts the conductive layer 155a and a region that contacts the conductive layer 161a. The insulating layer 181a functions as a gate insulating layer for the transistor 333, and the conductive layer 175a functions as a gate electrode for the transistor 333.

また、導電層155bと重なる領域において、導電層161b、絶縁層159、導電層175b、および絶縁層157を貫通する開口162bを有する。開口162bにおいて、開口162bの側面と重なる領域を含む絶縁層181bを有する。絶縁層181bは、導電層161bの側面と重なる領域と、絶縁層159の側面と重なる領域と、導電層175bの側面と重なる領域と、絶縁層157の側面と重なる領域と、を有する。 In addition, in the region overlapping with conductive layer 155b, there is an opening 162b penetrating conductive layer 161b, insulating layer 159, conductive layer 175b, and insulating layer 157. In opening 162b, there is an insulating layer 181b including a region overlapping with the side of opening 162b. Insulating layer 181b has a region overlapping with the side of conductive layer 161b, a region overlapping with the side of insulating layer 159, a region overlapping with the side of conductive layer 175b, and a region overlapping with the side of insulating layer 157.

また、開口162b上に開口162bを覆う半導体層163bを有する。開口162bにおいて、半導体層163bは、絶縁層181bを介して、絶縁層159の側面と重なる領域と、導電層175bの側面と重なる領域と、絶縁層157の側面と重なる領域と、を有する。また、半導体層163bは、導電層155bと接する領域と、導電層161bと接する領域と、を有する。絶縁層181bはトランジスタ334のゲート絶縁層として機能し、導電層175bはトランジスタ334のゲート電極として機能する。 In addition, a semiconductor layer 163b is provided on the opening 162b to cover the opening 162b. In the opening 162b, the semiconductor layer 163b has a region that overlaps with a side surface of the insulating layer 159, a region that overlaps with a side surface of the conductive layer 175b, and a region that overlaps with a side surface of the insulating layer 157, via the insulating layer 181b. The semiconductor layer 163b also has a region that contacts the conductive layer 155b and a region that contacts the conductive layer 161b. The insulating layer 181b functions as a gate insulating layer for the transistor 334, and the conductive layer 175b functions as a gate electrode for the transistor 334.

また、記憶素子100Fは、導電層175と導電層617のそれぞれがX方向に延在している。導電層175の一部が導電層175aとして機能し、導電層175の他の一部が導電層175bとして機能する。導電層175は配線WLとして機能する。前述した通り、配線WLは、配線WBLaまたは配線WBLbの少なくとも一方と交差することが好ましい。 In addition, in the memory element 100F, the conductive layer 175 and the conductive layer 617 each extend in the X direction. A part of the conductive layer 175 functions as the conductive layer 175a, and another part of the conductive layer 175 functions as the conductive layer 175b. The conductive layer 175 functions as the wiring WL. As described above, it is preferable that the wiring WL intersect with at least one of the wiring WBLa or the wiring WBLb.

また、記憶素子100Fにおいても、図3Aおよび図3Bに示した記憶素子100Bのように、トランジスタ333またはトランジスタ334の一方を設けない構成としてもよい。 Furthermore, the memory element 100F may be configured without either the transistor 333 or the transistor 334, as in the memory element 100B shown in Figures 3A and 3B.

<記憶素子の変形例6>
図12Aおよび図12Bに、記憶素子100Gの構成例を示す。記憶素子100Gは、記憶素子100Cの変形例であり、記憶素子100Fの変形例でもある。図12Aは、記憶素子100Gの平面図である。また、図12Bは、図12AにA1−A2の一点鎖線で示す部位の断面図である。説明の繰り返しを低減するため、主に記憶素子100Cまたは記憶素子100Fと異なる点について説明する。
<Modification 6 of memory element>
12A and 12B show a configuration example of a memory element 100G. The memory element 100G is a modified example of the memory element 100C and is also a modified example of the memory element 100F. FIG. 12A is a plan view of the memory element 100G. FIG. 12B is a cross-sectional view of a portion indicated by a dashed dotted line A1-A2 in FIG. 12A. In order to reduce repetition of explanation, differences from the memory element 100C or the memory element 100F will be mainly described.

記憶素子100Gは、記憶素子100Cと同様に、導電層610の一部をトランジスタ333のソース電極またはドレイン電極の一方として用い、導電層610の他の一部をトランジスタ334のソース電極またはドレイン電極の一方として用いる構成を有する。導電層610を、スピンホール効果を生じさせる層としてだけでなく、トランジスタのソース電極またはドレイン電極として機能させることにより、導電層161aおよび導電層161bの形成が不要になる。よって、記憶素子100Gの生産性が向上し、製造コストが低減される。よって、記憶素子100Gを含む半導体装置の生産性が向上し、製造コストが低減される。 Like the memory element 100C, the memory element 100G has a configuration in which a part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 333, and another part of the conductive layer 610 is used as one of the source electrode or drain electrode of the transistor 334. By making the conductive layer 610 function not only as a layer that generates the spin Hall effect but also as the source electrode or drain electrode of the transistor, the formation of the conductive layer 161a and the conductive layer 161b is unnecessary. This improves the productivity of the memory element 100G and reduces the manufacturing cost. This improves the productivity of a semiconductor device including the memory element 100G and reduces the manufacturing cost.

また、記憶素子100Gにおいても、図3Aおよび図3Bに示した記憶素子100Bのように、トランジスタ333またはトランジスタ334の一方を設けない構成としてもよい。 Furthermore, the memory element 100G may be configured without either the transistor 333 or the transistor 334, as in the memory element 100B shown in Figures 3A and 3B.

また、図4に示した構成例と同様に、配線RBLとして機能する導電層617に、選択用のトランジスタを接続することで、任意の配線RBLを選択して、選択された配線RBLに接続されている記憶素子100Gが保持しているデータを読み出すことができる。図13Aに、導電層617にトランジスタ335が電気的に接続された記憶素子の断面構成例を示す。また、図13Bに、当該断面構成例に相当する等価回路図を示す。 Also, as in the configuration example shown in FIG. 4, by connecting a selection transistor to the conductive layer 617 that functions as the wiring RBL, an arbitrary wiring RBL can be selected and data held in the memory element 100G connected to the selected wiring RBL can be read. FIG. 13A shows a cross-sectional configuration example of a memory element in which a transistor 335 is electrically connected to the conductive layer 617. FIG. 13B shows an equivalent circuit diagram corresponding to the cross-sectional configuration example.

なお、説明の繰り返しを低減するため、主に既出の構成と異なる部分について説明する。図13に係る説明は、図4に係る説明などを参考にすればよい。トランジスタ335は、記憶素子100Fの構成で示したトランジスタ333と同じ材料を用いて同じ工程で同時に形成できる。トランジスタ335の導電層175cは、トランジスタ333の導電層175aと同じ材料を用いて同じ工程で同時に形成できる。トランジスタ335の開口162cは、トランジスタ333の開口162aと同様に形成できる。トランジスタ335の絶縁層181cは、トランジスタ333の絶縁層181aと同じ材料を用いて同じ工程で同時に形成できる。なお、本明細書において、絶縁層181a、絶縁層181b、および絶縁層181cを絶縁層181と呼ぶ場合がある。 Note that in order to reduce repetition of the description, mainly differences from the previously described configuration will be described. The description of FIG. 13 may refer to the description of FIG. 4. The transistor 335 can be formed at the same time as the transistor 333 shown in the configuration of the memory element 100F using the same material and in the same process. The conductive layer 175c of the transistor 335 can be formed at the same time as the conductive layer 175a of the transistor 333 using the same material and in the same process. The opening 162c of the transistor 335 can be formed in the same manner as the opening 162a of the transistor 333. The insulating layer 181c of the transistor 335 can be formed at the same time as the insulating layer 181a of the transistor 333 using the same material and in the same process. Note that in this specification, the insulating layers 181a, 181b, and 181c may be referred to as the insulating layer 181.

また、図10に示した構成例と同様に、記憶素子100Fまたは記憶素子100Gにおいても、抵抗変化素子600よりも上の層に導電層617と電気的に接続するトランジスタ336を設けてもよい。一例として、図14に、記憶素子100Fの上にトランジスタ336を設けた断面構成例を示す。トランジスタ336は、導電層617を介して抵抗変化素子600と電気的に接続される。なお、説明の繰り返しを低減するため、主に既出の構成と異なる部分について説明する。図14に係る説明は、図10に係る説明などを参考にすればよい。 Furthermore, similar to the configuration example shown in FIG. 10, in the memory element 100F or the memory element 100G, a transistor 336 electrically connected to the conductive layer 617 may be provided in a layer above the resistance change element 600. As an example, FIG. 14 shows a cross-sectional configuration example in which a transistor 336 is provided above the memory element 100F. The transistor 336 is electrically connected to the resistance change element 600 via the conductive layer 617. Note that in order to reduce repetition of the description, mainly differences from the configuration already described will be described. The description of FIG. 14 may be explained with reference to the description of FIG. 10, etc.

図14では、導電層617の上に絶縁層257および絶縁層259が設けられ、絶縁層259の上に導電層261cを有する。また、Z方向から見て導電層617の一部と重なる領域において、導電層261c、絶縁層259、導電層275c、および絶縁層257に開口262cを有する。また、開口262c上に開口262cを覆う半導体層263cを有する。 In FIG. 14, insulating layer 257 and insulating layer 259 are provided on conductive layer 617, and conductive layer 261c is provided on insulating layer 259. In addition, in a region overlapping with a part of conductive layer 617 when viewed from the Z direction, conductive layer 261c, insulating layer 259, conductive layer 275c, and insulating layer 257 have opening 262c. In addition, semiconductor layer 263c is provided on opening 262c to cover opening 262c.

開口262cにおいて、開口262cの側面と重なる領域を含む絶縁層281cを有する。絶縁層281cは、導電層261cの側面と重なる領域と、絶縁層259の側面と重なる領域と、導電層275cの側面と重なる領域と、絶縁層257の側面と重なる領域と、を有する。導電層275cはトランジスタ335における導電層175cに相当する。 The opening 262c has an insulating layer 281c that includes a region that overlaps with the side of the opening 262c. The insulating layer 281c has a region that overlaps with the side of the conductive layer 261c, a region that overlaps with the side of the insulating layer 259, a region that overlaps with the side of the conductive layer 275c, and a region that overlaps with the side of the insulating layer 257. The conductive layer 275c corresponds to the conductive layer 175c in the transistor 335.

また、絶縁層259、導電層261c、および半導体層263cの上に絶縁層264を有する。また、絶縁層264の上に絶縁層266を有する。なお、絶縁層266の表面は、平坦であることが好ましい。トランジスタ336は、トランジスタ335と同様に機能する。 In addition, an insulating layer 264 is provided over the insulating layer 259, the conductive layer 261c, and the semiconductor layer 263c. In addition, an insulating layer 266 is provided over the insulating layer 264. Note that the surface of the insulating layer 266 is preferably flat. The transistor 336 functions in the same manner as the transistor 335.

図14に示すトランジスタ336において、導電層617の一部がソース電極またはドレイン電極の一方として機能する。より具体的には、導電層617の半導体層263cと接する領域が、トランジスタ336のソース電極またはドレイン電極の一方として機能する。また、導電層261cがソース電極またはドレイン電極の他方として機能する。また、導電層275cがトランジスタ336のゲート電極として機能する。 In the transistor 336 shown in FIG. 14, a part of the conductive layer 617 functions as one of the source electrode and the drain electrode. More specifically, a region of the conductive layer 617 in contact with the semiconductor layer 263c functions as one of the source electrode and the drain electrode of the transistor 336. The conductive layer 261c functions as the other of the source electrode and the drain electrode. The conductive layer 275c functions as the gate electrode of the transistor 336.

トランジスタ333乃至トランジスタ336は、薄膜トランジスタであるため、それぞれを同じ層の上に設けることもできるし、異なる層の上に設けることもできる。例えば、トランジスタ333の上にトランジスタ336を設けることができる。よって、記憶素子の設計自由度を高めることができる。また、半導体装置の設計自由度を高めることができる。 Because the transistors 333 to 336 are thin film transistors, they can be provided on the same layer or on different layers. For example, the transistor 336 can be provided on the transistor 333. This increases the design freedom of the memory element. In addition, the design freedom of the semiconductor device can be increased.

また、図15に示すように、トランジスタ336に換えてトランジスタ236を設けることも可能である。例えば、配線RBLとして機能する導電層617の電位変化を速くするため、導電層617に接続するトランジスタにオン電流の大きいトランジスタを用いたい場合は、導電層617にトランジスタ236を用いればよい。導電層610に接続するトランジスタにトランジスタ333を用い、導電層617に接続するトランジスタにトランジスタ236を用いることにより、記憶密度が高く動作速度が速い記憶装置を実現できる。 Also, as shown in FIG. 15, a transistor 236 can be provided instead of the transistor 336. For example, when a transistor with a large on-state current is to be used as a transistor connected to the conductive layer 617 in order to speed up the potential change of the conductive layer 617 functioning as the wiring RBL, the transistor 236 can be used as the conductive layer 617. By using the transistor 333 as the transistor connected to the conductive layer 610 and the transistor 236 as the transistor connected to the conductive layer 617, a memory device with high memory density and high operating speed can be realized.

なお、導電層617に接続するトランジスタは、縦型トランジスタに限定されない。導電層617に接続するトランジスタとして、トップゲート型(例えば、プレーナ型、スタガ型など)、ボトムゲート型(例えば、逆プレーナ型、逆スタガ型など)、デュアルゲート型(チャネル形成領域を挟んで両側(例えば、上下)にゲートが配置されている構造)、FIN型(フィン型)、TRI−GATE型(トライゲート型)など、様々な構造のトランジスタを用いることができる。 Note that the transistor connected to the conductive layer 617 is not limited to a vertical transistor. As the transistor connected to the conductive layer 617, transistors of various structures can be used, such as a top-gate type (e.g., a planar type, a staggered type, etc.), a bottom-gate type (e.g., an inverted planar type, an inverted staggered type, etc.), a dual-gate type (a structure in which gates are arranged on both sides (e.g., above and below) of a channel formation region), a FIN type, a TRI-GATE type, etc.

また、導電層617に接続するトランジスタは、トランジスタ233およびトランジスタ234と異なる導電型のトランジスタであってもよい。また、導電層617に接続するトランジスタは、トランジスタ333およびトランジスタ334と異なる導電型のトランジスタであってもよい。 The transistor connected to the conductive layer 617 may be a transistor of a different conductivity type from the transistors 233 and 234. The transistor connected to the conductive layer 617 may be a transistor of a different conductivity type from the transistors 333 and 334.

<トランジスタ>
導電層161aはトランジスタ233のソース電極またはドレイン電極の一方として機能する。また、導電層155aはトランジスタ233のソース電極またはドレイン電極の他方として機能する。また、半導体層163aはトランジスタ233の半導体層として機能する。また、絶縁層164はトランジスタ233のゲート絶縁層として機能し、導電層165aはトランジスタ233のゲート電極として機能する。
<Transistor>
The conductive layer 161a functions as one of a source electrode or a drain electrode of the transistor 233. The conductive layer 155a functions as the other of the source electrode or the drain electrode of the transistor 233. The semiconductor layer 163a functions as a semiconductor layer of the transistor 233. The insulating layer 164 functions as a gate insulating layer of the transistor 233, and the conductive layer 165a functions as a gate electrode of the transistor 233.

導電層161bはトランジスタ234のソース電極またはドレイン電極の一方として機能する。また、導電層155bはトランジスタ234のソース電極またはドレイン電極の他方として機能する。また、半導体層163bはトランジスタ234の半導体層として機能する。また、絶縁層164はトランジスタ234のゲート絶縁層として機能し、導電層165bはトランジスタ234のゲート電極として機能する。 The conductive layer 161b functions as one of the source electrode and drain electrode of the transistor 234. The conductive layer 155b functions as the other of the source electrode and drain electrode of the transistor 234. The semiconductor layer 163b functions as the semiconductor layer of the transistor 234. The insulating layer 164 functions as the gate insulating layer of the transistor 234, and the conductive layer 165b functions as the gate electrode of the transistor 234.

図1Aおよび図1Bに示すトランジスタ233およびトランジスタ234は、ソース電極とドレイン電極がZ方向に配置されるトランジスタである。すなわち、トランジスタ233およびトランジスタ234のソースとドレインは、それぞれが異なる高さに配置される。言い換えると、トランジスタ233およびトランジスタ234のソースとドレインは、それぞれがZ方向の異なる位置に配置される。このようなトランジスタを、「縦チャネル型トランジスタ」、「縦型チャネルトランジスタ」、「縦型トランジスタ」、または「VFET(Vertical Field Effect Transistor)」ともいう。 Transistors 233 and 234 shown in Figures 1A and 1B are transistors whose source and drain electrodes are arranged in the Z direction. That is, the sources and drains of transistors 233 and 234 are arranged at different heights. In other words, the sources and drains of transistors 233 and 234 are arranged at different positions in the Z direction. Such transistors are also called "vertical channel transistors," "vertical channel transistors," "vertical transistors," or "Vertical Field Effect Transistors (VFETs)."

また、本明細書に示すトランジスタ235およびトランジスタ236にも縦型トランジスタを用いることができる。また、本明細書に示すトランジスタ333乃至トランジスタ336にも縦型トランジスタを用いることができる。縦型トランジスタは、チャネル形成領域、ソース領域、およびドレイン領域が、XY平面上に別々に設けられていた従来のトランジスタ(例えば、プレーナ型トランジスタ)よりも占有面積を低減できる。よって、縦チャネル型トランジスタを用いることにより、記憶素子100(記憶素子100A乃至記憶素子100G)の占有面積を低減できる。よって、記憶素子100を含む記憶装置の占有面積を低減できる。また、記憶素子100を含む記憶装置の記憶密度を高めることができる。また、記憶素子100を用いた半導体装置の単位面積当たりの記憶容量を大きくすることができる。また、半導体装置に縦チャネル型トランジスタを用いることにより、当該半導体装置の省面積化および高集積化を実現できる。 Also, vertical transistors can be used for the transistors 235 and 236 shown in this specification. Also, vertical transistors can be used for the transistors 333 to 336 shown in this specification. A vertical transistor can occupy a smaller area than a conventional transistor (e.g., a planar transistor) in which a channel formation region, a source region, and a drain region are separately provided on the XY plane. Therefore, by using a vertical channel transistor, the area occupied by the memory element 100 (memory elements 100A to 100G) can be reduced. Therefore, the area occupied by a memory device including the memory element 100 can be reduced. Also, the memory density of the memory device including the memory element 100 can be increased. Also, the memory capacity per unit area of a semiconductor device using the memory element 100 can be increased. Also, by using a vertical channel transistor in a semiconductor device, the area of the semiconductor device can be reduced and the semiconductor device can be highly integrated.

また、従来のトランジスタでは、チャネル長がフォトリソグラフィの露光限界で制限されていた。縦チャネル型トランジスタは、チャネル形成領域が絶縁層156または絶縁層158の側面に沿って形成される。よって、絶縁層156または絶縁層158の膜厚でチャネル長を設定できる。よって、トランジスタのチャネル長を、フォトリソグラフィの露光限界以下の非常に微細な構造(例えば、1nm以上60nm以下、1nm以上50nm以下、1nm以上40nm以下、1nm以上30nm以下、1nm以上20nm以下、または1nm以上10nm以下)にすることができる。これにより、トランジスタ233およびトランジスタ234のオン電流が大きくなり、周波数特性の向上を図ることができる。縦型トランジスタは、チャネル長を小さくしやすい構造であることから、オン電流の増加(オン抵抗の低減)を図ることが容易な構造である。縦チャネル型トランジスタを用いることにより、動作速度が速い半導体装置を提供できる。 In addition, in conventional transistors, the channel length is limited by the exposure limit of photolithography. In a vertical channel transistor, the channel formation region is formed along the side of the insulating layer 156 or the insulating layer 158. Therefore, the channel length can be set by the film thickness of the insulating layer 156 or the insulating layer 158. Therefore, the channel length of the transistor can be made into a very fine structure (for example, 1 nm to 60 nm, 1 nm to 50 nm, 1 nm to 40 nm, 1 nm to 30 nm, 1 nm to 20 nm, or 1 nm to 10 nm) that is less than the exposure limit of photolithography. As a result, the on-current of the transistor 233 and the transistor 234 increases, and the frequency characteristics can be improved. Since the vertical transistor has a structure that makes it easy to reduce the channel length, it is a structure that makes it easy to increase the on-current (reduce the on-resistance). By using a vertical channel transistor, a semiconductor device with a high operating speed can be provided.

トランジスタ233乃至トランジスタ236、およびトランジスタ333乃至トランジスタ336はnチャネル型のトランジスタであってもよいし、pチャネル型のトランジスタであってもよい。nチャネル型のトランジスタは、pチャネル型のトランジスタに比べてオン電流が大きいため、データの書き込み速度およびデータの読み出し速度を向上させることができる。また、pチャネル型のトランジスタは、nチャネル型のトランジスタよりもノーマリオフ型のトランジスタ(ソースとゲート間の電圧が0Vの時にオフ状態になるトランジスタ)の実現が容易であるため、トランジスタの動作状態(オン状態またはオフ状態)の制御が容易であり、半導体装置の動作が安定しやすく、半導体装置の信頼性を高めることができる。 Transistors 233 to 236 and transistors 333 to 336 may be n-channel transistors or p-channel transistors. N-channel transistors have a larger on-state current than p-channel transistors, and therefore the data writing speed and data reading speed can be improved. Furthermore, p-channel transistors are easier to realize as normally-off transistors (transistors that are turned off when the voltage between the source and gate is 0 V) than n-channel transistors, and therefore the operating state (on or off) of the transistors can be easily controlled, the operation of the semiconductor device can be stabilized, and the reliability of the semiconductor device can be improved.

また、トランジスタ233およびトランジスタ234は、動作状態の切り換えが同時に行われるため、同じ導電型のトランジスタであることが好ましい。トランジスタ233およびトランジスタ234を同じ導電型のトランジスタとすることで、1つの配線で双方のトランジスタを同時に制御できるため、本発明の一態様に係る記憶素子の占有面積を低減できる。同様の理由により、トランジスタ333およびトランジスタ334も同じ導電型のトランジスタであることが好ましい。 In addition, since the operating states of the transistors 233 and 234 are switched simultaneously, it is preferable that the transistors 233 and 234 have the same conductivity type. By using the transistors 233 and 234 as transistors of the same conductivity type, both transistors can be controlled simultaneously by one wiring, and therefore the area occupied by the memory element according to one embodiment of the present invention can be reduced. For the same reason, it is also preferable that the transistors 333 and 334 have the same conductivity type.

<構成材料>
ここで、本発明の一態様に係る記憶素子および記憶素子を含む半導体装置に用いることができる材料の一例について説明する。
<Constituent Materials>
Here, examples of materials that can be used for the memory element and the semiconductor device including the memory element according to one embodiment of the present invention will be described.

[基板]
記憶素子および記憶素子を含む半導体装置を基板上に設ける場合、当該基板に用いる材料に大きな制限はない。目的に応じて、透光性の有無、加熱処理に耐えうる程度の耐熱性などを勘案して決定すればよい。例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えばバリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)などを用いることができる。また、半導体基板、可撓性基板(フレキシブル基板)、樹脂基板などを用いてもよい。
[substrate]
When a memory element and a semiconductor device including a memory element are provided on a substrate, there is no significant limitation on the material used for the substrate. The substrate may be determined in consideration of the presence or absence of light transmission, heat resistance to a degree that can withstand heat treatment, and the like, depending on the purpose. For example, an insulating substrate, a semiconductor substrate, or a conductive substrate may be used. As the insulating substrate, for example, a glass substrate such as barium borosilicate glass or aluminoborosilicate glass, a ceramic substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria stabilized zirconia substrate), or the like may be used. In addition, a semiconductor substrate, a flexible substrate, a resin substrate, or the like may also be used.

半導体基板としては、例えば、シリコンもしくはゲルマニウムなどを材料とした半導体基板、炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛もしくは酸化ガリウムを材料とした化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。また、半導体基板は、単結晶半導体であってもよいし、多結晶半導体であってもよい。 Semiconductor substrates include, for example, semiconductor substrates made of silicon or germanium, and compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. In addition, there are semiconductor substrates having an insulating region inside the aforementioned semiconductor substrate, such as SOI (Silicon On Insulator) substrates. In addition, the semiconductor substrate may be a single crystal semiconductor or a polycrystalline semiconductor.

導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電層または半導体層が設けられた基板、半導体基板に導電層または絶縁層が設けられた基板、導電体基板に半導体層または絶縁層が設けられた基板などがある。 Conductive substrates include graphite substrates, metal substrates, alloy substrates, conductive resin substrates, etc., as well as substrates having metal nitrides and substrates having metal oxides. Furthermore, there are substrates in which a conductive layer or a semiconductor layer is provided on an insulator substrate, substrates in which a conductive layer or an insulating layer is provided on a semiconductor substrate, and substrates in which a semiconductor layer or an insulating layer is provided on a conductive substrate.

可撓性基板、樹脂基板などの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリアクリロニトリル、アクリル樹脂、ポリイミド、ポリメチルメタクリレート、ポリカーボネイト(PC)、ポリエーテルスルホン(PES)、ポリアミド(ナイロン、アラミド等)、ポリシロキサン、シクロオレフィン樹脂、ポリスチレン、ポリアミドイミド、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ABS樹脂、セルロースナノファイバーなどを用いることができる。 Examples of materials that can be used for flexible substrates, resin substrates, etc. include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile, acrylic resins, polyimide, polymethyl methacrylate, polycarbonate (PC), polyethersulfone (PES), polyamides (nylon, aramid, etc.), polysiloxane, cycloolefin resins, polystyrene, polyamideimide, polyurethane, polyvinyl chloride, polyvinylidene chloride, polypropylene, polytetrafluoroethylene (PTFE), ABS resins, and cellulose nanofibers.

基板として上記材料を用いることにより、軽量な半導体装置を提供できる。また、基板として上記材料を用いることにより、衝撃に強い半導体装置を提供できる。また、基板として上記材料を用いることにより、破損しにくい半導体装置を提供できる。 By using the above materials as the substrate, a lightweight semiconductor device can be provided. In addition, by using the above materials as the substrate, a semiconductor device that is resistant to impacts can be provided. In addition, by using the above materials as the substrate, a semiconductor device that is less likely to break can be provided.

または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。 Alternatively, elements may be provided on these substrates. Elements that may be provided on the substrate include capacitance elements, resistance elements, switching elements, light-emitting elements, memory elements, etc.

[絶縁層]
絶縁層としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などを用いることができる。例えば、絶縁層として、窒化アルミニウム、酸化アルミニウム、窒化酸化アルミニウム、酸化窒化アルミニウム、酸化マグネシウム、窒化シリコン、酸化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、アルミニウムシリケートなどから選ばれた絶縁性材料を、単層でまたは積層して用いる。また、酸化物材料、窒化物材料、酸化窒化物材料、窒化酸化物材料のうち、複数を用いてもよい。
[Insulating layer]
As the insulating layer, an oxide, a nitride, an oxynitride, a nitride oxide, a metal oxide, a metal oxynitride, a metal nitride oxide, or the like having insulating properties can be used. For example, as the insulating layer, an insulating material selected from aluminum nitride, aluminum oxide, aluminum nitride oxide, aluminum oxynitride, magnesium oxide, silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, aluminum silicate, or the like is used in a single layer or a stacked layer. In addition, a plurality of oxide materials, nitride materials, oxynitride materials, and nitride oxide materials may be used.

なお、本明細書などにおいて、窒化酸化物とは、酸素よりも窒素の含有量が多い材料をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い材料をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定できる。 In this specification, an oxynitride refers to a material that contains more nitrogen than oxygen. An oxynitride refers to a material that contains more oxygen than nitrogen. The content of each element can be measured, for example, by Rutherford backscattering spectrometry (RBS).

トランジスタの微細化、および高集積化が進むと、ゲート絶縁層の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁層として機能する絶縁層にhigh−k材料(高誘電率材料。比誘電率の高い材料。)を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、絶縁層として、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などの誘電率が高い物質を用いることができる場合もある。一方、層間膜として機能する絶縁層には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁層に求められる機能に応じて、材料を選択するとよい。 As transistors become finer and more highly integrated, problems such as leakage current may occur due to the thinning of the gate insulating layer. By using a high-k material (high dielectric constant material, material with a high relative dielectric constant) for the insulating layer that functions as the gate insulating layer, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. In addition, materials with high dielectric constants such as lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), and (Ba, Sr)TiO 3 (BST) may be used as the insulating layer. On the other hand, by using a material with a low relative dielectric constant for the insulating layer that functions as the interlayer film, the parasitic capacitance generated between wirings can be reduced. Therefore, it is advisable to select a material according to the function required for the insulating layer.

また、比誘電率の高い材料としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する窒化物などがある。 Furthermore, materials with a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxide nitrides containing aluminum and hafnium, oxides containing silicon and hafnium, oxide nitrides containing silicon and hafnium, and nitrides containing silicon and hafnium.

また、比誘電率が低い材料としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、樹脂などがある。 Materials with low dielectric constants include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with added fluorine, silicon oxide with added carbon, silicon oxide with added carbon and nitrogen, silicon oxide with voids, and resin.

絶縁性材料の形成方法は特に限定されず、蒸着法、原子層堆積(ALD:Atomic Layer Deposition)法、化学気相堆積(CVD:Chemical Vapor Deposition)法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。 The method for forming the insulating material is not particularly limited, and various methods such as vapor deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), sputtering, and spin coating can be used.

例えば、絶縁層154および絶縁層167は、不純物が透過しにくい絶縁性材料を用いて形成することが好ましい。例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁材料を、単層で、または積層で用いればよい。不純物が透過しにくい絶縁性材料の一例として、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタル、窒化シリコンなどを挙げることができる。 For example, the insulating layer 154 and the insulating layer 167 are preferably formed using an insulating material that is difficult for impurities to permeate. For example, an insulating material containing boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum may be used in a single layer or a stacked layer. Examples of insulating materials that are difficult for impurities to permeate include aluminum oxide, aluminum nitride, aluminum oxynitride, aluminum nitride oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, and silicon nitride.

絶縁層154に不純物が透過しにくい絶縁性材料を用いることで、下側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。すなわち、トランジスタを含む半導体装置の信頼性を高めることができる。絶縁層167に不純物が透過しにくい絶縁性材料を用いることで、絶縁層167よりも上側からの不純物の拡散を抑制し、トランジスタの信頼性を高めることができる。すなわち、トランジスタを含む半導体装置の信頼性を高めることができる。 By using an insulating material that is difficult for impurities to penetrate for the insulating layer 154, it is possible to suppress the diffusion of impurities from below and improve the reliability of the transistor. In other words, it is possible to improve the reliability of the semiconductor device including the transistor. By using an insulating material that is difficult for impurities to penetrate for the insulating layer 167, it is possible to suppress the diffusion of impurities from above the insulating layer 167 and improve the reliability of the transistor. In other words, it is possible to improve the reliability of the semiconductor device including the transistor.

また、絶縁層として平坦化層として機能できる絶縁層を用いてもよい。平坦化層として機能する材料としては、アクリル樹脂、ポリイミド、エポキシ樹脂、ポリアミド、ポリイミドアミド、シロキサン樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、およびこれらの前駆体等が挙げられる。また上記有機材料の他に、low−k材料(低誘電率材料。比誘電率が小さい材料。)、シロキサン樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層してもよい。 In addition, an insulating layer that can function as a planarizing layer may be used as the insulating layer. Examples of materials that function as a planarizing layer include acrylic resin, polyimide, epoxy resin, polyamide, polyimide amide, siloxane resin, benzocyclobutene resin, phenolic resin, and precursors thereof. In addition to the above organic materials, low-k materials (low dielectric constant materials; materials with a small relative dielectric constant), siloxane resin, PSG (phosphorus glass), BPSG (borophosphorus glass), and the like can be used. Note that multiple insulating layers made of these materials may be stacked.

なお、シロキサン樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む樹脂に相当する。シロキサン樹脂は置換基としては有機基(例えばアルキル基またはアリール基)またはフルオロ基を用いても良い。また、有機基はフルオロ基を有していても良い。 The siloxane resin corresponds to a resin containing Si-O-Si bonds formed using a siloxane-based material as a starting material. The siloxane resin may use an organic group (e.g., an alkyl group or an aryl group) or a fluoro group as a substituent. The organic group may also have a fluoro group.

[導電層]
配線、電極などの導電層に用いる導電性材料として、アルミニウム(Al)、クロム(Cr)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タンタル(Ta)、ニッケル(Ni)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、マンガン(Mn)、マグネシウム(Mg)、ジルコニウム(Zr)、ベリリウム(Be)、ルテニウム(Ru)などから選ばれた金属元素、上述した金属元素を成分とする合金、上述した金属元素を組み合わせた合金などを用いることができる。
[Conductive layer]
As a conductive material used for conductive layers such as wiring and electrodes, a metal element selected from aluminum (Al), chromium (Cr), copper (Cu), silver (Ag), gold (Au), platinum (Pt), tantalum (Ta), nickel (Ni), titanium (Ti), molybdenum (Mo), tungsten (W), hafnium (Hf), vanadium (V), niobium (Nb), manganese (Mn), magnesium (Mg), zirconium (Zr), beryllium (Be), ruthenium (Ru), etc., an alloy containing the above-mentioned metal element as a component, or an alloy combining the above-mentioned metal elements can be used.

例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化されにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。導電性材料の形成方法は特に限定されず、蒸着法、ALD法、CVD法、スパッタリング法、スピンコート法などの各種形成方法を用いることができる。 For example, it is preferable to use tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. In addition, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are conductive materials that are difficult to oxidize, or materials that maintain conductivity even when oxygen is absorbed, so they are preferable. In addition, semiconductors with high electrical conductivity, such as polycrystalline silicon containing impurity elements such as phosphorus, and silicides such as nickel silicide may be used. The method of forming the conductive material is not particularly limited, and various formation methods such as evaporation, ALD, CVD, sputtering, and spin coating can be used.

また、導電性材料として、Cu−X合金(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金で形成した層は、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが可能となる。また、導電性材料として、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の元素を含むアルミニウム合金を用いてもよい。 In addition, a Cu-X alloy (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti) may be used as the conductive material. A layer formed of a Cu-X alloy can be processed by a wet etching process, which makes it possible to reduce manufacturing costs. In addition, an aluminum alloy containing one or more elements selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium may be used as the conductive material.

また、導電層に用いることのできる導電性材料として、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの、酸素を有する導電性材料を用いることもできる。また、窒化チタン、窒化タンタル、窒化タングステンなどの、窒素を含む導電性材料を用いることもできる。また、導電層を、酸素を有する導電性材料、窒素を含む導電性材料、前述した金属元素を含む材料を適宜組み合わせた積層構造とすることもできる。 In addition, as a conductive material that can be used for the conductive layer, a conductive material containing oxygen, such as indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium tin oxide with added silicon oxide, can be used. In addition, a conductive material containing nitrogen, such as titanium nitride, tantalum nitride, or tungsten nitride, can be used. In addition, the conductive layer can have a layered structure in which a conductive material containing oxygen, a conductive material containing nitrogen, or a material containing the above-mentioned metal element is appropriately combined.

例えば、導電層を、シリコンを含むアルミニウム層の単層構造、アルミニウム層上にチタン層を積層する二層構造、窒化チタン層上にチタン層を積層する二層構造、窒化チタン層上にタングステン層を積層する二層構造、窒化タンタル層上にタングステン層を積層する二層構造、チタン層と、そのチタン層上にアルミニウム層を積層し、さらにその上にチタン層を積層する三層構造としてもかまわない。 For example, the conductive layer may have a single-layer structure of an aluminum layer containing silicon, a two-layer structure in which a titanium layer is laminated on an aluminum layer, a two-layer structure in which a titanium layer is laminated on a titanium nitride layer, a two-layer structure in which a tungsten layer is laminated on a titanium nitride layer, a two-layer structure in which a tungsten layer is laminated on a tantalum nitride layer, or a three-layer structure in which a titanium layer is laminated on an aluminum layer on the titanium layer, and a titanium layer is further laminated on the aluminum layer.

また、上記の導電性材料で形成される導電層を複数積層してもかまわない。例えば、導電層を前述した金属元素を含む材料と酸素を含む導電性材料を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料を組み合わせた積層構造としてもかまわない。また、前述した金属元素を含む材料、酸素を含む導電性材料、および窒素を含む導電性材料を組み合わせた積層構造としてもかまわない。 In addition, multiple conductive layers formed of the above-mentioned conductive materials may be stacked. For example, the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element and a conductive material containing oxygen. In addition, the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element and a conductive material containing nitrogen. In addition, the conductive layer may have a layered structure that combines the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen.

例えば、導電層を、インジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層上に、銅を含む導電層を積層し、さらにその上にインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層を積層する三層構造としてもかまわない。この場合、銅を含む導電層の側面もインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層で覆うことが好ましい。また、例えば、導電層としてインジウムまたは亜鉛の少なくとも一方と酸素とを含む導電層を複数積層してもかまわない。 For example, the conductive layer may have a three-layer structure in which a conductive layer containing at least one of indium or zinc and oxygen is laminated on a conductive layer containing copper, and a conductive layer containing at least one of indium or zinc and oxygen is further laminated on top of that. In this case, it is preferable to cover the side surface of the conductive layer containing copper with a conductive layer containing at least one of indium or zinc and oxygen. In addition, for example, multiple conductive layers containing at least one of indium or zinc and oxygen may be laminated as the conductive layer.

[半導体層]
半導体層として、単結晶半導体、多結晶半導体、微結晶半導体、非晶質半導体などを、単体でまたは組み合わせて用いることができる。半導体材料としては、主成分が単一の元素で構成される単体の半導体(例えば、シリコン、ゲルマニウムなど)に限らず、化合物半導体(例えば、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、窒化物半導体など)を用いてもよい。また、化合物半導体として、半導体特性を有する有機物、または半導体特性を有する金属酸化物(「酸化物半導体」ともいう)を用いることができる。なお、これらの半導体材料に、ドーパントとして不純物が含まれてもよい。
[Semiconductor layer]
As the semiconductor layer, a single crystal semiconductor, a polycrystalline semiconductor, a microcrystalline semiconductor, an amorphous semiconductor, or the like can be used alone or in combination. As the semiconductor material, not only a single semiconductor whose main component is a single element (e.g., silicon, germanium, etc.) but also a compound semiconductor (e.g., silicon germanium, silicon carbide, gallium arsenide, nitride semiconductor, etc.) can be used. As the compound semiconductor, an organic material having semiconductor properties or a metal oxide having semiconductor properties (also called an "oxide semiconductor") can be used. Note that these semiconductor materials may contain impurities as dopants.

例えば、半導体層として、単結晶シリコン、多結晶シリコン、微結晶シリコン、および非晶質シリコンを用いてもよい。多結晶シリコンとして、例えば、低温ポリシリコン(LTPS:Low Temperature Poly Silicon)を用いてもよい。 For example, the semiconductor layer may be made of single crystal silicon, polycrystalline silicon, microcrystalline silicon, or amorphous silicon. As the polycrystalline silicon, for example, low temperature polysilicon (LTPS) may be used.

半導体層に非晶質シリコンを用いたトランジスタは、大型のガラス基板上に形成でき、低コストで作製することができる。半導体層に多結晶シリコンを用いたトランジスタは、電界効果移動度が高く、高速動作が可能である。また、半導体層に微結晶シリコンを用いたトランジスタは、非晶質シリコンを用いたトランジスタより電界効果移動度が高く、高速動作が可能である。 Transistors that use amorphous silicon for the semiconductor layer can be formed on large glass substrates and can be manufactured at low cost. Transistors that use polycrystalline silicon for the semiconductor layer have high field effect mobility and can operate at high speed. Transistors that use microcrystalline silicon for the semiconductor layer have higher field effect mobility and can operate at high speed than transistors that use amorphous silicon.

半導体層は、半導体として機能する層状物質を有してもよい。層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス力のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。 The semiconductor layer may have a layered material that functions as a semiconductor. A layered material is a general term for a group of materials that have a layered crystal structure. A layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds weaker than covalent or ionic bonds, such as van der Waals forces. A layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity. By using a material that functions as a semiconductor and has high two-dimensional electrical conductivity in the channel formation region, a transistor with a large on-current can be provided.

上記層状物質として、例えば、グラフェン、シリセン、カルコゲン化物などが挙げられる。カルコゲン化物は、カルコゲン(第16族に属する元素)を含む化合物である。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。トランジスタの半導体層として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。 Examples of the layered material include graphene, silicene, and chalcogenides. Chalcogenides are compounds containing chalcogen (an element belonging to Group 16). Examples of the chalcogenides include transition metal chalcogenides and Group 13 chalcogenides. Specific examples of transition metal chalcogenides that can be used as the semiconductor layer of a transistor include molybdenum sulfide (representatively MoS 2 ), molybdenum selenide (representatively MoSe 2 ), molybdenum tellurium (representatively MoTe 2 ), tungsten sulfide (representatively WS 2 ), tungsten selenide (representatively WSe 2 ), tungsten tellurium (representatively WTe 2 ), hafnium sulfide (representatively HfS 2 ), hafnium selenide (representatively HfSe 2 ), zirconium sulfide (representatively ZrS 2 ), zirconium selenide (representatively ZrSe 2 ), and the like.

また、酸化物半導体はバンドギャップが2eV以上であるため、チャネル形成領域に酸化物半導体を有するトランジスタ(「OSトランジスタ」ともいう)はオフ電流が著しく少ない。室温環境下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、または1yA(1×10−24A)以下とすることができる。また、OSトランジスタは高温環境下においても動作が安定し、特性変動が少なく、高い信頼性が得られる。例えば、OSトランジスタは、125℃以上かつ200℃以下といった高温環境下においても、オフ電流がほとんど増加しない。また、高温環境下でもオン電流が低下しにくい。よって、高温環境下でも良好なスイッチング動作が実現できる。 In addition, since an oxide semiconductor has a band gap of 2 eV or more, a transistor having an oxide semiconductor in a channel formation region (also referred to as an "OS transistor") has an extremely low off-state current. The off-state current value of an OS transistor per 1 μm of channel width in a room temperature environment can be 1 aA (1×10 −18 A) or less, 1 zA (1×10 −21 A) or less, or 1 yA (1×10 −24 A) or less. In addition, the OS transistor operates stably even in a high-temperature environment, has little fluctuation in characteristics, and has high reliability. For example, the off-state current of an OS transistor hardly increases even in a high-temperature environment of 125° C. or more and 200° C. or less. In addition, the on-state current is not easily decreased even in a high-temperature environment. Thus, good switching operation can be achieved even in a high-temperature environment.

また、OSトランジスタは、ドレイン耐圧が高い。よって、OSトランジスタを用いた半導体装置は、高電圧で駆動する場合においても動作が安定し、高い信頼性が得られる。 In addition, OS transistors have a high drain withstand voltage. Therefore, a semiconductor device using an OS transistor has stable operation and high reliability even when driven at a high voltage.

酸化物半導体に用いる金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、および亜鉛酸化物が挙げられる。酸化物半導体に用いる金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、酸化物半導体に用いる金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素または半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素または半金属元素である。 Examples of metal oxides used in oxide semiconductors include indium oxide, gallium oxide, and zinc oxide. Metal oxides used in oxide semiconductors preferably contain at least indium (In) or zinc (Zn). Metal oxides used in oxide semiconductors preferably contain two or three elements selected from indium, element M, and zinc. Element M is a metal element or semimetal element that has a high bond energy with oxygen, for example, a metal element or semimetal element that has a higher bond energy with oxygen than indium.

元素Mとして、具体的には、アルミニウム、ガリウム、スズ、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、アンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、スズ、およびイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。 Specific examples of element M include aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, calcium, strontium, barium, boron, silicon, germanium, and antimony. The element M contained in the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and even more preferably gallium. In this specification and the like, metal elements and metalloid elements may be collectively referred to as "metal elements," and the "metal elements" described in this specification and the like may include metalloid elements.

例えば、酸化物半導体に用いる金属酸化物としては、インジウム酸化物(In酸化物)、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウムスズ酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、「GZO」とも記す。)、アルミニウム亜鉛酸化物(Al−Zn酸化物、「AZO」とも記す。)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、「IAZO」とも記す。)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、「IGZO」とも記す。)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物、「IGZTO」とも記す。)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、「IGAZO」または「IAGZO」とも記す。)などを用いることができる。または、シリコンを含むインジウムスズ酸化物、ガリウムスズ酸化物(Ga−Sn酸化物)、アルミニウムスズ酸化物(Al−Sn酸化物)などを用いることができる。 For example, metal oxides used in oxide semiconductors include indium oxide (In oxide), indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as "GZO"), aluminum zinc oxide (Al-Zn oxide, also written as "AZO"), Indium aluminum zinc oxide (In-Al-Zn oxide, also written as "IAZO"), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as "IGZO"), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide, also written as "IGZTO"), indium gallium aluminum zinc oxide (In-Ga-Al-Zn oxide, also written as "IGAZO" or "IAGZO"), etc., can be used. Alternatively, indium tin oxide containing silicon, gallium tin oxide (Ga-Sn oxide), aluminum tin oxide (Al-Sn oxide), etc. can be used.

酸化物半導体に用いる金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、OSトランジスタの電界効果移動度を高めることができる。 By increasing the ratio of the number of indium atoms to the sum of the numbers of atoms of all metal elements contained in the metal oxide used in the oxide semiconductor, the field-effect mobility of the OS transistor can be increased.

なお、金属酸化物は、インジウムに代えて元素周期表における周期番号が大きい金属元素の一種または複数種を有してもよい。または、金属酸化物は、インジウムに加えて元素周期表における周期番号が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、元素周期表における周期番号が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。元素周期表における周期番号が大きい金属元素として、第5周期に属する金属元素、第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、スズ、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、およびユウロピウムは、軽希土類元素と呼ばれる。 Note that the metal oxide may have one or more metal elements having a higher period number in the periodic table instead of indium. Alternatively, the metal oxide may have one or more metal elements having a higher period number in the periodic table in addition to indium. The greater the overlap of the orbits of the metal elements, the greater the carrier conduction in the metal oxide tends to be. Therefore, by including a metal element having a higher period number in the periodic table, the field effect mobility of the transistor may be increased. Examples of metal elements having a higher period number in the periodic table include metal elements belonging to the fifth period and metal elements belonging to the sixth period. Specific examples of the metal elements include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.

また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、水素などが挙げられる。 The metal oxide may also contain one or more nonmetallic elements. When the metal oxide contains a nonmetallic element, the field effect mobility of the transistor may be increased. Examples of nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.

また、金属酸化物に含まれる主成分元素のうち、金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。 Furthermore, by increasing the ratio of the number of zinc atoms to the sum of the number of atoms of the metal elements among the main component elements contained in the metal oxide, a metal oxide with high crystallinity can be obtained, and the diffusion of impurities in the metal oxide can be suppressed. Therefore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.

また、金属酸化物に含まれる主成分元素のうち、金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されるのを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。 Furthermore, by increasing the ratio of the number of atoms of element M to the sum of the number of atoms of the metal elements among the main component elements contained in the metal oxide, the formation of oxygen vacancies in the metal oxide can be suppressed. Therefore, carrier generation due to oxygen vacancies can be suppressed, and a transistor with a small off-current can be obtained. Furthermore, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.

半導体層に適用する金属酸化物の組成により、トランジスタの電気特性、および信頼性が異なる。したがって、トランジスタに求められる電気特性、および信頼性に応じて金属酸化物の組成を異ならせることにより、優れた電気特性と高い信頼性を両立した半導体装置が実現できる。 The electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide applied to the semiconductor layer. Therefore, by varying the composition of the metal oxide depending on the electrical characteristics and reliability required of the transistor, a semiconductor device that combines excellent electrical characteristics and high reliability can be realized.

OSトランジスタの半導体層にIn−Zn酸化物を用いる場合、インジウムの原子数比が亜鉛の原子数比以上である金属酸化物を用いてもよい。例えば、金属元素の原子数比が、In:Zn=1:1、In:Zn=2:1、In:Zn=3:1、In:Zn=4:1、In:Zn=5:1、In:Zn=7:1、またはIn:Zn=10:1、またはこれらの近傍の金属酸化物を用いてもよい。 When In-Zn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium is equal to or greater than the atomic ratio of zinc may be used. For example, a metal oxide in which the atomic ratio of metal elements is In:Zn=1:1, In:Zn=2:1, In:Zn=3:1, In:Zn=4:1, In:Zn=5:1, In:Zn=7:1, or In:Zn=10:1, or a ratio close to these may be used.

OSトランジスタの半導体層にIn−Sn酸化物を用いる場合、インジウムの原子数比がスズの原子数比以上である金属酸化物を用いてもよい。例えば、金属元素の原子数比が、In:Sn=1:1、In:Sn=2:1、In:Sn=3:1、In:Sn=4:1、In:Sn=5:1、In:Sn=7:1、またはIn:Sn=10:1、またはこれらの近傍の金属酸化物を用いてもよい。 When an In-Sn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium is equal to or greater than the atomic ratio of tin may be used. For example, a metal oxide in which the atomic ratio of metal elements is In:Sn=1:1, In:Sn=2:1, In:Sn=3:1, In:Sn=4:1, In:Sn=5:1, In:Sn=7:1, or In:Sn=10:1, or a ratio close to these may be used.

OSトランジスタの半導体層にIn−Sn−Zn酸化物を用いる場合、インジウムの原子数比が、スズの原子数比よりも高い金属酸化物を用いてもよい。さらには、亜鉛の原子数比が、スズの原子数比よりも高い金属酸化物を用いることが好ましい。例えば、金属元素の原子数比が、In:Sn:Zn=2:1:3、In:Sn:Zn=3:1:2、In:Sn:Zn=4:2:3、In:Sn:Zn=4:2:4.1、In:Sn:Zn=5:1:3、In:Sn:Zn=5:1:6、In:Sn:Zn=5:1:7、In:Sn:Zn=5:1:8、In:Sn:Zn=6:1:6、In:Sn:Zn=10:1:3、In:Sn:Zn=10:1:6、In:Sn:Zn=10:1:7、In:Sn:Zn=10:1:8、In:Sn:Zn=5:2:5、In:Sn:Zn=10:1:10、In:Sn:Zn=20:1:10、In:Sn:Zn=40:1:10、またはこれらの近傍の金属酸化物を用いてもよい。 When an In-Sn-Zn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium is higher than that of tin may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of tin. For example, the atomic ratios of metal elements are In:Sn:Zn=2:1:3, In:Sn:Zn=3:1:2, In:Sn:Zn=4:2:3, In:Sn:Zn=4:2:4.1, In:Sn:Zn=5:1:3, In:Sn:Zn=5:1:6, In:Sn:Zn=5:1:7, In:Sn:Zn=5:1:8, In:Sn:Zn=6:1:6, I It is also possible to use metal oxides such as In:Sn:Zn = 10:1:3, In:Sn:Zn = 10:1:6, In:Sn:Zn = 10:1:7, In:Sn:Zn = 10:1:8, In:Sn:Zn = 5:2:5, In:Sn:Zn = 10:1:10, In:Sn:Zn = 20:1:10, In:Sn:Zn = 40:1:10, or similar metal oxides.

OSトランジスタの半導体層にIn−Al−Zn酸化物を用いる場合、インジウムの原子数比が、アルミニウムの原子数比よりも高い金属酸化物を適用してもよい。さらには、亜鉛の原子数比が、アルミニウムの原子数比よりも高い金属酸化物を用いることが好ましい。例えば、金属元素の原子数比が、In:Al:Zn=2:1:3、In:Al:Zn=3:1:2、In:Al:Zn=4:2:3、In:Al:Zn=4:2:4.1、In:Al:Zn=5:1:3、In:Al:Zn=5:1:6、In:Al:Zn=5:1:7、In:Al:Zn=5:1:8、In:Al:Zn=6:1:6、In:Al:Zn=10:1:3、In:Al:Zn=10:1:6、In:Al:Zn=10:1:7、In:Al:Zn=10:1:8、In:Al:Zn=5:2:5、In:Al:Zn=10:1:10、In:Al:Zn=20:1:10、In:Al:Zn=40:1:10、またはこれらの近傍の金属酸化物を用いてもよい。 When an In-Al-Zn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium is higher than that of aluminum may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of aluminum. For example, the atomic ratios of metal elements are In:Al:Zn=2:1:3, In:Al:Zn=3:1:2, In:Al:Zn=4:2:3, In:Al:Zn=4:2:4.1, In:Al:Zn=5:1:3, In:Al:Zn=5:1:6, In:Al:Zn=5:1:7, In:Al:Zn=5:1:8, In:Al:Zn=6:1:6, I n:Al:Zn = 10:1:3, In:Al:Zn = 10:1:6, In:Al:Zn = 10:1:7, In:Al:Zn = 10:1:8, In:Al:Zn = 5:2:5, In:Al:Zn = 10:1:10, In:Al:Zn = 20:1:10, In:Al:Zn = 40:1:10, or metal oxides close to these may also be used.

OSトランジスタの半導体層にIn−Ga−Zn酸化物を用いる場合、金属元素の原子数に対するインジウムの原子数比が、ガリウムの原子数比よりも高い金属酸化物を用いてもよい。さらには、亜鉛の原子数比が、ガリウムの原子数比よりも高い金属酸化物を用いることが好ましい。例えば、半導体層は、金属元素の原子数比が、In:Ga:Zn=2:1:3、In:Ga:Zn=3:1:2、In:Ga:Zn=4:2:3、In:Ga:Zn=4:2:4.1、In:Ga:Zn=5:1:3、In:Ga:Zn=5:1:6、In:Ga:Zn=5:1:7、In:Ga:Zn=5:1:8、In:Ga:Zn=6:1:6、In:Ga:Zn=10:1:3、In:Ga:Zn=10:1:6、In:Ga:Zn=10:1:7、In:Ga:Zn=10:1:8、In:Ga:Zn=5:2:5、In:Ga:Zn=10:1:10、In:Ga:Zn=20:1:10、In:Ga:Zn=40:1:10、またはこれらの近傍の金属酸化物を用いてもよい。 When an In-Ga-Zn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium to the number of atoms of the metal element is higher than the atomic ratio of gallium may be used. Furthermore, it is preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of gallium. For example, the semiconductor layer may have an atomic ratio of metal elements of In:Ga:Zn=2:1:3, In:Ga:Zn=3:1:2, In:Ga:Zn=4:2:3, In:Ga:Zn=4:2:4.1, In:Ga:Zn=5:1:3, In:Ga:Zn=5:1:6, In:Ga:Zn=5:1:7, In:Ga:Zn=5:1:8, In:Ga:Zn=6:1: 6, In:Ga:Zn = 10:1:3, In:Ga:Zn = 10:1:6, In:Ga:Zn = 10:1:7, In:Ga:Zn = 10:1:8, In:Ga:Zn = 5:2:5, In:Ga:Zn = 10:1:10, In:Ga:Zn = 20:1:10, In:Ga:Zn = 40:1:10, or metal oxides close to these may also be used.

OSトランジスタの半導体層にIn−M−Zn酸化物を用いる場合、金属元素の原子数に対するインジウムの原子数比が、元素Mの原子数比よりも高い金属酸化物を用いてもよい。さらには、亜鉛の原子数比が、元素Mの原子数比よりも高い金属酸化物を用いることが、より好ましい。例えば、半導体層は、金属元素の原子数比が、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:3、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=10:1:3、In:M:Zn=10:1:6、In:M:Zn=10:1:7、In:M:Zn=10:1:8、In:M:Zn=5:2:5、In:M:Zn=10:1:10、In:M:Zn=20:1:10、In:M:Zn=40:1:10、またはこれらの近傍の金属酸化物を用いてもよい。 When In-M-Zn oxide is used for the semiconductor layer of an OS transistor, a metal oxide in which the atomic ratio of indium to the number of atoms of the metal element is higher than the atomic ratio of element M may be used. Furthermore, it is more preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of element M. For example, the semiconductor layer may have an atomic ratio of metal elements of In:M:Zn=2:1:3, In:M:Zn=3:1:2, In:M:Zn=4:2:3, In:M:Zn=4:2:4.1, In:M:Zn=5:1:3, In:M:Zn=5:1:6, In:M:Zn=5:1:7, In:M:Zn=5:1:8, In:M:Zn=6:1: 6, In:M:Zn=10:1:3, In:M:Zn=10:1:6, In:M:Zn=10:1:7, In:M:Zn=10:1:8, In:M:Zn=5:2:5, In:M:Zn=10:1:10, In:M:Zn=20:1:10, In:M:Zn=40:1:10, or metal oxides close to these may also be used.

半導体層にIn−M−Zn酸化物を用いる場合、金属元素の原子数比を、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いてもよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。 When In-M-Zn oxide is used for the semiconductor layer, the atomic ratio of the metal elements may be In:M:Zn = 1:3:2 [atomic ratio] or a composition close thereto, In:M:Zn = 1:3:4 [atomic ratio] or a composition close thereto, In:M:Zn = 1:1:0.5 [atomic ratio] or a composition close thereto, In:M:Zn = 1:1:1 [atomic ratio] or a composition close thereto, In:M:Zn = 1:1:1.2 [atomic ratio] or a composition close thereto, In:M:Zn = 1:1:2 [atomic ratio] or a composition close thereto, or In:M:Zn = 4:2:3 [atomic ratio] or a composition close thereto. Note that the composition close thereto includes a range of ±30% of the desired atomic ratio. It is also preferable to use gallium as the element M.

なお、元素Mとして複数の金属元素を有する場合は、当該金属元素の原子数比の合計を、元素Mの原子数比とすることができる。例えば、元素Mとしてガリウムとアルミニウムを有するIn−Ga−Al−Zn酸化物の場合、ガリウムの原子数比とアルミニウムの原子数比の合計を元素Mの原子数比とすることができる。また、インジウム、元素M、および亜鉛の原子数比が前述の範囲であることが好ましい。 When element M has multiple metal elements, the sum of the atomic ratios of the metal elements can be the atomic ratio of element M. For example, in the case of an In-Ga-Al-Zn oxide having gallium and aluminum as element M, the sum of the atomic ratio of gallium and the atomic ratio of aluminum can be the atomic ratio of element M. In addition, it is preferable that the atomic ratios of indium, element M, and zinc are within the above-mentioned range.

金属酸化物に含まれる主成分元素のうち、金属元素の原子数の和に対するインジウムの原子数の割合が、30原子%以上100原子%以下、好ましくは30原子%以上95原子%以下、より好ましくは35原子%以上95原子%以下、より好ましくは35原子%以上90原子%以下、より好ましくは40原子%以上90原子%以下、より好ましくは45原子%以上90原子%以下、より好ましくは50原子%以上80原子%以下、より好ましくは60原子%以上80原子%以下、より好ましくは70原子%以上80原子%以下である金属酸化物を用いることが好ましい。例えば、半導体層にIn−M−Zn酸化物を用いる場合、インジウム、元素M、および亜鉛の原子数の合計に対する、インジウムの原子数の割合が前述の範囲であることが好ましい。 It is preferable to use a metal oxide in which the ratio of the number of indium atoms to the sum of the atomic numbers of the metal elements among the main component elements contained in the metal oxide is 30 atomic % or more and 100 atomic %, preferably 30 atomic % or more and 95 atomic %, more preferably 35 atomic % or more and 95 atomic %, more preferably 35 atomic % or more and 90 atomic %, more preferably 40 atomic % or more and 90 atomic %, more preferably 45 atomic % or more and 90 atomic %, more preferably 50 atomic % or more and 80 atomic %, more preferably 60 atomic % or more and 80 atomic %, more preferably 70 atomic % or more and 80 atomic %. For example, when In-M-Zn oxide is used for the semiconductor layer, it is preferable that the ratio of the number of indium atoms to the total number of atoms of indium, element M, and zinc is in the above-mentioned range.

前述した通り、金属酸化物に含まれる主成分元素のうち、金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、OSトランジスタの電界効果移動度を高めることができる。当該トランジスタを用いることにより、高速動作が可能な回路を作製することができる。さらには回路の占有面積を縮小することが可能となる。 As described above, the field-effect mobility of an OS transistor can be increased by increasing the ratio of the number of indium atoms to the sum of the number of atoms of the metal elements among the main component elements contained in the metal oxide. By using such a transistor, a circuit capable of high-speed operation can be manufactured. Furthermore, the area occupied by the circuit can be reduced.

金属酸化物の組成の分析は、例えば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、誘導結合プラズマ質量分析法(ICP−MS:Inductively Coupled Plasma−Mass Spectrometry)、または誘導結合高周波プラズマ発光分光法(ICP−AES:Inductively Coupled Plasma−Atomic Emission Spectrometry)を用いることができる。または、これらの手法を複数組み合わせて分析を行ってもよい。なお、含有率が低い元素は、分析精度の影響により、実際の含有率と分析によって得られた含有率が異なる場合がある。例えば、元素Mの含有率が低い場合、分析によって得られた元素Mの含有率が、実際の含有率より低くなる場合がある。 The composition of metal oxides can be analyzed using, for example, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), or inductively coupled plasma-atomic emission spectrometry (ICP-AES). Alternatively, a combination of these techniques may be used for the analysis. In addition, for elements with low content, the actual content may differ from the content obtained by analysis due to the influence of analytical accuracy. For example, if the content of element M is low, the content of element M obtained by analysis may be lower than the actual content.

金属酸化物の形成は、スパッタリング法、またはALD法が好適である。なお、金属酸化物をスパッタリング法で形成する場合、ターゲットの原子数比と、当該金属酸化物の原子数比が異なる場合がある。特に、亜鉛は、ターゲットの原子数比よりも金属酸化物の原子数比が小さくなる場合がある。具体的には、ターゲットに含まれる亜鉛の原子数比の40%以上90%以下程度となる場合がある。 The metal oxide is preferably formed by sputtering or ALD. When forming a metal oxide by sputtering, the atomic ratio of the target may differ from the atomic ratio of the metal oxide. In particular, the atomic ratio of zinc in the metal oxide may be smaller than the atomic ratio of the target. Specifically, the atomic ratio of zinc in the metal oxide may be about 40% to 90% of the atomic ratio of zinc contained in the target.

なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。 When a metal oxide film is formed by sputtering, the above atomic ratio is not limited to the atomic ratio of the formed metal oxide film, but may be the atomic ratio of the sputtering target used to form the metal oxide film.

ここで、トランジスタの信頼性について、説明する。トランジスタの信頼性を評価する指標の1つとして、ゲートに電界を印加した状態で、高温下で保持する、GBT(Gate Bias Temperature)ストレス試験がある。その中でも、ソース電位およびドレイン電位に対して、ゲートに正の電位(正バイアス)を与えた状態で、高温下で保持する試験をPBTS(Positive Bias Temperature Stress)試験、ゲートに負の電位(負バイアス)を与えた状態で、高温下で保持する試験をNBTS(Negative Bias Temperature Stress)試験と呼ぶ。また、光を照射した状態で行うPBTS試験およびNBTS試験をそれぞれ、PBTIS(Positive Bias Temperature Illumination Stress)試験、NBTIS(Negative Bias Temperature Illumination Stress)試験と呼ぶ。 Here, we will explain the reliability of transistors. One of the indicators for evaluating the reliability of transistors is the GBT (Gate Bias Temperature) stress test, in which an electric field is applied to the gate and the transistor is held at high temperature. Among these, a test in which a positive potential (positive bias) is applied to the gate with respect to the source potential and drain potential and the transistor is held at high temperature is called a PBTS (Positive Bias Temperature Stress) test, and a test in which a negative potential (negative bias) is applied to the gate and the transistor is held at high temperature is called an NBTS (Negative Bias Temperature Stress) test. Additionally, the PBTS test and NBTS test performed under light irradiation are called the PBTIS (Positive Bias Temperature Illumination Stress) test and the NBTIS (Negative Bias Temperature Illumination Stress) test, respectively.

n型のトランジスタにおいては、トランジスタをオン状態とする際にゲートに正の電位が与えられるため、PBTS試験でのしきい値電圧の変動量が、トランジスタの信頼性の指標として着目すべき重要な項目の1つとなる。 In the case of n-type transistors, a positive potential is applied to the gate when the transistor is turned on, so the amount of variation in threshold voltage during PBTS testing is one of the important items to note as an indicator of the reliability of the transistor.

半導体層にガリウムを含まない、またはガリウムの含有率の低い金属酸化物を用いることにより、正バイアス印加に対する信頼性が高いトランジスタとすることができる。つまり、PBTS試験でのしきい値電圧の変動量が小さいトランジスタとすることができる。また、ガリウムを含む金属酸化物を用いる場合は、インジウムの含有率よりも、ガリウムの含有率を低くすることが好ましい。これにより、信頼性の高いトランジスタを実現することができる。 By using a metal oxide that does not contain gallium or has a low gallium content in the semiconductor layer, a transistor with high reliability when a positive bias is applied can be obtained. In other words, a transistor with a small amount of variation in threshold voltage in a PBTS test can be obtained. In addition, when using a metal oxide that contains gallium, it is preferable to make the gallium content lower than the indium content. This makes it possible to realize a highly reliable transistor.

PBTS試験でのしきい値電圧の変動の1つの要因として、半導体層とゲート絶縁層の界面、または界面近傍における欠陥準位が挙げられる。欠陥準位密度が大きいほど、PBTS試験での劣化が顕著になる。半導体層の、ゲート絶縁層と接する領域におけるガリウムの含有率を低くすることにより、当該欠陥準位の生成を抑制できる。 One of the factors that causes the threshold voltage to vary during the PBTS test is defect levels at or near the interface between the semiconductor layer and the gate insulating layer. The greater the defect level density, the more significant the degradation during the PBTS test. By lowering the gallium content in the region of the semiconductor layer that contacts the gate insulating layer, the generation of these defect levels can be suppressed.

ガリウムを含まない、またはガリウムの含有率の低い金属酸化物を半導体層に用いることによりPBTS試験でのしきい値電圧の変動を抑制できる理由として、例えば、以下のようなことが考えられる。金属酸化物に含まれるガリウムは、他の金属元素(例えば、インジウムまたは亜鉛)と比較して、酸素を誘引しやすい性質を有する。そのため、ガリウムを多く含む金属酸化物と、ゲート絶縁層との界面において、ガリウムがゲート絶縁層中の余剰酸素と結合することにより、キャリア(ここでは電子)トラップサイトを生じさせやすくなると推察される。そのため、ゲートに正の電位を与えた際に、半導体層とゲート絶縁層との界面にキャリアがトラップされることにより、しきい値電圧が変動することが考えられる。 The reason why the use of a metal oxide that does not contain gallium or has a low gallium content in the semiconductor layer can suppress the variation in threshold voltage in the PBTS test is thought to be, for example, as follows. The gallium contained in the metal oxide has the property of attracting oxygen more easily than other metal elements (e.g., indium or zinc). Therefore, it is presumed that at the interface between the metal oxide containing a large amount of gallium and the gate insulating layer, gallium combines with excess oxygen in the gate insulating layer, making it easier to create carrier (here, electron) trap sites. Therefore, it is thought that when a positive potential is applied to the gate, carriers are trapped at the interface between the semiconductor layer and the gate insulating layer, causing the threshold voltage to vary.

より具体的には、半導体層にIn−Ga−Zn酸化物を用いた場合、インジウムの原子数比が、ガリウムの原子数比よりも高い金属酸化物を、半導体層に適用することができる。また、亜鉛の原子数比が、ガリウムの原子数比よりも高い金属酸化物を用いることが、より好ましい。言い換えると、金属元素の原子数比が、In>Ga、且つZn>Gaを満たす金属酸化物を、半導体層に適用することが好ましい。 More specifically, when In-Ga-Zn oxide is used for the semiconductor layer, a metal oxide in which the atomic ratio of indium is higher than that of gallium can be applied to the semiconductor layer. It is more preferable to use a metal oxide in which the atomic ratio of zinc is higher than that of gallium. In other words, it is preferable to apply a metal oxide in which the atomic ratios of metal elements satisfy In>Ga and Zn>Ga to the semiconductor layer.

例えば、OSトランジスタの半導体層に、金属元素の原子数比が、In:Ga:Zn=2:1:3、In:Ga:Zn=3:1:2、In:Ga:Zn=4:2:3、In:Ga:Zn=4:2:4.1、In:Ga:Zn=5:1:3、In:Ga:Zn=5:1:6、In:Ga:Zn=5:1:7、In:Ga:Zn=5:1:8、In:Ga:Zn=6:1:6、In:Ga:Zn=10:1:3、In:Ga:Zn=10:1:6、In:Ga:Zn=10:1:7、In:Ga:Zn=10:1:8、In:Ga:Zn=5:2:5、In:Ga:Zn=10:1:10、In:Ga:Zn=20:1:10、In:Ga:Zn=40:1:10、またはこれらの近傍の金属酸化物を用いることができる。 For example, the atomic ratio of metal elements in the semiconductor layer of an OS transistor is In:Ga:Zn = 2:1:3, In:Ga:Zn = 3:1:2, In:Ga:Zn = 4:2:3, In:Ga:Zn = 4:2:4.1, In:Ga:Zn = 5:1:3, In:Ga:Zn = 5:1:6, In:Ga:Zn = 5:1:7, In:Ga:Zn = 5:1:8, In:Ga:Zn = 6:1:6, In:Ga:Zn = 10:1:3, In:Ga:Zn = 10:1:6, In:Ga:Zn = 10:1:7, In:Ga:Zn = 10:1:8, In:Ga:Zn = 5:2:5, In:Ga:Zn = 10:1:10, In:Ga:Zn = 20:1:10, In:Ga:Zn = 40:1:10, or metal oxides close to these can be used.

OSトランジスタの半導体層は、含有される金属元素の原子数に対するガリウムの原子数の割合が、0原子%より高く50原子%以下、好ましくは0.1原子%以上40原子%以下、より好ましくは0.1原子%以上35原子%以下、より好ましくは0.1原子%以上30原子%以下、より好ましくは0.1原子%以上25原子%以下、より好ましくは0.1原子%以上20原子%以下、より好ましくは0.1原子%以上15原子%以下、より好ましくは0.1原子%以上10原子%以下である金属酸化物を用いることが好ましい。半導体層中のガリウムの含有率を低くすることにより、PBTS試験に対する耐性の高いトランジスタとすることができる。なお、金属酸化物にガリウムを含有させることにより、金属酸化物に酸素欠損(V:Oxygen Vacancy)が生じにくくなるといった効果を奏する。 The semiconductor layer of the OS transistor preferably uses a metal oxide in which the ratio of the number of gallium atoms to the number of atoms of the contained metal element is higher than 0 atomic % and 50 atomic % or less, preferably 0.1 atomic % to 40 atomic % or less, more preferably 0.1 atomic % to 35 atomic % or less, more preferably 0.1 atomic % to 30 atomic % or less, more preferably 0.1 atomic % to 25 atomic % or less, more preferably 0.1 atomic % to 20 atomic % or less, more preferably 0.1 atomic % to 15 atomic % or less, and more preferably 0.1 atomic % to 10 atomic % or less. By lowering the content of gallium in the semiconductor layer, a transistor with high resistance to a PBTS test can be obtained. Note that by containing gallium in the metal oxide, an effect is achieved in that oxygen vacancy ( VO : oxygen vacancy) is less likely to occur in the metal oxide.

OSトランジスタの半導体層に、ガリウムを含まない金属酸化物を適用してもよい。例えば、In−Zn酸化物を半導体層に適用することができる。このとき、金属酸化物に含まれる金属元素の原子数に対するインジウムの原子数比を高くすることにより、トランジスタの電界効果移動度を高めることができる。一方、金属酸化物に含まれる金属元素の原子数に対する亜鉛の原子数比を高くすることにより、結晶性の高い金属酸化物となるため、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。また、半導体層には、酸化インジウムなどの、ガリウムおよび亜鉛を含まない金属酸化物を適用してもよい。ガリウムを含まない金属酸化物を用いることにより、特に、PBTS試験におけるしきい値電圧の変動を極めて小さなものとすることができる。 A metal oxide that does not contain gallium may be applied to the semiconductor layer of an OS transistor. For example, In-Zn oxide may be applied to the semiconductor layer. In this case, the field effect mobility of the transistor can be increased by increasing the atomic ratio of indium to the atomic number of metal elements contained in the metal oxide. On the other hand, by increasing the atomic ratio of zinc to the atomic number of metal elements contained in the metal oxide, the metal oxide becomes highly crystalline, so that the fluctuation in the electrical characteristics of the transistor is suppressed and the reliability can be increased. In addition, a metal oxide that does not contain gallium and zinc, such as indium oxide, may be applied to the semiconductor layer. By using a metal oxide that does not contain gallium, the fluctuation in the threshold voltage, particularly in a PBTS test, can be made extremely small.

例えば、半導体層に、インジウムと亜鉛を含む酸化物を用いることができる。このとき、金属元素の原子数比が、例えばIn:Zn=2:3、In:Zn=4:1、またはこれらの近傍である金属酸化物を用いることができる。 For example, an oxide containing indium and zinc can be used for the semiconductor layer. In this case, a metal oxide having an atomic ratio of metal elements of, for example, In:Zn=2:3, In:Zn=4:1, or a ratio close to these can be used.

なお、代表的にガリウムを挙げて説明したが、ガリウムに代えて元素Mを用いた場合にも適用できる。半導体層には、インジウムの原子数比が元素Mの原子数比よりも高い金属酸化物を適用することが好ましい。また、亜鉛の原子数比が元素Mの原子数比よりも高い金属酸化物を適用することが好ましい。 Note that, although gallium has been used as a representative example, the present invention can also be applied to the case where element M is used instead of gallium. It is preferable to use a metal oxide in which the atomic ratio of indium is higher than the atomic ratio of element M for the semiconductor layer. It is also preferable to use a metal oxide in which the atomic ratio of zinc is higher than the atomic ratio of element M.

半導体層に元素Mの含有率が低い金属酸化物を適用することにより、正バイアス印加に対する信頼性が高いトランジスタが実現できる。当該トランジスタを正バイアス印加に対する高い信頼性が求められるトランジスタに適用することにより、高い信頼性を有する半導体装置が実現できる。 By applying a metal oxide with a low content of element M to the semiconductor layer, a transistor with high reliability when a positive bias is applied can be realized. By applying this transistor to a transistor that requires high reliability when a positive bias is applied, a semiconductor device with high reliability can be realized.

半導体層は、2以上の金属酸化物層を有する積層構造としてもよい。半導体層が有する2以上の金属酸化物層は、組成が互いに同じ、または概略同じであってもよい。組成が同じ金属酸化物層の積層構造とすることで、例えば、同じスパッタリングターゲットを用いて形成できるため、製造コストを削減できる。 The semiconductor layer may have a stacked structure having two or more metal oxide layers. The two or more metal oxide layers of the semiconductor layer may have the same or approximately the same composition. By using a stacked structure of metal oxide layers with the same composition, for example, they can be formed using the same sputtering target, thereby reducing manufacturing costs.

半導体層が有する2以上の金属酸化物層は、組成が互いに異なっても構わない。例えば、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造が好適である。また、元素Mとして、ガリウムまたはアルミニウムを用いることが特に好ましい。例えば、インジウム酸化物、インジウムガリウム酸化物、およびIGZOの中から選ばれるいずれか一と、IAZO、IAGZO、およびITZO(登録商標)の中から選ばれるいずれか一と、の積層構造などを用いてもよい。 The two or more metal oxide layers in the semiconductor layer may have different compositions. For example, a laminate structure of a first metal oxide layer having a composition of In:M:Zn=1:3:4 [atomic ratio] or a composition close thereto and a second metal oxide layer having a composition of In:M:Zn=1:1:1 [atomic ratio] or a composition close thereto provided on the first metal oxide layer is preferable. In addition, it is particularly preferable to use gallium or aluminum as the element M. For example, a laminate structure of any one selected from indium oxide, indium gallium oxide, and IGZO and any one selected from IAZO, IAGZO, and ITZO (registered trademark) may be used.

また、例えば、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:Zn=4:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造を用いてもよい。 In addition, for example, a laminated structure may be used, which includes a first metal oxide layer having a composition of In:M:Zn=1:1:1 [atomic ratio] or a composition close thereto, and a second metal oxide layer having a composition of In:Zn=4:1 [atomic ratio] or a composition close thereto, which is provided on the first metal oxide layer.

半導体層は、結晶性を有する金属酸化物層を用いることが好ましい。例えば、CAAC(c−axis aligned crystalline)構造、多結晶(poly crystal)構造、微結晶(nc:nanocrystalline)構造等を有する金属酸化物層を用いることができる。結晶性を有する金属酸化物層を半導体層に用いることにより、半導体層中の欠陥準位密度を低減でき、信頼性の高い表示装置を実現できる。なお、CAAC構造とは、複数の微結晶(代表的には、複数のIGZOの微結晶)がc軸配向を有し、かつa−b面においては、上記複数の微結晶が配向せずに連結した結晶構造である。CAAC構造は、多結晶構造よりもa−b面において結晶粒界、グレインなどが少ないため信頼性の高い半導体装置を実現できる。 The semiconductor layer is preferably a crystalline metal oxide layer. For example, a metal oxide layer having a CAAC (c-axis aligned crystalline) structure, a polycrystalline (polycrystalline) structure, a nanocrystalline (nc: nanocrystalline) structure, or the like can be used. By using a crystalline metal oxide layer for the semiconductor layer, the defect level density in the semiconductor layer can be reduced, and a highly reliable display device can be realized. The CAAC structure is a crystal structure in which multiple microcrystals (typically multiple IGZO microcrystals) have a c-axis orientation, and the multiple microcrystals are connected without being oriented in the a-b plane. The CAAC structure has fewer crystal grain boundaries and grains in the a-b plane than the polycrystalline structure, and therefore a highly reliable semiconductor device can be realized.

半導体層に用いる金属酸化物層の結晶性が高いほど、半導体層中の欠陥準位密度を低減できる。一方、結晶性の低い金属酸化物層を用いることで、大きな電流を流すことができるトランジスタを実現することができる。 The higher the crystallinity of the metal oxide layer used in the semiconductor layer, the more the density of defect states in the semiconductor layer can be reduced. On the other hand, by using a metal oxide layer with low crystallinity, a transistor capable of passing a large current can be realized.

金属酸化物層をスパッタリング法により形成する場合、形成時の基板温度(ステージ温度)が高いほど、結晶性の高い金属酸化物層を形成することができる。また、形成時に用いる成膜ガス全体に対する酸素ガスの流量の割合(以下、酸素流量比ともいう)が高いほど、結晶性の高い金属酸化物層を形成することができる。 When a metal oxide layer is formed by sputtering, the higher the substrate temperature (stage temperature) during formation, the more crystalline the metal oxide layer can be formed. Also, the higher the ratio of the flow rate of oxygen gas to the total deposition gas used during formation (hereinafter also referred to as the oxygen flow rate ratio), the more crystalline the metal oxide layer can be formed.

OSトランジスタの半導体層は、結晶性が異なる2以上の金属酸化物層の積層構造であっても構わない。例えば、第1の金属酸化物層と、当該第1の金属酸化物層上に設けられる第2の金属酸化物層と、の積層構造とし、第2の金属酸化物層は、第1の金属酸化物層より結晶性が高い領域を有する構成としてもよい。または、第2の金属酸化物層は、第1の金属酸化物層より結晶性が低い領域を有する構成としてもよい。半導体層が有する2以上の金属酸化物層は、組成が互いに同じ、または概略同じであっても構わない。組成が同じ金属酸化物層の積層構造とすることで、例えば、同じスパッタリングターゲットを用いて形成できるため、製造コストを削減できる。例えば、同じスパッタリングターゲットを用いて、酸素流量比を異ならせることにより、結晶性が異なる2以上の金属酸化物層の積層構造を形成してもよい。なお、半導体層が有する2以上の金属酸化物層は、組成が互いに異なってもかまわない。 The semiconductor layer of the OS transistor may have a stacked structure of two or more metal oxide layers with different crystallinity. For example, a stacked structure of a first metal oxide layer and a second metal oxide layer provided on the first metal oxide layer may be used, and the second metal oxide layer may have a region with higher crystallinity than the first metal oxide layer. Alternatively, the second metal oxide layer may have a region with lower crystallinity than the first metal oxide layer. The two or more metal oxide layers in the semiconductor layer may have the same or approximately the same composition. By using a stacked structure of metal oxide layers with the same composition, for example, the same sputtering target can be used to form the stacked structure, which can reduce manufacturing costs. For example, the same sputtering target may be used to form a stacked structure of two or more metal oxide layers with different crystallinity by changing the oxygen flow rate ratio. Note that the two or more metal oxide layers in the semiconductor layer may have different compositions.

トランジスタ233乃至トランジスタ236の半導体層163に酸化物半導体を用いる場合は、絶縁層157と絶縁層159に水素を含む材料を用いることが好ましい。水素を含む絶縁層が酸化物半導体に接することで、該絶縁層が接する領域の酸化物半導体がn型化され、ソース領域またはドレイン領域として機能できる。該絶縁層として、例えば、シリコン、窒素、および水素を含む材料を用いればよい。具体的には、水素を含む窒化シリコン、水素を含む窒化酸化シリコンなどを用いればよい。 When an oxide semiconductor is used for the semiconductor layer 163 of the transistors 233 to 236, it is preferable to use a material containing hydrogen for the insulating layers 157 and 159. When the insulating layer containing hydrogen is in contact with the oxide semiconductor, the oxide semiconductor in the region in contact with the insulating layer becomes n-type and can function as a source region or a drain region. For example, a material containing silicon, nitrogen, and hydrogen may be used for the insulating layer. Specifically, silicon nitride containing hydrogen, silicon nitride oxide containing hydrogen, or the like may be used.

絶縁層157および絶縁層159の膜厚はそれぞれ、1nm以上15nm以下が好ましく、2nm以上10nm以下がより好ましく、3nm以上7nm以下がより好ましく、さらには3nm以上5nm以下が好ましい。半導体層163に酸化物半導体を用いる場合は、半導体層163の、水素を含む絶縁層157と接する領域と、水素を含む絶縁層159と接する領域が、ソース領域またはドレイン領域として機能する。絶縁層157および絶縁層159の膜厚を調整することで、半導体層163に形成されるソース領域およびドレイン領域の大きさを制御できる。 The thickness of each of insulating layer 157 and insulating layer 159 is preferably 1 nm or more and 15 nm or less, more preferably 2 nm or more and 10 nm or less, more preferably 3 nm or more and 7 nm or less, and even more preferably 3 nm or more and 5 nm or less. When an oxide semiconductor is used for semiconductor layer 163, a region of semiconductor layer 163 in contact with insulating layer 157 containing hydrogen and a region in contact with insulating layer 159 containing hydrogen function as a source region or a drain region. By adjusting the thickness of insulating layer 157 and insulating layer 159, the size of the source region and the drain region formed in semiconductor layer 163 can be controlled.

絶縁層158の膜厚は、1nm以上50nm以下が好ましく、2nm以上30nm以下がより好ましく、3nm以上20nm以下がさらに好ましい。絶縁層158の膜厚を調整することで、半導体層163のチャネル形成領域の大きさを制御できる。 The thickness of the insulating layer 158 is preferably 1 nm or more and 50 nm or less, more preferably 2 nm or more and 30 nm or less, and even more preferably 3 nm or more and 20 nm or less. By adjusting the thickness of the insulating layer 158, the size of the channel formation region of the semiconductor layer 163 can be controlled.

絶縁層157、絶縁層158、および絶縁層159の膜厚は、トランジスタに求める特性に合わせて、適宜設定すればよい。 The film thicknesses of insulating layers 157, 158, and 159 may be set appropriately according to the characteristics desired for the transistor.

また、絶縁層157、絶縁層158、および絶縁層159の成膜は、途中で大気環境にさらすことなく連続して行なうことが好ましい。絶縁層157、絶縁層158、および絶縁層159の成膜を途中で大気環境にさらすことなく連続して行なうことで、絶縁層157と絶縁層158の界面およびその近傍、ならびに、絶縁層158と絶縁層159の界面およびその近傍に大気環境からの不純物または水分が付着することを防ぐことができる。 In addition, it is preferable to deposit insulating layers 157, 158, and 159 in succession without exposing them to the atmospheric environment in between. By depositing insulating layers 157, 158, and 159 in succession without exposing them to the atmospheric environment in between, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the interface between insulating layers 157 and 158 and their vicinity, and to the interface between insulating layers 158 and 159 and their vicinity.

また、半導体層163に酸化物半導体を用いる場合は、半導体層163と接する導電層155、および、半導体層163と接する導電層161は、酸化物半導体をn型化する導電性材料を用いることが好ましい。例えば、窒素を含む導電性材料を用いればよい。例えば、チタンまたはタンタルと、窒素と、を含む導電性材料を用いればよい。また、窒素を含む導電性材料に重ねて、他の導電性材料を設けてもよい。 When an oxide semiconductor is used for the semiconductor layer 163, it is preferable that the conductive layer 155 in contact with the semiconductor layer 163 and the conductive layer 161 in contact with the semiconductor layer 163 are made of a conductive material that makes the oxide semiconductor n-type. For example, a conductive material containing nitrogen may be used. For example, a conductive material containing titanium or tantalum and nitrogen may be used. Another conductive material may be provided over the conductive material containing nitrogen.

一方で、トランジスタ233乃至トランジスタ236の半導体層163に酸化物半導体を用いる場合は、絶縁層158には水素が低減され、酸素を含む材料を用いることが好ましい。例えば、シリコンおよび酸素を含む材料を用いればよい。具体的には、酸化シリコン、酸化窒化シリコンなどを用いればよい。酸化物半導体において水素は不純物元素であるため、酸化物半導体である半導体層163と水素が低減された絶縁層158が接することで、半導体層163がn型化されにくくなる。また、酸化物半導体である半導体層163と酸素を含む絶縁層158が接することで、半導体層163の酸素欠損が低減され、トランジスタの特性が安定し、信頼性が向上する。 On the other hand, when an oxide semiconductor is used for the semiconductor layer 163 of the transistors 233 to 236, it is preferable to use a material in which hydrogen is reduced and which contains oxygen for the insulating layer 158. For example, a material containing silicon and oxygen may be used. Specifically, silicon oxide, silicon oxynitride, or the like may be used. Since hydrogen is an impurity element in an oxide semiconductor, when the semiconductor layer 163 which is an oxide semiconductor is in contact with the insulating layer 158 in which hydrogen is reduced, the semiconductor layer 163 is less likely to become n-type. Furthermore, when the semiconductor layer 163 which is an oxide semiconductor is in contact with the insulating layer 158 which contains oxygen, oxygen vacancies in the semiconductor layer 163 are reduced, and the characteristics of the transistor are stabilized, leading to improved reliability.

なお、トランジスタ333乃至トランジスタ336の構造では、半導体層163は、絶縁層157および絶縁層159に接しない。トランジスタ333乃至トランジスタ336の構造では、半導体層163は、絶縁層181aおよび絶縁層164と接する。トランジスタ333乃至トランジスタ336の半導体層163に酸化物半導体を用いる場合は、絶縁層181aおよび絶縁層164のそれぞれに水素が低減され、酸素を含む材料を用いることが好ましい。 Note that in the structures of the transistors 333 to 336, the semiconductor layer 163 is not in contact with the insulating layer 157 and the insulating layer 159. In the structures of the transistors 333 to 336, the semiconductor layer 163 is in contact with the insulating layer 181a and the insulating layer 164. When an oxide semiconductor is used for the semiconductor layer 163 of the transistors 333 to 336, it is preferable to use a material in which hydrogen is reduced and which contains oxygen for each of the insulating layer 181a and the insulating layer 164.

また、トランジスタ233乃至トランジスタ236の半導体層163に酸化物半導体を用いる場合は、絶縁層158は過剰酸素を含むことが好ましい。本明細書等において、過剰酸素とは、加熱により脱離する酸素のことを示す。また、絶縁層158に過剰酸素を含む材料を用いる場合、絶縁層157と絶縁層159に酸素が透過しにくい材料を用いることが好ましい。酸素が透過しにくい材料として、例えば、アルミニウムおよびハフニウムの一方または双方を含む酸化物、シリコンの窒化物などを用いることができる。絶縁層157と絶縁層159に酸素が透過しにくい材料を用いることで、絶縁層158に含まれる過剰酸素が下層または上層に脱離しにくくなる。よって、酸化物半導体に十分な酸素を供給できる。例えば、シリコンおよび窒素を含む2層の絶縁層(絶縁層157、絶縁層159)の間に、シリコンおよび酸素を含む絶縁層(絶縁層158)を有する構成とすればよい。 When an oxide semiconductor is used for the semiconductor layer 163 of the transistors 233 to 236, the insulating layer 158 preferably contains excess oxygen. In this specification and the like, the term "excess oxygen" refers to oxygen that is released by heating. When a material containing excess oxygen is used for the insulating layer 158, it is preferable to use a material through which oxygen is unlikely to permeate for the insulating layer 157 and the insulating layer 159. As a material through which oxygen is unlikely to permeate, for example, an oxide containing one or both of aluminum and hafnium, a nitride of silicon, or the like can be used. By using a material through which oxygen is unlikely to permeate for the insulating layer 157 and the insulating layer 159, the excess oxygen contained in the insulating layer 158 is unlikely to be released to the lower or upper layer. Thus, sufficient oxygen can be supplied to the oxide semiconductor. For example, a structure may be used in which an insulating layer (insulating layer 158) containing silicon and oxygen is provided between two insulating layers (insulating layer 157 and insulating layer 159) containing silicon and nitrogen.

同様の理由により、トランジスタ333乃至トランジスタ336の半導体層163に酸化物半導体を用いる場合は、絶縁層181が過剰酸素を含むことが好ましい。また、半導体層163と接する絶縁層164も過剰酸素を含むことが好ましい。 For the same reason, when an oxide semiconductor is used for the semiconductor layer 163 of the transistors 333 to 336, it is preferable that the insulating layer 181 contain excess oxygen. In addition, it is preferable that the insulating layer 164 in contact with the semiconductor layer 163 also contain excess oxygen.

また、トランジスタ233乃至トランジスタ236の半導体層163に酸化物半導体を用いて、絶縁層157と絶縁層159に水素を含む材料を用いることにより、半導体層163の絶縁層157と接する領域と、半導体層163の絶縁層159と接する領域に水素が供給され、半導体層163のそれぞれの領域がn型化する。よって、半導体層163の導電層161と接する領域、および、半導体層163の絶縁層159と接する領域が、ソース(ソース領域)またはドレイン(ドレイン領域)の一方として機能する。また、半導体層163の導電層155と接する領域、および、半導体層163の絶縁層157と接する領域が、ソース(ソース領域)またはドレイン(ドレイン領域)の他方として機能する。 In addition, by using an oxide semiconductor for the semiconductor layer 163 of the transistors 233 to 236 and using a material containing hydrogen for the insulating layer 157 and the insulating layer 159, hydrogen is supplied to the region of the semiconductor layer 163 in contact with the insulating layer 157 and the region of the semiconductor layer 163 in contact with the insulating layer 159, and each region of the semiconductor layer 163 becomes n-type. Therefore, the region of the semiconductor layer 163 in contact with the conductive layer 161 and the region of the semiconductor layer 163 in contact with the insulating layer 159 function as one of the source (source region) and the drain (drain region). In addition, the region of the semiconductor layer 163 in contact with the conductive layer 155 and the region of the semiconductor layer 163 in contact with the insulating layer 157 function as the other of the source (source region) and the drain (drain region).

図16Aに、図1Bに示したトランジスタ233断面の拡大図を示す。上記構成の場合、VFETであるトランジスタ233では、X方向またはY方向から見て、開口162aにおける絶縁層158側面の長さがチャネル長L(チャネル長L1)になる。よって、絶縁層158の厚さt1に応じてトランジスタ233のチャネル長Lが決定される。 Figure 16A shows an enlarged cross-section of the transistor 233 shown in Figure 1B. In the above configuration, in the transistor 233, which is a VFET, the length of the side of the insulating layer 158 at the opening 162a when viewed from the X direction or the Y direction becomes the channel length L (channel length L1). Therefore, the channel length L of the transistor 233 is determined according to the thickness t1 of the insulating layer 158.

また、絶縁層157と絶縁層159に、水素を含まないまたは水素が極めて少ない材料を用いてもよい。例えば、水素が極めて少ない窒化シリコン、水素が極めて少ない窒化酸化シリコンなどを用いてもよい。この場合は、半導体層163aが絶縁層157と接する領域および半導体層163aが絶縁層159と接する領域がn型化されない。よって、半導体層163aの導電層161aと接する領域が、ソース(ソース領域)またはドレイン(ドレイン領域)の一方として機能する。また、半導体層163aの導電層155aと接する領域が、ソース(ソース領域)またはドレイン(ドレイン領域)の他方として機能する。また、半導体層163aの絶縁層158の側面と接する領域が、チャネル形成領域として機能する。 In addition, the insulating layer 157 and the insulating layer 159 may be made of a material that does not contain hydrogen or contains very little hydrogen. For example, silicon nitride containing very little hydrogen or silicon nitride oxide containing very little hydrogen may be used. In this case, the region where the semiconductor layer 163a is in contact with the insulating layer 157 and the region where the semiconductor layer 163a is in contact with the insulating layer 159 are not made n-type. Therefore, the region of the semiconductor layer 163a in contact with the conductive layer 161a functions as one of the source (source region) and the drain (drain region). The region of the semiconductor layer 163a in contact with the conductive layer 155a functions as the other of the source (source region) and the drain (drain region). The region of the semiconductor layer 163a in contact with the side of the insulating layer 158 functions as a channel formation region.

この場合、X方向またはY方向から見て、開口162aにおける、絶縁層157、絶縁層158、および絶縁層159それぞれの側面の長さの合計がチャネル長L(チャネル長L2)になる。よって、絶縁層157、絶縁層158および絶縁層159それぞれの厚さを合算した厚さt2に応じてトランジスタ233のチャネル長Lが決定される。 In this case, the sum of the lengths of the sides of insulating layers 157, 158, and 159 in opening 162a when viewed from the X or Y direction is channel length L (channel length L2). Therefore, the channel length L of transistor 233 is determined according to thickness t2, which is the sum of the thicknesses of insulating layers 157, 158, and 159.

図17Aおよび図17Bに、図16Aの変形例を示す。例えば、絶縁層157と絶縁層159を設けずに、絶縁層158のみを設けて、絶縁層158が導電層155aと導電層161aに接する構成としてもよい(図17A参照)。この場合、X方向またはY方向から見て、開口162aにおける、絶縁層158の側面の長さがチャネル長L(チャネル長L2)になる。よって、絶縁層158の厚さに応じてトランジスタ233のチャネル長Lが決定される。また、図17Aに示す構成の場合、絶縁層158を絶縁層156と呼ぶ場合がある。なお、図17Aに示すチャネル長L2は図16Aに示すチャネル長L2と同義であり、図17Aに示す厚さt2は図16Aに示す厚さt2と同義である。 17A and 17B show a modified example of FIG. 16A. For example, only insulating layer 158 may be provided without providing insulating layer 157 and insulating layer 159, and insulating layer 158 may be in contact with conductive layer 155a and conductive layer 161a (see FIG. 17A). In this case, the length of the side surface of insulating layer 158 in opening 162a when viewed from the X direction or Y direction becomes channel length L (channel length L2). Therefore, the channel length L of transistor 233 is determined according to the thickness of insulating layer 158. In addition, in the case of the configuration shown in FIG. 17A, insulating layer 158 may be called insulating layer 156. Note that channel length L2 shown in FIG. 17A is synonymous with channel length L2 shown in FIG. 16A, and thickness t2 shown in FIG. 17A is synonymous with thickness t2 shown in FIG. 16A.

また、半導体層163aに酸化物半導体を用いて、絶縁層157と絶縁層159に水素を含む材料を用い、絶縁層158に過剰酸素を含む材料を用いると、絶縁層157と絶縁層159に含まれる水素と、絶縁層158に含まれる過剰酸素が結合し、半導体層163aの絶縁層157と接する領域および半導体層163aの絶縁層159と接する領域に十分な水素が供給されなくなりn型化しにくくなる。同様に、半導体層163aの絶縁層158と接する領域に十分な酸素が供給されなくなる。 Furthermore, if an oxide semiconductor is used for the semiconductor layer 163a, a material containing hydrogen is used for the insulating layers 157 and 159, and a material containing excess oxygen is used for the insulating layer 158, the hydrogen contained in the insulating layers 157 and 159 will combine with the excess oxygen contained in the insulating layer 158, and sufficient hydrogen will not be supplied to the region of the semiconductor layer 163a in contact with the insulating layer 157 and the region of the semiconductor layer 163a in contact with the insulating layer 159, making it difficult to make the semiconductor layer 163a n-type. Similarly, sufficient oxygen will not be supplied to the region of the semiconductor layer 163a in contact with the insulating layer 158.

このような問題を解決するため、酸素および窒素が透過しにくい絶縁層171を絶縁層157と絶縁層158の間に設け、酸素および窒素が透過しにくい絶縁層172を絶縁層159と絶縁層158の間に設けてもよい(図17B参照)。酸素および窒素が透過しにくい材料は、例えば、シリコンの窒化物などを用いて実現できる。なお、図17Bに示す構成の場合、絶縁層157、絶縁層171、絶縁層158、絶縁層172、および絶縁層159を併せて絶縁層156と呼ぶことができる。 To solve this problem, insulating layer 171, which is difficult for oxygen and nitrogen to permeate, may be provided between insulating layer 157 and insulating layer 158, and insulating layer 172, which is difficult for oxygen and nitrogen to permeate, may be provided between insulating layer 159 and insulating layer 158 (see FIG. 17B). The material that is difficult for oxygen and nitrogen to permeate may be realized using, for example, silicon nitride. In the configuration shown in FIG. 17B, insulating layer 157, insulating layer 171, insulating layer 158, insulating layer 172, and insulating layer 159 may be collectively referred to as insulating layer 156.

絶縁層171と絶縁層172に酸素が透過しにくい材料を用いることで、絶縁層157と絶縁層159に含まれる水素と絶縁層158に含まれる過剰酸素の結合が阻害される。よって、半導体層163aの絶縁層157と接する領域および半導体層163aの絶縁層159と接する領域に十分な水素が供給される。同様に、半導体層163aの絶縁層158と接する領域に十分な酸素が供給される。 By using a material that is difficult for oxygen to permeate for insulating layers 171 and 172, the bonding between the hydrogen contained in insulating layers 157 and 159 and the excess oxygen contained in insulating layer 158 is inhibited. Therefore, sufficient hydrogen is supplied to the region of semiconductor layer 163a that contacts insulating layer 157 and the region of semiconductor layer 163a that contacts insulating layer 159. Similarly, sufficient oxygen is supplied to the region of semiconductor layer 163a that contacts insulating layer 158.

この場合、X方向またはY方向から見て、開口162aにおける、絶縁層171、絶縁層158、および絶縁層172それぞれの側面の長さの合計がチャネル長L3になる。よって、絶縁層171、絶縁層158および絶縁層172それぞれの厚さを合算した厚さt3に応じてトランジスタ233のチャネル長Lが決定される。 In this case, the sum of the lengths of the sides of insulating layer 171, insulating layer 158, and insulating layer 172 at opening 162a when viewed from the X direction or Y direction is channel length L3. Therefore, the channel length L of transistor 233 is determined according to thickness t3, which is the sum of the thicknesses of insulating layer 171, insulating layer 158, and insulating layer 172.

トランジスタ233は、導電層161aと導電層155aの間に設けられる絶縁層の厚さに応じてチャネル長Lが決定される。よって、チャネル長Lが短いトランジスタを精度よく作製できる。また、複数のトランジスタ間の特性ばらつきも低減される。よって、トランジスタ233を含む半導体装置の動作が安定し、信頼性を高めることができる。また、特性ばらつきが減ると、半導体装置の回路設計自由度が高くなり、動作電圧も低減できる。よって、半導体装置の消費電力を低減できる。 The channel length L of the transistor 233 is determined according to the thickness of the insulating layer provided between the conductive layer 161a and the conductive layer 155a. Therefore, a transistor with a short channel length L can be manufactured with high precision. In addition, the characteristic variation between multiple transistors is also reduced. Therefore, the operation of a semiconductor device including the transistor 233 is stabilized, and the reliability can be improved. Furthermore, the reduction in the characteristic variation increases the degree of freedom in the circuit design of the semiconductor device, and the operating voltage can also be reduced. Therefore, the power consumption of the semiconductor device can be reduced.

なお、本実施の形態では、導電層155aと導電層161aの間に3層の絶縁層(絶縁層157、絶縁層158、絶縁層159)または5層の絶縁層(絶縁層157、絶縁層158、絶縁層159、絶縁層171、絶縁層172)を有する構成を示しているが、導電層155aと導電層161aの間の絶縁層の層数はこれに限定されない。導電層155aと導電層161aの間の絶縁層は1層または2層でもよいし、4層または6層以上であってもよい。 Note that in this embodiment, a configuration having three insulating layers (insulating layer 157, insulating layer 158, insulating layer 159) or five insulating layers (insulating layer 157, insulating layer 158, insulating layer 159, insulating layer 171, insulating layer 172) between conductive layer 155a and conductive layer 161a is shown, but the number of insulating layers between conductive layer 155a and conductive layer 161a is not limited to this. The number of insulating layers between conductive layer 155a and conductive layer 161a may be one or two, or may be four or six or more.

また、開口162a内に形成される半導体層163a、絶縁層164、および導電層165aの被覆性を高めるため、開口162a側面のテーパー角θ、すなわち、絶縁層157、絶縁層158、および絶縁層159それぞれの側面のテーパー角θを、45度以上90度以下、好ましくは50度以上75度以下とすればよい。なお、層(絶縁層、導電層、または半導体層)側面のテーパー角θとは、当該層の底面と側面のなす角度を言う(図16A参照)。 In addition, to improve the coverage of the semiconductor layer 163a, insulating layer 164, and conductive layer 165a formed in the opening 162a, the taper angle θ of the side of the opening 162a, i.e., the taper angle θ of each of the side of the insulating layer 157, insulating layer 158, and insulating layer 159, may be set to 45 degrees or more and 90 degrees or less, preferably 50 degrees or more and 75 degrees or less. Note that the taper angle θ of the side of a layer (insulating layer, conductive layer, or semiconductor layer) refers to the angle between the bottom surface of the layer and the side surface (see FIG. 16A).

また、図18に示すように、半導体層163a、絶縁層164、導電層165aの被覆性に問題がなければ、開口162aの側面を開口162aの被形成面(例えば、導電層155aの上面)に対して垂直または略垂直にしてもよい。開口162aの側面を垂直または略垂直にすることで、トランジスタ233の占有面積を低減できる。よって、トランジスタ233を含む記憶素子の占有面積を低減できる。 Also, as shown in FIG. 18, if there is no problem with the coverage of the semiconductor layer 163a, the insulating layer 164, and the conductive layer 165a, the side of the opening 162a may be perpendicular or approximately perpendicular to the surface on which the opening 162a is formed (for example, the top surface of the conductive layer 155a). By making the side of the opening 162a perpendicular or approximately perpendicular, the area occupied by the transistor 233 can be reduced. Therefore, the area occupied by the memory element including the transistor 233 can be reduced.

また、半導体層163aは開口162aに設けられているため、Z方向から見た時の開口162aの周の長さがトランジスタ233のチャネル幅Wとなる(図16B参照)。周の長さは、例えば、絶縁層158の厚さt1の半分の位置もしくは、厚さt2の半分の位置で求めればよい。なお、必要に応じて、開口162aの任意の位置の周の長さをチャネル幅Wとしてもよい。例えば、開口162aの最下部の周の長さをチャネル幅Wとしてもよいし、開口162aの最上部の周の長さをチャネル幅Wとしてもよい。 In addition, since the semiconductor layer 163a is provided in the opening 162a, the perimeter of the opening 162a when viewed from the Z direction is the channel width W of the transistor 233 (see FIG. 16B). The perimeter may be determined, for example, at a position halfway to the thickness t1 or halfway to the thickness t2 of the insulating layer 158. If necessary, the perimeter of any position of the opening 162a may be taken as the channel width W. For example, the perimeter of the bottom of the opening 162a may be taken as the channel width W, or the perimeter of the top of the opening 162a may be taken as the channel width W.

また、本発明の一態様の記憶装置においては、チャネル長Lは、少なくともチャネル幅Wよりも小さいことが好ましい。本発明の一態様のチャネル長Lは、チャネル幅Wに対し、0.1倍以上0.99倍以下、好ましくは0.5倍以上0.8倍以下である。 In addition, in a memory device according to one embodiment of the present invention, the channel length L is preferably at least smaller than the channel width W. In one embodiment of the present invention, the channel length L is 0.1 to 0.99 times, preferably 0.5 to 0.8 times, the channel width W.

また、図16Bでは、Z方向から見た開口162aの輪郭(平面形状)を円形で示しているが、これに限定されない。例えば、Z方向から見た開口162aの輪郭は、楕円形(図16C参照)でもよいし、矩形(図16D参照)でもよい。なお、図16Dでは角部が湾曲した矩形を示している。また、例えば、Z方向から見た開口162aの輪郭は、直線部と曲線部の一方または双方を含む形状(図16E参照)であってもよい。 In addition, in FIG. 16B, the outline (planar shape) of the opening 162a viewed from the Z direction is shown as a circle, but is not limited to this. For example, the outline of the opening 162a viewed from the Z direction may be an ellipse (see FIG. 16C) or a rectangle (see FIG. 16D). Note that FIG. 16D shows a rectangle with curved corners. In addition, for example, the outline of the opening 162a viewed from the Z direction may be a shape that includes one or both of straight and curved portions (see FIG. 16E).

なお、開口162aは微細であることが好ましい。例えば、Z方向から見た開口162aの最大幅は、60nm以下が好ましく、50nm以下がより好ましく、40nm以下がさらに好ましく、30nm以下が極めて好ましい。Z方向から見た開口162aの最大幅は20nm以下であってもよい。なお、Z方向から見た開口162aの最小幅は、1nm以上が好ましく、5nm以上がより好ましい。このように微細な開口162aを形成するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。 It is preferable that the opening 162a is fine. For example, the maximum width of the opening 162a as viewed from the Z direction is preferably 60 nm or less, more preferably 50 nm or less, even more preferably 40 nm or less, and most preferably 30 nm or less. The maximum width of the opening 162a as viewed from the Z direction may be 20 nm or less. It is preferable that the minimum width of the opening 162a as viewed from the Z direction is 1 nm or more, and more preferably 5 nm or more. To form such fine openings 162a, it is preferable to use a lithography method using short-wavelength light such as EUV light or an electron beam.

なお、トランジスタ234乃至トランジスタ236もトランジスタ233と同じ構造を有する。説明の繰り返しを減らすため、トランジスタ234乃至トランジスタ236に係る説明は省略する。 Note that transistors 234 to 236 have the same structure as transistor 233. To reduce repetition of the explanation, the explanation of transistors 234 to 236 will be omitted.

図19Aに、図11Bに示したトランジスタ333断面の拡大図を示す。トランジスタ333はトランジスタ233の変形例でもある。VFETであるトランジスタ333では、X方向またはY方向から見て、開口162aにおける導電層175a側面の長さがチャネル長L(チャネル長L4)になる。よって、導電層175aの厚さt4に応じてトランジスタ333のチャネル長Lが決定される。X方向またはY方向から見て、半導体層163aの導電層175aと重なる領域が、チャネル形成領域として機能する。 Figure 19A shows an enlarged cross-section of transistor 333 shown in Figure 11B. Transistor 333 is also a modified example of transistor 233. In transistor 333, which is a VFET, the length of the side of conductive layer 175a in opening 162a becomes channel length L (channel length L4) when viewed from the X direction or Y direction. Therefore, the channel length L of transistor 333 is determined according to thickness t4 of conductive layer 175a. When viewed from the X direction or Y direction, the region of semiconductor layer 163a that overlaps with conductive layer 175a functions as a channel formation region.

また、トランジスタ333は、ゲート電極として機能する導電層175aの電界でチャネル形成領域を電気的に取り囲んでいる構造であるため、GAA(Gate All Around)構造であるともいえる。 In addition, the transistor 333 has a structure in which the channel formation region is electrically surrounded by the electric field of the conductive layer 175a that functions as the gate electrode, so it can also be said to have a GAA (Gate All Around) structure.

図19Bに、図19Aの変形例を示す。トランジスタ333は、Z方向から見て開口162aと重なる領域において、絶縁層164の上に導電層165を有してもよい。図19Bに示す構成において、導電層165と導電層175は、どちらもゲート電極として機能できる。図19Bに示す構成において、導電層165または導電層175の一方を、「ゲート電極」と呼ぶ場合、他方を「バックゲート電極」と呼ぶ場合がある。また、導電層165または導電層175の一方を、「第1ゲート電極」と呼ぶ場合、他方を「第2ゲート電極」と呼ぶ場合がある。例えば、導電層165を「ゲート電極」と呼び、導電層175を「バックゲート電極」と呼ぶ場合がある。 Figure 19B shows a modified example of Figure 19A. The transistor 333 may have a conductive layer 165 on the insulating layer 164 in a region overlapping with the opening 162a when viewed from the Z direction. In the configuration shown in Figure 19B, both the conductive layer 165 and the conductive layer 175 can function as gate electrodes. In the configuration shown in Figure 19B, one of the conductive layer 165 or the conductive layer 175 may be called a "gate electrode" and the other may be called a "back gate electrode." In addition, one of the conductive layer 165 or the conductive layer 175 may be called a "first gate electrode" and the other may be called a "second gate electrode." For example, the conductive layer 165 may be called a "gate electrode" and the conductive layer 175 may be called a "back gate electrode."

ゲート電極とバックゲート電極は、ゲート電極とバックゲート電極で半導体層を挟むように配置される。ゲート電極とバックゲート電極は、どちらも導電層で形成される。ゲート電極をトランジスタのオン状態とオフ状態の制御に用いる場合、バックゲート電極の電位は、ゲート電極と同電位としてもよいし、GNDまたは任意の電位としてもよい。また、バックゲート電極の電位をゲート電極と連動させず独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。また、ゲート電極とバックゲート電極は導電体で形成されるため、トランジスタの外部で生じる電界が、チャネルが形成される半導体に作用しないようにする機能(特に静電気などに対する電界遮蔽機能)を有する。ゲート電極に加えてバックゲート電極を設けることで、トランジスタ間の特性ばらつきを低減できる。 The gate electrode and the back gate electrode are arranged so as to sandwich the semiconductor layer between them. Both the gate electrode and the back gate electrode are formed of a conductive layer. When the gate electrode is used to control the on and off states of the transistor, the potential of the back gate electrode may be the same as that of the gate electrode, or may be GND or any other potential. The threshold voltage of the transistor can be changed by changing the potential of the back gate electrode independently of the gate electrode. In addition, since the gate electrode and the back gate electrode are formed of a conductor, they have a function of preventing an electric field generated outside the transistor from acting on the semiconductor in which the channel is formed (particularly an electric field shielding function against static electricity, etc.). By providing a back gate electrode in addition to the gate electrode, the characteristic variation between transistors can be reduced.

図19Bに示す構成において、導電層165をゲート電極として用いる場合は、X方向またはY方向から見て、導電層155aの上面から導電層161aの上面までの距離がチャネル長L(チャネル長L5)になる。この場合、X方向またはY方向から見て、絶縁層157、導電層175a、絶縁層159、および導電層161aの、開口162aにおけるそれぞれの側面の長さの合計が、チャネル長L5になる。よって、トランジスタ333のチャネル形成領域は、絶縁層157の側面に沿う領域と、導電層175aの側面に沿う領域と、絶縁層159の側面に沿う領域と、導電層161aの側面に沿う領域と、を有する。絶縁層157、導電層175a、絶縁層159、および導電層161aそれぞれの厚さを合算した厚さt5に応じて、図19Bに示すトランジスタ333のチャネル長Lが決定される。 19B, when the conductive layer 165 is used as a gate electrode, the distance from the upper surface of the conductive layer 155a to the upper surface of the conductive layer 161a when viewed from the X direction or the Y direction is the channel length L (channel length L5). In this case, when viewed from the X direction or the Y direction, the total length of each side of the insulating layer 157, the conductive layer 175a, the insulating layer 159, and the conductive layer 161a in the opening 162a is the channel length L5. Therefore, the channel formation region of the transistor 333 has a region along the side of the insulating layer 157, a region along the side of the conductive layer 175a, a region along the side of the insulating layer 159, and a region along the side of the conductive layer 161a. The channel length L of the transistor 333 shown in FIG. 19B is determined according to the thickness t5 obtained by adding up the thicknesses of the insulating layer 157, the conductive layer 175a, the insulating layer 159, and the conductive layer 161a.

なお、トランジスタ334乃至トランジスタ336もトランジスタ333と同じ構造を有する。説明の繰り返しを減らすため、トランジスタ334乃至トランジスタ336に係る説明は省略する。 Note that transistors 334 to 336 have the same structure as transistor 333. To reduce repetition of the description, the description of transistors 334 to 336 will be omitted.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The configuration shown in this embodiment can be used in appropriate combination with the configurations shown in other embodiments.

(実施の形態2)
本実施の形態では、本発明の一態様に係る記憶素子100を含むメモリセルアレイ200ならびにメモリセルアレイ200を含む記憶装置300について説明する。
(Embodiment 2)
In this embodiment, a memory cell array 200 including a memory element 100 according to one embodiment of the present invention and a memory device 300 including the memory cell array 200 will be described.

<記憶装置300>
図20Aに、本発明の一態様に係る記憶素子100を含む記憶装置300の構成例を示すブロック図を示す。図20Aに示す記憶装置300は、メモリセルアレイ200と、駆動回路21と、を有する。
<Storage device 300>
20A is a block diagram illustrating a configuration example of a memory device 300 including the memory element 100 of one embodiment of the present invention. The memory device 300 illustrated in FIG.

メモリセルアレイ200は、m行n列(mおよびnのそれぞれは、1以上の整数)のマトリクス状に配置された複数の記憶素子100を含む。複数の記憶素子100をマトリクス状に配置することで、記憶容量の大きい記憶装置が実現できる。 The memory cell array 200 includes a plurality of memory elements 100 arranged in a matrix of m rows and n columns (m and n are each an integer greater than or equal to 1). By arranging a plurality of memory elements 100 in a matrix, a memory device with a large memory capacity can be realized.

図20Aでは、1行1列目の記憶素子100を記憶素子100[1,1]と示し、m行n列目の記憶素子100を記憶素子100[m,n]と示し、m行1列目の記憶素子100を記憶素子100[m,1]と示し、1行n列目の記憶素子100を記憶素子100[1,n]と示し、m行n列目の記憶素子100を記憶素子100[m,n]と示し、i行j列目の記憶素子100を記憶素子100[i,j]と示している。なお、iは任意の行を示す1以上m以下の整数であり、jは任意の列を示す1以上n以下の整数である。 In FIG. 20A, the memory element 100 in the first row and first column is indicated as memory element 100[1,1], the memory element 100 in the mth row and nth column is indicated as memory element 100[m,n], the memory element 100 in the mth row and first column is indicated as memory element 100[m,1], the memory element 100 in the first row and nth column is indicated as memory element 100[1,n], the memory element 100 in the mth row and nth column is indicated as memory element 100[m,n], and the memory element 100 in the ith row and jth column is indicated as memory element 100[i,j]. Note that i is an integer of 1 to m indicating an arbitrary row, and j is an integer of 1 to n indicating an arbitrary column.

なお、行と列は互いに直交する方向に延在する。本実施の形態では、X方向(X軸に沿う方向)を「行」とし、Y方向(Y軸に沿う方向)を「列」としているが、X方向を「列」とし、Y方向を「行」としてもよい。 Note that rows and columns extend in directions perpendicular to each other. In this embodiment, the X direction (direction along the X axis) is referred to as the "row" and the Y direction (direction along the Y axis) is referred to as the "column", but the X direction may be referred to as the "column" and the Y direction as the "row".

駆動回路21は、PSW22(パワースイッチ)、PSW23、および周辺回路31を有する。周辺回路31は、周辺回路41、コントロール回路32(Control Circuit)、および電圧生成回路33を有する。 The drive circuit 21 has a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31. The peripheral circuit 31 has a peripheral circuit 41, a control circuit 32, and a voltage generation circuit 33.

記憶装置300において、各回路、各信号および各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。 In the memory device 300, each circuit, signal, and voltage can be selected or removed as needed. Alternatively, other circuits or other signals may be added. Signals BW, CE, GW, CLK, WAKE, ADDR, WDA, PON1, and PON2 are input signals from the outside, and signal RDA is an output signal to the outside. Signal CLK is a clock signal.

また、信号BW、信号CE、および信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路32で生成してもよい。 Furthermore, signals BW, CE, and GW are control signals. Signal CE is a chip enable signal, signal GW is a global write enable signal, and signal BW is a byte write enable signal. Signal ADDR is an address signal. Signal WDA is write data, and signal RDA is read data. Signals PON1 and PON2 are power gating control signals. Signals PON1 and PON2 may be generated by control circuit 32.

コントロール回路32は、記憶装置300の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GWおよび信号BWを論理演算して、記憶装置300の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路32は、この動作モードが実行されるように、周辺回路41の制御信号を生成する。 The control circuit 32 is a logic circuit that has the function of controlling the overall operation of the memory device 300. For example, the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 300. Alternatively, the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.

電圧生成回路33は電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路33への入力を制御する機能を有する。例えば、信号WAKEに電位Hの信号が与えられると、信号CLKが電圧生成回路33へ入力され、電圧生成回路33は電圧を生成する。 The voltage generation circuit 33 has a function of generating a voltage. The signal WAKE has a function of controlling the input of the signal CLK to the voltage generation circuit 33. For example, when a signal of potential H is applied to the signal WAKE, the signal CLK is input to the voltage generation circuit 33, and the voltage generation circuit 33 generates a voltage.

周辺回路41は、記憶素子100に対するデータの書き込みおよび読み出しをするための回路である。周辺回路41は、行デコーダ42、列デコーダ44、行ドライバ43、列ドライバ45、入力回路47、出力回路48を有する。 The peripheral circuit 41 is a circuit for writing and reading data to the memory element 100. The peripheral circuit 41 has a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, and an output circuit 48.

行デコーダ42および列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線を選択する機能を有する。列ドライバ45は、データを記憶素子100に書き込む機能、記憶素子100からデータを読み出す機能、読み出したデータを保持する機能等を有する。 The row decoder 42 and the column decoder 44 have the function of decoding the signal ADDR. The row decoder 42 is a circuit for specifying the row to be accessed, and the column decoder 44 is a circuit for specifying the column to be accessed. The row driver 43 has the function of selecting the wiring specified by the row decoder 42. The column driver 45 has the function of writing data to the memory element 100, reading data from the memory element 100, and retaining the read data.

入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、記憶素子100に書き込むデータ(Din)である。列ドライバ45が記憶素子100から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置300の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。 The input circuit 47 has a function of holding a signal WDA. The data held by the input circuit 47 is output to the column driver 45. The output data of the input circuit 47 is the data (Din) to be written to the memory element 100. The data (Dout) read from the memory element 100 by the column driver 45 is output to the output circuit 48. The output circuit 48 has a function of holding Dout. In addition, the output circuit 48 has a function of outputting Dout to the outside of the memory device 300. The data output from the output circuit 48 is the signal RDA.

PSW22は周辺回路31へのVDDの供給を制御する機能を有する。PSW23は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置300の高電源電位がVDDであり、低電源電位はGND(接地電位)である。また、VHMは、ワード線を電位Hにするために用いられる高電源電位であり、VDDよりも高い。信号PON1によってPSW22のオン・オフが制御され、信号PON2によってPSW23のオン・オフが制御される。図20Aでは、周辺回路31において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。 PSW22 has a function of controlling the supply of VDD to the peripheral circuit 31. PSW23 has a function of controlling the supply of VHM to the row driver 43. Here, the high power supply potential of the memory device 300 is VDD, and the low power supply potential is GND (ground potential). VHM is a high power supply potential used to set the word line to potential H, and is higher than VDD. The on/off of PSW22 is controlled by signal PON1, and the on/off of PSW23 is controlled by signal PON2. In FIG. 20A, the number of power domains to which VDD is supplied in the peripheral circuit 31 is one, but it is also possible to have multiple power domains. In this case, a power switch can be provided for each power supply domain.

また、メモリセルアレイ200と駆動回路21は重ねて設けてもよい。メモリセルアレイ200と駆動回路21を重ねて設けることで、記憶装置300の占有面積を低減できる。例えば、図20Bに示すように、記憶装置300を層10と層20の積層構造にして、層10に駆動回路21を形成し、層20にメモリセルアレイ200を形成する。 The memory cell array 200 and the drive circuit 21 may be stacked. By stacking the memory cell array 200 and the drive circuit 21, the area occupied by the memory device 300 can be reduced. For example, as shown in FIG. 20B, the memory device 300 has a stacked structure of layers 10 and 20, the drive circuit 21 is formed in layer 10, and the memory cell array 200 is formed in layer 20.

例えば、層10としてシリコン基板を用い、該シリコン基板上に駆動回路21を形成してもよい。層10としてシリコン基板を用いることで、駆動回路21を構成するトランジスタとして、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)を用いることができる。また、層10として単結晶シリコン基板を用いることで、駆動回路21を構成するトランジスタとして、チャネル形成領域に単結晶半導体を有し、動作速度の速い単結晶Siトランジスタを用いることができる。 For example, a silicon substrate may be used as layer 10, and drive circuit 21 may be formed on the silicon substrate. By using a silicon substrate as layer 10, transistors that have silicon in their channel formation regions (Si transistors) may be used as transistors that make up drive circuit 21. In addition, by using a single-crystal silicon substrate as layer 10, single-crystal Si transistors that have single-crystal semiconductor in their channel formation regions and have high operating speeds may be used as transistors that make up drive circuit 21.

また、例えば、層10としてSOI基板などを用いてもよい。SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板、水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。SOI基板を用いて作製されたSiトランジスタは、寄生容量が低減され、高速動作が実現できる。 Also, for example, an SOI substrate may be used as the layer 10. As the SOI substrate, a SIMOX (Separation by Implanted Oxygen) substrate formed by implanting oxygen ions into a mirror-polished wafer and then heating it at a high temperature to form an oxide layer at a certain depth from the surface and eliminate defects in the surface layer, a Smart Cut method in which a semiconductor substrate is cleaved by utilizing the growth of microvoids formed by hydrogen ion implantation through heat treatment, an ELTRAN method (registered trademark: Epitaxial Layer Transfer), or the like may be used. A Si transistor fabricated using an SOI substrate has reduced parasitic capacitance and can achieve high-speed operation.

本発明の一態様に係る記憶素子100を構成するOSトランジスタは薄膜トランジスタであるため、層20として層10に重ねて設けることが容易である。加えて、前述した通り、OSトランジスタは高温環境下においても動作が安定し、特性変動が少ない。このため、Siトランジスタを含む駆動回路21の上に、OSトランジスタを含むメモリセルアレイ200を重ねて設けても、駆動回路21の発熱の影響を受けにくく、高い信頼性が得られる。 The OS transistor constituting the memory element 100 according to one embodiment of the present invention is a thin film transistor, and therefore can be easily provided as layer 20 overlapping layer 10. In addition, as described above, the operation of OS transistors is stable even in high-temperature environments, and there is little fluctuation in characteristics. Therefore, even if a memory cell array 200 including an OS transistor is provided overlapping a driver circuit 21 including a Si transistor, it is not easily affected by heat generated by the driver circuit 21, and high reliability can be obtained.

また、図20Cに示すように、駆動回路21を含む層10上に、メモリセルアレイ200を含む層20を繰り返し重ねて設けてもよい。図20Cでは、層10上にk層(kは2以上の整数)の層20を重ねて設ける例を示している。また、層10上の1層目に設けられた層20を層20[1]と示し、k層目に設けられた層20を層20[k]と示している。 Also, as shown in FIG. 20C, a layer 20 including a memory cell array 200 may be repeatedly stacked on a layer 10 including a drive circuit 21. FIG. 20C shows an example in which k layers (k is an integer of 2 or more) of layers 20 are stacked on a layer 10. The layer 20 provided as the first layer on the layer 10 is indicated as layer 20[1], and the layer 20 provided as the kth layer is indicated as layer 20[k].

駆動回路21を含む層10と、メモリセルアレイ200を含む層20を重ねて設けることで、駆動回路21とメモリセルアレイ200の間の信号伝搬距離を短くすることができる。よって、駆動回路21とメモリセルアレイ200の間の寄生抵抗および寄生容量が低減され、消費電力および信号遅延の低減が実現できる。また、記憶装置300の小型化が実現できる。また、単位面積当たりの記憶容量を増やすことができる。 By stacking the layer 10 including the drive circuit 21 and the layer 20 including the memory cell array 200, the signal propagation distance between the drive circuit 21 and the memory cell array 200 can be shortened. Therefore, the parasitic resistance and parasitic capacitance between the drive circuit 21 and the memory cell array 200 are reduced, and power consumption and signal delay can be reduced. In addition, the memory device 300 can be made smaller. In addition, the memory capacity per unit area can be increased.

図21に、記憶装置300のより具体的な積層構成例を示す。図21では、層20に含まれる記憶素子100として図1Aおよび図1Bに示した構成を例示している。説明の繰り返しを減らすため、ここでの記憶素子100の説明は省略する。 Figure 21 shows a more specific example of the stacked configuration of the memory device 300. In Figure 21, the configuration shown in Figures 1A and 1B is shown as an example of the memory element 100 included in layer 20. To reduce repetition, the description of the memory element 100 will be omitted here.

また、図21では、駆動回路21が有するトランジスタとして、トランジスタ800を例示している。トランジスタ800は、基板371上に設けられ、ゲートとして機能する導電層376、ゲート絶縁層として機能する絶縁層375、基板371の一部からなる半導体領域373、およびソース領域またはドレイン領域として機能する低抵抗領域374aおよび低抵抗領域374bを有する。トランジスタ800は、pチャネル型のトランジスタ、あるいはnチャネル型のトランジスタのいずれでもよい。基板371としては、例えば単結晶シリコン基板を用いることができる。 21 also illustrates a transistor 800 as an example of a transistor included in the driver circuit 21. The transistor 800 is provided on a substrate 371 and has a conductive layer 376 functioning as a gate, an insulating layer 375 functioning as a gate insulating layer, a semiconductor region 373 formed of a part of the substrate 371, and low-resistance regions 374a and 374b functioning as source and drain regions. The transistor 800 may be a p-channel transistor or an n-channel transistor. For example, a single crystal silicon substrate can be used as the substrate 371.

図21に示すトランジスタ800はチャネルが形成される半導体領域373(基板371の一部)が凸形状を有する。また、半導体領域373の側面および上面を、絶縁層375を介して、導電層376が覆うように設けられている。なお、導電層376は仕事関数を調整する材料を用いてもよい。このようなトランジスタ800は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁層を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。 In the transistor 800 shown in FIG. 21, the semiconductor region 373 (part of the substrate 371) where the channel is formed has a convex shape. In addition, a conductive layer 376 is provided so as to cover the side and top surface of the semiconductor region 373 via an insulating layer 375. Note that the conductive layer 376 may be made of a material that adjusts the work function. Such a transistor 800 is also called a FIN type transistor because it uses the convex portion of the semiconductor substrate. Note that an insulating layer that contacts the upper part of the convex portion and functions as a mask for forming the convex portion may be provided. In addition, although the case where the convex portion is formed by processing a part of the semiconductor substrate is shown here, a semiconductor film having a convex shape may be formed by processing an SOI substrate.

なお、図21に示すトランジスタ800は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いればよい。 Note that the transistor 800 shown in FIG. 21 is just an example, and the structure is not limited thereto. An appropriate transistor may be used depending on the circuit configuration or driving method.

層10および層20には、コンタクトプラグなどの導電層を含む配線層および層間絶縁層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と電気的に接続するコンタクトプラグとが一体物であってもよい。すなわち、導電層の一部が配線として機能し、導電層の他の一部がコンタクトプラグとして機能する場合がある。 Layer 10 and layer 20 may be provided with a wiring layer and an interlayer insulating layer, including a conductive layer such as a contact plug. Also, multiple wiring layers may be provided depending on the design. Also, in this specification, the wiring and the contact plug electrically connected to the wiring may be integrated. That is, a part of the conductive layer may function as the wiring, and another part of the conductive layer may function as the contact plug.

例えば、トランジスタ800上には、層間絶縁層として、絶縁層390、絶縁層391、絶縁層393、および絶縁層394が順に積層して設けられている。また、絶縁層390および絶縁層391を貫通して、導電層392が設けられている。また、絶縁層393および絶縁層394を貫通して、導電層395が設けられている。 For example, on the transistor 800, insulating layer 390, insulating layer 391, insulating layer 393, and insulating layer 394 are stacked in this order as an interlayer insulating layer. In addition, conductive layer 392 is provided penetrating insulating layer 390 and insulating layer 391. In addition, conductive layer 395 is provided penetrating insulating layer 393 and insulating layer 394.

また、層間絶縁層として機能する絶縁層は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁層391の上面に、平坦性を高めるためにCMP処理等を行なってもよい。 The insulating layer that functions as an interlayer insulating layer may also function as a planarizing film that covers the uneven shape below it. For example, a CMP process or the like may be performed on the upper surface of the insulating layer 391 to improve flatness.

絶縁層394および導電層395上に、層間絶縁層および配線層を設けてもよい。例えば、図21において、絶縁層394および導電層395上に、絶縁層396、絶縁層381、絶縁層382、絶縁層383、絶縁層384、絶縁層385、絶縁層386、および絶縁層387が順に積層して設けられている。また、絶縁層396および絶縁層381を貫通する導電層361と、絶縁層382を貫通する導電層362と、絶縁層383を貫通する導電層363と、絶縁層384を貫通する導電層364と、絶縁層385を貫通する導電層365と、絶縁層386を貫通する導電層366と、絶縁層387を貫通する導電層367と、を有する。 An interlayer insulating layer and a wiring layer may be provided on the insulating layer 394 and the conductive layer 395. For example, in FIG. 21, insulating layer 396, insulating layer 381, insulating layer 382, insulating layer 383, insulating layer 384, insulating layer 385, insulating layer 386, and insulating layer 387 are stacked in order on the insulating layer 394 and the conductive layer 395. In addition, there is a conductive layer 361 penetrating the insulating layer 396 and the insulating layer 381, a conductive layer 362 penetrating the insulating layer 382, a conductive layer 363 penetrating the insulating layer 383, a conductive layer 364 penetrating the insulating layer 384, a conductive layer 365 penetrating the insulating layer 385, a conductive layer 366 penetrating the insulating layer 386, and a conductive layer 367 penetrating the insulating layer 387.

図21では、トランジスタ800の低抵抗領域374bとトランジスタ234の導電層155bが、導電層392、導電層395、導電層361、導電層362、導電層363、導電層364、導電層365、導電層366、および導電層367を介して電気的に接続されている。導電層392、導電層395、導電層361、導電層362、導電層363、導電層364、導電層365、導電層366、および導電層367は、コンタクトプラグまたは配線として機能する。 21, the low resistance region 374b of the transistor 800 and the conductive layer 155b of the transistor 234 are electrically connected through the conductive layer 392, the conductive layer 395, the conductive layer 361, the conductive layer 362, the conductive layer 363, the conductive layer 364, the conductive layer 365, the conductive layer 366, and the conductive layer 367. The conductive layer 392, the conductive layer 395, the conductive layer 361, the conductive layer 362, the conductive layer 363, the conductive layer 364, the conductive layer 365, the conductive layer 366, and the conductive layer 367 function as contact plugs or wiring.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The configuration shown in this embodiment can be used in appropriate combination with the configurations shown in other embodiments.

(実施の形態3)
本実施の形態では、本発明の一態様に係る記憶素子100を備えた演算処理装置の一例について説明する。
(Embodiment 3)
In this embodiment, an example of a processing device including a memory element 100 according to one embodiment of the present invention will be described.

上記実施の形態に示した層10には、駆動回路21以外にも様々な機能回路を設けることができる。図22に、半導体装置の一種である演算処理装置1100の斜視概略図を示す。演算処理装置1100は、層10に重ねて記憶素子100を含むメモリセルアレイ200を備える層20を有する。演算処理装置1100の構成をわかりやすくするため、図22では層10と層20を分離して示している。 In addition to the driver circuit 21, various other functional circuits can be provided in the layer 10 shown in the above embodiment. FIG. 22 shows a schematic perspective view of a processing device 1100, which is a type of semiconductor device. The processing device 1100 has a layer 20 including a memory cell array 200 including a memory element 100, which is stacked on the layer 10. To make the configuration of the processing device 1100 easier to understand, the layers 10 and 20 are shown separately in FIG. 22.

図22に示す演算処理装置1100は、層10に、駆動回路21、ALU1191(ALU:Arithmetic Logic Unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198)、キャッシュ1199、およびキャッシュインターフェース1189を有する。また、書き換え可能なROMおよびROMインターフェースを有してもよい。キャッシュ1199およびキャッシュインターフェース1189は、別チップに設けてもよい。図22に示す演算処理装置1100は、例えば、中央演算処理装置(CPU:Central Processing Unit)として機能する。 The arithmetic processing device 1100 shown in FIG. 22 has a driver circuit 21, an ALU 1191 (ALU: Arithmetic Logic Unit, arithmetic circuit), an ALU controller 1192, an instruction decoder 1193, an interrupt controller 1194, a timing controller 1195, a register 1196, a register controller 1197, a bus interface 1198), a cache 1199, and a cache interface 1189 in layer 10. It may also have a rewritable ROM and a ROM interface. The cache 1199 and the cache interface 1189 may be provided on a separate chip. The arithmetic processing device 1100 shown in FIG. 22 functions, for example, as a central processing unit (CPU: Central Processing Unit).

キャッシュ1199は、別チップに設けられたメインメモリとキャッシュインターフェース1189を介して接続される。キャッシュインターフェース1189は、メインメモリに保持されているデータの一部をキャッシュ1199に供給する機能を有する。キャッシュ1199は、当該データを保持する機能を有する。 The cache 1199 is connected to a main memory provided on a separate chip via a cache interface 1189. The cache interface 1189 has a function of supplying a portion of the data stored in the main memory to the cache 1199. The cache 1199 has a function of storing that data.

図22に示す演算処理装置1100は、その構成を簡略化して示した一例にすぎず、実際の演算処理装置1100はその用途によって多種多様な構成を有している。例えば、図22に示す演算処理装置1100の構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成、つまりGPU(Graphics Processing Unit)のような構成としてもよい。また、演算処理装置1100が内部演算回路およびデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。 The arithmetic processing device 1100 shown in FIG. 22 is merely one example of a simplified configuration, and the actual arithmetic processing device 1100 has a wide variety of configurations depending on its application. For example, the arithmetic processing device 1100 shown in FIG. 22 may be configured as one core, and may include multiple such cores, each of which operates in parallel, that is, a configuration like a GPU (Graphics Processing Unit). In addition, the number of bits that the arithmetic processing device 1100 can handle in its internal arithmetic circuit and data bus can be, for example, 8 bits, 16 bits, 32 bits, 64 bits, etc.

バスインターフェース1198を介して演算処理装置1100に入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。 Instructions input to the arithmetic processing unit 1100 via the bus interface 1198 are input to the instruction decoder 1193, decoded, and then input to the ALU controller 1192, the interrupt controller 1194, the register controller 1197, and the timing controller 1195.

ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、演算処理装置1100のプログラム実行中に、外部の入出力装置および周辺回路からの割り込み要求を、その優先度およびマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、演算処理装置1100の状態に応じてレジスタ1196の読み出しまたは書き込みを行なう。 The ALU controller 1192, interrupt controller 1194, register controller 1197, and timing controller 1195 perform various controls based on the decoded instructions. Specifically, the ALU controller 1192 generates signals for controlling the operation of the ALU 1191. Furthermore, while the arithmetic processing device 1100 is executing a program, the interrupt controller 1194 determines and processes interrupt requests from external input/output devices and peripheral circuits based on their priority and mask state. The register controller 1197 generates an address for the register 1196, and reads or writes to the register 1196 depending on the state of the arithmetic processing device 1100.

また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、およびレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。 The timing controller 1195 also generates signals that control the timing of the operations of the ALU 1191, the ALU controller 1192, the instruction decoder 1193, the interrupt controller 1194, and the register controller 1197. For example, the timing controller 1195 includes an internal clock generating unit that generates an internal clock signal based on a reference clock signal, and supplies the internal clock signal to the various circuits described above.

図22に示す演算処理装置1100において、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電位の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電位の供給を停止できる。 In the arithmetic processing device 1100 shown in FIG. 22, the register controller 1197 selects the holding operation in the register 1196 according to instructions from the ALU 1191. That is, it selects whether the memory cells in the register 1196 will hold data using flip-flops or using capacitive elements. If holding data using flip-flops is selected, a power supply potential is supplied to the memory cells in the register 1196. If holding data in capacitive elements is selected, the data is rewritten to the capacitive elements, and the supply of power supply potential to the memory cells in the register 1196 can be stopped.

図22に示す演算処理装置1100は、レジスタ1196およびキャッシュ1199として機能する記憶装置を有する。当該記憶装置に、本発明の一態様に係る記憶素子100を含むメモリセルアレイ200を用いてもよい。 The arithmetic processing device 1100 shown in FIG. 22 has a memory device that functions as a register 1196 and a cache 1199. The memory device may be a memory cell array 200 including a memory element 100 according to one embodiment of the present invention.

機能回路が設けられた層10と、記憶素子100を含むメモリセルアレイ200が設けられた層20を重ねて設けることで、両者の接続距離を短くすることができる。接続距離が短くなることにより、寄生抵抗および寄生容量が低減する。よって、両者間の通信速度を高めることができる。また、消費電力を低減できる。 By stacking the layer 10 in which the functional circuits are provided and the layer 20 in which the memory cell array 200 including the memory element 100 is provided, the connection distance between the two can be shortened. By shortening the connection distance, parasitic resistance and parasitic capacitance are reduced. This makes it possible to increase the communication speed between the two. In addition, power consumption can be reduced.

また、記憶素子100は不揮発性の記憶素子である。よって、メモリセルアレイ200の一部または全部をストレージとして用いることができる。また、メモリセルアレイ200の一部または全部をメインメモリとして用いることができる。また、メモリセルアレイ200の一部または全部をキャッシュメモリとして用いることができる。 Furthermore, the memory element 100 is a non-volatile memory element. Therefore, a part or all of the memory cell array 200 can be used as storage. Further, a part or all of the memory cell array 200 can be used as a main memory. Further, a part or all of the memory cell array 200 can be used as a cache memory.

また、メモリセルアレイ200のうち、一部をメインメモリとして機能させ、他の一部をストレージとして機能させることもできる。本発明の一態様に係る記憶素子100を含むメモリセルアレイ200は、キャッシュとしての機能と、メインメモリとしての機能と、ストレージとしての機能と、を併せ持つことができる。本発明の一態様に係る記憶素子100を含むメモリセルアレイ200は、例えば、ユニバーサルメモリとして機能できる。 In addition, a portion of the memory cell array 200 can function as a main memory, and another portion can function as storage. The memory cell array 200 including the memory element 100 according to one aspect of the present invention can function as a cache, a main memory, and a storage. The memory cell array 200 including the memory element 100 according to one aspect of the present invention can function as a universal memory, for example.

また、キャッシュ1199の記憶容量が不足した場合、本発明の一態様に係る記憶素子100を含むメモリセルアレイ200の一部または全部を用いて、キャッシュ1199の記憶容量を補うことができる。また、キャッシュ1199とメインメモリの間でデータの授受を行う際に、キャッシュ1199とメインメモリの一方が別件の処理中であった場合、当該処理が終了するまで、他方の動作が停止して待機時間が生じる場合がある。授受されるデータを、本発明の一態様に係る記憶素子100を含むメモリセルアレイ200に一時的に記憶することで、前述の待機時間を解消できる。よって、演算処理装置の動作効率を高めることができる。 In addition, if the storage capacity of the cache 1199 is insufficient, the storage capacity of the cache 1199 can be supplemented by using part or all of the memory cell array 200 including the storage element 100 according to one embodiment of the present invention. In addition, when data is exchanged between the cache 1199 and the main memory, if one of the cache 1199 and the main memory is processing another item, the operation of the other may be stopped until the processing is completed, resulting in a wait time. The aforementioned wait time can be eliminated by temporarily storing the data to be exchanged in the memory cell array 200 including the storage element 100 according to one embodiment of the present invention. This can improve the operating efficiency of the arithmetic processing device.

また、本発明の一態様に係る記憶素子100は、動作していない演算回路への電力供給を一時的に停止して消費電力を削減するパワーゲーティングに好適である。パワーゲーティングを用いた演算処理装置を「ノーマリオフプロセッサ」または「Noffプロセッサ」という場合がある。ノーマリオフプロセッサでは、電力供給を停止する前に復帰時に必要なデータを不揮発性メモリに退避させ、復帰時に読み出す必要がある。本発明の一態様に係る記憶素子100は不揮発性の記憶素子であり、演算処理装置に重ねて設けることができるため、演算処理装置の占有面積を増やすことなく、退避速度および復帰速度が速いノーマリオフプロセッサを実現できる。 The memory element 100 according to one embodiment of the present invention is suitable for power gating, which temporarily stops the supply of power to an inactive arithmetic circuit to reduce power consumption. A normally-off processor using power gating is sometimes called a "normally-off processor" or "Noff processor." In a normally-off processor, data required for recovery must be saved to a non-volatile memory before the power supply is stopped, and must be read out at the time of recovery. The memory element 100 according to one embodiment of the present invention is a non-volatile memory element and can be stacked on the arithmetic processing device, so that a normally-off processor with high save and recovery speeds can be realized without increasing the area occupied by the arithmetic processing device.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The configuration shown in this embodiment can be used in appropriate combination with the configurations shown in other embodiments.

(実施の形態4)
本実施の形態では、本発明の一態様に係る記憶素子を含む記憶装置(以下、「本発明の一態様に係る記憶装置」ともいう。)の応用例について説明する。
(Embodiment 4)
In this embodiment, application examples of a memory device including a memory element according to one embodiment of the present invention (hereinafter also referred to as a "memory device according to one embodiment of the present invention") will be described.

一般に、コンピュータなどの半導体装置では、用途に応じて様々な記憶装置が用いられる。図23Aに、半導体装置に用いられる各種の記憶装置を階層ごとに示す。上層に位置する記憶装置ほど速い動作速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記憶密度が求められる。図23Aでは、最上層から順に、CPUなどの演算処理装置にレジスタ(register)として混載されるメモリ、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、3D NANDメモリを示している。 Generally, various memory devices are used in semiconductor devices such as computers depending on the application. Figure 23A shows various memory devices used in semiconductor devices by layer. The higher the layer, the faster the operating speed is required for the memory device, and the lower the layer, the larger the memory capacity and higher the memory density are required for the memory device. From the top layer, Figure 23A shows memory integrated as a register in a processor such as a CPU, SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), and 3D NAND memory.

CPUなどの演算処理装置にレジスタとして混載されるメモリは、演算結果の一時保存などに用いられるため、演算処理装置からのアクセス頻度が高い。よって、記憶容量よりも速い動作速度が求められる。また、レジスタは演算処理装置の設定情報などを保持する機能も有する。 Memory integrated as a register in a processor such as a CPU is used for temporary storage of calculation results, and is therefore accessed frequently by the processor. Therefore, a faster operating speed is required rather than a larger memory capacity. Registers also have the function of storing setting information for the processor.

SRAMは、例えばキャッシュ(cache)に用いられる。キャッシュは、メインメモリ(main memory)に保持されているデータの一部を複製して保持する機能を有する。使用頻繁が高いデータを複製してキャッシュに保持しておくことで、データへのアクセス速度を高めることができる。キャッシュに求められる記憶容量はメインメモリより少ないが、メインメモリよりも速い動作速度が求められる。また、キャッシュで書き換えられたデータは複製されてメインメモリに供給される。 SRAM is used, for example, in caches. Caches have the function of duplicating and storing part of the data stored in main memory. By duplicating frequently used data and storing it in the cache, the speed of accessing the data can be increased. The storage capacity required for a cache is smaller than that of main memory, but it is required to operate at a faster speed than main memory. In addition, data rewritten in the cache is duplicated and supplied to the main memory.

DRAMは、例えばメインメモリに用いられる。メインメモリは、ストレージ(storage)から読み出されたプログラムおよびデータを保持する機能を有する。DRAMの記憶密度は、おおよそ0.1乃至0.3Gbit/mmである。 DRAM is used, for example, as a main memory. The main memory has a function of holding programs and data read from storage. The memory density of DRAM is approximately 0.1 to 0.3 Gbit/ mm2 .

3D NANDメモリは、例えばストレージに用いられる。ストレージは、長期保存が必要なデータおよび演算処理装置で使用する各種のプログラムなどを保持する機能を有する。よって、ストレージには動作速度よりも大きな記憶容量と高い記憶密度が求められる。ストレージに用いられる記憶装置の記憶密度は、おおよそ0.6乃至6.0Gbit/mmである。 3D NAND memory is used, for example, for storage. Storage has a function of holding data that needs to be stored for a long time and various programs used in a processing unit. Therefore, storage requires a larger memory capacity and a higher memory density than an operating speed. The memory density of a memory device used for storage is approximately 0.6 to 6.0 Gbit/ mm2 .

本発明の一態様に係る記憶装置は、動作速度が速く、長期間のデータ保持が可能である。本発明の一態様に係る記憶装置は、キャッシュが位置する階層とメインメモリが位置する階層の双方を含む境界領域901に位置する記憶装置として好適である。また、本発明の一態様に係る記憶装置は、メインメモリが位置する階層とストレージが位置する階層の双方を含む境界領域902に位置する記憶装置として好適である。 A storage device according to one aspect of the present invention has a high operating speed and is capable of retaining data for a long period of time. A storage device according to one aspect of the present invention is suitable as a storage device located in a boundary area 901 that includes both the hierarchical level where the cache is located and the hierarchical level where the main memory is located. A storage device according to one aspect of the present invention is also suitable as a storage device located in a boundary area 902 that includes both the hierarchical level where the main memory is located and the hierarchical level where the storage is located.

また、本発明の一態様に係る記憶装置は、メインメモリが位置する階層とストレージが位置する階層の双方に好適である。また、本発明の一態様に係る記憶装置は、キャッシュが位置する階層に好適である。図23Bに、図23Aとは異なる各種の記憶装置の階層を示す。 Furthermore, a storage device according to one aspect of the present invention is suitable for both the hierarchical level where main memory is located and the hierarchical level where storage is located. Further, a storage device according to one aspect of the present invention is suitable for the hierarchical level where cache is located. Figure 23B shows various hierarchical levels of storage devices different from those shown in Figure 23A.

図23Bでは、最上層から順に、CPUなどの演算処理装置にレジスタとして混載されるメモリ、キャッシュとして用いられるSRAM、本発明の一態様に係る記憶装置300を示している。キャッシュ、メインメモリ、およびストレージに本発明の一態様に係る記憶装置300を用いることができる。なお、キャッシュとして1GHz以上の高速なメモリが求められる場合は、当該キャッシュはCPUなどの演算処理装置に混載される。 In FIG. 23B, from the top layer, a memory embedded as a register in an arithmetic processing device such as a CPU, an SRAM used as a cache, and a memory device 300 according to one embodiment of the present invention are shown. The memory device 300 according to one embodiment of the present invention can be used for the cache, main memory, and storage. Note that when a high-speed memory of 1 GHz or more is required as the cache, the cache is embedded in an arithmetic processing device such as a CPU.

本発明の一態様に係る記憶素子を含む記憶装置300は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルスチルカメラ、ビデオカメラ、録画再生装置、ナビゲーションシステム、ゲーム機など)の記憶装置に適用できる。また、イメージセンサ、IoT(Internet of Things)、ヘルスケア関連機器などに用いることもできる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、およびデスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。 The memory device 300 including a memory element according to one embodiment of the present invention can be applied to, for example, memory devices of various electronic devices (e.g., information terminals, computers, smartphones, e-book terminals, digital still cameras, video cameras, recording and playback devices, navigation systems, game consoles, etc.). It can also be used in image sensors, IoT (Internet of Things), healthcare-related devices, etc. Note that here, the term "computer" includes tablet computers, notebook computers, and desktop computers, as well as large computers such as server systems.

本発明の一態様に係る記憶装置を有する電子機器の一例について説明する。なお、図24A乃至図24Jには、本発明の一態様に係る記憶装置を有する電子部品4700が各電子機器に含まれている様子を図示している。 An example of an electronic device including a memory device according to one embodiment of the present invention will be described. Note that FIGS. 24A to 24J each illustrate an electronic device including an electronic component 4700 including a memory device according to one embodiment of the present invention.

[携帯電話]
図24Aに示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、電子部品4700と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
[mobile phone]
24A is a mobile phone (smartphone), which is a type of information terminal. The information terminal 5500 includes a housing 5510, a display unit 5511, and an electronic component 4700. As an input interface, a touch panel is provided on the display unit 5511, and a button is provided on the housing 5510.

情報端末5500は、本発明の一態様に係る記憶装置を含む電子部品4700に、アプリケーションの実行時に生成される一時的なファイル(例えば、ウェブブラウザの使用時のキャッシュなど)を保持できる。 The information terminal 5500 can store temporary files (e.g., cache when using a web browser) generated when an application is executed in an electronic component 4700 including a storage device according to one embodiment of the present invention.

[ウェアラブル端末]
また、図24Bには、ウェアラブル端末の一例である情報端末5900が図示されている。情報端末5900は、筐体5901、表示部5902、操作スイッチ5903、操作スイッチ5904、バンド5905、電子部品4700などを有する。
[Wearable devices]
24B illustrates an information terminal 5900, which is an example of a wearable terminal. The information terminal 5900 includes a housing 5901, a display portion 5902, operation switches 5903 and 5904, a band 5905, the electronic components 4700, and the like.

ウェアラブル端末は、先述した情報端末5500と同様に、本発明の一態様に係る記憶装置を含む電子部品4700に、アプリケーションの実行時に生成される一時的なファイルを保持できる。 Similar to the information terminal 5500 described above, the wearable terminal can store temporary files generated when an application is executed in an electronic component 4700 including a memory device according to one embodiment of the present invention.

[情報端末]
また、図24Cには、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、表示部5302と、キーボード5303と、電子部品4700と、を有する。
[Information terminal]
24C shows a desktop information terminal 5300. The desktop information terminal 5300 includes a main body 5301 of the information terminal, a display unit 5302, a keyboard 5303, and electronic components 4700.

デスクトップ型情報端末5300は、先述した情報端末5500と同様に、本発明の一態様に係る記憶装置を含む電子部品4700に、アプリケーションの実行時に生成される一時的なファイルを保持することができる。 Like the information terminal 5500 described above, the desktop information terminal 5300 can store temporary files generated when an application is executed in an electronic component 4700 that includes a storage device according to one embodiment of the present invention.

なお、上述では、電子機器としてスマートフォン、ウェアラブル端末、デスクトップ用情報端末を例として、それぞれ図24A、乃至(C)に図示したが、スマートフォン、ウェアラブル端末、デスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、ウェアラブル端末、デスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。 In the above description, a smartphone, a wearable terminal, and a desktop information terminal are shown as examples of electronic devices in FIGS. 24A to 24C, respectively, but information terminals other than smartphones, wearable terminals, and desktop information terminals can also be applied. Examples of information terminals other than smartphones, wearable terminals, and desktop information terminals include PDAs (Personal Digital Assistants), notebook information terminals, and workstations.

[電化製品]
また、図24Dには、電化製品の一例として電気冷凍冷蔵庫5800が図示されている。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803、電子部品4700などを有する。例えば、電気冷凍冷蔵庫5800は、IoTに対応した電気冷凍冷蔵庫である。
[electric appliances]
24D illustrates an electric refrigerator-freezer 5800 as an example of an electric appliance. The electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator compartment door 5802, a freezer compartment door 5803, and electronic components 4700. For example, the electric refrigerator-freezer 5800 is an electric refrigerator-freezer compatible with IoT.

電気冷凍冷蔵庫5800に本発明の一態様に係る記憶装置を適用することができる。電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などの情報を、インターネットなどを通じて、情報端末などに送受信することができる。電気冷凍冷蔵庫5800は、当該情報を送信する際に生成される一時的なファイルを、本発明の一態様に係る記憶装置を含む電子部品4700に保持できる。 A storage device according to one embodiment of the present invention can be applied to an electric refrigerator-freezer 5800. The electric refrigerator-freezer 5800 can transmit and receive information such as ingredients stored in the electric refrigerator-freezer 5800 and the expiration date of the ingredients to an information terminal or the like via the Internet or the like. The electric refrigerator-freezer 5800 can store a temporary file generated when transmitting the information in an electronic component 4700 including a storage device according to one embodiment of the present invention.

本実施の形態では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。 In this embodiment, an electric refrigerator-freezer has been described as an electrical appliance, but other electrical appliances include, for example, vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, induction cookers, water servers, air conditioners and other heating and cooling appliances, washing machines, dryers, and audiovisual equipment.

[ゲーム機]
また、図24Eには、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203、電子部品4700などを有する。
[Gaming consoles]
24E shows a portable game machine 5200, which is an example of a game machine. The portable game machine 5200 includes a housing 5201, a display portion 5202, a button 5203, an electronic component 4700, and the like.

更に、図24Fには、ゲーム機の一例である据え置き型ゲーム機7500が図示されている。据え置き型ゲーム機7500は、本体7520と、電子部品4700と、コントローラ7522と、を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図24Fには示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなるタッチパネルおよびスティック、回転式つまみ、スライド式つまみなどを備えることができる。また、コントローラ7522は、図24Fに示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。更に、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、マイクロフォンなどを備えて、ゲームプレイヤーのジェスチャー、音声などによって操作する形式としてもよい。 Furthermore, FIG. 24F illustrates a stationary game machine 7500, which is an example of a game machine. The stationary game machine 7500 has a main body 7520, electronic components 4700, and a controller 7522. The controller 7522 can be connected to the main body 7520 wirelessly or by wire. Although not shown in FIG. 24F, the controller 7522 can include a display unit that displays game images, a touch panel and stick that serve as an input interface other than buttons, a rotary knob, a sliding knob, and the like. The shape of the controller 7522 is not limited to the shape shown in FIG. 24F, and the shape of the controller 7522 may be changed in various ways depending on the genre of the game. For example, in a shooting game such as FPS (First Person Shooter), a controller with a trigger as a button and a shape imitating a gun can be used. In addition, for example, in a music game, a controller with a shape imitating a musical instrument, a musical device, or the like can be used. Furthermore, a stationary game console may not use a controller, but may instead be equipped with a camera, depth sensor, microphone, etc., and be operated by the game player's gestures, voice, etc.

また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。 In addition, the images from the above-mentioned game machines can be output by display devices such as television sets, personal computer displays, game displays, and head-mounted displays.

携帯ゲーム機5200または据え置き型ゲーム機7500に本発明の一態様に係る記憶装置を適用することによって、低消費電力の携帯ゲーム機5200または低消費電力の据え置き型ゲーム機7500を実現できる。また、消費電力の低減にともなって回路からの発熱が低減するため、発熱によるその回路自体、周辺回路、およびモジュールへの影響が軽減される。 By applying a storage device according to one embodiment of the present invention to the portable game machine 5200 or the stationary game machine 7500, it is possible to realize a portable game machine 5200 or a stationary game machine 7500 with low power consumption. In addition, the reduction in power consumption leads to a reduction in heat generation from the circuit, and therefore the influence of heat generation on the circuit itself, peripheral circuits, and modules is reduced.

更に、携帯ゲーム機5200または据え置き型ゲーム機7500の電子部品4700に、ゲームの実行中に発生する演算に必要な一時ファイルなどを保持できる。 Furthermore, the electronic component 4700 of the portable game console 5200 or the stationary game console 7500 can store temporary files and the like necessary for calculations that occur during game execution.

ゲーム機の一例として図24Eに携帯ゲーム機を示し、図24Fに家庭用の据え置き型ゲーム機を示した。なお、本発明の一態様の電子機器はこれに限定されない。本発明の一態様の電子機器としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。 As an example of a game machine, FIG. 24E shows a portable game machine, and FIG. 24F shows a stationary game machine for home use. Note that electronic devices according to one embodiment of the present invention are not limited to this. Examples of electronic devices according to one embodiment of the present invention include arcade game machines installed in entertainment facilities (game centers, amusement parks, etc.) and pitching machines for batting practice installed in sports facilities.

[移動体]
上記実施の形態で説明した記憶装置は、移動体である自動車、および自動車の運転席周辺に適用できる。
[Mobile object]
The storage device described in the above embodiment can be applied to a moving object such as an automobile and the vicinity of the driver's seat of the automobile.

図24Gには移動体の一例である自動車5700が図示されている。自動車5700は電子部品4700を有する。自動車5700の運転席周辺には、走行速度、エンジンの回転数、走行距離、燃料の残量、ギア状態、エアコンの設定などの、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺に、それらの情報を示す表示装置が備えられていてもよい。 Figure 24G shows an automobile 5700, which is an example of a moving object. The automobile 5700 has electronic components 4700. Around the driver's seat of the automobile 5700, there is an instrument panel that provides various information such as driving speed, engine RPM, mileage, remaining fuel, gear status, and air conditioning settings. In addition, around the driver's seat, there may be a display device that shows this information.

当該表示装置に、自動車5700に設けられた撮像装置(図示しない。)で撮影した車外映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを補うことができ、安全性を高めることができる。すなわち、当該撮像装置で撮影した車外映像を当該表示装置に表示することによって、死角を補い、安全性を高めることができる。 By displaying on the display device an image outside the vehicle captured by an imaging device (not shown) installed in the automobile 5700, it is possible to compensate for the field of view blocked by pillars and blind spots in the driver's seat, thereby improving safety. In other words, by displaying on the display device an image outside the vehicle captured by the imaging device, it is possible to compensate for blind spots and improve safety.

本発明の一態様に係る記憶装置を含む電子部品4700は、自動車5700の自動運転システム、道路案内、危険予測などを行うシステムに必要な情報を保持できる。自動車5700の表示装置に、道路案内、危険予測などの情報を表示してもよい。また、本発明の一態様に係る記憶装置を含む電子部品4700に、自動車5700に備え付けられたドライビングレコーダの撮影情報を保持してもよい。 The electronic component 4700 including a storage device according to one embodiment of the present invention can hold information necessary for an automatic driving system of the automobile 5700, a system that provides road guidance, hazard prediction, and the like. Information such as road guidance and hazard prediction may be displayed on the display device of the automobile 5700. Furthermore, the electronic component 4700 including a storage device according to one embodiment of the present invention may hold image capture information from a driving recorder installed in the automobile 5700.

なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができる。 Note that, although automobiles have been described above as an example of a moving body, moving bodies are not limited to automobiles. For example, moving bodies can also include trains, monorails, ships, and flying bodies (helicopters, unmanned aerial vehicles (drones), airplanes, and rockets).

[カメラ]
本発明の一態様に係る記憶装置は、カメラに適用できる。図24Hには、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作スイッチ6243、シャッターボタン6244、電子部品4700などを有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置、ビューファインダーなどを別途装着することができる構成としてもよい。
[camera]
A storage device according to one embodiment of the present invention can be applied to a camera. Fig. 24H illustrates a digital camera 6240 as an example of an imaging device. The digital camera 6240 includes a housing 6241, a display unit 6242, an operation switch 6243, a shutter button 6244, an electronic component 4700, and the like, and a detachable lens 6246 is attached to the digital camera 6240. Note that the digital camera 6240 is configured such that the lens 6246 can be detached from the housing 6241 and replaced, but the lens 6246 and the housing 6241 may be integrated. The digital camera 6240 may be configured such that a strobe device, a viewfinder, and the like can be separately attached.

デジタルカメラ6240に本発明の一態様に係る記憶装置を含む電子部品4700を適用することによって、低消費電力のデジタルカメラ6240を実現することができる。また、消費電力の低減にともなって回路からの発熱が低減するため、発熱によるその回路自体、周辺回路、およびモジュールへの影響が軽減される。 By applying the electronic component 4700 including a memory device according to one embodiment of the present invention to the digital camera 6240, it is possible to realize a digital camera 6240 with low power consumption. In addition, the reduction in power consumption leads to a reduction in heat generation from the circuit, and therefore the influence of heat generation on the circuit itself, peripheral circuits, and modules is reduced.

[ビデオカメラ]
本発明の一態様に係る記憶装置は、ビデオカメラに適用できる。図24Iには、撮像装置の一例であるビデオカメラ6300が図示されている。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作スイッチ6304、レンズ6305、接続部6306、電子部品4700などを有する。操作スイッチ6304およびレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
[Video Camera]
A storage device according to one embodiment of the present invention can be applied to a video camera. FIG. 24I illustrates a video camera 6300, which is an example of an imaging device. The video camera 6300 includes a first housing 6301, a second housing 6302, a display unit 6303, an operation switch 6304, a lens 6305, a connection unit 6306, an electronic component 4700, and the like. The operation switch 6304 and the lens 6305 are provided in the first housing 6301, and the display unit 6303 is provided in the second housing 6302. The first housing 6301 and the second housing 6302 are connected by a connection unit 6306, and the angle between the first housing 6301 and the second housing 6302 can be changed by the connection unit 6306. The image on the display unit 6303 may be switched according to the angle between the first housing 6301 and the second housing 6302 at the connection unit 6306.

ビデオカメラ6300で撮影した映像を記録する際、データの記録形式に応じたエンコードを行う必要がある。本発明の一態様に係る記憶装置を用いることによって、ビデオカメラ6300は、エンコードの際に発生する一時的なファイルを保持できる。 When recording video captured by the video camera 6300, it is necessary to perform encoding according to the data recording format. By using a storage device according to one embodiment of the present invention, the video camera 6300 can store temporary files generated during encoding.

[ICD]
本発明の一態様に係る記憶装置は、植え込み型除細動器(ICD)に適用することができる。図24Jは、ICDの一例を示す断面模式図である。ICD本体5400は、バッテリー5401と、電子部品4700と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402と、右心室へのワイヤ5403と、電子部品4700と、を少なくとも有している。
[ICD]
A memory device according to one embodiment of the present invention can be applied to an implantable cardioverter defibrillator (ICD). Fig. 24J is a schematic cross-sectional view showing an example of an ICD. An ICD main body 5400 includes at least a battery 5401, an electronic component 4700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, a wire 5403 to the right ventricle, and the electronic component 4700.

ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405および上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。 The ICD body 5400 is placed in the body by surgery, and the two wires are passed through the subclavian vein 5405 and superior vena cava 5406 of the human body so that one wire tip is placed in the right ventricle and the other wire tip is placed in the right atrium.

ICD本体5400は、ペースメーカとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍または心室細動など)、電気ショックによる治療が行われる。 The ICD main body 5400 functions as a pacemaker and paces the heart when the heart rate falls outside a specified range. If the heart rate does not improve through pacing (fast ventricular tachycardia or ventricular fibrillation, for example), treatment is provided by administering an electric shock.

ICD本体5400は、ペーシングおよび電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを本発明の一態様に係る記憶装置を含む電子部品4700に保持できる。 The ICD main body 5400 must constantly monitor the heart rate to perform appropriate pacing and electric shocks. For this reason, the ICD main body 5400 has a sensor for detecting the heart rate. The ICD main body 5400 can also store heart rate data acquired by the sensor, the number of times pacing treatment has been performed, the time, etc., in the electronic component 4700 including a memory device according to one aspect of the present invention.

また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。 In addition, the antenna 5404 can receive power, which is then charged into the battery 5401. The ICD main body 5400 also has multiple batteries, which can increase safety. Specifically, even if some of the batteries in the ICD main body 5400 become unusable, the remaining batteries can continue to function, so the ICD main body 5400 also functions as an auxiliary power source.

また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。 In addition to the antenna 5404 that can receive power, an antenna that can transmit physiological signals may be provided, and a system may be configured to monitor cardiac activity such that physiological signals such as pulse rate, respiratory rate, heart rate, and body temperature can be confirmed on an external monitor device.

[計算機]
図25Aに示す計算機5600は、大型の計算機の例である。計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。
[Calculator]
25A is an example of a large-scale computer. The computer 5600 includes a rack 5610 and a plurality of rack-mounted computers 5620 stored therein.

計算機5620は、例えば、図25Bに示す斜視図の構成とすることができる。図25Bにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。 The computer 5620 can have the configuration shown in the perspective view of FIG. 25B, for example. In FIG. 25B, the computer 5620 has a motherboard 5630, which has multiple slots 5631 and multiple connection terminals. A PC card 5621 is inserted into the slot 5631. In addition, the PC card 5621 has connection terminals 5623, 5624, and 5625, each of which is connected to the motherboard 5630.

図25Cに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図25Cには、半導体装置5626、半導体装置5627、および半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、および半導体装置5628の説明を参考にすればよい。 The PC card 5621 shown in FIG. 25C is an example of a processing board equipped with a CPU, a GPU, a storage device, and the like. The PC card 5621 has a board 5622. The board 5622 also has a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629. Note that FIG. 25C illustrates semiconductor devices other than the semiconductor device 5626, the semiconductor device 5627, and the semiconductor device 5628, but for those semiconductor devices, the following description of the semiconductor device 5626, the semiconductor device 5627, and the semiconductor device 5628 may be referred to.

接続端子5629は、マザーボード5630のスロット5631に挿すことができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。 The connection terminal 5629 has a shape that allows it to be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630. An example of the standard for the connection terminal 5629 is PCIe.

接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。 Connection terminals 5623, 5624, and 5625 can be interfaces for supplying power to PC card 5621, inputting signals, and the like. They can also be interfaces for outputting signals calculated by PC card 5621, and the like. Examples of standards for connection terminals 5623, 5624, and 5625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). In addition, when a video signal is output from connection terminals 5623, 5624, and 5625, examples of standards for each include HDMI (registered trademark).

半導体装置5626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード5622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。 The semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and the semiconductor device 5626 and the board 5622 can be electrically connected by inserting the terminal into a socket (not shown) provided on the board 5622.

半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA(Field Programmable Gate Array)、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、本発明の一態様に係る記憶装置を含む電子部品4700を用いることができる。 The semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 can be electrically connected to the terminals by, for example, reflow soldering to wiring on the board 5622. Examples of the semiconductor device 5627 include a field programmable gate array (FPGA), a GPU, and a CPU. For example, the electronic component 4700 including a memory device according to one embodiment of the present invention can be used as the semiconductor device 5627.

半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、本発明の一態様に係る記憶装置を含む電子部品4700を用いることができる。 The semiconductor device 5628 has multiple terminals, and the semiconductor device 5628 and the board 5622 can be electrically connected to the terminals by, for example, reflow soldering to wiring on the board 5622. An example of the semiconductor device 5628 is a memory device. The electronic component 4700 including the memory device of one embodiment of the present invention can be used as the semiconductor device 5628.

計算機5600は並列計算機としても機能できる。計算機5600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。 The computer 5600 can also function as a parallel computer. By using the computer 5600 as a parallel computer, it is possible to perform large-scale calculations required for, for example, artificial intelligence learning and inference.

上記の各種電子機器などに、本発明の一態様に係る記憶装置を用いることにより、電子機器の小型化、高速化、または低消費電力化を図ることができる。また、本発明の一態様に係る記憶装置は低消費電力が少ないため、回路からの発熱を低減できる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様に係る記憶装置を用いることにより、高温環境下においても動作が安定した電子機器を実現できる。よって、電子機器の信頼性を高めることができる。 By using a memory device according to one embodiment of the present invention in the various electronic devices described above, the electronic devices can be made smaller, faster, or consume less power. In addition, the memory device according to one embodiment of the present invention consumes less power, so heat generation from the circuit can be reduced. Therefore, adverse effects of the heat on the circuit itself, peripheral circuits, and modules can be reduced. Furthermore, by using a memory device according to one embodiment of the present invention, electronic devices that operate stably even in high-temperature environments can be realized. Therefore, the reliability of the electronic devices can be improved.

本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。 The configuration shown in this embodiment can be used in appropriate combination with the configurations shown in other embodiments.

10:層、20:層、21:駆動回路、22:PSW、23:PSW、31:周辺回路、32:コントロール回路、33:電圧生成回路、41:周辺回路、42:行デコーダ、43:行ドライバ、44:列デコーダ、45:列ドライバ、47:入力回路、48:出力回路、100:記憶素子 10: Layer, 20: Layer, 21: Drive circuit, 22: PSW, 23: PSW, 31: Peripheral circuit, 32: Control circuit, 33: Voltage generation circuit, 41: Peripheral circuit, 42: Row decoder, 43: Row driver, 44: Column decoder, 45: Column driver, 47: Input circuit, 48: Output circuit, 100: Memory element

Claims (8)

 導電層と、磁気トンネル接合素子と、トランジスタと、を有し、
 前記磁気トンネル接合素子は前記導電層と重ねて設けられ、
 前記トランジスタのソース電極またはドレイン電極の一方は、前記導電層と電気的に接続され、
 前記トランジスタのソース電極またはドレイン電極の一方は、絶縁層の上の領域を有し、
 前記トランジスタのソース電極またはドレイン電極の他方は、前記絶縁層の下の領域を有し、
 前記トランジスタのチャネル形成領域は、前記絶縁層の側面に沿う領域を有する記憶素子。
a conductive layer, a magnetic tunnel junction element, and a transistor;
the magnetic tunnel junction element is disposed over the conductive layer;
one of a source electrode and a drain electrode of the transistor is electrically connected to the conductive layer;
one of the source electrode or the drain electrode of the transistor has a region on an insulating layer;
the other of the source electrode or the drain electrode of the transistor has an area under the insulating layer;
A memory element in which a channel formation region of the transistor has a region along a side surface of the insulating layer.
 請求項1において、
 前記トランジスタの半導体層は酸化物半導体を含む記憶素子。
In claim 1,
A memory element in which a semiconductor layer of the transistor contains an oxide semiconductor.
 請求項1または請求項2において、
 前記磁気トンネル接合素子の抵抗値は、
 前記トランジスタを介して前記導電層に供給される電流の向きで制御される記憶素子。
In claim 1 or 2,
The resistance value of the magnetic tunnel junction element is
A memory element controlled by the direction of a current supplied to the conductive layer via the transistor.
 請求項1において、
 前記導電層は、前記トランジスタの半導体層と接する領域を有する記憶素子。
In claim 1,
The conductive layer has a region in contact with a semiconductor layer of the transistor.
 導電層と、磁気トンネル接合素子と、第1トランジスタと、第2トランジスタと、を有し、
 前記磁気トンネル接合素子は前記導電層と重ねて設けられ、
 前記第1トランジスタのソース電極またはドレイン電極の一方は、少なくとも前記導電層の前記磁気トンネル接合素子と重なる領域を介して、前記第2トランジスタのソース電極またはドレイン電極の一方と電気的に接続され、
 前記第1トランジスタのソース電極またはドレイン電極の一方は、絶縁層の上の領域を有し、
 前記第1トランジスタのソース電極またはドレイン電極の他方は、前記絶縁層の下の領域を有し、
 前記第1トランジスタのチャネル形成領域は、前記絶縁層の第1側面に沿う領域を有し、
 前記第2トランジスタのソース電極またはドレイン電極の一方は、前記絶縁層の上の領域を有し、
 前記第2トランジスタのソース電極またはドレイン電極の他方は、前記絶縁層の下の領域を有し、
 前記第2トランジスタのチャネル形成領域は、前記絶縁層の第2側面に沿う領域を有する記憶素子。
a conductive layer, a magnetic tunnel junction element, a first transistor, and a second transistor;
the magnetic tunnel junction element is disposed over the conductive layer;
one of a source electrode or a drain electrode of the first transistor is electrically connected to one of a source electrode or a drain electrode of the second transistor through at least a region of the conductive layer that overlaps with the magnetic tunnel junction element;
one of a source electrode or a drain electrode of the first transistor has a region on an insulating layer;
the other of the source electrode or the drain electrode of the first transistor has an area under the insulating layer;
a channel formation region of the first transistor having a region along a first side surface of the insulating layer;
one of a source electrode or a drain electrode of the second transistor has an area on the insulating layer;
the other of the source electrode or the drain electrode of the second transistor has an area under the insulating layer;
A memory element, wherein the channel formation region of the second transistor has a region along the second side surface of the insulating layer.
 請求項5において、
 前記第1トランジスタの半導体層は酸化物半導体を含み、
 前記第2トランジスタの半導体層は酸化物半導体を含む記憶素子。
In claim 5,
a semiconductor layer of the first transistor includes an oxide semiconductor;
A memory element in which a semiconductor layer of the second transistor includes an oxide semiconductor.
 請求項5または請求項6において、
 前記磁気トンネル接合素子の抵抗値は、
 前記第1トランジスタまたは前記第2トランジスタを介して前記導電層に供給される電流の向きで制御される記憶素子。
In claim 5 or 6,
The resistance value of the magnetic tunnel junction element is
A memory element controlled by a direction of a current supplied to the conductive layer via the first transistor or the second transistor.
 請求項5において、
 前記導電層は、
 前記第1トランジスタの半導体層と接する領域を有し、
 前記第2トランジスタの半導体層と接する領域を有する記憶素子。
In claim 5,
The conductive layer is
a region in contact with a semiconductor layer of the first transistor;
A memory element having a region in contact with the semiconductor layer of the second transistor.
PCT/IB2024/054783 2023-05-24 2024-05-17 Memory element WO2024241163A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023085108 2023-05-24
JP2023-085108 2023-05-24
JP2023-095484 2023-06-09
JP2023095484 2023-06-09

Publications (1)

Publication Number Publication Date
WO2024241163A1 true WO2024241163A1 (en) 2024-11-28

Family

ID=93589003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2024/054783 WO2024241163A1 (en) 2023-05-24 2024-05-17 Memory element

Country Status (1)

Country Link
WO (1) WO2024241163A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131253A (en) * 2011-03-03 2016-07-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2016149552A (en) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
WO2019171715A1 (en) * 2018-03-08 2019-09-12 Tdk株式会社 Spin element and magnetic memory
WO2021157072A1 (en) * 2020-02-07 2021-08-12 Tdk株式会社 Magnetic recording array and reservoir element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131253A (en) * 2011-03-03 2016-07-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2016149552A (en) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
WO2019171715A1 (en) * 2018-03-08 2019-09-12 Tdk株式会社 Spin element and magnetic memory
WO2021157072A1 (en) * 2020-02-07 2021-08-12 Tdk株式会社 Magnetic recording array and reservoir element

Similar Documents

Publication Publication Date Title
US12237019B2 (en) Memory device, operation method of memory device, data processing device, data processing system, and electronic device
US12266392B2 (en) Driving method of semiconductor device
US12082391B2 (en) Memory device
JP2025089335A (en) Semiconductor Device
JP7711071B2 (en) Semiconductor device and electronic device
KR20220103973A (en) How computer systems and information processing devices work
US20250131949A1 (en) Storage Device
WO2024241163A1 (en) Memory element
WO2025003856A1 (en) Semiconductor device
WO2024224258A1 (en) Semiconductor device
WO2024095109A1 (en) Semiconductor device and operating method of semiconductor device
JP7657721B2 (en) Semiconductor Device
US20230377625A1 (en) Semiconductor device and method for driving semiconductor device
KR20250084916A (en) semiconductor devices
WO2025046436A1 (en) Semiconductor device
WO2024184718A1 (en) Semiconductor device
WO2025027443A1 (en) Computer, information processing device, server, and storage device
WO2025083531A1 (en) Semiconductor device and storage device
WO2024134407A1 (en) Semiconductor device
WO2024042404A1 (en) Semiconductor device
WO2025109451A1 (en) Semiconductor device and storage device
JP2025008716A (en) SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
KR20240165976A (en) Semiconductor devices, memory devices, and electronic devices
WO2025017440A1 (en) Semiconductor device and method for producing semiconductor device
WO2025032474A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24810546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025521575

Country of ref document: JP