WO2024239502A1 - 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 - Google Patents
一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 Download PDFInfo
- Publication number
- WO2024239502A1 WO2024239502A1 PCT/CN2023/120557 CN2023120557W WO2024239502A1 WO 2024239502 A1 WO2024239502 A1 WO 2024239502A1 CN 2023120557 W CN2023120557 W CN 2023120557W WO 2024239502 A1 WO2024239502 A1 WO 2024239502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction chamber
- furnace
- electric furnace
- nickel alloy
- suspension roasting
- Prior art date
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 54
- 238000003723 Smelting Methods 0.000 title claims abstract description 34
- 229910000990 Ni alloy Inorganic materials 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 114
- 239000000428 dust Substances 0.000 claims abstract description 31
- 238000007599 discharging Methods 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 85
- 239000007789 gas Substances 0.000 claims description 41
- 229910052759 nickel Inorganic materials 0.000 claims description 40
- 229910001710 laterite Inorganic materials 0.000 claims description 31
- 239000011504 laterite Substances 0.000 claims description 31
- 239000000843 powder Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 25
- 238000005192 partition Methods 0.000 claims description 24
- 239000003638 chemical reducing agent Substances 0.000 claims description 23
- 239000003245 coal Substances 0.000 claims description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 13
- 239000011707 mineral Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 7
- 230000005415 magnetization Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- 239000000779 smoke Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000007664 blowing Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000010935 stainless steel Substances 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000003546 flue gas Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000005243 fluidization Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 238000009853 pyrometallurgy Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 241001062472 Stokellia anisodon Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 241001417490 Sillaginidae Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/08—Apparatus
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
- C22B1/10—Roasting processes in fluidised form
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
- C22B4/06—Alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/10—Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/12—Dry methods smelting of sulfides or formation of mattes by gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the technical field of laterite nickel ore smelting, and particularly relates to a device and method for smelting nickel alloy using a suspension roaster-electric furnace.
- Laterite nickel ore is a mineral formed by weathering of nickel-bearing ultrabasic rocks in tropical and subtropical regions. So far, laterite nickel ore cannot be enriched by ore dressing methods, and the raw ore can only be smelted, resulting in high investment and operating costs.
- the smelting of laterite nickel ore can be divided into two categories: hydrometallurgy and pyrometallurgy.
- Pyrometallurgical processes include blast furnace smelting and ore-fired furnace smelting. Both processes can achieve a high nickel recovery rate of more than 90%.
- Blast furnace smelting includes vertical furnace and blast furnace, and it is difficult to control the reducing atmosphere during the smelting process.
- the vertical furnace process was used for the smelting of laterite nickel ore as early as 1875. Due to high energy consumption, high pollution and low product quality, it was eliminated globally in 1985. Due to its low investment, many factories in China revived this process between 2006 and 2010, using imported laterite nickel ore to produce low-nickel ferronickel to meet its huge market demand, but increasingly stringent environmental protection requirements and energy-saving systems have accelerated the elimination of this process.
- Blast furnaces are mainly used to smelt pig iron. Due to their large production capacity, complete supporting facilities and low impact on the environment, they have been transplanted to smelt nickel-iron alloys.
- the rotary kiln smelting process (RKEF) can produce nickel-iron with a high nickel content. The nickel content of the product can reach more than 10%, which is a good raw material for the production of stainless steel.
- the rotary kiln smelting process (RKEF) is considered to be a mature pyrometallurgical process.
- the existing laterite nickel ore smelting is mainly based on the RKEF production process.
- the RKEF process has high requirements for the quality of laterite ore and reducing agent, and is not environmentally friendly during production. It requires additional waste gas treatment equipment, which increases production costs. At the same time, the metal conversion rate of the rotary kiln material in the RKEF process is low, the coal demand is large, the power consumption is high, and the production efficiency is low.
- the technical task of the present invention is to address the deficiencies of the above prior art and to provide a device and method for smelting nickel alloy using a suspension roaster-electric furnace, which is a production process for producing nickel alloy using a suspension roaster-electric furnace.
- a device for smelting nickel alloy using a suspension roasting furnace-electric furnace comprising a feeding system, a magnetization roasting system, a discharging system, and an electric furnace system connected in sequence;
- the magnetization roasting system comprises a cyclone preheater, a suspension roasting main furnace, a cyclone separator, and a reaction chamber;
- the discharge port of the feeding system is connected to the feed port of the cyclone preheater, the discharge port of the cyclone preheater is connected to the air inlet at the lower end of the suspension roasting main furnace, the gas outlet of the cyclone preheater is connected to the feed port of the cyclone dust collector, and the discharge port of the cyclone dust collector is connected to the feed port at the upper end of the suspension roasting main furnace;
- the discharge port of the suspension roasting main furnace is connected to the feed port of the reaction chamber, and the discharge port of the reaction chamber is connected to the electric furnace system through the discharge system
- the reaction chamber is provided with a plurality of partitions, which divide the reaction chamber into a plurality of reaction chambers; different air chambers are provided at the bottom of each reaction chamber for blowing gas into the reaction chamber to fluidize the material in the reaction chamber, and the air chambers are connected to the gas supply system respectively;
- the reaction chamber feed port is arranged at the top of the first reaction chamber, and the side wall of the partition is connected to the side wall of the reaction chamber, and the plurality of partitions enable the material to flow from the feed port to the discharge port in a serpentine trajectory.
- three partitions are provided in the reaction chamber, dividing the reaction chamber into four reaction chambers, namely loosening chamber I, fluidizing chamber I, loosening chamber II, and fluidizing chamber II; the upper part of the first partition is connected to the top of the reaction chamber, the lower part of the second partition is connected to the bottom of the reaction chamber, the upper part of the third partition is not directly connected to the top of the reaction chamber, and an opening is provided between the third partition and the top of the reaction chamber, and a baffle is provided on the top of the reaction chamber in front of the opening.
- the lower part of the second baffle is connected to the bottom of the reaction chamber, and the distance between the upper part and the top of the reaction chamber is x; the upper part of the third baffle is not directly connected to the top of the reaction chamber, and an opening with a height of y is provided between the upper part and the top of the reaction chamber; the height of the baffle is h, where y ⁇ x ⁇ h.
- a metal sintered mesh is provided on the top of each air chamber, or a wind hood is provided on the top of each air chamber, and a tuyere is provided on the side of the wind hood; the gas in the air chamber enters the reaction chamber through the metal sintered mesh or the wind hood.
- the feeding system includes a belt conveyor and an EM1 vertical mill connected in sequence;
- the magnetization roasting system also includes a batching machine I, and the discharge port of the batching machine I is connected to the reaction chamber;
- the discharge system includes an air lock valve;
- the electric furnace system includes an electric furnace and a batching machine II, and the discharge port of the batching machine II is connected to the electric furnace;
- the dust collection system includes a bag dust collector;
- the system power source includes a Roots blower; the smoke outlet of the bag dust collector is connected to the Roots blower, and the air outlet of the Roots blower is connected to the chimney.
- the exhaust port of the electric furnace is connected to the main suspension roasting furnace; the exhaust port at the upper end of the main suspension roasting furnace is connected to the air inlet of the EM type vertical mill.
- a method for smelting nickel alloy using the above device comprises the following steps:
- Step 1 Grind the laterite nickel ore raw material to remove water to obtain laterite nickel ore powder, and send the laterite nickel ore powder to a suspension roasting system;
- Step 2 The laterite nickel ore powder is preheated by a cyclone preheater and then enters the main furnace of the suspension roasting furnace for heating;
- Step 3 The ore powder heated in the suspension roasting main furnace enters the reaction chamber and reacts with the reducing agent to obtain a pre-reduced material;
- Step 4 introducing the pre-reduced material into an electric furnace to react therein to obtain a nickel alloy.
- step 1 the Fe/Ni mass content ratio in the laterite nickel ore is ⁇ 9.
- step 1 the particle size of the mineral powder is less than or equal to 1.5 mm, and the moisture content is less than 10 wt %.
- step 2 the temperature of the cyclone preheater is 240°C-270°C, and the mineral powder is heated to 650°C-700°C in the main furnace of the suspension roasting furnace.
- a burner is provided at the bottom of the main furnace of the suspension roasting furnace, which is a natural gas burner or a pulverized coal injection burner.
- step 3 the temperature in the reaction chamber is 700-900° C., and the reaction time is 1-3 hours.
- the reducing agent is reducing gas or coal-based elemental carbon; if the reducing agent is coal-based elemental carbon, the ore powder is mixed with the reducing agent added by the batching machine in the front pipe of the reaction chamber, and then enters the reaction chamber, wherein the amount of coal-based elemental carbon added is 10%-15% of the mass of the ore powder; if reducing gas is used as the reducing agent, the reducing gas is directly introduced from the bottom of the reaction chamber to mix and contact with the ore powder, and the reducing gas is hydrogen and/or carbon monoxide, specifically, 30m3 (0.2MPa) of hydrogen + 12m3 (0.2MPa) of carbon monoxide are added per ton of laterite nickel ore, and the ore powder is fully contacted by stirring with the reducing gas.
- step 3 if the reducing agent is coal-based elemental carbon, nitrogen is blown into the bottom of the reaction chamber for material fluidization; if the reducing agent is reducing gas, nitrogen + reducing gas is blown into the bottom of the reaction chamber for material fluidization and reduction; the gas flow rates of different chambers are controlled by the gas supply system.
- step 4 the pre-reduced material is mixed with the flux material added by the batching machine in the front end pipeline of the electric furnace.
- the composition of the nickel alloy in step 4 is controlled by blending the laterite nickel ore and/or adding the required alloy raw materials into the electric furnace.
- step 4 the temperature in the electric furnace is at least 1450°C.
- the present invention has the following beneficial effects:
- the suspension roasting furnace in the present invention is the main stage for completing the selective reduction of nickel and achieving nickel enrichment.
- a special batching machine is used to mix an appropriate amount of reducing agent (coal-based elemental carbon) with the laterite nickel ore, or a reducing gas is directly introduced into the reaction chamber to react with the laterite nickel ore; the reducing agent completely penetrates into the surface of the dry mineral particles or the mineral phase lattice in the reaction chamber, and a reaction temperature of 700°C-900°C is selected.
- the present invention smelts nickel alloy, selectively reduces nickel by accurately controlling the amount of reducing agent, and some iron oxides are not reduced. Under the high temperature conditions in the furnace, the reasonable change of raw material composition will weaken the oxidizing atmosphere, which is conducive to nickel reduction. If the Fe/Ni ratio is too high (the ratio is less than 9), the difficulty of selective reduction of nickel increases. For pre-reduced laterite ore, laterite ores of various grades and components can be used in combination to adjust the appropriate Fe/Ni ratio before entering the melting to complete the enrichment of nickel, so as to obtain a higher grade nickel alloy after melting.
- the present invention fully controls the reaction conditions of the suspension roasting reaction chamber, focusing on accurately controlling the reaction time, reducing agent addition ratio and temperature range of the suspension roasting reaction chamber.
- the ore powder discharged from the suspension roasting furnace reaction chamber is directly added to the melting by re-batch (a certain amount of flux can be added if slag making is required) to directly produce nickel alloy.
- FIG1 is a schematic diagram of the structure of a suspension roasting furnace-circuit device for smelting nickel alloy
- Fig. 2 is a schematic diagram of the reaction chamber structure
- a device for smelting nickel alloy using a suspension roasting furnace-circuit includes a feeding system, a magnetization roasting system, a discharging system, an electric furnace system, a dust collection system, and a system power source;
- the feeding system includes a belt conveyor 1 and an EML vertical mill 2
- the magnetization roasting system includes a cyclone preheater 3, a suspension roasting main furnace 4, a cyclone separator 11, a reaction chamber 5, and an air supply system 7
- the discharging system includes an air lock valve 8
- the electric furnace system includes a melting furnace 6
- the dust collection system includes a bag dust collector 12
- the system power source includes a Roots blower 13.
- the belt conveyor 1 responsible for transporting laterite ore is connected to the feeding port of the EM type vertical mill 2 which receives the raw ore and crushes it.
- the feeding port of the mill is connected to the feeding port of the cyclone preheater 3 by a stainless steel pipe.
- the feeding port of the cyclone preheater 3 is connected to the air inlet (material) port at the lower end of the suspension roasting main furnace 4 by a stainless steel pipe.
- the gas outlet of the cyclone preheater 3 is connected to the feeding port of the cyclone dust collector 11.
- the feeding port of the cyclone dust collector 11 is connected to the feeding port at the upper end of the suspension roasting main furnace 4 by a stainless steel pipe.
- the exhaust port at the upper end of the suspension roasting main furnace is connected to the air inlet of the EM type vertical mill 2 by a stainless steel pipe (to utilize the flue gas heat).
- a burner is arranged at the bottom of the suspension roasting furnace main furnace, which is a natural gas burner or a pulverized coal injection burner.
- the discharge port of furnace 4 is connected to the feed port of reaction chamber 5 by a stainless steel pipe
- the gas supply system 7 is connected to the bottom of reaction chamber 5 by a stainless steel pipe
- the discharge port of reaction chamber 5 is connected to air lock valve 8 by a white steel pipe
- the discharge port of batching machine I9 is connected to the reaction chamber 5 by a white steel pipe
- the air lock valve 8 is connected to the feed port of melting furnace 6 by a stainless steel pipe
- the batching machine II10 is connected to the feed port of melting furnace 6 by a stainless steel pipe
- the exhaust port of melting furnace 6 is connected to the suspension roasting main furnace 4
- the gas outlet of cyclone dust collector 11 is connected to bag dust collector 12 by a stainless steel pipe
- the smoke outlet of bag dust collector 12 is connected to Roots blower 13
- the air outlet of Roots blower 13 is connected to chimney 14 by a pipe.
- three partitions 5-3 are arranged in the reaction chamber, dividing the reaction chamber into four reaction chambers, namely loosening chamber I, fluidizing chamber I, loosening chamber II, and fluidizing chamber II; the side walls of the partitions are connected to the side walls of the reaction chamber, wherein the upper part of the first partition is connected to the top of the reaction chamber, and the distance between the lower part and the bottom of the reaction chamber is 200 mm, the lower part of the second partition is connected to the bottom of the reaction chamber, and the distance between the upper part and the top of the reaction chamber is 200 mm, the upper part of the third partition is not directly connected to the top of the reaction chamber, and an opening with a height of 80 mm is arranged between the upper part and the top of the reaction chamber, and the distance between the lower part and the bottom of the reaction chamber is 200 mm; A baffle 5-4 is provided at the top of the reaction chamber before the opening, and the height of the baffle is 216 mm.
- reaction chamber feed port 5-1 is provided at the top of the first reaction chamber, and three partitions allow the material to flow from the feed port 5-1 to the discharge port 5-2 along a serpentine trajectory.
- part of the gas flows along a serpentine trajectory with the material, and part of the gas flows above the reaction chamber, so the third upper part is not directly connected to the top of the reaction chamber, but an opening is left.
- a baffle is provided in front of the opening.
- a metal sintered mesh 5-5 is provided on the upper part of each gas chamber, and the gas in the gas chamber enters the reaction chamber through the metal sintered mesh or the wind cap.
- the method for smelting nickel alloy based on the device described in Example 1 comprises the following steps:
- Step 1 Use a belt conveyor to deliver the raw materials to the suspension roasting system, grind the laterite nickel ore (Fe/Ni mass content ratio ⁇ 9) into a -1.5 mm ore powder in an EM type vertical mill of the grinding system, and the moisture content is less than 10wt%;
- Step 2 The mineral powder is preheated by the cyclone preheater and then enters the main furnace of the suspension roasting furnace for heating.
- the preheater temperature is 240°C, and the mineral powder is heated to 650°C in the main furnace.
- the bottom of the main furnace uses the hot flue gas from the electric furnace and the hot flue gas from the reaction chamber;
- Step 3 The ore powder heated by the main roasting furnace enters the reaction chamber and reacts with the reducing agent therein to obtain a pre-reduced material;
- the reducing agent is a reducing gas, and nitrogen + reducing gas is blown into the gas chamber at the bottom of the reaction chamber for material fluidization and reduction.
- 30m3 (0.2MPa) of hydrogen + 12m3 (0.2MPa) of carbon monoxide are added to each ton of laterite nickel ore, and the ore is fully contacted by the stirring of the reducing gas;
- a gas lock valve is provided at the discharge port of the reaction chamber to control the reaction chamber in an anaerobic reducing atmosphere, and the mixture in the reaction chamber reacts at 700°C for 1 hour;
- Step 4 The pre-reduced material is mixed with the flux material added by the batching machine in the front end pipeline of the smelting furnace, and then enters the smelting furnace to obtain the nickel alloy at 1450°C-1550°C.
- the method for smelting nickel alloy based on the device described in Example 1 comprises the following steps:
- Step 1 grinding laterite nickel ore (Fe/Ni mass content ratio ⁇ 9) into -1.5 mm ore powder with a moisture content of less than 10 wt% in an EM type vertical mill of a crushing and grinding system using a belt conveyor;
- Step 2 The mineral powder is preheated by the cyclone preheater and then enters the main furnace of the suspension roasting furnace for heating.
- the preheater temperature is 270°C.
- the mineral powder is heated to 700°C in the main furnace.
- the bottom of the main furnace uses the hot flue gas from the electric furnace and the hot flue gas from the reaction chamber;
- Step 3 The ore powder heated by the main furnace of the suspension roasting furnace is mixed with the reducing agent added by the batching machine in the pipeline at the front end of the reaction chamber, and then enters the reaction chamber, where it reacts with the reducing agent to obtain a pre-reduced material; nitrogen is blown into the air chamber at the bottom of the reaction chamber for material fluidization, and the reducing agent is coal-based elemental carbon, which accounts for 15% of the mass of the ore powder; a gas lock valve is provided at the discharge port of the reaction chamber to control the reaction chamber under anaerobic reduction conditions, and the mixture in the reaction chamber reacts at 900°C for 2-3 hours;
- Step 4 The pre-reduced material is mixed with the flux material added by the batching machine in the front end pipeline of the smelting furnace, and then enters the smelting furnace to obtain the nickel alloy at 1450°C-1550°C.
- the nickel metallization rate in laterite nickel ore reaches more than 90%.
- a reducing agent coal-based elemental carbon
- a reducing gas H2 , CO; H2 +CO
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明提供一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法,所述装置包括依次连接的给料系统、磁化焙烧系统、出料系统、电炉系统;所述磁化焙烧系统包括旋风预热器、悬浮焙烧主炉、旋风分离器、反应室;所述给料系统出料口与旋风预热器入料口相连,所述旋风预热器出料口与悬浮焙烧主炉下端进气口连接,该旋风预热器气体出口与旋风除尘器入料口连接,所述旋风除尘器出料口与悬浮焙烧主炉上端入料口连接;所述悬浮焙烧主炉出料口与反应室进料口连接,所述反应室出料口通过出料系统与电炉系统连接;所述旋风除尘器气体出口与收尘系统相连,所述收尘系统连接系统动力源。本发明是以悬浮焙烧炉-电炉生产镍合金的生产工艺。
Description
本发明属于红土镍矿冶炼技术领域,具体涉及一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法。
红土镍矿是一种在热带及亚热带地区由含镍超基性岩经过风化而形成的矿物。红土镍矿迄今无法用选矿方法富集,只能对原矿进行冶炼,从而导致很高的投资成本和操作成本。红土镍矿的冶炼,可分为湿法冶金和火法冶金两类。
火法冶金工艺包括鼓风炉冶炼和矿热炉冶炼。这两种工艺都可获得很高的镍回收率大于90%。鼓风炉冶炼包括竖炉和高炉,对冶炼过程中还原气氛不易控制。竖炉工艺早在1875年就应用于红土镍矿的冶炼,由于高耗能、高污染和产品质量低而在1985年即在全球被淘汰,又因其投资低,中国在2006年至2010年间有多家工厂重拾该工艺,利用进口红土镍矿生产低镍镍铁来满足其巨大的市场需求,但越来越严的环保要求和节能制度,使这一工艺加速淘汰。高炉主要用于冶炼生铁,由于其生产能力大,配套设施完善,对环境影响小,因而被移植到冶炼镍铁合金。回转窑接冶炼工艺(RKEF)可以生产含镍量较高的镍铁,产品镍含量可以达到10%以上,是生产不锈钢的良好原料。回转窑接冶炼工艺(RKEF)被认为是成熟的火法冶炼工艺,现有红土镍矿冶炼主要以RKEF生产工艺为主,但RKEF工艺以对红土矿和还原剂的品质有着较高的要求,并且在生产时对环境不友好需要另外设置废气处理装置,增加生产成本。同时,RKEF工艺中回转窑物料的金属转化率低、煤炭需求量大、耗电量大、生产效率低。
发明内容
本发明的技术任务是针对以上现有技术的不足,而提供一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法,是以悬浮焙烧炉-电炉生产镍合金的生产工艺。
本发明解决其技术问题所采用的技术方案是:一种使用悬浮焙烧炉-电炉冶炼镍合金的装置,包括依次连接的给料系统、磁化焙烧系统、出料系统、电炉系统;所述磁化焙烧系统包括旋风预热器、悬浮焙烧主炉、旋风分离器、反应室;所述给料系统出料口与旋风预热器入料口相连,所述旋风预热器出料口与悬浮焙烧主炉下端进气口连接,该旋风预热器气体出口与旋风除尘器入料口连接,所述旋风除尘器出料口与悬浮焙烧主炉上端入料口连接;所述悬浮焙烧主炉出料口与反应室进料口连接,所述反应室出料口通过出料系统与电炉系统连接;所述旋风除尘器气体出口与收尘系统相连,所述收尘系统连接系统动力源。
进一步地,所述反应室内设有多个隔板,所述隔板将反应室分为多个反应腔室;每个反应腔室的底部分别设有不同的气室,用于向反应腔室吹入气体,使反应腔室内的物料处于流化状态,所述气室分别连接供气系统;所述反应室入料口设置在第一个反应腔室的顶部,所述隔板的侧壁与反应室侧壁连接,多个隔板使物料从入料口到出料口按照蛇形轨迹流动。
进一步地,所述反应室内设有三个隔板,将反应室分为四个反应腔室,分别为松动室I、流化室I、松动室II、流化室II;其中第一个隔板的上部与反应室顶部连接,第二个隔板的下部与反应室的底部连接,第三个隔板上部不直接与反应室顶部连接、与反应室顶部间设有一开口,开口前的反应室顶部设有挡板。
进一步地,第二个隔板的下部与反应室的底部连接、上部与反应室顶部的距离为x,第三个隔板上部不直接与反应室顶部连接、与反应室顶部间设有一高度为y的开口;所述挡板的高度为h,其中y<x<h。
进一步地,每个气室的上部均设有金属烧结网,或者每个气室的上部均设有风帽,风帽的侧面开设风口;气室中的气体通过金属烧结网或者风帽进入反应腔室。
进一步地,所述给料系统包括依次连接的带式输送机、EMl立式磨矿机;所述磁化焙烧系统还包括配料机I,所述配料机I出料口与反应室连通;所述出料系统包括锁气阀;所述电炉系统包括电炉及配料机II,所述配料机II出料口与电炉连通;所述收尘系统包括布袋除尘器;所述系统动力源包括罗茨风机;布袋除尘器烟气出口与罗茨风机相连,罗茨风机出风口与烟囱相连接。
进一步地,所述电炉排气口与悬浮焙烧主炉连接;所述悬浮焙烧主炉上端排气口与EM型立式磨机进风口相连。
一种使用上述装置冶炼镍合金的方法,包括如下步骤:
步骤1:将红土镍矿原料磨细去水,得到红土镍矿矿粉,将红土镍矿矿粉送至悬浮焙烧系统;
步骤2:红土镍矿矿粉经过旋风预热器预热,然后进入到悬浮焙烧炉主炉进行加热;
步骤3:经悬浮焙烧主炉加热后的矿粉进入到反应室,与还原剂发生反应,得到预还原物料;
步骤4:将预还原物料通入到电炉中,在其中反应获得镍合金。
进一步地,所述步骤1中,红土镍矿中Fe/Ni质量含量比≤9。
进一步地,所述步骤1中,矿粉颗粒尺寸小于等于1.5mm,水分低于10wt%。
进一步地,所述步骤2中,旋风预热器温度为240℃-270℃,悬浮焙烧炉主炉中将矿粉加热至650℃-700℃。
进一步地,所述步骤2中,悬浮焙烧炉主炉底部设置有燃烧器,为天然气燃烧器或粉煤喷吹燃烧器。
进一步地,所述步骤3中,反应室中温度为700-900℃,反应时间1-3小时。
进一步地,所述步骤3中,还原剂为还原气体或煤基单质碳;若还原剂为煤基单质碳时,矿粉在反应室前端管道中与配料机加入的还原剂混合,然后进入到反应室,其中煤基单质碳加入量为矿粉质量的10%-15%;若使用还原气体作还原剂时,直接将还原气体从反应室底部通入与矿粉混合接触,还原气为氢气和/或一氧化碳,具体为每吨红土镍矿配入氢气30m3(0.2MPa)+一氧化碳12m3(0.2MPa),矿粉通过还原气体搅动而充分接触。
进一步地,所述步骤3中,若还原剂为煤基单质碳时,反应室底部吹入氮气用于物料流化;若还原剂为还原气体,反应室底部吹入氮气+还原气体用于物料流化及还原;不同腔室的气体流量通过供气系统控制。
进一步地,所述步骤4中,预还原物料在电炉前端管道中与配料机加入的熔剂物料混合。
进一步地,所述步骤4镍合金的成分通过红土镍矿配矿,和/或将所需合金原料加入电炉中来进行控制。
进一步地,所述步骤4中,电炉中温度至少为1450℃。
与现有技术相比,本发明的有益效果为:
本发明中悬浮焙烧炉是完成镍的选择性还原、实现镍富集的主要阶段。在矿物进入悬浮焙烧反应室之前,利用专用配料机配适量的还原剂(煤基单质碳)与红土镍矿混合,或还原性气体直接通入反应室与红土镍矿反应;还原剂在反应室内完全渗入干矿物颗粒便表面或矿相晶格内,选择700℃-900℃的反应温度。通过精准控制在反应室内的反应时间1-3小时,实现红土镍矿中镍的金属化率达到90%以上,部分铁氧化物被还原。
本发明冶炼镍合金,通过精准控制还原剂量对镍进行选择性还原,部分铁的氧化物未进行还原,炉内高温条件下,原料成分合理变化会减弱氧化气氛,利于镍还原。如果Fe/Ni比值过高(比值小于9),镍的选择性还原难度增大,对于预还原的红土矿可以用多种品位、成分的红土矿搭配使用,来调整适当的Fe/Ni比后再进入熔分完成镍的富集,以此在熔分后得到品位更高的镍合金。本发明充分控制悬浮焙烧反应室的反应条件,重点实现精准控制悬浮焙烧反应室的反应时间、还原剂配入比例以及温度区间。悬浮焙烧炉反应室排出的矿粉通过再次配料(如造渣需要可以加入一定量的熔剂)直接加入到进行熔分,直接产出镍合金。
图1为悬浮焙烧炉-电路冶炼镍合金的装置结构示意图;
图2为反应室结构示意图;
其中:1.带式输送机;2.EM型立式磨机磨矿系统;3.旋风预热器;4.悬浮焙烧主炉;5.反应室;6.熔分炉;7.供气系统;8.锁气阀;9.配料机I;10.配料机II;11.旋风除尘器;12.布袋除尘器;13.罗茨风机;14.烟囱;
5-1.反应室入料口;5-2.反应室出料口;5-3.隔板;5-4.挡板;5-5.金属烧结网。
5-1.反应室入料口;5-2.反应室出料口;5-3.隔板;5-4.挡板;5-5.金属烧结网。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,一种使用悬浮焙烧炉-电路冶炼镍合金的装置,包括给料系统、磁化焙烧系统、出料系统、电炉系统、收尘系统、系统动力源;所述给料系统包括带式输送机1、EMl立式磨矿机2,所述磁化焙烧系统包括旋风预热器3、悬浮焙烧主炉4、旋风分离器11、反应室5、供气系统7;所述出料系统包括锁气阀8;所述电炉系统包括熔分炉6、所述收尘系统包括布袋除尘器12;所述系统动力源包括罗茨风机13。
负责运送红土矿的带式输送机1连接接收原矿并破碎的EM型立式磨机2入料口,磨机出料口用不锈钢管道与旋风预热器3入料口相连,旋风预热器3出料口用不锈钢管道与悬浮焙烧主炉4下端进气(料)口连接,旋风预热器3气体出口与旋风除尘器11入料口连接,旋风除尘器11出料口用不锈钢管道与悬浮焙烧主炉4上端入料口连接,悬浮焙烧主炉上端排气口用不锈钢管道与EM型立式磨机2进风口相连(利用的烟气热量),悬浮焙烧炉主炉底部设置有燃烧器,为天然气燃烧器或粉煤喷吹燃烧器,悬浮焙烧主炉4出料口与反应室5进料口用不锈钢管道连接,供气系统7通过不锈钢管道与反应室5底部连通,反应室5出料口使用白钢管道与锁气阀8相连,配料机I9出料口用不锈钢管道与反应室5用白钢管道连通,锁气阀8使用不锈钢管道与熔分炉6入料口连接,配料机II10使用不锈钢管道与熔分炉6进料口连接,熔分炉6排气口与悬浮焙烧主炉4连接;旋风除尘器11气体出口通过不锈钢管道与布袋除尘器12相连,布袋除尘器12烟气出口与罗茨风机13相连,罗茨风机13出风口用管道与烟囱14相连接。
其中,如图2所示,所述反应室内设有三个隔板5-3,将反应室分为四个反应腔室,分别为松动室I、流化室I、松动室II、流化室II;所述隔板的侧壁与反应室侧壁连接,其中第一个隔板的上部与反应室顶部连接、下部与反应室底部的距离为200mm,第二个隔板的下部与反应室的底部连接、上部与反应室顶部的距离为200mm,第三个隔板上部不直接与反应室顶部连接与反应室顶部间设有一高度为80mm的开口、下部与反应室底部的距离为200mm;所
述开口前的的反应室顶部设有挡板5-4,所述挡板的高度为216mm。每个反应腔室的底部分别设有不同的气室,所述气室分别连接供气系统;所述反应室入料口5-1设置在第一个反应腔室的顶部,三个隔板使物料从入料口5-1到出料口5-2按照蛇形轨迹流动。本实施例中部分气体随物料按照蛇形轨迹流动,部分气体在反应腔室的上方流动,故第三个上部不直接与反应室顶部连接,而是留有一开口,同时为了防止物料从开口处直接进入下一个反应腔室,所以在开口前设有一挡板。
其中,每个气室的上部均设有金属烧结网5-5,气室中的气体通过金属烧结网或者风帽进入反应腔室。
实施例2
基于实施例1所述装置冶炼镍合金的方法,包括如下步骤:
步骤1:使用带式输送机将原料送至悬浮焙烧系统,将红土镍矿(Fe/Ni质量含量比<9)在磨矿系统EM型立式磨机中磨至-1.5mm的矿粉,水分小于10wt%;
步骤2:矿粉经过旋风预热器预热,然后进入到悬浮焙烧炉主炉进行加热,预热器温度为240℃,主炉中将矿粉升温至650℃;主炉底部利用电炉热烟气及反应室热烟气;
步骤3:经焙烧主炉加热后的矿粉进入到反应室,并在其中与还原剂发生反应,得到预还原物料;还原剂为还原气体,反应室底部气室吹入氮气+还原气体用于物料流化及还原,每吨红土镍矿配入氢气30m3(0.2MPa)+一氧化碳12m3(0.2MPa),矿通过还原气体搅动而充分接触;反应室出料口设置有锁气阀,将反应室内控制在绝氧的还原性气氛,反应室中混合物在700℃下反应1小时;
步骤4:预还原物料在熔分炉前端管道中与配料机加入的熔剂物料混合后,进入熔分炉,在1450℃-1550℃条件下获得镍合金。
实施例3
基于实施例1所述装置冶炼镍合金的方法,包括如下步骤:
步骤1:使用带式输送机将红土镍矿(Fe/Ni质量含量比<9)在破碎磨矿系统EM型立式磨机中磨矿至-1.5mm的矿粉,水分小于10wt%;
步骤2:矿粉经过旋风预热器预热,然后进入到悬浮焙烧炉主炉进行加热,预热器温度为270℃,主炉中将矿粉升温至700℃,主炉底部利用电炉热烟气及反应室热烟气;
步骤3:经悬浮焙烧炉主炉加热后的矿粉在反应室前端的管道中与配料机加入的还原剂混合,然后进入到反应室,并在其中与还原剂发生反应,得到预还原物料;反应室底部气室吹入氮气用于物料流化,还原剂为煤基单质碳,占矿粉质量的15%;反应室出料口设置有锁气阀,将反应室内控制在绝氧的还原条件下,反应室中混合物在900℃下反应2-3小时;
步骤4:预还原物料在熔分炉前端管道中与配料机加入的熔剂物料混合后,进入熔分炉,在1450℃-1550℃条件下获得镍合金。
实施例1、2红土镍矿中镍的金属化率达到90%以上。本发明的实施例中,可以在前端的管道里向预还原矿粉中加入还原剂(煤基单质碳)或者在反应室底部通入还原气体(H2、CO;H2+CO),以此在熔分后获得镍合金。
以上技术方案阐述了本发明的技术思路,不能以此限定本发明的保护范围,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上技术方案所作的任何改动及修饰,均属于本发明技术方案的保护范围。
Claims (10)
- 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置,其特征在于,包括依次连接的给料系统、磁化焙烧系统、出料系统、电炉系统;所述磁化焙烧系统包括旋风预热器、悬浮焙烧主炉、旋风分离器、反应室;所述给料系统出料口与旋风预热器入料口相连,所述旋风预热器出料口与悬浮焙烧主炉下端进气口连接,该旋风预热器气体出口与旋风除尘器入料口连接,所述旋风除尘器出料口与悬浮焙烧主炉上端入料口连接;所述悬浮焙烧主炉出料口与反应室进料口连接,所述反应室出料口通过出料系统与电炉系统连接;所述旋风除尘器气体出口与收尘系统相连,所述收尘系统连接系统动力源。
- 根据权利要求1所述的一种使用悬浮焙烧炉-电炉冶炼镍合金的装置,其特征在于,所述反应室内设有多个隔板,所述隔板将反应室分为多个反应腔室;每个反应腔室的底部分别设有不同的气室,用于向反应腔室吹入气体,使反应腔室内的物料处于流化状态,所述气室分别连接供气系统;所述反应室入料口设置在第一个反应腔室的顶部,所述隔板的侧壁与反应室侧壁连接,多个隔板使物料从入料口到出料口按照蛇形轨迹流动。
- 根据权利要求1所述的一种使用悬浮焙烧炉-电炉冶炼镍合金的装置,其特征在于,所述反应室内设有三个隔板,将反应室分为四个反应腔室,其中第一个隔板的上部与反应室顶部连接,第二个隔板的下部与反应室的底部连接,第三个隔板上部不直接与反应室顶部连接、与反应室顶部间设有一开口,开口前的反应室顶部设有挡板。
- 根据权利要求1所述的一种使用悬浮焙烧炉-电炉冶炼镍合金的装置,其特征在于,所所述给料系统包括依次连接的带式输送机、EMl立式磨矿机;所述磁化焙烧系统还包括配料机I,所述配料机I出料口与反应室连通;所述出料系统包括锁气阀;所述电炉系统包括电炉及配料机II,所述配料机II出料口与电炉连通;所述收尘系统包括布袋除尘器;所述系统动力源包括罗茨风机;布袋除尘器烟气出口与罗茨风机相连,罗茨风机出风口与烟囱相连接;所述电炉排气口与悬浮焙烧主炉连接;所述悬浮焙烧主炉上端排气口用与EM型立式磨机进风口相连。
- 一种基于权利要求1-4其中任意一项所述装置冶炼镍合金的方法,其特征在于,包括如下步骤:步骤1:将红土镍矿原料磨细去水,得到红土镍矿矿粉,将红土镍矿矿粉送至悬浮焙烧系统;步骤2:红土镍矿矿粉经过旋风预热器预热,然后进入到悬浮焙烧炉主炉进行加热;步骤3:经悬浮焙烧主炉加热后的矿粉进入到反应室,与还原剂发生反应,得到预还原物料;步骤4:将预还原物料通入到电炉中,在其中反应获得镍合金。
- 根据权利要求5所述的冶炼镍合金的方法,其特征在于,所述步骤1中,红土镍矿中Fe/Ni质量含量比≤9;矿粉颗粒尺寸小于等于1.5mm,水分低于10wt%。
- 根据权利要求5所述的冶炼镍合金的方法,其特征在于,所述步骤2中,旋风预热器温度为240℃-270℃,悬浮焙烧炉主炉中将矿粉加热至650℃-700℃;所述步骤4中,电炉中温度至少为1450℃。
- 根据权利要求5所述的冶炼镍合金的方法,其特征在于,所述步骤3中,反应室中温度为700-900℃,反应时间1-3小时。
- 根据权利要求5所述的冶炼镍合金的方法,其特征在于,还原剂为还原气体或煤基单质碳;若还原剂为煤基单质碳时,矿粉在反应室前端管道中与配料机加入的还原剂混合,然后进入到反应室,其中煤基单质碳加入量为矿粉质量的10%-15%;若使用还原气体作还原剂时,还原气为氢气和/或一氧化碳,直接将还原气体从反应室底部通入与矿粉混合接触。
- 根据权利要求5所述的冶炼镍合金的方法,其特征在于,所述步骤4镍合金的成分通过红土镍矿配矿,和/或将所需合金原料加入电炉中来进行控制。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310598333.8 | 2023-05-25 | ||
CN202310598333.8A CN116732320A (zh) | 2023-05-25 | 2023-05-25 | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024239502A1 true WO2024239502A1 (zh) | 2024-11-28 |
Family
ID=87900313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/120557 WO2024239502A1 (zh) | 2023-05-25 | 2023-09-22 | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116732320A (zh) |
WO (1) | WO2024239502A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119706753A (zh) * | 2025-03-04 | 2025-03-28 | 杭州亚太化工设备有限公司 | 工业副产物磷石膏的再处理制备硫酸系统以及制酸工艺 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116732320A (zh) * | 2023-05-25 | 2023-09-12 | 上海逢石科技有限公司 | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103468930A (zh) * | 2013-08-16 | 2013-12-25 | 武汉建筑材料工业设计研究院有限公司 | 一种利用红土镍矿制备镍铁焙烧矿的方法及其装置 |
US20180361395A1 (en) * | 2017-03-31 | 2018-12-20 | Northeastern University | Multi-stage suspension magnetizing roasting-magnetic separation system device and method for refractory iron ore |
CN116004976A (zh) * | 2023-02-07 | 2023-04-25 | 东北大学 | 一种红土镍矿悬浮焙烧-熔炼的综合利用系统 |
CN116732320A (zh) * | 2023-05-25 | 2023-09-12 | 上海逢石科技有限公司 | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 |
-
2023
- 2023-05-25 CN CN202310598333.8A patent/CN116732320A/zh active Pending
- 2023-09-22 WO PCT/CN2023/120557 patent/WO2024239502A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103468930A (zh) * | 2013-08-16 | 2013-12-25 | 武汉建筑材料工业设计研究院有限公司 | 一种利用红土镍矿制备镍铁焙烧矿的方法及其装置 |
US20180361395A1 (en) * | 2017-03-31 | 2018-12-20 | Northeastern University | Multi-stage suspension magnetizing roasting-magnetic separation system device and method for refractory iron ore |
CN116004976A (zh) * | 2023-02-07 | 2023-04-25 | 东北大学 | 一种红土镍矿悬浮焙烧-熔炼的综合利用系统 |
CN116732320A (zh) * | 2023-05-25 | 2023-09-12 | 上海逢石科技有限公司 | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119706753A (zh) * | 2025-03-04 | 2025-03-28 | 杭州亚太化工设备有限公司 | 工业副产物磷石膏的再处理制备硫酸系统以及制酸工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN116732320A (zh) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101538631B (zh) | 用低镍物料冶炼镍铁及含镍铁水工艺及设备 | |
WO2024239502A1 (zh) | 一种使用悬浮焙烧炉-电炉冶炼镍合金的装置及方法 | |
CN101538630B (zh) | 用铬矿粉制备铬铁工艺及设备 | |
CN100519768C (zh) | 一种铬铁冶炼竖炉及冶炼方法 | |
CN115491489B (zh) | 基于链篦机-回转窑的预还原球团制备装置及方法 | |
CN101575654B (zh) | 含镍和镍铬的铁合金制备工艺及设备 | |
CN115491455A (zh) | 一种基于带式焙烧机的预还原球团制备装置及方法 | |
CN110205501A (zh) | 还原含镍物料制备镍锍的装置 | |
CN105969981A (zh) | 一种钒钛磁铁矿综合利用的工艺 | |
CN111705225A (zh) | 制备镍锍的方法及装置 | |
CN112410494A (zh) | 一种可应用细粒度粉矿的悬浮熔融还原炼铁装置及炼铁方法 | |
CN114606379B (zh) | 一种高磷铁矿的冶炼方法 | |
CN109929959A (zh) | 一种粉状铁矿石悬浮态直接还原-熔炼生产铁水的方法 | |
CN107267746A (zh) | 一种红土镍矿直接还原-顶吹熔炼生产镍铁的方法及其装置 | |
WO2017157092A1 (zh) | 高效梯级叉分式回转还原炉直接还原生产镍铁的方法 | |
CN114317852A (zh) | 一种2500m3高炉煤气碳循环的低碳炼铁方法 | |
CN104651563B (zh) | 一种低贫高磷难选铁/锰矿还原冶选联合提铁脱磷的方法 | |
CN101392329A (zh) | 氧化镍矿精选工艺 | |
CN102409126B (zh) | 一体式还原炼铁炉及一体式还原炼铁工艺 | |
CN109536662B (zh) | 一种回转窑气基还原-全氧熔池熔炼炼铁装置 | |
CN116004976A (zh) | 一种红土镍矿悬浮焙烧-熔炼的综合利用系统 | |
WO2025082008A1 (zh) | 一种零氧喷吹低碳炼铁方法 | |
CN105463214B (zh) | 一种采用低贫品位红土镍矿生产高镍铁的方法 | |
CN118813885A (zh) | 一种煤气提质并循环的炼铁方法及系统 | |
CN115491453B (zh) | 一种PLCsmelt熔融还原炼铁方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23938171 Country of ref document: EP Kind code of ref document: A1 |