[go: up one dir, main page]

WO2024237357A1 - Ptc unit and heating device including same - Google Patents

Ptc unit and heating device including same Download PDF

Info

Publication number
WO2024237357A1
WO2024237357A1 PCT/KR2023/006505 KR2023006505W WO2024237357A1 WO 2024237357 A1 WO2024237357 A1 WO 2024237357A1 KR 2023006505 W KR2023006505 W KR 2023006505W WO 2024237357 A1 WO2024237357 A1 WO 2024237357A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptc
electrode plate
electrode
receiving holes
element receiving
Prior art date
Application number
PCT/KR2023/006505
Other languages
French (fr)
Korean (ko)
Inventor
김종업
지덕구
한창훈
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Priority to PCT/KR2023/006505 priority Critical patent/WO2024237357A1/en
Publication of WO2024237357A1 publication Critical patent/WO2024237357A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes

Definitions

  • the present invention relates to a PTC unit, and more particularly, to a PTC unit applied to a heating device for heating and a heating device including the same.
  • a PTC heater (Positive Temperature Coefficient Heater) is an electric heating element that generates heat by utilizing the quantum thermal conversion phenomenon.
  • Quantum thermal conversion refers to the phenomenon in which heat is generated due to electrical resistance that occurs in the process of electricity flowing.
  • PTC heaters have a positive temperature coefficient characteristic, which means that when a constant current flows, the temperature of the heater increases, but at a certain temperature, it does not increase any further and remains at a constant level. Because of this characteristic, PTC heaters are widely used in automobile interior temperature control systems.
  • the interior temperature is controlled using the heat generated when the engine is operating.
  • the PTC heater acts as a pre-heater as a preliminary and beforehand means to help control the interior temperature before the engine temperature reaches a certain level.
  • PTC heaters have the advantages of fast heating speed, stable performance, and durability.
  • PTC heaters use electrical energy efficiently, consume less electrical energy, and in particular, due to their characteristics, when electricity is supplied, the electrical resistance of the material increases and the current decreases, so they have the advantage of preventing overheating and being safe for long-term use.
  • PTC heaters are widely adopted as an auxiliary or primary means for controlling the interior temperature of automobiles. They are generally installed at the rear of the blower based on the air flow inside the case of the air conditioner, thereby directly applying heat to the air passing through the interior according to the operation of the blower, thereby implementing interior heating.
  • These automotive PTC heaters include, as their main components, a heater core section comprising a plurality of PTC units that generate heat and a heat dissipation fin that provides passages through which air can pass and receives heat from the PTC units and applies heat to the air passing through them, and a control section that controls the amount of heat generated by the PTC units.
  • the PTC unit applied to the conventional PTC heater is structurally incapable of partial heat generation control, and thus there is a problem of unnecessary consumption of electric energy of electric vehicles that should be used efficiently, such as generating excessive heat compared to demand or need.
  • the technical problem to be solved by the present invention is to provide a PTC unit and a heating device including the same, which can prevent unnecessary electric energy consumption by enabling partial heat generation control, and can significantly reduce inrush current as much as partial heat generation control is possible, thereby ensuring safety in terms of circuitry.
  • An insulating frame having a plurality of element receiving holes formed therein;
  • First PTC elements mounted one by one in some of the element receiving holes among the above element receiving holes;
  • Second PTC elements mounted one by one in some other element receiving holes so as to be alternated with the first PTC element
  • a second electrode plate having a protruding shape positioned on the same surface of the frame where the first electrode plate is positioned, but positioned so as to simultaneously contact one surface of the second PTC elements;
  • a common electrode plate positioned on the opposite side of the frame where the first electrode plate and the second electrode plate are positioned and arranged to contact the first PTC element and the second PTC element;
  • a PTC unit is provided, characterized in that the protruding portions of the first electrode plate and the second electrode plate are mutually spaced and electrically isolated.
  • the first electrode plate may be configured with first electrode cells formed in a size corresponding to each of the first PTC elements, and a first electrode terminal extending from a first electrode cell which is the outermost among the first electrode cells
  • the second electrode plate may be configured with second electrode cells formed in a size corresponding to the second PTC elements but arranged sequentially and staggered with respect to the first electrode cells, and a second electrode terminal extending from a second electrode cell which is the outermost among the second electrode cells.
  • the position at which the first electrode terminal simultaneously connects one edge of the first electrode cells and the position at which the second electrode terminal simultaneously connects one edge of the second electrode cells may be opposite to each other.
  • a third electrode terminal may extend from the top of the common electrode plate to the same height in the same direction at a position that does not overlap with the first electrode terminal and the second electrode terminal.
  • An insulating frame having a plurality of element receiving holes, wherein some of the plurality of element receiving holes form a first row of holes and the remaining some form a second row of holes at an adjacent side of the first row of holes;
  • Second PTC elements mounted one by one in the element receiving holes belonging to the second hole row,
  • a first electrode plate arranged to simultaneously contact one surface of the first PTC elements
  • a second electrode plate arranged to simultaneously contact one surface of the second PTC elements
  • the present invention provides a PTC unit characterized in that the first electrode plate and the second electrode plate are electrically insulated from each other and arranged together on one side of the insulating frame.
  • the element receiving holes belonging to the first hole row and the element receiving holes belonging to the second hole row can be formed in the same number and at the same height.
  • the first electrode terminal and the second electrode terminal may be formed to extend to the same height from the upper center of each of the first electrode plate and the second electrode plate, and the third electrode terminal may be formed to extend to the same height in the same direction from the upper end of the common electrode plate at a position that does not overlap with the first electrode terminal and the second electrode terminal.
  • a heater core section including a plurality of PTC units and a heat dissipation fin, each fin positioned between two adjacent PTC units;
  • a frame part configured to receive and protect the heater core part and to have a pair of side frames and a lower holder having mounting grooves corresponding to each of the PTC units while interconnecting the side frames;
  • a control unit is coupled to the upper part of the frame unit that accommodates the heater core unit inside and includes a control element for controlling the heating of the PTC unit;
  • a heating device for heating wherein the PTC unit is a PTC unit according to one embodiment described above or another embodiment.
  • control unit may include a housing that is coupled to an upper portion of a frame unit that accommodates the heater core unit inside and has a mounting space formed inside, and a substrate that mounts a first bus bar electrically connected to all of the first electrode plates included in each of the plurality of PTC units, a second bus bar electrically connected to all of the second electrode plates, a common bus bar electrically connected to all of the common electrode plates, and a control element that controls heating of the PTC units by being electrically connected to the first bus bar, the second bus bar, and the common bus bar may be mounted inside the housing.
  • the PTC unit is configured so that not only overall heat generation control but also partial heat generation control can be performed, there is an advantage in that the heat generation amount can be appropriately adjusted according to demand or need, and since the heat generation amount can be appropriately adjusted according to demand or need, unnecessary consumption of electric energy can be reliably prevented, thereby promoting more efficient energy utilization.
  • the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since the resistance decreases as the inrush current decreases, there is an advantage in that the output can be increased.
  • the PTC unit according to one embodiment of the present invention has an advantage in that it is a configuration that partially controls heat generation while also allowing the PTC unit to be implemented in a compact size due to its unique configuration (a unique configuration in which PTC elements are divided into two groups and mounted alternately in a row on an insulating frame, and electrode plates are configured in a protruding shape accordingly and arranged in a mutually interlocking shape).
  • FIG. 1 is an exploded perspective view showing the overall configuration of a PTC unit according to one embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing the detailed configuration of the insulating frame, PTC element, and electrode plates illustrated in Figure 1.
  • FIG. 3 is a perspective view of a PTC unit viewed from the front according to one embodiment of the present invention.
  • FIG. 4 is a perspective view of a PTC unit viewed from the back according to one embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a PTC unit according to one embodiment of the present invention.
  • Figures 6a to 6c are operation state diagrams of a PTC unit according to one embodiment of the present invention.
  • FIG. 7 is an exploded perspective view showing the overall configuration of a PTC unit according to another preferred embodiment of the present invention.
  • FIG. 8 is a perspective view of a PTC unit viewed from the front according to another embodiment of the present invention.
  • FIG. 9 is a perspective view of a PTC unit viewed from the back according to another embodiment of the present invention.
  • FIG. 10 is a perspective view of a heating device for heating according to another aspect of the present invention including a PTC unit.
  • Fig. 11 is a partially exploded perspective view of the heating device illustrated in Fig. 10.
  • Fig. 12 is a partially exploded perspective view of the heater core portion shown in Fig. 11.
  • terms such as “part,” “unit,” and “module” described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware, software, or a combination of hardware and software.
  • FIG. 1 is an exploded perspective view showing the entire configuration of a PTC unit according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing the detailed configuration of the insulating frame, PTC element, and electrode plates shown in FIG. 1.
  • FIGS. 3 and 4 are perspective views showing the combined state of a PTC unit according to an embodiment of the present invention, each of which is a front and back view of a combined PTC unit
  • FIG. 5 is a circuit diagram of a PTC unit according to an embodiment of the present invention.
  • a PTC unit (13) includes a heating element (130) and a heating tube (139) sealingly accommodating the heating element (130).
  • the heating element (130) may be composed of an insulating frame (131), PTC elements (134, 135), electrode plates (136 to 138), and a pair of insulating covers (c1, c2), and the heating tube (139) may be a non-conductive metal body having a square cross-section and a hollow tubular shape.
  • a plurality of element receiving holes may be formed in a row in the height direction in the drawing.
  • a configuration with six element receiving holes is illustrated as an example, but it is not limited to a configuration with six element receiving holes.
  • the number of element receiving holes may be four or eight. Of course, in addition to an even number, an odd number such as three, five, or seven may be formed.
  • Each of the element receiving holes (132) can be mounted with one PTC element that actually generates heat by the applied power.
  • the PTC elements can be divided into a first PTC element (134) and a second PTC element (135), and at this time, the first PTC element (134) and the second PTC element (135) can be mounted one by one alternately (alternately) from the uppermost or lowermost element receiving hole (132) among the element receiving holes (132).
  • a first PTC element (134) may be mounted one by one in an odd-numbered element receiving hole (132) among a plurality of element receiving holes (1, 3, and 5 from the top in the drawing), and a second PTC element (135) may be mounted one by one in an even-numbered element receiving hole (133) among a plurality of element receiving holes.
  • the first PTC elements (134) can be electrically connected by simultaneously contacting one surface of the first electrode plate (136). More specifically, since multiple (three in the drawing) first PTC elements (134) are electrically connected in parallel by the first electrode plate (136), multiple first PTC elements (134) can simultaneously generate heat by power supplied through the first electrode plate (136).
  • the second PTC elements (135) can also be electrically connected by simultaneously contacting one surface of a second electrode plate (137) described later. More specifically, since multiple (three in the drawing) second PTC elements (135) are electrically connected in parallel by the second electrode plate (137), multiple second PTC elements (135) can simultaneously generate heat by power supplied through the second electrode plate (137).
  • the first PTC elements (134) that are spaced apart from each other electrically form a single structure by simultaneously contacting one surface of the first electrode plate (136).
  • the first electrode plate (136) applied to one embodiment of the present invention for simultaneous electrical connection to the first PTC elements (134) that are arranged at a distance from each other may be configured in a rough shape as shown in the example of the drawing.
  • the first electrode plate (136) can be specifically composed of first electrode cells (136-1) and first electrode terminals (136-2).
  • the first electrode cells (136-1) are configured to correspond to each of the first PTC elements (134) and are installed to be in contact with one surface of the corresponding first PTC element (134), and the first electrode cells (136-1) are interconnected through the first electrode terminals (136-2), thereby enabling simultaneous power supply to the first PTC elements (134).
  • each of the first electrode cells (136-1) may be formed as an approximately square plate-shaped structure having a size corresponding to the first PTC element (134) and spaced apart from each other by a distance corresponding to the height of the element receiving hole (133) in which the second PTC element (135) is mounted, and the first electrode terminal (136-2) may be configured to extend from the outermost first electrode cell among the first electrode cells (136-1) (the uppermost first electrode cell in the drawing).
  • the first electrode terminal (136-2) may be configured to extend a predetermined length upward from the uppermost first electrode cell (136-1) while simultaneously connecting one edge (the right edge based on FIG. 3) of the first electrode cells (136-1).
  • the second PTC elements (135) that are spaced apart from each other also electrically form a single structure by simultaneously contacting one surface of the second electrode plate (137).
  • the second electrode plate (137) applied to one embodiment of the present invention for simultaneous electrical connection to the second PTC elements (135) that are arranged at a distance from each other may also be configured in a rough shape as shown in the example of the drawing.
  • the second electrode plate (137) can be specifically composed of second electrode cells (137-1) and second electrode terminals (137-2).
  • the second electrode cells (137-1) are configured to correspond to each of the second PTC elements (135) and are installed to be in contact with one surface of the corresponding second PTC element (135), and the second electrode cells (137-1) are interconnected through the second electrode terminals (137-2), thereby enabling simultaneous power supply to the second PTC elements (135).
  • each of the second electrode cells (137-1) may be formed as an approximately square plate-shaped structure having a size corresponding to the second PTC element (135) and spaced apart from each other by a distance corresponding to the height of the element receiving hole (132) in which the first PTC element (134) is mounted, and the second electrode terminal (137-2) may be configured to extend from the outermost second electrode cell among the second electrode cells (137-1) (the uppermost second electrode cell in the drawing).
  • the second electrode terminal (137-2) may be configured to extend a predetermined length upward from the uppermost second electrode cell (137-1) while simultaneously connecting one edge (the left edge based on FIG. 3) of the second electrode cells (137-1).
  • the first electrode plate (136) and the second electrode plate (137) having an overall uneven structure are electrically separated from each other by a predetermined gap, and structurally, as shown in FIG. 3, they are arranged together on one side of the insulating frame (131) in a form in which the uneven portion is engaged with the uneven portion of the opposite electrode plate, thereby providing a structure suitable for implementing a PTC unit in a compact size.
  • Drawing symbol 138 designates a common electrode plate.
  • the common electrode plate (138) may be arranged to face the first electrode plate (136) and the second electrode plate (137) with the insulating frame (131) in the middle. More specifically, the common electrode plate (138) may be arranged to simultaneously contact the other side of the first PTC elements (134) (the side opposite to the side contacting the first electrode plate) and the other side of the second PTC elements (135) (the side opposite to the side contacting the second electrode plate).
  • the position at which the first electrode terminal (136-2) simultaneously connects one edge of the first electrode cells (136-1) and the position at which the second electrode terminal (137-2) simultaneously connects one edge of the second electrode cells (137-1) may be opposite to each other, and a third electrode terminal (138-2) may be provided at the top of the common electrode plate (138), and the third electrode terminal (138-2) may extend in the same direction to the same height at a position that does not overlap with the first electrode terminal (136-2) and the second electrode terminal (137-2).
  • the heating element (130) may also include a first insulating cover (c1) and a second insulating cover (c2).
  • the first insulating cover (c1) is coupled to cover the first electrode plate (136) and the second electrode plate (137) at the same time on one side of the insulating frame (131), thereby electrically insulating between the heating tube (139) and the first electrode plate (136) and the second electrode plate (137), and the second insulating cover (c2) is coupled to cover the common electrode plate (138) on the other side of the insulating frame (131), thereby electrically insulating between the heating tube (139) and the common electrode plate (138).
  • a PTC unit (13) may be configured by configuring a heating element by embedding PTC elements one by one in the element receiving holes of an insulating frame (131), arranging electrode plates at set positions so as to be in contact with the PTC elements, surrounding the electrode plates with a first insulating cover (c1) and a second insulating cover (c2), and then placing the heating element in a heating tube (139) and sealing both ends with a heat-resistant material.
  • the first PTC element (134) and the second PTC element (135) are mounted together in one insulating frame (131), they are structured to be supplied with power independently through different electrode plates (the first electrode plate and the second electrode plate), so that partial heating can be implemented, such as only the first PTC elements (134) being heated or only the second PTC elements (135) being heated.
  • the first electrode plate (136) and the common electrode plate (138) are electrically connected to each other (conversely, power may be applied through the common electrode plate), as shown in FIG. 6A, current is supplied only to the PTC elements corresponding to the first electrode cells (136-1) (electrode cells 1, 3, and 5 in the drawing) constituting the first electrode plate (136), i.e., the first PTC elements (134), so that only the corresponding elements can be heated.
  • the PTC unit has the advantage of being able to appropriately control the amount of heat generated according to demand or need since it is configured to control not only the overall heat generation but also partial heat generation.
  • the amount of heat generated can be appropriately controlled according to demand or need, unnecessary energy consumption can be reliably prevented, thereby promoting more efficient energy utilization.
  • the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since the resistance decreases as the inrush current decreases, there is an advantage in that the output can be increased.
  • the PTC unit according to one embodiment of the present invention has an advantage in that it is a configuration that partially controls heat generation while also allowing the PTC unit to be implemented in a compact size due to its unique configuration (a unique configuration in which PTC elements are divided into two groups and mounted alternately in a row on an insulating frame, and electrode plates are configured in a protruding shape accordingly and arranged in a mutually interlocking shape).
  • FIG. 7 is an exploded perspective view showing the entire configuration of a PTC unit according to another preferred embodiment of the present invention
  • FIGS. 8 and 9 are perspective views showing the combined state of a PTC unit according to another preferred embodiment of the present invention, which are views of the PTC unit in a combined state viewed from the front and back, respectively.
  • a PTC unit (23) also includes a heating element (230) and a heating tube (239) sealingly accommodating the heating element.
  • the heating element (230) may be composed of an insulating frame (231), PTC elements (234, 235), electrode plates (236 to 238), and a pair of insulating covers (c1, c2), and the heating tube (239) may be a non-conductive metal body having a square cross-section and a hollow tubular shape.
  • a plurality of element receiving holes may be formed in the insulating frame (231).
  • a configuration having eight element receiving holes is illustrated as an example, but this is only one embodiment for explaining the present invention, and is not limited to a configuration having eight element receiving holes.
  • the number of element receiving holes may be four or six, and may be formed as an even number of eight or more.
  • the element receiving holes may be arranged such that some of the element receiving holes (the four receiving holes on the left in the drawing) form one row of holes (hereinafter referred to as the “first row of holes”), and the remaining some of the element receiving holes (the four receiving holes on the right in the drawing) form another row of holes (hereinafter referred to as the “second row of holes”).
  • a plurality of element receiving holes may be arranged such that they form two large rows of holes (L1, L2).
  • the element receiving holes (232) belonging to the first hole row (L1) and the element receiving holes (233) belonging to the second hole row (L2) may be formed in the same number as in the example of the drawing, and may be formed in a structure in which two element receiving holes belonging to different hole rows are aligned at the same height or on the same line.
  • Each of the element receiving holes (232, 233) may be equipped with one PTC element that actually generates heat by an applied power source.
  • the PTC element may be configured with first PTC elements (234) mounted one by one in an element receiving hole (232) belonging to a first hole row (L1) among a plurality of element receiving holes, and second PTC elements (235) mounted one by one in an element receiving hole (233) belonging to a second hole row (L2) on an adjacent side of the first hole row (L1).
  • the first PTC elements (234) are electrically connected in parallel by one surface of the first electrode plate (236) at the same time to form a single electrical component. More specifically, since multiple (four in the drawing) first PTC elements (234) are electrically connected in parallel by the first electrode plate (236), multiple first PTC elements (234) can simultaneously generate heat independently of the second PTC elements (235) by power supplied through the first electrode plate (236).
  • the second PTC elements (235) also form an electrical component by simultaneously contacting one surface of a second electrode plate (237). More specifically, since multiple (four in the drawing) second PTC elements (235) are electrically connected in parallel by the second electrode plate (237), multiple second PTC elements (235) can simultaneously generate heat independently of the first PTC elements (234) by power supplied through the second electrode plate (237).
  • the first electrode plate (236) and the second electrode plate (237) may be electrically insulated from each other by being spaced apart from each other with a predetermined gap, and may be arranged together on one side of the insulating frame (131) (see FIG. 8), and the first electrode terminal (236-2) and the second electrode terminal (237-2) may be formed to extend to the same height from the upper center of each of the first electrode plate (236) and the second electrode plate (237) spaced apart from each other with a predetermined gap.
  • Drawing symbol 238 designates a common electrode plate.
  • the common electrode plate (238) may be arranged to face the first electrode plate (236) and the second electrode plate (237) with the insulating frame (231) in the middle. More specifically, the common electrode plate (238) may be arranged to simultaneously contact the other side of the first PTC elements (234) (the side opposite to the side contacting the first electrode plate) and the other side of the second PTC elements (235) (the side opposite to the side contacting the second electrode plate).
  • a third electrode terminal (238-2) is provided on the upper end of the common electrode plate (238), and the third electrode terminal (238-2) may be configured to extend to the same height in the same direction as the first electrode terminal (236-2) and the second electrode terminal (237-2) at a position that does not overlap or overlap with the first electrode terminal (236-2) and the second electrode terminal (237-2) and extends to a predetermined height from the upper center of each of the first electrode plate (236) and the second electrode plate (237).
  • the heating element (230) may also include a first insulating cover (c1) and a second insulating cover (c2).
  • the first insulating cover (c1) is coupled to cover the first electrode plate (236) and the second electrode plate (237) at the same time on one side of the insulating frame (131), thereby electrically insulating between these electrode plates and the heating tube (239), and the second insulating cover (c2) is coupled to cover the common electrode plate (238) on the other side of the insulating frame (231), thereby electrically insulating between the heating tube (239) and the common electrode plate (238).
  • a PTC unit (23) may be configured by configuring a heating element (230) by embedding PTC elements one by one in the element receiving holes of an insulating frame (131), arranging electrode plates (236 to 238) at set positions so as to be in contact with the PTC elements, surrounding the electrode plates with a first insulating cover (c1) and a second insulating cover (c2), and then placing the heating element (230) in a heating tube (139) and sealing both ends with a heat-resistant material.
  • the PTC unit (23) of this configuration although the first PTC element (234) and the second PTC element (235) are mounted together in one insulating frame (231), they are structured to be supplied with power independently through different electrode plates (the first electrode plate and the second electrode plate), so that partial heating can be implemented, such as only the first PTC elements (234) being heated or only the second PTC elements (235) being heated.
  • the PTC unit has the advantage of being able to appropriately adjust the amount of heat generated according to demand or need, as it is configured to enable partial heat generation control.
  • the amount of heat generated can be appropriately adjusted according to demand or need, unnecessary energy consumption can be reliably prevented, thereby promoting more efficient energy utilization.
  • the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since resistance is lowered as the inrush current is reduced, there is an advantage in that the output can be increased.
  • FIG. 10 is a perspective view of a heating device according to another aspect of the present invention including the aforementioned PTC unit
  • FIG. 11 is a partially exploded perspective view of the heating device illustrated in FIG. 10
  • FIG. 12 is a partially exploded perspective view of the heater core portion illustrated in FIG. 11.
  • the heating device (1) is a device for heating air for heating the interior of a vehicle, and includes a heater core part (12) including a plurality of PTC units (13 or 23) and heat dissipation fins (14), a frame part (16) that accommodates the heater core part (12), and a control part (18) that is coupled to the upper portion of the frame part (16) and has a control element for controlling heating of the PTC units (13 or 23).
  • the heater core part (12) is provided with a plurality of PTC units (13) and a heat dissipation fin (14) arranged one by one between adjacent PTC units (13), and the frame part (16) is configured to receive and protect the heater core part (12), and may be configured with a pair of side frames (160L, 160R) and a lower holder (162) that interconnects the lower portions of the pair of side frames (160L, 160R) and has a mounting groove (163) corresponding to each of the PTC units (13 or 23).
  • the PTC units (13 or 23) constituting the heater core portion (12) may have a rod-shaped configuration with a length extending in the vertical direction and a rectangular cross-section.
  • the PTC units (13 or 23) may be arranged side by side in the left-right direction in the drawing so that their relatively wide flat side surfaces face each other at a distance from each other, and the heat dissipation fins (14) may be arranged between the PTC units (13 or 23) facing each other at a distance from each other.
  • Each of the PTC units (13 or 23) may have a configuration in which electrode plates are appropriately arranged around an insulating frame in which multiple PTC elements are mounted, and these are placed in a heating tube (139) and sealed at both ends with a heat-resistant material, i.e., the same configuration as the above-described embodiment or another embodiment, and the heat dissipation fin (14) may have a configuration in which one side and the other side of the opposite side are in contact with the PTC units (13) arranged on both sides and have a passage through which air passes.
  • the drawing symbols 15L and 15R indicate fin plates installed to be in contact with the outer surface of the outermost radiating fin (14) among the plurality of radiating fins (14) constituting the heater core part (12).
  • one of the two fin plates (15L and 15R) may be a grounding plate that is electrically connected to a vehicle body or the like to implement grounding.
  • the control unit (18) is coupled to the upper part of the frame unit (16) that accommodates the heater core unit (12) as shown in the examples in the drawings (FIGS. 10 and 11), and by mounting the aforementioned control elements inside, power can be supplied or cut off to the PTC units (13 or 23) that constitute the heater core unit (12), and the amount of heat generated can be controlled through current control.
  • the control unit (18) may include a housing (180) that is coupled to the upper portion of the frame unit (16) that accommodates the heater core unit (12) inside and has a mounting space formed inside. Inside the housing (180), a plurality of bus bars (184) that electrically connect electrode terminals of a group of each PTC unit (13 or 23) and a board (not shown) that electrically connects to the bus bars (184) and controls heating of the PTC units (13) may be mounted.
  • each PTC unit (13 or 23) heat generated by each PTC unit (13 or 23) is transferred to the radiating fin (14) depending on power supply, and the temperature of the air increases due to heat exchange between the air passing through the radiating fin (14) and the radiating fin (14) maintained at a high temperature by receiving heat from the PTC unit (13 or 23) depending on the operation of the blower (not shown), and the air can be supplied as warm air to indoor demand locations (driver's seat, passenger seat, rear seat, etc.).
  • Heating device 12 Heater core section
  • Second electrode cell 137-1 Second electrode cell 137-2, 237-2: Second electrode terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Abstract

Disclosed are a PTC unit and a heating device including same. The PTC unit according to the present invention comprises: an insulating frame in which a plurality of element receiving holes are formed; first PTC elements mounted one by one in some element receiving holes among the element receiving holes; second PTC elements mounted one by one in some other element receiving holes so as to alternate with the first PTC elements; a first electrode plate having an uneven shape and disposed to be in contact with one surface of each of the first PTC elements at the same time; a second electrode plate having an uneven shape and positioned on the same surface of the frame on which the first electrode plate is positioned, wherein the second electrode plate is disposed to be in contact with one surface of each of the second PTC elements at the same time; and a common electrode plate positioned on the surface opposite to the surface of the frame on which the first electrode plate and the second electrode plate are positioned, and disposed to be in contact with the first PTC elements and the second PTC elements, wherein uneven portions of the first electrode plate and the second electrode plate are spaced apart from each other to be electrically separated.

Description

PTC 유닛 및 이를 포함하는 난방용 가열장치PTC unit and heating device including same

본 발명은 PTC 유닛에 관한 것으로, 특히 난방용 가열장치에 적용되는 PTC 유닛 및 이를 포함하는 난방용 가열장치에 관한 것이다. The present invention relates to a PTC unit, and more particularly, to a PTC unit applied to a heating device for heating and a heating device including the same.

PTC 히터(Positive Temperature Coefficient Heater)는 양자열 변환 현상을 이용하여 열을 발생시키는 전기 발열체이다. 양자열 변환은 전기가 흐르는 과정에서 발생하는 전기 저항으로 인해 열이 발생하는 현상을 의미한다.A PTC heater (Positive Temperature Coefficient Heater) is an electric heating element that generates heat by utilizing the quantum thermal conversion phenomenon. Quantum thermal conversion refers to the phenomenon in which heat is generated due to electrical resistance that occurs in the process of electricity flowing.

PTC 히터는 양성 온도 계수 특성을 가지고 있어, 일정한 전류가 흐를 때 히터의 온도가 상승하다가 특정한 온도에서 더 이상 상승하지 않고 일정한 수준으로 유지되는 특징을 가지고 있다. 이러한 특성 때문에 PTC 히터는 자동차의 실내 온도 제어 시스템에 널리 사용되고 있다.PTC heaters have a positive temperature coefficient characteristic, which means that when a constant current flows, the temperature of the heater increases, but at a certain temperature, it does not increase any further and remains at a constant level. Because of this characteristic, PTC heaters are widely used in automobile interior temperature control systems.

일반적으로 내연기관 차량의 경우 엔진이 작동할 때 발생하는 열을 이용하여 실내 온도를 제어한다. 여기서 PTC 히터는 엔진의 온도가 일정 수준에 도달하기 전 예비적이고 사전적(beforehand)인 수단의 프리히터(Pre-heater)로서 실내 온도 제어를 돕는 역할을 한다.In general, in the case of internal combustion engine vehicles, the interior temperature is controlled using the heat generated when the engine is operating. Here, the PTC heater acts as a pre-heater as a preliminary and beforehand means to help control the interior temperature before the engine temperature reaches a certain level.

한편, 최근 친환경 에너지에 대한 관심이 급격히 높아지면서 그 수요가 폭발적으로 증가하고 있는 전기자동차의 경우 엔진을 사용하지 않기 때문에 전기식 히터가 필수적으로 요구되는데, 가열 속도와 높은 에너지 효율성, 그리고 안전성 등 측면에서 검증된 PTC 히터를 대체 열원으로 채택하는 추세에 있다.Meanwhile, as interest in eco-friendly energy has rapidly increased recently, demand for electric vehicles has been explosively increasing, so electric heaters are essential because they do not use engines. There is a trend to adopt PTC heaters, which have been verified in terms of heating speed, high energy efficiency, and safety, as an alternative heat source.

PTC 히터는 빠른 가열 속도, 안정적인 성능, 내구성 등의 이점이 있다. 또한, PTC 히터는 전기 에너지를 효율적으로 사용하고, 전기 에너지 소비가 적으며, 특히 그 특성상 전기가 공급되면 재료의 전기 저항이 증가하면서 전류가 감소하게 되므로, 과열을 방지하고 장기간 사용에 안전하다는 장점이 있다.PTC heaters have the advantages of fast heating speed, stable performance, and durability. In addition, PTC heaters use electrical energy efficiently, consume less electrical energy, and in particular, due to their characteristics, when electricity is supplied, the electrical resistance of the material increases and the current decreases, so they have the advantage of preventing overheating and being safe for long-term use.

이와 같은 많은 장점으로 인하여 자동차의 실내 온도 제어를 위한 보조적 또는 주요 수단으로서 널리 채택되고 있는 PTC 히터는 일반적으로, 공조장치의 케이스 내부에 공기 유동을 기준으로 블로워의 후방에 설치됨으로써, 블로워의 구동에 따라 내부를 통과하는 공기에 직접 열을 가하여 실내 난방을 구현한다.Due to these many advantages, PTC heaters are widely adopted as an auxiliary or primary means for controlling the interior temperature of automobiles. They are generally installed at the rear of the blower based on the air flow inside the case of the air conditioner, thereby directly applying heat to the air passing through the interior according to the operation of the blower, thereby implementing interior heating.

이러한 자동차용 PTC 히터는, 열을 발생시키는 복수 개의 PTC 유닛 및 공기가 통과할 수 있도록 통로를 제공하면서 상기 PTC 유닛으로부터 열을 전달받아 통과하는 공기에 열을 가하는 방열핀으로 이루어진 히터 코어부와, PTC 유닛의 발열량을 제어하는 제어부 등을 주요 구성요소로 포함한다. These automotive PTC heaters include, as their main components, a heater core section comprising a plurality of PTC units that generate heat and a heat dissipation fin that provides passages through which air can pass and receives heat from the PTC units and applies heat to the air passing through them, and a control section that controls the amount of heat generated by the PTC units.

그러나 대부분의 종래 PTC 히터의 경우, 범용적인 활용을 고려해 개발되다 보니 차량의 특성에 맞는 최적화된 성능 발휘가 어렵다는 문제가 있고, 에너지 효율에 대한 최적화 구조가 적용되지 못해 에너지 효율성 측면에서도 한계를 가지는 단점이 있다. However, most conventional PTC heaters are developed with general-purpose use in mind, so they have the problem that it is difficult to achieve optimized performance that suits the characteristics of the vehicle, and they also have limitations in terms of energy efficiency because the optimized structure for energy efficiency is not applied.

특히, 전기자동차의 경우 에너지 효율이 무엇보다 중요한 이슈임에도 불구하고, 종래 PTC 히터에 적용되는 PTC 유닛의 경우 구조적으로 부분적인 발열 제어가 불가능한 구조이어서, 수요나 필요에 비해 과도한 열을 발생시키는 등 효율적으로 이용되어야 하는 전기자동차의 전기 에너지를 불필요하게 소모하는 문제가 있다.In particular, in the case of electric vehicles, although energy efficiency is the most important issue, the PTC unit applied to the conventional PTC heater is structurally incapable of partial heat generation control, and thus there is a problem of unnecessary consumption of electric energy of electric vehicles that should be used efficiently, such as generating excessive heat compared to demand or need.

더욱이, 부분적인 발열 제어가 불가능함에 따라, PTC 유닛에 전원이 가해지는 순간 그만큼 큰 돌입전류(Inrush current)가 발생하여 제어 회로에 치명적인 손상을 발생시킬 수 있다는 문제가 있다. Moreover, since partial heat generation control is impossible, there is a problem that a large inrush current occurs the moment power is applied to the PTC unit, which may cause fatal damage to the control circuit.

[선행기술문헌][Prior art literature]

한국등록특허 제10-2442176호(공고일 2022.09.08)Korean Patent Registration No. 10-2442176 (Announcement Date 2022.09.08)

본 발명이 해결하고자 하는 기술적 과제는, 부분적인 발열 제어가 가능하여 불필요한 전기에너지 소모를 방지할 수 있고, 부분적인 발열 제어가 가능한 만큼 돌입전류(Inrush current)를 크게 감소시킬 수 있어 회로적으로도 안전성을 확보할 수 있는 PTC 유닛 및 이를 포함하는 난방용 가열장치를 제공하고자 하는 것이다.The technical problem to be solved by the present invention is to provide a PTC unit and a heating device including the same, which can prevent unnecessary electric energy consumption by enabling partial heat generation control, and can significantly reduce inrush current as much as partial heat generation control is possible, thereby ensuring safety in terms of circuitry.

과제의 해결 수단으로서 본 발명의 일 실시 예에 따르면, According to one embodiment of the present invention as a means of solving the problem,

복수 개의 소자 수용홀이 형성된 절연 프레임;An insulating frame having a plurality of element receiving holes formed therein;

상기 소자 수용홀 중 일부 소자 수용홀에 하나씩 실장되는 제1 PTC 소자들;First PTC elements mounted one by one in some of the element receiving holes among the above element receiving holes;

상기 제1 PTC 소자와 교번되도록 다른 일부 소자 수용홀에 하나씩 실장되는 제2 PTC 소자들;Second PTC elements mounted one by one in some other element receiving holes so as to be alternated with the first PTC element;

상기 제1 PTC 소자들의 일면에 동시에 접하도록 배치되는 요철 형상의 제1 전극판;A first electrode plate having a rough shape arranged to simultaneously contact one surface of the first PTC elements;

상기 제1 전극판이 위치된 상기 프레임의 동일면 상에 위치되되, 상기 제2 PTC 소자들의 일면에 동시에 접하도록 배치되는 요철 형상의 제2 전극판; 및A second electrode plate having a protruding shape positioned on the same surface of the frame where the first electrode plate is positioned, but positioned so as to simultaneously contact one surface of the second PTC elements; and

상기 제1 전극판 및 제2 전극판이 위치된 상기 프레임의 반대면에 위치되어 상기 제1 PTC 소자와 제2 PTC 소자에 접하도록 배치되는 공통 전극판;을 포함하며,A common electrode plate positioned on the opposite side of the frame where the first electrode plate and the second electrode plate are positioned and arranged to contact the first PTC element and the second PTC element;

상기 제1 전극판 및 제2 전극판의 요철 부분이 상호 이격되어 전기적으로 분리되는 것을 특징으로 하는 PTC 유닛을 제공한다.A PTC unit is provided, characterized in that the protruding portions of the first electrode plate and the second electrode plate are mutually spaced and electrically isolated.

본 발명의 일 실시 예에서 상기 제1 전극판은, 상기 제1 PTC 소자 각각에 대응되는 크기로 형성되는 제1 전극셀들과, 상기 제1 전극셀들 중 최외측의 제1 전극셀로부터 연장되는 제1 전극단자로 구성되며, 상기 제2 전극판은, 상기 제2 PTC 소자에 대응되는 크기로 형성되되 상기 제1 전극셀에 대해 순차적으로 엇갈리게 배치되는 제2 전극셀들과, 상기 제2 전극셀들 중 최외측의 제2 전극셀로부터 연장되는 제2 전극단자로 구성될 수 있다.In one embodiment of the present invention, the first electrode plate may be configured with first electrode cells formed in a size corresponding to each of the first PTC elements, and a first electrode terminal extending from a first electrode cell which is the outermost among the first electrode cells, and the second electrode plate may be configured with second electrode cells formed in a size corresponding to the second PTC elements but arranged sequentially and staggered with respect to the first electrode cells, and a second electrode terminal extending from a second electrode cell which is the outermost among the second electrode cells.

여기서, 상기 제1 전극단자가 제1 전극셀들의 일측 가장자리를 동시에 연결하는 위치와 제2 전극단자가 제2 전극셀들의 일측 가장자리를 동시에 연결하는 위치가 서로 반대일 수 있다.Here, the position at which the first electrode terminal simultaneously connects one edge of the first electrode cells and the position at which the second electrode terminal simultaneously connects one edge of the second electrode cells may be opposite to each other.

또한, 공통 전극판의 상단에서 제3 전극단자가 상기 제1 전극단자 및 제2 전극단자와 겹치지 않는 위치에서 동일한 방향으로 동일한 높이까지 연장될 수 있다.Additionally, a third electrode terminal may extend from the top of the common electrode plate to the same height in the same direction at a position that does not overlap with the first electrode terminal and the second electrode terminal.

과제의 해결 수단으로서 본 발명의 다른 실시 예에 따르면, According to another embodiment of the present invention as a means of solving the problem,

복수 개의 소자 수용홀을 구비하되, 상기 복수 개의 소자 수용홀 중 일부가 제1 홀열을 구성하고 나머지 일부가 상기 제1 홀열의 인접 측부에서 제2 홀열을 구성하도록 소자 수용홀이 배열된 절연 프레임과,An insulating frame having a plurality of element receiving holes, wherein some of the plurality of element receiving holes form a first row of holes and the remaining some form a second row of holes at an adjacent side of the first row of holes;

상기 제1 홀열에 속한 소자 수용홀에 하나씩 실장되는 제1 PTC 소자들과,First PTC elements mounted one by one in the element receiving holes belonging to the first hole row,

상기 제2 홀열에 속한 소자 수용홀에 하나씩 실장되는 제2 PTC 소자들과, Second PTC elements mounted one by one in the element receiving holes belonging to the second hole row,

상기 제1 PTC 소자들의 일면에 동시에 접하도록 배치되는 제1 전극판과,A first electrode plate arranged to simultaneously contact one surface of the first PTC elements,

상기 제2 PTC 소자들의 일면에 동시에 접하도록 배치되는 제2 전극판과,A second electrode plate arranged to simultaneously contact one surface of the second PTC elements,

상기 제1 PTC 소자들의 다른 일면과 제2 PTC 소자들의 다른 일면에 모두 접하도록 배치되는 공통 전극판을 포함하되,Including a common electrode plate arranged to contact both the other side of the first PTC elements and the other side of the second PTC elements,

상기 제1 전극판과 제2 전극판은 서로 이격되어 전기적으로 절연되면서 상기 절연 프레임의 일 측면에 함께 배치되는 것을 특징으로 하는 PTC 유닛을 제공한다.The present invention provides a PTC unit characterized in that the first electrode plate and the second electrode plate are electrically insulated from each other and arranged together on one side of the insulating frame.

여기서, 상기 제1 홀열에 속한 소자 수용홀과 제2 홀열에 속한 소자 수용홀이 동일한 개수로 동일한 높이에 형성될 수 있다.Here, the element receiving holes belonging to the first hole row and the element receiving holes belonging to the second hole row can be formed in the same number and at the same height.

이때, 상기 제1 전극판과 제2 전극판 각각의 상단 중앙에서 제1 전극단자와 제2 전극단자가 동일한 높이로 연장 형성되고, 공통 전극판의 상단에서 제3 전극단자가 상기 제1 전극단자 및 제2 전극단자와 겹치지 않는 위치에서 동일한 방향으로 동일한 높이까지 연장될 수 있다.At this time, the first electrode terminal and the second electrode terminal may be formed to extend to the same height from the upper center of each of the first electrode plate and the second electrode plate, and the third electrode terminal may be formed to extend to the same height in the same direction from the upper end of the common electrode plate at a position that does not overlap with the first electrode terminal and the second electrode terminal.

과제의 해결 수단으로서 본 발명의 또 다른 실시 예에 따르면, According to another embodiment of the present invention as a means of solving the problem,

차량의 난방을 위해 공기를 가열하는 장치로서,As a device for heating air for heating a vehicle,

복수 개의 PTC 유닛 및 이웃하는 두 PTC 유닛 사이에 하나씩 배치되는 방열핀을 포함하는 히터 코어부;A heater core section including a plurality of PTC units and a heat dissipation fin, each fin positioned between two adjacent PTC units;

상기 히터 코어부를 수용하여 보호하며, 한 쌍의 사이드 프레임 및 사이드 프레임을 상호 연결하면서 상기 PTC 유닛 각각에 대응하여 장착홈을 구비하는 하부 홀더로 구성된 프레임부; 및A frame part configured to receive and protect the heater core part and to have a pair of side frames and a lower holder having mounting grooves corresponding to each of the PTC units while interconnecting the side frames; and

상기 히터 코어부를 내부에 수용한 프레임부의 상부에서 결합되며 상기 PTC 유닛 히팅 제어를 위한 제어요소가 포함된 제어부;를 포함하며,A control unit is coupled to the upper part of the frame unit that accommodates the heater core unit inside and includes a control element for controlling the heating of the PTC unit;

여기서 상기 PTC 유닛이 전술한 일 실시 예 또는 다른 실시 예에 따른 PTC 유닛인 난방용 가열장치를 제공한다.Herein, a heating device for heating is provided, wherein the PTC unit is a PTC unit according to one embodiment described above or another embodiment.

여기서, 상기 제어부는, 상기 히터 코어부를 내부에 수용한 프레임부의 상부에서 결합되며 내부에 실장공간이 형성된 하우징을 포함하며, 상기 복수 개의 PTC 유닛 각각에 포함된 제1 전극판 모두와 전기적으로 연결되는 제1 버스바와, 제2 전극판 모두와 전기적으로 연결되는 제2 버스바, 그리고 공통 전극판 모두와 전기적으로 연결되는 공통 버스바 및 상기 제1 버스바, 제2 버스바, 공통 버스바와 전기적으로 연결되어 PTC 유닛들의 히팅을 제어하는 제어요소를 실장한 기판이 상기 하우징의 내부에 실장되는 구성일 수 있다. Here, the control unit may include a housing that is coupled to an upper portion of a frame unit that accommodates the heater core unit inside and has a mounting space formed inside, and a substrate that mounts a first bus bar electrically connected to all of the first electrode plates included in each of the plurality of PTC units, a second bus bar electrically connected to all of the second electrode plates, a common bus bar electrically connected to all of the common electrode plates, and a control element that controls heating of the PTC units by being electrically connected to the first bus bar, the second bus bar, and the common bus bar may be mounted inside the housing.

본 발명의 실시 예에 따르면, 전체 발열 제어뿐 아니라 부분적으로 발열이 제어될 수 있도록 PTC 유닛이 구성됨에 따라, 수요나 필요에 맞춰 발열량을 적절히 조절 가능하다는 장점이 있으며, 발열량을 수요나 필요에 따라 적절히 조절할 수 있는 만큼 불필요하게 전기에너지가 소모되는 것을 확실하게 방지할 수 있어 보다 효율적인 에너지 활용을 도모할 수 있다. According to an embodiment of the present invention, since the PTC unit is configured so that not only overall heat generation control but also partial heat generation control can be performed, there is an advantage in that the heat generation amount can be appropriately adjusted according to demand or need, and since the heat generation amount can be appropriately adjusted according to demand or need, unnecessary consumption of electric energy can be reliably prevented, thereby promoting more efficient energy utilization.

또한, 부분적으로 발열 제어가 가능한 만큼 전체(Full) 발열 요청에 대하여 순차적으로 전류를 인가(약간의 시간 차를 두고 제1 전극판과 제2 전극판에 전류를 인가)하는 제어를 통하여 돌입전류(Inrush current)를 크게 감소시킬 수 있고, 그 결과 회로적으로 안전성을 확보할 수 있으며, 돌입전류가 감소되는 만큼 저항이 낮아지므로 출력을 높일 수 있다는 장점이 있다.In addition, since partial heat control is possible, the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since the resistance decreases as the inrush current decreases, there is an advantage in that the output can be increased.

더욱이, 본 발명의 일 실시 예에 따른 PTC 유닛은, 특유의 구성(PTC 소자를 두 개의 그룹으로 나누어 교대로 절연 프레임에 일렬로 실장하고, 그에 맞춰 전극판을 요철 형태로 구성하여 상호 맞물리는 형태로 배치시킨 특유의 구성)으로 인하여, 부분적으로 발열 제어가 가능한 구성이면서도 PTC 유닛을 콤팩트 한 크기로 구현 가능하다는 장점이 있다.Furthermore, the PTC unit according to one embodiment of the present invention has an advantage in that it is a configuration that partially controls heat generation while also allowing the PTC unit to be implemented in a compact size due to its unique configuration (a unique configuration in which PTC elements are divided into two groups and mounted alternately in a row on an insulating frame, and electrode plates are configured in a protruding shape accordingly and arranged in a mutually interlocking shape).

도 1은 본 발명의 일 실시 예에 따른 PTC 유닛의 전체 구성을 보여주기 위한 분해 사시도.FIG. 1 is an exploded perspective view showing the overall configuration of a PTC unit according to one embodiment of the present invention.

도 2는 도 1에 도시된 절연 프레임, PTC 소자, 전극판들 상세 구성을 보여주기 위한 분해 사시도.Figure 2 is an exploded perspective view showing the detailed configuration of the insulating frame, PTC element, and electrode plates illustrated in Figure 1.

도 3은 본 발명의 일 실시 예에 따른 PTC 유닛을 정면에서 바라본 투시도.FIG. 3 is a perspective view of a PTC unit viewed from the front according to one embodiment of the present invention.

도 4는 본 발명의 일 실시 예에 따른 PTC 유닛을 배면에서 바라본 투시도.FIG. 4 is a perspective view of a PTC unit viewed from the back according to one embodiment of the present invention.

도 5는 본 발명의 일 실시 예에 따른 PTC 유닛의 회로도.Figure 5 is a circuit diagram of a PTC unit according to one embodiment of the present invention.

도 6a 내지 도 6c는 본 발명의 일 실시 예에 따른 PTC 유닛의 작동 상태도.Figures 6a to 6c are operation state diagrams of a PTC unit according to one embodiment of the present invention.

도 7은 본 발명의 바람직한 다른 실시 예에 따른 PTC 유닛의 전체 구성을 보여주기 위한 분해 사시도.FIG. 7 is an exploded perspective view showing the overall configuration of a PTC unit according to another preferred embodiment of the present invention.

도 8은 본 발명의 다른 실시 예에 따른 PTC 유닛을 정면에서 바라본 투시도.FIG. 8 is a perspective view of a PTC unit viewed from the front according to another embodiment of the present invention.

도 9는 본 발명의 다른 실시 예에 따른 PTC 유닛을 배면에서 바라본 투시도.FIG. 9 is a perspective view of a PTC unit viewed from the back according to another embodiment of the present invention.

도 10은 PTC 유닛을 포함하는 본 발명의 다른 측면에 따른 난방용 가열장치의 사시도.FIG. 10 is a perspective view of a heating device for heating according to another aspect of the present invention including a PTC unit.

도 11은 도 10에 도시된 가열장치의 부분 분해 사시도. Fig. 11 is a partially exploded perspective view of the heating device illustrated in Fig. 10.

도 12는 도 11에 도시된 히터 코어부의 부분 분해 사시도.Fig. 12 is a partially exploded perspective view of the heater core portion shown in Fig. 11.

이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail.

명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used in the specification is only used to describe particular embodiments and is not intended to limit the invention. The singular expression includes the plural expression unless the context clearly indicates otherwise.

본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.It should be understood that the terms “include” or “have” in this specification are intended to specify the presence of a feature, number, step, operation, component, part or combination thereof described in the specification, but do not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.

또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Additionally, while the terms first, second, etc. may be used to describe various components, the components should not be limited by the terms. The terms are used only to distinguish one component from another.

더하여, 명세서에 기재된 "…부", "…유닛", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as “part,” “unit,” and “module” described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware, software, or a combination of hardware and software.

첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In describing with reference to the attached drawings, identical components will be given the same reference numerals and redundant descriptions thereof will be omitted. In addition, when describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

도 1은 본 발명의 일 실시 예에 따른 PTC 유닛의 전체 구성을 보여주기 위한 분해 사시도이며, 도 2는 도 1에 도시된 절연 프레임, PTC 소자, 전극판들 상세 구성을 보여주기 위한 분해 사시도이다. 그리고 도 3과 도 4는 본 발명의 일 실시 예에 따른 PTC 유닛의 결합 상태도로서, 결합된 상태의 PTC 유닛을 정면과 배면에서 각각 바라본 투시도이며, 도 5는 본 발명의 일 실시 예에 따른 PTC 유닛의 회로도이다.FIG. 1 is an exploded perspective view showing the entire configuration of a PTC unit according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing the detailed configuration of the insulating frame, PTC element, and electrode plates shown in FIG. 1. FIGS. 3 and 4 are perspective views showing the combined state of a PTC unit according to an embodiment of the present invention, each of which is a front and back view of a combined PTC unit, and FIG. 5 is a circuit diagram of a PTC unit according to an embodiment of the present invention.

도 1 내지 도 5를 참조하면, 본 발명의 일 실시 예에 따른 PTC 유닛(13)은, 발열체(130) 및 상기 발열체(130)를 밀봉적으로 수용하는 히팅 튜브(139)를 포함한다. 발열체(130)는 절연 프레임(131)과 PTC 소자(134, 135)들, 그리고 전극판들(136 ~ 138)과 한 쌍의 절연커버(c1, c2)로 구성될 수 있으며, 히팅 튜브(139)는 단면 모양이 각형이며 속이 빈 관형의 비전도성 금속체일 수 있다. Referring to FIGS. 1 to 5, a PTC unit (13) according to one embodiment of the present invention includes a heating element (130) and a heating tube (139) sealingly accommodating the heating element (130). The heating element (130) may be composed of an insulating frame (131), PTC elements (134, 135), electrode plates (136 to 138), and a pair of insulating covers (c1, c2), and the heating tube (139) may be a non-conductive metal body having a square cross-section and a hollow tubular shape.

절연 프레임(131)에는 복수 개의 소자 수용홀(132, 133)이 도면상 높이 방향으로 일렬로 형성될 수 있다. 도면에는 소자 수용홀이 여섯 개인 구성을 예를 들어 도시하였으나, 소자 수용홀이 6개인 구성에 국한되는 것은 아니다. 요구 사양에 따라서 소자 수용홀은 4개가 될 수도 있고 8개가 될 수도 있다. 물론 짝수뿐 아니라, 3개, 5개, 7개 등 홀수로 형성될 수도 있다.In the insulating frame (131), a plurality of element receiving holes (132, 133) may be formed in a row in the height direction in the drawing. In the drawing, a configuration with six element receiving holes is illustrated as an example, but it is not limited to a configuration with six element receiving holes. Depending on the required specifications, the number of element receiving holes may be four or eight. Of course, in addition to an even number, an odd number such as three, five, or seven may be formed.

소자 수용홀(132) 각각에는 인가된 전원에 의해 실질적으로 열을 발생시키는 PTC 소자가 하나씩 실장될 수 있다. PTC 소자는 제1 PTC 소자(134)와 제2 PTC 소자(135)로 구분될 수 있으며, 이때 제1 PTC 소자(134)와 제2 PTC 소자(135)는 상기 소자 수용홀(132) 중 최상단 또는 최하단 소자 수용홀(132)에서부터 교번적(번갈아 가면서)으로 하나씩 실장될 수 있다. Each of the element receiving holes (132) can be mounted with one PTC element that actually generates heat by the applied power. The PTC elements can be divided into a first PTC element (134) and a second PTC element (135), and at this time, the first PTC element (134) and the second PTC element (135) can be mounted one by one alternately (alternately) from the uppermost or lowermost element receiving hole (132) among the element receiving holes (132).

예를 들어, 복수 개의 소자 수용홀 중 홀수 번째(도면상 위에서부터 1, 3, 5번째) 소자 수용홀(132)에 제1 PTC 소자(134)가 하나씩 실장될 수 있으며, 짝수 번째(도면상 2, 4, 6번째) 소자 수용홀(133)에 제2 PTC 소자(135)가 하나씩 실장될 수 있다.For example, a first PTC element (134) may be mounted one by one in an odd-numbered element receiving hole (132) among a plurality of element receiving holes (1, 3, and 5 from the top in the drawing), and a second PTC element (135) may be mounted one by one in an even-numbered element receiving hole (133) among a plurality of element receiving holes.

제1 PTC 소자(134)들은 하나의 제1 전극판(136)에 그 일면이 동시에 접촉되어 전기적으로 연결될 수 있다. 좀 더 구체적으로, 제1 전극판(136)에 의해 여러 개(도면상 3개)의 제1 PTC 소자(134)들이 전기적으로 병렬로 연결됨으로써, 상기 제1 전극판(136)을 통해 공급되는 전원에 의하여 여러 개의 제1 PTC 소자(134)들은 동시에 열을 발생시킬 수 있다.The first PTC elements (134) can be electrically connected by simultaneously contacting one surface of the first electrode plate (136). More specifically, since multiple (three in the drawing) first PTC elements (134) are electrically connected in parallel by the first electrode plate (136), multiple first PTC elements (134) can simultaneously generate heat by power supplied through the first electrode plate (136).

제2 PTC 소자(135)들도 후술하는 하나의 제2 전극판(137)에 그 일면이 동시에 접촉되어 전기적 연결될 수 잇다. 좀 더 구체적으로, 제2 전극판(137)에 의해 여러 개(도면상 3개)의 제2 PTC 소자(135)들이 전기적으로 병렬로 연결됨으로써, 상기 제2 전극판(137)을 통해 공급되는 전원에 의하여 여러 개의 제2 PTC 소자(135)들은 동시에 열을 발생시킬 수 있다.The second PTC elements (135) can also be electrically connected by simultaneously contacting one surface of a second electrode plate (137) described later. More specifically, since multiple (three in the drawing) second PTC elements (135) are electrically connected in parallel by the second electrode plate (137), multiple second PTC elements (135) can simultaneously generate heat by power supplied through the second electrode plate (137).

서로 이격되는 제1 PTC 소자(134)들은 앞서 언급한 바와 같이 하나의 제1 전극판(136)에 그 일면이 동시에 접함으로써 전기적으로 하나의 구성체를 이룬다. 여기서, 서로 간 거리를 두고 배치되는 제1 PTC 소자(134)들에 대한 동시적인 전기적 연결을 위해 본 발명의 일 실시 예에 적용되는 제1 전극판(136)은 도면의 예시와 같이 요철 형상으로 구성될 수 있다.As mentioned above, the first PTC elements (134) that are spaced apart from each other electrically form a single structure by simultaneously contacting one surface of the first electrode plate (136). Here, the first electrode plate (136) applied to one embodiment of the present invention for simultaneous electrical connection to the first PTC elements (134) that are arranged at a distance from each other may be configured in a rough shape as shown in the example of the drawing.

제1 전극판(136)은 구체적으로, 제1 전극셀(136-1)들과 제1 전극단자(136-2)로 구성될 수 있다. 제1 전극셀(136-1)들은 상기 제1 PTC 소자(134) 각각에 대응되도록 구성되어, 대응되는 제1 PTC 소자(134)의 일면과 접하도록 설치되며, 제1 전극단자(136-2)를 통해 제1 전극셀(136-1)들이 상호 연결됨으로써 제1 PTC 소자(134)들에 대한 동시적인 전원 공급이 구현될 수 있다.The first electrode plate (136) can be specifically composed of first electrode cells (136-1) and first electrode terminals (136-2). The first electrode cells (136-1) are configured to correspond to each of the first PTC elements (134) and are installed to be in contact with one surface of the corresponding first PTC element (134), and the first electrode cells (136-1) are interconnected through the first electrode terminals (136-2), thereby enabling simultaneous power supply to the first PTC elements (134).

좀 더 구체적으로, 제1 전극셀(136-1) 각각은 제1 PTC 소자(134)에 대응되는 크기를 가지면서 제2 PTC 소자(135)가 실장되는 소자 수용홀(133)의 높이에 상응하는 거리만큼 상호 이격된 대략 사각형의 판형 구조로 형성될 수 있으며, 제1 전극단자(136-2)는 제1 전극셀(136-1)들 중 최외측의 제1 전극셀(도면상 최상단 제1 전극셀)로부터 연장되는 구성일 수 있다.More specifically, each of the first electrode cells (136-1) may be formed as an approximately square plate-shaped structure having a size corresponding to the first PTC element (134) and spaced apart from each other by a distance corresponding to the height of the element receiving hole (133) in which the second PTC element (135) is mounted, and the first electrode terminal (136-2) may be configured to extend from the outermost first electrode cell among the first electrode cells (136-1) (the uppermost first electrode cell in the drawing).

좀 더 구체적으로, 제1 전극단자(136-2)는 제1 전극셀(136-1)들의 일측 가장자리(도 3을 기준으로 우측 가장자리)를 동시에 연결하면서 최상단 제1 전극셀(136-1)보다 위쪽으로 소정 길이 연장되도록 구성될 수 있다.More specifically, the first electrode terminal (136-2) may be configured to extend a predetermined length upward from the uppermost first electrode cell (136-1) while simultaneously connecting one edge (the right edge based on FIG. 3) of the first electrode cells (136-1).

서로 이격되는 제2 PTC 소자(135)들 역시 앞서 언급한 바와 같이 하나의 제2 전극판(137)에 그 일면이 동시에 접함으로써 전기적으로 하나의 구성체를 이룬다. 여기서, 서로 간 거리를 두고 배치되는 제2 PTC 소자(135)들에 대한 동시적인 전기적 연결을 위해 본 발명의 일 실시 예에 적용되는 제2 전극판(137) 또한 도면의 예시와 같이 요철 형상으로 구성될 수 있다.As mentioned above, the second PTC elements (135) that are spaced apart from each other also electrically form a single structure by simultaneously contacting one surface of the second electrode plate (137). Here, the second electrode plate (137) applied to one embodiment of the present invention for simultaneous electrical connection to the second PTC elements (135) that are arranged at a distance from each other may also be configured in a rough shape as shown in the example of the drawing.

제2 전극판(137)은 구체적으로, 제2 전극셀(137-1)들과 제2 전극단자(137-2)로 구성될 수 있다. 제2 전극셀(137-1)들은 상기 제2 PTC 소자(135) 각각에 대응되도록 구성되어, 대응되는 제2 PTC 소자(135)의 일면과 접하도록 설치되며, 제2 전극단자(137-2)를 통해 제2 전극셀(137-1)들이 상호 연결됨으로써 제2 PTC 소자(135)들에 대한 동시적인 전원 공급이 구현될 수 있다.The second electrode plate (137) can be specifically composed of second electrode cells (137-1) and second electrode terminals (137-2). The second electrode cells (137-1) are configured to correspond to each of the second PTC elements (135) and are installed to be in contact with one surface of the corresponding second PTC element (135), and the second electrode cells (137-1) are interconnected through the second electrode terminals (137-2), thereby enabling simultaneous power supply to the second PTC elements (135).

좀 더 구체적으로, 제2 전극셀(137-1) 각각은 제2 PTC 소자(135)에 대응되는 크기를 가지면서 제1 PTC 소자(134)가 실장되는 소자 수용홀(132)의 높이에 상응하는 거리만큼 상호 이격된 대략 사각형의 판형 구조로 형성될 수 있으며, 제2 전극단자(137-2)는 제2 전극셀(137-1)들 중 최외측의 제2 전극셀(도면상 최상단 제2 전극셀)로부터 연장되는 구성일 수 있다.More specifically, each of the second electrode cells (137-1) may be formed as an approximately square plate-shaped structure having a size corresponding to the second PTC element (135) and spaced apart from each other by a distance corresponding to the height of the element receiving hole (132) in which the first PTC element (134) is mounted, and the second electrode terminal (137-2) may be configured to extend from the outermost second electrode cell among the second electrode cells (137-1) (the uppermost second electrode cell in the drawing).

좀 더 구체적으로, 제2 전극단자(137-2)는 제2 전극셀(137-1)들의 일측 가장자리(도 3을 기준으로 좌측 가장자리)를 동시에 연결하면서 최상단 제2 전극셀(137-1)보다 위쪽으로 소정 길이 연장되도록 구성될 수 있다.More specifically, the second electrode terminal (137-2) may be configured to extend a predetermined length upward from the uppermost second electrode cell (137-1) while simultaneously connecting one edge (the left edge based on FIG. 3) of the second electrode cells (137-1).

전체적으로 요철형 구조를 가지는 제1 전극판(136)과 제2 전극판(137)은 소정의 갭을 두고 서로 이격됨으로써 전기적으로 분리되면서도, 구조적으로는 도 3에 도시된 바와 같이, 요부가 상대 전극판의 철부에 맞물리는 형태로 상기 절연 프레임(131)의 일 측면에 함께 배치됨으로써 PTC 유닛을 콤팩트 한 크기로 구현하기에 적합한 구조를 가진다.The first electrode plate (136) and the second electrode plate (137) having an overall uneven structure are electrically separated from each other by a predetermined gap, and structurally, as shown in FIG. 3, they are arranged together on one side of the insulating frame (131) in a form in which the uneven portion is engaged with the uneven portion of the opposite electrode plate, thereby providing a structure suitable for implementing a PTC unit in a compact size.

도면부호 138은 공통 전극판을 가리킨다. 공통 전극판(138)은 절연 프레임(131)을 중간에 두고 상기 제1 전극판(136) 및 제2 전극판(137)과 대향되도록 배치될 수 있다. 좀 더 구체적으로, 공통 전극판(138)은 제1 PTC 소자(134)들의 다른 일면(제1 전극판과 접하는 면의 반대편 면) 및 제2 PTC 소자(135)들의 다른 일면(제2 전극판과 접하는 면의 반대편 면)에 동시에 접하도록 배치될 수 있다.Drawing symbol 138 designates a common electrode plate. The common electrode plate (138) may be arranged to face the first electrode plate (136) and the second electrode plate (137) with the insulating frame (131) in the middle. More specifically, the common electrode plate (138) may be arranged to simultaneously contact the other side of the first PTC elements (134) (the side opposite to the side contacting the first electrode plate) and the other side of the second PTC elements (135) (the side opposite to the side contacting the second electrode plate).

본 발명의 일 실시 예에서 제1 전극단자(136-2)가 제1 전극셀(136-1)들의 일측 가장자리를 동시에 연결하는 위치와, 제2 전극단자(137-2)가 제2 전극셀(137-1)들의 일측 가장자리를 동시에 연결하는 위치는 서로 반대일 수 있으며, 공통 전극판(138)의 상단에 제3 전극단자(138-2)가 구비되되, 제3 전극단자(138-2)는 제1 전극단자(136-2) 및 제2 전극단자(137-2)와 겹치지 않는 위치에서 동일한 방향으로 동일한 높이까지 연장될 수 있다.In one embodiment of the present invention, the position at which the first electrode terminal (136-2) simultaneously connects one edge of the first electrode cells (136-1) and the position at which the second electrode terminal (137-2) simultaneously connects one edge of the second electrode cells (137-1) may be opposite to each other, and a third electrode terminal (138-2) may be provided at the top of the common electrode plate (138), and the third electrode terminal (138-2) may extend in the same direction to the same height at a position that does not overlap with the first electrode terminal (136-2) and the second electrode terminal (137-2).

발열체(130)는 또한, 제1 절연커버(c1)와 제2 절연커버(c2)를 포함할 수 있다. 제1 절연커버(c1)는 절연 프레임(131)의 일 측면에서 제1 전극판(136)과 제2 전극판(137)을 동시에 덮도록 결합됨으로써 히팅 튜브(139)와 상기 제1 전극판(136) 및 제2 전극판(137) 사이를 전기적으로 절연시키고, 제2 절연커버(c2)는 상기 절연 프레임(131)의 타 측면에서 공통 전극판(138)을 덮도록 결합됨으로써 히팅 튜브(139)와 공통 전극판(138) 사이를 전기적으로 절연시키는 역할을 한다.The heating element (130) may also include a first insulating cover (c1) and a second insulating cover (c2). The first insulating cover (c1) is coupled to cover the first electrode plate (136) and the second electrode plate (137) at the same time on one side of the insulating frame (131), thereby electrically insulating between the heating tube (139) and the first electrode plate (136) and the second electrode plate (137), and the second insulating cover (c2) is coupled to cover the common electrode plate (138) on the other side of the insulating frame (131), thereby electrically insulating between the heating tube (139) and the common electrode plate (138).

이와 같은 본 발명의 일 실시 예에 따른 PTC 유닛(13)은, PTC 소자들을 절연 프레임(131)의 소자 수용홀에 하나씩 실징하고, PTC 소자들에 접하도록 전극판들을 정해진 위치에 배치한 상태에서, 제1 절연커버(c1)와 제2 절연커버(c2)로 전극판들을 에워쌈으로써 발열체를 구성하고, 이러한 발열체를 히팅 튜브(139)에 넣고 양쪽 끝을 내열성 소재로 밀봉함으로써 구성될 수 있다.According to one embodiment of the present invention, a PTC unit (13) may be configured by configuring a heating element by embedding PTC elements one by one in the element receiving holes of an insulating frame (131), arranging electrode plates at set positions so as to be in contact with the PTC elements, surrounding the electrode plates with a first insulating cover (c1) and a second insulating cover (c2), and then placing the heating element in a heating tube (139) and sealing both ends with a heat-resistant material.

이러한 구성의 본 발명의 일 실시 예에 따른 PTC 유닛(13)에 의하면, 제1 PTC 소자(134)와 제2 PTC 소자(135)가 하나의 절연 프레임(131)에 함께 실장되기는 하나, 서로 다른 전극판(제1 전극판과 제2 전극판)을 통하여 독립적으로 전원을 공급받는 구조이므로, 제1 PTC 소자(134)들만 발열되거나, 제2 PTC 소자(135)들만 발열되는 등 부분적인 발열이 구현될 수 있다.According to the PTC unit (13) according to one embodiment of the present invention having such a configuration, although the first PTC element (134) and the second PTC element (135) are mounted together in one insulating frame (131), they are structured to be supplied with power independently through different electrode plates (the first electrode plate and the second electrode plate), so that partial heating can be implemented, such as only the first PTC elements (134) being heated or only the second PTC elements (135) being heated.

예컨대, 제1 전극판(136)과 공통 전극판(138)이 전기적으로 통전 가능하게 연결된 상태에서 제1 전극판(136)에 전원을 인가(반대로 공통 전극판을 통해 전원을 인가할 수도 있음)하면, 도 6a와 같이 상기 제1 전극판(136)을 구성하는 제1 전극셀(136-1)들(도면상 ①, ③, ⑤번 전극셀)에 대응되는 PTC 소자들, 즉 제1 PTC 소자(134)들에만 전류가 공급되어 해당 소자들만 발열될 수 있다.For example, when power is applied to the first electrode plate (136) while the first electrode plate (136) and the common electrode plate (138) are electrically connected to each other (conversely, power may be applied through the common electrode plate), as shown in FIG. 6A, current is supplied only to the PTC elements corresponding to the first electrode cells (136-1) (electrode cells ①, ③, and ⑤ in the drawing) constituting the first electrode plate (136), i.e., the first PTC elements (134), so that only the corresponding elements can be heated.

같은 원리로, 제2 전극판(137)과 공통 전극판(138)이 전기적으로 통전 가능하게 연결된 상태에서 제2 전극판(137)에 전원을 인가(반대로 공통 전극판을 통해 전원을 인가할 수도 있음)하면, 도 6b와 같이 상기 제2 전극판(137)을 구성하는 제2 전극셀(137-1)들(도면상 ②, ④, ⑥번 전극셀)에 대응되는 PTC 소자들, 즉 제2 PTC 소자(135)들에만 전류가 공급되어 해당 소자들만 발열될 수 있다.By the same principle, when power is applied to the second electrode plate (137) while the second electrode plate (137) and the common electrode plate (138) are electrically connected to each other (conversely, power may be applied through the common electrode plate), as shown in FIG. 6b, current is supplied only to the PTC elements corresponding to the second electrode cells (137-1) (electrode cells ②, ④, and ⑥ in the drawing) constituting the second electrode plate (137), i.e., the second PTC elements (135), so that only the corresponding elements can be heated.

그리고 제1 전극판(136)과 제2 전극판(137)이 동시에 공통 전극판(138)에 전기적으로 통전 가능하게 연결된 상태에서 제1 전극판(136)과 제2 전극판(137)에 전원을 인가(반대로 공통 전극판을 통해 전원을 인가할 수도 있음)하는 경우에는, 도 6c와 같이 모든 전극셀들(도면의 ① 내지 ⑥번 전극셀)에 전원이 인가됨으로써, 모든 PTC 소자들이 발열될 수 있다.And when power is applied to the first electrode plate (136) and the second electrode plate (137) while the first electrode plate (136) and the second electrode plate (137) are electrically connected to the common electrode plate (138) at the same time (conversely, power may be applied through the common electrode plate), power is applied to all electrode cells (electrode cells ① to ⑥ in the drawing) as shown in Fig. 6c, so that all PTC elements can be heated.

이처럼 본 발명의 일 실시 예에 따른 PTC 유닛은, 전체 발열 제어뿐 아니라 부분적인 발열 제어가 가능한 구성임에 따라, 수요나 필요에 맞춰 발열량을 적절히 조절 가능하다는 장점이 있으며, 발열량을 수요나 필요에 따라 적절히 조절할 수 있는 만큼 불필요하게 에너지가 소모되는 것을 확실하게 방지할 수 있어 보다 효율적인 에너지 활용을 도모할 수 있다. In this way, the PTC unit according to one embodiment of the present invention has the advantage of being able to appropriately control the amount of heat generated according to demand or need since it is configured to control not only the overall heat generation but also partial heat generation. In addition, since the amount of heat generated can be appropriately controlled according to demand or need, unnecessary energy consumption can be reliably prevented, thereby promoting more efficient energy utilization.

또한, 부분적으로 발열 제어가 가능한 만큼 전체(Full) 발열 요청에 대하여 순차적으로 전류를 인가(약간의 시간 차를 두고 제1 전극판과 제2 전극판에 전류를 인가)하는 제어를 통하여 돌입전류(Inrush current)를 크게 감소시킬 수 있고, 그 결과 회로적으로 안전성을 확보할 수 있으며, 돌입전류가 감소되는 만큼 저항이 낮아지므로 출력을 높일 수 있다는 장점이 있다.In addition, since partial heat control is possible, the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since the resistance decreases as the inrush current decreases, there is an advantage in that the output can be increased.

더욱이, 본 발명의 일 실시 예에 따른 PTC 유닛은, 특유의 구성(PTC 소자를 두 개의 그룹으로 나누어 교대로 절연 프레임에 일렬로 실장하고, 그에 맞춰 전극판을 요철 형태로 구성하여 상호 맞물리는 형태로 배치시킨 특유의 구성)으로 인하여, 부분적으로 발열 제어가 가능한 구성이면서도 PTC 유닛을 콤팩트 한 크기로 구현 가능하다는 장점이 있다.Furthermore, the PTC unit according to one embodiment of the present invention has an advantage in that it is a configuration that partially controls heat generation while also allowing the PTC unit to be implemented in a compact size due to its unique configuration (a unique configuration in which PTC elements are divided into two groups and mounted alternately in a row on an insulating frame, and electrode plates are configured in a protruding shape accordingly and arranged in a mutually interlocking shape).

도 7은 본 발명의 바람직한 다른 실시 예에 따른 PTC 유닛의 전체 구성을 보여주기 위한 분해 사시도이며, 도 8과 도 9는 본 발명의 바람직한 다른 실시 예에 따른 PTC 유닛의 결합 상태도로서, 결합된 상태의 PTC 유닛을 정면과 배면에서 각각 바라본 투시도이다.FIG. 7 is an exploded perspective view showing the entire configuration of a PTC unit according to another preferred embodiment of the present invention, and FIGS. 8 and 9 are perspective views showing the combined state of a PTC unit according to another preferred embodiment of the present invention, which are views of the PTC unit in a combined state viewed from the front and back, respectively.

도 7 내지 도 9를 참조하면, 본 발명의 바람직한 다른 실시 예에 따른 PTC 유닛(23) 역시, 발열체(230)와 이를 밀봉적으로 수용하는 히팅 튜브(239)를 포함한다. 발열체(230)는 절연 프레임(231)과 PTC 소자들(234, 235), 그리고 전극판들(236 ~ 238)과 한 쌍의 절연커버(c1, c2)로 구성될 수 있으며, 히팅 튜브(239)는 단면 모양이 각형이며 속이 빈 관형의 비전도성 금속체일 수 있다. Referring to FIGS. 7 to 9, a PTC unit (23) according to another preferred embodiment of the present invention also includes a heating element (230) and a heating tube (239) sealingly accommodating the heating element. The heating element (230) may be composed of an insulating frame (231), PTC elements (234, 235), electrode plates (236 to 238), and a pair of insulating covers (c1, c2), and the heating tube (239) may be a non-conductive metal body having a square cross-section and a hollow tubular shape.

절연 프레임(231)에는 복수 개의 소자 수용홀(232, 233)이 형성될 수 있다. 도면에는 소자 수용홀이 여덟 개인 구성을 예를 들어 도시하였으나, 이는 어디까지나 본 발명을 설명하기 위한 하나 실시 예일뿐, 소자 수용홀이 8개인 구성에 국한되는 것은 아니다. 요구 사양에 따라서 소자 수용홀은 4개가 될 수도 있고 6개가 될 수도 있으며, 8개 이상의 짝수 개로 형성될 수 있다.A plurality of element receiving holes (232, 233) may be formed in the insulating frame (231). In the drawing, a configuration having eight element receiving holes is illustrated as an example, but this is only one embodiment for explaining the present invention, and is not limited to a configuration having eight element receiving holes. Depending on the required specifications, the number of element receiving holes may be four or six, and may be formed as an even number of eight or more.

소자 수용홀들은 도면의 예시와 같이, 일부 소자 수용홀(도면상 좌측 4개의 수용홀)끼리가 하나의 홀열(이하, '제1 홀열'이라 함)을 구성하고, 나머지 일부 소자 수용홀(도면상 우측 4개의 수용홀)끼리가 다른 하나의 홀열(이하, '제2 홀열'이라 함)을 구성하도록 배열될 수 있다. 즉 복수 개의 소자 수용홀들이 크게 두 개의 홀열(L1, L2)을 구성하는 형태로 배열될 수 있다.As shown in the example in the drawing, the element receiving holes may be arranged such that some of the element receiving holes (the four receiving holes on the left in the drawing) form one row of holes (hereinafter referred to as the “first row of holes”), and the remaining some of the element receiving holes (the four receiving holes on the right in the drawing) form another row of holes (hereinafter referred to as the “second row of holes”). In other words, a plurality of element receiving holes may be arranged such that they form two large rows of holes (L1, L2).

바람직하게는, 제1 홀열(L1)에 속한 소자 수용홀(232)들과 제2 홀열(L2)에 속한 소자 수용홀(233)들은 도면의 예시와 같이 동일한 개수로 형성되면서도, 다른 홀열에 속한 두 개의 소자 수용홀끼리 동일한 높이 또는 동일 선상에 정렬되는 구조로 형성될 수 있다.Preferably, the element receiving holes (232) belonging to the first hole row (L1) and the element receiving holes (233) belonging to the second hole row (L2) may be formed in the same number as in the example of the drawing, and may be formed in a structure in which two element receiving holes belonging to different hole rows are aligned at the same height or on the same line.

소자 수용홀(232, 233) 각각에는 인가된 전원에 의해 실질적으로 열을 발생시키는 PTC 소자가 하나씩 실장될 수 있다. PTC 소자는 구체적으로, 복수 개의 소자 수용홀 중 제1 홀열(L1)에 속한 소자 수용홀(232)에 하나씩 실장되는 제1 PTC 소자(234)들과, 상기 제1 홀열(L1) 인접 측부의 제2 홀열(L2)에 속한 소자 수용홀(233)에 하나씩 실장되는 제2 PTC 소자(235)들로 구성될 수 있다.Each of the element receiving holes (232, 233) may be equipped with one PTC element that actually generates heat by an applied power source. Specifically, the PTC element may be configured with first PTC elements (234) mounted one by one in an element receiving hole (232) belonging to a first hole row (L1) among a plurality of element receiving holes, and second PTC elements (235) mounted one by one in an element receiving hole (233) belonging to a second hole row (L2) on an adjacent side of the first hole row (L1).

제1 PTC 소자(234)들은 하나의 제1 전극판(236)에 그 일면이 동시에 접촉되어 하나의 전기적 구성체를 이룬다. 좀 더 구체적으로, 제1 전극판(236)에 의해 여러 개(도면상 4개)의 제1 PTC 소자(234)들이 전기적으로 병렬로 연결됨으로써, 상기 제1 전극판(236)을 통해 공급되는 전원에 의하여 여러 개의 제1 PTC 소자(234)들은 상기 제2 PTC 소자(235)들과는 무관하게 동시에 열을 발생시킬 수 있다.The first PTC elements (234) are electrically connected in parallel by one surface of the first electrode plate (236) at the same time to form a single electrical component. More specifically, since multiple (four in the drawing) first PTC elements (234) are electrically connected in parallel by the first electrode plate (236), multiple first PTC elements (234) can simultaneously generate heat independently of the second PTC elements (235) by power supplied through the first electrode plate (236).

제2 PTC 소자(235)들도 하나의 제2 전극판(237)에 그 일면이 동시에 접촉되어 하나의 전기적 구성체를 이룬다. 좀 더 구체적으로, 제2 전극판(237)에 의해 여러 개(도면상 4개)의 제2 PTC 소자(235)들이 전기적으로 병렬로 연결됨으로써, 상기 제2 전극판(237)을 통해 공급되는 전원에 의하여 여러 개의 제2 PTC 소자(235)들은 상기 제1 PTC 소자(234)들과는 무관하게 동시에 열을 발생시킬 수 있다.The second PTC elements (235) also form an electrical component by simultaneously contacting one surface of a second electrode plate (237). More specifically, since multiple (four in the drawing) second PTC elements (235) are electrically connected in parallel by the second electrode plate (237), multiple second PTC elements (235) can simultaneously generate heat independently of the first PTC elements (234) by power supplied through the second electrode plate (237).

본 실시 예에서 상기 제1 전극판(236)과 제2 전극판(237)은 서로 간 소정의 갭을 두고 이격되어 전기적으로는 절연되면서도 상기 절연 프레임(131)의 일 측면에 함께 배치될 수 있으며(도 8 참조), 소정의 갭을 두고 이격되는 제1 전극판(236)과 제2 전극판(237) 각각의 상단 중앙에서 제1 전극단자(236-2)와 제2 전극단자(237-2)가 동일한 높이로 연장 형성될 수 있다.In the present embodiment, the first electrode plate (236) and the second electrode plate (237) may be electrically insulated from each other by being spaced apart from each other with a predetermined gap, and may be arranged together on one side of the insulating frame (131) (see FIG. 8), and the first electrode terminal (236-2) and the second electrode terminal (237-2) may be formed to extend to the same height from the upper center of each of the first electrode plate (236) and the second electrode plate (237) spaced apart from each other with a predetermined gap.

도면부호 238은 공통 전극판을 가리킨다. 공통 전극판(238)은 절연 프레임(231)을 중간에 두고 상기 제1 전극판(236) 및 제2 전극판(237)과 대향되도록 배치될 수 있다. 좀 더 구체적으로, 공통 전극판(238)은 상기 제1 PTC 소자(234)들의 다른 일면(제1 전극판과 접하는 면의 반대편 면) 및 제2 PTC 소자(235)들의 다른 일면(제2 전극판과 접하는 면의 반대편 면)과 동시에 접하도록 배치될 수 있다.Drawing symbol 238 designates a common electrode plate. The common electrode plate (238) may be arranged to face the first electrode plate (236) and the second electrode plate (237) with the insulating frame (231) in the middle. More specifically, the common electrode plate (238) may be arranged to simultaneously contact the other side of the first PTC elements (234) (the side opposite to the side contacting the first electrode plate) and the other side of the second PTC elements (235) (the side opposite to the side contacting the second electrode plate).

이러한 공통 전극판(238)의 상단에 제3 전극단자(238-2)가 구비되되, 제3 전극단자(238-2)는 제1 전극판(236)과 제2 전극판(237) 각각의 상단 중앙에서 소정의 높이로 연장되는 상기 제1 전극단자(236-2) 및 제2 전극단자(237-2)와 겹치거나 중첩되지 않는 위치에서, 상기 제1 전극단자(236-2) 및 제2 전극단자(237-2)와 동일한 방향으로 동일한 높이까지 연장되는 구성일 수 있다.A third electrode terminal (238-2) is provided on the upper end of the common electrode plate (238), and the third electrode terminal (238-2) may be configured to extend to the same height in the same direction as the first electrode terminal (236-2) and the second electrode terminal (237-2) at a position that does not overlap or overlap with the first electrode terminal (236-2) and the second electrode terminal (237-2) and extends to a predetermined height from the upper center of each of the first electrode plate (236) and the second electrode plate (237).

본 실시 예에 따른 발열체(230)에도 제1 절연커버(c1)와 제2 절연커버(c2)가 포함될 수 있다. 제1 절연커버(c1)는 절연 프레임(131)의 일 측면에서 제1 전극판(236)과 제2 전극판(237)을 동시에 덮도록 결합되어 이들 전극판과 히팅 튜브(239) 사이를 전기적으로 절연시키고, 제2 절연커버(c2)는 상기 절연 프레임(231)의 타 측면에서 공통 전극판(238)을 덮도록 결합됨으로써 히팅 튜브(239)와 공통 전극판(238) 사이를 전기적으로 절연시키는 역할을 한다.The heating element (230) according to the present embodiment may also include a first insulating cover (c1) and a second insulating cover (c2). The first insulating cover (c1) is coupled to cover the first electrode plate (236) and the second electrode plate (237) at the same time on one side of the insulating frame (131), thereby electrically insulating between these electrode plates and the heating tube (239), and the second insulating cover (c2) is coupled to cover the common electrode plate (238) on the other side of the insulating frame (231), thereby electrically insulating between the heating tube (239) and the common electrode plate (238).

이와 같은 본 발명의 다른 실시 예에 따른 PTC 유닛(23)은, PTC 소자들을 절연 프레임(131)의 소자 수용홀에 하나씩 실징하고, PTC 소자들에 접하도록 전극판(236 ~ 238)들을 정해진 위치에 배치한 상태에서, 제1 절연커버(c1)와 제2 절연커버(c2)로 전극판들을 에워쌈으로써 발열체(230)를 구성하고, 이러한 발열체(230)를 히팅 튜브(139)에 넣고 양쪽 끝을 내열성 소재로 밀봉함으로써 구성될 수 있다.A PTC unit (23) according to another embodiment of the present invention may be configured by configuring a heating element (230) by embedding PTC elements one by one in the element receiving holes of an insulating frame (131), arranging electrode plates (236 to 238) at set positions so as to be in contact with the PTC elements, surrounding the electrode plates with a first insulating cover (c1) and a second insulating cover (c2), and then placing the heating element (230) in a heating tube (139) and sealing both ends with a heat-resistant material.

이러한 구성의 본 발명의 다른 실시 예에 따른 PTC 유닛(23)에 의하면, 제1 PTC 소자(234)와 제2 PTC 소자(235)가 하나의 절연 프레임(231)에 함께 실장되기는 하나, 서로 다른 전극판(제1 전극판과 제2 전극판)을 통하여 독립적으로 전원을 공급받는 구조이므로, 제1 PTC 소자(234)들만 발열되거나, 제2 PTC 소자(235)들만 발열되는 등 부분적인 발열이 구현될 수 있다.According to another embodiment of the present invention, the PTC unit (23) of this configuration, although the first PTC element (234) and the second PTC element (235) are mounted together in one insulating frame (231), they are structured to be supplied with power independently through different electrode plates (the first electrode plate and the second electrode plate), so that partial heating can be implemented, such as only the first PTC elements (234) being heated or only the second PTC elements (235) being heated.

이처럼 본 발명의 다른 실시 예에 따른 PTC 유닛도, 부분적인 발열 제어가 가능한 구성임에 따라, 수요나 필요에 맞춰 발열량을 적절히 조절 가능하다는 장점이 있으며, 발열량을 수요나 필요에 따라 적절히 조절할 수 있는 만큼 불필요하게 에너지가 소모되는 것을 확실하게 방지할 수 있어 보다 효율적인 에너지 활용을 도모할 수 있다. Likewise, the PTC unit according to another embodiment of the present invention has the advantage of being able to appropriately adjust the amount of heat generated according to demand or need, as it is configured to enable partial heat generation control. In addition, since the amount of heat generated can be appropriately adjusted according to demand or need, unnecessary energy consumption can be reliably prevented, thereby promoting more efficient energy utilization.

또한, 부분적으로 발열 제어가 가능한 만큼 풀(Full) 발열 요청에 대하여 순차적으로 전류를 인가(약간의 시간 차를 두고 제1 전극판과 제2 전극판에 전류를 인가)하는 제어를 통하여 돌입전류(Inrush current)를 크게 감소시킬 수 있고, 그 결과 회로적으로 안전성을 확보할 수 있으며, 돌입전류가 감소되는 만큼 저항이 낮아지므로 출력을 높일 수 있다는 장점이 있다.In addition, since partial heat control is possible, the inrush current can be greatly reduced through control that sequentially applies current (applies current to the first and second electrode plates with a slight time difference) for a full heat request, and as a result, circuit safety can be secured, and since resistance is lowered as the inrush current is reduced, there is an advantage in that the output can be increased.

이하, 앞서 살펴본 PTC 유닛을 포함하는 난방용 가열장치 구성에 대하여 간단히 살펴보기로 한다.Below, we will briefly look at the configuration of a heating device including the PTC unit discussed above.

도 10은 전술한 PTC 유닛을 포함하는 본 발명의 다른 측면에 따른 가열장치의 사시도이며, 도 11은 도 10에 도시된 가열장치의 부분 분해 사시도이다. 그리고 도 12는 도 11에 도시된 히터 코어부의 부분 분해 사시도이다.FIG. 10 is a perspective view of a heating device according to another aspect of the present invention including the aforementioned PTC unit, FIG. 11 is a partially exploded perspective view of the heating device illustrated in FIG. 10, and FIG. 12 is a partially exploded perspective view of the heater core portion illustrated in FIG. 11.

도 10 내지 도 12를 참조하면, 상기 가열장치(1)는 차량의 실내 난방을 위해 공기를 가열하는 장치로서, 복수 개의 PTC 유닛(13 또는 23)과 방열핀(14)을 포함하는 히터 코어부(12) 및 상기 히터 코어부(12)를 수용하는 프레임부(16), 그리고 상기 프레임부(16)의 상부에서 결합되며 PTC 유닛(13 또는 23)들의 히팅 제어를 위한 제어요소를 구비하는 제어부(18)를 포함한다.Referring to FIGS. 10 to 12, the heating device (1) is a device for heating air for heating the interior of a vehicle, and includes a heater core part (12) including a plurality of PTC units (13 or 23) and heat dissipation fins (14), a frame part (16) that accommodates the heater core part (12), and a control part (18) that is coupled to the upper portion of the frame part (16) and has a control element for controlling heating of the PTC units (13 or 23).

히터 코어부(12)는 복수 개의 PTC 유닛(13) 및 이웃하는 PTC 유닛(13) 사이에 하나씩 배치되는 방열핀(14)을 구비하며, 프레임부(16)는 상기 히터 코어부(12)를 수용하여 보호하는 것으로, 한 쌍의 사이드 프레임(160L, 160R) 및 한 쌍의 사이드 프레임(160L, 160R) 하단부를 상호 연결하면서 상기 PTC 유닛(13 또는 23) 각각에 대응하여 장착홈(163)을 구비하는 하부 홀더(162)로 구성될 수 있다.The heater core part (12) is provided with a plurality of PTC units (13) and a heat dissipation fin (14) arranged one by one between adjacent PTC units (13), and the frame part (16) is configured to receive and protect the heater core part (12), and may be configured with a pair of side frames (160L, 160R) and a lower holder (162) that interconnects the lower portions of the pair of side frames (160L, 160R) and has a mounting groove (163) corresponding to each of the PTC units (13 or 23).

히터 코어부(12)를 구성하는 PTC 유닛(13 또는 23)은 상하 방향으로 연장된 길이를 가지면서 단면 모양이 직사각형인 막대형 구성일 수 있다. PTC 유닛(13 또는 23)은 상대적으로 넓은 폭의 평평한 측면부가 서로 거리를 두고 대면하도록 도면상 좌우 방향으로 나란히 배치될 수 있으며, 서로 거리를 두고 대면하는 PTC 유닛(13 또는 23) 사이로 상기 방열핀(14)이 배치될 수 있다.The PTC units (13 or 23) constituting the heater core portion (12) may have a rod-shaped configuration with a length extending in the vertical direction and a rectangular cross-section. The PTC units (13 or 23) may be arranged side by side in the left-right direction in the drawing so that their relatively wide flat side surfaces face each other at a distance from each other, and the heat dissipation fins (14) may be arranged between the PTC units (13 or 23) facing each other at a distance from each other.

PTC 유닛(13 또는 23) 각각은, 여러 개의 PTC 소자를 실장한 절연 프레임 중심으로 전극판을 적절히 배치시킨 상태에서 이들을 히팅 튜브(139)에 넣고 양쪽 끝을 내열성 소재로 밀봉한 구성, 즉 전술한 일 실시 예 또는 다른 실시 예와 같은 구성일 수 있으며, 방열핀(14)은 양 측으로 배치되는 PTC 유닛(13)에 일측과 대향부 타측이 접하면서 공기가 통과되는 통로를 가진 구성일 수 있다. Each of the PTC units (13 or 23) may have a configuration in which electrode plates are appropriately arranged around an insulating frame in which multiple PTC elements are mounted, and these are placed in a heating tube (139) and sealed at both ends with a heat-resistant material, i.e., the same configuration as the above-described embodiment or another embodiment, and the heat dissipation fin (14) may have a configuration in which one side and the other side of the opposite side are in contact with the PTC units (13) arranged on both sides and have a passage through which air passes.

도 12에서 도면부호 15L, 15R은 히터 코어부(12)를 구성하는 복수 개의 방열핀(14) 중 최외측 방열핀(14)의 외면부와 접하도록 설치되는 핀 플레이트를 가리킨다. 여기서 두 개의 핀 들레이트(15L, 15R) 중 하나는 차체 등에 전기적으로 연결되어 접지를 구현하는 접지 플레이트일 수 있다.In Fig. 12, the drawing symbols 15L and 15R indicate fin plates installed to be in contact with the outer surface of the outermost radiating fin (14) among the plurality of radiating fins (14) constituting the heater core part (12). Here, one of the two fin plates (15L and 15R) may be a grounding plate that is electrically connected to a vehicle body or the like to implement grounding.

제어부(18)는 도면(도 10 내지 도 11)의 예시와 같이, 상기와 같은 히터 코어부(12)를 내부에 수용하는 프레임부(16)의 상부에서 결합되며 앞서 언급한 제어요소를 내부에 실장함으로써, 히터 코어부(12)를 구성하는 PTC 유닛(13 또는 23)들에 대해 전원을 공급하거나 차단하고, 전류량 제어를 통해 발열량을 제어할 수 있다. The control unit (18) is coupled to the upper part of the frame unit (16) that accommodates the heater core unit (12) as shown in the examples in the drawings (FIGS. 10 and 11), and by mounting the aforementioned control elements inside, power can be supplied or cut off to the PTC units (13 or 23) that constitute the heater core unit (12), and the amount of heat generated can be controlled through current control.

제어부(18)는 히터 코어부(12)를 내부에 수용한 프레임부(16)의 상부에서 결합되며 내부에 실장공간이 형성된 하우징(180)을 포함할 수 있다. 하우징(180)의 내부에는 각 PTC 유닛(13 또는 23) 일단의 전극 단자를 전기적으로 연결하는 여러 개의 버스바(184) 및 상기 버스바(184)와 전기적으로 연결되어 PTC 유닛(13)들의 히팅을 제어하는 제어요소를 실장한 기판(도시 생략)이 실장될 수 있다.The control unit (18) may include a housing (180) that is coupled to the upper portion of the frame unit (16) that accommodates the heater core unit (12) inside and has a mounting space formed inside. Inside the housing (180), a plurality of bus bars (184) that electrically connect electrode terminals of a group of each PTC unit (13 or 23) and a board (not shown) that electrically connects to the bus bars (184) and controls heating of the PTC units (13) may be mounted.

이와 같은 구성에 의하면, 전원 인가에 따라 각 PTC 유닛(13 또는 23)이 발생시킨 열이 방열핀(14)에 전달되고, 블로워(미도시)의 구동에 따라 방열핀(14)을 통과하는 공기와 PTC 유닛(13 또는 23)에서 열을 전달받아 고온으로 유지되는 방열핀(14) 사이의 열교환 작용으로 공기의 온도가 상승하여 온풍 형태로 실내 수요처(운전석, 동승석, 뒷좌석 등)로 제공될 수 있다. According to this configuration, heat generated by each PTC unit (13 or 23) is transferred to the radiating fin (14) depending on power supply, and the temperature of the air increases due to heat exchange between the air passing through the radiating fin (14) and the radiating fin (14) maintained at a high temperature by receiving heat from the PTC unit (13 or 23) depending on the operation of the blower (not shown), and the air can be supplied as warm air to indoor demand locations (driver's seat, passenger seat, rear seat, etc.).

이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the above detailed description of the present invention, only specific embodiments thereof have been described. However, it should be understood that the present invention is not limited to the specific forms mentioned in the detailed description, but rather should be understood to include all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

[부호의 설명][Explanation of symbols]

1 : 가열장치 12 : 히터 코어부1: Heating device 12: Heater core section

13, 23 : PTC 유닛13, 23 : PTC Unit

14 : 방열핀 15L, 15R : 핀 플레이트14: Radiating fin 15L, 15R: Fin plate

16 : 프레임부 18 : 제어부16: Frame section 18: Control section

130, 230 : 발열체 131, 231 : 절연 프레임130, 230: Heating element 131, 231: Insulating frame

132, 133, 232, 233 : 소자 수용홀132, 133, 232, 233: Element receiving holes

134, 234 : 제1 PTC 소자 135, 235 : 제2 PTC 소자134, 234: 1st PTC element 135, 235: 2nd PTC element

136, 236 : 제1 전극판 136-1 : 제1 전극셀136, 236: 1st electrode plate 136-1: 1st electrode cell

136-2, 236-2 : 제1 전극단자 137, 237 : 제2 전극판136-2, 236-2: First electrode terminal 137, 237: Second electrode plate

137-1 : 제2 전극셀 137-2, 237-2 : 제2 전극단자137-1: Second electrode cell 137-2, 237-2: Second electrode terminal

138, 238 : 공통 전극판 138-2, 238-2 : 제3 전극단자138, 238: Common electrode plate 138-2, 238-2: Third electrode terminal

160L, 160R : 사이드 프레임160L, 160R : Side Frame

162 : 하부 홀더 163 : 장착홈162: Lower holder 163: Mounting groove

180 : 하우징 184 : 버스바180 : Housing 184 : Busbar

Claims (10)

복수 개의 소자 수용홀이 형성된 절연 프레임;An insulating frame having a plurality of element receiving holes formed therein; 상기 소자 수용홀 중 일부 소자 수용홀에 하나씩 실장되는 제1 PTC 소자들;First PTC elements mounted one by one in some of the element receiving holes among the above element receiving holes; 상기 제1 PTC 소자와 교번되도록 다른 일부 소자 수용홀에 하나씩 실장되는 제2 PTC 소자들;Second PTC elements mounted one by one in some other element receiving holes so as to be alternated with the first PTC element; 상기 제1 PTC 소자들의 일면에 동시에 접하도록 배치되는 요철 형상의 제1 전극판;A first electrode plate having a rough shape arranged to simultaneously contact one surface of the first PTC elements; 상기 제1 전극판이 위치된 상기 프레임의 동일면 상에 위치되되, 상기 제2 PTC 소자들의 일면에 동시에 접하도록 배치되는 요철 형상의 제2 전극판; 및A second electrode plate having a protruding shape positioned on the same surface of the frame where the first electrode plate is positioned, and arranged to simultaneously contact one surface of the second PTC elements; and 상기 제1 전극판 및 제2 전극판이 위치된 상기 프레임의 반대면에 위치되어 상기 제1 PTC 소자와 제2 PTC 소자에 접하도록 배치되는 공통 전극판;을 포함하며,A common electrode plate is positioned on the opposite side of the frame where the first electrode plate and the second electrode plate are positioned and is arranged to contact the first PTC element and the second PTC element; 상기 제1 전극판 및 제2 전극판의 요철 부분이 상호 이격되어 전기적으로 분리되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that the uneven portions of the first electrode plate and the second electrode plate are mutually spaced and electrically isolated. 제 1 항에 있어서,In paragraph 1, 상기 제1 전극판은,The above first electrode plate, 상기 제1 PTC 소자 각각에 대응되는 크기로 형성되는 제1 전극셀들과,First electrode cells formed with a size corresponding to each of the first PTC elements, 상기 제1 전극셀들 중 최외측의 제1 전극셀로부터 연장되는 제1 전극단자로 구성되며,It consists of a first electrode terminal extending from the outermost first electrode cell among the above first electrode cells, 상기 제2 전극판은,The above second electrode plate, 상기 제2 PTC 소자에 대응되는 크기로 형성되되 상기 제1 전극셀에 대해 순차적으로 엇갈리게 배치되는 제2 전극셀들과,Second electrode cells formed in a size corresponding to the second PTC element but arranged sequentially and staggered relative to the first electrode cell, 상기 제2 전극셀들 중 최외측의 제2 전극셀로부터 연장되는 제2 전극단자로 구성되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized by comprising a second electrode terminal extending from the outermost second electrode cell among the second electrode cells. 제 2 항에 있어서,In the second paragraph, 상기 제1 전극단자가 제1 전극셀들의 일측 가장자리를 동시에 연결하는 위치와 제2 전극단자가 제2 전극셀들의 일측 가장자리를 동시에 연결하는 위치가 서로 반대인 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that the positions at which the first electrode terminal simultaneously connects one edge of the first electrode cells and the positions at which the second electrode terminal simultaneously connects one edge of the second electrode cells are opposite to each other. 제 2 항에 있어서,In the second paragraph, 공통 전극판의 상단에서 제3 전극단자가 상기 제1 전극단자 및 제2 전극단자와 겹치지 않는 위치에서 동일한 방향으로 동일한 높이까지 연장되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that a third electrode terminal extends from the top of the common electrode plate to the same height in the same direction at a position that does not overlap with the first electrode terminal and the second electrode terminal. 복수 개의 소자 수용홀을 구비하되, 상기 복수 개의 소자 수용홀 중 일부가 제1 홀열을 구성하고 나머지 일부가 상기 제1 홀열의 인접 측부에서 제2 홀열을 구성하도록 소자 수용홀이 배열된 절연 프레임;An insulating frame having a plurality of element receiving holes, wherein the element receiving holes are arranged such that some of the plurality of element receiving holes form a first row of holes and the remaining some form a second row of holes at an adjacent side of the first row of holes; 상기 제1 홀열에 속한 소자 수용홀에 하나씩 실장되는 제1 PTC 소자들;First PTC elements mounted one by one in the element receiving holes belonging to the first hole row; 상기 제2 홀열에 속한 소자 수용홀에 하나씩 실장되는 제2 PTC 소자들; Second PTC elements mounted one by one in the element receiving holes belonging to the second hole row; 상기 제1 PTC 소자들의 일면에 동시에 접하도록 배치되는 제1 전극판;A first electrode plate arranged to simultaneously contact one surface of the first PTC elements; 상기 제2 PTC 소자들의 일면에 동시에 접하도록 배치되는 제2 전극판;A second electrode plate arranged to simultaneously contact one surface of the second PTC elements; 상기 제1 PTC 소자들의 다른 일면과 제2 PTC 소자들의 다른 일면에 모두 접하도록 배치되는 공통 전극판을 포함하는 PTC 유닛.A PTC unit including a common electrode plate arranged to contact both the other side of the first PTC elements and the other side of the second PTC elements. 제 5 항에 있어서,In paragraph 5, 상기 제1 전극판과 제2 전극판은 서로 이격되어 전기적으로 분리되면서 상기 절연 프레임의 일 측면에 함께 배치되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that the first electrode plate and the second electrode plate are electrically separated from each other and arranged together on one side of the insulating frame. 제 5 항에 있어서,In paragraph 5, 상기 제1 홀열에 속한 소자 수용홀과 제2 홀열에 속한 소자 수용홀이 동일한 개수로 동일한 높이에 형성되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that the element receiving holes belonging to the first hole row and the element receiving holes belonging to the second hole row are formed in the same number and at the same height. 제 5 항에 있어서,In paragraph 5, 상기 제1 전극판과 제2 전극판 각각의 상단 중앙에서 제1 전극단자와 제2 전극단자가 동일한 높이로 연장 형성되고,The first electrode terminal and the second electrode terminal are formed to extend to the same height from the upper center of each of the first electrode plate and the second electrode plate, 공통 전극판의 상단에서 제3 전극단자가 상기 제1 전극단자 및 제2 전극단자와 겹치지 않는 위치에서 동일한 방향으로 동일한 높이까지 연장되는 것을 특징으로 하는 PTC 유닛.A PTC unit characterized in that a third electrode terminal extends from the top of the common electrode plate to the same height in the same direction at a position that does not overlap with the first electrode terminal and the second electrode terminal. 차량의 난방을 위해 공기를 가열하는 장치로서,As a device for heating air for heating a vehicle, 복수 개의 PTC 유닛 및 이웃하는 두 PTC 유닛 사이에 하나씩 배치되는 방열핀을 포함하는 히터 코어부;A heater core section including a plurality of PTC units and a heat dissipation fin, each fin positioned between two adjacent PTC units; 상기 히터 코어부를 수용하여 보호하며, 한 쌍의 사이드 프레임 및 사이드 프레임을 상호 연결하면서 상기 PTC 유닛 각각에 대응하여 장착홈을 구비하는 하부 홀더로 구성된 프레임부; 및A frame part configured to receive and protect the heater core part and to have a pair of side frames and a lower holder having mounting grooves corresponding to each of the PTC units while interconnecting the side frames; and 상기 히터 코어부를 내부에 수용한 프레임부의 상부에서 결합되며 상기 PTC 유닛 히팅 제어를 위한 제어요소를 구비하는 제어부;를 포함하며,A control unit is coupled to the upper part of the frame unit that accommodates the heater core unit inside and has a control element for controlling the heating of the PTC unit; 상기 PTC 유닛이 제 1 항 또는 제 5 항에 기재된 PTC 유닛인 것을 특징으로 하는 난방용 가열장치.A heating device for heating, characterized in that the PTC unit is a PTC unit as described in claim 1 or claim 5. 제 9 항에 있어서,In Article 9, 상기 제어부는,The above control unit, 상기 히터 코어부를 내부에 수용한 프레임부의 상부에서 결합되며 내부에 실장공간이 형성된 하우징을 포함하며,It includes a housing that is joined to the upper part of the frame part that accommodates the heater core part inside and has a mounting space formed inside. 상기 복수 개의 PTC 유닛 각각에 포함된 제1 전극판 모두와 전기적으로 연결되는 제1 버스바와, 제2 전극판 모두와 전기적으로 연결되는 제2 버스바, 그리고 공통 전극판 모두와 전기적으로 연결되는 공통 버스바 및 상기 제1 버스바, 제2 버스바, 공통 버스바와 전기적으로 연결되어 PTC 유닛들의 히팅을 제어하는 제어요소를 실장한 기판이 상기 하우징의 내부에 실장되는 것을 특징으로 하는 난방용 가열장치.A heating device for heating, characterized in that a board is mounted inside the housing, which mounts a first bus bar electrically connected to all of the first electrode plates included in each of the plurality of PTC units, a second bus bar electrically connected to all of the second electrode plates, a common bus bar electrically connected to all of the common electrode plates, and a control element electrically connected to the first bus bar, the second bus bar, and the common bus bar to control heating of the PTC units.
PCT/KR2023/006505 2023-05-12 2023-05-12 Ptc unit and heating device including same WO2024237357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/006505 WO2024237357A1 (en) 2023-05-12 2023-05-12 Ptc unit and heating device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/006505 WO2024237357A1 (en) 2023-05-12 2023-05-12 Ptc unit and heating device including same

Publications (1)

Publication Number Publication Date
WO2024237357A1 true WO2024237357A1 (en) 2024-11-21

Family

ID=93519806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006505 WO2024237357A1 (en) 2023-05-12 2023-05-12 Ptc unit and heating device including same

Country Status (1)

Country Link
WO (1) WO2024237357A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034207A (en) * 1976-01-23 1977-07-05 Murata Manufacturing Co., Ltd. Positive temperature coefficient semiconductor heating element
JP2004338699A (en) * 2003-02-28 2004-12-02 Catem Gmbh & Co Kg Electric heating apparatus equipped with heating region
US20180302952A1 (en) * 2017-04-12 2018-10-18 Horizons Incorporated Self-regulating heating device
KR101913121B1 (en) * 2016-01-28 2018-10-31 자화전자(주) Ptc heater and apparatus for heater using the same
KR102069610B1 (en) * 2017-09-20 2020-01-23 우리산업 주식회사 Heat Rod Assembly of Heater for vehicle and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034207A (en) * 1976-01-23 1977-07-05 Murata Manufacturing Co., Ltd. Positive temperature coefficient semiconductor heating element
JP2004338699A (en) * 2003-02-28 2004-12-02 Catem Gmbh & Co Kg Electric heating apparatus equipped with heating region
KR101913121B1 (en) * 2016-01-28 2018-10-31 자화전자(주) Ptc heater and apparatus for heater using the same
US20180302952A1 (en) * 2017-04-12 2018-10-18 Horizons Incorporated Self-regulating heating device
KR102069610B1 (en) * 2017-09-20 2020-01-23 우리산업 주식회사 Heat Rod Assembly of Heater for vehicle and method thereof

Similar Documents

Publication Publication Date Title
WO2017131327A1 (en) Independently controlled ptc heater, and device
WO2019182216A1 (en) Double-sided cooling type power module and manufacturing method therefor
WO2013129815A1 (en) Cooling-water heating type heater
WO2014119902A1 (en) Heater for motor vehicle
EP0680685B1 (en) Mounting assembly for power semiconductors
EP1030390B1 (en) Battery power source unit
WO2013172603A1 (en) Heater for a vehicle
WO2010044553A2 (en) Battery module assembly with improved cooling efficiency
WO2012091459A2 (en) Battery module storage device, battery module temperature adjustment device, and electric power storage system having same
WO2012023731A2 (en) Battery module and battery pack including same
WO2016144007A1 (en) Heat exchanger for cooling electrical element
WO2012044065A2 (en) Battery pack and a battery pack assembly equipped therewith
KR20030047809A (en) Electric heating device
WO2011030976A1 (en) Thermoelectric cooling and power-generating apparatus
WO2017131432A1 (en) Battery module and energy storing device having same
WO2015152575A1 (en) High-efficiency heating sheet for vehicle
WO2015163526A1 (en) Electric heating device
ITMI20001109A1 (en) HEATING DEVICE, ESPECIALLY FOR A VEHICLE.
WO2017047982A1 (en) Vehicle radiation heater
WO2024237357A1 (en) Ptc unit and heating device including same
WO2022092990A1 (en) Battery pack
WO2015037824A1 (en) Heat exchanger for cooling electric element
WO2024248345A1 (en) Rear cover assembly of air heating device for vehicle and air heating device for vehicle comprising same
WO2023075229A1 (en) Battery module and battery pack comprising same
WO2015167140A1 (en) Cooling-water heating type heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23937589

Country of ref document: EP

Kind code of ref document: A1