WO2024237137A1 - Quantum dot composition, resin composition, and wavelength conversion material - Google Patents
Quantum dot composition, resin composition, and wavelength conversion material Download PDFInfo
- Publication number
- WO2024237137A1 WO2024237137A1 PCT/JP2024/017020 JP2024017020W WO2024237137A1 WO 2024237137 A1 WO2024237137 A1 WO 2024237137A1 JP 2024017020 W JP2024017020 W JP 2024017020W WO 2024237137 A1 WO2024237137 A1 WO 2024237137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- group
- quantum dot
- phosphonic acid
- dot composition
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 308
- 239000000203 mixture Substances 0.000 title claims abstract description 215
- 239000000463 material Substances 0.000 title claims description 136
- 239000011342 resin composition Substances 0.000 title claims description 87
- 238000006243 chemical reaction Methods 0.000 title description 60
- 239000002105 nanoparticle Substances 0.000 claims abstract description 68
- 150000003007 phosphonic acid derivatives Chemical class 0.000 claims abstract description 63
- 239000004065 semiconductor Substances 0.000 claims abstract description 60
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 40
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 40
- 230000005284 excitation Effects 0.000 claims abstract description 8
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 45
- 125000004432 carbon atom Chemical group C* 0.000 claims description 42
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 40
- JDPSFRXPDJVJMV-UHFFFAOYSA-N hexadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCP(O)(O)=O JDPSFRXPDJVJMV-UHFFFAOYSA-N 0.000 claims description 32
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 239000004925 Acrylic resin Substances 0.000 claims description 24
- 229920000178 Acrylic resin Polymers 0.000 claims description 24
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- 125000000962 organic group Chemical group 0.000 claims description 16
- SVMUEEINWGBIPD-UHFFFAOYSA-N dodecylphosphonic acid Chemical compound CCCCCCCCCCCCP(O)(O)=O SVMUEEINWGBIPD-UHFFFAOYSA-N 0.000 claims description 14
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 claims description 13
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 125000002947 alkylene group Chemical group 0.000 claims description 13
- 125000003277 amino group Chemical group 0.000 claims description 13
- 125000001246 bromo group Chemical group Br* 0.000 claims description 13
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 13
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 13
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 13
- 125000003827 glycol group Chemical group 0.000 claims description 13
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 13
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 13
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 11
- FXFARGAYPHUQQL-UHFFFAOYSA-N 4-bromobutylphosphonic acid Chemical compound OP(O)(=O)CCCCBr FXFARGAYPHUQQL-UHFFFAOYSA-N 0.000 claims description 10
- 229910007709 ZnTe Inorganic materials 0.000 claims description 9
- 229910052793 cadmium Inorganic materials 0.000 claims description 9
- 229910052745 lead Inorganic materials 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 229910017115 AlSb Inorganic materials 0.000 claims description 8
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 8
- 229910002601 GaN Inorganic materials 0.000 claims description 8
- 229910005540 GaP Inorganic materials 0.000 claims description 8
- 229910005542 GaSb Inorganic materials 0.000 claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 8
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052681 coesite Inorganic materials 0.000 claims description 8
- 229910052906 cristobalite Inorganic materials 0.000 claims description 8
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 8
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 8
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 8
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 8
- 229910052682 stishovite Inorganic materials 0.000 claims description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- 229910052905 tridymite Inorganic materials 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 229910052593 corundum Inorganic materials 0.000 claims description 6
- KLRHPHDUDFIRKB-UHFFFAOYSA-M indium(i) bromide Chemical compound [Br-].[In+] KLRHPHDUDFIRKB-UHFFFAOYSA-M 0.000 claims description 6
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 6
- RLAKYYIYWIWCED-UHFFFAOYSA-N 11-prop-2-enoyloxyundecylphosphonic acid Chemical compound OP(O)(=O)CCCCCCCCCCCOC(=O)C=C RLAKYYIYWIWCED-UHFFFAOYSA-N 0.000 claims description 5
- 229910003373 AgInS2 Inorganic materials 0.000 claims description 5
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 claims description 5
- VAJFLSRDMGNZJY-UHFFFAOYSA-N heptylphosphonic acid Chemical compound CCCCCCCP(O)(O)=O VAJFLSRDMGNZJY-UHFFFAOYSA-N 0.000 claims description 5
- GKIQHTGBORJXKZ-UHFFFAOYSA-N undecylphosphonic acid Chemical compound CCCCCCCCCCCP(O)(O)=O GKIQHTGBORJXKZ-UHFFFAOYSA-N 0.000 claims description 5
- UDPGUMQDCGORJQ-UHFFFAOYSA-N (2-chloroethyl)phosphonic acid Chemical compound OP(O)(=O)CCCl UDPGUMQDCGORJQ-UHFFFAOYSA-N 0.000 claims description 4
- NEKHKXMBGWNTOO-UHFFFAOYSA-N (4-aminophenyl)methylphosphonic acid Chemical compound NC1=CC=C(CP(O)(O)=O)C=C1 NEKHKXMBGWNTOO-UHFFFAOYSA-N 0.000 claims description 4
- OAOBMEMWHJWPNA-UHFFFAOYSA-N (4-aminophenyl)phosphonic acid Chemical compound NC1=CC=C(P(O)(O)=O)C=C1 OAOBMEMWHJWPNA-UHFFFAOYSA-N 0.000 claims description 4
- XDGIQCFWQNHSMV-UHFFFAOYSA-N (4-bromophenyl)phosphonic acid Chemical compound OP(O)(=O)C1=CC=C(Br)C=C1 XDGIQCFWQNHSMV-UHFFFAOYSA-N 0.000 claims description 4
- YIDVLWDHYNWHMH-UHFFFAOYSA-N (4-hydroxyphenyl)phosphonic acid Chemical compound OC1=CC=C(P(O)(O)=O)C=C1 YIDVLWDHYNWHMH-UHFFFAOYSA-N 0.000 claims description 4
- JHDJUJAFXNIIIW-UHFFFAOYSA-N (4-phosphonophenyl)phosphonic acid Chemical compound OP(O)(=O)C1=CC=C(P(O)(O)=O)C=C1 JHDJUJAFXNIIIW-UHFFFAOYSA-N 0.000 claims description 4
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 claims description 4
- UIQSKEDQPSEGAU-UHFFFAOYSA-N 1-Aminoethylphosphonic Acid Chemical compound CC(N)P(O)(O)=O UIQSKEDQPSEGAU-UHFFFAOYSA-N 0.000 claims description 4
- JODKEKOFCNBHGO-UHFFFAOYSA-N 11-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]undecylphosphonic acid Chemical compound COCCOCCOCCOCCCCCCCCCCCP(O)(O)=O JODKEKOFCNBHGO-UHFFFAOYSA-N 0.000 claims description 4
- JEIWUVKOYIJQPX-UHFFFAOYSA-N 11-aminoundecylphosphonic acid hydrobromide Chemical compound Br.NCCCCCCCCCCCP(O)(O)=O JEIWUVKOYIJQPX-UHFFFAOYSA-N 0.000 claims description 4
- PPPBZNXJGBLLPM-UHFFFAOYSA-N 11-phosphonoundecanoic acid Chemical compound OC(=O)CCCCCCCCCCP(O)(O)=O PPPBZNXJGBLLPM-UHFFFAOYSA-N 0.000 claims description 4
- BOZRBIJGLJJPRF-UHFFFAOYSA-N 2,2,3,3,4,4,4-heptafluorobutanenitrile Chemical compound FC(F)(F)C(F)(F)C(F)(F)C#N BOZRBIJGLJJPRF-UHFFFAOYSA-N 0.000 claims description 4
- BFKXVERGWXHHIH-UHFFFAOYSA-N 2-bromoethylphosphonic acid Chemical compound OP(O)(=O)CCBr BFKXVERGWXHHIH-UHFFFAOYSA-N 0.000 claims description 4
- NLBSQHGCGGFVJW-UHFFFAOYSA-N 2-carboxyethylphosphonic acid Chemical compound OC(=O)CCP(O)(O)=O NLBSQHGCGGFVJW-UHFFFAOYSA-N 0.000 claims description 4
- BFDYSJCMAFSRDH-UHFFFAOYSA-N 2-phenylethylphosphonic acid Chemical compound OP(O)(=O)CCC1=CC=CC=C1 BFDYSJCMAFSRDH-UHFFFAOYSA-N 0.000 claims description 4
- CETXMCMQEXPPLV-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecylphosphonic acid Chemical compound OP(O)(=O)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CETXMCMQEXPPLV-UHFFFAOYSA-N 0.000 claims description 4
- CXOIECRVHUDBSA-UHFFFAOYSA-N 3-bromopropylphosphonic acid Chemical compound OP(O)(=O)CCCBr CXOIECRVHUDBSA-UHFFFAOYSA-N 0.000 claims description 4
- ZKKXCRILZNBJJM-UHFFFAOYSA-N 3-phosphonobenzoic acid Chemical compound OC(=O)C1=CC=CC(P(O)(O)=O)=C1 ZKKXCRILZNBJJM-UHFFFAOYSA-N 0.000 claims description 4
- PUVMVPFLXCHEOY-UHFFFAOYSA-N 3-phosphonopropylphosphonic acid Chemical compound OP(O)(=O)CCCP(O)(O)=O PUVMVPFLXCHEOY-UHFFFAOYSA-N 0.000 claims description 4
- IEQICHVXWFGDAN-UHFFFAOYSA-N 4-phosphonobenzoic acid Chemical compound OC(=O)C1=CC=C(P(O)(O)=O)C=C1 IEQICHVXWFGDAN-UHFFFAOYSA-N 0.000 claims description 4
- JKTORXLUQLQJCM-UHFFFAOYSA-N 4-phosphonobutylphosphonic acid Chemical compound OP(O)(=O)CCCCP(O)(O)=O JKTORXLUQLQJCM-UHFFFAOYSA-N 0.000 claims description 4
- KRKSOBREFNTJJY-UHFFFAOYSA-N 5-hydroxybenzimidazole Chemical compound OC1=CC=C2NC=NC2=C1 KRKSOBREFNTJJY-UHFFFAOYSA-N 0.000 claims description 4
- QRKINCQKOGXVEO-UHFFFAOYSA-N 5-phosphonopentylphosphonic acid Chemical compound OP(O)(=O)CCCCCP(O)(O)=O QRKINCQKOGXVEO-UHFFFAOYSA-N 0.000 claims description 4
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 claims description 4
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- QQVDJLLNRSOCEL-UHFFFAOYSA-N Ciliatine Natural products [NH3+]CCP(O)([O-])=O QQVDJLLNRSOCEL-UHFFFAOYSA-N 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 4
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 4
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 claims description 4
- 229910004481 Ta2O3 Inorganic materials 0.000 claims description 4
- 229910007475 ZnGeP2 Inorganic materials 0.000 claims description 4
- AIWAKBITCLOITM-QPJJXVBHSA-N [(e)-3-phenylprop-2-enyl]phosphonic acid Chemical group OP(O)(=O)C\C=C\C1=CC=CC=C1 AIWAKBITCLOITM-QPJJXVBHSA-N 0.000 claims description 4
- ZCVUWZJGYKGTPG-UHFFFAOYSA-N [2-(phosphonomethyl)phenyl]methylphosphonic acid Chemical compound OP(O)(=O)CC1=CC=CC=C1CP(O)(O)=O ZCVUWZJGYKGTPG-UHFFFAOYSA-N 0.000 claims description 4
- PYWZCUXISXXGMI-UHFFFAOYSA-N [3-(phosphonomethyl)phenyl]methylphosphonic acid Chemical compound OP(O)(=O)CC1=CC=CC(CP(O)(O)=O)=C1 PYWZCUXISXXGMI-UHFFFAOYSA-N 0.000 claims description 4
- ZURHBENZJDSCRG-UHFFFAOYSA-N [4-(phosphonomethyl)phenyl]methylphosphonic acid Chemical compound OP(O)(=O)CC1=CC=C(CP(O)(O)=O)C=C1 ZURHBENZJDSCRG-UHFFFAOYSA-N 0.000 claims description 4
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical group OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 claims description 4
- 229960004343 alendronic acid Drugs 0.000 claims description 4
- 229910002113 barium titanate Inorganic materials 0.000 claims description 4
- JDRCQIRZJMJGMW-UHFFFAOYSA-N benzhydrylphosphonic acid Chemical compound C=1C=CC=CC=1C(P(O)(=O)O)C1=CC=CC=C1 JDRCQIRZJMJGMW-UHFFFAOYSA-N 0.000 claims description 4
- UOKRBSXOBUKDGE-UHFFFAOYSA-N butylphosphonic acid Chemical compound CCCCP(O)(O)=O UOKRBSXOBUKDGE-UHFFFAOYSA-N 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 4
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 4
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 claims description 4
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical group OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- OXHDYFKENBXUEM-UHFFFAOYSA-N glyphosine Chemical compound OC(=O)CN(CP(O)(O)=O)CP(O)(O)=O OXHDYFKENBXUEM-UHFFFAOYSA-N 0.000 claims description 4
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 4
- MBKDYNNUVRNNRF-UHFFFAOYSA-N medronic acid Chemical compound OP(O)(=O)CP(O)(O)=O MBKDYNNUVRNNRF-UHFFFAOYSA-N 0.000 claims description 4
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 claims description 4
- VMMKGHQPQIEGSQ-UHFFFAOYSA-N minodronic acid Chemical compound C1=CC=CN2C(CC(O)(P(O)(O)=O)P(O)(O)=O)=CN=C21 VMMKGHQPQIEGSQ-UHFFFAOYSA-N 0.000 claims description 4
- 229950011129 minodronic acid Drugs 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- BFRGSJVXBIWTCF-UHFFFAOYSA-N niobium monoxide Inorganic materials [Nb]=O BFRGSJVXBIWTCF-UHFFFAOYSA-N 0.000 claims description 4
- OLGGYSFJQGDOFX-UHFFFAOYSA-N nonylphosphonic acid Chemical compound CCCCCCCCCP(O)(O)=O OLGGYSFJQGDOFX-UHFFFAOYSA-N 0.000 claims description 4
- FTMKAMVLFVRZQX-UHFFFAOYSA-N octadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCCCP(O)(O)=O FTMKAMVLFVRZQX-UHFFFAOYSA-N 0.000 claims description 4
- NJGCRMAPOWGWMW-UHFFFAOYSA-N octylphosphonic acid Chemical compound CCCCCCCCP(O)(O)=O NJGCRMAPOWGWMW-UHFFFAOYSA-N 0.000 claims description 4
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- NSETWVJZUWGCKE-UHFFFAOYSA-N propylphosphonic acid Chemical compound CCCP(O)(O)=O NSETWVJZUWGCKE-UHFFFAOYSA-N 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 claims description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 229960004556 tenofovir Drugs 0.000 claims description 4
- VCMJCVGFSROFHV-WZGZYPNHSA-N tenofovir disoproxil fumarate Chemical compound OC(=O)\C=C\C(O)=O.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VCMJCVGFSROFHV-WZGZYPNHSA-N 0.000 claims description 4
- BVQJQTMSTANITJ-UHFFFAOYSA-N tetradecylphosphonic acid Chemical compound CCCCCCCCCCCCCCP(O)(O)=O BVQJQTMSTANITJ-UHFFFAOYSA-N 0.000 claims description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 4
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 claims description 4
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 4
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 claims description 4
- 229960004276 zoledronic acid Drugs 0.000 claims description 4
- ZHBRSHSRMYZHLS-UHFFFAOYSA-N (4-hydroxyphenyl)methylphosphonic acid Chemical compound OC1=CC=C(CP(O)(O)=O)C=C1 ZHBRSHSRMYZHLS-UHFFFAOYSA-N 0.000 claims description 3
- HAIZAZONHOVLEK-UHFFFAOYSA-N (4-nitrophenyl) octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC1=CC=C([N+]([O-])=O)C=C1 HAIZAZONHOVLEK-UHFFFAOYSA-N 0.000 claims description 3
- PPCDEFQVKBXBPS-UHFFFAOYSA-N 11-hydroxyundecylphosphonic acid Chemical compound OCCCCCCCCCCCP(O)(O)=O PPCDEFQVKBXBPS-UHFFFAOYSA-N 0.000 claims description 3
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 3
- 229910021617 Indium monochloride Inorganic materials 0.000 claims description 3
- 229910007926 ZrCl Inorganic materials 0.000 claims description 3
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 claims description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 3
- GJWAEWLHSDGBGG-UHFFFAOYSA-N hexylphosphonic acid Chemical compound CCCCCCP(O)(O)=O GJWAEWLHSDGBGG-UHFFFAOYSA-N 0.000 claims description 3
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 claims description 3
- AGCUFKNHQDVTAD-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexylphosphonic acid Chemical compound OP(O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F AGCUFKNHQDVTAD-UHFFFAOYSA-N 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims 1
- 229910006149 GeI4 Inorganic materials 0.000 claims 1
- CUDGTZJYMWAJFV-UHFFFAOYSA-N tetraiodogermane Chemical compound I[Ge](I)(I)I CUDGTZJYMWAJFV-UHFFFAOYSA-N 0.000 claims 1
- 231100000053 low toxicity Toxicity 0.000 abstract description 11
- 230000002542 deteriorative effect Effects 0.000 abstract description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 390
- 239000000243 solution Substances 0.000 description 115
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 107
- 239000010410 layer Substances 0.000 description 73
- 239000006185 dispersion Substances 0.000 description 72
- 238000004519 manufacturing process Methods 0.000 description 43
- 229920000139 polyethylene terephthalate Polymers 0.000 description 41
- 239000005020 polyethylene terephthalate Substances 0.000 description 41
- 230000006866 deterioration Effects 0.000 description 35
- 239000006228 supernatant Substances 0.000 description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 30
- -1 silicon alkoxides Chemical class 0.000 description 25
- 239000002904 solvent Substances 0.000 description 25
- 239000011162 core material Substances 0.000 description 24
- 239000012299 nitrogen atmosphere Substances 0.000 description 24
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 21
- 229920002799 BoPET Polymers 0.000 description 20
- 239000012298 atmosphere Substances 0.000 description 20
- 238000003475 lamination Methods 0.000 description 20
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 20
- 239000011247 coating layer Substances 0.000 description 18
- 239000011257 shell material Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 229940042400 direct acting antivirals phosphonic acid derivative Drugs 0.000 description 13
- 238000000576 coating method Methods 0.000 description 12
- 239000012702 metal oxide precursor Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 9
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 8
- 239000007771 core particle Substances 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000006862 quantum yield reaction Methods 0.000 description 5
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 4
- KUQIWULJSBTNPX-HWKANZROSA-N (e)-octadec-2-ene Chemical compound CCCCCCCCCCCCCCC\C=C\C KUQIWULJSBTNPX-HWKANZROSA-N 0.000 description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 239000013110 organic ligand Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 3
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 231100000701 toxic element Toxicity 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 1
- HQQTZCPKNZVLFF-UHFFFAOYSA-N 4h-1,2-benzoxazin-3-one Chemical class C1=CC=C2ONC(=O)CC2=C1 HQQTZCPKNZVLFF-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- 229910005258 GaBr3 Inorganic materials 0.000 description 1
- 229910005267 GaCl3 Inorganic materials 0.000 description 1
- 229910005263 GaI3 Inorganic materials 0.000 description 1
- 229910021621 Indium(III) iodide Inorganic materials 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910021579 Iron(II) iodide Inorganic materials 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910021568 Manganese(II) bromide Inorganic materials 0.000 description 1
- 229910021574 Manganese(II) iodide Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Chemical class CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 1
- RJYMRRJVDRJMJW-UHFFFAOYSA-L dibromomanganese Chemical compound Br[Mn]Br RJYMRRJVDRJMJW-UHFFFAOYSA-L 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000005125 dioxazines Chemical class 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- SRVXDMYFQIODQI-UHFFFAOYSA-K gallium(iii) bromide Chemical compound Br[Ga](Br)Br SRVXDMYFQIODQI-UHFFFAOYSA-K 0.000 description 1
- DWRNSCDYNYYYHT-UHFFFAOYSA-K gallium(iii) iodide Chemical compound I[Ga](I)I DWRNSCDYNYYYHT-UHFFFAOYSA-K 0.000 description 1
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- BQZGVMWPHXIKEQ-UHFFFAOYSA-L iron(ii) iodide Chemical compound [Fe+2].[I-].[I-] BQZGVMWPHXIKEQ-UHFFFAOYSA-L 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- QWYFOIJABGVEFP-UHFFFAOYSA-L manganese(ii) iodide Chemical compound [Mn+2].[I-].[I-] QWYFOIJABGVEFP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 1
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002080 perylenyl group Chemical class C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical class C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- GEKDEMKPCKTKEC-UHFFFAOYSA-N tetradecane-1-thiol Chemical compound CCCCCCCCCCCCCCS GEKDEMKPCKTKEC-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical class [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 description 1
- QNLQKURWPIJSJS-UHFFFAOYSA-N trimethylsilylphosphane Chemical compound C[Si](C)(C)P QNLQKURWPIJSJS-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
Definitions
- the present invention relates to a quantum dot composition, a resin composition, and a wavelength conversion material.
- Quantum dots are semiconductor particles with nano-sized particle diameters. Excitons generated by light absorption are confined in nano-sized spaces, making the energy levels of the semiconductor nanoparticles discrete, and the band gap depends on the particle diameter. For this reason, quantum dots emit fluorescent light with high efficiency and have sharp emission spectra. In addition, because the band gap changes depending on the particle diameter, quantum dots have the advantage of being able to control the emission wavelength, and are expected to be used as wavelength conversion materials for solid-state lighting and displays (Patent Document 1).
- Quantum dots that exhibit excellent fluorescent emission properties include those that contain Cd or Pb. However, because Cd and Pb are highly toxic to the human body and the environment, restrictions on their use are being considered around the world, including the European Union's RoHS Directive. For this reason, quantum dots that do not contain these toxic elements are being considered.
- quantum dots are easily destabilized due to their small nanometer particle size, large specific surface area, high surface energy, and surface activity. This makes them susceptible to surface defects due to dangling bonds and oxidation reactions on the quantum dot surface, which causes deterioration of the fluorescent emission properties.
- Currently available quantum dots have such stability problems, and are known to cause deterioration of their emission properties due to heat, humidity, photoexcitation, etc.
- organic ligands called ligands are coordinated to the quantum dot surface after synthesis.
- the coordination of these ligands improves dispersibility in solvents and resins, and by passivating defects, it is possible to suppress deterioration in the fluorescence emission efficiency.
- the ligand may be detached from the quantum dot surface due to external influences such as heat or light exposure, resulting in a deterioration in the fluorescence emission efficiency.
- the stability of quantum dots is an important issue, since changes in the fluorescence efficiency of quantum dots over time can lead to defects such as uneven color and light emission and dead dots when used in displays.
- Patent Document 3 In response to these problems, methods have been considered in which quantum dots are supported on inorganic oxides (Patent Document 3) and methods have been considered in which the stability of quantum dots is improved by using a gas barrier film with low oxygen and moisture permeability (Patent Document 4).
- the method of supporting quantum dots on oxide prevents oxygen and water from coming into direct contact with the quantum dot surface, suppressing the oxidation reaction and thereby preventing deterioration of the fluorescence emission efficiency.
- Stabilization using a barrier film also poses the problem of deterioration due to the diffusion of oxygen and water vapor from the film's edges.
- barrier films are generally around 20 to 200 ⁇ m thick, and in order to protect both sides of the film, the thickness must be at least 40 ⁇ m or more, which places a limit on how thin the wavelength conversion film can be.
- Quantum dots that do not contain toxic elements are being investigated, but degradation of the fluorescence emission efficiency is an issue.
- the present invention has been made to solve the above problems, and aims to provide a quantum dot composition that suppresses the deterioration of fluorescence emission efficiency even when low-toxicity quantum dots are used, a resin composition containing the quantum dot composition, and a wavelength conversion material.
- the present invention has been made to achieve the above object, and provides a quantum dot composition containing quantum dots that emit fluorescence when excited by excitation light, the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surface being coated with a metal oxide, and the quantum dot surface or the metal oxide surface being modified with a phosphonic acid derivative.
- Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency even when it is composed of quantum dots with low toxicity.
- the quantum dot is composed of the semiconductor nanoparticle core and a single or multiple semiconductor nanoparticle shells covering the semiconductor nanoparticle core.
- Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
- the semiconductor nanoparticle core is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb , AgGaS2 , AgInS2 , AgGaSe2 , AgInSe2 , CuGaS2 , CuGaSe2, CuInS2 , CuInSe2 , ZnSiP2 , and ZnGeP2 as a single crystal, multiple crystals, or mixed crystals.
- Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
- the semiconductor nanoparticle core surface is composed of GaCl 3 , GaI 3 , GaBr 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , InCl 3 , InBr 3 , InI 3 , AgCl, AgBr, AgI, KCl, KBr, KI, NaCl , NaBr, NaI, MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , MnCl 2 , MnBr 2 , MnI 2 , FeCl 2 , FeBr 2 , FeI 2 , CuCl 2 , CuBr 2 , CuI 2 , ZrCl 4 , ZrBr 4 , ZrI 4 , GeCl 4 , GeBr 4 , and GeI 4 .
- Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
- the semiconductor nanoparticle shell is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb as a single crystal, multiple crystals, or mixed crystals.
- Such a quantum dot composition would be preferable in terms of improving the fluorescence emission efficiency and stability.
- the metal oxide is at least one compound selected from TiO2 , ZnO , Al2O3 , SiO2 , ZrO2 , Fe2O3 , MgO , Y2O3 , HfO2 , CeO2 , In2O3 , SnO2 , WO3 , CrO3 , Ta2O3 , BaTiO3 , V2O5 , NiO , NbO , Cu2O , CuO , and MoO3 .
- Such a quantum dot composition would be preferable in terms of improving the fluorescence emission efficiency and stability.
- the phosphonic acid derivative is preferably represented by the following formula (I).
- R 1 is a monovalent organic group having one or more carbon atoms.
- Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
- the phosphonic acid derivative is 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, heptylphosphonic acid, xylphosphonic acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid, (4-aminophenyl)phosphonic acid, 3-phosphonobenzoic acid, methylphosphonic acid, nonylphosphonic acid, benzhydrylphosphonic acid, octadecylphosphonic acid, (amin
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention, which suppresses deterioration of the fluorescence emission efficiency and improves stability.
- the phosphonic acid derivative is preferably represented by the following formula (II): (In formula (II), R2 is a divalent organic group having one or more carbon atoms.)
- Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
- the phosphonic acid derivative is one or more selected from m-xylylene diphosphonic acid, o-xylylene diphosphonic acid, methylene diphosphonic acid, alendronic acid, 1,4-butylene diphosphonic acid, glycine-N,N-bis(methylenephosphonic acid), p-xylylene diphosphonic acid, zoledronic acid, 1,3-propylene diphosphonic acid, 1,5-pentylene diphosphonic acid, 1,4-phenylene diphosphonic acid, 1,2-ethylene diphosphonic acid, 1,6-hexylene diphosphonic acid, minodronate, and 1-hydroxyethane-1,1-diphosphonic acid.
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- the phosphonic acid derivative is preferably represented by the following formula (III).
- R3 is a trivalent organic group having one or more carbon atoms.
- Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
- the phosphonic acid derivative is nitrilotris(methylene phosphonic acid).
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- the phosphonic acid derivative is preferably represented by the following formula (IV).
- R4 is a divalent organic group having one or more carbon atoms.
- Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
- the phosphonic acid derivative is N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid).
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- R1 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- R2 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- R3 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- R4 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
- the present invention also provides a resin composition in which the quantum dot composition described above is dispersed in a resin.
- Such a resin composition is one in which the deterioration of the fluorescent light emission efficiency is suppressed.
- the resin is at least one selected from the group consisting of epoxy resins, acrylic resins, fluorine resins, silicone resins, carbonate resins, and glass resins.
- Such resins can be used in the resin composition of the present invention.
- the present invention also provides a wavelength converting material that contains a cured product of the resin composition described above.
- Such wavelength conversion materials suppress deterioration of the fluorescence emission efficiency and improve reliability.
- the quantum dot composition of the present invention As described above, the quantum dot composition of the present invention, the resin composition containing the quantum dot composition, and the wavelength conversion material suppress deterioration of the fluorescence emission efficiency even when low-toxicity quantum dots are used.
- a quantum dot composition containing quantum dots that emit fluorescence when excited by excitation light the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative, can suppress deterioration in fluorescence emission efficiency even when low-toxicity quantum dots are used, and have completed the present invention.
- composition, type, and manufacturing method of the quantum dots, metal oxide, and phosphonic acid derivative are not limited to the following forms.
- the present invention is a quantum dot composition containing quantum dots that emit fluorescence when exposed to excitation light, the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative.
- the structure of the quantum dot in the present invention is not particularly limited as long as it is composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell.
- Such quantum dots have excellent fluorescence emission properties and stability.
- the excitons generated in the shell are confined inside the core particle, improving the fluorescence emission efficiency, and further improving the stability since the core surface is covered with the shell.
- the quantum dots are composed of a semiconductor nanoparticle core and a single or multiple semiconductor nanoparticle shells covering the semiconductor nanoparticle core. With such a quantum dot composition, the deterioration of the fluorescence emission efficiency is further suppressed.
- the material for the semiconductor nanoparticle core of the core/shell semiconductor nanoparticle is not particularly limited as long as it does not contain the elements Cd or Pb from the viewpoint of toxicity, but for example, a material selected from the group consisting of II-VI compounds, III-V compounds, I-III-VI compounds, II-IV-V compounds, and alloys or mixed crystals thereof can be used.
- the material of the semiconductor nanoparticle core may be selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb , AgGaS2 , AgInS2 , AgGaSe2 , AgInSe2, CuGaS2 , CuGaSe2 , CuInS2 , CuInSe2 , ZnSiP2 , and ZnGeP2 in a single, multiple, or mixed crystal form.
- ZnSe, ZnTe, and InP are particularly preferred in terms of fluorescence emission properties and stability.
- the surface of the core particle of the core/shell semiconductor nanoparticles is preferably passivated with an inorganic compound. This inactivates defects on the surface of the core particle, improving the fluorescence emission efficiency and suppressing deterioration of the fluorescence emission efficiency over time.
- the inorganic compound for passivation is not particularly limited, but examples thereof include metal halides, and from the viewpoint of improving the fluorescence emission efficiency, GaCl3 , GaI3 , GaBr3, ZnCl2 , ZnBr2 , ZnI2 , InCl3 , InBr3 , InI3 , AgCl, AgBr , AgI, KCl, KBr, KI, NaCl, NaBr, NaI, MgCl2, MgBr2 , MgI2 , CaCl2 , CaBr2 , CaI2 , MnCl2 , MnBr2 , MnI2 , FeCl2 , FeBr2 , FeI2 , CuCl2 , CuBr2 , CuI2 , ZrCl4 , ZrBr , Particularly preferred is at least one compound selected from ZrI 4 , GeCl 4 , GeBr 4 and GeI 4
- the material for the shell of the semiconductor nanoparticle is not particularly limited as long as it does not contain the elements Cd or Pb from the viewpoint of toxicity, but it is preferable that it has a large band gap and low lattice mismatch with the core material, and can be selected from the group consisting of alloys and mixed crystals of II-VI and III-V compounds.
- Specific shell materials may be selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb, either singly, in multiple, or as mixed crystals. Of these materials, ZnSe and ZnS are particularly preferred in terms of improved fluorescence emission efficiency and stability.
- semiconductor nanoparticles there are various methods for producing semiconductor nanoparticles, such as liquid phase methods and gas phase methods, but the present invention is not particularly limited to these. From the viewpoint of exhibiting high fluorescence emission efficiency, it is preferable to use semiconductor nanoparticles obtained using the hot soap method or hot injection method, in which precursor species are reacted at high temperature in a non-polar solvent with a high boiling point.
- the quantum dots have organic ligands, called ligands, coordinated to their surfaces.
- the quantum dots of the present invention have a surface coated with a metal oxide, which prevents oxygen and water in the air from coming into direct contact with the quantum dot surface and inhibits oxidation reactions, thereby preventing deterioration of the fluorescence emission efficiency.
- the "coating" of the quantum dot surface with metal oxide may be in the form of partial or complete coating, so long as the deterioration of the fluorescence emission efficiency over time is suppressed.
- it may be a uniform coating layer such as a core-shell structure, or a non-uniform coating layer, and may be a structure in which multiple semiconductor nanoparticles are coated with metal oxide.
- the film thickness of the metal oxide is not particularly limited, but is preferably 200 nm or less from the viewpoint of translucency.
- the type of the oxide coating layer is not particularly limited, but may be at least one compound selected from TiO2, ZnO, Al2O3, SiO2, ZrO2, Fe2O3, MgO, Y2O3, HfO2, CeO2, In2O3, SnO2, WO3 , CrO3 , Ta2O3 , BaTiO3 , V2O5 , NiO , NbO , Cu2O , CuO , and MoO3 . From the viewpoint of improving the stability of the quantum dots, TiO2 , Al2O3 , SiO2 , and ZrO2 are more preferable.
- the method for forming the metal oxide coating layer is not particularly limited, but from the viewpoint of selectively progressing the reaction on the quantum dot surface, a method in which a metal oxide precursor is reacted in a liquid phase is preferred.
- one example is a method for forming an oxide coating layer using microwave treatment.
- the metal oxide precursor is heated directly from the inside, allowing the reaction to proceed selectively in a shorter time, forming an oxide layer on the quantum dot surface.
- microwaves generally refer to electromagnetic waves with a frequency of 300 MHz to 3 THz.
- methods for irradiating microwaves include, but are not limited to, a method using flexiWAVE manufactured by Milestone General.
- the surface of the semiconductor nanoparticles with metal oxide by performing a microwave irradiation treatment on the coexisting metal oxide precursor and quantum dots and a metal oxide precursor in the coexistence. This allows the efficient formation of a metal oxide coating layer, and suppresses the deterioration of the fluorescence emission efficiency.
- a polar solvent a non-polar solvent, and an ionic liquid as the dispersion medium for the quantum dots and the metal oxide precursor, and form the coating layer in that solvent.
- a heating element that absorbs microwaves such as Milestone's Weflon, a type of PTFE resin containing carbon components, may be used during the coating process.
- a catalyst to promote the reaction of the metal oxide precursor during the coating process.
- a metal alkoxide it is desirable to use a catalyst to promote the sol-gel reaction.
- catalysts include acidic aqueous solutions and basic aqueous solutions, and basic aqueous solutions are particularly preferable from the viewpoint of the film thickness of the coating layer.
- a surfactant may be added.
- the surfactant is not particularly limited, but examples include quaternary ammonium salts such as cetyltrimethylammonium bromide, which are cationic surfactants; carboxylates and sulfonates, which are anionic surfactants; and polyoxyethylene alkyl ethers and cetyltrimethylammonium bromide, which are nonionic surfactants.
- Cationic surfactants are particularly preferred from the viewpoint of dispersibility of the metal oxide precursor.
- the coating process it is also preferable to carry out the coating process in the presence of alcohol. If coating is carried out in the presence of alcohol, the dispersibility of the metal oxide precursor is better. Also, if a surfactant is added, dispersibility can be further improved by dissolving it in a polar solvent such as alcohol.
- the reaction temperature during microwave irradiation treatment varies depending on the solvent, but is preferably 40 to 200°C, more preferably 50 to 110°C, from the viewpoint of preventing deterioration of the fluorescence emission efficiency.
- microwave treatment is used, but there are no particular limitations as long as the quantum dot surface is "coated" with an oxide layer.
- a metal oxide precursor is reacted in a solution to form a metal oxide coating layer on the surface of the quantum dots, thereby preventing water and oxygen in the air from directly contacting the quantum dot surface and suppressing deterioration of the fluorescence emission efficiency.
- the modifier useful in the present invention and necessary for removing hydroxyl groups on the oxide surface is a phosphonic acid derivative
- the quantum dot composition in this embodiment is composed of the quantum dots, an oxide that covers the quantum dot surface, and a phosphonic acid derivative that modifies the quantum dot surface or the oxide surface.
- Phosphonic acid derivatives are stable compounds in themselves and do not self-polymerize, so they do not precipitate in the bulk and selectively adhere to and modify oxide surfaces or quantum dot surfaces.
- heat treatment at several tens of degrees causes a dehydration condensation reaction between the hydroxyl groups of the metal oxide and the phosphonic acid derivative, which removes the hydroxyl groups on the oxide surface and modifies the oxide surface with the phosphonic acid derivative.
- modification refers to a state in which phosphonic acid is attached to a metal oxide surface or a quantum dot surface.
- the attachment of a phosphonic acid derivative to a surface by “modification” includes partial and full surface attachment, and refers to a state in which the phosphonic acid derivative is attached to at least a part of the surface.
- the term "adhesion” as used above may refer to either physical adsorption or chemical bonding, and may broadly refer to, for example, covalent bonding, ionic bonding, or hydrogen bonding, or may refer to a combination of these.
- the quantum dot composition comprising the quantum dots, the oxide coating layer, and the modification with a phosphonic acid derivative may be in a state in which the organic ligands attached to the metal oxide or quantum dot surface during synthesis coexist with the phosphonic acid derivative.
- the type of phosphonic acid derivative is not particularly limited, but for example, the structure of this compound is preferably at least one of the following formulas (I), (II), (III), and (IV).
- R 1 is a monovalent organic group having one or more carbon atoms.
- R2 is a divalent organic group having one or more carbon atoms.
- R3 is a trivalent organic group having one or more carbon atoms.
- R 1 to R 4 preferably include at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- the compound represented by formula (I) include 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, acid, hexylphosphonic acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid, (4-aminophenyl)phosphonic acid, 3-phosphonobenzoic acid, methylphosphonic acid, nonylphosphonic acid, benzhydrylphosphonic acid, octadecylphosphonic acid, (aminomethyl)phosphonic
- compounds of formula (II) include m-xylylenediphosphonic acid, o-xylylenediphosphonic acid, methylenediphosphonic acid, alendronic acid, 1,4-butylenediphosphonic acid, glycine-N,N-bis(methylenephosphonic acid), p-xylylenediphosphonic acid, zoledronic acid, 1,3-propylenediphosphonic acid, 1,5-pentylenediphosphonic acid, 1,4-phenylenediphosphonic acid, 1,2-ethylenediphosphonic acid, 1,6-hexylenediphosphonic acid, minodronate, and 1-hydroxyethane-1,1-diphosphonic acid.
- formula (III) examples include nitrilotris(methylene phosphonic acid).
- formula (IV) include N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid).
- the heating temperature when modifying the quantum dot surface or metal oxide surface with the above phosphonic acid derivative is not particularly limited, but in order to perform the modification efficiently, the heating temperature is preferably in the range of 50 to 300°C, and more preferably in the range of 80°C to 200°C. Within such a range, the quantum dot surface can be modified more efficiently.
- the amount of the phosphonic acid derivative added as the surface modifier is not particularly limited as long as the phosphonic acid derivative modifies the quantum dot surface or metal oxide surface.
- an amount of 30 wt% or less is preferable because it can suppress aggregation of the quantum dots and precipitation of the phosphonic acid derivative.
- An amount of 0.01 wt% or more can fully exert the effect of modifying the quantum dot surface or metal oxide surface. Therefore, the weight of the surface modifier added is preferably in the range of 0.01 to 30 wt% relative to the solid weight of the quantum dots, and more preferably in the range of 0.05 to 20 wt%.
- Quantum dot composition In a quantum dot composition in which the quantum dot surface is coated with the oxide layer and the quantum dot surface or the oxide layer surface is modified with phosphonic acid, the oxidation reaction on the quantum dot surface is suppressed, thereby suppressing deterioration in the fluorescence emission efficiency and improving stability.
- the quantum dot composition can be used as a resin composition dispersed in a resin.
- the resin material is not particularly limited, but is preferably one in which the quantum dot composition does not aggregate or the fluorescence emission efficiency does not deteriorate, and examples thereof include at least one selected from epoxy resins, acrylic resins, fluorine resins, silicone resins, carbonate resins, and glass resins.
- these resin compositions have high transmittance, and it is particularly preferable that the transmittance be 80% or more.
- the concentration of quantum dots contained in the resin composition is not particularly limited, and can be appropriately adjusted according to the film thickness, the luminous efficiency of the quantum dots, and the characteristics of the desired wavelength conversion material.
- the resin composition may contain substances other than the quantum dot composition, and may contain fine particles of silica, zirconia, alumina, titania, etc. as light scatterers, and may also contain inorganic or organic phosphors.
- inorganic phosphors examples include YAG, LSN, LYSN, CASN, SCASN, KSF, CSO, ⁇ -SIALON, GIAG, LuAG, and SBCA
- organic phosphors include perylene derivatives, anthraquinone derivatives, anthracene derivatives, phthalocyanine derivatives, cyanine derivatives, dioxazine derivatives, benzoxazinone derivatives, coumarin derivatives, quinophthalone derivatives, benzoxazole derivatives, and pyrarizone derivatives.
- the present invention also provides a wavelength converting material containing the cured product of the resin composition.
- the wavelength converting material may be used as it is or may be processed.
- One form of the wavelength converting material is a wavelength conversion film in which the quantum dot composition is dispersed in the resin by processing the material into a sheet and then curing the sheet.
- a resin composition in which a quantum dot composition is dispersed in a resin can be applied to a transparent film such as PET or polyimide, cured, and laminated to obtain the wavelength conversion material.
- the transparent film can be coated using a spraying method such as spray or inkjet, or a spin coat, bar coater, or doctor blade method, and a resin layer is formed by coating.
- a spraying method such as spray or inkjet, or a spin coat, bar coater, or doctor blade method
- a resin layer is formed by coating.
- the thickness of the resin layer and transparent film can be selected appropriately depending on the application.
- Such a wavelength conversion material suppresses deterioration of the fluorescent emission efficiency and improves reliability.
- the fluorescence emission properties of the quantum dots, quantum dot compositions, and wavelength conversion materials were evaluated by measuring the fluorescence emission efficiency (internal quantum efficiency) at an excitation wavelength of 450 nm using a quantum efficiency measurement system (QE-2100) manufactured by Otsuka Electronics Co., Ltd.
- QE-2100 quantum efficiency measurement system manufactured by Otsuka Electronics Co., Ltd.
- the flask was cooled to 200°C, after which 0.10 mL (0.02 mmol) of gallium(III) chloride/octadecene solution was added and heated for 30 minutes to passivate the surface of the InP semiconductor core particles.
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate quantum dots consisting of an InP core, a ZnSe shell, and a ZnS shell, and the supernatant was removed.
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dots and remove the supernatant. Toluene was then added to disperse the quantum dots, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the precipitate was redispersed in toluene to prepare an AgInS 2 /ZnS dispersion.
- the resulting AgInS 2 /ZnS toluene dispersion had a fluorescent emission wavelength peak of 599 nm and an internal quantum efficiency of 68%.
- the AgInS 2 /ZnS dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescent emission efficiency was measured, resulting in an internal quantum efficiency of 49%.
- a SiO2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then centrifuged to precipitate and remove the supernatant. Toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
- the resulting InP/ZnSe/ZnS/ SiO2 toluene dispersion had an internal quantum efficiency of 81%.
- the InP/ZnSe/ZnS/ SiO2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 71%.
- an Al2O3 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
- the internal quantum efficiency of the obtained InP/ZnSe/ZnS/Al 2 O 3 toluene dispersion was 83%.
- the InP/ZnSe/ZnS/Al 2 O 3 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 72%.
- a ZrO2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
- a TiO 2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60° C. for 5 minutes at 2450 MHz using a microwave synthesis reaction apparatus (flexi WAVE, manufactured by Milestone General Co.).
- Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and the nanoparticles were redispersed by adding toluene or octadecene and subjecting them to ultrasonic irradiation.
- the internal quantum efficiency of the obtained InP/ZnSe/ZnS/ TiO2 toluene dispersion was 78%.
- the InP/ZnSe/ZnS/ TiO2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 70%.
- an Al 2 O 3 coating layer was formed on the AgInS 2 /ZnS surface by heating at 60° C. for 5 minutes at 2450 MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
- the resulting AgInS 2 /ZnS/Al 2 O 3 toluene dispersion had an internal quantum efficiency of 64%.
- the AgInS 2 /ZnS/Al 2 O 3 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured.
- the internal quantum efficiency was 54%.
- a ZrO2 coating layer was formed on the AgInS2 /ZnS surface by heating at 60°C for 5 minutes at 2450 MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
- the resulting AgInS 2 /ZnS/ZrO 2 toluene dispersion had an internal quantum efficiency of 63%.
- the AgInS 2 /ZnS/ZrO 2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 53%.
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture.
- the flask was then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for InP/ZnSe/ZnS/SiO 2.
- the resulting solution was cooled to room temperature, ethanol was added, and the mixture was centrifuged to precipitate the quantum dot composition and remove the supernatant.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 81%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 76%.
- Example 2 In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
- HDPA hexadecylphosphonic acid
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 80%.
- Example 3 In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
- HDPA hexadecylphosphonic acid
- the flask was then purged with nitrogen, heated to 150° C., and stirred for 3 h to obtain a HDPA-modified quantum dot composition for InP/ZnSe/ZnS/ZrO 2 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 79%.
- Example 4 In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
- HDPA hexadecylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for InP/ZnSe/ZnS/TiO 2 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 78%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 77%.
- Example 5 In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
- HDPA hexadecylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for AgInS 2 /ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 61%.
- Example 6 In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
- HDPA hexadecylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for AgInS 2 /ZnS/ZrO 2 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 65%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 62%.
- Example 7 In a nitrogen atmosphere, 25 mg of dodecylphosphonic acid (DDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a dodecylphosphonic acid solution.
- DDPA dodecylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with DDPA for InP/ZnSe/ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 79%.
- Example 8 In a nitrogen atmosphere, 22 mg of (4-bromobutyl)phosphonic acid (BBPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a (4-bromobutyl)phosphonic acid solution.
- BBPA (4-bromobutyl)phosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with BBPA for InP/ZnSe/ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 81%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 78%.
- Example 9 In a nitrogen atmosphere, 16 mg of phenylphosphonic acid (PhPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a phenylphosphonic acid (PhPA) solution.
- PhPA phenylphosphonic acid
- the flask was then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a PhPA-modified quantum dot composition for InP/ZnSe/ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 78%.
- Example 10 In a nitrogen atmosphere, 25 mg of dodecylphosphonic acid (DDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a dodecylphosphonic acid solution.
- DDPA dodecylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with DDPA for AgInS 2 /ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 60%.
- Example 11 In a nitrogen atmosphere, 22 mg of (4-bromobutyl)phosphonic acid (BBPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a (4-bromobutyl)phosphonic acid solution.
- BBPA (4-bromobutyl)phosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with BBPA for AgInS 2 /ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 61%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 59%.
- Example 12 In a nitrogen atmosphere, 22 mg of phenylphosphonic acid (PhPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a phenylphosphonic acid solution.
- PhPA phenylphosphonic acid
- the flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with PhPA for AgInS 2 /ZnS/Al 2 O 3 .
- the resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
- the internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%.
- the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 60%.
- Example 13 A wavelength conversion material was produced using the quantum dot composition obtained in Example 1. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength conversion material was 97 ⁇ m.
- the internal quantum efficiency of the obtained wavelength conversion material was 44%.
- the obtained wavelength conversion material was treated for 500 hours under conditions of 85°C and 85% RH (Relative Humidity), after which the fluorescence emission efficiency was measured and the internal quantum efficiency was found to be 41%.
- Example 14 A wavelength conversion material was produced using the quantum dot composition obtained in Example 2. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 47%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 46%.
- Example 15 A wavelength conversion material was produced using the quantum dot composition obtained in Example 3. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 45%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 44%.
- Example 16 A wavelength conversion material was produced using the quantum dot composition obtained in Example 4. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 43%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 41%.
- Example 17 A wavelength conversion material was produced using the quantum dot composition obtained in Example 5. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 98 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 33%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 32%.
- Example 18 A wavelength conversion material was produced using the quantum dot composition obtained in Example 6. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 100 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 32%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 31%.
- Example 19 A wavelength conversion material was produced using the quantum dot composition obtained in Example 7. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 47%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 45%.
- Example 20 A wavelength conversion material was produced using the quantum dot composition obtained in Example 8. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 45%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 43%.
- Example 21 A wavelength conversion material was produced using the quantum dot composition obtained in Example 9. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 98 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 46%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 45%.
- Example 22 A wavelength conversion material was produced using the quantum dot composition obtained in Example 10. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 96 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 33%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 31%.
- Example 23 A wavelength conversion material was produced using the quantum dot composition obtained in Example 11. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 32%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 30%.
- Example 24 A wavelength conversion material was produced using the quantum dot composition obtained in Example 12. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
- an acrylic resin Acrydic BL-616-BA, manufactured by DIC Corporation
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 33%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 30%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 96 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 48%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 27%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 98 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 34%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, after which the fluorescence emission efficiency was measured and the internal quantum efficiency was found to be 20%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 97 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 44%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 33%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 47%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 36%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 97 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 46%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 36%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 99 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 42%.
- the obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 34%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 100 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 33%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 23%.
- the mixture was vacuum degassed and applied onto a 50 ⁇ m-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater.
- PET polyethylene terephthalate
- a PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
- the thickness of the obtained wavelength converting material was 98 ⁇ m.
- the internal quantum efficiency of the obtained wavelength converting material was 32%.
- the fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 24%.
- the internal quantum efficiency values after 500 hours of treatment under conditions of 85°C and 85% RH were compared for the wavelength converting materials produced in Example 13 and Comparative Examples 1 and 3, Examples 14, 19 to 21 and Comparative Examples 1 and 4, Example 15 and Comparative Examples 1 and 5, Example 16 and Comparative Examples 1 and 6, Examples 17, 22 to 24 and Comparative Examples 2 and 7, and Example 18 and Comparative Examples 2 and 8.
- the wavelength converting materials using the quantum dot composition of the present invention which was surface-modified with a metal oxide layer and a phosphonic acid derivative in Examples 13 to 24, showed higher internal quantum efficiency values than quantum dots and quantum dots formed with only a metal oxide layer.
- the quantum dot composition and resin composition using the quantum dot composition produced in the present invention exhibit low degradation in fluorescence emission efficiency under high temperature and high humidity conditions, and are highly reliable, even when low-toxicity quantum dots are used.
- a quantum dot composition comprising quantum dots that emit fluorescence when exposed to excitation light, the quantum dots comprising a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative.
- the semiconductor nanoparticle core is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb , InN, InP, InAs, InSb, AgGaS2 , AgInS2, AgGaSe2 , AgInSe2
- the semiconductor nanoparticle core surface is made of GaCl 3 , GaI 3 , GaBr 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , InCl 3 , InBr 3 , InI 3 , AgCl, AgBr, AgI, KCl, KBr, KI, NaCl , NaBr, NaI, MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , MnCl 2 , MnBr 2 , MnI 2 , FeCl 2 , FeBr 2 , FeI 2 , CuCl 2 , CuBr 2 , CuI 2 , ZrCl 4 , ZrBr 4 , ZrI 4 , GeCl 4 , GeBr 4 , and GeI 4.
- [5] The quantum dot composition according to any one of [1] to [4], characterized in that the semiconductor nanoparticle shell is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb as a single crystal, a plurality of crystals, or a mixed crystal.
- [6] A quantum dot composition according to any one of [ 1 ] to [ 5 ] above , characterized in that the metal oxide is at least one compound selected from TiO2 , ZnO, Al2O3 , SiO2 , ZrO2 , Fe2O3 , MgO, Y2O3 , HfO2 , CeO2 , In2O3 , SnO2, WO3 , CrO3 , Ta2O3 , BaTiO3, V2O5 , NiO, NbO, Cu2O , CuO, and MoO3 .
- the metal oxide is at least one compound selected from TiO2 , ZnO, Al2O3 , SiO2 , ZrO2 , Fe2O3 , MgO, Y2O3 , HfO2 , CeO2 , In2O3 , SnO2, WO3 , CrO3 , Ta2O3 , BaTiO3, V2O5 ,
- the quantum dot composition according to any one of [1] to [6] above, wherein the phosphonic acid derivative is represented by the following formula (I): (In formula (I), R 1 is a monovalent organic group having one or more carbon atoms.) [8]: The phosphonic acid derivative is 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, hexylphosphonic acid, acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid,
- [11] The quantum dot composition according to any one of [1] to [6], wherein the phosphonic acid derivative is represented by the following formula (III): (In formula (III), R3 is a trivalent organic group having one or more carbon atoms.)
- R 1 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- R 3 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- R 4 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
- [19] A resin composition comprising the quantum dot composition according to any one of [1] to [18] dispersed in a resin.
- [20] The resin composition according to [19] above, characterized in that the resin is at least one selected from the group consisting of epoxy resins, acrylic resins, fluorine-based resins, silicone resins, carbonate resins, and glass resins.
- the present invention is not limited to the above-described embodiments.
- the above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits similar effects is included within the technical scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Luminescent Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、量子ドット組成物、樹脂組成物、及び波長変換材料に関する。 The present invention relates to a quantum dot composition, a resin composition, and a wavelength conversion material.
粒子径がナノサイズの半導体粒子から成る量子ドットは、光吸収により生じた励起子がナノサイズの空間に閉じ込められることによりその半導体ナノ粒子のエネルギー準位が離散的となり、またそのバンドギャップは粒子径に依存する。このため量子ドットの蛍光発光は高効率でその発光スペクトルは先鋭化されている。また、粒子径によりバンドギャップが変化するという特性から、発光波長を制御できる特徴を有しており、固体照明やディスプレイの波長変換材料としての応用が期待される(特許文献1)。 Quantum dots are semiconductor particles with nano-sized particle diameters. Excitons generated by light absorption are confined in nano-sized spaces, making the energy levels of the semiconductor nanoparticles discrete, and the band gap depends on the particle diameter. For this reason, quantum dots emit fluorescent light with high efficiency and have sharp emission spectra. In addition, because the band gap changes depending on the particle diameter, quantum dots have the advantage of being able to control the emission wavelength, and are expected to be used as wavelength conversion materials for solid-state lighting and displays (Patent Document 1).
優れた蛍光発光特性を示す量子ドットとして、CdやPbを含む量子ドットが挙げられる。しかしながら、CdやPbは人体、環境に対しての毒性が高いために、欧州連合のRoHS指令を始めとして、世界各地でその使用の制限が検討されつつある。そのため、これらの毒性元素を含まない量子ドットが検討されている。 Quantum dots that exhibit excellent fluorescent emission properties include those that contain Cd or Pb. However, because Cd and Pb are highly toxic to the human body and the environment, restrictions on their use are being considered around the world, including the European Union's RoHS Directive. For this reason, quantum dots that do not contain these toxic elements are being considered.
また、量子ドットを波長変換材料として用いる実装方法として、量子ドットを樹脂材料中に分散させ、透明フィルムに量子ドットを含有した樹脂組成物をラミネートすることで、波長変換フィルムとしてバックライトユニットに組み込む方法が提案されている(特許文献2)。 In addition, a method has been proposed for mounting quantum dots as a wavelength conversion material, in which quantum dots are dispersed in a resin material, and a resin composition containing the quantum dots is laminated onto a transparent film, thereby incorporating the quantum dots into a backlight unit as a wavelength conversion film (Patent Document 2).
しかしながら、量子ドットは、粒子径がナノメートルサイズと小さいため、比表面積が大きく、表面エネルギーが高く表面活性であることから、不安定化しやすい。このため、量子ドット表面のダングリングボンドや酸化反応などにより表面欠陥が生じ易く、これが蛍光発光特性の劣化の原因となる。現在得られている量子ドットはこのような安定性に関する問題を有し、熱や湿度、光励起などにより発光特性の劣化を引き起こすことが知られている。 However, quantum dots are easily destabilized due to their small nanometer particle size, large specific surface area, high surface energy, and surface activity. This makes them susceptible to surface defects due to dangling bonds and oxidation reactions on the quantum dot surface, which causes deterioration of the fluorescent emission properties. Currently available quantum dots have such stability problems, and are known to cause deterioration of their emission properties due to heat, humidity, photoexcitation, etc.
これらの劣化を防ぐために、合成後の量子ドット表面にはリガンドと呼ばれる有機配位子が配位している。このリガンドが配位することで、溶媒や樹脂中における分散性を改善させるとともに、欠陥が不動態化されることで蛍光発光効率の劣化を抑制させることができる。 To prevent this deterioration, organic ligands called ligands are coordinated to the quantum dot surface after synthesis. The coordination of these ligands improves dispersibility in solvents and resins, and by passivating defects, it is possible to suppress deterioration in the fluorescence emission efficiency.
しかし、量子ドット表面に対して、適切なリガンドが選択されていないと、熱や光照射の外部影響により、リガンドが量子ドット表面から脱離してしまい、結果的に蛍光発光効率が劣化してしまう。 However, if an appropriate ligand is not selected for the quantum dot surface, the ligand may be detached from the quantum dot surface due to external influences such as heat or light exposure, resulting in a deterioration in the fluorescence emission efficiency.
量子ドットの蛍光発光効率の経時変化は、ディスプレイに使用する場合において色ムラや発光ムラ、ドット落ちなどの欠陥となるため、量子ドットの安定性は重要な問題である。 The stability of quantum dots is an important issue, since changes in the fluorescence efficiency of quantum dots over time can lead to defects such as uneven color and light emission and dead dots when used in displays.
このような問題に対して、量子ドットを無機酸化物に担持させる方法(特許文献3)や、酸素、湿度透過性の低いガスバリア性フィルムを用いることによる量子ドットの安定性を向上させる方法(特許文献4)が検討されている。 In response to these problems, methods have been considered in which quantum dots are supported on inorganic oxides (Patent Document 3) and methods have been considered in which the stability of quantum dots is improved by using a gas barrier film with low oxygen and moisture permeability (Patent Document 4).
量子ドットを酸化物に担持させる方法では、量子ドット表面に直接酸素と水が接触するのを防ぎ、酸化反応を抑制することで、蛍光発光効率の劣化が抑制される。 The method of supporting quantum dots on oxide prevents oxygen and water from coming into direct contact with the quantum dot surface, suppressing the oxidation reaction and thereby preventing deterioration of the fluorescence emission efficiency.
しかしながら、一般的なゾルゲル法のような、液相中で金属酸化物の前駆体を低温で反応させる方法では、反応後の酸化物表面に多数の水酸基が残存する。この表面の水酸基は大気中の水分子と水素結合を形成するため、酸化物表面にはナノオーダーの薄い吸着水の層、水和層が形成される。 However, in methods such as the general sol-gel method, in which metal oxide precursors are reacted in a liquid phase at low temperatures, many hydroxyl groups remain on the oxide surface after the reaction. These surface hydroxyl groups form hydrogen bonds with water molecules in the air, forming a thin layer of adsorbed water on the nanometer order, a hydration layer, on the oxide surface.
この酸化物表面の水酸基を加熱操作によって除去しきることは難しく、量子ドットが酸化物に担持された組成物を波長変換材料として用いた場合、長時間光や熱にさらされる環境で使用されるために、酸化物表面から内部へと浸透した吸着水により、徐々に量子ドット表面の酸化反応が進行し蛍光発光効率が劣化してしまう。 It is difficult to completely remove the hydroxyl groups on the oxide surface by heating, and when a composition in which quantum dots are supported on an oxide is used as a wavelength conversion material, it is used in an environment where it is exposed to light and heat for long periods of time. As a result, the adsorbed water penetrates from the oxide surface to the inside, gradually progressing the oxidation reaction on the quantum dot surface and deteriorating the fluorescence emission efficiency.
また、バリアフィルムによる安定化についても、フィルム端面からの酸素・水蒸気の拡散による劣化が進行する問題がある。 Stabilization using a barrier film also poses the problem of deterioration due to the diffusion of oxygen and water vapor from the film's edges.
さらにタブレットやスマートフォンなどのモバイル用途では、波長変換フィルムの薄膜化が求められるが、一般的にバリアフィルムは20~200μm程度の厚さがあり、フィルム両面を保護するため、厚さが少なくとも40μm以上厚くなってしまうため、波長変換フィルムの厚さを薄くすることに限界が生じる。 Furthermore, for mobile applications such as tablets and smartphones, there is a demand for thinner wavelength conversion films, but barrier films are generally around 20 to 200 μm thick, and in order to protect both sides of the film, the thickness must be at least 40 μm or more, which places a limit on how thin the wavelength conversion film can be.
さらに、量子ドットを波長変換フィルムとしてではなく、カラーフィルタとして、直接青色の励起光を緑色及び赤色に変換させる方法が提案されている(特許文献5)。カラーフィルタとして量子ドットを用いる場合、前述の波長変換フィルムのようにバリアフィルム等を用いることは出来ず、量子ドット組成物の硬化やその後の製造工程や長時間の使用による量子ドットの蛍光発光効率の劣化が重要な問題となる。 Furthermore, a method has been proposed in which quantum dots are used not as a wavelength conversion film but as a color filter to directly convert blue excitation light into green and red (Patent Document 5). When using quantum dots as a color filter, it is not possible to use a barrier film, as in the wavelength conversion film described above, and the deterioration of the fluorescence emission efficiency of the quantum dots due to hardening of the quantum dot composition, subsequent manufacturing processes, and long-term use becomes a major problem.
このように毒性元素を含まない量子ドットが検討されているが、蛍光発光効率の劣化が問題となっている。 Quantum dots that do not contain toxic elements are being investigated, but degradation of the fluorescence emission efficiency is an issue.
本発明は、上記問題を解決するためになされたものであり、毒性が低い量子ドットを用いても、蛍光発光効率の劣化が抑制されたものとなる量子ドット組成物、該量子ドット組成物を含む樹脂組成物、及び波長変換材料を提供することを目的とする。 The present invention has been made to solve the above problems, and aims to provide a quantum dot composition that suppresses the deterioration of fluorescence emission efficiency even when low-toxicity quantum dots are used, a resin composition containing the quantum dot composition, and a wavelength conversion material.
本発明は、上記目的を達成するためになされたものであり、励起光により蛍光を発する量子ドットを含む量子ドット組成物であって、前記量子ドットはCd及びPbを含まない半導体ナノ粒子コアと半導体ナノ粒子シェルから成り、前記量子ドット表面は金属酸化物で被覆されたものであり、前記量子ドット表面又は前記金属酸化物表面はホスホン酸誘導体で修飾されたものであることを特徴とする量子ドット組成物を提供する。 The present invention has been made to achieve the above object, and provides a quantum dot composition containing quantum dots that emit fluorescence when excited by excitation light, the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surface being coated with a metal oxide, and the quantum dot surface or the metal oxide surface being modified with a phosphonic acid derivative.
このような量子ドット組成物であれば、毒性が低い量子ドットから構成される場合でも蛍光発光効率の劣化が抑制されたものとなる。 Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency even when it is composed of quantum dots with low toxicity.
このとき、前記量子ドットが、前記半導体ナノ粒子コア及び前記半導体ナノ粒子コアを覆う単一または複数の前記半導体ナノ粒子シェルから成るものであることが好ましい。 In this case, it is preferable that the quantum dot is composed of the semiconductor nanoparticle core and a single or multiple semiconductor nanoparticle shells covering the semiconductor nanoparticle core.
このような量子ドット組成物であれば、蛍光発光特性、安定性の点から好ましいものとなる。 Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
このとき、前記半導体ナノ粒子コアが、ZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AgGaS2、AgInS2、AgGaSe2、AgInSe2、CuGaS2、CuGaSe2、CuInS2、CuInSe2、ZnSiP2、及びZnGeP2の中から単一、複数または混晶として選択されたものであることが好ましい。 In this case, it is preferable that the semiconductor nanoparticle core is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb , AgGaS2 , AgInS2 , AgGaSe2 , AgInSe2 , CuGaS2 , CuGaSe2, CuInS2 , CuInSe2 , ZnSiP2 , and ZnGeP2 as a single crystal, multiple crystals, or mixed crystals.
このような量子ドット組成物であれば、蛍光発光特性、安定性の点から好ましいものとなる。 Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
このとき、前記半導体ナノ粒子コア表面がGaCl3、GaI3、GaBr3、ZnCl2、ZnBr2、ZnI2、InCl3、InBr3、InI3、AgCl、AgBr、AgI、KCl、KBr、KI、NaCl、NaBr、NaI、MgCl2、MgBr2、MgI2、CaCl2、CaBr2、CaI2、MnCl2、MnBr2、MnI2、FeCl2、FeBr2、FeI2、CuCl2、CuBr2、CuI2、ZrCl4、ZrBr4、ZrI4、GeCl4、GeBr4、GeI4から選択された1種以上の化合物で不動態化されたものとすることが好ましい。 At this time, the semiconductor nanoparticle core surface is composed of GaCl 3 , GaI 3 , GaBr 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , InCl 3 , InBr 3 , InI 3 , AgCl, AgBr, AgI, KCl, KBr, KI, NaCl , NaBr, NaI, MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , MnCl 2 , MnBr 2 , MnI 2 , FeCl 2 , FeBr 2 , FeI 2 , CuCl 2 , CuBr 2 , CuI 2 , ZrCl 4 , ZrBr 4 , ZrI 4 , GeCl 4 , GeBr 4 , and GeI 4 .
このような量子ドット組成物であれば、蛍光発光特性及び安定性の点から好ましいものとなる。 Such a quantum dot composition would be preferable in terms of fluorescence emission properties and stability.
このとき、前記半導体ナノ粒子シェルが、ZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、及びInSbの中から単一、複数または混晶として選択されたものであることが好ましい。 In this case, it is preferable that the semiconductor nanoparticle shell is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb as a single crystal, multiple crystals, or mixed crystals.
このような量子ドット組成物であれば、蛍光発光効率の向上及び安定性の点から好ましいものとなる。 Such a quantum dot composition would be preferable in terms of improving the fluorescence emission efficiency and stability.
このとき、前記金属酸化物が、TiO2、ZnO、Al2O3、SiO2、ZrO2、Fe2O3、MgO、Y2O3、HfO2、CeO2、In2O3、SnO2、WO3、CrO3、Ta2O3、BaTiO3、V2O5、NiO、NbO、Cu2O、CuO、MoO3から選択される少なくとも1種の化合物であることが好ましい。 In this case, it is preferable that the metal oxide is at least one compound selected from TiO2 , ZnO , Al2O3 , SiO2 , ZrO2 , Fe2O3 , MgO , Y2O3 , HfO2 , CeO2 , In2O3 , SnO2 , WO3 , CrO3 , Ta2O3 , BaTiO3 , V2O5 , NiO , NbO , Cu2O , CuO , and MoO3 .
このような量子ドット組成物であれば、蛍光発光効率の向上及び安定性の点から好ましいものとなる。 Such a quantum dot composition would be preferable in terms of improving the fluorescence emission efficiency and stability.
このとき、前記ホスホン酸誘導体が、下記式(I)で示されるものであることが好ましい。
このような量子ドット組成物であれば、蛍光発光効率の劣化が抑制され、安定性が改善されたものとなる。 Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
このとき、前記ホスホン酸誘導体が、3-フェニル-2-プロペニルホスホン酸、テノホビル、2-ホスホノブタン-1,2,4-トリカルボン酸、4-ホスホノ安息香酸、ビニルホスホン酸、n-オクチルホスホン酸、(3-ブロモプロピル)ホスホン酸、(4-ブロモブチル)ホスホン酸、(2-ブロモエチル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノプロピオン酸、(4-ヒドロキシフェニル)ホスホン酸、ヘキシルホスホン酸、4-ホスホノ酪酸、プロピルホスホン酸、(4-アミノベンジル)ホスホン酸、(4-アミノフェニル)ホスホン酸、3-ホスホノ安息香酸、メチルホスホン酸、ノニルホスホン酸、ベンズヒドリルホスホン酸、オクタデシルホスホン酸、(アミノメチル)ホスホン酸、(2-フェニルエチル)ホスホン酸、エチルホスホン酸、ブチルホスホン酸、デシルホスホン酸、ドデシルホスホン酸、(2-クロロエチル)ホスホン酸、4-メトキシフェニルホスホン酸、ヘキサデシルホスホン酸、(4-ヒドロキシベンジル)ホスホン酸、フェニルホスホン酸、(1H,1H,2H,2H-ヘプタデカフルオロデシル)ホスホン酸、テトラデシルホスホン酸、(1-アミノエチル)ホスホン酸、ウンデシルホスホン酸、ヘプチルホスホン酸、10-カルボキシデシルホスホン酸、11-アミノウンデシルホスホン酸・臭化水素酸塩、11-ヒドロキシウンデシルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-ヘキシルホスホン酸、1H,1H,2H,2H-パーフルオロオクチルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-デシルホスホン酸、11-{2-[2-(2-メトキシエトキシ)エトキシ]エトキシ}ウンデシルホスホン酸、12-メルカプトデシルホスホン酸、及び[11-(アクリロイルオキシ)ウンデシル]ホスホン酸から選択された1種以上のものであることが好ましい。 In this case, the phosphonic acid derivative is 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, heptylphosphonic acid, xylphosphonic acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid, (4-aminophenyl)phosphonic acid, 3-phosphonobenzoic acid, methylphosphonic acid, nonylphosphonic acid, benzhydrylphosphonic acid, octadecylphosphonic acid, (aminomethyl)phosphonic acid, (2-phenylethyl)phosphonic acid, ethylphosphonic acid, butylphosphonic acid, decylphosphonic acid, dodecylphosphonic acid, (2-chloroethyl)phosphonic acid, 4-Methoxyphenylphosphonic acid, hexadecylphosphonic acid, (4-hydroxybenzyl)phosphonic acid, phenylphosphonic acid, (1H,1H,2H,2H-heptadecafluorodecyl)phosphonic acid, tetradecylphosphonic acid, (1-aminoethyl)phosphonic acid, undecylphosphonic acid, heptylphosphonic acid, 10-carboxydecylphosphonic acid, 11-aminoundecylphosphonic acid hydrobromide, 11-hydroxyundecylphosphonic acid, 1H It is preferable that the compound is one or more selected from the group consisting of 1H,2H,2H-perfluoro-n-hexylphosphonic acid, 1H,1H,2H,2H-perfluorooctylphosphonic acid, 1H,1H,2H,2H-perfluoro-n-decylphosphonic acid, 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid, 12-mercaptodecylphosphonic acid, and [11-(acryloyloxy)undecyl]phosphonic acid.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができ、蛍光発光効率の劣化が抑制され、安定性が改善されたものとなる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention, which suppresses deterioration of the fluorescence emission efficiency and improves stability.
このとき、前記ホスホン酸誘導体が、下記式(II)で示されるものであることが好ましい。
このような量子ドット組成物であれば、蛍光発光効率の劣化が抑制され、安定性が改善されたものとなる。 Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
このとき、前記ホスホン酸誘導体が、m-キシリレンジホスホン酸、o-キシリレンジホスホン酸、メチレンジホスホン酸、アレンドロン酸、1,4-ブチレンジホスホン酸、グリシン-N,N-ビス(メチレンホスホン酸)、p-キシリレンジホスホン酸、ゾレドロン酸、1,3-プロピレンジホスホン酸、1,5-ペンチレンジホスホン酸、1,4-フェニレンジホスホン酸、1,2-エチレンジホスホン酸、1,6-ヘキシレンジホスホン酸、ミノドロナート、及び1-ヒドロキシエタン-1,1-ジホスホン酸から選択された1種以上のものであることが好ましい。 In this case, it is preferable that the phosphonic acid derivative is one or more selected from m-xylylene diphosphonic acid, o-xylylene diphosphonic acid, methylene diphosphonic acid, alendronic acid, 1,4-butylene diphosphonic acid, glycine-N,N-bis(methylenephosphonic acid), p-xylylene diphosphonic acid, zoledronic acid, 1,3-propylene diphosphonic acid, 1,5-pentylene diphosphonic acid, 1,4-phenylene diphosphonic acid, 1,2-ethylene diphosphonic acid, 1,6-hexylene diphosphonic acid, minodronate, and 1-hydroxyethane-1,1-diphosphonic acid.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記ホスホン酸誘導体が、下記式(III)で示されるものであることが好ましい。
このような量子ドット組成物であれば、蛍光発光効率の劣化が抑制され、安定性が改善されたものとなる。 Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
このとき、前記ホスホン酸誘導体が、ニトリロトリス(メチレンホスホン酸)であることとすることが好ましい。 In this case, it is preferable that the phosphonic acid derivative is nitrilotris(methylene phosphonic acid).
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記ホスホン酸誘導体が、下記式(IV)で示されるものであることが好ましい。
このような量子ドット組成物であれば、蛍光発光効率の劣化が抑制され、安定性が改善されたものとなる。 Such a quantum dot composition suppresses the deterioration of the fluorescence emission efficiency and improves stability.
このとき、前記ホスホン酸誘導体がN,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)であることが好ましい。 In this case, it is preferable that the phosphonic acid derivative is N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid).
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記R1が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることが好ましい。 In this case, it is preferable that R1 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記R2が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることが好ましい。 In this case, it is preferable that R2 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記R3が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることが好ましい。 In this case, it is preferable that R3 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
このとき、前記R4が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることことが好ましい。 In this case, it is preferable that R4 contains at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
本発明の量子ドット組成物には、このようなホスホン酸誘導体を用いることができる。 Such phosphonic acid derivatives can be used in the quantum dot composition of the present invention.
また本発明では、上記に記載の量子ドット組成物が樹脂中に分散されたものであることを特徴とする樹脂組成物を提供する。 The present invention also provides a resin composition in which the quantum dot composition described above is dispersed in a resin.
このような樹脂組成物であれば、蛍光発光効率の劣化が抑制された樹脂組成物となる。 Such a resin composition is one in which the deterioration of the fluorescent light emission efficiency is suppressed.
このとき、前記樹脂は、エポキシ系樹脂、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、カーボネート系樹脂、及びガラス樹脂から選択される少なくとも1種類以上のものであることが好ましい。 In this case, it is preferable that the resin is at least one selected from the group consisting of epoxy resins, acrylic resins, fluorine resins, silicone resins, carbonate resins, and glass resins.
本発明の樹脂組成物には、このような樹脂を用いることができる。 Such resins can be used in the resin composition of the present invention.
また、本発明では、上記に記載の樹脂組成物の硬化物を含むものである波長変換材料を提供する。 The present invention also provides a wavelength converting material that contains a cured product of the resin composition described above.
このような波長変換材料であれば、蛍光発光効率の劣化が抑制された、信頼性が向上したものとなる。 Such wavelength conversion materials suppress deterioration of the fluorescence emission efficiency and improve reliability.
以上のように、本発明の量子ドット組成物、該量子ドット組成物を含む樹脂組成物、及び波長変換材料によれば、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなる。 As described above, the quantum dot composition of the present invention, the resin composition containing the quantum dot composition, and the wavelength conversion material suppress deterioration of the fluorescence emission efficiency even when low-toxicity quantum dots are used.
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention is described in detail below, but is not limited to these.
上述のように、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなる量子ドット組成物が求められていた。 As mentioned above, there was a need for a quantum dot composition that would suppress the deterioration of fluorescence emission efficiency even when using quantum dots with low toxicity.
本発明者らは、上記課題について鋭意検討を重ねた結果、励起光により蛍光を発する量子ドットを含む量子ドット組成物であって、前記量子ドットはCd及びPbを含まない半導体ナノ粒子コアと半導体ナノ粒子シェルから成り、前記量子ドット表面は金属酸化物で被覆されたものであり、前記量子ドット表面又は前記金属酸化物表面はホスホン酸誘導体で修飾されたものであることを特徴とする量子ドット組成物により、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなることを見出し、本発明を完成した。 As a result of intensive research into the above-mentioned problems, the inventors have discovered that a quantum dot composition containing quantum dots that emit fluorescence when excited by excitation light, the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative, can suppress deterioration in fluorescence emission efficiency even when low-toxicity quantum dots are used, and have completed the present invention.
また上述のように、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなる量子ドット組成物を含む樹脂組成物が求められていた。 As described above, there is a need for a resin composition containing a quantum dot composition that suppresses the deterioration of fluorescence emission efficiency even when low-toxicity quantum dots are used.
本発明者らは、上記課題について鋭意検討を重ねた結果、上記に記載の量子ドット組成物が樹脂中に分散されたものであることを特徴とする樹脂組成物により、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなることを見出し、本発明を完成した。 As a result of extensive research into the above-mentioned problems, the inventors discovered that a resin composition in which the quantum dot composition described above is dispersed in a resin can suppress the deterioration of fluorescence emission efficiency even when low-toxicity quantum dots are used, and thus completed the present invention.
さらに上述のように、毒性の低い量子ドットを用いて蛍光発光効率の劣化が抑制されたものとなる波長変換材料が求められていた。 Furthermore, as mentioned above, there was a demand for wavelength conversion materials that use low-toxicity quantum dots and that suppress deterioration of fluorescence emission efficiency.
本発明者らは、上記課題について鋭意検討を重ねた結果、上記に記載の樹脂組成物の硬化物を含むものであることを特徴とする波長変換材料により、毒性の低い量子ドットを用いても蛍光発光効率の劣化が抑制されたものとなることを見出し、本発明を完成した。 As a result of extensive research into the above-mentioned problems, the inventors discovered that a wavelength conversion material containing a cured product of the resin composition described above can suppress the deterioration of fluorescence emission efficiency even when low-toxicity quantum dots are used, and thus completed the present invention.
以下、本発明の実施形態を説明する。ただし、本発明において、量子ドット、金属酸化物及びホスホン酸誘導体の組成や種類、製法は、以下の形態のみに制限されない。 The following describes an embodiment of the present invention. However, in the present invention, the composition, type, and manufacturing method of the quantum dots, metal oxide, and phosphonic acid derivative are not limited to the following forms.
即ち、本発明は、励起光により蛍光を発する量子ドットを含む量子ドット組成物であって、量子ドットはCd及びPbを含まない半導体ナノ粒子コアと半導体ナノ粒子シェルから成り、量子ドット表面は金属酸化物で被覆されたものであり、量子ドット表面又は金属酸化物表面はホスホン酸誘導体で修飾されたものである。 In other words, the present invention is a quantum dot composition containing quantum dots that emit fluorescence when exposed to excitation light, the quantum dots being composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative.
[量子ドット]
本発明における量子ドットの構造は半導体ナノ粒子コアと半導体ナノ粒子シェルから成るものであれば特に限定されない。このような量子ドットであれば、蛍光発光特性及び安定性に優れる。例えばナノサイズの半導体粒子をコアとして、そのコアよりもバンドギャップが大きく、格子不整合性が低い半導体粒子をシェルとした、コア/シェル構造の半導体ナノ粒子では、シェルで生じた励起子がコア粒子の内部に閉じ込められるために、蛍光発光効率は向上し、さらにコア表面がシェルで覆われるために安定性が向上する。
[Quantum dots]
The structure of the quantum dot in the present invention is not particularly limited as long as it is composed of a semiconductor nanoparticle core and a semiconductor nanoparticle shell. Such quantum dots have excellent fluorescence emission properties and stability. For example, in a semiconductor nanoparticle having a core/shell structure in which a nano-sized semiconductor particle is used as the core and a semiconductor particle having a larger band gap and lower lattice mismatch than the core is used as the shell, the excitons generated in the shell are confined inside the core particle, improving the fluorescence emission efficiency, and further improving the stability since the core surface is covered with the shell.
また、量子ドットが、半導体ナノ粒子コア及び半導体ナノ粒子コアを覆う単一または複数の半導体ナノ粒子シェルから成るものであることが好ましい。このような量子ドット組成物であれば、蛍光発光効率の劣化がより抑制される。 It is also preferable that the quantum dots are composed of a semiconductor nanoparticle core and a single or multiple semiconductor nanoparticle shells covering the semiconductor nanoparticle core. With such a quantum dot composition, the deterioration of the fluorescence emission efficiency is further suppressed.
コア/シェル半導体ナノ粒子の半導体ナノ粒子コアの材料としては、毒性の観点からCdやPbの元素を含んでいないものであれば特に限定されないが、例えば、II-VI族化合物、III-V族化合物、I-III-VI族化合物、II-IV-V族化合物及びこれらの合金又は混晶からなる群より選択されるものを用いることができる。 The material for the semiconductor nanoparticle core of the core/shell semiconductor nanoparticle is not particularly limited as long as it does not contain the elements Cd or Pb from the viewpoint of toxicity, but for example, a material selected from the group consisting of II-VI compounds, III-V compounds, I-III-VI compounds, II-IV-V compounds, and alloys or mixed crystals thereof can be used.
具体的には、半導体ナノ粒子コアの材料としてはZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AgGaS2、AgInS2、AgGaSe2、AgInSe2、CuGaS2、CuGaSe2、CuInS2、CuInSe2、ZnSiP2、及びZnGeP2の中から単一、複数または混晶として選択されたものが挙げられる。これらの材料の内、ZnSe、ZnTe、InPは、蛍光発光特性、安定性の点から特に好ましい。 Specifically, the material of the semiconductor nanoparticle core may be selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb , AgGaS2 , AgInS2 , AgGaSe2 , AgInSe2, CuGaS2 , CuGaSe2 , CuInS2 , CuInSe2 , ZnSiP2 , and ZnGeP2 in a single, multiple, or mixed crystal form. Of these materials, ZnSe, ZnTe, and InP are particularly preferred in terms of fluorescence emission properties and stability.
また、コア/シェル半導体ナノ粒子のコア粒子表面は、その表面が無機化合物で不動態化(パッシベーション)されていることが好ましい。これにより、コア粒子表面の欠陥が不活性化され、蛍光発光効率の改善がされるとともに、経時的な蛍光発光効率の劣化が抑制される。 In addition, the surface of the core particle of the core/shell semiconductor nanoparticles is preferably passivated with an inorganic compound. This inactivates defects on the surface of the core particle, improving the fluorescence emission efficiency and suppressing deterioration of the fluorescence emission efficiency over time.
パッシベーションを行うための無機化合物は、特に限定されないが、例えば、金属ハロゲン化物が挙げられ、蛍光発光効率改善の観点からGaCl3、GaI3、GaBr3、ZnCl2、ZnBr2、ZnI2、InCl3、InBr3、InI3、AgCl、AgBr、AgI、KCl、KBr、KI、NaCl、NaBr、NaI、MgCl2、MgBr2、MgI2、CaCl2、CaBr2、CaI2、MnCl2、MnBr2、MnI2、FeCl2、FeBr2、FeI2、CuCl2、CuBr2、CuI2、ZrCl4、ZrBr4、ZrI4、GeCl4、GeBr4、GeI4から選択される、少なくとも1種の化合物が特に好ましい。 The inorganic compound for passivation is not particularly limited, but examples thereof include metal halides, and from the viewpoint of improving the fluorescence emission efficiency, GaCl3 , GaI3 , GaBr3, ZnCl2 , ZnBr2 , ZnI2 , InCl3 , InBr3 , InI3 , AgCl, AgBr , AgI, KCl, KBr, KI, NaCl, NaBr, NaI, MgCl2, MgBr2 , MgI2 , CaCl2 , CaBr2 , CaI2 , MnCl2 , MnBr2 , MnI2 , FeCl2 , FeBr2 , FeI2 , CuCl2 , CuBr2 , CuI2 , ZrCl4 , ZrBr , Particularly preferred is at least one compound selected from ZrI 4 , GeCl 4 , GeBr 4 and GeI 4 .
半導体ナノ粒子シェルの材料としては、毒性の観点からCdやPbの元素を含んでいないものであれば特に限定されないが、コア材料に対してバンドギャップが大きく、格子不整合性が低いものが好ましく、II-VI族化合物、III-V族化合物の合金及び混晶からなる群から選択されるものを用いることができる。 The material for the shell of the semiconductor nanoparticle is not particularly limited as long as it does not contain the elements Cd or Pb from the viewpoint of toxicity, but it is preferable that it has a large band gap and low lattice mismatch with the core material, and can be selected from the group consisting of alloys and mixed crystals of II-VI and III-V compounds.
具体的なシェル材料は、ZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、及びInSbの中から単一、複数または混晶として選択されたものを用いることができる。これらの材料の内、ZnSe、ZnSは蛍光発光効率の向上及び安定性の点から特に好ましい。 Specific shell materials may be selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb, either singly, in multiple, or as mixed crystals. Of these materials, ZnSe and ZnS are particularly preferred in terms of improved fluorescence emission efficiency and stability.
半導体ナノ粒子の製造法は液相法や気相法などの様々な方法があるが、本発明においては特に限定されない。高い蛍光発光効率を示す観点から、高沸点の非極性溶媒中において高温で前駆体種を反応させる、ホットソープ法やホットインジェクション法を用いて得られる半導体ナノ粒子を用いることが好ましい。 There are various methods for producing semiconductor nanoparticles, such as liquid phase methods and gas phase methods, but the present invention is not particularly limited to these. From the viewpoint of exhibiting high fluorescence emission efficiency, it is preferable to use semiconductor nanoparticles obtained using the hot soap method or hot injection method, in which precursor species are reacted at high temperature in a non-polar solvent with a high boiling point.
なお、合成時及び合成後の量子ドットは、表面欠陥を低減するため、表面にリガンドと呼ばれる有機配位子が配位していることが好ましい。 In addition, to reduce surface defects during and after synthesis, it is preferable that the quantum dots have organic ligands, called ligands, coordinated to their surfaces.
リガンドは量子ドットの凝集抑制の観点から脂肪族炭化水素を含むことが好ましい。このようなリガンドとしては、例えば、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリル酸、デカン酸、オクタン酸、オレイルアミン、ステアリル(オクタデシル)アミン、ドデシル(ラウリル)アミン、デシルアミン、オクチルアミン、オクタデカンチオール、ヘキサデカンチオール、テトラデカンチオール、ドデカンチオール、デカンチオール、オクタンチオール、トリオクチルホスフィン、トリオクチルホスフィンオキシド、トリフェニルホスフィン、トリフェニルホスフィンオキシド、トリブチルホスフィン、及びトリブチルホスフィンオキシド等が挙げられ、これらを1種単独で用いても複数組み合わせても良い。 The ligand preferably contains an aliphatic hydrocarbon from the viewpoint of suppressing aggregation of the quantum dots. Examples of such ligands include oleic acid, stearic acid, palmitic acid, myristic acid, lauric acid, decanoic acid, octanoic acid, oleylamine, stearyl (octadecyl)amine, dodecyl (lauryl)amine, decylamine, octylamine, octadecanethiol, hexadecanethiol, tetradecanethiol, dodecanethiol, decanethiol, octanethiol, trioctylphosphine, trioctylphosphine oxide, triphenylphosphine, triphenylphosphine oxide, tributylphosphine, and tributylphosphine oxide, and these may be used alone or in combination.
[金属酸化物による量子ドット表面被覆]
本発明の量子ドットは、その表面が金属酸化物で被覆されていることにより、大気中の酸素や水が直接量子ドット表面に接触するのを防ぎ、酸化反応を抑制することで、その蛍光発光効率の劣化が抑制されると考えられる。
[Surface coating of quantum dots with metal oxide]
The quantum dots of the present invention have a surface coated with a metal oxide, which prevents oxygen and water in the air from coming into direct contact with the quantum dot surface and inhibits oxidation reactions, thereby preventing deterioration of the fluorescence emission efficiency.
本発明における、量子ドット表面における金属酸化物の「被覆」とは、蛍光発光効率の経時的な劣化が抑制されていれば、部分的であっても完全にコーティングされている形態であってもよい。またコアシェル構造のような均一なコーティング層であっても、不均一なコーティング層であってもよく、複数の半導体ナノ粒子を金属酸化物がコーティングしているような構造でもよい。金属酸化物の膜厚は特に限定されないが、透光性の観点から200nm以下が好ましい。 In the present invention, the "coating" of the quantum dot surface with metal oxide may be in the form of partial or complete coating, so long as the deterioration of the fluorescence emission efficiency over time is suppressed. In addition, it may be a uniform coating layer such as a core-shell structure, or a non-uniform coating layer, and may be a structure in which multiple semiconductor nanoparticles are coated with metal oxide. The film thickness of the metal oxide is not particularly limited, but is preferably 200 nm or less from the viewpoint of translucency.
本発明において、酸化物の被覆層の種類は特に限定されないが、TiO2、ZnO、Al2O3、SiO2、ZrO2、Fe2O3、MgO、Y2O3、HfO2、CeO2、In2O3、SnO2、WO3、CrO3、Ta2O3、BaTiO3、V2O5、NiO、NbO、Cu2O、CuO、MoO3から選択される、少なくとも1種の化合物であるものが挙げられる。量子ドットの安定性を改善する観点から、TiO2、Al2O3、SiO2、ZrO2がより好ましい。 In the present invention, the type of the oxide coating layer is not particularly limited, but may be at least one compound selected from TiO2, ZnO, Al2O3, SiO2, ZrO2, Fe2O3, MgO, Y2O3, HfO2, CeO2, In2O3, SnO2, WO3 , CrO3 , Ta2O3 , BaTiO3 , V2O5 , NiO , NbO , Cu2O , CuO , and MoO3 . From the viewpoint of improving the stability of the quantum dots, TiO2 , Al2O3 , SiO2 , and ZrO2 are more preferable.
金属酸化物の被覆層を形成させる方法は、特に限定されないが、量子ドット表面で選択的に反応を進行させる観点から、液相中で金属酸化物前駆体を反応させる方法が好ましい。 The method for forming the metal oxide coating layer is not particularly limited, but from the viewpoint of selectively progressing the reaction on the quantum dot surface, a method in which a metal oxide precursor is reacted in a liquid phase is preferred.
本発明では、一例として、マイクロ波処理を用いた酸化物被覆層の形成法が挙げられる。マイクロ波を用いることで、金属酸化物前駆体が直接内部から加熱され、より短時間で選択的に反応が進行し、量子ドット表面における酸化物層の形成を行うことができる。 In the present invention, one example is a method for forming an oxide coating layer using microwave treatment. By using microwaves, the metal oxide precursor is heated directly from the inside, allowing the reaction to proceed selectively in a shorter time, forming an oxide layer on the quantum dot surface.
ここで「マイクロ波」とは、一般的に300MHz~3THzの振動数を有する電磁波を指す。また、マイクロ波の照射方法としては、例えばマイルストーンゼネラル社製のflexi WAVEを用いる方法が挙げられるが、特に限定されない。 Here, "microwaves" generally refer to electromagnetic waves with a frequency of 300 MHz to 3 THz. In addition, examples of methods for irradiating microwaves include, but are not limited to, a method using flexiWAVE manufactured by Milestone General.
このときの被覆工程は、量子ドットと金属酸化物前駆体の共存下とし、該共存下の金属酸化物前駆体にマイクロ波照射処理することで、半導体ナノ粒子の表面に金属酸化物を被覆することが好ましい。これにより、金属酸化物の被覆層が効率的に形成され、蛍光発光効率の劣化が抑制される。 In this coating process, it is preferable to coat the surface of the semiconductor nanoparticles with metal oxide by performing a microwave irradiation treatment on the coexisting metal oxide precursor and quantum dots and a metal oxide precursor in the coexistence. This allows the efficient formation of a metal oxide coating layer, and suppresses the deterioration of the fluorescence emission efficiency.
この時、量子ドット及び金属酸化物前駆体の分散媒としては、極性溶媒、非極性溶媒、イオン液体のいずれか1種以上を選択し、その溶媒中で被覆層の形成を行うことが好ましい。 In this case, it is preferable to select one or more of a polar solvent, a non-polar solvent, and an ionic liquid as the dispersion medium for the quantum dots and the metal oxide precursor, and form the coating layer in that solvent.
また、このときの被覆工程で用いられる溶媒を、トルエン、ヘキサン、シクロヘキサン、ベンゼン、ジエチルエーテルのいずれか1種以上の溶媒とすることが好ましい。これらの非極性溶媒は、半導体ナノ粒子の分散性をより向上させることができる。 In addition, it is preferable that the solvent used in this coating step is one or more of toluene, hexane, cyclohexane, benzene, and diethyl ether. These non-polar solvents can further improve the dispersibility of the semiconductor nanoparticles.
また溶媒が非極性溶媒の場合、マイルストーン社製の、炭素成分を配合したPTFE樹脂の一種であるウェフロンと呼ばれる、マイクロ波を吸収するような加熱素子をコーティング工程時に、任意で使用してもよい。 If the solvent is non-polar, a heating element that absorbs microwaves, such as Milestone's Weflon, a type of PTFE resin containing carbon components, may be used during the coating process.
金属酸化物の前駆体としては、特に限定されないが、金属アルコキシド、金属ハライド、金属錯体の中から単独または複数選択されたものを使用することが好ましい。安定性の観点から、金属酸化物前駆体としては、シリコンアルコキシド、アルミニウムアルコキシド、ジルコニウムアルコキシド、チタンアルコキシドが特に好ましい。 The precursor of the metal oxide is not particularly limited, but it is preferable to use one or more selected from metal alkoxides, metal halides, and metal complexes. From the viewpoint of stability, silicon alkoxides, aluminum alkoxides, zirconium alkoxides, and titanium alkoxides are particularly preferable as the metal oxide precursor.
このとき、被覆工程時に金属酸化物前駆体の反応を促進させるために触媒を用いることが好ましい。特に、金属アルコキシドを用いる場合、ゾルゲル反応を促進させるために触媒を用いることが望ましい。触媒としては、酸性水溶液または塩基性水溶液が挙げられ、被覆層の膜厚の観点から塩基性水溶液が特に好ましい。 In this case, it is preferable to use a catalyst to promote the reaction of the metal oxide precursor during the coating process. In particular, when a metal alkoxide is used, it is desirable to use a catalyst to promote the sol-gel reaction. Examples of catalysts include acidic aqueous solutions and basic aqueous solutions, and basic aqueous solutions are particularly preferable from the viewpoint of the film thickness of the coating layer.
また、被覆工程時に、金属酸化物前駆体の分散性の観点から界面活性剤を添加してもよい。界面活性剤は特に限定されないが、例えば、カチオン性界面活性剤であるセチルトリメチルアンモニウムブロミドのような4級アンモニウム塩、アニオン性界面活性剤であるカルボン酸塩やスルホン酸塩、ノニオン性界面活性剤であるポリエキシエチレンアルキルエーテル、セチルトリメチルアンモニウムブロミド等が挙げられる。金属酸化物前駆体分散性の観点からカチオン性界面活性剤が特に好ましい。 Furthermore, from the viewpoint of dispersibility of the metal oxide precursor during the coating process, a surfactant may be added. The surfactant is not particularly limited, but examples include quaternary ammonium salts such as cetyltrimethylammonium bromide, which are cationic surfactants; carboxylates and sulfonates, which are anionic surfactants; and polyoxyethylene alkyl ethers and cetyltrimethylammonium bromide, which are nonionic surfactants. Cationic surfactants are particularly preferred from the viewpoint of dispersibility of the metal oxide precursor.
また、被覆工程を、アルコール存在下において行うことが好ましい。アルコール存在下でコーティングを行えば、金属酸化物前駆体の分散性がより優れる。また、界面活性剤を添加している場合、アルコールのような極性溶媒に溶解させることでより分散性を向上させることができる。 It is also preferable to carry out the coating process in the presence of alcohol. If coating is carried out in the presence of alcohol, the dispersibility of the metal oxide precursor is better. Also, if a surfactant is added, dispersibility can be further improved by dissolving it in a polar solvent such as alcohol.
このとき、マイクロ波照射処理における反応温度は、溶媒によって異なるが、蛍光発光効率の劣化を防ぐ観点から、40~200℃が好ましく、50~110℃がより好ましい。 The reaction temperature during microwave irradiation treatment varies depending on the solvent, but is preferably 40 to 200°C, more preferably 50 to 110°C, from the viewpoint of preventing deterioration of the fluorescence emission efficiency.
酸化物の被覆工程について、本実施形態の一例としてマイクロ波処理を用いているが、量子ドット表面が酸化物層で「被覆」される方法であれば、特に限定されない。 As an example of the oxide coating process in this embodiment, microwave treatment is used, but there are no particular limitations as long as the quantum dot surface is "coated" with an oxide layer.
[ホスホン酸誘導体]
上述のように、本実施形態では、溶液中で金属酸化物前駆体を反応させて、量子ドット表面に金属酸化物の被覆層の形成を行うことで、大気中の水や酸素が直接量子ドット表面に接触するのを防ぎ、蛍光発光効率の劣化を抑制する。
[Phosphonic acid derivatives]
As described above, in this embodiment, a metal oxide precursor is reacted in a solution to form a metal oxide coating layer on the surface of the quantum dots, thereby preventing water and oxygen in the air from directly contacting the quantum dot surface and suppressing deterioration of the fluorescence emission efficiency.
しかし、酸化物被覆層を形成した後の、酸化物外側表面には、水酸基が多数残存する。この水酸基が大気中の水と接触すると、水素結合により酸化物表面にはナノオーダーの薄い吸着水の層、水和層が形成される。 However, after the oxide coating layer is formed, many hydroxyl groups remain on the outer surface of the oxide. When these hydroxyl groups come into contact with water in the air, hydrogen bonds form a thin layer of adsorbed water on the oxide surface, a hydration layer, which is on the nanometer order of size.
上記のような量子ドット表面に酸化物を被覆した組成物を、波長変換材料として用いた場合、長時間、光や熱による外部刺激にさらされる環境であるために、徐々にこの吸着水が内部の量子ドット表面までに浸透していき、表面酸化が促進されることで、長期使用における蛍光発効率の劣化が起こると考えられる。この蛍光発光効率の劣化を抑制するために、この酸化物表面の水酸基はなるべく除去することが好ましい。 When a composition in which the surface of quantum dots is coated with an oxide as described above is used as a wavelength conversion material, it is in an environment where it is exposed to external stimuli such as light and heat for a long period of time, so this adsorbed water gradually penetrates to the internal quantum dot surface, promoting surface oxidation and causing a deterioration in the fluorescence emission efficiency over long-term use. In order to suppress this deterioration in the fluorescence emission efficiency, it is preferable to remove as many hydroxyl groups as possible from the oxide surface.
しかし、この金属酸化物表面の水酸基を加熱操作により完全に除去するのは難しく、金属酸化物の組成にも依存するが、約500℃以上の加熱操作が必要であり、この温度帯における加熱は量子ドットの形態変化や発光効率の劣化・失活が生じるため、加熱操作のみによる水酸基の除去は困難である。 However, it is difficult to completely remove the hydroxyl groups on the surface of this metal oxide by heating. Although this depends on the composition of the metal oxide, heating to approximately 500°C or higher is necessary. Heating at this temperature range changes the shape of the quantum dots and reduces or deactivates their luminescence efficiency, so it is difficult to remove the hydroxyl groups by heating alone.
そこで、本発明に有用な、酸化物表面の水酸基を除去するために必要な修飾剤はホスホン酸誘導体であり、本実施形態における量子ドット組成物は、上記量子ドットとその量子ドット表面を被覆する酸化物及びその量子ドット表面又は酸化物表面を修飾するホスホン酸誘導体により構成される。 The modifier useful in the present invention and necessary for removing hydroxyl groups on the oxide surface is a phosphonic acid derivative, and the quantum dot composition in this embodiment is composed of the quantum dots, an oxide that covers the quantum dot surface, and a phosphonic acid derivative that modifies the quantum dot surface or the oxide surface.
ホスホン酸誘導体は、それ自体は安定な化合物であり自己重合しないため、バルク中における析出がなく、酸化物表面または量子ドット表面に選択的に接着し、修飾される。 Phosphonic acid derivatives are stable compounds in themselves and do not self-polymerize, so they do not precipitate in the bulk and selectively adhere to and modify oxide surfaces or quantum dot surfaces.
特に酸化物表面では、数十度程度の加熱処理により、金属酸化物の水酸基とホスホン酸誘導体が脱水縮合反応を起こすため、酸化物表面の水酸基が除去されていくと共に、ホスホン酸誘導体が酸化物表面に修飾される。 In particular, on oxide surfaces, heat treatment at several tens of degrees causes a dehydration condensation reaction between the hydroxyl groups of the metal oxide and the phosphonic acid derivative, which removes the hydroxyl groups on the oxide surface and modifies the oxide surface with the phosphonic acid derivative.
さらに、酸化物表面の酸素の未結合手部位に対しては、ホスホン酸誘導体のOH基からH+(プロトン)が供与され続けるため、上記の脱水縮合反応が繰り返し行われ、酸化物表面には密にホスホン酸誘導体が修飾される。 Furthermore, since H + (protons) continue to be donated from the OH groups of the phosphonic acid derivative to the dangling oxygen bonds on the oxide surface, the above-mentioned dehydration condensation reaction is repeated, and the oxide surface is densely modified with the phosphonic acid derivative.
本実施形態における「修飾」とは、ホスホン酸が金属酸化物表面または量子ドット表面に接着した状態を表す。「修飾」による表面へのホスホン酸誘導体の接着は、部分的である場合と全面である場合を含んでおり、少なくとも表面の一部に接着した状態を示す。 In this embodiment, "modification" refers to a state in which phosphonic acid is attached to a metal oxide surface or a quantum dot surface. The attachment of a phosphonic acid derivative to a surface by "modification" includes partial and full surface attachment, and refers to a state in which the phosphonic acid derivative is attached to at least a part of the surface.
上記における「接着」とは、物理的な吸着であっても化学的な結合であってもよく、例えば共有結合やイオン結合、水素結合を広義に表し、これらの組合わせであってもよい。
また、一例として、量子ドット、酸化物の被覆層、ホスホン酸誘導体による修飾から成る上記の量子ドット組成物は、金属酸化物または量子ドット表面に合成時に付着していた有機配位子とホスホン酸誘導体が共存している状態でも良い。
The term "adhesion" as used above may refer to either physical adsorption or chemical bonding, and may broadly refer to, for example, covalent bonding, ionic bonding, or hydrogen bonding, or may refer to a combination of these.
As an example, the quantum dot composition comprising the quantum dots, the oxide coating layer, and the modification with a phosphonic acid derivative may be in a state in which the organic ligands attached to the metal oxide or quantum dot surface during synthesis coexist with the phosphonic acid derivative.
ホスホン酸誘導体の種類についても、特に限定されないが、例えばこの化合物の構造は、以下の式(I)、(II)、(III)、及び(IV)の少なくとも1つで示されるものが好ましい。 The type of phosphonic acid derivative is not particularly limited, but for example, the structure of this compound is preferably at least one of the following formulas (I), (II), (III), and (IV).
式(I)~(IV)の化合物のある種の実施形態では、R1~R4は、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることが好ましい。 In certain embodiments of the compounds of formulae (I) to (IV), R 1 to R 4 preferably include at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
式(I)として、具体的には、3-フェニル-2-プロペニルホスホン酸、テノホビル、2-ホスホノブタン-1,2,4-トリカルボン酸、4-ホスホノ安息香酸、ビニルホスホン酸、n-オクチルホスホン酸、(3-ブロモプロピル)ホスホン酸、(4-ブロモブチル)ホスホン酸、(2-ブロモエチル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノプロピオン酸、(4-ヒドロキシフェニル)ホスホン酸、ヘキシルホスホン酸、4-ホスホノ酪酸、プロピルホスホン酸、(4-アミノベンジル)ホスホン酸、(4-アミノフェニル)ホスホン酸、3-ホスホノ安息香酸、メチルホスホン酸、ノニルホスホン酸、ベンズヒドリルホスホン酸、オクタデシルホスホン酸、(アミノメチル)ホスホン酸、(2-フェニルエチル)ホスホン酸、エチルホスホン酸、ブチルホスホン酸、デシルホスホン酸、ドデシルホスホン酸、(2-クロロエチル)ホスホン酸、4-メトキシフェニルホスホン酸、ヘキサデシルホスホン酸、(4-ヒドロキシベンジル)ホスホン酸、フェニルホスホン酸、(1H,1H,2H,2H-ヘプタデカフルオロデシル)ホスホン酸、テトラデシルホスホン酸、(1-アミノエチル)ホスホン酸、ウンデシルホスホン酸、ヘプチルホスホン酸、10-カルボキシデシルホスホン酸、11-アミノウンデシルホスホン酸・臭化水素酸塩、11-ヒドロキシウンデシルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-ヘキシルホスホン酸、1H,1H,2H,2H-パーフルオロオクチルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-デシルホスホン酸、11-{2-[2-(2-メトキシエトキシ)エトキシ]エトキシ}ウンデシルホスホン酸、12-メルカプトデシルホスホン酸、及び[11-(アクリロイルオキシ)ウンデシル]ホスホン酸が挙げられる。 Specific examples of the compound represented by formula (I) include 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, acid, hexylphosphonic acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid, (4-aminophenyl)phosphonic acid, 3-phosphonobenzoic acid, methylphosphonic acid, nonylphosphonic acid, benzhydrylphosphonic acid, octadecylphosphonic acid, (aminomethyl)phosphonic acid, (2-phenylethyl)phosphonic acid, ethylphosphonic acid, butylphosphonic acid, decylphosphonic acid, dodecylphosphonic acid, (2-chloroethyl)phosphonic acid (1H,1H,2H,2H-heptadecafluorodecyl)phosphonic acid, tetradecylphosphonic acid, (1-aminoethyl)phosphonic acid, undecylphosphonic acid, heptylphosphonic acid, 10-carboxydecylphosphonic acid, 11-aminoundecylphosphonic acid hydrobromide, 11-hydroxyphenylphosphonic acid ... These include undecylphosphonic acid, 1H,1H,2H,2H-perfluoro-n-hexylphosphonic acid, 1H,1H,2H,2H-perfluorooctylphosphonic acid, 1H,1H,2H,2H-perfluoro-n-decylphosphonic acid, 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid, 12-mercaptodecylphosphonic acid, and [11-(acryloyloxy)undecyl]phosphonic acid.
式(II)として、具体的には、m-キシリレンジホスホン酸、o-キシリレンジホスホン酸、メチレンジホスホン酸、アレンドロン酸、1,4-ブチレンジホスホン酸、グリシン-N,N-ビス(メチレンホスホン酸)、p-キシリレンジホスホン酸、ゾレドロン酸、1,3-プロピレンジホスホン酸、1,5-ペンチレンジホスホン酸、1,4-フェニレンジホスホン酸、1,2-エチレンジホスホン酸、1,6-ヘキシレンジホスホン酸、ミノドロナート、及び1-ヒドロキシエタン-1,1-ジホスホン酸が挙げられる。 Specific examples of compounds of formula (II) include m-xylylenediphosphonic acid, o-xylylenediphosphonic acid, methylenediphosphonic acid, alendronic acid, 1,4-butylenediphosphonic acid, glycine-N,N-bis(methylenephosphonic acid), p-xylylenediphosphonic acid, zoledronic acid, 1,3-propylenediphosphonic acid, 1,5-pentylenediphosphonic acid, 1,4-phenylenediphosphonic acid, 1,2-ethylenediphosphonic acid, 1,6-hexylenediphosphonic acid, minodronate, and 1-hydroxyethane-1,1-diphosphonic acid.
式(III)として、具体的には、ニトリロトリス(メチレンホスホン酸)が挙げられる。 Specific examples of formula (III) include nitrilotris(methylene phosphonic acid).
式(IV)として、具体的には、N,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。 Specific examples of formula (IV) include N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid).
上記ホスホン酸誘導体は、1種単独、又は2種以上を組み合わせて用いることができる。 The above phosphonic acid derivatives can be used alone or in combination of two or more.
上記ホスホン酸誘導体を量子ドット表面や金属酸化物表面に修飾させる際の加熱温度は特に限定されないが、効率的に修飾させるために、加熱温度は50~300℃の範囲が好ましく、80℃~200℃の範囲がより好ましい。このような範囲であれば、量子ドット表面により効率的に修飾させることができる。 The heating temperature when modifying the quantum dot surface or metal oxide surface with the above phosphonic acid derivative is not particularly limited, but in order to perform the modification efficiently, the heating temperature is preferably in the range of 50 to 300°C, and more preferably in the range of 80°C to 200°C. Within such a range, the quantum dot surface can be modified more efficiently.
上記表面修飾剤としてのホスホン酸誘導体の添加量については、ホスホン酸誘導体が量子ドット表面や金属酸化物表面に修飾される範囲であれば、特に限定されないが、例えば、30wt%以下であると量子ドット同士の凝集や、ホスホン酸誘導体の析出を抑制できるので好ましく、0.01wt%以上であると、量子ドット表面や金属酸化物表面への修飾による作用を十分に発揮させられるため、表面修飾剤の添加重量は量子ドットの固形重量に対して、0.01~30wt%の範囲が好ましく、0.05~20wt%の範囲がより好ましい。 The amount of the phosphonic acid derivative added as the surface modifier is not particularly limited as long as the phosphonic acid derivative modifies the quantum dot surface or metal oxide surface. For example, an amount of 30 wt% or less is preferable because it can suppress aggregation of the quantum dots and precipitation of the phosphonic acid derivative. An amount of 0.01 wt% or more can fully exert the effect of modifying the quantum dot surface or metal oxide surface. Therefore, the weight of the surface modifier added is preferably in the range of 0.01 to 30 wt% relative to the solid weight of the quantum dots, and more preferably in the range of 0.05 to 20 wt%.
[量子ドット組成物]
量子ドット表面に上記酸化物層が被覆され、該量子ドット表面または酸化物層表面にホスホン酸が修飾された、量子ドット組成物は、量子ドット表面の酸化反応が抑制されることで、蛍光発光効率の劣化が抑制され、安定性が改善される。
Quantum dot composition
In a quantum dot composition in which the quantum dot surface is coated with the oxide layer and the quantum dot surface or the oxide layer surface is modified with phosphonic acid, the oxidation reaction on the quantum dot surface is suppressed, thereby suppressing deterioration in the fluorescence emission efficiency and improving stability.
[樹脂組成物]
また、上記量子ドット組成物が樹脂中に分散された樹脂組成物として使用することができる。樹脂材料は特に限定されないが、量子ドット組成物が凝集、蛍光発光効率の劣化が起きないものが好ましく、例えば、エポキシ系樹脂、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、カーボネート系樹脂、及びガラス樹脂から選択される少なくとも1種類以上が挙げられる。
[Resin composition]
The quantum dot composition can be used as a resin composition dispersed in a resin. The resin material is not particularly limited, but is preferably one in which the quantum dot composition does not aggregate or the fluorescence emission efficiency does not deteriorate, and examples thereof include at least one selected from epoxy resins, acrylic resins, fluorine resins, silicone resins, carbonate resins, and glass resins.
これらの樹脂組成物は、蛍光発光効率を高めるために、透過率が高いことが好ましく、透過率が80%以上であることが特に好ましい。 In order to increase the efficiency of fluorescent light emission, it is preferable that these resin compositions have high transmittance, and it is particularly preferable that the transmittance be 80% or more.
また、樹脂組成物中に含まれる量子ドット濃度は特に限定されず、フィルム厚さや量子ドットの発光効率、目的とする波長変換材料の特性に合わせて適切に調整することができる。 In addition, the concentration of quantum dots contained in the resin composition is not particularly limited, and can be appropriately adjusted according to the film thickness, the luminous efficiency of the quantum dots, and the characteristics of the desired wavelength conversion material.
また、樹脂組成物中には、量子ドット組成物以外の物質が含まれていても良く、光散乱体としてシリカやジルコニア、アルミナ、チタニアなどの微粒子が含まれていても良く、無機蛍光体や有機蛍光体が含まれていても良い。 In addition, the resin composition may contain substances other than the quantum dot composition, and may contain fine particles of silica, zirconia, alumina, titania, etc. as light scatterers, and may also contain inorganic or organic phosphors.
無機蛍光体としては、YAG、LSN、LYSN、CASN、SCASN、KSF、CSO、β-SIALON、GYAG、LuAG、SBCAなどが、有機蛍光体としてペリレン誘導体、アントラキノン誘導体、アントラセン誘導体、フタロシアニン誘導体、シアニン誘導体、ジオキサジン誘導体、ベンゾオキサジノン誘導体、クマリン誘導体、キノフタロン誘導体、ベンゾオキサゾール誘導体、ピラリゾン誘導体などが例示できる。 Examples of inorganic phosphors include YAG, LSN, LYSN, CASN, SCASN, KSF, CSO, β-SIALON, GIAG, LuAG, and SBCA, while examples of organic phosphors include perylene derivatives, anthraquinone derivatives, anthracene derivatives, phthalocyanine derivatives, cyanine derivatives, dioxazine derivatives, benzoxazinone derivatives, coumarin derivatives, quinophthalone derivatives, benzoxazole derivatives, and pyrarizone derivatives.
[波長変換材料]
また、本発明では、上記樹脂組成物の硬化物を含む波長変換材料を提供する。波長変換材料は、そのまま用いられても、加工されてもよい。一つの形態としてシート状に加工してから硬化させることで、量子ドット組成物が樹脂に分散した波長変換フィルムが挙げられる。
[Wavelength conversion material]
The present invention also provides a wavelength converting material containing the cured product of the resin composition. The wavelength converting material may be used as it is or may be processed. One form of the wavelength converting material is a wavelength conversion film in which the quantum dot composition is dispersed in the resin by processing the material into a sheet and then curing the sheet.
波長変換材料の製造方法は特に限定されないが、例えば、量子ドット組成物を樹脂に分散させた樹脂組成物をPETやポリイミドなどの透明フィルムに塗布し硬化させ、ラミネート加工することで波長変換材料を得ることができる。 There are no particular limitations on the method for producing the wavelength conversion material, but for example, a resin composition in which a quantum dot composition is dispersed in a resin can be applied to a transparent film such as PET or polyimide, cured, and laminated to obtain the wavelength conversion material.
透明フィルムへの塗布はスプレーやインクジェットなどの噴霧法、スピンコートやバーコーター、ドクターブレード法を用いることができ、塗布により樹脂層を形成する。また、樹脂層及び透明フィルムの厚みは特に限定されず用途に応じ適宜選択できる。このような波長変換材料であれば、蛍光発光効率の劣化が抑制された、信頼性が向上したものとなる。 The transparent film can be coated using a spraying method such as spray or inkjet, or a spin coat, bar coater, or doctor blade method, and a resin layer is formed by coating. There are no particular limitations on the thickness of the resin layer and transparent film, and the thickness can be selected appropriately depending on the application. Such a wavelength conversion material suppresses deterioration of the fluorescent emission efficiency and improves reliability.
以下、製造例、実施例、比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically explained below using manufacturing examples, examples, and comparative examples, but the present invention is not limited to these.
(発光特性評価)
製造例、実施例、及び比較例において、量子ドット、量子ドット組成物、及び波長変換材料の蛍光発光特性評価としては、大塚電子株式会社製:量子効率測定システム(QE-2100)を用いて、励起波長450nmにおける蛍光発光効率(内部量子効率)を測定した。
(Evaluation of Light Emitting Properties)
In the manufacturing examples, examples, and comparative examples, the fluorescence emission properties of the quantum dots, quantum dot compositions, and wavelength conversion materials were evaluated by measuring the fluorescence emission efficiency (internal quantum efficiency) at an excitation wavelength of 450 nm using a quantum efficiency measurement system (QE-2100) manufactured by Otsuka Electronics Co., Ltd.
(量子ドットの製造)
(製造例1)
フラスコ内に酢酸インジウム0.070g(0.24mmol)、パルミチン酸0.256g(0.72mmol)、1-オクタデセン4.0mLを加え、減圧下、100℃で加熱攪拌を行い、溶解させながら1時間脱気を行った。
(Quantum dot manufacturing)
(Production Example 1)
In a flask were placed 0.070 g (0.24 mmol) of indium acetate, 0.256 g (0.72 mmol) of palmitic acid, and 4.0 mL of 1-octadecene, which were then heated and stirred at 100° C. under reduced pressure to dissolve and degas for 1 hour.
フラスコを室温まで冷却した後に窒素をパージし、10vol%(トリス)トリメチルシリルホスフィン/オクタデセン溶液0.50mL(0.17mmol)をフラスコへ添加した。フラスコを300℃まで加熱し、攪拌を20分間行うことで、InP半導体コア粒子を合成した。 After cooling the flask to room temperature, nitrogen was purged and 0.50 mL (0.17 mmol) of a 10 vol% (tris)trimethylsilylphosphine/octadecene solution was added to the flask. The flask was heated to 300°C and stirred for 20 minutes to synthesize InP semiconductor core particles.
次いで、フラスコを200℃まで冷却した後に、塩化ガリウム(III)/オクタデセン溶液を0.10mL(0.02mmol)を添加し30分加熱してInP半導体コア粒子表面の不動態化を行った。 Then, the flask was cooled to 200°C, after which 0.10 mL (0.02 mmol) of gallium(III) chloride/octadecene solution was added and heated for 30 minutes to passivate the surface of the InP semiconductor core particles.
さらに、フラスコを240℃まで加熱した後に、0.30Mステアリン酸亜鉛/オクタデセン溶液を4.0mL(1.2mmol)添加し30分間攪拌した。さらに、セレン/トリオクチルホスフィン溶液1.5Mを0.60mL(0.90mmol)をフラスコに添加し、30分間攪拌した。 Furthermore, after heating the flask to 240°C, 4.0 mL (1.2 mmol) of 0.30 M zinc stearate/octadecene solution was added and stirred for 30 minutes. Furthermore, 0.60 mL (0.90 mmol) of 1.5 M selenium/trioctylphosphine solution was added to the flask and stirred for 30 minutes.
次にフラスコを室温まで冷却した後に、酢酸亜鉛を0.22g(1.1mmol)添加し、減圧下、100℃で加熱攪拌を行い、溶解させながら1時間脱気を行った。フラスコに窒素をパージした後に230℃まで加熱し、1-ドデカンチオールを0.48mL(2.0mmol)添加し、30分間攪拌した。 Then, after cooling the flask to room temperature, 0.22 g (1.1 mmol) of zinc acetate was added, and the mixture was heated and stirred at 100°C under reduced pressure, and degassed for 1 hour while dissolving. After purging the flask with nitrogen, it was heated to 230°C, and 0.48 mL (2.0 mmol) of 1-dodecanethiol was added and stirred for 30 minutes.
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、InPのコア、ZnSeのシェル、ZnSのシェルから成る量子ドットを沈殿させて上澄み液を除去した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate quantum dots consisting of an InP core, a ZnSe shell, and a ZnS shell, and the supernatant was removed.
さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、InP/ZnSe/ZnS分散液を調製した。 Toluene was then added to the precipitate to disperse it, ethanol was added again, the mixture was centrifuged, the supernatant was removed, and the precipitate was redispersed in toluene to prepare an InP/ZnSe/ZnS dispersion.
得られたInP/ZnSe/ZnSトルエン分散液の蛍光発光波長ピークは535nm、内部量子効率は84%であった。また、InP/ZnSe/ZnSトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は68%であった。 The resulting InP/ZnSe/ZnS toluene dispersion had a peak fluorescence wavelength of 535 nm and an internal quantum efficiency of 84%. In addition, the InP/ZnSe/ZnS toluene dispersion was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 68%.
(製造例2)
フラスコ内に酢酸銀(I)0.033g(0.20mmol)、酢酸インジウム0.058g(0.20mmol)、1-ドデカンチオール0.65mL(2.7mmol)とオレイルアミン4.0mLを加え、減圧下、100℃で加熱攪拌を行い、1時間脱気を行った。その後、窒素をフラスコ内にパージし、200℃に加熱し、20分間保持することでAgInS2半導体コア粒子を合成した。
(Production Example 2)
0.033 g (0.20 mmol) of silver acetate (I), 0.058 g (0.20 mmol) of indium acetate, 0.65 mL (2.7 mmol) of 1-dodecanethiol, and 4.0 mL of oleylamine were added to the flask, and the mixture was heated and stirred at 100° C. under reduced pressure and degassed for 1 hour. Nitrogen was then purged into the flask, and the mixture was heated to 200° C. and held for 20 minutes to synthesize AgInS 2 semiconductor core particles.
次に、塩化亜鉛0.014g(0.1mmol)をトリオクチルホスフィン溶液1.0mlに溶解させ、200℃に加熱したフラスコに添加してAgInS2半導体コア粒子表面の不動態化を行った。 Next, 0.014 g (0.1 mmol) of zinc chloride was dissolved in 1.0 ml of the trioctylphosphine solution and added to the flask heated to 200° C. to passivate the surfaces of the AgInS 2 semiconductor core particles.
続いて、フラスコを230℃に加熱した後に、硫黄/トリオクチルホスフィン溶液1.25Mを調製して反応溶液に1.0mLを加えて1時間攪拌した。最後に酢酸亜鉛0.099g(0.54mmol)をオレイン酸0.24mL(0.76mmol)とオレイルアミン0.15mLに溶解させた亜鉛前駆体溶液を、フラスコに加えて、230℃で1時間加熱攪拌した。 Then, the flask was heated to 230°C, and a 1.25M sulfur/trioctylphosphine solution was prepared, 1.0 mL of which was added to the reaction solution and stirred for 1 hour. Finally, a zinc precursor solution prepared by dissolving 0.099 g (0.54 mmol) of zinc acetate in 0.24 mL (0.76 mmol) of oleic acid and 0.15 mL of oleylamine was added to the flask, and the mixture was heated and stirred at 230°C for 1 hour.
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドットを沈殿させて上澄み液を除去した。さらにトルエンを加えて分散させ、エタノールを再度加えて遠心分離し、上澄み液を除去し、沈殿物をトルエンに再分散させてAgInS2/ZnS分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dots and remove the supernatant. Toluene was then added to disperse the quantum dots, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the precipitate was redispersed in toluene to prepare an AgInS 2 /ZnS dispersion.
得られたAgInS2/ZnSトルエン分散液の蛍光発光波長ピークは599nm、内部量子効率は68%であった。また、AgInS2/ZnS分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は49%であった。 The resulting AgInS 2 /ZnS toluene dispersion had a fluorescent emission wavelength peak of 599 nm and an internal quantum efficiency of 68%. The AgInS 2 /ZnS dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescent emission efficiency was measured, resulting in an internal quantum efficiency of 49%.
(金属酸化物被覆層の形成)
(製造例3)
製造例1で得られた、1.0wt%InP/ZnSe/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、テトラエチルオルトシリケート110μL、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Formation of Metal Oxide Coating Layer)
(Production Example 3)
10 g of the toluene solution of 1.0 wt % InP/ZnSe/ZnS quantum dots (semiconductor nanoparticles) obtained in Production Example 1, 110 μL of tetraethyl orthosilicate, 50 μL of 25% aqueous ammonia solution, and 0.010 g/100 μL of cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、InP/ZnSe/ZnS表面にSiO2被覆層を形成した。得られたナノ粒子にエタノールを加えてから遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Then, a SiO2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then centrifuged to precipitate and remove the supernatant. Toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
得られたInP/ZnSe/ZnS/SiO2トルエン分散液の内部量子効率は81%であった。また、InP/ZnSe/ZnS/SiO2トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は71%であった。 The resulting InP/ZnSe/ZnS/ SiO2 toluene dispersion had an internal quantum efficiency of 81%. In addition, the InP/ZnSe/ZnS/ SiO2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 71%.
(製造例4)
製造例1で得られた、1.0wt%InP/ZnSe/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、アルミニウムイソプロポキシド0.10g、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Production Example 4)
10 g of the toluene solution of 1.0 wt % InP/ZnSe/ZnS quantum dots (semiconductor nanoparticles) obtained in Production Example 1, 0.10 g of aluminum isopropoxide, 50 μL of a 25% aqueous ammonia solution, and 0.010 g/100 μL of a cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、InP/ZnSe/ZnS表面にAl2O3被覆層を形成した。得られたナノ粒子にエタノールを加えて遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Then, an Al2O3 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
得られたInP/ZnSe/ZnS/Al2O3トルエン分散液の内部量子効率は83%であった。また、InP/ZnSe/ZnS/Al2O3トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は72%であった。 The internal quantum efficiency of the obtained InP/ZnSe/ZnS/Al 2 O 3 toluene dispersion was 83%. In addition, the InP/ZnSe/ZnS/Al 2 O 3 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 72%.
(製造例5)
製造例1で得られた、1.0wt%InP/ZnSe/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、ジルコニウム(IV)イソプロポキシド0.16g、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Production Example 5)
10 g of the toluene solution of 1.0 wt % InP/ZnSe/ZnS quantum dots (semiconductor nanoparticles) obtained in Production Example 1, 0.16 g of zirconium (IV) isopropoxide, 50 μL of a 25% aqueous ammonia solution, and 0.010 g/100 μL of a cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、InP/ZnSe/ZnS表面にZrO2被覆層を形成した。得られたナノ粒子にエタノールを加えて遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Then, a ZrO2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60°C for 5 minutes at 2450MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
得られたInP/ZnSe/ZnS/ZrO2トルエン分散液の内部量子効率は83%であった。また、InP/ZnSe/ZnS/ZrO2トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は73%であった。 The internal quantum efficiency of the obtained InP/ZnSe/ZnS/ ZrO2 toluene dispersion was 83%. In addition, the InP/ZnSe/ZnS/ ZrO2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 73%.
(製造例6)
製造例1で得られた、1.0wt%InP/ZnSe/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、チタンテトライソプロポキシド0.14g、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Production Example 6)
10 g of the toluene solution of 1.0 wt % InP/ZnSe/ZnS quantum dots (semiconductor nanoparticles) obtained in Production Example 1, 0.14 g of titanium tetraisopropoxide, 50 μL of a 25% aqueous ammonia solution, and 0.010 g/100 μL of a cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、InP/ZnSe/ZnS表面にTiO2被覆層を形成した。 Thereafter, a TiO 2 coating layer was formed on the InP/ZnSe/ZnS surface by heating at 60° C. for 5 minutes at 2450 MHz using a microwave synthesis reaction apparatus (flexi WAVE, manufactured by Milestone General Co.).
得られたナノ粒子にエタノールを加えて遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and the nanoparticles were redispersed by adding toluene or octadecene and subjecting them to ultrasonic irradiation.
得られたInP/ZnSe/ZnS/TiO2トルエン分散液の内部量子効率は78%であった。また、InP/ZnSe/ZnS/TiO2トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は70%であった。 The internal quantum efficiency of the obtained InP/ZnSe/ZnS/ TiO2 toluene dispersion was 78%. In addition, the InP/ZnSe/ZnS/ TiO2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. As a result, the internal quantum efficiency was 70%.
(製造例7)
製造例2で得られた、1.0wt%AgInS2/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、アルミニウムイソプロポキシド0.10g、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Production Example 7)
10 g of the toluene solution of 1.0 wt % AgInS 2 /ZnS quantum dots (semiconductor nanoparticles) obtained in Production Example 2, 0.10 g of aluminum isopropoxide, 50 μL of 25% aqueous ammonia solution, and 0.010 g/100 μL of cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、AgInS2/ZnS表面にAl2O3被覆層を形成した。得られたナノ粒子にエタノールを加えて遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Then, an Al 2 O 3 coating layer was formed on the AgInS 2 /ZnS surface by heating at 60° C. for 5 minutes at 2450 MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
得られたAgInS2/ZnS/Al2O3トルエン分散液の内部量子効率は64%であった。また、AgInS2/ZnS/Al2O3トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は54%であった。 The resulting AgInS 2 /ZnS/Al 2 O 3 toluene dispersion had an internal quantum efficiency of 64%. The AgInS 2 /ZnS/Al 2 O 3 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and then the fluorescence emission efficiency was measured. The internal quantum efficiency was 54%.
(製造例8)
製造例2で得られた、1.0wt%AgInS2/ZnS量子ドット(半導体ナノ粒子)のトルエン溶液10g、ジルコニウム(IV)イソプロポキシド0.16g、25%アンモニア水溶液50μL、セチルトリメチルアンモニウムブロミド/エタノール溶液0.010g/100μLを混合して、高圧反応容器に入れた。
(Production Example 8)
10 g of the toluene solution of 1.0 wt % AgInS 2 /ZnS quantum dots (semiconductor nanoparticles) obtained in Preparation Example 2, 0.16 g of zirconium (IV) isopropoxide, 50 μL of 25% aqueous ammonia solution, and 0.010 g/100 μL of cetyltrimethylammonium bromide/ethanol solution were mixed and placed in a high-pressure reaction vessel.
その後、マイクロ波合成反応装置(マイルストーンゼネラル社製、flexi WAVE)を用いて、2450MHzにおいて60℃、5分間加熱を行うことで、AgInS2/ZnS表面にZrO2被覆層を形成した。得られたナノ粒子にエタノールを加えて遠心分離により沈降させて上澄み液を除去し、トルエンまたはオクタデセンを加えて超音波照射処理を行うことで再分散させた。 Then, a ZrO2 coating layer was formed on the AgInS2 /ZnS surface by heating at 60°C for 5 minutes at 2450 MHz using a microwave synthesis reaction device (flexi WAVE, manufactured by Milestone General Co., Ltd.). Ethanol was added to the obtained nanoparticles, which were then precipitated by centrifugation to remove the supernatant, and toluene or octadecene was added and the nanoparticles were redispersed by ultrasonic irradiation.
得られたAgInS2/ZnS/ZrO2トルエン分散液の内部量子効率は63%であった。また、AgInS2/ZnS/ZrO2トルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は53%であった。 The resulting AgInS 2 /ZnS/ZrO 2 toluene dispersion had an internal quantum efficiency of 63%. The AgInS 2 /ZnS/ZrO 2 toluene dispersion was irradiated with blue light having a wavelength of 450 nm using a blue LED light source (HL-36, manufactured by AS ONE CORPORATION) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 53%.
(ホスホン酸誘導体による表面修飾)
(実施例1)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
(Surface Modification with Phosphonic Acid Derivatives)
Example 1
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例3で得られた1.0wt%のInP/ZnSe/ZnS/SiO2のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/SiO 2 octadecene dispersion obtained in Production Example 3 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/SiO2に対して、HDPAで修飾された量子ドット組成物を得た。得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture. The flask was then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for InP/ZnSe/ZnS/SiO 2. The resulting solution was cooled to room temperature, ethanol was added, and the mixture was centrifuged to precipitate the quantum dot composition and remove the supernatant.
さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 Toluene was then added to the precipitate to disperse it, ethanol was added again, the mixture was centrifuged, the supernatant was removed, and the mixture was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は81%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は76%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 81%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 76%.
(実施例2)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
Example 2
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例4で得られた1.0wt%のInP/ZnSe/ZnS/Al2O3のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 4 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/Al2O3に対して、HDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for InP/ZnSe/ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は82%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は80%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 80%.
(実施例3)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
Example 3
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例5で得られた1.0wt%のInP/ZnSe/ZnS/ZrO2のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/ ZrO2 octadecene dispersion obtained in Production Example 5 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask. Next, the flask was heated and stirred at 50° C. under reduced pressure, and degassed for 10 minutes.
次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/ZrO2に対して、HDPAで修飾された量子ドット組成物を得た。 The flask was then purged with nitrogen, heated to 150° C., and stirred for 3 h to obtain a HDPA-modified quantum dot composition for InP/ZnSe/ZnS/ZrO 2 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は82%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は79%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 79%.
(実施例4)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
Example 4
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例6で得られた1.0wt%のInP/ZnSe/ZnS/TiO2のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/TiO 2 octadecene dispersion obtained in Production Example 6 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/TiO2に対して、HDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for InP/ZnSe/ZnS/TiO 2 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は78%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は77%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 78%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 77%.
(実施例5)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
Example 5
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例7で得られた1.0wt%のAgInS2/ZnS/Al2O3のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % AgInS 2 /ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 7 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、AgInS2/ZnS/Al2O3に対して、HDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for AgInS 2 /ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は63%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は61%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 61%.
(実施例6)
窒素雰囲気においてヘキサデシルホスホン酸(HDPA)31mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ヘキサデシルホスホン酸溶液を作製した。
Example 6
In a nitrogen atmosphere, 31 mg of hexadecylphosphonic acid (HDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a hexadecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例8で得られた1.0wt%のAgInS2/ZnS/ZrO2のオクタデセン分散液10gとヘキサデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % AgInS 2 /ZnS/ZrO 2 octadecene dispersion obtained in Production Example 8 and 6 ml of the hexadecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、AgInS2/ZnS/ZrO2に対して、HDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with HDPA for AgInS 2 /ZnS/ZrO 2 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は65%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は62%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 65%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 62%.
(実施例7)
窒素雰囲気においてドデシルホスホン酸(DDPA)25mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ドデシルホスホン酸溶液を作製した。
(Example 7)
In a nitrogen atmosphere, 25 mg of dodecylphosphonic acid (DDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a dodecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例4で得られた1.0wt%のInP/ZnSe/ZnS/Al2O3のオクタデセン分散液10gとドデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 4 and 6 ml of the dodecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/Al2O3に対して、DDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with DDPA for InP/ZnSe/ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は82%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は79%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 79%.
(実施例8)
窒素雰囲気において(4-ブロモブチル)ホスホン酸(BBPA)22mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、(4-ブロモブチル)ホスホン酸溶液を作製した。
(Example 8)
In a nitrogen atmosphere, 22 mg of (4-bromobutyl)phosphonic acid (BBPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a (4-bromobutyl)phosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例4で得られた1.0wt%のInP/ZnSe/ZnS/Al2O3のオクタデセン分散液10gと(4-ブロモブチル)ホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % InP/ZnSe/ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 4 and 6 ml of the (4-bromobutyl)phosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/Al2O3に対して、BBPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with BBPA for InP/ZnSe/ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は81%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は78%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 81%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 78%.
(実施例9)
窒素雰囲気においてフェニルホスホン酸(PhPA)16mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、フェニルホスホン酸(PhPA)溶液を作製した。
(Example 9)
In a nitrogen atmosphere, 16 mg of phenylphosphonic acid (PhPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a phenylphosphonic acid (PhPA) solution.
さらに窒素雰囲気下において、三口フラスコに、製造例4で得られた1.0wt%のInP/ZnSe/ZnS/Al2O3のオクタデセン分散液10gとフェニルホスホン酸溶液6mlを添加した。次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。 Further, under a nitrogen atmosphere, 10 g of the octadecene dispersion of 1.0 wt % InP/ZnSe/ZnS/Al 2 O 3 obtained in Production Example 4 and 6 ml of the phenylphosphonic acid solution were added to the three-neck flask. Next, the flask was heated and stirred at 50° C. under reduced pressure, and degassed for 10 minutes.
次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、InP/ZnSe/ZnS/Al2O3に対して、PhPAで修飾された量子ドット組成物を得た。 The flask was then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a PhPA-modified quantum dot composition for InP/ZnSe/ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は82%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は78%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 82%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 78%.
(実施例10)
窒素雰囲気においてドデシルホスホン酸(DDPA)25mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、ドデシルホスホン酸溶液を作製した。
(Example 10)
In a nitrogen atmosphere, 25 mg of dodecylphosphonic acid (DDPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a dodecylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例7で得られた1.0wt%のAgInS2/ZnS/Al2O3のオクタデセン分散液10gとドデシルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % AgInS 2 /ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 7 and 6 ml of the dodecylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、AgInS2/ZnS/Al2O3に対して、DDPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with DDPA for AgInS 2 /ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は63%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は60%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 60%.
(実施例11)
窒素雰囲気において(4-ブロモブチル)ホスホン酸(BBPA)22mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、(4-ブロモブチル)ホスホン酸溶液を作製した。
Example 11
In a nitrogen atmosphere, 22 mg of (4-bromobutyl)phosphonic acid (BBPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a (4-bromobutyl)phosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例7で得られた1.0wt%のAgInS2/ZnS/Al2O3のオクタデセン分散液10gと(4-ブロモブチル)ホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % AgInS 2 /ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 7 and 6 ml of the (4-bromobutyl)phosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、AgInS2/ZnS/Al2O3に対してBBPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with BBPA for AgInS 2 /ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は61%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は59%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 61%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 59%.
(実施例12)
窒素雰囲気においてフェニルホスホン酸(PhPA)22mgを20mlバイアルに秤量し、トルエンを5ml、エタノール1mlを添加し攪拌することで、フェニルホスホン酸溶液を作製した。
Example 12
In a nitrogen atmosphere, 22 mg of phenylphosphonic acid (PhPA) was weighed into a 20 ml vial, and 5 ml of toluene and 1 ml of ethanol were added and stirred to prepare a phenylphosphonic acid solution.
さらに窒素雰囲気下において、三口フラスコに、製造例7で得られた1.0wt%のAgInS2/ZnS/Al2O3のオクタデセン分散液10gとフェニルホスホン酸溶液6mlを添加した。 Further, under a nitrogen atmosphere, 10 g of the 1.0 wt % AgInS 2 /ZnS/Al 2 O 3 octadecene dispersion obtained in Production Example 7 and 6 ml of the phenylphosphonic acid solution were added to the three-neck flask.
次いで、フラスコを減圧下、50℃で加熱攪拌を行い、10分間脱気を行った。次に、フラスコに窒素をパージし、150℃まで加熱し、攪拌を3時間行うことで、AgInS2/ZnS/Al2O3に対して、PhPAで修飾された量子ドット組成物を得た。 The flask was then heated and stirred at 50° C. under reduced pressure for 10 minutes to degas the mixture, then purged with nitrogen, heated to 150° C., and stirred for 3 hours to obtain a quantum dot composition modified with PhPA for AgInS 2 /ZnS/Al 2 O 3 .
得られた溶液を室温まで冷却し、エタノールを加え、遠心分離することにより、量子ドット組成物を沈殿させて上澄み液を除去した。さらに沈殿物にトルエンを加えて分散させ、エタノールを再度加えて遠心分離を行い、上澄み液を除去してトルエンに再分散させることで、量子ドット組成物のトルエン分散液を調製した。 The resulting solution was cooled to room temperature, ethanol was added, and the solution was centrifuged to precipitate the quantum dot composition and remove the supernatant. Toluene was then added to the precipitate to disperse it, ethanol was added again, the solution was centrifuged, the supernatant was removed, and the solution was redispersed in toluene to prepare a toluene dispersion of the quantum dot composition.
得られた量子ドット組成物のトルエン分散液の内部量子効率は63%であった。また、得られた量子ドット組成物のトルエン分散液に、青色LED光源(アズワン社製、HL-36)を用いて波長450nmの青色光を大気雰囲気下で12時間照射した後に、蛍光発光効率を測定した結果、内部量子効率は60%であった。 The internal quantum efficiency of the obtained toluene dispersion of the quantum dot composition was 63%. In addition, the obtained toluene dispersion of the quantum dot composition was irradiated with blue light of 450 nm wavelength using a blue LED light source (HL-36, manufactured by AS ONE Corporation) for 12 hours in an air atmosphere, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 60%.
以上の結果を表1に示す。 The above results are shown in Table 1.
製造例1の量子ドットのトルエン分散液及び製造例3~6の金属酸化物被覆を行った量子ドットのトルエン分散液と、実施例1~4,7~9の酸化物被覆及びホスホン酸処理を行った量子ドット組成物のトルエン分散液について、青色光照射後の内部量子収率の値を比較すると、実施例1~4,7~9の量子ドット組成物の方が高い内部量子収率の値を保持していることが示された。 Comparing the internal quantum yield values after blue light irradiation for the toluene dispersion of quantum dots in Production Example 1 and the toluene dispersion of quantum dots coated with metal oxides in Production Examples 3 to 6, and the toluene dispersion of quantum dot compositions coated with oxides and treated with phosphonic acid in Examples 1 to 4 and 7 to 9, it was shown that the quantum dot compositions in Examples 1 to 4 and 7 to 9 maintained higher internal quantum yield values.
また、製造例2の量子ドットのトルエン分散液及び製造例7,8の金属酸化物被覆を行った量子ドットのトルエン分散液と実施例5,6,10~12の酸化物被覆及びホスホン酸処理を行った量子ドット組成物のトルエン分散液について、青色光照射後の内部量子収率の値を比較すると、実施例5,6,10~12の量子ドット組成物の方が高い内部量子収率の値を保持していることが示された。 In addition, when comparing the internal quantum yield values after blue light irradiation for the toluene dispersion of quantum dots from Production Example 2 and the toluene dispersion of quantum dots coated with metal oxides from Production Examples 7 and 8, and the toluene dispersion of the quantum dot compositions coated with oxides and treated with phosphonic acid from Examples 5, 6, and 10 to 12, it was shown that the quantum dot compositions from Examples 5, 6, and 10 to 12 maintained higher internal quantum yield values.
この結果から、金属酸化物層形成及びホスホン酸誘導体により量子ドット表面が修飾された量子ドットは、青色光照射による内部量子収率の減少が抑制され、光安定性が改善されていることが確認された。 These results confirmed that quantum dots whose surfaces were modified with a metal oxide layer and phosphonic acid derivatives suppressed the decrease in internal quantum yield caused by blue light irradiation and improved photostability.
(樹脂組成物及び波長変換材料の作製)
(実施例13)
実施例1で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Preparation of resin composition and wavelength converting material)
Example 13
A wavelength conversion material was produced using the quantum dot composition obtained in Example 1. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは97μmであった。また、得られた波長変換材料の内部量子効率は44%であった。また、得られた波長変換材料を85℃、85%RH(Relative Humidity、相対湿度)条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は41%であった。 The thickness of the obtained wavelength conversion material was 97 μm. The internal quantum efficiency of the obtained wavelength conversion material was 44%. The obtained wavelength conversion material was treated for 500 hours under conditions of 85°C and 85% RH (Relative Humidity), after which the fluorescence emission efficiency was measured and the internal quantum efficiency was found to be 41%.
(実施例14)
実施例2で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 14)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 2. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は47%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は46%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 47%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 46%.
(実施例15)
実施例3で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 15)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 3. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は45%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は44%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 45%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 44%.
(実施例16)
実施例4で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 16)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 4. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は43%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は41%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 43%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 41%.
(実施例17)
実施例5で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 17)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 5. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは98μmであった。また、得られた波長変換材料の内部量子効率は33%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は32%であった。 The thickness of the obtained wavelength converting material was 98 μm. The internal quantum efficiency of the obtained wavelength converting material was 33%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 32%.
(実施例18)
実施例6で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 18)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 6. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは100μmであった。また、得られた波長変換材料の内部量子効率は32%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は31%であった。 The thickness of the obtained wavelength converting material was 100 μm. The internal quantum efficiency of the obtained wavelength converting material was 32%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 31%.
(実施例19)
実施例7で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 19)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 7. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は47%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は45%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 47%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 45%.
(実施例20)
実施例8で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 20)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 8. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は45%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は43%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 45%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 43%.
(実施例21)
実施例9で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 21)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 9. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは98μmであった。また、得られた波長変換材料の内部量子効率は46%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は45%であった。 The thickness of the obtained wavelength converting material was 98 μm. The internal quantum efficiency of the obtained wavelength converting material was 46%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 45%.
(実施例22)
実施例10で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 22)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 10. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは96μmであった。また、得られた波長変換材料の内部量子効率は33%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は31%であった。 The thickness of the obtained wavelength converting material was 96 μm. The internal quantum efficiency of the obtained wavelength converting material was 33%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 31%.
(実施例23)
実施例11で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 23)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 11. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は32%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は30%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 32%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 30%.
(実施例24)
実施例12で得られた量子ドット組成物を用いて波長変換材料を作製した。上記量子ドット組成物の20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Example 24)
A wavelength conversion material was produced using the quantum dot composition obtained in Example 12. 2.5 g of a 20 wt % toluene solution of the quantum dot composition was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は33%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は30%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 33%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 30%.
(比較例1)
製造例1で得られた量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 1)
A wavelength conversion material was produced using the quantum dots obtained in Production Example 1. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは96μmであった。また、得られた波長変換材料の内部量子効率は48%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は27%であった。 The thickness of the obtained wavelength converting material was 96 μm. The internal quantum efficiency of the obtained wavelength converting material was 48%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 27%.
(比較例2)
製造例2で得られた量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 2)
A wavelength conversion material was produced using the quantum dots obtained in Production Example 2. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは98μmであった。また、得られた波長変換材料の内部量子効率は34%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は20%であった。 The thickness of the obtained wavelength converting material was 98 μm. The internal quantum efficiency of the obtained wavelength converting material was 34%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, after which the fluorescence emission efficiency was measured and the internal quantum efficiency was found to be 20%.
(比較例3)
製造例3で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 3)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 3. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは97μmであった。また、得られた波長変換材料の内部量子効率は44%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は33%であった。 The thickness of the obtained wavelength converting material was 97 μm. The internal quantum efficiency of the obtained wavelength converting material was 44%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 33%.
(比較例4)
製造例4で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 4)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 4. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は47%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は36%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 47%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 36%.
(比較例5)
製造例5で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 5)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 5. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは97μmであった。また、得られた波長変換材料の内部量子効率は46%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は36%であった。 The thickness of the obtained wavelength converting material was 97 μm. The internal quantum efficiency of the obtained wavelength converting material was 46%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 36%.
(比較例6)
製造例6で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 6)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 6. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは99μmであった。また、得られた波長変換材料の内部量子効率は42%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は34%であった。 The thickness of the obtained wavelength converting material was 99 μm. The internal quantum efficiency of the obtained wavelength converting material was 42%. The obtained wavelength converting material was treated for 500 hours under conditions of 85°C and 85% RH, and the fluorescence emission efficiency was measured, resulting in an internal quantum efficiency of 34%.
(比較例7)
製造例7で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 7)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 7. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being heated at 60° C. with stirring.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは100μmであった。また、得られた波長変換材料の内部量子効率は33%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は23%であった。 The thickness of the obtained wavelength converting material was 100 μm. The internal quantum efficiency of the obtained wavelength converting material was 33%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 23%.
(比較例8)
製造例8で得られた酸化物被覆量子ドットを用いて波長変換材料を作製した。上記量子ドットの20wt%トルエン溶液2.5gをアクリル樹脂(DIC社製:アクリディックBL-616-BA)5.0gと混合し、攪拌したまま60℃で加熱しながら減圧下で溶媒除去を行った。
(Comparative Example 8)
A wavelength conversion material was produced using the oxide-coated quantum dots obtained in Production Example 8. 2.5 g of a 20 wt % toluene solution of the quantum dots was mixed with 5.0 g of an acrylic resin (Acrydic BL-616-BA, manufactured by DIC Corporation), and the solvent was removed under reduced pressure while being stirred and heated at 60°C.
その後、真空脱気を行い厚み50μmのポリエチレンテレフタラート(PET)フィルム上に塗布し、バーコーターにより樹脂組成物層を形成した。さらにこの樹脂組成物層上にPETフィルムを貼り合わせラミネート加工した。このフィルムを60℃で2時間加熱、150℃で4時間加熱し、樹脂組成物層を硬化させ、波長変換材料を作製した。 Then, the mixture was vacuum degassed and applied onto a 50 μm-thick polyethylene terephthalate (PET) film, and a resin composition layer was formed using a bar coater. A PET film was then attached onto this resin composition layer for lamination. This film was heated at 60°C for 2 hours and then at 150°C for 4 hours to harden the resin composition layer and produce a wavelength converting material.
得られた波長変換材料の厚さは98μmであった。また、得られた波長変換材料の内部量子効率は32%であった。また、得られた波長変換材料を85℃、85%RH条件下で500時間処理を行った後の蛍光発光効率を測定した結果、内部量子効率は24%であった。 The thickness of the obtained wavelength converting material was 98 μm. The internal quantum efficiency of the obtained wavelength converting material was 32%. The fluorescence emission efficiency of the obtained wavelength converting material was measured after it was treated for 500 hours under conditions of 85°C and 85% RH, and the internal quantum efficiency was found to be 24%.
以上の結果を表2に示す。 The above results are shown in Table 2.
実施例13と比較例1,3、実施例14,19~21と比較例1,4、実施例15と比較例1,5、実施例16と比較例1,6、実施例17、22~24と比較例2,7、実施例18と比較例2,8において、それぞれ作製した波長変換材料について、85℃、85%RH条件下で500時間処理後の内部量子効率の値をそれぞれ比較した結果、実施例13~24の金属酸化物層形成及びホスホン酸誘導体による表面修飾された、本発明の量子ドット組成物を用いた波長変換材料の方が、量子ドット及び金属酸化物層のみを形成した量子ドットよりも、高い内部量子効率の値を示すことが確認された。 The internal quantum efficiency values after 500 hours of treatment under conditions of 85°C and 85% RH were compared for the wavelength converting materials produced in Example 13 and Comparative Examples 1 and 3, Examples 14, 19 to 21 and Comparative Examples 1 and 4, Example 15 and Comparative Examples 1 and 5, Example 16 and Comparative Examples 1 and 6, Examples 17, 22 to 24 and Comparative Examples 2 and 7, and Example 18 and Comparative Examples 2 and 8. As a result, it was confirmed that the wavelength converting materials using the quantum dot composition of the present invention, which was surface-modified with a metal oxide layer and a phosphonic acid derivative in Examples 13 to 24, showed higher internal quantum efficiency values than quantum dots and quantum dots formed with only a metal oxide layer.
以上のように、本発明において製造された、量子ドット組成物及び量子ドット組成物を用いた樹脂組成物及びこれを硬化させた波長変換材料は、毒性が低い量子ドットを用いても、高温、高湿条件下において蛍光発光効率の劣化が抑制され、信頼性が高いものであることが確認された。 As described above, it has been confirmed that the quantum dot composition and resin composition using the quantum dot composition produced in the present invention, as well as the wavelength conversion material cured from the same, exhibit low degradation in fluorescence emission efficiency under high temperature and high humidity conditions, and are highly reliable, even when low-toxicity quantum dots are used.
本明細書は、以下の態様を包含する。
[1]:励起光により蛍光を発する量子ドットを含む量子ドット組成物であって、前記量子ドットはCd及びPbを含まない半導体ナノ粒子コアと半導体ナノ粒子シェルから成り、前記量子ドット表面は金属酸化物で被覆されたものであり、前記量子ドット表面又は前記金属酸化物表面はホスホン酸誘導体で修飾されたものであることを特徴とする量子ドット組成物。
[2]:前記量子ドットが、前記半導体ナノ粒子コア及び前記半導体ナノ粒子コアを覆う単一または複数の前記半導体ナノ粒子シェルから成るものであることを特徴とする上記[1]の量子ドット組成物。
[3]:前記半導体ナノ粒子コアが、ZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AgGaS2、AgInS2、AgGaSe2、AgInSe2、CuGaS2、CuGaSe2、CuInS2、CuInSe2、ZnSiP2、及びZnGeP2の中から単一、複数または混晶として選択されたものであることを特徴とする上記[1]又は上記[2]の量子ドット組成物。
[4]:前記半導体ナノ粒子コア表面がGaCl3、GaI3、GaBr3、ZnCl2、ZnBr2、ZnI2、InCl3、InBr3、InI3、AgCl、AgBr、AgI、KCl、KBr、KI、NaCl、NaBr、NaI、MgCl2、MgBr2、MgI2、CaCl2、CaBr2、CaI2、MnCl2、MnBr2、MnI2、FeCl2、FeBr2、FeI2、CuCl2、CuBr2、CuI2、ZrCl4、ZrBr4、ZrI4、GeCl4、GeBr4、GeI4から選択された1種以上の化合物で不動態化されたものであることを特徴とする上記[1]~上記[3]のいずれかの量子ドット組成物。
[5]:前記半導体ナノ粒子シェルが、ZnS、ZnSe、ZnTe、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、及びInSbの中から単一、複数または混晶として選択されたものであることを特徴とする上記[1]~上記[4]のいずれかの量子ドット組成物。
[6]:前記金属酸化物が、TiO2、ZnO、Al2O3、SiO2、ZrO2、Fe2O3、MgO、Y2O3、HfO2、CeO2、In2O3、SnO2、WO3、CrO3、Ta2O3、BaTiO3、V2O5、NiO、NbO、Cu2O、CuO、MoO3から選択される少なくとも1種の化合物であることを特徴とする上記[1]~上記[5]のいずれかの量子ドット組成物。
[7]:前記ホスホン酸誘導体が、下記式(I)で示されるものであることを特徴とする上記[1]~上記[6]のいずれかの量子ドット組成物。
[8]:前記ホスホン酸誘導体が、3-フェニル-2-プロペニルホスホン酸、テノホビル、2-ホスホノブタン-1,2,4-トリカルボン酸、4-ホスホノ安息香酸、ビニルホスホン酸、n-オクチルホスホン酸、(3-ブロモプロピル)ホスホン酸、(4-ブロモブチル)ホスホン酸、(2-ブロモエチル)ホスホン酸、(4-ブロモフェニル)ホスホン酸、3-ホスホノプロピオン酸、(4-ヒドロキシフェニル)ホスホン酸、ヘキシルホスホン酸、4-ホスホノ酪酸、プロピルホスホン酸、(4-アミノベンジル)ホスホン酸、(4-アミノフェニル)ホスホン酸、3-ホスホノ安息香酸、メチルホスホン酸、ノニルホスホン酸、ベンズヒドリルホスホン酸、オクタデシルホスホン酸、(アミノメチル)ホスホン酸、(2-フェニルエチル)ホスホン酸、エチルホスホン酸、ブチルホスホン酸、デシルホスホン酸、ドデシルホスホン酸、(2-クロロエチル)ホスホン酸、4-メトキシフェニルホスホン酸、ヘキサデシルホスホン酸、(4-ヒドロキシベンジル)ホスホン酸、フェニルホスホン酸、(1H,1H,2H,2H-ヘプタデカフルオロデシル)ホスホン酸、テトラデシルホスホン酸、(1-アミノエチル)ホスホン酸、ウンデシルホスホン酸、ヘプチルホスホン酸、10-カルボキシデシルホスホン酸、11-アミノウンデシルホスホン酸・臭化水素酸塩、11-ヒドロキシウンデシルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-ヘキシルホスホン酸、1H,1H,2H,2H-パーフルオロオクチルホスホン酸、1H,1H,2H,2H-パーフルオロ-n-デシルホスホン酸、11-{2-[2-(2-メトキシエトキシ)エトキシ]エトキシ}ウンデシルホスホン酸、12-メルカプトデシルホスホン酸、及び[11-(アクリロイルオキシ)ウンデシル]ホスホン酸から選択された1種以上のものであることを特徴とする上記[7]に記載の量子ドット組成物。
[9]:前記ホスホン酸誘導体が、下記式(II)で示されるものであることを特徴とする上記[1]~上記[6]のいずれかの量子ドット組成物。
[10]:前記ホスホン酸誘導体が、m-キシリレンジホスホン酸、o-キシリレンジホスホン酸、メチレンジホスホン酸、アレンドロン酸、1,4-ブチレンジホスホン酸、グリシン-N,N-ビス(メチレンホスホン酸)、p-キシリレンジホスホン酸、ゾレドロン酸、1,3-プロピレンジホスホン酸、1,5-ペンチレンジホスホン酸、1,4-フェニレンジホスホン酸、1,2-エチレンジホスホン酸、1,6-ヘキシレンジホスホン酸、ミノドロナート、及び1-ヒドロキシエタン-1,1-ジホスホン酸から選択された1種以上のものであることを特徴とする上記[9]の量子ドット組成物。
[11]:前記ホスホン酸誘導体が、下記式(III)で示されるものであることを特徴とする上記[1]~上記[6]のいずれかの量子ドット組成物。
[12]:前記ホスホン酸誘導体が、ニトリロトリス(メチレンホスホン酸)であることを特徴とする上記[11]に記載の量子ドット組成物。
[13]:前記ホスホン酸誘導体が、下記式(IV)で示されるものであることを特徴とする上記[1]~上記[6]のいずれかの量子ドット組成物。
[14]:前記ホスホン酸誘導体がN,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)であることを特徴とする上記[13]に記載の量子ドット組成物。
[15]:前記R1が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることを特徴とする上記[7]に記載の量子ドット組成物。
[16]:前記R2が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることを特徴とする上記[9]に記載の量子ドット組成物。
[17]:前記R3が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることを特徴とする上記[11]に記載の量子ドット組成物。
[18]:前記R4が、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキル基、1個以上の炭素原子を有する直鎖もしくは分枝状のアルキレン基、アミノ基、カルボン酸基、エトキシ基、ブロモ基、クロロ基、フェノール基、パーフルオロアルキル基、水酸基、フェニル基、チオール基、アクリロイル基、及びオリゴエチレングリコール基のいずれかを少なくとも1種類以上含むものであることを特徴とする上記[13]に記載の量子ドット組成物。
[19]:上記[1]から上記[18]のいずれかに記載の量子ドット組成物が樹脂中に分散されたものであることを特徴とする樹脂組成物。
[20]:前記樹脂は、エポキシ系樹脂、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、カーボネート系樹脂、及びガラス樹脂から選択される少なくとも1種類以上のものであることを特徴とする上記[19]に記載の樹脂組成物。
[21]:上記[20]に記載の樹脂組成物の硬化物を含むものであることを特徴とする波長変換材料。
The present specification includes the following aspects.
[1]: A quantum dot composition comprising quantum dots that emit fluorescence when exposed to excitation light, the quantum dots comprising a semiconductor nanoparticle core and a semiconductor nanoparticle shell that do not contain Cd or Pb, the quantum dot surfaces being coated with a metal oxide, and the quantum dot surfaces or the metal oxide surfaces being modified with a phosphonic acid derivative.
[2]: The quantum dot composition according to [1] above, characterized in that the quantum dots are composed of the semiconductor nanoparticle core and a single or multiple semiconductor nanoparticle shells covering the semiconductor nanoparticle core.
[3]: The quantum dot composition according to [1] or [ 2 ], characterized in that the semiconductor nanoparticle core is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb , InN, InP, InAs, InSb, AgGaS2 , AgInS2, AgGaSe2 , AgInSe2 , CuGaS2 , CuGaSe2, CuInS2 , CuInSe2 , ZnSiP2 , and ZnGeP2 as a single, multiple, or mixed crystal.
[4]: The semiconductor nanoparticle core surface is made of GaCl 3 , GaI 3 , GaBr 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , InCl 3 , InBr 3 , InI 3 , AgCl, AgBr, AgI, KCl, KBr, KI, NaCl , NaBr, NaI, MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , CaI 2 , MnCl 2 , MnBr 2 , MnI 2 , FeCl 2 , FeBr 2 , FeI 2 , CuCl 2 , CuBr 2 , CuI 2 , ZrCl 4 , ZrBr 4 , ZrI 4 , GeCl 4 , GeBr 4 , and GeI 4.
[5]: The quantum dot composition according to any one of [1] to [4], characterized in that the semiconductor nanoparticle shell is selected from ZnS, ZnSe, ZnTe, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb as a single crystal, a plurality of crystals, or a mixed crystal.
[6]: A quantum dot composition according to any one of [ 1 ] to [ 5 ] above , characterized in that the metal oxide is at least one compound selected from TiO2 , ZnO, Al2O3 , SiO2 , ZrO2 , Fe2O3 , MgO, Y2O3 , HfO2 , CeO2 , In2O3 , SnO2, WO3 , CrO3 , Ta2O3 , BaTiO3, V2O5 , NiO, NbO, Cu2O , CuO, and MoO3 .
[7]: The quantum dot composition according to any one of [1] to [6] above, wherein the phosphonic acid derivative is represented by the following formula (I):
[8]: The phosphonic acid derivative is 3-phenyl-2-propenylphosphonic acid, tenofovir, 2-phosphonobutane-1,2,4-tricarboxylic acid, 4-phosphonobenzoic acid, vinylphosphonic acid, n-octylphosphonic acid, (3-bromopropyl)phosphonic acid, (4-bromobutyl)phosphonic acid, (2-bromoethyl)phosphonic acid, (4-bromophenyl)phosphonic acid, 3-phosphonopropionic acid, (4-hydroxyphenyl)phosphonic acid, hexylphosphonic acid, acid, 4-phosphonobutyric acid, propylphosphonic acid, (4-aminobenzyl)phosphonic acid, (4-aminophenyl)phosphonic acid, 3-phosphonobenzoic acid, methylphosphonic acid, nonylphosphonic acid, benzhydrylphosphonic acid, octadecylphosphonic acid, (aminomethyl)phosphonic acid, (2-phenylethyl)phosphonic acid, ethylphosphonic acid, butylphosphonic acid, decylphosphonic acid, dodecylphosphonic acid, (2-chloroethyl)phosphonic acid, 4-methoxyphenyl Phosphonic acid, hexadecylphosphonic acid, (4-hydroxybenzyl)phosphonic acid, phenylphosphonic acid, (1H,1H,2H,2H-heptadecafluorodecyl)phosphonic acid, tetradecylphosphonic acid, (1-aminoethyl)phosphonic acid, undecylphosphonic acid, heptylphosphonic acid, 10-carboxydecylphosphonic acid, 11-aminoundecylphosphonic acid hydrobromide, 11-hydroxyundecylphosphonic acid, 1H,1H,2H,2H-perf The quantum dot composition according to the above [7], characterized in that it is one or more selected from the group consisting of perfluoro-n-hexylphosphonic acid, 1H,1H,2H,2H-perfluorooctylphosphonic acid, 1H,1H,2H,2H-perfluoro-n-decylphosphonic acid, 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid, 12-mercaptodecylphosphonic acid, and [11-(acryloyloxy)undecyl]phosphonic acid.
[9]: The quantum dot composition according to any one of [1] to [6], wherein the phosphonic acid derivative is represented by the following formula (II):
[10]: The quantum dot composition according to [9], characterized in that the phosphonic acid derivative is one or more selected from m-xylylene diphosphonic acid, o-xylylene diphosphonic acid, methylene diphosphonic acid, alendronic acid, 1,4-butylene diphosphonic acid, glycine-N,N-bis(methylene phosphonic acid), p-xylylene diphosphonic acid, zoledronic acid, 1,3-propylene diphosphonic acid, 1,5-pentylene diphosphonic acid, 1,4-phenylene diphosphonic acid, 1,2-ethylene diphosphonic acid, 1,6-hexylene diphosphonic acid, minodronate, and 1-hydroxyethane-1,1-diphosphonic acid.
[11]: The quantum dot composition according to any one of [1] to [6], wherein the phosphonic acid derivative is represented by the following formula (III):
[12]: The quantum dot composition according to [11] above, characterized in that the phosphonic acid derivative is nitrilotris(methylene phosphonic acid).
[13]: The quantum dot composition according to any one of [1] to [6], wherein the phosphonic acid derivative is represented by the following formula (IV):
[14]: The quantum dot composition according to [13] above, wherein the phosphonic acid derivative is N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid).
[15]: The quantum dot composition according to the above [7], characterized in that R 1 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
[16]: The quantum dot composition according to [9], wherein the R 2 is at least one of a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
[17]: The quantum dot composition according to the above [11], characterized in that R 3 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
[18]: The quantum dot composition according to the above [13], characterized in that R 4 contains at least one of the following: a linear or branched alkyl group having one or more carbon atoms, a linear or branched alkylene group having one or more carbon atoms, an amino group, a carboxylic acid group, an ethoxy group, a bromo group, a chloro group, a phenol group, a perfluoroalkyl group, a hydroxyl group, a phenyl group, a thiol group, an acryloyl group, and an oligoethylene glycol group.
[19]: A resin composition comprising the quantum dot composition according to any one of [1] to [18] dispersed in a resin.
[20]: The resin composition according to [19] above, characterized in that the resin is at least one selected from the group consisting of epoxy resins, acrylic resins, fluorine-based resins, silicone resins, carbonate resins, and glass resins.
[21]: A wavelength converting material comprising a cured product of the resin composition according to [20] above.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above-described embodiments. The above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits similar effects is included within the technical scope of the present invention.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023082450 | 2023-05-18 | ||
JP2023-082450 | 2023-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024237137A1 true WO2024237137A1 (en) | 2024-11-21 |
Family
ID=93519612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/017020 WO2024237137A1 (en) | 2023-05-18 | 2024-05-08 | Quantum dot composition, resin composition, and wavelength conversion material |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202511450A (en) |
WO (1) | WO2024237137A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014534322A (en) * | 2011-11-09 | 2014-12-18 | パシフィック ライト テクノロジーズ コーポレーション | Semiconductor structure with nanocrystalline core and nanocrystalline shell |
WO2015190257A1 (en) * | 2014-06-11 | 2015-12-17 | コニカミノルタ株式会社 | Semiconductor nanoparticle assembly and method for producing same |
WO2017188300A1 (en) * | 2016-04-26 | 2017-11-02 | 昭栄化学工業株式会社 | Quantum dot material and method for manufacturing same |
JP2018534784A (en) * | 2015-07-30 | 2018-11-22 | パシフィック ライト テクノロジーズ コーポレイション | Low cadmium nanocrystal quantum dot heterostructure |
JP2020041080A (en) * | 2018-09-12 | 2020-03-19 | 東洋インキScホールディングス株式会社 | Composition for forming luminescent film, luminescent film and electroluminescence element |
JP2021522397A (en) * | 2018-05-03 | 2021-08-30 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Crosslinked ligand |
-
2024
- 2024-05-08 WO PCT/JP2024/017020 patent/WO2024237137A1/en unknown
- 2024-05-17 TW TW113118395A patent/TW202511450A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014534322A (en) * | 2011-11-09 | 2014-12-18 | パシフィック ライト テクノロジーズ コーポレーション | Semiconductor structure with nanocrystalline core and nanocrystalline shell |
WO2015190257A1 (en) * | 2014-06-11 | 2015-12-17 | コニカミノルタ株式会社 | Semiconductor nanoparticle assembly and method for producing same |
JP2018534784A (en) * | 2015-07-30 | 2018-11-22 | パシフィック ライト テクノロジーズ コーポレイション | Low cadmium nanocrystal quantum dot heterostructure |
WO2017188300A1 (en) * | 2016-04-26 | 2017-11-02 | 昭栄化学工業株式会社 | Quantum dot material and method for manufacturing same |
JP2021522397A (en) * | 2018-05-03 | 2021-08-30 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Crosslinked ligand |
JP2020041080A (en) * | 2018-09-12 | 2020-03-19 | 東洋インキScホールディングス株式会社 | Composition for forming luminescent film, luminescent film and electroluminescence element |
Non-Patent Citations (1)
Title |
---|
LISA M. S. STIEGLER; ANDREAS HIRSCH: "Electronic Communication in Confined Space Coronas of Shell‐by‐Shell Structured Al2O3 Nanoparticle Hybrids Containing Two Layers of Functional Organic Ligands", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 25, no. 51, 2 August 2019 (2019-08-02), DE, pages 11864 - 11875, XP071850061, ISSN: 0947-6539, DOI: 10.1002/chem.201901052 * |
Also Published As
Publication number | Publication date |
---|---|
TW202511450A (en) | 2025-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications | |
TWI797205B (en) | Quantum dot and its manufacturing method, resin composition, wavelength conversion material, light-emitting element | |
WO2012032868A1 (en) | Manufacturing method for surface-modified titanium particles, dispersion of titanium particles, and resin having titanium particles dispersed therein | |
JP2010132906A (en) | Luminescent nanoparticle and method for their preparation | |
JP7590699B2 (en) | Methods for improving the quantum yield of indium phosphide quantum dots | |
Yoon et al. | Highly luminescent and stable white light-emitting diodes created by direct incorporation of Cd-free quantum dots in silicone resins using the thiol group | |
JP7603124B2 (en) | Method for producing coated semiconductor nanoparticles | |
Huang et al. | In situ synthesis of blue-emitting bromide-based perovskite nanoplatelets towards unity quantum efficiency and ultrahigh stability | |
KR20160113996A (en) | Process for increasing the photoluminescence internal quantum efficiency of nanocrystals, in particular of AgInS2-ZnS nanocrystals | |
TW202035654A (en) | Methods for synthesis of inorganic nanostructures using molten salt chemistry | |
Liu et al. | Efficiently improved photoluminescence in cesium lead halide perovskite nanocrystals by using bis (trifluoromethane) sulfonimide | |
Xiong et al. | Photoluminescent ZnO nanoparticles synthesized at the interface between air and triethylene glycol | |
CN115627162A (en) | Preparation method of a highly stable ultra-long one-dimensional perovskite quantum dot array | |
Shu et al. | Highly stable CsPbBr3 perovskite quantum dots incorporated in aluminum stearate | |
Matras-Postolek et al. | Luminescent ZnSe: Mn/ZnS@ PMMA nanocomposites with improved refractive index and transparency | |
WO2024116801A1 (en) | Quantum dot composition, resin composition using same and wavelength conversion material | |
Yang et al. | Magic sol–gel silica films encapsulating hydrophobic and hydrophilic quantum dots for white-light-emission | |
Madhu et al. | Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent-for application in LEDs | |
WO2024237137A1 (en) | Quantum dot composition, resin composition, and wavelength conversion material | |
WO2025088985A1 (en) | Quantum dot body, quantum dot composition, and wavelength conversion material and production method thereof | |
Asadi et al. | Synthesis and Characterization of Well-dispersed Zinc Oxide Quantum Dots in Epoxy Resin Using Epoxy Siloxane Surface Modifier | |
JP2017206696A (en) | Semiconductor nanocrystal siloxane composite resin composition and method for producing the same | |
TW202003793A (en) | Semiconducting nanoparticle | |
Bian et al. | Surface-mounted carbon quantum dots onto photonic crystals generating dual structural-fluorescent color rendering | |
Yang et al. | ZnS: Mn nanoparticles conjugated to sol–gel-derived silica matrices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24807090 Country of ref document: EP Kind code of ref document: A1 |