WO2024234977A1 - 一种污泥处理装置 - Google Patents
一种污泥处理装置 Download PDFInfo
- Publication number
- WO2024234977A1 WO2024234977A1 PCT/CN2024/090165 CN2024090165W WO2024234977A1 WO 2024234977 A1 WO2024234977 A1 WO 2024234977A1 CN 2024090165 W CN2024090165 W CN 2024090165W WO 2024234977 A1 WO2024234977 A1 WO 2024234977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction tank
- heat exchange
- treatment device
- sludge treatment
- sludge
- Prior art date
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 114
- 238000011282 treatment Methods 0.000 title claims abstract description 45
- 238000006243 chemical reaction Methods 0.000 claims abstract description 100
- 239000011229 interlayer Substances 0.000 claims abstract description 31
- 238000007789 sealing Methods 0.000 claims abstract description 9
- 230000000712 assembly Effects 0.000 claims abstract description 6
- 238000000429 assembly Methods 0.000 claims abstract description 6
- 239000013049 sediment Substances 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims description 62
- 238000010438 heat treatment Methods 0.000 claims description 17
- 230000002787 reinforcement Effects 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract description 15
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000000903 blocking effect Effects 0.000 description 9
- 239000004576 sand Substances 0.000 description 9
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/83—Mixing plants specially adapted for mixing in combination with disintegrating operations
- B01F33/8305—Devices with one shaft, provided with mixing and milling tools, e.g. using balls or rollers as working tools; Devices with two or more tools rotating about the same axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/836—Mixing plants; Combinations of mixers combining mixing with other treatments
- B01F33/8361—Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating
- B01F33/83611—Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating by cutting
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/10—Treatment of sludge; Devices therefor by pyrolysis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
- F28F13/125—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
Definitions
- the invention mainly relates to the technical field of sludge treatment, and in particular to a sludge treatment device.
- the sludge produced by sewage treatment plants or other polluted water bodies needs to be dehydrated because it is mainly a solid-liquid mixture formed by living bacterial and fungal cells and the flocs they form and water.
- problems in the treatment technology such as high sludge viscosity, difficulty in dehydration, high energy consumption, high treatment cost, and complex treatment process.
- the agitator of the reactor is generally operated at a relatively low speed, otherwise it will cause the stirring seal to be damaged or the bottom bearing seat to wear too fast because the agitator shaft is too long, causing the equipment to need to be shut down for maintenance, not only increasing the workload of maintenance, shutdown maintenance can also affect work efficiency, and replacing the bottom shaft also causes the problem of increased equipment use cost, these problems are the difficult problems that have not been solved in this area for many years.
- the present invention provides a sludge treatment device with simple structure, small maintenance workload, low use cost and higher reliability.
- the present invention adopts the following technical solutions:
- a sludge treatment device comprises a heat exchange interlayer and a reaction tank, wherein the heat exchange interlayer is sleeved on the outside of the reaction tank, and further comprises a bottom shaft, a sealing assembly, a driving assembly and a sleeve assembly, wherein the bottom shaft is installed at the bottom of the reaction tank through the sealing assembly;
- the sleeve assembly comprises a rotating disk and a sleeve connected to each other, wherein the sleeve is sleeved on the bottom shaft, and at least one rotary vane assembly is provided on the surface of the rotating disk; the rotary vane assembly is used to shake off the sludge to reduce the contact between the sediment and the bottom shaft, and the driving assembly is used to drive the sleeve assembly to rotate.
- a stirring shaft is provided inside the reaction tank, the driving assembly is arranged on the top of the reaction tank, one end of the stirring shaft is connected to the driving assembly via a universal joint, and the other end of the stirring shaft is connected to the bottom shaft via a sleeve.
- one or more stirring blades are provided on the outer wall of the stirring shaft to produce a stirring effect on the sludge.
- the stirring blades are installed in a multi-layer distributed manner along the arrangement direction of the stirring shaft.
- the stirring shaft and the bottom shaft are both hollow.
- the driving assembly is disposed at the bottom of the reaction tank, and the driving assembly is connected to the bottom shaft.
- a connecting pipe connecting the top and the bottom of the reaction tank is further included.
- the rotating disk is a flat plate-like structure, and the upper surface and the lower surface of the flat plate-like structure are both provided with rotating blade assemblies.
- the rotating disk is an umbrella-shaped structure, and the upper surface and the lower surface of the umbrella-shaped structure are both provided with rotating blade assemblies.
- the rotating disk includes a disk-shaped structure, the lower bottom surface of the disk-shaped structure is provided with an annular side wall along the circumferential direction, and the upper surface of the disk-shaped structure and the outer surface of the annular side wall are both provided with rotating blade assemblies.
- the bottom shaft and the shaft sleeve assembly are detachably connected.
- a heat exchange medium inlet and a heat exchange medium outlet are provided on the heat exchange interlayer, the heat exchange medium inlet is used to introduce the heat exchange medium, and the heat exchange medium outlet is used to discharge the heat exchange medium; the heat exchange medium is used to achieve heat exchange with the substance in the reaction tank to complete the heating or cooling operation of the material in the reaction tank.
- a heating component for heating the heat exchange medium is also provided on the heat exchange interlayer.
- the heat exchange medium is one or more of heat transfer oil, water, and hot air.
- a plurality of reinforcement components are further provided on the inner wall of the heat exchange interlayer.
- a plurality of reinforcement components are further provided on the inner wall and/or outer wall of the reaction tank.
- At least one set of flow guide components is provided in the reaction tank, and the flow guide components are flow guide plates.
- At least one set of guide components is provided in the reaction tank, and the guide components include a guide plate, a guide tube and a support plate.
- the guide plate is arranged above the guide tube, and the support plate is arranged below the guide tube.
- the heat exchange interlayer and the reaction tank are closed cavities.
- the reaction tank is provided with a feed inlet, through which the sludge is fed into the reaction tank; the reaction tank is also provided with a discharge port, through which the sludge is discharged after the reaction is completed.
- semicircular coils or circular coils are provided on the inner wall and the outer wall of the reaction tank, and the semicircular coils and circular coils are used for exchanging heat with the substances in the reaction tank.
- the sludge treatment device of the present invention is designed with a shaft sleeve assembly, which includes a rotating disk and a sleeve.
- the sleeve is sleeved on the bottom shaft, and the bottom shaft is driven to move by the driving assembly, thereby driving the sleeve and the rotating disk to move.
- a rotary blade assembly is provided on the rotating disk, and the rotation of the rotating disk can block the sludge and sand and stably throw away the sludge.
- a first rotary blade assembly is provided under the rotating disk.
- the sludge treatment device of the present invention has a simple and compact structure, low cost and good application effect.
- the stirring component of the device can operate at a higher speed.
- the sludge is mechanically cut by the rotating disk and the rotary blade component, which accelerates the hydrolysis reaction efficiency.
- the sludge can maintain a good uniform tumbling flow in the device.
- the sludge will heat up quickly and be heated evenly, which is more conducive to the further reaction of the sludge in the reaction tank.
- the device of the present invention has a very wide range of applications and can be applied to various sludge treatments.
- the sludge treatment device of the present invention has the characteristic of sufficient tumbling and stirring function in the reaction tank. After the sludge completes the reaction, the heat of the sludge in the reaction tank can be recovered by using a heat exchange interlayer or coil, which has the advantage of further reducing energy consumption costs.
- the sludge treatment device of the present invention is provided with a plurality of reinforcement components on the inner and outer walls of the heat exchange interlayer and the reaction tank.
- the plurality of reinforcement components are arranged in multiple layers, so that when negative pressure or high pressure occurs in the reaction tank, the tank structure can be tightened.
- the reinforcement components arranged in multiple layers are equivalent to increasing the internal and external heat exchange areas, thereby increasing the overall heat exchange efficiency of the device.
- FIG1 is a cross-sectional view of a first specific embodiment of the present invention.
- FIG. 2 is a three-dimensional diagram of the shaft sleeve assembly in the first specific embodiment of the present invention.
- FIG. 3 is a three-dimensional view of the shaft sleeve assembly of the present invention from another perspective in the first specific embodiment.
- FIG. 4 is a cross-sectional view of a second specific embodiment of the present invention.
- FIG. 5 is a three-dimensional diagram of the shaft sleeve assembly in the second specific embodiment of the present invention.
- FIG. 6 is a three-dimensional view of the shaft sleeve assembly of the present invention from another perspective in the second specific embodiment.
- FIG. 7 is a three-dimensional diagram of the shaft sleeve assembly in the third specific embodiment of the present invention.
- this embodiment provides a sludge treatment device, including a heat exchange interlayer 1 and a reaction tank 2, wherein the heat exchange interlayer 1 is sleeved on the outside of the reaction tank 2, and also includes a bottom shaft 4, a stirring shaft 3, a driving assembly 7 and a sleeve assembly 5, wherein the bottom shaft 4 is installed at the bottom of the reaction tank 2;
- the sleeve assembly 5 includes a rotating disk 51 and a sleeve 52 connected to each other, the sleeve 52 is sleeved on the bottom shaft 4, and at least one rotary vane assembly 511 is provided on the surface of the rotating disk 51; the rotary vane assembly 511 is used to shake off the sludge to reduce the contact between the sediment and the bottom shaft 4, one end of the stirring shaft 3 is connected to the driving assembly 7 through a universal joint 6, and the other end of the stirring shaft 3 is connected to the bottom shaft 4 through the sleeve 52, and the driving assembly 7 is used to drive
- the sludge treatment device in this embodiment is designed with a sleeve assembly 5, which includes a rotating disk 51 and a sleeve 52.
- the sleeve 52 is sleeved on the bottom shaft 4, and the driving assembly 7 drives the stirring shaft 3 to move, thereby driving the sleeve 52 and the rotating disk 51 to move.
- the rotating disk 51 is provided with a vane assembly 511, and the rotation of the rotating disk 51 can block part of the sludge.
- the rotating disk 51 is provided with a vane assembly 511.
- the vane assembly 511 Since the rotation of the rotating disk 51 drives the vane assembly 511 to rotate, when the sludge in the reaction tank 2 falls onto the rotating disk 51, the vane assembly 511 rotating in the circumferential direction will throw the mud and sand in the sludge toward the inner wall of the reaction tank 2. At the same time, the vane assembly 511 located under the rotating disk 51 will also throw away the mud and sand deposited on the bottom, which can effectively reduce the contact between the mud and sand in the sludge and the bottom shaft 4, and can greatly reduce the probability of the bottom shaft 4 being worn by mud and sand, ensuring long-term reliable and stable operation of the equipment, reducing maintenance workload, reducing maintenance workload and reducing the use cost of the equipment.
- the rotating disk 51 is a flat plate structure. It should be noted that the flat plate structure in this embodiment can be a square plate, a circular plate or other shaped plates, and the specific shape is not limited.
- the upper surface and the lower surface of the flat plate structure are both provided with a rotary vane assembly 511. Since the upper surface and the lower surface of the flat plate structure are both provided with a rotary vane assembly 511, when the sludge in the reaction tank 2 falls onto the flat plate structure, the rotary vane assembly 511 arranged on the upper surface of the flat plate structure throws the sludge toward the inner wall of the reaction tank 2, realizing the first layer of blocking, and the lower surface of the flat plate structure is also provided with a rotary vane assembly 511, and the rotary vane assembly 511 on the lower surface rotates to throw the sludge that falls to the bottom of the reaction tank 2 to the surroundings, realizing the second layer of blocking, and through the two blocking of the sludge, the contact between the silt in the sludge and the bottom shaft 4 can be effectively reduced, and the probability of the bottom shaft 4 being worn by the silt can be greatly reduced, ensuring the long-term reliable and stable operation of the equipment, reducing
- the stirring shaft 3 is connected to the driving assembly 7 via a universal joint 6.
- the driving assembly 7 is used to drive the stirring shaft 3 to rotate.
- the universal joint 6 is arranged above the stirring shaft 3 to reduce the impact on the bearings and seals during stirring and extend the service life.
- one or more stirring blades 31 are arranged on the outer wall of the stirring shaft 3 to stir the sludge.
- the shape of the stirring blades 31 is selected according to actual needs, and can be a blade type, a stirring disc type, or other shapes.
- the stirring blades 31 are installed in a distributed manner in multiple layers along the arrangement direction of the stirring shaft 3. Further, in a preferred embodiment, an evenly spaced arrangement is adopted, and in other embodiments, an unequally spaced arrangement may also be adopted.
- the sludge is effectively and quickly rolled in the reaction tank 2, achieving a sufficient mixing effect, and can quickly achieve uniform heating in the reaction tank 2 and heat exchange with the heat exchange interlayer 1.
- the stirring shaft 3 can operate at a higher speed.
- the sludge is mechanically cut by the rotating disk 51 and the rotary blade assembly 511, which accelerates the hydrolysis reaction efficiency.
- the sludge can maintain a better uniform tumbling flow in the device. Combined with the heat exchange effect of the heat exchange interlayer 1, the sludge will heat up quickly and be heated evenly, which is more conducive to the further reaction of the sludge in the reaction tank 2.
- the heat exchange interlayer 1 is provided with a heat exchange medium inlet 11 and a heat exchange medium outlet 12, the heat exchange medium inlet 11 is used to introduce the heat exchange medium, and the heat exchange medium outlet 12 is used to discharge the heat exchange medium; the heat exchange medium is used to achieve heat exchange with the material in the reaction tank 2 to complete the temperature increase or decrease of the material in the reaction tank 2. Because the reaction tank 2 has the characteristic of sufficient tumbling and stirring function, the heat of the sludge in the reaction tank 2 can be recovered by using the heat exchange interlayer 1 after the sludge completes the reaction, which has the advantage of further reducing energy consumption costs.
- a heating component 8 for heating the heat exchange medium is also provided on the heat exchange interlayer 1.
- the heating medium can be heated quickly, so that the heating medium can be heated quickly, and the heat exchange efficiency between the heat exchange medium and the sludge can be further improved.
- the heat exchange medium is one or more of heat transfer oil, water, and hot air, and the medium can be selected on site according to actual application.
- the heat exchange interlayer 1 and the reaction tank 2 are closed cavities to ensure the overall heat exchange efficiency and sludge treatment effect.
- a plurality of reinforcement components 13 are further provided on the inner wall of the heat exchange interlayer 1; a plurality of reinforcement components 13 are further provided on the inner wall and/or outer wall of the reaction tank 2.
- the plurality of reinforcement components 13 are arranged in multiple layers, so that when negative pressure or high pressure occurs in the reaction tank 2, the tank structure can be tightened.
- the plurality of reinforcement components 13 are arranged in multiple layers, which is equivalent to increasing the internal and external heat exchange area and enhancing the overall heat exchange efficiency.
- a feed port 21 is provided on the reaction tank 2, and the sludge is fed into the reaction tank 2 from the feed port 21; a discharge port 22 is also provided on the reaction tank 2, and the sludge is discharged from the discharge port 22 after the reaction is completed.
- At least one set of guide components 9 is provided in the reaction tank 2, and the guide component 9 is a guide plate 91. The sludge entering from the feed port 21 will enter the stirring area faster under the action of the guide plate 91, thereby improving the sludge stirring efficiency.
- a semicircular coil or a circular coil is provided on the inner wall or the outer wall of the reaction tank 2; the heat exchange rate can be increased by providing the circular coil or the semicircular coil.
- the stirring shaft 3 and the bottom shaft 4 are both hollow.
- the bottom shaft 4 and the stirring shaft 3 are both hollow, and hot steam or other heat medium can be introduced into the stirring shaft 3 through the bottom shaft 4 to heat the sludge while stirring.
- the sludge will heat up quickly and be heated evenly, which is more conducive to the further reaction of the sludge in the reaction tank 2.
- the working principle is as follows: the material enters the reaction tank 2 from the feed port 21; the driving component 7 is turned on, and the stirring shaft 3 rotates under the drive of the driving component 7, further driving the sleeve component 5 to rotate, and a rotary blade component 511 is provided on the rotating disk 51.
- the rotation of the rotating disk 51 can block part of the sludge, and the rotating disk 51 is provided with a rotary blade component 511.
- the rotation of the rotating disk 51 drives the rotary blade component 511 to rotate, when the sludge in the reaction tank 2 falls onto the rotating disk 51, the rotary blade component 511 rotating in the circumferential direction throws the sediment in the sludge to the inner wall of the reaction tank 2, and at the same time, the sludge maintains an orderly and continuous flow state under the throwing force; the stirring blade 31 forms a stirring thrust under the rotation of the stirring shaft 3, so that the material forms a continuous flow circulation in the reaction tank 2.
- the drive assembly 7 is turned on, hot steam or other heat medium is introduced into the stirring shaft 3 through the bottom shaft 4.
- the stirring shaft 3 constantly stirring and exchanging heat and the heat exchange medium between the walls in the heat exchange interlayer 1, the sludge is quickly heated, the fluidity is enhanced, the heating efficiency is improved, and the temperature required for the reaction is finally reached; when the steam or heat medium supply is stopped, the sludge maintains the temperature required for the reaction in the reaction tank 2 and continues to roll and flow in the reaction tank 2 under the drive assembly 7, and the sludge that has completed the reaction is discharged from the discharge port 22 and enters the next unit for treatment.
- the reaction tank 2 can be heated by the heat exchange interlayer 1. The material inside completes the heating or cooling process.
- this embodiment is basically the same as the first embodiment, except that, in this embodiment, it includes a bottom shaft 4, a sealing assembly 10, a driving assembly 7 and a sleeve assembly 5, the bottom shaft 4 is installed at the bottom of the reaction tank 2 through the sealing assembly 10; the sleeve assembly 5 includes a rotating disk 51 and a sleeve 52 connected to each other, the sleeve 52 is sleeved on the bottom shaft 4, and the surface of the rotating disk 51 is provided with at least one rotating vane assembly 511; the driving assembly 7 is used to drive the sleeve assembly 5 to rotate.
- the guide assembly 9 includes a guide plate 91, a guide tube 92 and a support plate 93, the guide plate 91 is arranged above the guide tube 92, and the support plate 93 is arranged below the guide tube 92.
- the guide assembly 9 the sludge entering from the feed port 21 will quickly contact the heat exchange interlayer 1 to achieve heat exchange.
- the connecting pipe 23 also includes a connecting pipe 23 connecting the top and bottom of the reaction tank 2.
- the connecting pipe 23 is connected to the top and bottom of the reaction tank 2 through a flange.
- a momentary local vacuum may be caused due to the excessive rotation speed, resulting in uneven force surfaces or uneven pressure between the liquid and the rotor assembly 511, affecting stirring.
- the top and bottom of the reaction tank 2 are connected by the connecting pipe 23, which reduces the problem of uneven force or uneven pressure, and can make the overall stirring of the device more stable.
- the driving component 7 is arranged at the bottom of the reaction tank 2, and the driving component 7 is directly connected to the bottom shaft 4.
- the rotating disk 51 is an umbrella-shaped structure, and the upper and lower surfaces of the umbrella-shaped structure are provided with rotary blade components 511; when the sludge in the reaction tank 2 falls onto the umbrella-shaped structure, the rotary blade component 511 arranged on the upper surface of the umbrella-shaped structure will throw the sludge to the inner wall of the reaction tank 2 to achieve the first layer of blocking, and the lower surface of the umbrella-shaped structure is also provided with a rotary blade component 511.
- the rotary blade component 511 on the lower surface rotates to throw the sludge that falls to the bottom of the reaction tank 2 to the surroundings to achieve the second layer of blocking.
- the contact between the mud and sand in the sludge and the bottom shaft 4 can be effectively reduced, and the probability of the bottom shaft 4 being worn by mud and sand can be greatly reduced, ensuring long-term reliable and stable operation of the equipment, reducing maintenance workload, reducing maintenance workload and reducing the use cost of the equipment.
- this embodiment is basically the same as the second embodiment, except that, in this embodiment, the rotating disk 51 includes a disc-shaped structure, the lower bottom surface of the disc-shaped structure is provided with an annular side wall along the circumferential direction, the annular side wall is perpendicular to the disc-shaped structure, and the upper surface of the disc-shaped structure and the outer surface of the annular side wall are provided with a rotary vane assembly 511.
- the rotary vane assembly 511 arranged on the upper surface of the disc-shaped structure throws the sludge toward the inner wall of the reaction tank 2 to achieve the first layer of blocking, and the outer surface of the annular side wall is also provided with a rotary vane assembly 511.
- the rotary vane assembly 511 on the outer surface of the annular side wall rotates to throw the sludge that falls to the bottom of the reaction tank 2 to the surroundings to achieve the second layer of blocking.
- the contact between the silt in the sludge and the bottom shaft 4 can be effectively reduced, and the probability of the bottom shaft 4 being worn by silt can be greatly reduced, ensuring the long-term reliable and stable operation of the equipment, reducing the maintenance workload, and reducing the maintenance workload while reducing the use cost of the equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
本发明公开了一种污泥处理装置,包括换热夹层(1)和反应罐(2),换热夹层(1)套设于反应罐(2)的外侧,还包括底轴(4)、密封组件(10)、驱动组件(7)和轴套组件(5),底轴(4)通过密封组件(10)安装在反应罐(2)的底部;轴套组件(5)包括相互连接的旋转盘(51)和套筒(52),套筒(52)套设在底轴(4)上,旋转盘(51)的表面至少设有一个以上的旋叶组件(511);旋叶组件(511)用于甩开污泥以减少泥沙与底轴(4)相接触,驱动组件(7)用于驱动轴套组件(5)转动。本发明具有结构简单、维护工作量小、使用成本低、可靠性更高等优点。
Description
相关申请的交叉引用
本申请以申请日为“2023年5月12日”、申请号为“202310540828.5”、发明创造名称为“一种污泥处理装置”的中国专利申请为基础,并主张其优先权,该中国专利申请的全文在此引用至本申请中,以作为本申请的一部分。
本发明主要涉及污泥处理技术领域,特指一种污泥处理装置。
污水厂或其他污染水体产生的污泥,若要将污泥妥善处置,则需要对污泥进行脱水处理,因其主要是由细菌真菌活体细胞及其形成的菌胶团和水形成的固液混合物。目前在处理技术上普遍存在污泥粘性大、脱水困难、能耗高、处理成本高、处理工艺复杂等问题。
对于污泥处理,常用的处理方式有污泥经高温热水解或者添加部分助剂如酸碱调理后水解再进行机械脱水,此类技术目前在运用中,还存在以下问题:在目前热水解反应釜技术中,主要通过往反应釜中通入蒸汽起到污泥加热作用,但是在实际运行时因污泥粘度高,流动性差,容易出现加热效率不佳或加热不均匀问题。还有部分反应釜会设置有搅拌装置以加强受热及水解反应,但因污泥流动性差,常规的搅拌方式并不能使污泥达到充分的混合及流动效果。同时因污泥中存在泥沙及其他颗粒物质,反应釜的搅拌装置一般以较低转速运行,否则将引起因搅拌轴过长导致搅拌密封受损或底部轴承座磨损过快问题,导致设备需要停机进行维护,不仅增加了维护的工作量,停机维护还会影响工作效率,且更换底轴还造成了设备使用成本增加的问题,这些问题是本领域多年一直未能解决的难题。
【发明内容】
针对现有技术存在的技术问题,本发明提供一种结构简单、维护工作量小、使用成本低、可靠性更高的污泥处理装置。
为解决上述技术问题,本发明采用以下技术方案:
一种污泥处理装置,包括换热夹层和反应罐,所述换热夹层套设于反应罐的外侧,还包括底轴、密封组件、驱动组件和轴套组件,所述底轴通过密封组件安装在所述反应罐的底部;所述轴套组件包括相互连接的旋转盘和套筒,所述套筒套设在所述底轴上,所述旋转盘的表面至少设有一个以上的旋叶组件;所述旋叶组件用于甩开污泥以减少泥沙与底轴相接触,所述驱动组件用于驱动轴套组件转动。
在本发明的一些实施例中,所述反应罐内部设有搅拌轴,所述驱动组件设置在所述反应罐的顶部,所述搅拌轴的一端通过万向节与驱动组件相连,所述搅拌轴的另一端通过套筒与底轴相连。
在本发明的一些实施例中,所述搅拌轴的外壁上设置有一组以上的搅拌叶片,用来对污泥形成搅拌效果。
在本发明的一些实施例中,所述搅拌叶片沿着搅拌轴的布置方向呈多层分布式安装。
在本发明的一些实施例中,所述搅拌轴和底轴均为中空状。
在本发明的一些实施例中,所述驱动组件设置在反应罐的底部,所述驱动组件与底轴相连。
在本发明的一些实施例中,还包括连通反应罐顶部和底部的连通管。
在本发明的一些实施例中,所述旋转盘为平板状结构,所述平板状结构的上表面和下表面均设有旋叶组件。
在本发明的一些实施例中,所述旋转盘为伞状结构,所述伞状结构的上表面和下表面均设有旋叶组件。
在本发明的一些实施例中,所述旋转盘包括圆盘状结构,所述圆盘状结构的下底面沿圆周方向设有环形侧壁,所述圆盘状结构的上表面和所述环形侧壁的外表面均设有旋叶组件。
在本发明的一些实施例中,所述底轴与轴套组件为可拆卸式连接。
在本发明的一些实施例中,所述换热夹层上设置有换热介质进口和换热介质出口,所述换热介质进口用来导入换热介质,所述换热介质出口用来导出换热介质;所述换热介质用来与反应罐内的物质实现换热,完成所述反应罐内物料的升温或降温作业。
在本发明的一些实施例中,所述换热夹层上还设有用于加热换热介质的加热组件。
在本发明的一些实施例中,换热介质为导热油、水、热空气中的一种或多种。
在本发明的一些实施例中,所述换热夹层的内壁上还设有多根加固组件。
在本发明的一些实施例中,所述反应罐的内壁和/或外壁上还设有多根加固组件。
在本发明的一些实施例中,所述反应罐内至少设有一组导流组件,所述导流组件为导流板。
在本发明的一些实施例中,所述反应罐内至少设有一组导流组件,所述导流组件包括导流板、导流筒和支撑板,所述导流板设置在导流筒的上方,所述支撑板设置在导流筒的下方。
在本发明的一些实施例中,所述换热夹层和反应罐为封闭状腔体。
在本发明的一些实施例中,所述反应罐上开设有进料口,污泥从进料口送入到反应罐内;所述反应罐上还设置有出料口,污泥完成反应后从出料口排出。
在本发明的一些实施例中,所述反应罐的内壁和外壁上设有半圆盘管或圆盘管,所述半圆盘管和圆盘管用于与反应罐内物质进行换热。
与现有技术相比,本发明的优点在于:
1、本发明的污泥处理装置,设计有轴套组件,轴套组件包括旋转盘和套筒,套筒套设在底轴上,通过驱动组件带动底轴运动进而带动套筒和旋转盘运动,旋转盘上设有旋叶组件,旋转盘旋转能起到阻挡污泥泥沙和稳定甩开污泥的作用,且旋转盘下设有第一设有旋叶组件,由于旋转盘旋转带动旋叶组件旋转,反应罐内的污泥泥沙在往底部沉积时,将被旋转盘下的旋叶组件甩开,能有效减少污泥中的泥沙与底轴相接触,能大大减少底轴被泥沙磨损的几率,确保设备长时间可靠稳定的运行,减少维护工作量,降低维护工作量同时降低设备的使用成本。
2、本发明的污泥处理装置,结构简单紧凑、成本低廉、应用效果好,同时本装置的搅拌组件可以在较高转速下运行,在较高转速下,污泥被旋转盘和旋叶组件机械切割,加快了水解反应效率,同时在多层搅拌叶片和底部旋叶组件的作用下,污泥在装置内可以保持较好的均匀翻滚流动。结合换热夹层的换热作用,污泥将快速升温且受热均匀,更有利于污泥在反应罐内的进一步反应。本发明的装置适用范围非常广,可以应用于各种污泥处理。
3、本发明的污泥处理装置,因其具有反应罐内充分翻滚搅拌功能的特性,可以在污泥完成反应后,利用换热夹层或盘管,对反应罐内污泥的热量进行回收,具备进一步降低能耗成本的优点。
4、本发明的污泥处理装置,在换热夹层和反应罐的内外壁上均设有多根加固组件,多根加固组件采用多层排布的方式,可以使得反应罐内出现负压或者压力较大时,能起到紧固罐体结构的作用,且多层排布的加固组件相当于加大了内外换热面积,增加了装置整体的换热效率。
图1为本发明在具体实施例一中的剖视图。
图2为本发明的轴套组件在具体实施例一中的立体图。
图3为本发明的轴套组件在具体实施例一中另一个视角的立体图。
图4为本发明在具体实施例二中的剖视图。
图5为本发明的轴套组件在具体实施例二中的立体图。
图6为本发明的轴套组件在具体实施例二中另一个视角的立体图。
图7为本发明的轴套组件在具体实施例三中的立体图。
图例说明:
1、换热夹层;11、换热介质进口;12、换热介质出口;13、加固组件;2、反应罐;21、进料口;22、出料口;23、连通管;3、搅拌轴;31、搅拌叶片;4、底轴;5、轴套组件;51、旋转盘;511、旋叶组件;52、套筒;6、万向节;7、驱动组件;8、加热组件;9、导流组件;91、导流板;92、导流筒;93、支撑板;10、密封组件。
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
实施例一
如图1和图3所示,本实施例提供了一种污泥处理装置,包括换热夹层1和反应罐2,换热夹层1套设于反应罐2的外侧,还包括底轴4、搅拌轴3、驱动组件7和轴套组件5,底轴4安装在反应罐2的底部;轴套组件5包括相互连接的旋转盘51和套筒52,套筒52套设在底轴4上,旋转盘51的表面至少设有一个以上的旋叶组件511;旋叶组件511用于甩开污泥以减少泥沙与底轴4相接触,搅拌轴3的一端通过万向节6与驱动组件7相连,搅拌轴3的另一端通过套筒52与底轴4相连,驱动组件7用于驱动搅拌轴3旋转,进而带动轴套组件5转动。
本实施例中的污泥处理装置,设计有轴套组件5,轴套组件5包括旋转盘51和套筒52,套筒52套设在底轴4上,通过驱动组件7带动搅拌轴3运动进而带动套筒52和旋转盘51运动,旋转盘51上设有旋叶组件511,旋转盘51旋转能阻挡部分污泥,且旋转盘51上设有旋叶组件511,由于旋转盘51旋转带动旋叶组件511旋转,反应罐2内的污泥落到旋转盘51上时,沿圆周方向转动的旋叶组件511将污泥中的泥沙甩向反应罐2的内壁,同时,位于旋转盘51下的旋叶组件511也会将底部沉积的泥沙甩开,能有效减少污泥中的泥沙与底轴4相接触,能大大减少底轴4被泥沙磨损的几率,确保设备长时间可靠稳定的运行,减少维护工作量,降低维护工作量同时降低设备的使用成本。
本实施例中,旋转盘51为平板状结构,需要说明的是,本实施例中的平板状结构可以为方形平板、圆形平板或者其他形状的平板,具体形状不限定。
本实施例中,平板状结构的上表面和下表面均设有旋叶组件511。由于平板状结构的上表面和下表面均设有旋叶组件511,当反应罐2内的污泥落到平板状结构上时,设置在平板状结构上表面的旋叶组件511将污泥甩向反应罐2的内壁,实现第一层阻挡,且平板状结构的下表面也设有旋叶组件511,下表面的旋叶组件511旋转将落到反应罐2底部的污泥向四周甩开,实现第二层阻挡,通过对污泥的两次阻挡,能有效减少污泥中的泥沙与底轴4相接触,能大大减少底轴4被泥沙磨损的几率,确保设备长时间可靠稳定的运行,减少维护工作量,降低维护工作量同时降低设备的使用成本。
本实施例中,搅拌轴3通过万向节6与驱动组件7相连,驱动组件7用于驱动搅拌轴3旋转,在搅拌轴3上方设置了万向节6,减少了搅拌时对轴承与密封的冲击,延长了使用寿命。
本实施例中,搅拌轴3的外壁上设置有一组以上的搅拌叶片31,用来对污泥形成搅拌效果。搅拌叶片31的形状根据实际需要来选择,可以为叶片式,也可以为搅拌盘式,也可以为其他形状。
本实施例中,搅拌叶片31沿着搅拌轴3的布置方向呈多层分布式安装。进一步的,在优选实施例中,采用等分均匀布置的方式,在其他实施例中,也可以采用非等分布置的方式。
本实施例中,在搅拌叶片31和旋叶组件511的作用下,污泥在反应罐2内被有效的快速翻滚,起到了充分混合的效果,可以在反应罐2内快速实现均匀加热以及与换热夹层1进行热交换。
本实施例中的污泥处理装置,搅拌轴3可以在较高转速下运行,在较高转速下,污泥被旋转盘51和旋叶组件511机械切割,加快了水解反应效率,同时在多层搅拌叶片31和底部旋叶组件511的作用下,污泥在装置内可以保持较好的均匀翻滚流动,结合换热夹层1的换热作用,污泥将快速升温且受热均匀,更有利于污泥在反应罐2内的进一步反应。
本实施例中,换热夹层1上设置有换热介质进口11和换热介质出口12,换热介质进口11用来导入换热介质,换热介质出口12用来导出换热介质;换热介质用来与反应罐2内的物质实现换热,完成反应罐2内物质的升温或降温作业。因反应罐2内具有充分翻滚搅拌功能的特性,可以在污泥完成反应后,利用换热夹层1对反应罐2内的污泥的热量进行回收,具备进一步降低能耗成本的优点。
本实施例中,换热夹层1上还设有用于加热换热介质的加热组件8。通过加热组件8
实现对加热介质快速加热,使得加热介质能快速升温,进一步提高换热介质和污泥之间的换热效率。
本实施例中,换热介质为导热油、水、热空气中的一种或多种,根据实际应用时现场可以利用介质来选择即可。
本实施例中,换热夹层1和反应罐2为封闭状腔体,以保证整体的换热效率和污泥处理效果。
本实施例中,换热夹层1的内壁上还设有多根加固组件13;反应罐2的内壁和/或外壁上还设有多根加固组件13。多根加固组件13采用多层排布方式,可以使反应罐2内出现负压或者压力较大时,起到紧固罐体结构作用,另外,多根加固组件13采用多层排布组件,相当于加大了内外换热面积,增强了整体换热效率。
本实施例中,反应罐2上开设有进料口21,污泥从进料口21送入到反应罐2内;反应罐2上还设置有出料口22,污泥完成反应后从出料口22排出,反应罐2内至少设有一组导流组件9,导流组件9为导流板91,从进料口21进入的污泥会在导流板91的作用下更快进入到搅拌区域,提高污泥搅拌效率。
本实施例中,反应罐2的内壁上或外壁上设有半圆盘管或圆盘管;通过设置圆盘管或者半圆盘管能提高换热速度。
本实施例中,搅拌轴3和底轴4均为中空状。通过利用搅拌轴3和搅拌叶片31可以使反应罐2中污泥持续均匀翻滚流动,底轴4和搅拌轴3均为中空状,可通过底轴4向搅拌轴3内通入热蒸汽或者其他热介质,在搅拌同时加热污泥,结合换热夹层1的换热作用,污泥将快速升温且受热均匀,更有利于污泥在反应罐2内的进一步反应。
工作原理如下:物料从进料口21进入反应罐2内;开启驱动组件7,在驱动组件7的带动下,搅拌轴3转动,进一步带动轴套组件5转动,旋转盘51上设有旋叶组件511,旋转盘51旋转能阻挡部分污泥,且旋转盘51上设有旋叶组件511,由于旋转盘51旋转带动旋叶组件511旋转,反应罐2内的污泥落到旋转盘51上时,沿圆周方向转动的旋叶组件511将污泥中的泥沙甩向反应罐2的内壁,同时污泥在甩力下保持有序持续流动状态;搅拌叶片31在搅拌轴3的转动下,形成搅拌推力,实现物料在反应罐2内形成持续流动循环。在驱动组件7开启的同时,通过底轴4向搅拌轴3内通入热蒸汽或者其他热介质,在搅拌轴3不断搅拌换热与换热夹层1内的间壁换热介质作用下,污泥被快速加热,流动性加强,加热效率提升,最终达到反应所需温度;停止蒸汽或热介质供应,污泥在反应罐2内保持反应所需温度并在驱动组件7带动下在反应罐2内持续翻滚流动,将完成反应的污泥从出料口22排出,进入下一单元处理。在上述过程中,可以通过换热夹层1对反应罐2
内物质完成升温或降温处理。
实施例二
如图4至图6所示,本实施例与实施例一基本相同,不同之处在于,本实施例中,包括底轴4、密封组件10、驱动组件7和轴套组件5,所述底轴4通过密封组件10安装在所述反应罐2的底部;所述轴套组件5包括相互连接的旋转盘51和套筒52,所述套筒52套设在所述底轴4上,所述旋转盘51的表面至少设有一个以上的旋叶组件511;所述驱动组件7用于驱动轴套组件5转动。导流组件9包括导流板91、导流筒92和支撑板93,所述导流板91设置在导流筒92的上方,所述支撑板93设置在导流筒92的下方,通过导流组件9,从进料口21进入的污泥会快速与换热夹层1接触实现换热。
本实施例中,还包括连通反应罐2顶部和底部的连通管23,连通管23通过法兰与反应罐2的顶部和底部相连通;当底部的旋叶组件511旋转甩开泥沙和污泥时,可能会因转速过快引起瞬间局部空白真空导致液体与旋叶组件511受力面不均匀或压力不均影响搅拌,通过连通管23连通反应罐2的顶部和底部,减少受力不均匀或压力不均的问题,可使装置整体搅拌更加稳定。
本实施例中,驱动组件7设置在反应罐2的底部,驱动组件7直接与底轴4相连,旋转盘51为伞状结构,伞状结构的上表面和下表面均设有旋叶组件511;当反应罐2内的污泥落到伞状结构上时,设置在伞状结构上表面的旋叶组件511将污泥甩向反应罐2的内壁,实现第一层阻挡,且伞状结构的下表面也设有旋叶组件511,下表面的旋叶组件511旋转将落到反应罐2底部的污泥向四周甩开,实现第二层阻挡,通过对污泥的两次阻挡,能有效减少污泥中的泥沙与底轴4相接触,能大大减少底轴4被泥沙磨损的几率,确保设备长时间可靠稳定的运行,减少维护工作量,降低维护工作量同时降低设备的使用成本。
实施例三
如图7所示,本实施例与实施例二基本相同,不同之处在于,本实施例中,旋转盘51包括圆盘状结构,圆盘状结构的下底面沿圆周方向设有环形侧壁,环形侧壁与圆盘状结构相互垂直,圆盘状结构的上表面和环形侧壁的外表面均设有旋叶组件511。当反应罐2内的污泥落到圆盘状结构上时,设置在圆盘状结构上表面的旋叶组件511将污泥甩向反应罐2的内壁,实现第一层阻挡,且环形侧壁的外表面也设有旋叶组件511,当污泥进一步下落时,环形侧壁的外表面的旋叶组件511旋转将落到反应罐2底部的污泥向四周甩开,实现第二层阻挡,通过对污泥的两次阻挡,能有效减少污泥中的泥沙与底轴4相接触,能大大减少底轴4被泥沙磨损的几率,确保设备长时间可靠稳定的运行,减少维护工作量,降低维护工作量同时降低设备的使用成本。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。
Claims (21)
- 一种污泥处理装置,包括换热夹层(1)和反应罐(2),所述换热夹层(1)套设于反应罐(2)的外侧,其特征在于,还包括底轴(4)、密封组件(10)、驱动组件(7)和轴套组件(5),所述底轴(4)通过密封组件(10)安装在所述反应罐(2)的底部;所述轴套组件(5)包括相互连接的旋转盘(51)和套筒(52),所述套筒(52)套设在所述底轴(4)上,所述旋转盘(51)的表面至少设有一个以上的旋叶组件(511);所述旋叶组件(511)用于甩开污泥以减少泥沙与底轴(4)相接触,所述驱动组件(7)用于驱动轴套组件(5)转动。
- 根据权利要求1所述的污泥处理装置,其特征在于,所述反应罐(2)内部设有搅拌轴(3),所述驱动组件(7)设置在所述反应罐(2)的顶部,所述搅拌轴(3)的一端通过万向节(6)与驱动组件(7)相连,所述搅拌轴(3)的另一端通过套筒(52)与底轴(4)相连。
- 根据权利要求2所述的污泥处理装置,其特征在于,所述搅拌轴(3)的外壁上设置有一组以上的搅拌叶片(31),用来对污泥形成搅拌效果。
- 根据权利要求3所述的污泥处理装置,其特征在于,所述搅拌叶片(31)沿着搅拌轴(3)的布置方向呈多层分布式安装。
- 根据权利要求2所述的污泥处理装置,其特征在于,所述搅拌轴(3)和底轴(4)均为中空状。
- 根据权利要求1所述的污泥处理装置,其特征在于,所述驱动组件(7)设置在反应罐(2)的底部,所述驱动组件(7)与底轴(4)相连。
- 根据权利要求6所述的污泥处理装置,其特征在于,还包括连通反应罐(2)顶部和底部的连通管(23)。
- 根据权利要求1所述的污泥处理装置,其特征在于,所述旋转盘(51)为平板状结构,所述平板状结构的上表面和下表面均设有旋叶组件(511)。
- 根据权利要求1所述的污泥处理装置,其特征在于,所述旋转盘(51)为伞状结构,所述伞状结构的上表面和下表面均设有旋叶组件(511)。
- 根据权利要求1所述的污泥处理装置,其特征在于,所述旋转盘(51)为圆盘状结构,所述圆盘状结构的下底面沿圆周方向设有环形侧壁,所述圆盘状结构的上表面和所述环形侧壁的外表面均设有旋叶组件(511)。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述底轴(4)与轴套组件(5)为可拆卸式连接。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述换热夹层(1)上设置有换热介质进口(11)和换热介质出口(12),所述换热介质进口(11)用来导入换热介质,所述换热介质出口(12)用来导出换热介质;所述换热介质用来与反应罐(2)内的物质实现换热,完成所述反应罐(2)内物料的升温或降温作业。
- 根据权利要求12所述的污泥处理装置,其特征在于,所述换热夹层(1)上还设有用于加热换热介质的加热组件(8)。
- 根据权利要求12所述的污泥处理装置,其特征在于,换热介质为导热油、水、热空气中的一种或多种。
- 根据权利要求12所述的污泥处理装置,其特征在于,所述换热夹层(1)的内壁上还设有多根加固组件(13)。
- 根据权利要求12所述的污泥处理装置,其特征在于,所述反应罐(2)的内壁和/或外壁上还设有多根加固组件(13)。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述反应罐(2)内至少设有一组导流组件(9),所述导流组件(9)为导流板(91)。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述反应罐(2)内至少设有一组导流组件(9),所述导流组件(9)包括导流板(91)、导流筒(92)和支撑板(93),所述导流板(91)设置在导流筒(92)的上方,所述支撑板(93)设置在导流筒(92)的下方。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述换热夹层(1)和反应罐(2)为封闭状腔体。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述反应罐(2)上开设有进料口(21),污泥从进料口(21)送入到反应罐(2)内;所述反应罐(2)上还设置有出料口(22),污泥完成反应后从出料口(22)排出。
- 根据权利要求1至10任意一项所述的污泥处理装置,其特征在于,所述反应罐(2)的内壁和外壁上设有半圆盘管或圆盘管,所述半圆盘管和圆盘管用于与反应罐(2)内物质进行换热。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310540828.5A CN116553798A (zh) | 2023-05-12 | 2023-05-12 | 一种污泥处理装置 |
CN202310540828.5 | 2023-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024234977A1 true WO2024234977A1 (zh) | 2024-11-21 |
Family
ID=87494217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/090165 WO2024234977A1 (zh) | 2023-05-12 | 2024-04-26 | 一种污泥处理装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116553798A (zh) |
WO (1) | WO2024234977A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116553798A (zh) * | 2023-05-12 | 2023-08-08 | 纽威科技有限公司 | 一种污泥处理装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170008789A1 (en) * | 2014-04-03 | 2017-01-12 | Xi'an Jiaotong University | Radial flow hydrothermal reactor for sludge thermal hydrolysis treatment |
CN216149462U (zh) * | 2021-08-16 | 2022-04-01 | 纽威科技(长沙)有限公司 | 一种搅拌器及用于液态物质的搅拌换热装置 |
CN114477678A (zh) * | 2022-03-21 | 2022-05-13 | 纽威科技(长沙)有限公司 | 一种高含固流态有机废弃物的处理设备 |
CN217732919U (zh) * | 2022-03-21 | 2022-11-04 | 纽威科技(长沙)有限公司 | 一种高含固流态有机废弃物的处理设备 |
CN218232158U (zh) * | 2022-06-15 | 2023-01-06 | 纽威科技(长沙)有限公司 | 一种污泥处理装置 |
CN116553798A (zh) * | 2023-05-12 | 2023-08-08 | 纽威科技有限公司 | 一种污泥处理装置 |
CN220012432U (zh) * | 2023-05-12 | 2023-11-14 | 纽威科技有限公司 | 一种污泥处理装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101814140B1 (ko) * | 2017-09-26 | 2018-01-03 | 주식회사 한강이앰피 | 유기성 슬러지 건조화 시스템의 고효율 반응조 |
-
2023
- 2023-05-12 CN CN202310540828.5A patent/CN116553798A/zh active Pending
-
2024
- 2024-04-26 WO PCT/CN2024/090165 patent/WO2024234977A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170008789A1 (en) * | 2014-04-03 | 2017-01-12 | Xi'an Jiaotong University | Radial flow hydrothermal reactor for sludge thermal hydrolysis treatment |
CN216149462U (zh) * | 2021-08-16 | 2022-04-01 | 纽威科技(长沙)有限公司 | 一种搅拌器及用于液态物质的搅拌换热装置 |
CN114477678A (zh) * | 2022-03-21 | 2022-05-13 | 纽威科技(长沙)有限公司 | 一种高含固流态有机废弃物的处理设备 |
CN217732919U (zh) * | 2022-03-21 | 2022-11-04 | 纽威科技(长沙)有限公司 | 一种高含固流态有机废弃物的处理设备 |
CN218232158U (zh) * | 2022-06-15 | 2023-01-06 | 纽威科技(长沙)有限公司 | 一种污泥处理装置 |
CN116553798A (zh) * | 2023-05-12 | 2023-08-08 | 纽威科技有限公司 | 一种污泥处理装置 |
CN220012432U (zh) * | 2023-05-12 | 2023-11-14 | 纽威科技有限公司 | 一种污泥处理装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116553798A (zh) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104312911B (zh) | 用于干式厌氧发酵的搅拌装置 | |
WO2024234977A1 (zh) | 一种污泥处理装置 | |
CN220012432U (zh) | 一种污泥处理装置 | |
US4405013A (en) | Rotary type heat pipe heat exchanger | |
CN114184066B (zh) | 一种热交换式乳制品冷却装置 | |
CN106767054A (zh) | 碟式热交换装置及方法 | |
CN215653857U (zh) | 一种热源均化式薄膜蒸发器 | |
CN112461026B (zh) | 一种采用二元盐吸收熔融电石热能的储热设备 | |
CN222219238U (zh) | 一种搅拌桨及混合机 | |
CN217708926U (zh) | 一种脱硫废水蒸发装置 | |
CN109821434B (zh) | 一种低速状态下微气泡产生装置 | |
CN203321845U (zh) | 水动风力推进器及冷却塔风力系统 | |
CN218345333U (zh) | 可拆卸干燥叶片及卧式单轴圆盘干燥机 | |
CN218232158U (zh) | 一种污泥处理装置 | |
CN114229934A (zh) | 一种脱硫废水蒸发装置 | |
CN111871357B (zh) | 一种用于合成六氟磷酸锂的高效合成装置 | |
CN208075330U (zh) | 基于熔盐储热能量转换的供热系统 | |
CN208398716U (zh) | 一种换热器列管防堵装置 | |
CN113091310A (zh) | 一种水源热泵干燥系统 | |
CN206513497U (zh) | 一种高效率、长寿命的逆流式冷却塔专用水轮机 | |
CN223138100U (zh) | 一种具有节能减排的污水源热泵装置 | |
CN213357005U (zh) | 一种有机溶剂用具有蒸发结构的废水处理设备 | |
CN212843036U (zh) | 一种混合式热交换器 | |
CN219607784U (zh) | 一种洁净控温厂房余热回收利用机构 | |
CN219341855U (zh) | 循环水电化学水处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24806333 Country of ref document: EP Kind code of ref document: A1 |