WO2024232139A1 - Magnetorheological elastomer composition - Google Patents
Magnetorheological elastomer composition Download PDFInfo
- Publication number
- WO2024232139A1 WO2024232139A1 PCT/JP2024/006084 JP2024006084W WO2024232139A1 WO 2024232139 A1 WO2024232139 A1 WO 2024232139A1 JP 2024006084 W JP2024006084 W JP 2024006084W WO 2024232139 A1 WO2024232139 A1 WO 2024232139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic powder
- less
- elastomer composition
- mass
- spherical
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
- H01F1/375—Flexible bodies
Definitions
- the present invention relates to a magnetorheological elastomer composition.
- Magnetic responsive materials which are resin materials in which magnetic bodies are dispersed, are known as materials that can be used as vibration-proofing and damping materials and energy transmission materials.
- Patent Document 1 describes a polyurethane elastomer composition that contains a reaction product of a polyol compound and a polyisocyanate compound, and magnetic particles, in which the polyol compound contains a propylene oxide adduct of bisphenol A, and the polyisocyanate compound is a polyisocyanate compound having an aromatic ring. It is described that the magnetically responsive material in Patent Document 1 is a highly elastic magnetic field responsive soft material with a large change in elastic modulus.
- Patent Document 2 describes a magnetically responsive material in which non-spherical magnetic particles are dispersed in a viscoelastic material, and the non-spherical magnetic particles are oriented in the viscoelastic material.
- the non-spherical particles referred to here are particles having a shape other than a perfect sphere, and examples include plate-shaped and scale-shaped particles. It is described that the magnetically responsive material in Patent Document 2 has the property that the elastic modulus is significantly reduced after the application of a magnetic field compared to before the application.
- the present invention aims to provide a magnetorheological elastomer composition (hereinafter sometimes referred to as an "MRE composition”) that exhibits a large change in storage modulus before and after the application of a magnetic field.
- MRE composition magnetorheological elastomer composition
- the present invention also aims to provide a magnetorheological elastomer composition that exhibits a large storage modulus after the application of a magnetic field.
- the present invention provides a magnetorheological elastomer composition comprising a viscoelastic elastomer and a magnetic powder dispersed in the viscoelastic elastomer, the magnetic powder comprising a spherical magnetic powder and a non-spherical magnetic powder.
- the present invention provides a magnetorheological elastomer composition that exhibits a large change in storage modulus before and after the application of a magnetic field.
- the present invention also provides a magnetorheological elastomer composition that exhibits a large storage modulus after the application of a magnetic field.
- viscoelastic elastomer means a material that has both viscosity and elasticity, and can be distinguished based on the relaxation time of stress relaxation (change in stress over time) when a certain strain is applied. If the relaxation time is sufficiently short compared to the time scale of observation, it is understood to be a viscous material, if it is long, it is an elastic material, and if it is on the same scale, it is a viscoelastic material.
- a magnetorheological elastomer refers to a viscoelastic elastomer containing magnetic particles, and preferably refers to a composite material in which magnetic particles are dispersed and fixed inside a viscoelastic elastomer.
- the magnetorheological elastomer reversibly changes its apparent elastic modulus and damping characteristics in response to an external magnetic field.
- viscoelastic elastomers examples include rubber, thermoplastic elastomers, and thermosetting elastomers such as polyurethane elastomers.
- the rubber is not particularly limited, and examples thereof include natural rubber (NR), modified natural rubber, grafted natural rubber, cyclized natural rubber, chlorinated natural rubber, synthetic natural rubber (IR); diene-based synthetic rubbers such as styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), nitrile rubber (NBR), and carboxylated nitrile rubber; mixtures of nitrile rubber and vinyl chloride resin, and mixtures of nitrile rubber and EPDM rubber; non-diene-based synthetic rubbers such as butyl rubber (IIR), brominated butyl rubber, chlorinated butyl rubber, ethylene-vinyl acetate rubber, acrylic rubber, ethylene-acrylic rubber, chlorosulfonated polyethylene, chlorinated polyethylene (CM), epichlorohydrin rubber, epichlorohydrin-ethylene oxide rubber, methyl silicone rubber, vinyl-methyl silicone rubber, phenyl-methyl silicone rubber, fluorinated silicone rubber
- Thermoplastic elastomers are not particularly limited, and examples include polystyrene-based thermoplastic elastomers, polyvinyl chloride-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluororubber-based thermoplastic elastomers, chlorinated polyethylene-based elastomers, and nitrile-based thermoplastic elastomers.
- thermosetting elastomers such as polyurethane elastomers are preferred from the viewpoint of increasing the change in elastic modulus of the magnetically responsive material before and after the application of a magnetic field.
- polyurethane elastomer refers to an elastomer that contains a urethane resin.
- urethane resin corresponds to the component that forms the polymer skeleton of polyurethane elastomers.
- the urethane resin refers to a reaction product of a polyol and a polyisocyanate.
- a hydroxyl group contained in a polyol reacts with an isocyanate group contained in a polyisocyanate to form a urethane bond, thereby forming a urethane resin.
- the urethane resin may be a reaction product of a reaction product of a polyol and a polyisocyanate, and a chain extender and/or a terminal terminator, and all of these reaction products are included in the scope of the urethane resin.
- An example of a preferred urethane resin is a reaction product of a polyol compound and a polyisocyanate compound described in Patent Document 1.
- Polyol means a compound having two or more hydroxyl groups in one molecule. It is preferable that the polyol includes a triol.
- Triol refers to a compound that has three hydroxyl groups in one molecule. Each hydroxyl group in a triol reacts with the isocyanate group of a diisocyanate (described below) to form a urethane bond, so a triol contains a branching point (crosslinking point) where three molecular chains are bonded to one atom.
- the cross-linking points (branching points) in the triol can be introduced by a compound (initiator) having three or more active hydrogen atoms.
- initiators include glycerol, trimethylolethane, trimethylolpropane, trimellitic acid, and diethylenetriamine.
- the number average molecular weight of the triol is 1,000 or more, preferably 2,000 to 15,000, more preferably 3,000 to 10,000, and even more preferably 4,000 to 8,000.
- the molecular weight of the molecular chains bonded to the crosslinking points can be equal to or greater than a certain level.
- the number average molecular weight can be measured by gel permeation chromatography using polystyrene as a standard sample.
- the triol may be, for example, a polyether triol, a polyester triol, a polycarbonate triol, a polyolefin triol, a polyacrylic triol, etc., and is preferably a polyether triol.
- Polyether triol can be typically understood as a triol of a polymer having a unit containing an ether bond as a repeating unit, and the repeating unit preferably contains an oxyalkylene unit.
- Such units containing an ether bond include oxyalkylene units having 2 to 4 carbon atoms, such as oxyethylene units, oxypropylene units, and oxytetramethylene units, and in particular, oxypropylene units and oxytetramethylene units.
- Polyether polyols may be homopolymers containing one type of oxyalkylene unit, or copolymers containing two or more types of oxyalkylene units. Examples of polyether polyols include polyethylene triol, polypropylene triol, polytetramethylene ether triol, polyoxyethylene-polyoxypropylene triol, and the like.
- Oxyalkylene units can be formed by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran.
- a polyester triol can be typically understood as a triol of a polymer having a repeating unit containing an ester bond.
- the unit containing an ester bond can be formed by the reaction of a diol with a dicarboxylic acid or by ring-opening polymerization of a cyclic ester compound.
- a polyester polyol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
- the diol used as the raw material for polyester triol is typically a low molecular weight diol having a molecular weight of 50 or more and 300 or less.
- Specific examples include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; alkylene oxide adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol.
- the alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
- Dicarboxylic acids that are raw materials for polyester triols include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid; anhydrides of the aliphatic dicarboxylic acids or aromatic dicarboxylic acids; and esters of aliphatic dicarboxylic acids or aromatic dicarboxylic acids.
- aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid
- aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid
- anhydrides of the aliphatic dicarboxylic acids or aromatic dicarboxylic acids and esters of
- esters of the aliphatic dicarboxylic acids or aromatic dicarboxylic acids can be formed by reacting the aliphatic dicarboxylic acids or aromatic dicarboxylic acids with alcohols, and examples of such alcohols include aliphatic alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, and butanol.
- Polycarbonate triol can be understood as a triol of a polymer having units containing carbonate bonds (-O-CO-O-) as repeating units.
- the units containing carbonate bonds (-O-CO-O-) can be formed by the reaction of a carbonate ester with a diol, or the reaction of phosgene with a diol, etc.
- Polycarbonate polyol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
- Carbonate esters which are the raw materials for polycarbonate triol, include methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclohexyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, etc.
- the diol used as the raw material for polycarbonate triol may typically be a low molecular weight diol with a molecular weight of 50 to 300, or a high molecular weight diol with a number average molecular weight of more than 300.
- Low molecular weight diols include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; alkylene oxide adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol.
- linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-di
- Alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
- high molecular weight diols examples include polyether diols such as polyethylene glycol and polypropylene glycol; polyester diols such as polyhexamethylene adipate; etc.
- the number average molecular weight of high molecular weight diols is generally more than 300, preferably 400 to 5,000, more preferably 400 to 2,000.
- Polyolefin triol can be understood as a triol of a polymer having units consisting of divalent hydrocarbon groups as repeating units.
- the units consisting of divalent hydrocarbon groups can be formed by polymerization of alkenes and dienes.
- Polyolefin triol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
- Alkenes that are raw materials for polyolefin triols include ethylene, propylene, isobutene, etc.
- dienes that are raw materials for polyolefin triols include butadiene, isoprene, etc.
- Polyacrylic triol can be understood as a triol of a polymer having units derived from (meth)acrylic monomers as repeating units.
- Polyacrylic triol may be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
- the (meth)acrylic monomer may include a (meth)acrylic monomer having a hydroxyl group, other (meth)acrylic monomers and/or other vinyl monomers.
- Examples of (meth)acrylic monomers having a hydroxyl group include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
- (meth)acrylic monomers include (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, and dodecyl (meth)acrylate; unsaturated carboxylic acids such as (meth)acrylic acid, maleic acid, and itaconic acid; and (meth)acrylamide monomers such as unsubstituted (meth)acrylamide, dimethyl(meth)acrylamide, N,N-methylenebis(meth)acrylamide, and diacetone(meth)acrylamide.
- (meth)acrylic acid esters such as
- vinyl monomers include styrene and methylstyrene.
- the triol content in the polyol is, for example, 3% by mass or more, preferably 3% by mass or more and 70% by mass or less, more preferably 5% by mass or more and 60% by mass or less, and even more preferably 7% by mass or more and 55% by mass or less.
- the polyol preferably contains a diol.
- a diol refers to a compound having two hydroxyl groups in one molecule. By including a diol as the polyol, it may be easier to control the molecular weight of the molecular chains that bond to the crosslinking points.
- the diol may be a low molecular weight diol having a molecular weight of 50 or more and 300 or less, or may be a high molecular weight diol having a number average molecular weight of more than 300. In one embodiment, a high molecular weight diol is preferred, and a polyether diol is more preferred.
- Low molecular weight diols include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; cyclic ether adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol.
- linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-d
- Alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
- high molecular weight diols examples include polyether diols, polyester diols, polycarbonate diols, polyolefin diols, and polyacrylic diols.
- Polyether diols can be typically understood as polymer diols having units containing ether bonds as repeating units, and the repeating units preferably contain oxyalkylene units.
- oxyalkylene units include oxyalkylene units having 2 to 4 carbon atoms, such as oxyethylene units, oxypropylene units, and oxytetramethylene units, and in particular, oxypropylene units and oxytetramethylene units.
- Polyether polyols may be homopolymers containing one type of oxyalkylene unit, or copolymers containing two or more types of oxyalkylene units. Examples of polyether polyols include polyethylene triol, polypropylene triol, polytetramethylene ether triol, polyoxyethylene-polyoxypropylene triol, and the like.
- Oxyalkylene units can be formed by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran.
- a polyester diol can typically be understood as a polymer diol that has units containing ester bonds as repeating units.
- Polycarbonate diol can typically be understood as a polymer diol that has units containing carbonate bonds (-O-CO-O-) as repeating units.
- Polyolefin diols can typically be understood as polymer diols that have repeating units consisting of divalent hydrocarbon groups.
- Polyacrylic diol can be typically understood as a polymeric diol having repeating units derived from (meth)acrylic monomers.
- the number average molecular weight of the high molecular weight diol is generally more than 300, preferably 400 to 5,000, more preferably 400 to 3,000.
- the diol content is preferably 50 parts by mass or more and 2,000 parts by mass or less, more preferably 60 parts by mass or more and 1,500 parts by mass or less, and even more preferably 70 parts by mass or more and 1,200 parts by mass or less, per 100 parts by mass of triol.
- the polyol includes a triol and a diol.
- the total content of the triol and the diol in 100% by mass of the polyol is, for example, 80% by mass or more and 100% by mass or less, preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less.
- the polyol may contain other polyols.
- Such other polyols may include triols with a molecular weight of less than 4,000, triols with four or more hydroxyl groups in one molecule, etc.
- Polyisocyanate refers to a compound that has two or more isocyanate groups in one molecule.
- the number of isocyanate groups contained in one molecule of polyisocyanate is typically 2 to 4, and in particular 2 to 3.
- Polyisocyanates include aliphatic polyisocyanates, aromatic polyisocyanates, alicyclic polyisocyanates, etc.
- Aliphatic polyisocyanates include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc.
- Aromatic polyisocyanates include 1,3- and 1,4-phenylene diisocyanate, 1-methyl-2,4-phenylene diisocyanate, 1-methyl-2,6-phenylene diisocyanate, 1-methyl-2,5-phenylene diisocyanate, 1-methyl-2,6-phenylene diisocyanate, 1-methyl-3,5-phenylene diisocyanate, 1-ethyl-2,4-phenylene diisocyanate, 1-isopropyl-2,4-phenylene diisocyanate, 1,3-dimethyl-2,4-phenylene diisocyanate, 1,3-dimethyl-4,6-phenylene diisocyanate, 1,4-dimethyl-2,5-phenylene diisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, and 1-methyl-3,5-diethylbenzene diisocyanate.
- isocyanates include biphenyl-2,4'-diisocyanate, biphenyl-4,4'-diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-2,2'-diisocyanate, di
- Alicyclic polyisocyanates include 1,3-cyclopentylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, lysine diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, 2,2'-dicyclohexylmethane diisocyanate, 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate, etc.
- the molar ratio [NCO/OH] of the isocyanate groups contained in the polyisocyanate to the hydroxyl groups contained in the polyol can be, for example, 0.1 or more and 5 or less, preferably 0.3 or more and 3 or less, and more preferably 0.4 or more and 1.5 or less.
- a chain extender is a compound that has two or more active hydrogen atoms in one molecule, and is typically used to further react with the reaction product of a polyol and a polyisocyanate. By further reacting the reaction product of a polyol and a polyisocyanate with a chain extender, it becomes easier to obtain a high molecular weight urethane resin.
- Chain extenders include chain extenders with amino groups and chain extenders with hydroxyl groups.
- Chain extenders having an amino group include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, 1,2-cyclohexanediamine, 1,4-cyclohexanediamine, aminoethylethanolamine, hydrazine, diethylenetriamine, triethylenetetramine, etc.
- Chain extenders having hydroxyl groups include aliphatic polyols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, sucrose, methylene glycol, glycerin, and sorbitol; aromatic polyols such as bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, and hydroquinone; and water.
- aromatic polyols such as bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, and hydroquinone
- the molar ratio [NCO/(H+OH)] of the isocyanate groups contained in the polyisocyanate to the sum of the hydroxyl groups contained in the polyol and the active hydrogen atoms contained in the chain extender can be, for example, 0.1 or more and 5 or less, preferably 0.3 or more and 3 or less, and more preferably 0.4 or more and 1 or less.
- a terminal terminator is a compound that has one active hydrogen atom per molecule, and is typically used to further react the reaction product of a polyol, a polyisocyanate, and an optional chain extender.
- Terminator agents include alcohols such as hexanol, heptanol, octanol, nonanol, and undecanol; and amines such as dibutylamine.
- the amount of the terminal terminator may be preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.1 parts by mass or more and 10 parts by mass or less, per 100 parts by mass of the reaction product of the polyol and the polyisocyanate.
- the average molecular weight between crosslinks of the urethane resin may be preferably 9,300 or more and 30,000 or less, more preferably 9,500 or more and 27,000 or less, even more preferably 9,500 or more and 20,000 or less, and even more preferably 9,500 or more and 12,000 or less.
- the average molecular weight between crosslinks may be understood as the average value of the molecular weight of the molecular chain between two adjacent crosslinks (branching points).
- the average molecular weight between crosslinking points can be controlled by the number average molecular weight of the triol, or if a diol is used, the number average molecular weight of the diol, the amount of triol and diol used, etc.
- the average molecular weight between crosslinking points can be calculated based on the following formula (1), where M is the number average molecular weight of the i-functional polyol contained in the polyol, and C is the molar fraction of the i-functional polyol in the total amount of the polyol.
- the molecular weight between crosslinking points of the crosslinked rubber is considered to correlate with the elastic modulus of the crosslinked rubber.
- the molecular weight between crosslinking points of the crosslinked rubber is Mc
- the Poisson's ratio of the crosslinked rubber is ⁇
- the density of the crosslinked rubber is ⁇ (g/m 3 )
- the gas constant is R (J/(K ⁇ mol))
- the temperature is T (K)
- the elastic modulus E (Pa) of the crosslinked rubber is expressed by the following formula:
- the urethane resin can be produced by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender and a terminal terminator. This reaction can be carried out without a solvent or in the presence of a reaction solvent.
- the reaction temperature can be 50°C or higher and 150°C or lower.
- reaction solvents include ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxane; acetate ester solvents such as ethyl acetate and butyl acetate; nitrile solvents such as acetonitrile; and amide solvents such as dimethylformamide and N-methylpyrrolidone.
- the content of urethane resin contained in the polyurethane elastomer is preferably 80% by mass or more and 100% by mass, more preferably 90% by mass or more and 100% by mass, and even more preferably 95% by mass or more and 100% by mass.
- the polyurethane elastomer may further contain a resin other than the urethane resin, such as an acrylic resin, a polyester resin, a polyamide resin, a polycarbonate resin, or a silicone resin.
- a resin other than the urethane resin such as an acrylic resin, a polyester resin, a polyamide resin, a polycarbonate resin, or a silicone resin.
- the polyurethane elastomer may contain a plasticizer in addition to the urethane resin, such as an aromatic dicarboxylic acid plasticizer, an aliphatic dicarboxylic acid plasticizer, a phosphoric acid plasticizer, or a trimellitic acid plasticizer.
- a plasticizer such as an aromatic dicarboxylic acid plasticizer, an aliphatic dicarboxylic acid plasticizer, a phosphoric acid plasticizer, or a trimellitic acid plasticizer.
- Aromatic dicarboxylic acid plasticizers include phthalate diesters such as dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, and ditridecyl phthalate; isophthalate diesters such as dioctyl isophthalate and di-2-ethylhexyl isophthalate; and terephthalate diesters such as dioctyl terephthalate and di-2-ethylhexyl terephthalate.
- phthalate diesters such as dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, and ditridecyl phthal
- Aliphatic dicarboxylic acid plasticizers include adipic acid diesters such as dioctyl adipate, di-2-ethylhexyl adipate, isononyl adipate, and diisodecyl adipate; and sebacic acid diesters such as dioctyl sebacate, di-2-ethylhexyl sebacate, and diisononyl sebacate.
- adipic acid diesters such as dioctyl adipate, di-2-ethylhexyl adipate, isononyl adipate, and diisodecyl adipate
- sebacic acid diesters such as dioctyl sebacate, di-2-ethylhexyl sebacate, and diisononyl sebacate.
- Phosphate-based plasticizers include phosphate esters such as trioctyl phosphate, tri-2-ethylhexyl phosphate, and tricresyl phosphate.
- Trimellitic acid plasticizers include trimellitic acid triesters such as trioctyl trimellitate and tri-2-ethylhexyl trimellitate; and pyromellitic acid tetraesters such as tetraoctyl pyromellitate and tetra-2-ethylhexyl pyromellitate.
- the plasticizer preferably includes an aromatic dicarboxylic acid plasticizer, more preferably includes a phthalic acid diester, and particularly preferably includes dioctyl phthalate or di-2-ethylhexyl phthalate.
- the plasticizer content is 35% by volume or more and 70% by volume or less, preferably 40% by volume or more and 60% by volume or less, and more preferably 45% by volume or more and 50% by volume or less, based on the entire composition.
- the magnetorheological elastomer composition has an appropriate viscosity, and the orientation of the magnetic powder is more likely to change in response to changes in the magnetic field.
- the polyurethane elastomer may contain additives in addition to the urethane resin and plasticizer, such as a urethane catalyst, an antioxidant, a light stabilizer, an impact resistance agent, an antistatic agent, a flame retardant, a preservative, an ultraviolet absorber, a viscosity modifier, a colorant, etc.
- additives in addition to the urethane resin and plasticizer, such as a urethane catalyst, an antioxidant, a light stabilizer, an impact resistance agent, an antistatic agent, a flame retardant, a preservative, an ultraviolet absorber, a viscosity modifier, a colorant, etc.
- Urethanization catalysts are used in the reaction of polyols and polyisocyanates, and include tin compounds such as tin octoate, dibutyltin dichloride, dibutyltin oxide, and dibutyltin dilaurate; titanium compounds such as dibutyltitanium dichloride, tetrabutyl titanate, and butoxytitanium trichloride; zinc compounds such as zinc naphthenate and zinc 2-ethylhexanoate; and tertiary amines such as triethylamine, triethylenediamine, and 1,8-diazabicyclo-(5,4,0)-undecene-7.
- tin compounds such as tin octoate, dibutyltin dichloride, dibutyltin oxide, and dibutyltin dilaurate
- titanium compounds such as dibutyltitanium dichloride, tetrabutyl titan
- the amount of the urethane catalyst contained may be 0.01 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the urethane resin.
- the magnetic powder refers to a powder of a magnetic material that can change the direction or magnitude of its magnetic moment in response to a change in an external magnetic field.
- the magnetic material is typically a ferromagnetic material, and preferably a soft magnetic material.
- the magnetic material may be, for example, Fe, or an alloy or oxide containing Fe; preferably, Fe, or an alloy or oxide containing Fe and at least one selected from the group consisting of B, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Zr, Nb, Mo, Pd, Sn, Ba, La, Ta, and Bi; more preferably, Fe, or an alloy containing Fe and at least one selected from the group consisting of B, Al, Si, Cr, Co, and Ni.
- Such magnetic materials include Fe; soft ferrites such as manganese zinc ferrite, nickel zinc ferrite, copper zinc ferrite, and sodium ferrite; and alloys such as FeNi alloys, FeCo alloys, FeSi alloys, FeSiCr alloys, FeSiAl alloys, and FeSiBCr alloys.
- the coercive force of the magnetic material is preferably 100 A/m or less, and the lower limit can be 0 A/m or more.
- the saturation magnetic flux density of the magnetic material may be preferably 0.1 T or more and 3 T or less, more preferably 0.5 T or more and 2.5 T or less, and even more preferably 0.7 T or more and 2.3 T or less.
- the magnetic permeability of the magnetic material measured under a magnetic field of 0.002 T may be preferably 0.0001 H/m or more and 1 H/m or less, more preferably 0.0005 H/m or more and 0.1 H/m or less, and even more preferably 0.001 H/m or more and 0.01 H/m or less.
- the coercivity, saturation magnetic flux density, and permeability of a magnetic material refer to the coercivity, saturation magnetic flux density, and permeability measured in bulk, and can typically be measured using a vibrating sample magnetometer.
- Non-spherical magnetic powders are magnetic powders that have a shape other than spherical.
- Examples of non-spherical magnetic powders include magnetic powders that have shapes such as flat, flattened spheres, plates, scales, needles, columns, and polygons.
- spherical magnetic powders and non-spherical magnetic powders are mixed and used.
- the magnetic powder in the viscoelastic elastomer aligns itself along the magnetic field lines, stacking up in chains and forming numerous magnetic powder pillars, thereby increasing the hardness in the direction of the magnetic field lines.
- the magnetic powder consists only of spherical particles
- the frictional force between the stacked magnetic powder particles is small and they move easily, and the pillars formed when a magnetic field is applied are easily distorted, and there is a limit to how much the hardness of the magnetorheological elastomer composition can be increased.
- the magnetic powder consists only of non-spherical particles
- the frictional force between the magnetic powder particles is large in the non-spherical parts and they move less easily, and when a magnetic field is applied, they are less likely to align in a chain shape, resulting in many incomplete pillars, and the hardness of the magnetorheological elastomer composition does not increase sufficiently.
- the spherical magnetic powder when the magnetic powder contains spherical magnetic powder and non-spherical magnetic powder, the spherical magnetic powder can be sandwiched between the non-spherical portions of multiple non-spherical magnetic powders, and the individual non-spherical magnetic powder particles move easily and tend to align in chains when a magnetic field is applied, forming many pillars containing non-spherical magnetic powder. Since the non-spherical magnetic powder has a large mutual frictional force, the pillars are less likely to distort, and as a result, it is believed that the hardness of the magnetic viscoelastic elastomer composition is sufficiently increased.
- non-spherical magnetic powders flat magnetic powders, which have a large frictional force between the non-spherical portions, are preferred from the viewpoint of increasing the storage modulus after the application of a magnetic field.
- flat spherical magnetic powders are more preferred because they increase the change in storage modulus before and after the application of a magnetic field.
- Flattened refers to a flat shape in which one dimension is smaller than the other dimensions.
- Flattened spherical refers to the shape obtained when a sphere is flattened.
- the flattened spherical shape When viewed from the flattening direction, the flattened spherical shape is a rectangle of a certain thickness with rounded edges, and when viewed from a direction perpendicular to the flattening direction, it is a circle.
- the shape viewed from the flattening direction may have uneven thickness and variation, and the shape viewed from the flattening direction may be approximately circular or approximately elliptical with minute irregularities on the outer periphery.
- WO 2020/179535 describes the properties, characteristics, and manufacturing method of flattened spherical magnetic powder. The descriptions in this publication regarding flattened spherical magnetic powder are incorporated herein by reference.
- the average particle size (D 50 ) of the spherical magnetic powder is, for example, 0.5 ⁇ m to 50 ⁇ m, preferably 1 ⁇ m to 25 ⁇ m, and more preferably 3 ⁇ m to 10 ⁇ m, from the viewpoint of increasing the storage modulus after application of a magnetic field.
- the aspect ratio of the spherical magnetic powder is preferably 1.5 or less, more preferably 1.3 or less, and even more preferably 1.2 or less, and the lower limit can be, for example, 1.
- the average particle size (D 50 ) of the flat magnetic powder is, for example, 2 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 70 ⁇ m, and more preferably 10 ⁇ m to 40 ⁇ m, from the viewpoint of increasing the storage modulus after application of a magnetic field.
- the aspect ratio of the flat magnetic powder is preferably 7 or more and 15 or less, more preferably 10 or more and 13 or less, and even more preferably 10 or more and 11 or less.
- the average particle size (D 50 ) of the magnetic powder can be measured and calculated by a laser diffraction/scattering method based on the Mie scattering theory. Specifically, a particle size distribution of the magnetic powder is created on a volume basis using a laser diffraction/scattering type particle size distribution measuring device, and the 50% particle size (average particle size) (D 50 ) can be calculated. A measurement sample in which the magnetic powder is dispersed in pure water using ultrasonic waves can be preferably used.
- the laser diffraction/scattering type particle size distribution measuring device the "MT3000II” manufactured by Microtrackbell, the "LA-960” manufactured by Horiba, Ltd., the "SALD-2200” manufactured by Shimadzu Corporation, etc. can be used.
- the particle size of the magnetic powder referred to in this specification means the average particle size (D 50 ).
- the aspect ratio of magnetic powder as referred to in this specification is the value (a/b) calculated by dividing the "average major axis length a ( ⁇ m) of magnetic powder" by the "average thickness b ( ⁇ m) of magnetic powder.”
- the average major axis length of magnetic powder is the average value of the major axis lengths of magnetic powder.
- the average value of the major axis length of magnetic powder can be, for example, the number average when the major axis lengths of, for example, 50 magnetic powder particles are measured based on a scanning electron microscope image.
- the major axis length of magnetic powder refers to the length of the line segment connecting any two points on the outer surface of a magnetic powder particle that are the longest distance apart.
- the aspect ratio of the magnetic powder is the value (a/b) calculated by dividing the "average radial length of the magnetic powder a ( ⁇ m)" by the "average thickness of the magnetic powder b ( ⁇ m)."
- the mixing ratio of the spherical magnetic powder to the non-spherical magnetic powder is such that the non-spherical magnetic powder accounts for 3% by mass or more and 60% by mass or less, preferably 5% by mass or more and 45% by mass or less, and more preferably 10% by mass or more and 30% by mass or less, based on the total magnetic powder.
- the magnetic powder may be a powder having an insulating coating on its surface.
- insulating coatings include inorganic glass coatings, organic polymer coatings, organic-inorganic hybrid coatings, and inorganic insulating coatings formed by the sol-gel reaction of metal alkoxides.
- the magnetic powder content in the magnetorheological elastomer composition of the present invention is, for example, 25 volume % or more and 55 volume % or less, preferably 35 volume % or more and 50 volume % or less, and more preferably 40 volume % or more and 45 volume % or less.
- the elastic modulus change in response to a change in the magnetic field can be good.
- the magnetic powder content can be determined by applying heat (500°C or higher) to the magnetic viscoelastic elastomer to remove the organic components and then measuring the weight of the remaining magnetic powder.
- the magnetic viscoelastic elastomer composition of the present invention can be produced by mixing a viscoelastic elastomer and a magnetic powder.
- the mixing of the viscoelastic elastomer and the magnetic powder can include, for example, mixing the viscoelastic elastomer and the magnetic powder as they are, or mixing the raw materials of the viscoelastic elastomer with the magnetic powder and then reacting the raw materials to form the viscoelastic elastomer.
- a catalyst, a plasticizer, and an additive used as necessary may be appropriately present.
- the magnetorheological elastomer composition can be produced by mixing a polyol, a polyisocyanate, and a magnetic powder, and then heating the mixture to obtain a reaction product of the polyol and the polyisocyanate.
- the heating temperature can be 50°C or higher and 150°C or lower, and the heating time can be 30 minutes or higher and 20 hours or lower.
- the heating can be carried out without a solvent or in the presence of a reaction solvent. Examples of such reaction solvents include toluene, acetone, and n-methylpyrrolidone.
- the order in which the polyol, polyisocyanate and magnetic powder are mixed is not particularly limited.
- the polyol, polyisocyanate and magnetic powder may be mixed simultaneously, or the polyol and magnetic powder may be mixed and then the mixture may be mixed with the polyisocyanate.
- a urethane catalyst, resin, plasticizer and additives, which are used as necessary may be appropriately present.
- the magnetorheological elastomer composition has viscosity and elasticity.
- the storage modulus G'0 of the magnetorheological elastomer composition measured under zero magnetic field can be preferably 0.002 MPa or more and 0.020 MPa or less, more preferably 0.004 MPa or more and 0.015 MPa or less, and even more preferably 0.005 MPa or more and 0.010 MPa or less.
- the change in modulus when a magnetic field is applied can be favorable.
- the magnetorheological elastomer composition of the present invention may have an increased storage modulus when a magnetic field is applied, compared to when no magnetic field is applied.
- the storage modulus G'1 measured under the conditions used in the following examples may be preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and even more preferably 2.0 MPa or more.
- the propagation speed of compressional waves, particularly sound waves and ultrasonic waves, passing through the magnetorheological elastomer composition may be increased.
- the rate of change in storage modulus due to a magnetic field of the magnetorheological elastomer composition of the present invention is preferably at least 100, more preferably at least 150, even more preferably at least 290, and may be, for example, at most 1000, or at most 800, or even at most 500.
- rate of change in storage modulus due to a magnetic field is within this range, compressional waves, particularly sound waves and ultrasonic waves, passing through the magnetorheological elastomer composition can be highly deflected.
- the magnetorheological elastomer composition of the present invention can increase its storage modulus by application of a magnetic field, and can be suitably used for changing the propagation direction of compressional waves (deflecting compressional waves) such as sound waves, ultrasonic waves, vibration waves, etc.
- the propagation speed c (m/s) of a compressional wave is proportional to the square root of the elastic modulus of the propagation medium, and specifically, when the density is ⁇ (kg/m 3 ) and the bulk modulus is ⁇ (Pa), it is expressed by the following formula (2):
- the elastic modulus when the elastic modulus is high, the propagation speed of the compressional wave is high, and when the elastic modulus is low, the propagation speed of the compressional wave is low.
- the increase in the storage modulus correlates with the direction of the magnetic field, and typically, the storage modulus increases in a direction parallel to the direction of the magnetic field. Therefore, it is thought that the application of a magnetic field causes anisotropy in the storage modulus, which can result in a change in the propagation direction of the compressional wave.
- the magnetorheological elastomer composition of the present invention is preferably used to deflect sound waves or ultrasonic waves, and is particularly suitable for use in acoustic devices such as speakers and ultrasonic devices such as ultrasonic sensors.
- the magnetorheological elastomer composition of the present invention can also be used in tactile feedback devices that utilize changes in elastic modulus.
- the present invention provides the following aspects:
- a magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less, preferably 35% by volume or more and 50% by volume or less, more preferably 40% by volume or more and 45% by volume or less, of a magnetic powder dispersed in the viscoelastic elastomer,
- the magnetic powder includes spherical magnetic powder and non-spherical magnetic powder,
- the non-spherical magnetic powder is contained in an amount of 3% by mass or more and 60% by mass or less, preferably 5% by mass or more and 45% by mass or less, and more preferably 10% by mass or more and 30% by mass or less, based on the total amount of the magnetic powder.
- Magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less, preferably 35% by volume or more and 50% by volume or less, more preferably 40% by volume or more and 45% by
- the flat magnetic powder has an aspect ratio a/b, which indicates the ratio of the average radial length a to the average thickness b in the thickness direction, of 10 to 20, preferably 7 to 15, more preferably 10 to 13, and even more preferably 10 to 11.
- a polyol including a triol, having a number average molecular weight of 1,000 or more, preferably 2,000 to 15,000, more preferably 3,000 to 10,000, and even more preferably 4,000 to 8,000, and a polyisocyanate.
- a method for producing a magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less, preferably 35% by volume or more and 50% by volume or less, more preferably 40% by volume or more and 45% by volume or less of a magnetic powder dispersed in the viscoelastic elastomer, comprising the steps of:
- the magnetic powder contains spherical magnetic powder and non-spherical magnetic powder, and the non-spherical magnetic powder is contained in an amount of 3 mass% to 60 mass%, preferably 5 mass% to 45 mass%, and more preferably 10 mass% to 30 mass%, based on the total amount of the magnetic powder.
- a method for producing a magnetorheological elastomer composition comprising:
- Example 1 As components of the polyurethane elastomer, polypropylene glycol having a number average molecular weight of 4000, a triol type (PPT), polypropylene glycol having a number average molecular weight of 3000, a diol type (PPG), tolylene diisocyanate (TDI), dioctyl phthalate, and tin octylate were prepared and charged into a reaction vessel in the amounts shown in Table 1.
- PPT triol type
- PPG polypropylene glycol having a number average molecular weight of 3000
- PPG diol type
- TDI tolylene diisocyanate
- dioctyl phthalate dioctyl phthalate
- tin octylate tin octylate
- spherical FeSiCr powder manufactured by Epson Atomics, no product name
- a particle size of 10 ⁇ m and an aspect ratio of 1 was prepared and filled into the same reaction vessel in an amount that was 25% by volume based on the total magnetic viscoelastic elastomer composition.
- the filling materials were mixed uniformly using a degassing mixer to obtain a paste.
- the resulting paste was heated to 75°C for 2 hours using a hot plate and thermally cured to produce a magnetorheological elastomer composition.
- a magnetic viscoelastic elastomer composition was produced in the same manner as in Experimental Example 1, except that spherical FeSiCr powder and flat spherical FeSiCr powder of the specified particle sizes shown in Table 2 were used in the specified ratio instead of the spherical FeSiCr powder.
- the storage modulus was measured for the magnetorheological elastomer compositions of Experimental Examples 1 to 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、磁気粘弾性エラストマー組成物に関する。 The present invention relates to a magnetorheological elastomer composition.
防振・制振材やエネルギー伝達材料に用いられ得る材料として、樹脂材料に磁性体を分散させた磁気応答性材料が知られている。 Magnetic responsive materials, which are resin materials in which magnetic bodies are dispersed, are known as materials that can be used as vibration-proofing and damping materials and energy transmission materials.
特許文献1には、ポリオール化合物とポリイソシアネート化合物との反応物、及び磁性粒子を含有するポリウレタンエラストマー組成物であって、ポリオール化合物がビスフェノールAのプロピレンオキシド付加物等を含み、ポリイソシアネート化合物が芳香環を有するポリイソシアネート化合物であるポリウレタンエラストマー組成物が記載されている。特許文献1の磁気応答性材料は、弾性率の変化の大きな高弾性磁場応答性ソフトマテリアルであることが記載されている。 Patent Document 1 describes a polyurethane elastomer composition that contains a reaction product of a polyol compound and a polyisocyanate compound, and magnetic particles, in which the polyol compound contains a propylene oxide adduct of bisphenol A, and the polyisocyanate compound is a polyisocyanate compound having an aromatic ring. It is described that the magnetically responsive material in Patent Document 1 is a highly elastic magnetic field responsive soft material with a large change in elastic modulus.
特許文献2には、粘弾性材料に非球状の磁性粒子を分散させた磁気応答性材料であって、上記非球状の磁性粒子は、上記粘弾性材料中で配向している磁気応答性材料が記載されている。ここでいう非球状の粒子とは、真球状以外の形状を有する粒子であり、板状及び鱗片状粒子等が例示されている。特許文献2の磁気応答性材料は、磁場の印加前に比べて印加後の方が、弾性率が大きく低下するという性質を有することが記載されている。 Patent Document 2 describes a magnetically responsive material in which non-spherical magnetic particles are dispersed in a viscoelastic material, and the non-spherical magnetic particles are oriented in the viscoelastic material. The non-spherical particles referred to here are particles having a shape other than a perfect sphere, and examples include plate-shaped and scale-shaped particles. It is described that the magnetically responsive material in Patent Document 2 has the property that the elastic modulus is significantly reduced after the application of a magnetic field compared to before the application.
印加される磁場の強度に応じてその弾性率が変化する特性を利用して防振・制振材やエネルギー伝達材料等として使用することを考慮すると、磁気応答性材料には、印加される磁場の強度に応じた弾性率の変化、及び磁場印加時の弾性率自体をより増大させることが求められている。 When considering using magnetically responsive materials as vibration-proofing and damping materials or energy transmission materials, taking advantage of the property that their elastic modulus changes depending on the strength of the applied magnetic field, there is a demand for the change in elastic modulus of magnetic material depending on the strength of the applied magnetic field, and for the elastic modulus itself to be increased when a magnetic field is applied.
本発明は、磁場の印加前後において、貯蔵弾性率の変化が大きい磁気粘弾性エラストマー組成物(以下、「MRE組成物」ということがある。)の提供を目的とする。また、本発明は、磁場を印加した後における貯蔵弾性率が大きい磁気粘弾性エラストマー組成物の提供を目的とする。 The present invention aims to provide a magnetorheological elastomer composition (hereinafter sometimes referred to as an "MRE composition") that exhibits a large change in storage modulus before and after the application of a magnetic field. The present invention also aims to provide a magnetorheological elastomer composition that exhibits a large storage modulus after the application of a magnetic field.
本発明は粘弾性エラストマーと該粘弾性エラストマーに分散させた磁性粉とを含む磁気粘弾性エラストマー組成物であって、該磁性粉は、球状磁性粉と非球状磁性粉とを含む、磁気粘弾性エラストマー組成物を提供する。 The present invention provides a magnetorheological elastomer composition comprising a viscoelastic elastomer and a magnetic powder dispersed in the viscoelastic elastomer, the magnetic powder comprising a spherical magnetic powder and a non-spherical magnetic powder.
本発明によれば、磁場の印加前後において、貯蔵弾性率の変化が大きい磁気粘弾性エラストマー組成物が提供される。また、本発明によれば、磁場を印加した後における貯蔵弾性率が大きい磁気粘弾性エラストマー組成物が提供される。 The present invention provides a magnetorheological elastomer composition that exhibits a large change in storage modulus before and after the application of a magnetic field. The present invention also provides a magnetorheological elastomer composition that exhibits a large storage modulus after the application of a magnetic field.
以下、本発明の実施形態について詳細に説明するが、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。 The following describes in detail an embodiment of the present invention, but the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention. Furthermore, when multiple upper and lower limit values are listed for a particular parameter, any of these upper and lower limit values can be combined to create a suitable numerical range.
本明細書において、粘弾性エラストマーは、粘性と弾性とを併せ持つ材料を意味し、一定のひずみを与えたときの応力緩和(応力の時間変化)の緩和時間に基づいて判別できる。緩和時間が観測の時間スケールに対して十分短ければ粘性体、長ければ弾性体、同等のスケールであれば粘弾性体と理解される。 In this specification, viscoelastic elastomer means a material that has both viscosity and elasticity, and can be distinguished based on the relaxation time of stress relaxation (change in stress over time) when a certain strain is applied. If the relaxation time is sufficiently short compared to the time scale of observation, it is understood to be a viscous material, if it is long, it is an elastic material, and if it is on the same scale, it is a viscoelastic material.
また、本明細書において、磁気粘弾性エラストマーは、磁性粒子を含む粘弾性エラストマーを表し、好ましくは、粘弾性エラストマー内部に磁性粒子を分散固定した複合材料を表す。磁気粘弾性エラストマーは、外部磁場に応答して、見掛けの弾性率や減衰特性が可逆に変化する。 In addition, in this specification, a magnetorheological elastomer refers to a viscoelastic elastomer containing magnetic particles, and preferably refers to a composite material in which magnetic particles are dispersed and fixed inside a viscoelastic elastomer. The magnetorheological elastomer reversibly changes its apparent elastic modulus and damping characteristics in response to an external magnetic field.
粘弾性エラストマーとしては、例えば、ゴム、熱可塑性エラストマー、及びポリウレタンエラストマー等の熱硬化性エラストマー等を挙げることができる。 Examples of viscoelastic elastomers include rubber, thermoplastic elastomers, and thermosetting elastomers such as polyurethane elastomers.
ゴムとしては特に限定されず、例えば、天然ゴム(NR)、変性天然ゴム、グラフト天然ゴム、環化天然ゴム、塩素化天然ゴム、合成天然ゴム(IR);スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)、カルボキシル化ニトリルゴム等のジエン系合成ゴム;ニトリルゴム及び塩化ビニル樹脂の混合物、ニトリルゴム及びEPDMゴムの混合物;ブチルゴム(IIR)、臭素化ブチルゴム、塩素化ブチルゴム、エチレン-酢酸ビニルゴム、アクリルゴム、エチレン-アクリルゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン(CM)、エピクロルヒドリンゴム、エピクロルヒドリン-エチレンオキシドゴム、メチルシリコーンゴム、ビニル-メチルシリコーンゴム、フェニル-メチルシリコーンゴム、フッ化シリコーンゴム、エチレンプロピレンゴム(EPM、EPDM)、ウレタンゴム、シリコーンゴム、クロロスルホン化ポリエチレン(CSM)、フッ素ゴム等の非ジエン系合成ゴム等を挙げることができる。ゴム材料は、加硫/未加硫のいずれの状態でもよく、オイルや可塑剤、軟化剤等の液状物質が配合されていても良い。 The rubber is not particularly limited, and examples thereof include natural rubber (NR), modified natural rubber, grafted natural rubber, cyclized natural rubber, chlorinated natural rubber, synthetic natural rubber (IR); diene-based synthetic rubbers such as styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), nitrile rubber (NBR), and carboxylated nitrile rubber; mixtures of nitrile rubber and vinyl chloride resin, and mixtures of nitrile rubber and EPDM rubber; non-diene-based synthetic rubbers such as butyl rubber (IIR), brominated butyl rubber, chlorinated butyl rubber, ethylene-vinyl acetate rubber, acrylic rubber, ethylene-acrylic rubber, chlorosulfonated polyethylene, chlorinated polyethylene (CM), epichlorohydrin rubber, epichlorohydrin-ethylene oxide rubber, methyl silicone rubber, vinyl-methyl silicone rubber, phenyl-methyl silicone rubber, fluorinated silicone rubber, ethylene propylene rubber (EPM, EPDM), urethane rubber, silicone rubber, chlorosulfonated polyethylene (CSM), and fluororubber. The rubber material may be in either a vulcanized or unvulcanized state, and may contain liquid substances such as oil, plasticizers, and softeners.
熱可塑性エラストマーとしては特に限定されず、例えば、ポリスチレン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、塩素化ポリエチレン系エラストマー、ニトリル系熱可塑性エラストマー等を挙げることができる。 Thermoplastic elastomers are not particularly limited, and examples include polystyrene-based thermoplastic elastomers, polyvinyl chloride-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, fluororubber-based thermoplastic elastomers, chlorinated polyethylene-based elastomers, and nitrile-based thermoplastic elastomers.
粘弾性エラストマーのなかでも、磁場の印加前後において、磁気応答性材料の弾性率変化が増大する観点から、ポリウレタンエラストマー等の熱硬化性エラストマーが好ましい。本明細書において、ポリウレタンエラストマーとは、ウレタン樹脂を含むエラストマーをいう。一般に、ウレタン樹脂はポリウレタンエラストマーの高分子骨格を形成する成分に該当する。 Among viscoelastic elastomers, thermosetting elastomers such as polyurethane elastomers are preferred from the viewpoint of increasing the change in elastic modulus of the magnetically responsive material before and after the application of a magnetic field. In this specification, polyurethane elastomer refers to an elastomer that contains a urethane resin. In general, urethane resin corresponds to the component that forms the polymer skeleton of polyurethane elastomers.
[ウレタン樹脂]
本明細書において、ウレタン樹脂とは、ポリオールとポリイソシアネートとの反応物をいう。ポリオールに含まれる水酸基と、ポリイソシアネートに含まれるイソシアネート基とが反応することにより、ウレタン結合が形成され、ウレタン樹脂が形成される。ウレタン樹脂は、ポリオールとポリイソシアネートの反応物と、鎖伸長剤および/または末端停止剤との反応物であってもよく、これらの反応物は全てウレタン樹脂の範囲に含まれる。好ましいウレタン樹脂の一例として、特許文献1に記載されているポリオール化合物とポリイソシアネート化合物との反応物が挙げられる。
[Urethane resin]
In this specification, the urethane resin refers to a reaction product of a polyol and a polyisocyanate. A hydroxyl group contained in a polyol reacts with an isocyanate group contained in a polyisocyanate to form a urethane bond, thereby forming a urethane resin. The urethane resin may be a reaction product of a reaction product of a polyol and a polyisocyanate, and a chain extender and/or a terminal terminator, and all of these reaction products are included in the scope of the urethane resin. An example of a preferred urethane resin is a reaction product of a polyol compound and a polyisocyanate compound described in Patent Document 1.
ポリオールは、1分子中に2個以上の水酸基を有する化合物を意味する。ポリオールはトリオールを含むことが好ましい。 Polyol means a compound having two or more hydroxyl groups in one molecule. It is preferable that the polyol includes a triol.
トリオールは、1分子中に3個の水酸基を有する化合物を意味する。トリオールに含まれる各水酸基は、後述するジイソシアネートのイソシアネート基と反応してウレタン結合を形成するため、トリオールには、1つの原子に3つの分子鎖が結合している分岐点(架橋点)が含まれることとなる。 Triol refers to a compound that has three hydroxyl groups in one molecule. Each hydroxyl group in a triol reacts with the isocyanate group of a diisocyanate (described below) to form a urethane bond, so a triol contains a branching point (crosslinking point) where three molecular chains are bonded to one atom.
トリオールにおける架橋点(分岐点)は、活性水素原子を3個以上有する化合物(開始剤)により導入され得、かかる開始剤としては、グリセロール、トリメチロールエタン、トリメチロールプロパン、トリメリット酸、ジエチレントリアミン等が挙げられる。 The cross-linking points (branching points) in the triol can be introduced by a compound (initiator) having three or more active hydrogen atoms. Examples of such initiators include glycerol, trimethylolethane, trimethylolpropane, trimellitic acid, and diethylenetriamine.
ある一態様において、トリオールの数平均分子量は1,000以上、好ましくは2,000以上15,000以下、より好ましくは3,000以上10,000以下、さらに好ましくは4,000以上8,000以下である。トリオールの数平均分子量が上記範囲にあることで、架橋点に結合する分子鎖の分子量が一定以上となり得る。その結果、磁場強度を変化させた場合において、磁性粉の配向が制約なく変化し得、磁気粘弾性エラストマー組成物の弾性率変化が増大すると考えられる。 In one embodiment, the number average molecular weight of the triol is 1,000 or more, preferably 2,000 to 15,000, more preferably 3,000 to 10,000, and even more preferably 4,000 to 8,000. By having the number average molecular weight of the triol within the above range, the molecular weight of the molecular chains bonded to the crosslinking points can be equal to or greater than a certain level. As a result, when the magnetic field strength is changed, the orientation of the magnetic powder can change without restriction, and it is believed that the change in the elastic modulus of the magnetorheological elastomer composition increases.
本発明において、数平均分子量は、ゲルパーミエーションクロマトグラフ法により、ポリスチレンを標準試料とした換算値として測定できる。 In the present invention, the number average molecular weight can be measured by gel permeation chromatography using polystyrene as a standard sample.
トリオールは、例えば、ポリエーテルトリオール、ポリエステルトリオール、ポリカーボネートトリオール、ポリオレフィントリオール、ポリアクリルトリオール等であってよく、ポリエーテルトリオールであることが好ましい。 The triol may be, for example, a polyether triol, a polyester triol, a polycarbonate triol, a polyolefin triol, a polyacrylic triol, etc., and is preferably a polyether triol.
ポリエーテルトリオールは、代表的には、エーテル結合を含む単位を繰り返し単位として有するポリマーのトリオールと理解され得、該繰り返し単位は、好ましくはオキシアルキレン単位を含む。かかるエーテル結合を含む単位としては、オキシエチレン単位、オキシプロピレン単位、オキシテトラメチレン単位等の炭素数2以上4以下のオキシアルキレン単位が挙げられ、とりわけ、オキシプロピレン単位、オキシテトラメチレン単位等が挙げられる。ポリエーテルポリオールは、1種のオキシアルキレン単位を含むホモポリマーであってよく、2種以上のオキシアルキレン単位を含むコポリマーであってもよい。ポリーエーテルポリオールとしては、ポリエチレントリオール、ポリプロピレントリオール、ポリテトラメチレンエーテルトリオール、ポリオキシエチレン-ポリオキシプロピレントリオール等が挙げられる。 Polyether triol can be typically understood as a triol of a polymer having a unit containing an ether bond as a repeating unit, and the repeating unit preferably contains an oxyalkylene unit. Such units containing an ether bond include oxyalkylene units having 2 to 4 carbon atoms, such as oxyethylene units, oxypropylene units, and oxytetramethylene units, and in particular, oxypropylene units and oxytetramethylene units. Polyether polyols may be homopolymers containing one type of oxyalkylene unit, or copolymers containing two or more types of oxyalkylene units. Examples of polyether polyols include polyethylene triol, polypropylene triol, polytetramethylene ether triol, polyoxyethylene-polyoxypropylene triol, and the like.
オキシアルキレン単位は、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン等の環状エーテルの開環重合により形成され得る。 Oxyalkylene units can be formed by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran.
ポリエステルトリオールは、代表的には、エステル結合を含む単位を繰り返し単位を有するポリマーのトリオールと理解され得る。エステル結合を含む単位は、ジオールとジカルボン酸との反応、または、環状エステル化合物の開環重合により形成され得る。ポリエステルポリオールは、1種の繰り返し単位を含むホモポリマーであってよく、2種以上の繰り返し単位を含むコポリマーであってもよい。 A polyester triol can be typically understood as a triol of a polymer having a repeating unit containing an ester bond. The unit containing an ester bond can be formed by the reaction of a diol with a dicarboxylic acid or by ring-opening polymerization of a cyclic ester compound. A polyester polyol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
ポリエステルトリオールの原料であるジオールとしては、代表的には、分子量が50以上300以下の低分子量のジオールを用いてよく、具体的には、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチルペンタン-1,5-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の直鎖状または分枝鎖状の脂肪族ジオール;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;該ビスフェノール化合物のアルキレンオキシド付加物;シクロヘキサンジメタノール等の脂環式ジオール等が挙げられる。ビスフェノール化合物のアルキレンオキシド付加物は、ビスフェノール化合物に環状エーテルを開環重合させることにより形成され得、かかる環状エーテルとしては、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン等が挙げられる。 The diol used as the raw material for polyester triol is typically a low molecular weight diol having a molecular weight of 50 or more and 300 or less. Specific examples include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; alkylene oxide adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol. The alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
ポリエステルトリオールの原料であるジカルボン酸としては、コハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;該脂肪族ジカルボン酸または芳香族ジカルボン酸の無水物;脂肪族ジカルボン酸または芳香族ジカルボン酸のエステル化物等が挙げられる。該脂肪族ジカルボン酸または芳香族ジカルボン酸のエステル化物は、脂肪族ジカルボン酸または芳香族ジカルボン酸にアルコールを反応させることにより形成され得、かかるアルコールとしては、メタノール、エタノール、プロパノール、ブタノール等の炭素数1以上4以下の脂肪族アルコール等が挙げられる。 Dicarboxylic acids that are raw materials for polyester triols include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid; anhydrides of the aliphatic dicarboxylic acids or aromatic dicarboxylic acids; and esters of aliphatic dicarboxylic acids or aromatic dicarboxylic acids. The esters of the aliphatic dicarboxylic acids or aromatic dicarboxylic acids can be formed by reacting the aliphatic dicarboxylic acids or aromatic dicarboxylic acids with alcohols, and examples of such alcohols include aliphatic alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, and butanol.
ポリカーボネートトリオールは、カーボネート結合(-O-CO-O-)を含む単位を繰り返し単位として有するポリマーのトリオールと理解され得る。カーボネート結合(-O-CO-O-)を含む単位は、炭酸エステルとジオールとの反応、ホスゲンとジオールとの反応等により形成され得る。ポリカーボネートポリオールは、1種の繰り返し単位を含むホモポリマーであってよく、2種以上の繰り返し単位を含むコポリマーであってもよい。 Polycarbonate triol can be understood as a triol of a polymer having units containing carbonate bonds (-O-CO-O-) as repeating units. The units containing carbonate bonds (-O-CO-O-) can be formed by the reaction of a carbonate ester with a diol, or the reaction of phosgene with a diol, etc. Polycarbonate polyol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
ポリカーボネートトリオールの原料である炭酸エステルとしては、メチルカーボネート、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロヘキシルカーボネート、ジシクロヘキシルカーボネート、ジフェニルカーボネート等が挙げられる。 Carbonate esters, which are the raw materials for polycarbonate triol, include methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclohexyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, etc.
ポリカーボネートトリオールの原料であるジオールとしては、代表的には、分子量が50以上300以下の低分子量のジオール、または、数平均分子量が300超の高分子量のジオールを用いてよい。 The diol used as the raw material for polycarbonate triol may typically be a low molecular weight diol with a molecular weight of 50 to 300, or a high molecular weight diol with a number average molecular weight of more than 300.
低分子量のジオールとしては、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチルペンタン-1,5-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の直鎖状または分枝鎖状の脂肪族ジオール;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;該ビスフェノール化合物のアルキレンオキシド付加物;シクロヘキサンジメタノール等の脂環式ジオール等が挙げられる。ビスフェノール化合物のアルキレンオキシド付加物は、ビスフェノール化合物に環状エーテルを開環重合させることにより形成され得、かかる環状エーテルとしては、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン等が挙げられる。 Low molecular weight diols include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; alkylene oxide adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol. Alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
高分子量のジオールとしては、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルジオール;ポリヘキサメチレンアジペート等のポリエステルジオール等が挙げられる。高分子量のジオールの数平均分子量は、一般に300超であり、好ましくは400以上5,000以下、より好ましくは400以上2,000以下である。 Examples of high molecular weight diols include polyether diols such as polyethylene glycol and polypropylene glycol; polyester diols such as polyhexamethylene adipate; etc. The number average molecular weight of high molecular weight diols is generally more than 300, preferably 400 to 5,000, more preferably 400 to 2,000.
ポリオレフィントリオールは、2価の炭化水素基からなる単位を繰り返し単位として有するポリマーのトリオールと理解され得る。2価の炭化水素基からなる単位は、アルケン、ジエンの重合により形成され得る。ポリオレフィントリオールは、1種の繰り返し単位を含むホモポリマーであってよく、2種以上の繰り返し単位を含むコポリマーであってもよい。 Polyolefin triol can be understood as a triol of a polymer having units consisting of divalent hydrocarbon groups as repeating units. The units consisting of divalent hydrocarbon groups can be formed by polymerization of alkenes and dienes. Polyolefin triol can be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
ポリオレフィントリオールの原料であるアルケンとしては、エチレン、プロピレン、イソブテン等が挙げられ、ポリオレフィントリオールの原料であるジエンとしては、ブタジエン、イソプレン等が挙げられる。 Alkenes that are raw materials for polyolefin triols include ethylene, propylene, isobutene, etc., and dienes that are raw materials for polyolefin triols include butadiene, isoprene, etc.
ポリアクリルトリオールは、(メタ)アクリル単量体に由来する単位を繰り返し単位として有するポリマーのトリオールと理解され得る。ポリアクリルトリオールは、1種の繰り返し単位を含むホモポリマーであってよく、2種以上の繰り返し単位を含むコポリマーであってもよい。 Polyacrylic triol can be understood as a triol of a polymer having units derived from (meth)acrylic monomers as repeating units. Polyacrylic triol may be a homopolymer containing one type of repeating unit, or a copolymer containing two or more types of repeating units.
(メタ)アクリル単量体としては、水酸基を有する(メタ)アクリル単量体と、その他の(メタ)アクリル単量体および/またはその他のビニル単量体とを含み得る。 The (meth)acrylic monomer may include a (meth)acrylic monomer having a hydroxyl group, other (meth)acrylic monomers and/or other vinyl monomers.
水酸基を有する(メタ)アクリル単量体としては、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等が挙げられる。 Examples of (meth)acrylic monomers having a hydroxyl group include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate.
その他の(メタ)アクリル単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル等の(メタ)アクリル酸エステル;(メタ)アクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸;無置換の(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N,N-メチレンビス(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド等の(メタ)アクリルアミド単量体等が挙げられる。 Other (meth)acrylic monomers include (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, and dodecyl (meth)acrylate; unsaturated carboxylic acids such as (meth)acrylic acid, maleic acid, and itaconic acid; and (meth)acrylamide monomers such as unsubstituted (meth)acrylamide, dimethyl(meth)acrylamide, N,N-methylenebis(meth)acrylamide, and diacetone(meth)acrylamide.
その他のビニル単量体としては、スチレン、メチルスチレン等が挙げられる。 Other vinyl monomers include styrene and methylstyrene.
ポリオールに含まれるトリオールの含有率は、例えば3質量%以上、好ましくは3質量%以上70質量%以下、より好ましくは5質量%以上60質量%以下、さらに好ましくは7質量%以上55質量%以下である。 The triol content in the polyol is, for example, 3% by mass or more, preferably 3% by mass or more and 70% by mass or less, more preferably 5% by mass or more and 60% by mass or less, and even more preferably 7% by mass or more and 55% by mass or less.
ポリオールは、ジオールを含むことが好ましい。ジオールは、1分子中に水酸基を2個有する化合物を意味する。ポリオールとしてジオールを含むことで、架橋点に結合する分子鎖の分子量を制御することがより容易となりうる。 The polyol preferably contains a diol. A diol refers to a compound having two hydroxyl groups in one molecule. By including a diol as the polyol, it may be easier to control the molecular weight of the molecular chains that bond to the crosslinking points.
ジオールは、分子量が50以上300以下の低分子量のジオールであってよく、数平均分子量300超の高分子量のジオールであってもよく、一態様において、高分子量のジオールが好ましく、ポリエーテルジオールであることがより好ましい。 The diol may be a low molecular weight diol having a molecular weight of 50 or more and 300 or less, or may be a high molecular weight diol having a number average molecular weight of more than 300. In one embodiment, a high molecular weight diol is preferred, and a polyether diol is more preferred.
低分子量のジオールとしては、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチルペンタン-1,5-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の直鎖状または分枝鎖状の脂肪族ジオール;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;該ビスフェノール化合物の環状エーテル付加物;シクロヘキサンジメタノール等の脂環式ジオール等が挙げられる。ビスフェノール化合物のアルキレンオキシド付加物は、ビスフェノール化合物に環状エーテルを開環重合させることにより形成され得、かかる環状エーテルとしては、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン等が挙げられる。 Low molecular weight diols include linear or branched aliphatic diols such as ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 3-methylpentane-1,5-diol, diethylene glycol, triethylene glycol, dipropylene glycol, and tripropylene glycol; bisphenol compounds such as bisphenol A and bisphenol F; cyclic ether adducts of the bisphenol compounds; and alicyclic diols such as cyclohexanedimethanol. Alkylene oxide adducts of bisphenol compounds can be formed by ring-opening polymerization of cyclic ethers to bisphenol compounds, and examples of such cyclic ethers include ethylene oxide, propylene oxide, and tetrahydrofuran.
高分子量のジオールとしては、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリオレフィンジオール、ポリアクリルジオール等が挙げられる。 Examples of high molecular weight diols include polyether diols, polyester diols, polycarbonate diols, polyolefin diols, and polyacrylic diols.
ポリエーテルジオールは、代表的には、エーテル結合を含む単位を繰り返し単位として有するポリマーのジオールと理解され得、該繰り返し単位は、好ましくはオキシアルキレン単位を含む。かかるオキシアルキレン単位としては、オキシエチレン単位、オキシプロピレン単位、オキシテトラメチレン単位等の炭素数2以上4以下のオキシアルキレン単位が挙げられ、とりわけ、オキシプロピレン単位、オキシテトラメチレン単位等が挙げられる。ポリエーテルポリオールは、1種のオキシアルキレン単位を含むホモポリマーであってよく、2種以上のオキシアルキレン単位を含むコポリマーであってもよい。ポリーエーテルポリオールとしては、ポリエチレントリオール、ポリプロピレントリオール、ポリテトラメチレンエーテルトリオール、ポリオキシエチレン-ポリオキシプロピレントリオール等が挙げられる。 Polyether diols can be typically understood as polymer diols having units containing ether bonds as repeating units, and the repeating units preferably contain oxyalkylene units. Examples of such oxyalkylene units include oxyalkylene units having 2 to 4 carbon atoms, such as oxyethylene units, oxypropylene units, and oxytetramethylene units, and in particular, oxypropylene units and oxytetramethylene units. Polyether polyols may be homopolymers containing one type of oxyalkylene unit, or copolymers containing two or more types of oxyalkylene units. Examples of polyether polyols include polyethylene triol, polypropylene triol, polytetramethylene ether triol, polyoxyethylene-polyoxypropylene triol, and the like.
オキシアルキレン単位は、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン等の環状エーテルの開環重合により形成され得る。 Oxyalkylene units can be formed by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran.
ポリエステルジオールは、代表的には、エステル結合を含む単位を繰り返し単位として有するポリマーのジオールと理解され得る。 A polyester diol can typically be understood as a polymer diol that has units containing ester bonds as repeating units.
ポリカーボネートジオールは、代表的には、カーボネート結合(-O-CO-O-)を含む単位を繰り返し単位として有するポリマーのジオールと理解され得る。 Polycarbonate diol can typically be understood as a polymer diol that has units containing carbonate bonds (-O-CO-O-) as repeating units.
ポリオレフィンジオールは、代表的には、2価の炭化水素基からなる単位を繰り返し単位として有するポリマーのジオールと理解され得る。 Polyolefin diols can typically be understood as polymer diols that have repeating units consisting of divalent hydrocarbon groups.
ポリアクリルジオールは、代表的には、(メタ)アクリル単量体に由来する単位を繰り返し単位として有するポリマーのジオールと理解され得る。 Polyacrylic diol can be typically understood as a polymeric diol having repeating units derived from (meth)acrylic monomers.
高分子量のジオールの数平均分子量は、一般に300超、好ましくは400以上5,000以下、より好ましくは400以上3,000以下である。 The number average molecular weight of the high molecular weight diol is generally more than 300, preferably 400 to 5,000, more preferably 400 to 3,000.
ジオールの含有量は、トリオール100質量部に対して、好ましくは50質量部以上2,000質量部以下、より好ましくは60質量部以上1,500質量部以下、さらに好ましくは70質量部以上1,200質量部以下である。 The diol content is preferably 50 parts by mass or more and 2,000 parts by mass or less, more preferably 60 parts by mass or more and 1,500 parts by mass or less, and even more preferably 70 parts by mass or more and 1,200 parts by mass or less, per 100 parts by mass of triol.
好ましい態様において、ポリオールは、トリオールおよびジオールを含む。ポリオール100質量%中、トリオールおよびジオールの合計の含有率は、例えば80質量%以上100質量%以下、好ましくは90質量%以上100質量%以下、より好ましくは95質量%以上100質量%以下である。 In a preferred embodiment, the polyol includes a triol and a diol. The total content of the triol and the diol in 100% by mass of the polyol is, for example, 80% by mass or more and 100% by mass or less, preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less.
ポリオールは、トリオールおよびジオール以外に、その他のポリオールを含んでいてもよい。かかるその他のポリオールには、分子量4,000未満のトリオール、1分子中に水酸基を4個以上有するトリオール等が含まれ得る。 In addition to triols and diols, the polyol may contain other polyols. Such other polyols may include triols with a molecular weight of less than 4,000, triols with four or more hydroxyl groups in one molecule, etc.
ポリイソシアネートは、1分子中に2個以上のイソシアネート基を有する化合物を表す。1分子のポリイソシアネートに含まれるイソシアネート基の個数は、代表的には2個以上4個以下であり、とりわけ2個以上3個以下でありうる。 Polyisocyanate refers to a compound that has two or more isocyanate groups in one molecule. The number of isocyanate groups contained in one molecule of polyisocyanate is typically 2 to 4, and in particular 2 to 3.
ポリイソシアネートとしては、脂肪族ポリイソシアネート、芳香族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。 Polyisocyanates include aliphatic polyisocyanates, aromatic polyisocyanates, alicyclic polyisocyanates, etc.
脂肪族ポリイソシアネートとしては、テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。 Aliphatic polyisocyanates include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc.
芳香族ポリイソシアネートとしては、1,3-及び1,4-フェニレンジイソシアネート、1-メチル-2,4-フェニレンジイソシアネート、1-メチル-2,6-フェニレンジイソシアネート、1-メチル-2,5-フェニレンジイソシアネート、1-メチル-2,6-フェニレンジイソシアネート、1-メチル-3,5-フェニレンジイソシアネート、1-エチル-2,4-フェニレンジイソシアネート、1-イソプロピル-2,4-フェニレンジイソシアネート、1,3-ジメチル-2,4-フェニレンジイソシアネート、1,3-ジメチル-4,6-フェニレンジイソシアネート、1,4-ジメチル-2,5-フェニレンジイソシアネート、ジエチルベンゼンジイソシアネート、ジイソプロピルベンゼンジイソシアネート、1-メチル-3,5-ジエチルベンゼンジイソシアネート、3-メチル-1,5-ジエチルベンゼン-2,4-ジイソシアネート、1,3,5-トリエチルベンゼン-2,4-ジイソシアネート、ナフタレン-1,4-ジイソシアネート、ナフタレン-1,5-ジイソシアネート、1-メチル-ナフタレン-1,5-ジイソシアネート、ナフタレン-2,6-ジイソシアネート、ナフタレン-2,7-ジイソシアネート、1,1-ジナフチル-2,2’-ジイソシアネート、ビフェニル-2,4’-ジイソシアネート、ビフェニル-4,4’-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,2’-ジイソシアネート、ジフェニルメタン-2,4-ジイソシアネート、トルエンジイソシアネート、キシリレンジイソシアネート等が挙げられる。 Aromatic polyisocyanates include 1,3- and 1,4-phenylene diisocyanate, 1-methyl-2,4-phenylene diisocyanate, 1-methyl-2,6-phenylene diisocyanate, 1-methyl-2,5-phenylene diisocyanate, 1-methyl-2,6-phenylene diisocyanate, 1-methyl-3,5-phenylene diisocyanate, 1-ethyl-2,4-phenylene diisocyanate, 1-isopropyl-2,4-phenylene diisocyanate, 1,3-dimethyl-2,4-phenylene diisocyanate, 1,3-dimethyl-4,6-phenylene diisocyanate, 1,4-dimethyl-2,5-phenylene diisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, and 1-methyl-3,5-diethylbenzene diisocyanate. , 3-methyl-1,5-diethylbenzene-2,4-diisocyanate, 1,3,5-triethylbenzene-2,4-diisocyanate, naphthalene-1,4-diisocyanate, naphthalene-1,5-diisocyanate, 1-methyl-naphthalene-1,5-diisocyanate, naphthalene-2,6-diisocyanate, naphthalene-2,7-diisocyanate, 1,1-dinaphthyl-2,2'-di Examples of isocyanates include biphenyl-2,4'-diisocyanate, biphenyl-4,4'-diisocyanate, 3,3'-dimethylbiphenyl-4,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-2,2'-diisocyanate, diphenylmethane-2,4-diisocyanate, toluene diisocyanate, and xylylene diisocyanate.
脂環式ポリイソシアネートとしては、1,3-シクロペンチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、1,3-ビス(イソシアナートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、リジンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、2,2’-ジシクロヘキシルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート等が挙げられる。 Alicyclic polyisocyanates include 1,3-cyclopentylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, lysine diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, 2,2'-dicyclohexylmethane diisocyanate, 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate, etc.
ウレタン樹脂を製造する際、ポリイソシアネートに含まれるイソシアネート基とポリオールに含まれる水酸基とのモル比[NCO/OH]は、例えば0.1以上5以下、好ましくは0.3以上3以下、より好ましくは0.4以上1.5以下であり得る。 When producing a urethane resin, the molar ratio [NCO/OH] of the isocyanate groups contained in the polyisocyanate to the hydroxyl groups contained in the polyol can be, for example, 0.1 or more and 5 or less, preferably 0.3 or more and 3 or less, and more preferably 0.4 or more and 1.5 or less.
鎖伸長剤は、1分子中に活性水素原子を2個以上有する化合物であり、代表的には、ポリオールとポリイソシアネートとの反応物にさらに反応させるために用いられる。ポリオールとポリイソシアネートとの反応物に鎖伸長剤をさらに反応させることにより、高分子量のウレタン樹脂を得ることが容易となる。 A chain extender is a compound that has two or more active hydrogen atoms in one molecule, and is typically used to further react with the reaction product of a polyol and a polyisocyanate. By further reacting the reaction product of a polyol and a polyisocyanate with a chain extender, it becomes easier to obtain a high molecular weight urethane resin.
鎖伸長剤としては、アミノ基を有する鎖伸長剤、水酸基を有する鎖伸長剤が挙げられる。 Chain extenders include chain extenders with amino groups and chain extenders with hydroxyl groups.
アミノ基を有する鎖伸長剤としては、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,2-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、アミノエチルエタノールアミン、ヒドラジン、ジエチレントリアミン、トリエチレンテトラミン等が挙げられる。 Chain extenders having an amino group include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, 1,2-cyclohexanediamine, 1,4-cyclohexanediamine, aminoethylethanolamine, hydrazine, diethylenetriamine, triethylenetetramine, etc.
水酸基を有する鎖伸長剤としては、エチレングリコール、ジエチレンリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール等の脂肪族ポリオール;ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン等の芳香族ポリオール;水等が挙げられる。 Chain extenders having hydroxyl groups include aliphatic polyols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, sucrose, methylene glycol, glycerin, and sorbitol; aromatic polyols such as bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfone, hydrogenated bisphenol A, and hydroquinone; and water.
鎖伸長剤を含む場合、ポリイソシアネートに含まれるイソシアネート基と、ポリオールに含まれる水酸基および鎖伸長剤に含まれる活性水素原子の合計とのモル比[NCO/(H+OH)]は、例えば0.1以上5以下、好ましくは0.3以上3以下、より好ましくは0.4以上1以下であり得る。 When a chain extender is included, the molar ratio [NCO/(H+OH)] of the isocyanate groups contained in the polyisocyanate to the sum of the hydroxyl groups contained in the polyol and the active hydrogen atoms contained in the chain extender can be, for example, 0.1 or more and 5 or less, preferably 0.3 or more and 3 or less, and more preferably 0.4 or more and 1 or less.
末端停止剤は、1分子中に活性水素原子を1個有する化合物であり、代表的には、ポリオールとポリイソシアネートと必要に応じて用いられる鎖伸長剤との反応物にさらに反応させるために用いられる。 A terminal terminator is a compound that has one active hydrogen atom per molecule, and is typically used to further react the reaction product of a polyol, a polyisocyanate, and an optional chain extender.
末端停止剤としては、ヘキサノール、ヘプタノール、オクタノール、ノナノール、ウンデカノール等のアルコール;ジブチルアミン等のアミンが挙げられる。 Terminator agents include alcohols such as hexanol, heptanol, octanol, nonanol, and undecanol; and amines such as dibutylamine.
末端停止剤は、ポリオールおよびポリイソシアネートの反応物100質量部に対して、好ましくは0.01質量部以上20質量部以下、より好ましくは0.1質量部以上10質量部以下であり得る。 The amount of the terminal terminator may be preferably 0.01 parts by mass or more and 20 parts by mass or less, more preferably 0.1 parts by mass or more and 10 parts by mass or less, per 100 parts by mass of the reaction product of the polyol and the polyisocyanate.
ウレタン樹脂の平均架橋点間分子量は、好ましくは9,300以上30,000以下、より好ましくは9,500以上27,000以下、さらに好ましくは9,500以上20,000以下、いっそう好ましくは9,500以上12,000以下であり得る。平均架橋点間分子量は、隣合う2つの架橋点(分岐点)の間の分子鎖の分子量の平均値と理解され得る。特定の理論に限定して解釈されるべきではないが、ウレタン樹脂における架橋点間分子量がかかる範囲にあることで、磁場を印加した場合に、磁性粉が制約なく配向変化し得、弾性率変化が増大すると考えられる。 The average molecular weight between crosslinks of the urethane resin may be preferably 9,300 or more and 30,000 or less, more preferably 9,500 or more and 27,000 or less, even more preferably 9,500 or more and 20,000 or less, and even more preferably 9,500 or more and 12,000 or less. The average molecular weight between crosslinks may be understood as the average value of the molecular weight of the molecular chain between two adjacent crosslinks (branching points). Although it should not be interpreted as being limited to a particular theory, it is believed that when the molecular weight between crosslinks of the urethane resin is in this range, the magnetic powder can change its orientation without restriction when a magnetic field is applied, and the change in elastic modulus is increased.
平均架橋点間分子量は、トリオールの数平均分子量、ジオールを用いる場合、ジオールの数平均分子量、トリオールとジオールの使用量等により制御され得る。 The average molecular weight between crosslinking points can be controlled by the number average molecular weight of the triol, or if a diol is used, the number average molecular weight of the diol, the amount of triol and diol used, etc.
一態様において、平均架橋点間分子量は、ポリオールに含まれるi官能のポリオールの数平均分子量をMiとし、ポリオールの全量におけるi官能のポリオールのモル分率をCiとした場合、以下の式(1)に基づいて算出され得る。 In one embodiment, the average molecular weight between crosslinking points can be calculated based on the following formula (1), where M is the number average molecular weight of the i-functional polyol contained in the polyol, and C is the molar fraction of the i-functional polyol in the total amount of the polyol.
すなわち、ポリオールの数平均分子量をポリオールの官能基数で割って得られる数の2倍の値をポリオール1分子の長さと仮定し、ポリオールの官能基数から2を差し引いた値をポリオールに含まれる架橋点の数と仮定した場合、上記式(1)では、ポリオールの長さの合計を架橋点の合計で除していることとなる。 In other words, if we assume that the length of one polyol molecule is twice the number obtained by dividing the number average molecular weight of the polyol by the number of functional groups of the polyol, and that the number of crosslinking points contained in the polyol is the number of functional groups of the polyol minus 2, then in the above formula (1), the total length of the polyol is divided by the total number of crosslinking points.
古典ゴム論によれば、不純物を含まない架橋ゴムにおいて、架橋ゴムの架橋点間分子量は、該架橋ゴムの弾性率と相関していると考えられている。すなわち、架橋ゴムの架橋点間分子量をMc、架橋ゴムのポアソン比をμ、架橋ゴムの密度をρ(g/m3)、気体定数をR(J/(K・mol))、温度をT(K)とすると、架橋ゴムの弾性率E(Pa)は、以下の式で表される。 According to classical rubber theory, in crosslinked rubber that does not contain impurities, the molecular weight between crosslinking points of the crosslinked rubber is considered to correlate with the elastic modulus of the crosslinked rubber. In other words, when the molecular weight between crosslinking points of the crosslinked rubber is Mc, the Poisson's ratio of the crosslinked rubber is μ, the density of the crosslinked rubber is ρ (g/m 3 ), the gas constant is R (J/(K·mol)), and the temperature is T (K), the elastic modulus E (Pa) of the crosslinked rubber is expressed by the following formula:
すなわち、不純物を含まない架橋ゴムでは、架橋点間分子量が大きいほど、架橋ゴムの弾性率は小さくなる。 In other words, in crosslinked rubber that does not contain impurities, the higher the molecular weight between crosslinks, the lower the elastic modulus of the crosslinked rubber.
ウレタン樹脂は、ポリオール、ポリイソシアネートおよび必要に応じて用いる鎖伸長剤、末端停止剤を反応させることにより製造され得る。かかる反応は、無溶剤下または反応溶剤の存在下で実施され得る。反応温度は、50℃以上150℃以下であってよい。反応溶剤としては、アセトン、メチルエチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキサン等のエーテル溶剤;酢酸エチル、酢酸ブチル等の酢酸エステル溶剤;アセトニトリル等のニトリル溶剤;ジメチルホルムアミド、N-メチルピロリドン等のアミド溶剤等が挙げられる。 The urethane resin can be produced by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender and a terminal terminator. This reaction can be carried out without a solvent or in the presence of a reaction solvent. The reaction temperature can be 50°C or higher and 150°C or lower. Examples of reaction solvents include ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxane; acetate ester solvents such as ethyl acetate and butyl acetate; nitrile solvents such as acetonitrile; and amide solvents such as dimethylformamide and N-methylpyrrolidone.
ポリウレタンエラストマーに含まれるウレタン樹脂の含有率は、好ましくは80質量%以上100質量%、より好ましくは90質量%以上100質量%、さらに好ましくは95質量%以上100質量%である。 The content of urethane resin contained in the polyurethane elastomer is preferably 80% by mass or more and 100% by mass, more preferably 90% by mass or more and 100% by mass, and even more preferably 95% by mass or more and 100% by mass.
[その他の樹脂]
ポリウレタンエラストマーは、ウレタン樹脂と異なる樹脂をさらに含んでいてもよい。かかる樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、シリコーン樹脂等が挙げられる。
[Other resins]
The polyurethane elastomer may further contain a resin other than the urethane resin, such as an acrylic resin, a polyester resin, a polyamide resin, a polycarbonate resin, or a silicone resin.
[可塑剤]
ポリウレタンエラストマーは、ウレタン樹脂に加えて、可塑剤を含んでいてもよい。可塑剤としては、芳香族ジカルボン酸系可塑剤、脂肪族ジカルボン酸系可塑剤、リン酸系可塑剤、トリメリット酸系可塑剤等が挙げられる。
[Plasticizer]
The polyurethane elastomer may contain a plasticizer in addition to the urethane resin, such as an aromatic dicarboxylic acid plasticizer, an aliphatic dicarboxylic acid plasticizer, a phosphoric acid plasticizer, or a trimellitic acid plasticizer.
芳香族ジカルボン酸系可塑剤としては、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、フタル酸ジトリデシル等のフタル酸ジエステル;イソフタル酸ジオクチル、イソフタル酸ジ-2-エチルヘキシル等のイソフタル酸ジエステル;テレフタル酸ジオクチル、テレフタル酸ジ-2-エチルヘキシル等のテレフタル酸ジエステル等が挙げられる。 Aromatic dicarboxylic acid plasticizers include phthalate diesters such as dibutyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, and ditridecyl phthalate; isophthalate diesters such as dioctyl isophthalate and di-2-ethylhexyl isophthalate; and terephthalate diesters such as dioctyl terephthalate and di-2-ethylhexyl terephthalate.
脂肪族ジカルボン酸系可塑剤としては、アジピン酸ジオクチル、アジピン酸ジ-2-エチルヘキシル、アジピン酸イソノニル、アジピン酸ジイソデシル等のアジピン酸ジエステル;セバシン酸ジオクチル、セバシン酸ジ-2-エチルヘキシル、セバシン酸ジイソノニル等のセバシン酸ジエステル等が挙げられる。 Aliphatic dicarboxylic acid plasticizers include adipic acid diesters such as dioctyl adipate, di-2-ethylhexyl adipate, isononyl adipate, and diisodecyl adipate; and sebacic acid diesters such as dioctyl sebacate, di-2-ethylhexyl sebacate, and diisononyl sebacate.
リン酸系可塑剤としては、リン酸トリオクチル、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル等のリン酸エステ等が挙げられる。 Phosphate-based plasticizers include phosphate esters such as trioctyl phosphate, tri-2-ethylhexyl phosphate, and tricresyl phosphate.
トリメリット酸系可塑剤としては、トリメリット酸トリオクチル、トリメリット酸トリ-2-エチルヘキシル等のトリメリット酸トリエステル;ピロメリット酸テトラオクチル、ピロメリット酸テトラ-2-エチルヘキシル等のピロメリット酸テトラエステル等が挙げられる。 Trimellitic acid plasticizers include trimellitic acid triesters such as trioctyl trimellitate and tri-2-ethylhexyl trimellitate; and pyromellitic acid tetraesters such as tetraoctyl pyromellitate and tetra-2-ethylhexyl pyromellitate.
可塑剤は、好ましくは芳香族ジカルボン酸系可塑剤を含み、より好ましくはフタル酸ジエステルを含み、特に好ましくはフタル酸ジオクチルまたはフタル酸ジ-2-エチルヘキシルを含む。 The plasticizer preferably includes an aromatic dicarboxylic acid plasticizer, more preferably includes a phthalic acid diester, and particularly preferably includes dioctyl phthalate or di-2-ethylhexyl phthalate.
可塑剤の含有量は、組成物全体を基準にして、35体積%以上70体積%以下、好ましくは40体積%以上60体積%以下、より好ましくは45体積%以上50体積%以下である。可塑剤の含有量がかかる範囲にあることで、磁気粘弾性エラストマー組成物が適度な粘性を有し、磁場の変化に応じた磁性粉の配向変化が生じ易くなる。 The plasticizer content is 35% by volume or more and 70% by volume or less, preferably 40% by volume or more and 60% by volume or less, and more preferably 45% by volume or more and 50% by volume or less, based on the entire composition. When the plasticizer content is within this range, the magnetorheological elastomer composition has an appropriate viscosity, and the orientation of the magnetic powder is more likely to change in response to changes in the magnetic field.
[添加剤]
ポリウレタンエラストマーは、ウレタン樹脂、可塑剤に加えて、添加剤を含んでいてもよい。かかる添加剤としては、ウレタン化触媒、酸化防止剤、光安定剤、耐衝撃剤、帯電防止剤、難燃剤、防腐剤、紫外線吸収剤、粘度調整剤、着色剤等が挙げられる。
[Additives]
The polyurethane elastomer may contain additives in addition to the urethane resin and plasticizer, such as a urethane catalyst, an antioxidant, a light stabilizer, an impact resistance agent, an antistatic agent, a flame retardant, a preservative, an ultraviolet absorber, a viscosity modifier, a colorant, etc.
ウレタン化触媒は、ポリオールおよびポリイソシアネートの反応に用いられ、オクチル酸錫、ジブチル錫ジクロライド、ジブチル錫オキシド、ジブチル錫ジラウレート等の錫系化合物;ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライド等のチタン系化合物;ナフテン酸亜鉛、2-エチルヘキサン酸亜鉛等の亜鉛系化合物;トリエチルアミン、トリエチレンジアミン、1,8-ジアザビシクロ-(5,4,0)-ウンデセン-7等の第3級アミン等が挙げられる。 Urethanization catalysts are used in the reaction of polyols and polyisocyanates, and include tin compounds such as tin octoate, dibutyltin dichloride, dibutyltin oxide, and dibutyltin dilaurate; titanium compounds such as dibutyltitanium dichloride, tetrabutyl titanate, and butoxytitanium trichloride; zinc compounds such as zinc naphthenate and zinc 2-ethylhexanoate; and tertiary amines such as triethylamine, triethylenediamine, and 1,8-diazabicyclo-(5,4,0)-undecene-7.
ウレタン化触媒の含有量は、ウレタン樹脂100質量部に対して、0.01質量部以上10質量部以下であってよい。 The amount of the urethane catalyst contained may be 0.01 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the urethane resin.
[磁性粉]
磁性粉は、外部磁場の変化に応答して、その磁気モーメントの向き又は大きさが変化し得る磁性体の粉末を表す。磁性体は、代表的には、強磁性体であり得、好ましくは、軟磁性体であり得る。
[Magnetic powder]
The magnetic powder refers to a powder of a magnetic material that can change the direction or magnitude of its magnetic moment in response to a change in an external magnetic field. The magnetic material is typically a ferromagnetic material, and preferably a soft magnetic material.
磁性体は、例えば、Fe、または、Feを含む合金もしくは酸化物であり得;好ましくは、Fe、または、Feと、B、C、N、O、Na、Mg、Al、Si、P、S、Cl、K、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、As、Sr、Zr、Nb、Mo、Pd、Sn、Ba、La、TaおよびBiからなる群より選択される少なくとも1種とを含む合金もしくは酸化物であり得;より好ましくは、Fe、または、Feと、B、Al、Si、Cr、CoおよびNiからなる群より選択される少なくとも1種とを含む合金であり得る。 The magnetic material may be, for example, Fe, or an alloy or oxide containing Fe; preferably, Fe, or an alloy or oxide containing Fe and at least one selected from the group consisting of B, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Zr, Nb, Mo, Pd, Sn, Ba, La, Ta, and Bi; more preferably, Fe, or an alloy containing Fe and at least one selected from the group consisting of B, Al, Si, Cr, Co, and Ni.
かかる磁性体としては、Fe;マンガン亜鉛フェライト、ニッケル亜鉛フェライト、銅亜鉛フェライト、ナトリウムフェライト等のソフトフェライト;FeNi合金、FeCo合金、FeSi合金、FeSiCr合金、FeSiAl合金およびFeSiBCr合金等の合金が挙げられる。 Such magnetic materials include Fe; soft ferrites such as manganese zinc ferrite, nickel zinc ferrite, copper zinc ferrite, and sodium ferrite; and alloys such as FeNi alloys, FeCo alloys, FeSi alloys, FeSiCr alloys, FeSiAl alloys, and FeSiBCr alloys.
磁性体の保磁力は、100A/m以下であることが好ましく、下限は0A/m以上であり得る。 The coercive force of the magnetic material is preferably 100 A/m or less, and the lower limit can be 0 A/m or more.
磁性体の飽和磁束密度は、好ましくは0.1T以上3T以下、より好ましくは0.5T以上2.5T以下、さらに好ましくは0.7T以上2.3T以下であってよい。 The saturation magnetic flux density of the magnetic material may be preferably 0.1 T or more and 3 T or less, more preferably 0.5 T or more and 2.5 T or less, and even more preferably 0.7 T or more and 2.3 T or less.
0.002Tの磁場下で測定した磁性体の透磁率は、好ましくは0.0001H/m以上1H/m以下、より好ましくは0.0005H/m以上0.1H/m以下、さらに好ましくは0.001H/m以上0.01H/m以下であってよい。 The magnetic permeability of the magnetic material measured under a magnetic field of 0.002 T may be preferably 0.0001 H/m or more and 1 H/m or less, more preferably 0.0005 H/m or more and 0.1 H/m or less, and even more preferably 0.001 H/m or more and 0.01 H/m or less.
磁性体の保磁力、飽和磁束密度および透磁率は、バルクとして測定した保磁力、飽和磁束密度および透磁率を表し、代表的には試料振動式磁束計により測定され得る。 The coercivity, saturation magnetic flux density, and permeability of a magnetic material refer to the coercivity, saturation magnetic flux density, and permeability measured in bulk, and can typically be measured using a vibrating sample magnetometer.
磁性粉は、例えば、球状の形状を有するもの及び非球状の形状を有するものが知られている。非球状磁性粉は球状以外の形状を有する磁性粉である。非球状磁性粉には、例えば、扁平状、扁平球状、板状、鱗片状、針状、柱状及び多角形等の形状を有する磁性粉が挙げられる。本発明の磁気粘弾性エラストマー組成物では、球状磁性粉と非球状磁性粉とを混合して使用する。 Magnetic powders are known that have, for example, a spherical shape and a non-spherical shape. Non-spherical magnetic powders are magnetic powders that have a shape other than spherical. Examples of non-spherical magnetic powders include magnetic powders that have shapes such as flat, flattened spheres, plates, scales, needles, columns, and polygons. In the magnetic viscoelastic elastomer composition of the present invention, spherical magnetic powders and non-spherical magnetic powders are mixed and used.
磁気粘弾性エラストマー組成物は、磁場を印加した際に、粘弾性エラストマー中の磁性粉が磁力線に沿って配列して鎖状に積み重なり、磁性粉の支柱を多数形成することで、磁力線方向の硬度が増大すると考えられている。 When a magnetic field is applied to a magnetorheological elastomer composition, it is believed that the magnetic powder in the viscoelastic elastomer aligns itself along the magnetic field lines, stacking up in chains and forming numerous magnetic powder pillars, thereby increasing the hardness in the direction of the magnetic field lines.
磁性粉が球状のみからなる場合は、積み重なった磁性粉相互の摩擦力が小さいために動きやすく、磁場を印加した際に形成される支柱は歪み易く、磁気粘弾性エラストマー組成物の硬度の増大には限界がある。他方、磁性粉が非球状のみから成る場合は、非球状部分において磁性粉相互の摩擦力が大きいので動き難く、磁場を印加した際に、鎖状に整列し難く、不完全な支柱が多くなり、磁気粘弾性エラストマー組成物の硬度は十分に増大しない。 If the magnetic powder consists only of spherical particles, the frictional force between the stacked magnetic powder particles is small and they move easily, and the pillars formed when a magnetic field is applied are easily distorted, and there is a limit to how much the hardness of the magnetorheological elastomer composition can be increased. On the other hand, if the magnetic powder consists only of non-spherical particles, the frictional force between the magnetic powder particles is large in the non-spherical parts and they move less easily, and when a magnetic field is applied, they are less likely to align in a chain shape, resulting in many incomplete pillars, and the hardness of the magnetorheological elastomer composition does not increase sufficiently.
これに対し、磁性粉が球状磁性粉と非球状磁性粉とを含む場合は、複数の非球状磁性粉の非球状部分の間に球状磁性粉が挟まることができ、個々の非球状磁性粉が動き易く、磁場を印加した際に鎖状に整列し易くなり、非球状磁性粉を含む支柱が多く形成される。非球状磁性粉は、相互の摩擦力が大きいので支柱は歪み難く、結果として磁気粘弾性エラストマー組成物の硬度が十分に増大すると考えられる。 In contrast, when the magnetic powder contains spherical magnetic powder and non-spherical magnetic powder, the spherical magnetic powder can be sandwiched between the non-spherical portions of multiple non-spherical magnetic powders, and the individual non-spherical magnetic powder particles move easily and tend to align in chains when a magnetic field is applied, forming many pillars containing non-spherical magnetic powder. Since the non-spherical magnetic powder has a large mutual frictional force, the pillars are less likely to distort, and as a result, it is believed that the hardness of the magnetic viscoelastic elastomer composition is sufficiently increased.
非球状磁性粉の中でも好ましいものは、磁場を印加した後における貯蔵弾性率を増大させる観点から、非球状部分同士の摩擦力が大きい扁平磁性粉である。扁平磁性粉の中でも扁平球状磁性粉を使用した場合は、磁場の印加の前後における貯蔵弾性率の変化が増大するのでより好ましい。 Among the non-spherical magnetic powders, flat magnetic powders, which have a large frictional force between the non-spherical portions, are preferred from the viewpoint of increasing the storage modulus after the application of a magnetic field. Among the flat magnetic powders, flat spherical magnetic powders are more preferred because they increase the change in storage modulus before and after the application of a magnetic field.
扁平状とは、一方向の寸法が他の方向の寸法より小さくなった平たい形状をいう。扁平球状とは、球を扁平化した場合に得られる形状をいう。扁平球状は、扁平方向からみた形状は縁部が丸まった一定の厚みの長方形であり、扁平方向に垂直な方向からみた形状は円形である。尚、実際は、扁平方向からみた形状は、厚みが不均一でバラツキを有していてよく、扁平方向からみた形状は、略円形状乃至略楕円形状であって外周が微小凹凸を有していてよい。例えば、国際公開2020/179535号には扁平球状磁性粉の性状、特性及び製造方法が記載されている。本公報の扁平球状磁性粉に関する記載は、本明細書に援用する。 Flattened refers to a flat shape in which one dimension is smaller than the other dimensions. Flattened spherical refers to the shape obtained when a sphere is flattened. When viewed from the flattening direction, the flattened spherical shape is a rectangle of a certain thickness with rounded edges, and when viewed from a direction perpendicular to the flattening direction, it is a circle. In reality, the shape viewed from the flattening direction may have uneven thickness and variation, and the shape viewed from the flattening direction may be approximately circular or approximately elliptical with minute irregularities on the outer periphery. For example, WO 2020/179535 describes the properties, characteristics, and manufacturing method of flattened spherical magnetic powder. The descriptions in this publication regarding flattened spherical magnetic powder are incorporated herein by reference.
球状磁性粉の平均粒径(D50)は、磁場を印加した後における貯蔵弾性率を増大させる観点から、例えば0.5μm以上50μm以下、好ましくは1μm以上25μm以下、さらに好ましくは3μm以上10μm以下である。 The average particle size (D 50 ) of the spherical magnetic powder is, for example, 0.5 μm to 50 μm, preferably 1 μm to 25 μm, and more preferably 3 μm to 10 μm, from the viewpoint of increasing the storage modulus after application of a magnetic field.
球状磁性粉のアスペクト比は、好ましくは1.5以下、より好ましくは1.3以下、更に好ましくは1.2以下であり、下限は、例えば、1とし得る。 The aspect ratio of the spherical magnetic powder is preferably 1.5 or less, more preferably 1.3 or less, and even more preferably 1.2 or less, and the lower limit can be, for example, 1.
扁平磁性粉の平均粒径(D50)は、磁場を印加した後における貯蔵弾性率を増大させる観点から、例えば2μm以上100μm以下、好ましくは5μm以上70μm以下、さらに好ましくは10μm以上40μm以下である。 The average particle size (D 50 ) of the flat magnetic powder is, for example, 2 μm to 100 μm, preferably 5 μm to 70 μm, and more preferably 10 μm to 40 μm, from the viewpoint of increasing the storage modulus after application of a magnetic field.
扁平磁性粉のアスペクト比は、好ましくは7以上15以下、より好ましくは10以上13以下、さらに好ましくは10以上11以下である。 The aspect ratio of the flat magnetic powder is preferably 7 or more and 15 or less, more preferably 10 or more and 13 or less, and even more preferably 10 or more and 11 or less.
磁性粉の平均粒径(D50)は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定及び算出することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、磁性粉の粒径分布を体積基準で作成し、50%粒径(平均粒径)(D50)を算出することができる。測定サンプルは、磁性粉を超音波により純水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、マイクロトラックベル社製「MT3000II」、堀場製作所社製「LA-960」、島津製作所社製「SALD-2200」等を使用することができる。 The average particle size (D 50 ) of the magnetic powder can be measured and calculated by a laser diffraction/scattering method based on the Mie scattering theory. Specifically, a particle size distribution of the magnetic powder is created on a volume basis using a laser diffraction/scattering type particle size distribution measuring device, and the 50% particle size (average particle size) (D 50 ) can be calculated. A measurement sample in which the magnetic powder is dispersed in pure water using ultrasonic waves can be preferably used. As the laser diffraction/scattering type particle size distribution measuring device, the "MT3000II" manufactured by Microtrackbell, the "LA-960" manufactured by Horiba, Ltd., the "SALD-2200" manufactured by Shimadzu Corporation, etc. can be used.
特に断らない限り、本明細書でいう磁性粉の粒径は平均粒径(D50)を意味する。 Unless otherwise specified, the particle size of the magnetic powder referred to in this specification means the average particle size (D 50 ).
本明細書でいう磁性粉のアスペクト比は、「磁性粉の平均長軸長a(μm)」を「磁性粉の平均厚みb(μm)」で除して算出される値(a/b)である。磁性粉の平均長軸長とは、磁性粉の長軸長の平均値である。磁性粉の長軸長の平均値は、例えば、走査型電子顕微鏡像に基づいて、例えば50個の磁性粉の長軸長を測定した場合の数平均であり得る。磁性粉の長軸長とは、磁性粉体粒子の外部表面上の任意の2点のうち相互間の距離が最長となる2点間を結ぶ線分の長さをいう。 The aspect ratio of magnetic powder as referred to in this specification is the value (a/b) calculated by dividing the "average major axis length a (μm) of magnetic powder" by the "average thickness b (μm) of magnetic powder." The average major axis length of magnetic powder is the average value of the major axis lengths of magnetic powder. The average value of the major axis length of magnetic powder can be, for example, the number average when the major axis lengths of, for example, 50 magnetic powder particles are measured based on a scanning electron microscope image. The major axis length of magnetic powder refers to the length of the line segment connecting any two points on the outer surface of a magnetic powder particle that are the longest distance apart.
磁性粉の形状が球状又は扁平球状である場合、磁性粉のアスペクト比は、「磁性粉の径方向の平均長さa(μm)」を「磁性粉の平均厚みb(μm)」で除して算出される値(a/b)となる。 If the shape of the magnetic powder is spherical or flattened spherical, the aspect ratio of the magnetic powder is the value (a/b) calculated by dividing the "average radial length of the magnetic powder a (μm)" by the "average thickness of the magnetic powder b (μm)."
球状磁性粉と非球状磁性粉との混合割合は、磁性粉全体を基準にして、非球状磁性粉が3質量%以上60質量%以下、好ましくは5質量%以上45質量%以下、より好ましくは10質量%以上30質量%以下を占める割合である。球状磁性粉と非球状磁性粉との混合割合を上記範囲に調節することで、磁場を印加した後における磁気粘弾性エラストマー組成物の貯蔵弾性率が増大し易くなる。 The mixing ratio of the spherical magnetic powder to the non-spherical magnetic powder is such that the non-spherical magnetic powder accounts for 3% by mass or more and 60% by mass or less, preferably 5% by mass or more and 45% by mass or less, and more preferably 10% by mass or more and 30% by mass or less, based on the total magnetic powder. By adjusting the mixing ratio of the spherical magnetic powder to the non-spherical magnetic powder within the above range, it becomes easier to increase the storage modulus of the magnetorheological elastomer composition after application of a magnetic field.
磁性粉は、その表面に絶縁被膜を有する粉末であってもよい。かかる絶縁被膜としては、無機ガラス被膜、有機高分子被膜、有機-無機ハイブリット被膜、および、金属アルコキシドのゾル-ゲル反応により形成される無機系絶縁被膜が挙げられる。 The magnetic powder may be a powder having an insulating coating on its surface. Examples of such insulating coatings include inorganic glass coatings, organic polymer coatings, organic-inorganic hybrid coatings, and inorganic insulating coatings formed by the sol-gel reaction of metal alkoxides.
本発明の磁気粘弾性エラストマー組成物における、磁性粉の含有率は、例えば25体積%以上55体積%以下、好ましくは35体積%以上50体積%以下、より好ましくは40体積%以上45体積%以下である。磁性粉の含有率がかかる範囲にあることで、磁場の変化に応答した弾性率変化が良好となりうる。 The magnetic powder content in the magnetorheological elastomer composition of the present invention is, for example, 25 volume % or more and 55 volume % or less, preferably 35 volume % or more and 50 volume % or less, and more preferably 40 volume % or more and 45 volume % or less. When the magnetic powder content is in this range, the elastic modulus change in response to a change in the magnetic field can be good.
磁性粉の含有率は、磁気粘弾性エラストマーに熱(500℃以上)をかけて有機成分を除去し、残った磁性粉の重量を測定することにより決定することができる。 The magnetic powder content can be determined by applying heat (500°C or higher) to the magnetic viscoelastic elastomer to remove the organic components and then measuring the weight of the remaining magnetic powder.
[組成物の製造方法]
本発明の磁気粘弾性エラストマー組成物は、粘弾性エラストマーおよび磁性粉を混合することにより製造され得る。粘弾性エラストマーおよび磁性粉の混合は、例えば、粘弾性エラストマーと磁性粉とをそのまま混合することを含み得、粘弾性エラストマーの原料と磁性粉とを混合した後、その原料を反応させて粘弾性エラストマーとすることも含み得る。粘弾性エラストマー及び磁性粉を混合するに際し、必要に応じて用いる触媒、可塑剤および添加剤を適宜共存させてよい。
[Production method of the composition]
The magnetic viscoelastic elastomer composition of the present invention can be produced by mixing a viscoelastic elastomer and a magnetic powder. The mixing of the viscoelastic elastomer and the magnetic powder can include, for example, mixing the viscoelastic elastomer and the magnetic powder as they are, or mixing the raw materials of the viscoelastic elastomer with the magnetic powder and then reacting the raw materials to form the viscoelastic elastomer. When mixing the viscoelastic elastomer and the magnetic powder, a catalyst, a plasticizer, and an additive used as necessary may be appropriately present.
粘弾性エラストマーとしてポリウレタンエラストマーを使用する場合、磁気粘弾性エラストマー組成物は、ポリオール、ポリイソシアネートおよび磁性粉を混合した後、加熱してポリオールとポリイソシアネートとの反応物を得ることにより製造され得る。加熱温度は、50℃以上150℃以下であってよく、加熱時間は、30分以上20時間以下であってよい。また、加熱は、無溶媒下または反応溶媒の存在下で実施してよい。かかる反応溶媒としては、トルエン、アセトン、n-メチルピロリドン等が挙げられる。 When a polyurethane elastomer is used as the viscoelastic elastomer, the magnetorheological elastomer composition can be produced by mixing a polyol, a polyisocyanate, and a magnetic powder, and then heating the mixture to obtain a reaction product of the polyol and the polyisocyanate. The heating temperature can be 50°C or higher and 150°C or lower, and the heating time can be 30 minutes or higher and 20 hours or lower. The heating can be carried out without a solvent or in the presence of a reaction solvent. Examples of such reaction solvents include toluene, acetone, and n-methylpyrrolidone.
ポリオール、ポリイソシアネートおよび磁性粉の混合順序は特に限定されない。例えば、ポリオール、ポリイソシアネートおよび磁性粉を同時に混合してもよく、ポリオールと磁性粉とを混合した後、かかる混合物とポリイソシアネートとを混合してもよい。ポリオール、ポリイソシアネートおよび磁性粉を混合するに際し、必要に応じて用いるウレタン化触媒、樹脂、可塑剤および添加剤を適宜共存させてよい。 The order in which the polyol, polyisocyanate and magnetic powder are mixed is not particularly limited. For example, the polyol, polyisocyanate and magnetic powder may be mixed simultaneously, or the polyol and magnetic powder may be mixed and then the mixture may be mixed with the polyisocyanate. When mixing the polyol, polyisocyanate and magnetic powder, a urethane catalyst, resin, plasticizer and additives, which are used as necessary, may be appropriately present.
[組成物の特性]
磁気粘弾性エラストマー組成物は、粘性と弾性とを有する。
[Characteristics of the composition]
The magnetorheological elastomer composition has viscosity and elasticity.
ゼロ磁場下で測定した、磁気粘弾性エラストマー組成物の貯蔵弾性率G’0は、好ましくは0.002MPa以上0.020MPa以下、より好ましくは0.004MPa以上0.015MPa以下、さらに好ましくは0.005MPa以上0.010MPa以下であり得る。磁気粘弾性エラストマー組成物の貯蔵弾性率がかかる範囲にあることで、磁場印加時の弾性率変化が良好になり得る。 The storage modulus G'0 of the magnetorheological elastomer composition measured under zero magnetic field can be preferably 0.002 MPa or more and 0.020 MPa or less, more preferably 0.004 MPa or more and 0.015 MPa or less, and even more preferably 0.005 MPa or more and 0.010 MPa or less. When the storage modulus of the magnetorheological elastomer composition is in this range, the change in modulus when a magnetic field is applied can be favorable.
本発明の磁気粘弾性エラストマー組成物は、磁場を印加した場合、磁場を印加しない場合と比較して、貯蔵弾性率が増加し得る。具体的には、下記実施例で使用した条件下で測定した貯蔵弾性率G’1は、好ましくは1.0MPa以上、より好ましくは1.5MPa以上、さらに好ましくは2.0MPa以上であり得る。磁場を印加した後における貯蔵弾性率がかかる範囲にあることで、磁気粘弾性エラストマー組成物を通過する粗密波、特に音波や超音波の伝播速度が高められ得る。 The magnetorheological elastomer composition of the present invention may have an increased storage modulus when a magnetic field is applied, compared to when no magnetic field is applied. Specifically, the storage modulus G'1 measured under the conditions used in the following examples may be preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and even more preferably 2.0 MPa or more. When the storage modulus after application of a magnetic field is within this range, the propagation speed of compressional waves, particularly sound waves and ultrasonic waves, passing through the magnetorheological elastomer composition may be increased.
磁場の印加による貯蔵弾性率の変化率(以下、単に「磁場による貯蔵弾性率変化率」ともいう)をG’1/G’0とした場合、本発明の磁気粘弾性エラストマー組成物の磁場による貯蔵弾性率変化率は、好ましくは100以上、より好ましくは150以上、さらに好ましくは290以上であり、例えば1000以下、また、800以下、さらに500以下であってもよい。磁場による貯蔵弾性率変化率がかかる範囲にあることで、磁気粘弾性エラストマー組成物を通過する粗密波、特に音波や超音波を高度に偏向させ得る。 When the rate of change in storage modulus due to application of a magnetic field (hereinafter also simply referred to as "rate of change in storage modulus due to a magnetic field") is taken as G'1 / G'0 , the rate of change in storage modulus due to a magnetic field of the magnetorheological elastomer composition of the present invention is preferably at least 100, more preferably at least 150, even more preferably at least 290, and may be, for example, at most 1000, or at most 800, or even at most 500. When the rate of change in storage modulus due to a magnetic field is within this range, compressional waves, particularly sound waves and ultrasonic waves, passing through the magnetorheological elastomer composition can be highly deflected.
本発明の磁気粘弾性エラストマー組成物は、磁場の印加により貯蔵弾性率が増加し得、音波、超音波、振動波等の粗密波の伝播方向を変化させる(粗密波を偏向させる)ために好適に用いられ得る。粗密波の伝播速度c(m/s)は、伝播媒体の弾性率の平方根に比例し、具体的には、密度をρ(kg/m3)、体積弾性率をκ(Pa)としたとき、以下の式(2)で表される。 The magnetorheological elastomer composition of the present invention can increase its storage modulus by application of a magnetic field, and can be suitably used for changing the propagation direction of compressional waves (deflecting compressional waves) such as sound waves, ultrasonic waves, vibration waves, etc. The propagation speed c (m/s) of a compressional wave is proportional to the square root of the elastic modulus of the propagation medium, and specifically, when the density is ρ (kg/m 3 ) and the bulk modulus is κ (Pa), it is expressed by the following formula (2):
そのため、弾性率が高い場合は粗密波の伝播速度が大きく、弾性率が低い場合は、粗密波の伝播速度が小さい。特定の理論に限定して解釈されるべきではないが、本発明の磁気粘弾性エラストマー組成物に磁場を印加した場合、貯蔵弾性率の増加は磁場の向きと相関し、代表的には、磁場の向きと平行な方向の貯蔵弾性率が増加する。そのため、磁場の印加により貯蔵弾性率に異方性が生じる結果、粗密波の伝播方向が変化しうることになると考えられる。 Therefore, when the elastic modulus is high, the propagation speed of the compressional wave is high, and when the elastic modulus is low, the propagation speed of the compressional wave is low. Although it should not be interpreted as being limited to a specific theory, when a magnetic field is applied to the magnetorheological elastomer composition of the present invention, the increase in the storage modulus correlates with the direction of the magnetic field, and typically, the storage modulus increases in a direction parallel to the direction of the magnetic field. Therefore, it is thought that the application of a magnetic field causes anisotropy in the storage modulus, which can result in a change in the propagation direction of the compressional wave.
本発明の磁気粘弾性エラストマー組成物は、好ましくは、音波または超音波を偏向させるために用いられ、特に、スピーカ等の音響デバイス;超音波センサ等の超音波デバイスに好適に用いられる。また、本発明の磁気粘弾性エラストマー組成物は、弾性率の変化を利用した触覚フィードバックデバイスに用いることが出来る。 The magnetorheological elastomer composition of the present invention is preferably used to deflect sound waves or ultrasonic waves, and is particularly suitable for use in acoustic devices such as speakers and ultrasonic devices such as ultrasonic sensors. The magnetorheological elastomer composition of the present invention can also be used in tactile feedback devices that utilize changes in elastic modulus.
本発明は以下の態様を提供する。 The present invention provides the following aspects:
[1]粘弾性エラストマーと該粘弾性エラストマーに分散させた25体積%以上55体積%以下、好ましくは35体積%以上50体積%以下、より好ましくは40体積%以上45体積%以下の磁性粉とを含む磁気粘弾性エラストマー組成物であって、
該磁性粉は、球状磁性粉と非球状磁性粉とを含み、
該非球状磁性粉は、磁性粉全体を基準にして3質量%以上60質量%以下、好ましくは5質量%以上45質量%以下、より好ましくは10質量%以上30質量%以下の量で含まれる、
磁気粘弾性エラストマー組成物。
[1] A magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less, preferably 35% by volume or more and 50% by volume or less, more preferably 40% by volume or more and 45% by volume or less, of a magnetic powder dispersed in the viscoelastic elastomer,
The magnetic powder includes spherical magnetic powder and non-spherical magnetic powder,
The non-spherical magnetic powder is contained in an amount of 3% by mass or more and 60% by mass or less, preferably 5% by mass or more and 45% by mass or less, and more preferably 10% by mass or more and 30% by mass or less, based on the total amount of the magnetic powder.
Magnetorheological elastomer composition.
[2]前記非球状磁性粉は扁平磁性粉を含む、態様[1]の磁気粘弾性エラストマー組成物。 [2] The magnetorheological elastomer composition of embodiment [1], wherein the non-spherical magnetic powder includes a flat magnetic powder.
[3]前記扁平磁性粉は、径方向の平均長さaと厚み方向の平均厚さbとの比率を示すアスペクト比a/bが10以上20以下、好ましくは7以上15以下、より好ましくは10以上13以下、さらに好ましくは10以上11以下である、態様[2]の磁気粘弾性エラストマー組成物。 [3] The flat magnetic powder has an aspect ratio a/b, which indicates the ratio of the average radial length a to the average thickness b in the thickness direction, of 10 to 20, preferably 7 to 15, more preferably 10 to 13, and even more preferably 10 to 11. The magnetorheological elastomer composition of embodiment [2].
[4]前記球状磁性粉は0.5μm以上50μm以下、好ましくは1μm以上25μm以下、さらに好ましくは3μm以上10μm以下、及び前記扁平球状磁性粉は2μm以上100μm以下、好ましくは5μm以上70μm以下、さらに好ましくは10μm以上40μm以下の平均粒径を有する、態様[2]又は[3]の磁気粘弾性エラストマー組成物。 [4] The magnetic viscoelastic elastomer composition of aspect [2] or [3], wherein the spherical magnetic powder has an average particle size of 0.5 μm or more and 50 μm or less, preferably 1 μm or more and 25 μm or less, more preferably 3 μm or more and 10 μm or less, and the flat spherical magnetic powder has an average particle size of 2 μm or more and 100 μm or less, preferably 5 μm or more and 70 μm or less, more preferably 10 μm or more and 40 μm or less.
[5]粘弾性エラストマーはポリウレタンエラストマー
を含む、態様[1]~[4]のいずれかの磁気粘弾性エラストマー組成物。
[5] The magnetorheological elastomer composition according to any one of embodiments [1] to [4], wherein the viscoelastic elastomer comprises a polyurethane elastomer.
[6]前記ポリウレタンエラストマーは、数平均分子量1,000以上、好ましくは2,000以上15,000以下、より好ましくは3,000以上10,000以下、さらに好ましくは4,000以上8,000以下のトリオールを含むポリオールとポリイソシアネートとの反応物であるウレタン樹脂を含む、態様[5]の磁気粘弾性エラストマー組成物。 [6] The magnetorheological elastomer composition of aspect [5], wherein the polyurethane elastomer comprises a urethane resin that is a reaction product of a polyol, including a triol, having a number average molecular weight of 1,000 or more, preferably 2,000 to 15,000, more preferably 3,000 to 10,000, and even more preferably 4,000 to 8,000, and a polyisocyanate.
[7]粘弾性エラストマーと該粘弾性エラストマーに分散させた25体積%以上55体積%以下、好ましくは35体積%以上50体積%以下、より好ましくは40体積%以上45体積%以下の磁性粉とを含む磁気粘弾性エラストマー組成物の製造方法であって、
該磁性粉として、球状磁性粉と非球状磁性粉とを含有させること、及び
該非球状磁性粉は、磁性粉全体を基準にして3質量%以上60質量%以下、好ましくは5質量%以上45質量%、より好ましくは10質量%以上30質量%の量で含有させること、
を含む、磁気粘弾性エラストマー組成物の製造方法。
[7] A method for producing a magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less, preferably 35% by volume or more and 50% by volume or less, more preferably 40% by volume or more and 45% by volume or less of a magnetic powder dispersed in the viscoelastic elastomer, comprising the steps of:
The magnetic powder contains spherical magnetic powder and non-spherical magnetic powder, and the non-spherical magnetic powder is contained in an amount of 3 mass% to 60 mass%, preferably 5 mass% to 45 mass%, and more preferably 10 mass% to 30 mass%, based on the total amount of the magnetic powder.
A method for producing a magnetorheological elastomer composition comprising:
以下の実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these.
<実験例1>
ポリウレタンエラストマーの成分として、数平均分子量4000のポリプロピレングリコール、トリオール型(PPT)、数平均分子量3000のポリプロピレングリコール、ジオール型(PPG)、トリレンジイソシアネート(TDI)、フタル酸ジオクチル及びオクチル酸スズを準備し、表1に示す配合量にて反応容器に充填した。
<Experimental Example 1>
As components of the polyurethane elastomer, polypropylene glycol having a number average molecular weight of 4000, a triol type (PPT), polypropylene glycol having a number average molecular weight of 3000, a diol type (PPG), tolylene diisocyanate (TDI), dioctyl phthalate, and tin octylate were prepared and charged into a reaction vessel in the amounts shown in Table 1.
磁性粉として、粒径10μm及びアスペクト比1の球状FeSiCr粉(エプソンアトミックス社製、商品名なし)を準備し、磁気粘弾性エラストマー組成物全体を基準にして25体積%になる量で、同じ反応容器に充填した。 As the magnetic powder, spherical FeSiCr powder (manufactured by Epson Atomics, no product name) with a particle size of 10 μm and an aspect ratio of 1 was prepared and filled into the same reaction vessel in an amount that was 25% by volume based on the total magnetic viscoelastic elastomer composition.
脱泡撹拌機を用いて充填物を均一に混合してペーストを得た。ホットプレートを用い、得られたペーストを75℃で2時間加熱し、熱硬化させて、磁気粘弾性エラストマー組成物を製造した。 The filling materials were mixed uniformly using a degassing mixer to obtain a paste. The resulting paste was heated to 75°C for 2 hours using a hot plate and thermally cured to produce a magnetorheological elastomer composition.
<実験例2~10>
磁性粉として、表2に示す種類のFeSiCr粉を準備した。
<Experimental Examples 2 to 10>
As the magnetic powder, FeSiCr powder of the type shown in Table 2 was prepared.
前記球状FeSiCr粉の代わりに、それぞれ、表2に示した所定の粒径の球状FeSiCr粉と扁平球状FeSiCr粉とを所定の割合にて使用すること以外は実験例1と同様にして、磁気粘弾性エラストマー組成物を製造した。 A magnetic viscoelastic elastomer composition was produced in the same manner as in Experimental Example 1, except that spherical FeSiCr powder and flat spherical FeSiCr powder of the specified particle sizes shown in Table 2 were used in the specified ratio instead of the spherical FeSiCr powder.
実験例1~10の磁気粘弾性エラストマー組成物について、貯蔵弾性率を測定した。 The storage modulus was measured for the magnetorheological elastomer compositions of Experimental Examples 1 to 10.
[貯蔵弾性率の測定]
磁気粘弾性エラストマー組成物を直径2cm、厚さ1mmの円盤状に成形し、試料とした。次いで、粘弾性測定装置(Anton Paar社製、型式:MCR301)に試料をセットし、磁場発生装置(Anton Paar社製、型式:PS-MRD)を用いて、磁場を印加する前及び磁場を印加した後の貯蔵弾性率を測定した。粘弾性測定装置の回転軸と、磁場の向きとは、平行となるようにして、測定を行った。結果を表3に示す。
[Measurement of storage modulus]
The magnetorheological elastomer composition was molded into a disk shape with a diameter of 2 cm and a thickness of 1 mm to prepare a sample. The sample was then set in a viscoelasticity measuring device (Anton Paar, model: MCR301), and the storage modulus was measured before and after application of a magnetic field using a magnetic field generator (Anton Paar, model: PS-MRD). The measurement was performed with the rotation axis of the viscoelasticity measuring device parallel to the direction of the magnetic field. The results are shown in Table 3.
(粘弾性測定時の条件)
測定温度:25℃
端子から試料に加えられる荷重:0.3N
周波数:1Hz
ひずみ:0.01%
磁場を印加する際の磁場強度:500mT
(Conditions for viscoelasticity measurement)
Measurement temperature: 25°C
Load applied to the sample from the terminal: 0.3 N
Frequency: 1Hz
Strain: 0.01%
Magnetic field strength when applying magnetic field: 500 mT
表3に示された実験結果により、本発明の構成要件を充足する磁気粘弾性エラストマー組成物は、充足しない実験例と比較して、磁場の印加前後において貯蔵弾性率の変化が大きく、磁場を印加した後における貯蔵弾性率が大きいことが確認された。 The experimental results shown in Table 3 confirmed that the magnetorheological elastomer composition satisfying the constituent requirements of the present invention exhibited a larger change in storage modulus before and after application of a magnetic field, and a larger storage modulus after application of a magnetic field, compared to experimental examples that did not satisfy the requirements.
Claims (7)
該磁性粉は、球状磁性粉と非球状磁性粉とを含み、
該非球状磁性粉は、磁性粉全体を基準にして3質量%以上60質量%以下の量で含まれる、
磁気粘弾性エラストマー組成物。 A magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less of a magnetic powder dispersed in the viscoelastic elastomer,
The magnetic powder includes spherical magnetic powder and non-spherical magnetic powder,
The non-spherical magnetic powder is contained in an amount of 3% by mass or more and 60% by mass or less based on the total amount of the magnetic powder.
A magnetorheological elastomer composition.
を含む、請求項1~4のいずれか一項に記載の磁気粘弾性エラストマー組成物。 The magnetorheological elastomer composition according to any one of claims 1 to 4, wherein the viscoelastic elastomer comprises a polyurethane elastomer.
該磁性粉として、球状磁性粉と非球状磁性粉とを含有させること、及び
該非球状磁性粉は、磁性粉全体を基準にして3質量%以上60質量%以下の量で含有させること、
を含む、磁気粘弾性エラストマー組成物の製造方法。 A method for producing a magnetorheological elastomer composition comprising a viscoelastic elastomer and 25% by volume or more and 55% by volume or less of a magnetic powder dispersed in the viscoelastic elastomer, comprising:
The magnetic powder contains spherical magnetic powder and non-spherical magnetic powder, and the non-spherical magnetic powder is contained in an amount of 3% by mass or more and 60% by mass or less based on the total amount of the magnetic powder.
A method for producing a magnetorheological elastomer composition comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023077809 | 2023-05-10 | ||
JP2023-077809 | 2023-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024232139A1 true WO2024232139A1 (en) | 2024-11-14 |
Family
ID=93430106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006084 WO2024232139A1 (en) | 2023-05-10 | 2024-02-20 | Magnetorheological elastomer composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024232139A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002280207A (en) * | 2001-03-21 | 2002-09-27 | Shin Etsu Chem Co Ltd | Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method |
JP2006265365A (en) * | 2005-03-23 | 2006-10-05 | Bando Chem Ind Ltd | Magnetically responsive polyurethane elastomer composition |
JP2011195754A (en) * | 2010-03-23 | 2011-10-06 | Panasonic Electric Works Co Ltd | Magnetic gel |
JP2013064441A (en) * | 2011-09-16 | 2013-04-11 | Taika:Kk | Magnetic field responsive resin composition, method for producing the same, and application of the same |
JP2017210571A (en) * | 2016-05-27 | 2017-11-30 | 国立大学法人金沢大学 | Magnetic particle-containing viscoelastic body and composition for the production of magnetic particle-containing viscoelastic body, and method for producing magnetic particle-containing viscoelastic body |
JP2018053018A (en) * | 2016-09-27 | 2018-04-05 | 積水化学工業株式会社 | Heat-radiation foamed sheet and adhesive tape |
JP2019210311A (en) * | 2018-05-31 | 2019-12-12 | 哲 三俣 | Water-based polyurethane resin composition, and high elastic magnetic field responsive soft material comprising said polyurethane elastomer composition |
-
2024
- 2024-02-20 WO PCT/JP2024/006084 patent/WO2024232139A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002280207A (en) * | 2001-03-21 | 2002-09-27 | Shin Etsu Chem Co Ltd | Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method |
JP2006265365A (en) * | 2005-03-23 | 2006-10-05 | Bando Chem Ind Ltd | Magnetically responsive polyurethane elastomer composition |
JP2011195754A (en) * | 2010-03-23 | 2011-10-06 | Panasonic Electric Works Co Ltd | Magnetic gel |
JP2013064441A (en) * | 2011-09-16 | 2013-04-11 | Taika:Kk | Magnetic field responsive resin composition, method for producing the same, and application of the same |
JP2017210571A (en) * | 2016-05-27 | 2017-11-30 | 国立大学法人金沢大学 | Magnetic particle-containing viscoelastic body and composition for the production of magnetic particle-containing viscoelastic body, and method for producing magnetic particle-containing viscoelastic body |
JP2018053018A (en) * | 2016-09-27 | 2018-04-05 | 積水化学工業株式会社 | Heat-radiation foamed sheet and adhesive tape |
JP2019210311A (en) * | 2018-05-31 | 2019-12-12 | 哲 三俣 | Water-based polyurethane resin composition, and high elastic magnetic field responsive soft material comprising said polyurethane elastomer composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4548072B2 (en) | Two-component curable polyurethane resin composition | |
JP5959718B2 (en) | Polyurethane resin composition, waterproof material and composite elastic material | |
JP6470094B2 (en) | Method for producing foamed polyurethane elastomer with skin layer, foamed polyurethane elastomer with skin layer and cushioning material | |
WO2017030065A1 (en) | Polyurethane foam material, molded article, and method for producing polyurethane foam material | |
JP2019070423A (en) | Bound stopper and manufacturing method thereof | |
CN104987702A (en) | Polyurethane foam and preparation method thereof | |
JP6492183B2 (en) | Buffer material, buffer material for automatic motion device for painting, automatic motion device with buffer material, and automatic motion device for coating material with buffer material | |
EP3189090B1 (en) | Polyurethane mats | |
WO2024232139A1 (en) | Magnetorheological elastomer composition | |
JP6754449B2 (en) | Two-component curable adhesive composition, laminate film and its manufacturing method | |
WO2025004439A1 (en) | Magnetorheological elastomer composition, and method for producing magnetorheological elastomer composition | |
JP7571901B2 (en) | Magnetorheological elastomer composition and method for producing same | |
JP6334091B2 (en) | Elastomer and transducer element | |
JP2019137712A (en) | Adhesive for laminate | |
WO2023008478A1 (en) | Two-pack type adhesive composition and cured object | |
JP2006265365A (en) | Magnetically responsive polyurethane elastomer composition | |
JP7355818B2 (en) | Coating agents and laminates | |
KR20210067734A (en) | Thin layer polymer foam and foam adhesive tape | |
JP6221709B2 (en) | Two-component room temperature curable urethane film waterproofing material composition | |
JP6303467B2 (en) | Two-component room temperature curable urethane film waterproofing material composition | |
JP5756678B2 (en) | Light guide polyurethane resin and light guide member | |
JP7373694B2 (en) | Polyurethane foam and toner seal components | |
EP3922679A1 (en) | Curable composition | |
JP3939973B2 (en) | Skin forming agent for polyurethane foam with skin | |
JPWO2017159430A1 (en) | Resin-coated steel material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24803254 Country of ref document: EP Kind code of ref document: A1 |