[go: up one dir, main page]

WO2024232117A1 - Waste plastic-to-oil conversion system and recovery system for aluminum - Google Patents

Waste plastic-to-oil conversion system and recovery system for aluminum Download PDF

Info

Publication number
WO2024232117A1
WO2024232117A1 PCT/JP2023/044209 JP2023044209W WO2024232117A1 WO 2024232117 A1 WO2024232117 A1 WO 2024232117A1 JP 2023044209 W JP2023044209 W JP 2023044209W WO 2024232117 A1 WO2024232117 A1 WO 2024232117A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste plastic
aluminum
pyrolysis furnace
waste
plastic
Prior art date
Application number
PCT/JP2023/044209
Other languages
French (fr)
Japanese (ja)
Inventor
則夫 橋本
英紀 伊部
Original Assignee
株式会社湘南貿易
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社湘南貿易 filed Critical 株式会社湘南貿易
Publication of WO2024232117A1 publication Critical patent/WO2024232117A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a system for converting waste plastic into oil.
  • a known thermal decomposition treatment device used in this oil-recovery system is a thermal decomposition furnace having an inner cylinder made of a material with good thermal conductivity and rotated around its axis, and an outer cylinder that covers the outer periphery of the inner cylinder through a heating space and supplies heated gas into the heating space (see, for example, Patent Document 1).
  • the thermal decomposition treatment device described in Patent Document 1 is equipped with a material input device that is connected to one end of the inner cylinder and inputs waste plastic into the inner cylinder while being isolated from the outside air, and a large number of ceramic balls are provided inside the inner cylinder.
  • the thermal decomposition treatment device described in Patent Document 1 is also equipped with a product discharge member that is installed to cover the other end of the inner cylinder and has multiple slits with a width smaller than the outer diameter of the ceramic balls, and discharges the thermal decomposition gas and thermal decomposition residue generated in the inner cylinder through these slits, and is provided with a discharge unit housing that surrounds the other end of the inner cylinder including the product discharge member and isolates it from the outside air.
  • the pyrolysis treatment device described in Patent Document 1 is equipped with a pyrolysis gas discharge device that is provided in the discharge housing and discharges pyrolysis gas to the outside, and a residue discharge device that discharges pyrolysis residue to the outside.
  • the material feeding device in Patent Document 1 has a cylindrical body that serves as an outer shell member, and a screw feeder is provided inside the cylindrical body.
  • the screw feeder is composed of two screws arranged in parallel so that they mesh with each other, and is driven to rotate by an external drive unit.
  • One end of the material feeding device penetrates the pyrolysis furnace and protrudes into the inner cylinder.
  • the material feeding device has a material inlet connected to a material hopper on the other end, receives a supply of waste plastic from the material hopper, and feeds it into the inner cylinder of the pyrolysis furnace.
  • the pyrolysis treatment device described in Patent Document 1 has a problem in that the inner tube of the pyrolysis furnace, which is made of steel plate, is the heat input part and therefore reaches the highest temperature inside the furnace, and decomposition gases and oils tend to burn to the inner surface of the inner tube, causing coking.
  • Patent Document 1 although many ceramic balls are provided inside the inner tube, the effect of suppressing coking is limited, and if a large amount of coking occurs, the heat input is insufficient and the waste plastic cannot be decomposed.
  • the present invention was made in consideration of the above problems, and aims to provide a waste plastic oil production system that can suppress coking in the pyrolysis furnace.
  • the present invention provides A waste plastic oil production system having a pyrolysis furnace for pyrolyzing waste plastic,
  • the pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace,
  • a system for producing oil from waste plastics is provided in which the waste plastics are directly heated and pyrolyzed by the superheated steam.
  • a delivery mechanism is provided for delivering the waste plastic to the pyrolysis furnace, It is preferable to provide a pressure pipe disposed between the delivery mechanism and the pyrolysis furnace, which controls the temperature of the waste plastic and pressure-feeds the waste plastic into the pyrolysis furnace under temperature control.
  • the pyrolysis furnace preferably has a horizontally placed cylindrical body and a spherical catalyst disposed inside the cylindrical body.
  • the waste plastic is an aluminum-containing waste plastic
  • the aluminum-containing waste plastics may be directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastics may be thermally decomposed to leave aluminum.
  • a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
  • a remnant receiving tank connected to the remnant flow passage, The waste material flow passage and the waste material receiving tank may control the temperature of the waste material, and the waste material may be collected in a temperature-controlled state.
  • An aluminum recovery system for recovering aluminum by separating waste plastic from aluminum-containing waste plastic comprising: A pyrolysis furnace is provided for pyrolyzing the plastic components of the aluminum-containing waste plastic, The pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace, The aluminum-containing waste plastics are directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastics are thermally decomposed to leave aluminum, thereby providing an aluminum recovery system.
  • a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
  • a remnant receiving tank connected to the remnant flow passage, It is preferable that the residual material flow passage and the residual material receiving tank perform temperature control of the residual material, and collect the residual material in a temperature-controlled state.
  • the present invention makes it possible to suppress coking in pyrolysis furnaces.
  • FIG. 1 is a schematic diagram of a waste plastic oil production system showing a first embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for converting waste plastic into oil.
  • FIG. 1 is a schematic diagram of a waste plastic oil production system (aluminum recovery system) showing a second embodiment of the present invention.
  • 1 is a flowchart of a method for converting waste plastic into oil (aluminum recovery method).
  • FIGS. 1 and 2 show a first embodiment of the present invention, where FIG. 1 is a schematic diagram of a waste plastic oil production system, and FIG. 2 is a flowchart of a waste plastic oil production method.
  • This waste plastic oil production system 100 can be suitably used to produce oil from waste plastics that contain polyvinyl chloride (PVC) and polyethylene terephthalate (PET).
  • the waste plastics contain polyvinyl chloride (PVC), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE).
  • this oilification system 100 has a hopper 110 into which waste plastic is fed, a pressure feeder 120 that sends out the waste plastic fed into the hopper 110, a pressure pipe 130 that controls the temperature of the waste plastic sent out from the pressure feeder 120, a pyrolysis furnace 140 that heats and decomposes the waste plastic pressed in from the pressure pipe 130, a cooling device 150 that cools the decomposition gas to produce decomposition oil, a recovery device 160 that recovers the decomposition oil, a boiler 170 that supplies superheated steam to the pyrolysis furnace, and a steam-side mixing device 180 for mixing additives into the superheated steam.
  • the waste plastic is fed from the hopper 110 in a pre-crushed state.
  • the size of the crushed waste plastic is arbitrary, but it is preferable that the diameter is 20 mm or less. Furthermore, even if foreign objects such as metals are mixed into the waste plastic, as long as they are small enough to pass through the pressure feeder 120 and the pressure-insertion pipe 130, they will not interfere with the operation of the system. In this embodiment, foreign objects with a diameter of 5 mm or less can pass through the pressure feeder 120 and the pressure-insertion pipe 130.
  • the hopper 110 tapers downward and has an inlet 111 for waste plastic at the top.
  • the hopper 110 has a mixing inlet 112 on the side for mixing additives into the waste plastic, allowing any additive to be mixed into the waste plastic before the pressure feeder 120.
  • powdered hydrated lime is used as the additive.
  • the mixing inlet 112 of the hopper 110 serves as a raw material side mixing mechanism for mixing additives into the waste plastic.
  • the pressure feeder 120 has a cylinder 121 that extends in the direction in which the waste plastic is discharged, an extrusion screw 122 that is disposed within the cylinder 121, and a motor 123 that drives the extrusion screw 122.
  • the waste plastic and slaked lime supplied from the hopper 110 are mixed in the extrusion screw 122 and pressure-fed to the pressure-in pipe 130 side.
  • the press-in pipe 130 connects the pressure feeder 120 and the pyrolysis furnace 140, and presses the waste plastic sent from the pressure feeder 120 into the pyrolysis furnace 140.
  • the press-in pipe 130 is formed with a smaller diameter than the cylindrical body 121 of the pressure feeder 120 and the cylindrical body 141 of the pyrolysis furnace 140.
  • the press-in pipe 130 has a constant cross section along the longitudinal direction and is nominal 100A (outer diameter 114.3 mm) or more.
  • An electric heater (not shown) is provided in the press-in pipe 130, and the inner surface of the press-in pipe 130 is controlled by the electric heater to a temperature at which the waste plastic does not start to pyrolyze, and the waste plastic is pressed into the pyrolysis furnace in a temperature-controlled state.
  • the electric heater is provided to cover the outer surface of the press-in pipe 130, and the inner surface temperature of the press-in pipe 130 is controlled to 180°C or more and 250°C or less.
  • the pyrolysis furnace 140 has a horizontal kiln structure and includes a cylindrical body 141 and a motor (not shown) for rotating the body 141.
  • the diameter of the body 141 is about 2 m, and the inclination angle of the body 141 is set to about 1 degree.
  • a press-in pipe 130 is connected to one end of the body 141, and a residue discharge section 142 for discharging residue generated in the body 141 and a decomposition gas delivery section 143 for sending decomposition gas generated in the body 141 to the next process device are arranged on the other end of the body 141.
  • a steam introduction section 144 for introducing superheated steam into the body 141 is arranged on the other end of the body 141.
  • the temperature inside the body 141 is controlled by superheated steam introduced from the steam introduction section 144, and the temperature inside the body 141 is controlled to be between 400°C and 500°C.
  • the oxygen concentration inside the cylinder 141 is relatively low.
  • the oxygen concentration inside the cylinder 141 is set to 3% or less.
  • a spiral guide 141a that protrudes radially inward is formed on the inner surface of the other end of the cylinder 141.
  • a catalyst 145 for lightening the recovered cracked oil is placed inside the cylinder 141.
  • the catalyst 145 is formed in a spherical shape, and a large number of catalysts 145 are placed on the inner surface of the horizontally placed cylinder 141.
  • the residual material discharge section 142 moves the residual material through a slit smaller than the diameter of each catalyst 145 so that each catalyst 145 is not discharged together with the residual material.
  • the size of each catalyst 145 is arbitrary, but can be 50 mm or more and 75 mm or less in diameter.
  • the ratio of the diameter of the cylinder 141 to the diameter of each catalyst 145 is arbitrary, but is preferably 50:1 to 20:1.
  • the catalyst 145 only needs to contain a material having a catalytic function, and may be, for example, made of only a material having a catalytic function, or may be a material having a catalytic function impregnated into a base material.
  • the material having a catalytic function can be selected arbitrarily, but metals such as copper can be used, for example.
  • the cooling device 150 cools the cracked gas and steam discharged from the pyrolysis furnace 140 to produce cracked oil and water.
  • the piping at the outlet of the pyrolysis furnace 140 from which the cracked gas and steam are discharged has a downward slope, and the inner surface of the piping is always kept at 320°C or higher and 380°C or lower, thereby preventing adhesion or adhesion of decomposition products.
  • the cooling temperature of the cracked gas and steam in the cooling device 150 is arbitrary, but in this embodiment it is 80°C or higher and 100°C or lower. In this embodiment, the cooling device 150 also uses cooling water supplied from the recovery device 160 to cool the cracked gas and superheated steam.
  • the recovery unit 160 recovers the cracked oil and water, and discharges the remaining gas.
  • the recovery unit 160 has an oil-water separation mechanism, and is able to recover high-quality hydrocarbon oil. By rapidly cooling the off-gas from the oil-water separation mechanism, it is possible to recover even lower molecular weight light components, and it is also possible to recover naphtha components such as benzene.
  • the rapid cooling temperature in this case is, for example, 5°C or lower.
  • the water recovered by the recovery unit 160 is sent to the cooling unit 150 as cooling water, and is also sent to the boiler 170.
  • the boiler 170 heats the water supplied from the recovery device 160 to produce superheated steam, and sends the superheated steam to the pyrolysis furnace 140.
  • a steam-side mixing device 180 is provided between the recovery device 160 and the boiler 170, and an additive for waste plastic is mixed into the water supplied from the recovery device 160.
  • powdered slaked lime is used as the additive.
  • the water to which the powdered slaked lime has been added is made into superheated steam containing powdered slaked lime in the boiler 170.
  • the superheated steam in the boiler 170 is at 600°C or higher and 700°C or lower.
  • the amount of slaked lime added is arbitrary, but if the content of plastic materials such as polyvinyl chloride and polyethylene terephthalate that react with slaked lime is known by raw material analysis or the like, the amount of slaked lime added from the mixing inlet 112 and the steam side mixing device 180 may be adjusted so that the ratio is equimolar (1:1) with the plastic material.
  • the waste plastic mixed with slaked lime is mixed and pressure-fed by the pressure feeder 120 (mixing step S3). In the mixing step S3, the waste plastic and slaked lime are mixed evenly.
  • the waste plastic mixed with the slaked lime is heated to a predetermined temperature in the press-in pipe 130 (temperature control step S4).
  • the inner surface temperature of the press-in pipe 130 is controlled to 180°C or higher and 250°C or lower, and the waste plastic is in a softened state.
  • the pressure inside the press-in pipe 130 is set to 0.5 MPa or higher and 1.0 MPa or lower.
  • the waste plastic inside the press-in pipe 130 may be in a molten state if the inner surface temperature is controlled to 200°C or higher.
  • the waste plastic that has been brought to a predetermined temperature in the temperature control process S4 is pressed into the pyrolysis furnace 140 through the pressurizing pipe 130 (pressurizing process S5). This allows the waste plastic to be fed into the pyrolysis furnace 140 while ensuring a seal with the atmosphere.
  • the supply state of the waste plastic to the pyrolysis furnace 140 is controlled by controlling the drive state of the motor 123 of the pressure feeder 120. In this embodiment, the motor 123 is operated intermittently to repeatedly press and stop the waste plastic, thereby controlling the amount of waste plastic supplied to the pyrolysis furnace 140.
  • the waste plastics fed into the pyrolysis furnace 140 are heated by superheated steam and pyrolyzed (pyrolysis process S6).
  • the rotation speed of the cylinder 141 is arbitrary, but in this embodiment, it is set to 0.5 to 1.0 rotations per minute, and the residence time of the pyrolyzed waste plastics is 30 to 60 minutes.
  • the rotation direction of the cylinder 141 during normal operation in the pyrolysis process S6 is a direction (the aforementioned reverse direction) that suppresses the retention of the residual material in the cylinder 141 near the residual material discharge section 142.
  • the residual material in the cylinder 141 is discharged from the residual material discharge section 142.
  • the multiple catalysts 145 arranged in the pyrolysis furnace 140 flow inside the cylinder 141 together with the waste plastics when the cylinder 141 rotates. Because each catalyst 145 is spherical, it has a large contact area with the waste plastic, maximizing the effect of each catalyst 145 in lightening the cracked gas.
  • the polyvinyl chloride in the waste plastic is hydroxylated by heating in a high-temperature steam atmosphere.
  • the inside of the cylinder 141 is at normal pressure.
  • Powdered hydrated lime which is an alkaline material, is supplied into the cylinder 141 together with the superheated steam, and since the hydrated lime is mixed into the waste plastic in the mixing step S2, when the polyvinyl chloride is hydroxylated, the hydrochloric acid content of the polyvinyl chloride is neutralized by the hydrated lime to become solid calcium chloride.
  • the contact efficiency between the waste plastic and slaked lime is extremely high.
  • the waste plastic and slaked lime are mixed evenly in the kneading step S3, the hydroxylation of polyvinyl chloride can be performed accurately with the minimum amount of slaked lime added.
  • the hydroxide generated from polyvinyl chloride is further heated to become hydrocarbon oil gas.
  • the organic acid content of polyethylene terephthalate in the waste plastic is neutralized with slaked lime to become solid calcium benzoate, which is thermally decomposed to become benzene gas.
  • polypropylene, polystyrene, and polyethylene in the waste plastic are thermally decomposed to become hydrocarbon oil gas.
  • Calcium chloride and calcium benzoate produced in the pyrolysis furnace 140 are discharged as residue from the residue discharge section 142.
  • the hydrocarbon oil gas and benzene gas produced in the pyrolysis furnace 140 are sent as cracked gas from the cracked gas delivery section 143 to the next process device.
  • the cracked gas is sent out together with high-temperature steam.
  • the cracked gas and high-temperature steam sent out from the pyrolysis furnace 140 are cooled in the cooling device 150 (cooling step S7) and then recovered as cracked oil and water in the recovery device 160 (recovery step S8).
  • the water recovered in the recovery device 160 is sent to the cooling device 150 and boiler 170, and is reused for cooling the cracked gas in the cooling device 150 and for thermally decomposing waste plastic in the boiler 170.
  • the waste plastic is heated directly by the superheated steam introduced into the pyrolysis furnace 140, which dramatically improves the efficiency of heat transfer to the waste plastic compared to systems that circulate a heated fluid between the inner and outer cylinders.
  • the temperature of the waste plastic is controlled independently of the pressure feeder 120 by the pressure-in pipe 130, so that the temperature of the waste plastic entering the pyrolysis furnace 140 can be accurately controlled.
  • the waste plastic contains materials that vaporize at relatively low temperatures, some of the heated waste plastic will not be pyrolyzed before entering the pyrolysis furnace, and pyrolysis gas will not flow back toward the waste plastic inlet. Therefore, the waste plastic can be stably fed into the pyrolysis furnace 140, and fires and other accidents caused by the backflow of pyrolysis gas can be prevented.
  • a backflow prevention mechanism such as a liquid tank must be installed upstream to prevent fires, explosions, etc. due to the backflow of pyrolysis gas.
  • molten waste plastic is continuously fed into the pyrolysis furnace 140 in a compressed state through the pressure-in pipe 130, so there is no backflow of pyrolysis gas.
  • a spherical catalyst 145 is placed inside the cylindrical body 141 of the pyrolysis furnace 140, which makes it possible to lighten the quality of the cracked oil.
  • the catalyst 145 is spherical, it is easy to replace and replenish, making it easy to maintain.
  • the polyvinyl chloride in the waste plastic is combined with slaked lime and steam in the pyrolysis furnace 140, there is no need to perform dechlorination or the like before feeding it into the pyrolysis furnace 140.
  • the waste plastic is heated to 300°C or higher and 350°C or lower in the first stage of the pyrolysis process, and only the vinyl chloride is selectively pyrolyzed and dechlorinated in the form of hydrogen chloride, it is necessary to provide a device and process for dechlorination separately from the device and process for pyrolysis.
  • polyvinyl chloride is decomposed into hydrochloric acid and charcoal, which is problematic in that its use as a recycled product is limited, but this problem is solved in the oilification system 100 of this embodiment.
  • slaked lime is mixed into the waste plastic, polyethylene terephthalate is also neutralized, and blockage of pipes, etc. due to corrosion products caused by benzoic acid, etc. is prevented.
  • the additives are introduced into the pyrolysis furnace 140 together with the superheated steam, so the contact efficiency between the waste plastics and the additives is extremely high, and an effective reaction between the additives and the waste plastics is achieved.
  • the waste plastics and additives are mixed evenly in the kneading process S3, improving the contact efficiency between the waste plastics and the additives.
  • Figures 3 and 4 show a second embodiment of the present invention, where Figure 3 is a schematic diagram of a waste plastic oil production system (aluminum recovery system) and Figure 4 is a flowchart of a waste plastic oil production method (aluminum recovery method).
  • the waste plastic oil conversion system 200 shown in FIG. 3 can effectively separate and recover aluminum from waste plastics that contain aluminum. It is difficult to recycle aluminum components, such as packaging materials made of aluminum sheets coated with plastic resin, when they become waste, which is a major issue. There are no established devices or methods capable of continuously processing large amounts of aluminum component waste, and currently, most aluminum component waste is incinerated and then disposed of in landfills.
  • the waste plastic oil conversion system 200 and waste plastic oil conversion method of this embodiment can solve this issue, and can also be used as an aluminum recovery system and aluminum recovery method.
  • this waste plastic oil production system 200 is the same as the first embodiment of the waste plastic oil production system 100 with the addition of a residue flow path 210 and a residue receiving tank 220.
  • the waste plastic oil production system 200 of this embodiment has the same configuration as the first waste plastic oil production system 100, except for the residue flow path 210 and the residue receiving tank 220, and a description of these configurations will be omitted here.
  • the residue flow path 210 connects the downstream lower part of the pyrolysis path 140 with the upper part of the residue receiving tank 220. It is preferable that the inner surfaces of the residue flow path 210 and the residue receiving tank 220 are always kept at 400°C or higher, and are controlled to, for example, 400°C or higher and 500°C or lower. This allows the residue to be transferred from the pyrolysis furnace 140 to the residue receiving tank 220 in a temperature-controlled state.
  • the method of converting waste plastics into oil in the waste plastic conversion system 200 configured as described above will be described with reference to the flowchart in Figure 4.
  • the waste plastics are stirred inside the pyrolysis furnace 140 and heat conduction and thermal decomposition are carried out by direct contact with superheated steam.
  • the method of converting waste plastics into oil in this embodiment is obtained by adding an aluminum recovery step S9 to steps S1 to S8 of the method of converting waste plastics into oil in the first embodiment.
  • the method of converting waste plastics into oil in this embodiment is basically the same as the first method of converting waste plastics into oil, except for the aluminum recovery step S9.
  • feeding step S1 aluminum-containing waste plastics are crushed and fed into the inlet 111 of the hopper 110 (feeding step S1).
  • slaked lime is mixed into the aluminum-containing waste plastics through the mixing inlet 112 of the hopper 110 (mixing step S2).
  • the aluminum-containing waste plastics mixed with the slaked lime are mixed and pressure-fed by the pressure feeder 120 (mixing step S3).
  • the aluminum-containing waste plastics mixed with the slaked lime are heated to a predetermined temperature in the pressure-in pipe 130 (temperature control step S4).
  • the aluminum-containing waste plastics that have been brought to the predetermined temperature in the temperature control step S4 are pressure-injected from the pressure-in pipe 130 into the pyrolysis furnace 140 (pressing step S5).
  • the aluminum-containing waste plastics fed into the pyrolysis furnace 140 are heated by superheated steam to pyrolyze the plastic components (pyrolysis step S6).
  • the temperature of the superheated steam introduced into the cylinder 141 is 600°C or higher and 700°C or lower, and the temperature inside the cylinder 141 is controlled to 400°C or higher and 500°C or lower.
  • the temperature of the superheated steam introduced does not necessarily have to be 600°C or higher, and can be adjusted to a temperature suitable for processing the aluminum-containing waste plastics within the range of 400°C or higher and 700°C or lower.
  • solid aluminum remains in the pyrolysis furnace 140.
  • the rotation direction of the cylinder 141 during normal operation in the pyrolysis step S6 is set to a direction (reverse direction) that suppresses the retention of residual materials in the cylinder 141 near the residual material discharge section 142.
  • the decomposition gas generated in the pyrolysis furnace 140 is cooled in the cooling device 150 (cooling step S7) and then recovered as decomposition oil in the recovery device 160 (recovery step S8).
  • the same effect as in the first embodiment can be obtained for the treatment of the plastic components of aluminum-containing waste plastic.
  • the residual material in the cylinder 141 is discharged from the residual material discharge section 142.
  • the aluminum remaining in the pyrolysis furnace 140 is discharged as residual material from the residual material discharge section 142 together with calcium chloride and calcium benzoate.
  • the residual material discharged from the residual material discharge section 142 is transferred to the residual material receiving tank 220 through the residual material flow path 210.
  • the aluminum of the aluminum-containing waste plastics is recovered in the residual material receiving tank 220 (aluminum recovery process S9).
  • the residual material flow path 210 and the residual material receiving tank 220 are controlled so as not to fall below 400°C, so that the aluminum material can be recovered with high precision.
  • the aluminum recovery method of this embodiment allows for continuous processing of large amounts of aluminum-containing waste plastics.
  • aluminum can be recovered in an unoxidized state, allowing it to be used as a recycled material.
  • large amounts of carbon dioxide are not emitted, as is the case with the general aluminum material manufacturing process, and this can result in a reduction in carbon dioxide emissions.
  • aluminum is recovered from aluminum-containing waste plastics.
  • the waste plastics contain other metals as well as aluminum, the other metals can be recovered from the waste plastics along with the aluminum.
  • hydrocarbon oil resources can be obtained by pyrolysis, and useful metal resources such as aluminum can be recovered.
  • the waste plastics to be converted into oil are shown to include polyvinyl chloride, polyethylene terephthalate, polypropylene, polystyrene, and polyethylene, but any type of plastic material contained in the waste plastics can be used.
  • slaked lime is added to the waste plastics, an alkaline material other than slaked lime may be used, for example quicklime may be used as the alkaline material.
  • the waste plastics to be converted into oil do not include polyvinyl chloride and polyethylene terephthalate, it is not necessarily necessary to add an alkaline material.
  • additives are added from both the mixing inlet 112 on the raw material side and the mixing device 180 on the steam side, but additives may be added from either the raw material side or the steam side.
  • the additives can be changed as desired, and in addition to alkaline materials, catalytic materials, for example, can be selected. If additives are not required, the raw material side mixing mechanism and the steam side mixing device may not be provided. Furthermore, if a catalyst is not required, the spherical catalyst inside the cylinder may not be provided.
  • the pressure feeder 120 is used as the waste plastic discharge mechanism, but other discharge mechanisms such as a rotary pump may be used.
  • the waste plastic is supplied to the pressure feeder 120 through the hopper 110, but for example, sheet-shaped waste plastic may be supplied directly from a roll to the pressure feeder 120.
  • Oil production system 110 Hopper 111 Feeding port 112 Mixing port 120 Pressure feeder 121 Cylindrical body 122 Extrusion screw 123 Motor 130 Pressing pipe 140 Pyrolysis furnace 141 Cylindrical body 141a Guide section 142 Residue discharge section 143 Cracked gas delivery section 144 Steam introduction section 145 Catalyst 150 Cooling device 160 Recovery device 170 Boiler 180 Steam side mixing device 200 Oil production system 210 Residual material flow path 220 Residual material receiving tank S1 Feeding process S2 Mixing process S3 Kneading process S4 Temperature control process S5 Pressing process S6 Pyrolysis process S7 Cooling process S8 Recovery process S9 Aluminum recovery process

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Provided is a waste plastic-to-oil conversion system that can suppress coking in the pyrolysis furnace. The waste plastic-to-oil conversion system 100 is provided with a pyrolysis furnace 140 that pyrolyzes waste plastic. The pyrolysis furnace 140 has a steam introduction part for introducing superheated steam into the furnace, and the waste plastic is directly heated by the superheated steam and is thermally decomposed. This waste plastic-to-oil conversion system 100 can suppress coking in the pyrolysis furnace 140.

Description

廃プラスチックの油化システム及びアルミニウムの回収システムWaste plastic oil production system and aluminum recovery system

 本発明は、廃プラスチックの油化システムに関する。 The present invention relates to a system for converting waste plastic into oil.

 廃プラスチックを熱分解させて分解ガスとした後、冷却して分解油として回収する油化システムが普及している。この油化システムに用いられる熱分解処理装置として、良熱伝導材により円筒状に形成されその軸芯を中心に回転駆動される内筒、及びこの内筒の外周を加熱空間を介して覆い、この加熱空間内に加熱ガスが供給される外筒を有する熱分解炉を備えたものが知られている(例えば、特許文献1参照)。特許文献1に記載の熱分解処理装置は、内筒の一端側に連結されこの内筒内に廃プラスチックを外気と遮断した状態で投入する材料投入装置を備え、内筒内には多数のセラミックボールが設けられている。また、特許文献1に記載の熱分解処理装置は、内筒の他端部を覆うように設置されるとともにセラミックボールの外径より小さな幅寸法のスリットが複数形成され、これらスリットを通して内筒内で生成された熱分解ガス及び熱分解残渣を排出させる生成物排出部材を備え、この生成物排出部材を含む内筒の他端部を包囲して外気と遮断する排出部筐体が設けられている。さらに、特許文献1に記載の熱分解処理装置は、排出部筐体に設けられ熱分解ガスを外部に排出させる熱分解ガス排出装置と、熱分解残渣を外部に排出させる残渣排出装置と、を備えている。 An oil-recovery system in which waste plastic is thermally decomposed to produce decomposition gas, which is then cooled and recovered as decomposition oil, is in widespread use. A known thermal decomposition treatment device used in this oil-recovery system is a thermal decomposition furnace having an inner cylinder made of a material with good thermal conductivity and rotated around its axis, and an outer cylinder that covers the outer periphery of the inner cylinder through a heating space and supplies heated gas into the heating space (see, for example, Patent Document 1). The thermal decomposition treatment device described in Patent Document 1 is equipped with a material input device that is connected to one end of the inner cylinder and inputs waste plastic into the inner cylinder while being isolated from the outside air, and a large number of ceramic balls are provided inside the inner cylinder. The thermal decomposition treatment device described in Patent Document 1 is also equipped with a product discharge member that is installed to cover the other end of the inner cylinder and has multiple slits with a width smaller than the outer diameter of the ceramic balls, and discharges the thermal decomposition gas and thermal decomposition residue generated in the inner cylinder through these slits, and is provided with a discharge unit housing that surrounds the other end of the inner cylinder including the product discharge member and isolates it from the outside air. Furthermore, the pyrolysis treatment device described in Patent Document 1 is equipped with a pyrolysis gas discharge device that is provided in the discharge housing and discharges pyrolysis gas to the outside, and a residue discharge device that discharges pyrolysis residue to the outside.

 特許文献1の材料投入装置は、外皮部材となる筒体を有し、筒体内にスクリューフィーダが設けられている。スクリューフィーダは、2本のスクリューを互いに噛み合うように平行配置したもので、外部に設けられた駆動装置により回転駆動される。材料投入装置の一端側は熱分解炉を貫通して内筒内部に突出している。材料投入装置は、他端側に材料ホッパーと連結された材料入口を有し、材料ホッパーから廃プラスチックの供給を受け、これを熱分解炉の内筒内に投入する。 The material feeding device in Patent Document 1 has a cylindrical body that serves as an outer shell member, and a screw feeder is provided inside the cylindrical body. The screw feeder is composed of two screws arranged in parallel so that they mesh with each other, and is driven to rotate by an external drive unit. One end of the material feeding device penetrates the pyrolysis furnace and protrudes into the inner cylinder. The material feeding device has a material inlet connected to a material hopper on the other end, receives a supply of waste plastic from the material hopper, and feeds it into the inner cylinder of the pyrolysis furnace.

特開2007-332220号公報JP 2007-332220 A

 しかしながら、特許文献1に記載の熱分解処理装置では、例えば鋼板からなる熱分解炉の内筒が入熱部であるため炉内で最も高温となり、内筒の内面に分解ガスや油分が焦げ付いてコーキングを起こしやすいという問題点がある。特許文献1では、内筒内に多数のセラミックボールが設けられているものの、コーキングの抑制効果は限定的であり、コーキングが多量に発生すると入熱不足で廃プラスチックを分解することができなくなる。 However, the pyrolysis treatment device described in Patent Document 1 has a problem in that the inner tube of the pyrolysis furnace, which is made of steel plate, is the heat input part and therefore reaches the highest temperature inside the furnace, and decomposition gases and oils tend to burn to the inner surface of the inner tube, causing coking. In Patent Document 1, although many ceramic balls are provided inside the inner tube, the effect of suppressing coking is limited, and if a large amount of coking occurs, the heat input is insufficient and the waste plastic cannot be decomposed.

 本発明は、上記問題に鑑みてなされたものであり、熱分解炉におけるコーキングを抑制することのできる廃プラスチックの油化システムを提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a waste plastic oil production system that can suppress coking in the pyrolysis furnace.

 上記目的を達成するため、本発明では、
 廃プラスチックを熱分解する熱分解炉を備えた廃プラスチックの油化システムであって、
 前記熱分解炉は、炉内へ過熱蒸気を導入する蒸気導入部を有し、
 前記廃プラスチックは、前記過熱蒸気により直接的に加熱されて熱分解される廃プラスチックの油化システムが提供される。
In order to achieve the above object, the present invention provides
A waste plastic oil production system having a pyrolysis furnace for pyrolyzing waste plastic,
The pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace,
A system for producing oil from waste plastics is provided in which the waste plastics are directly heated and pyrolyzed by the superheated steam.

 上記廃プラスチックの油化システムにおいて、
 前記過熱蒸気に前記廃プラスチック用の添加剤を混入させる蒸気側混入装置を有することが好ましい。
In the above waste plastic oil production system,
It is preferable to have a steam side mixing device for mixing an additive for the waste plastic into the superheated steam.

 上記廃プラスチックの油化システムにおいて、
 前記熱分解炉へ前記廃プラスチックを送出する送出機構を備え、
 前記送出機構と前記熱分解炉の間に配置され、前記廃プラスチックの温度制御を行い、温度制御された状態で前記廃プラスチックを前記熱分解炉へ圧入する圧入パイプを設けることが好ましい。
In the above waste plastic oil production system,
A delivery mechanism is provided for delivering the waste plastic to the pyrolysis furnace,
It is preferable to provide a pressure pipe disposed between the delivery mechanism and the pyrolysis furnace, which controls the temperature of the waste plastic and pressure-feeds the waste plastic into the pyrolysis furnace under temperature control.

 上記廃プラスチックの油化システムにおいて、
 前記熱分解炉は、横置きの円筒状の筒体と、前記筒体の内部に配置された球状の触媒を有することが好ましい。
In the above waste plastic oil production system,
The pyrolysis furnace preferably has a horizontally placed cylindrical body and a spherical catalyst disposed inside the cylindrical body.

 上記廃プラスチックの油化システムにおいて、
 前記送出機構により送出される前記廃プラスチックに添加剤を混入させる原料側混入機構を有することが好ましい。
In the above waste plastic oil production system,
It is preferable to have a raw material side mixing mechanism for mixing an additive into the waste plastic delivered by the delivery mechanism.

 上記廃プラスチックの油化システムにおいて、
 前記廃プラスチックは、アルミニウム含有廃プラスチックであり、
 前記アルミニウム含有廃プラスチックは、前記過熱蒸気により直接的に加熱され、前記アルミニウム含有廃プラスチックのプラスチック成分が熱分解されてアルミニウムが残留してもよい。
In the above waste plastic oil production system,
The waste plastic is an aluminum-containing waste plastic,
The aluminum-containing waste plastics may be directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastics may be thermally decomposed to leave aluminum.

 上記廃プラスチックの油化システムにおいて、
 前記熱分解炉に接続され、前記熱分解炉から排出される前記アルミニウムを含む残材が流通する残材流通路と、
 前記残材流通路に接続された残材受け入れタンクと、を備え、
 前記残材流通路及び前記残材受け入れタンクは、前記残材の温度制御を行い、温度制御された状態で前記残材を回収してもよい。
In the above waste plastic oil production system,
a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
A remnant receiving tank connected to the remnant flow passage,
The waste material flow passage and the waste material receiving tank may control the temperature of the waste material, and the waste material may be collected in a temperature-controlled state.

 また、本発明では、
 アルミニウム含有廃プラスチックから廃プラスチックを分離してアルミニウムを回収するアルミニウムの回収システムであって、
 前記アルミニウム含有廃プラスチックのプラスチック成分を熱分解する熱分解炉を備え、
 前記熱分解炉は、炉内へ過熱蒸気を導入する蒸気導入部を有し、
 前記アルミニウム含有廃プラスチックは、前記過熱蒸気により直接的に加熱され、前記アルミニウム含有廃プラスチックのプラスチック成分が熱分解されてアルミニウムが残留するアルミニウムの回収システムが提供される。
In addition, in the present invention,
An aluminum recovery system for recovering aluminum by separating waste plastic from aluminum-containing waste plastic, comprising:
A pyrolysis furnace is provided for pyrolyzing the plastic components of the aluminum-containing waste plastic,
The pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace,
The aluminum-containing waste plastics are directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastics are thermally decomposed to leave aluminum, thereby providing an aluminum recovery system.

 上記アルミニウムの回収システムにおいて、
 前記熱分解炉に接続され、前記熱分解炉から排出される前記アルミニウムを含む残材が流通する残材流通路と、
 前記残材流通路に接続された残材受け入れタンクと、を備え、
 前記残材流通路及び前記残材受け入れタンクは、前記残材の温度制御を行い、温度制御された状態で前記残材を回収することが好ましい。
In the above aluminum recovery system,
a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
A remnant receiving tank connected to the remnant flow passage,
It is preferable that the residual material flow passage and the residual material receiving tank perform temperature control of the residual material, and collect the residual material in a temperature-controlled state.

 本発明によれば、熱分解炉におけるコーキングを抑制することができる。 The present invention makes it possible to suppress coking in pyrolysis furnaces.

本発明の第1の実施形態を示す廃プラスチックの油化システムの模式図である。1 is a schematic diagram of a waste plastic oil production system showing a first embodiment of the present invention. FIG. 廃プラスチックの油化方法のフローチャートである。1 is a flowchart of a method for converting waste plastic into oil. 本発明の第2の実施形態を示す廃プラスチックの油化システム(アルミニウムの回収システム)の模式図である。FIG. 1 is a schematic diagram of a waste plastic oil production system (aluminum recovery system) showing a second embodiment of the present invention. 廃プラスチックの油化方法(アルミニウムの回収方法)のフローチャートである。1 is a flowchart of a method for converting waste plastic into oil (aluminum recovery method).

 図1及び図2は本発明の第1の実施形態を示し、図1は廃プラスチックの油化システムの模式図、図2は廃プラスチックの油化方法のフローチャートである。 FIGS. 1 and 2 show a first embodiment of the present invention, where FIG. 1 is a schematic diagram of a waste plastic oil production system, and FIG. 2 is a flowchart of a waste plastic oil production method.

 この廃プラスチックの油化システム100は、ポリ塩化ビニル(PVC)及びポリエチレンテレフタレート(PET)が含まれる廃プラスチックの油化に好適に用いることができる。具体的に、本実施形態においては、廃プラスチックは、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)及びポリエチレン(PE)を含んでいる。 This waste plastic oil production system 100 can be suitably used to produce oil from waste plastics that contain polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Specifically, in this embodiment, the waste plastics contain polyvinyl chloride (PVC), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE).

 図1に示すように、この油化システム100は、廃プラスチックが投入されるホッパー110と、ホッパー110に投入された廃プラスチックを送出する圧送フィーダ120と、圧送フィーダ120から送出される廃プラスチックの温度制御を行う圧入パイプ130と、圧入パイプ130から圧入された廃プラスチックを加熱して分解する熱分解炉140と、分解ガスを冷却して分解油とする冷却装置150と、分解油を回収する回収装置160と、熱分解炉へ過熱蒸気を供給するボイラ170と、過熱蒸気へ添加剤を混入させるための蒸気側混入装置180と、を有する。本実施形態においては、廃プラスチックは、予め破砕された状態でホッパー110から投入される。破砕後の廃プラスチックのサイズは任意であるが、直径20mm以下とすることがのぞましい。尚、金属等の異物が廃プラスチックに混入していても、圧送フィーダ120及び圧入パイプ130を通過可能なサイズであれば、システムの動作に支障を生じることはない。本実施形態においては、直径5mm以下の異物であれば、圧送フィーダ120及び圧入パイプ130を通過することができる。 As shown in FIG. 1, this oilification system 100 has a hopper 110 into which waste plastic is fed, a pressure feeder 120 that sends out the waste plastic fed into the hopper 110, a pressure pipe 130 that controls the temperature of the waste plastic sent out from the pressure feeder 120, a pyrolysis furnace 140 that heats and decomposes the waste plastic pressed in from the pressure pipe 130, a cooling device 150 that cools the decomposition gas to produce decomposition oil, a recovery device 160 that recovers the decomposition oil, a boiler 170 that supplies superheated steam to the pyrolysis furnace, and a steam-side mixing device 180 for mixing additives into the superheated steam. In this embodiment, the waste plastic is fed from the hopper 110 in a pre-crushed state. The size of the crushed waste plastic is arbitrary, but it is preferable that the diameter is 20 mm or less. Furthermore, even if foreign objects such as metals are mixed into the waste plastic, as long as they are small enough to pass through the pressure feeder 120 and the pressure-insertion pipe 130, they will not interfere with the operation of the system. In this embodiment, foreign objects with a diameter of 5 mm or less can pass through the pressure feeder 120 and the pressure-insertion pipe 130.

 ホッパー110は、下方へ向かって窄む形状を呈し、廃プラスチックの投入口111を上端に有している。ホッパー110は、廃プラスチックに添加剤を混入させるための混入口112を側部に有しており、圧送フィーダ120の手前で任意の添加剤を廃プラスチックに混入させることができる。本実施形態においては、添加剤として粉末状の消石灰が用いられる。本実施形態においては、ホッパー110の混入口112が、廃プラスチックに添加材を混入させる原料側混入機構をなしている。 The hopper 110 tapers downward and has an inlet 111 for waste plastic at the top. The hopper 110 has a mixing inlet 112 on the side for mixing additives into the waste plastic, allowing any additive to be mixed into the waste plastic before the pressure feeder 120. In this embodiment, powdered hydrated lime is used as the additive. In this embodiment, the mixing inlet 112 of the hopper 110 serves as a raw material side mixing mechanism for mixing additives into the waste plastic.

 圧送フィーダ120は、廃プラスチックの送出方向へ延びる筒体121と、筒体121内に配置される押出スクリュー122と、押出スクリュー122を駆動するモータ123と、を有している。ホッパー110から供給された廃プラスチック及び消石灰は、押出スクリュー122で混錬されつつ圧入パイプ130側へ圧送される。 The pressure feeder 120 has a cylinder 121 that extends in the direction in which the waste plastic is discharged, an extrusion screw 122 that is disposed within the cylinder 121, and a motor 123 that drives the extrusion screw 122. The waste plastic and slaked lime supplied from the hopper 110 are mixed in the extrusion screw 122 and pressure-fed to the pressure-in pipe 130 side.

 圧入パイプ130は、圧送フィーダ120と熱分解炉140とを接続し、圧送フィーダ120から送出された廃プラスチックを熱分解炉140内へ圧入する。本実施形態においては、圧入パイプ130は、圧送フィーダ120の筒体121及び熱分解炉140の筒体141よりも小径に形成される。具体的に、圧入パイプ130は、長手方向にわたって断面が一定であり、呼び系100A(外径114.3mm)以上とされる。圧入パイプ130には電気ヒータ(図示せず)が設けられ、圧入パイプ130の内面は電気ヒータにより廃プラスチックが熱分解を開始しない温度に制御され、廃プラスチックは温度制御された状態で熱分解炉へ圧入される。本実施形態においては、電気ヒータは、圧入パイプ130の外面を覆うよう設けられ、圧入パイプ130の内面温度は180℃以上250℃以下に制御される。 The press-in pipe 130 connects the pressure feeder 120 and the pyrolysis furnace 140, and presses the waste plastic sent from the pressure feeder 120 into the pyrolysis furnace 140. In this embodiment, the press-in pipe 130 is formed with a smaller diameter than the cylindrical body 121 of the pressure feeder 120 and the cylindrical body 141 of the pyrolysis furnace 140. Specifically, the press-in pipe 130 has a constant cross section along the longitudinal direction and is nominal 100A (outer diameter 114.3 mm) or more. An electric heater (not shown) is provided in the press-in pipe 130, and the inner surface of the press-in pipe 130 is controlled by the electric heater to a temperature at which the waste plastic does not start to pyrolyze, and the waste plastic is pressed into the pyrolysis furnace in a temperature-controlled state. In this embodiment, the electric heater is provided to cover the outer surface of the press-in pipe 130, and the inner surface temperature of the press-in pipe 130 is controlled to 180°C or more and 250°C or less.

 熱分解炉140は、横置きのキルン構造であり、円筒状の筒体141と、筒体141を回転させるモータ(図示せず)と、を有している。本実施形態においては、筒体141の直径は約2mで、筒体141の傾斜角は1度程度に設定されている。筒体141の一端側には圧入パイプ130が接続され、筒体141の他端側には、筒体141内で生じた残材を排出する残材排出部142と、筒体141内で生じた分解ガスを次工程の装置へ送出する分解ガス送出部143と、が配置される。また、本実施形態においては、筒体141の他端側には、筒体141内へ過熱蒸気を導入する蒸気導入部144が配置される。筒体141内は蒸気導入部144から導入される過熱蒸気により温度制御され、筒体141内の温度は400℃以上500℃以下に制御される。また、過熱蒸気が供給されることから、筒体141内の酸素濃度は比較的低くなる。本実施形態においては、筒体141内の酸素濃度は、3%以下に設定される。また、筒体141の他端側内面には、径方向内側へ突出する螺旋状のガイド141aが形成されている。筒体141を所定方向(順方向)に回転させると、筒体141内の残材はガイド141aにより残材排出部142側へ案内される。一方、筒体141を所定方向と反対方向(逆方向)に回転させると、筒体141内の残材の残材排出部142近傍での滞留が抑制される。 The pyrolysis furnace 140 has a horizontal kiln structure and includes a cylindrical body 141 and a motor (not shown) for rotating the body 141. In this embodiment, the diameter of the body 141 is about 2 m, and the inclination angle of the body 141 is set to about 1 degree. A press-in pipe 130 is connected to one end of the body 141, and a residue discharge section 142 for discharging residue generated in the body 141 and a decomposition gas delivery section 143 for sending decomposition gas generated in the body 141 to the next process device are arranged on the other end of the body 141. In this embodiment, a steam introduction section 144 for introducing superheated steam into the body 141 is arranged on the other end of the body 141. The temperature inside the body 141 is controlled by superheated steam introduced from the steam introduction section 144, and the temperature inside the body 141 is controlled to be between 400°C and 500°C. In addition, since superheated steam is supplied, the oxygen concentration inside the cylinder 141 is relatively low. In this embodiment, the oxygen concentration inside the cylinder 141 is set to 3% or less. In addition, a spiral guide 141a that protrudes radially inward is formed on the inner surface of the other end of the cylinder 141. When the cylinder 141 is rotated in a predetermined direction (forward direction), the remaining material inside the cylinder 141 is guided by the guide 141a to the remaining material discharge section 142 side. On the other hand, when the cylinder 141 is rotated in the opposite direction (reverse direction) to the predetermined direction, the remaining material inside the cylinder 141 is prevented from accumulating near the remaining material discharge section 142.

 また、筒体141内には、回収される分解油の軽質化のための触媒145が配置される。本実施形態においては、触媒145は球状に形成され、多数の触媒145が横置きの筒体141の内面に載置される。残材排出部142は、各触媒145が残材とともに排出されないように、各触媒145の直径より小さなサイズのスリットを通じて残材を移動させる。各触媒145の大きさは任意であるが、直径50mm以上75mm以下とすることができる。筒体141の直径と各触媒145の直径の比は任意であるが、50:1~20:1とすることが好ましい。触媒145は、触媒機能を有する材料を含んでいればよく、例えば、触媒機能を有する材料のみからなっていても、触媒機能を有する材料を基材に含侵等させたものであってもよい。触媒機能を有する材料は任意に選択可能であるが、例えば銅などの金属を用いることができる。 In addition, a catalyst 145 for lightening the recovered cracked oil is placed inside the cylinder 141. In this embodiment, the catalyst 145 is formed in a spherical shape, and a large number of catalysts 145 are placed on the inner surface of the horizontally placed cylinder 141. The residual material discharge section 142 moves the residual material through a slit smaller than the diameter of each catalyst 145 so that each catalyst 145 is not discharged together with the residual material. The size of each catalyst 145 is arbitrary, but can be 50 mm or more and 75 mm or less in diameter. The ratio of the diameter of the cylinder 141 to the diameter of each catalyst 145 is arbitrary, but is preferably 50:1 to 20:1. The catalyst 145 only needs to contain a material having a catalytic function, and may be, for example, made of only a material having a catalytic function, or may be a material having a catalytic function impregnated into a base material. The material having a catalytic function can be selected arbitrarily, but metals such as copper can be used, for example.

 冷却装置150は、熱分解炉140から送出された分解ガス及び蒸気を冷却して分解油及び水とする。分解ガス及び蒸気が送出される熱分解炉140の出口部分の配管は、下り勾配とするとともに、配管内面を常時320℃以上380℃以下に維持することにより、分解物の付着や固着を防止することができる。冷却装置150における分解ガス及び蒸気の冷却温度は任意であるが、本実施形態においては、80℃以上100℃以下である。また、本実施形態においては、冷却装置150は、回収装置160から供給される冷却水を利用して、分解ガス及び過熱蒸気を冷却する。 The cooling device 150 cools the cracked gas and steam discharged from the pyrolysis furnace 140 to produce cracked oil and water. The piping at the outlet of the pyrolysis furnace 140 from which the cracked gas and steam are discharged has a downward slope, and the inner surface of the piping is always kept at 320°C or higher and 380°C or lower, thereby preventing adhesion or adhesion of decomposition products. The cooling temperature of the cracked gas and steam in the cooling device 150 is arbitrary, but in this embodiment it is 80°C or higher and 100°C or lower. In this embodiment, the cooling device 150 also uses cooling water supplied from the recovery device 160 to cool the cracked gas and superheated steam.

 回収装置160は、分解油及び水を回収するとともに、残ったガスを排出する。回収装置160は、油水分離機構を有しており、良質な炭化水素油を回収することができる。尚、油水分離機構からのオフガスを急冷することによって、さらに低分子の軽質分を回収することができ、例えばベンゼン等のナフサ分の回収も可能となる。この場合の急冷温度は、例えば5℃以下である。回収装置160で回収された水は、冷却装置150へ冷却水として送出されるとともに、ボイラ170へ送出される。 The recovery unit 160 recovers the cracked oil and water, and discharges the remaining gas. The recovery unit 160 has an oil-water separation mechanism, and is able to recover high-quality hydrocarbon oil. By rapidly cooling the off-gas from the oil-water separation mechanism, it is possible to recover even lower molecular weight light components, and it is also possible to recover naphtha components such as benzene. The rapid cooling temperature in this case is, for example, 5°C or lower. The water recovered by the recovery unit 160 is sent to the cooling unit 150 as cooling water, and is also sent to the boiler 170.

 ボイラ170は、回収装置160から供給された水を加熱して過熱蒸気とし、過熱蒸気を熱分解炉140へ送出する。本実施形態においては、回収装置160とボイラ170との間に蒸気側混入装置180が設けられ、回収装置160から供給される水に廃プラスチックのための添加剤が混入される。本実施形態においては、添加剤として粉末状の消石灰が用いられる。粉末状の消石灰が添加された水は、ボイラ170で粉末状の消石灰を含む過熱蒸気とされる。本実施形態においては、ボイラ170における過熱蒸気は、600℃以上700℃以下である。 The boiler 170 heats the water supplied from the recovery device 160 to produce superheated steam, and sends the superheated steam to the pyrolysis furnace 140. In this embodiment, a steam-side mixing device 180 is provided between the recovery device 160 and the boiler 170, and an additive for waste plastic is mixed into the water supplied from the recovery device 160. In this embodiment, powdered slaked lime is used as the additive. The water to which the powdered slaked lime has been added is made into superheated steam containing powdered slaked lime in the boiler 170. In this embodiment, the superheated steam in the boiler 170 is at 600°C or higher and 700°C or lower.

 以上のように構成された廃プラスチックの油化システム100における油化方法について、図2のフローチャートを参照して説明する。
 まず、油化対象の廃プラスチックが破砕された状態でホッパー110の投入口111へ投入される(投入工程S1)。次いで、廃プラスチックにホッパー110の混入口112を通じて消石灰が混入される(混入工程S2)。消石灰の添加量は任意であるが、原料分析等により消石灰と反応をするポリ塩化ビニル、ポリエチレンテレフタレート等のプラスチック材料の含有量が把握できている場合は、このプラスチック材料と等モル(1:1)の比率となるように、混入口112及び蒸気側混入装置180から添加される消石灰の量を調整すればよい。消石灰が混入された廃プラスチックは、圧送フィーダ120で混錬されつつ圧送される(混錬工程S3)。混錬工程S3において、廃プラスチックと消石灰は、ムラのない状態で混合される。
The oil-recovery method in the waste plastic oil-recovery system 100 configured as above will be described with reference to the flow chart of FIG.
First, the waste plastic to be converted into oil is crushed and fed into the inlet 111 of the hopper 110 (feeding step S1). Next, slaked lime is mixed into the waste plastic through the mixing inlet 112 of the hopper 110 (mixing step S2). The amount of slaked lime added is arbitrary, but if the content of plastic materials such as polyvinyl chloride and polyethylene terephthalate that react with slaked lime is known by raw material analysis or the like, the amount of slaked lime added from the mixing inlet 112 and the steam side mixing device 180 may be adjusted so that the ratio is equimolar (1:1) with the plastic material. The waste plastic mixed with slaked lime is mixed and pressure-fed by the pressure feeder 120 (mixing step S3). In the mixing step S3, the waste plastic and slaked lime are mixed evenly.

 消石灰とともに混錬された廃プラスチックは、圧入パイプ130で所定の温度まで加熱される(温度制御工程S4)。前述のように、本実施形態においては、圧入パイプ130の内面温度が180℃以上250℃以下に制御され、廃プラスチックは軟化した状態となる。本実施形態においては、圧入パイプ130内の圧力は、0.5MPa以上1.0MPa以下に設定される。圧入パイプ130内の廃プラスチックは、内面温度が200℃以上に制御されると溶融状態となる場合がある。 The waste plastic mixed with the slaked lime is heated to a predetermined temperature in the press-in pipe 130 (temperature control step S4). As described above, in this embodiment, the inner surface temperature of the press-in pipe 130 is controlled to 180°C or higher and 250°C or lower, and the waste plastic is in a softened state. In this embodiment, the pressure inside the press-in pipe 130 is set to 0.5 MPa or higher and 1.0 MPa or lower. The waste plastic inside the press-in pipe 130 may be in a molten state if the inner surface temperature is controlled to 200°C or higher.

 温度制御工程S4で所定の温度とされた廃プラスチックは、圧入パイプ130から熱分解炉140へ圧入される(圧入工程S5)。これにより、大気側とのシールを確保しながら、廃プラスチックを熱分解炉140へ投入することができる。熱分解炉140への廃プラスチックの供給状態の制御は、圧送フィーダ120のモータ123の駆動状態を制御することで行われる。本実施形態においては、モータ123を間欠的に作動させ、廃プラスチックの圧入と停止を繰り返すことで、廃プラスチックの熱分解炉140への供給量が制御される。 The waste plastic that has been brought to a predetermined temperature in the temperature control process S4 is pressed into the pyrolysis furnace 140 through the pressurizing pipe 130 (pressurizing process S5). This allows the waste plastic to be fed into the pyrolysis furnace 140 while ensuring a seal with the atmosphere. The supply state of the waste plastic to the pyrolysis furnace 140 is controlled by controlling the drive state of the motor 123 of the pressure feeder 120. In this embodiment, the motor 123 is operated intermittently to repeatedly press and stop the waste plastic, thereby controlling the amount of waste plastic supplied to the pyrolysis furnace 140.

 熱分解炉140へ投入された廃プラスチックは、過熱蒸気により加熱されて熱分解される(熱分解工程S6)。筒体141の回転速度は任意であるが、本実施形態では1分間に0.5回転以上1.0回転以下に設定され、熱分解される廃プラスチックの滞留時間は30分以上60分以下となっている。熱分解工程S6における通常運転時の筒体141の回転方向は、筒体141内の残材の残材排出部142近傍での滞留が抑制される方向(前述の逆方向)とされる。そして、定期的に残材が残材排出部142側へ案内される方向(前述の順方向)へ筒体141を回転させることにより、筒体141内の残材が残材排出部142から排出される。本実施形態においては、熱分解炉140に配置された複数の触媒145は、筒体141の回転時に廃プラスチックとともに筒体141内を流動する。各触媒145は、球状であることから、廃プラスチックとの接触面積が大きく、各触媒145による分解ガスの軽質化作用を最大限に発揮させることができる。 The waste plastics fed into the pyrolysis furnace 140 are heated by superheated steam and pyrolyzed (pyrolysis process S6). The rotation speed of the cylinder 141 is arbitrary, but in this embodiment, it is set to 0.5 to 1.0 rotations per minute, and the residence time of the pyrolyzed waste plastics is 30 to 60 minutes. The rotation direction of the cylinder 141 during normal operation in the pyrolysis process S6 is a direction (the aforementioned reverse direction) that suppresses the retention of the residual material in the cylinder 141 near the residual material discharge section 142. Then, by periodically rotating the cylinder 141 in a direction (the aforementioned forward direction) in which the residual material is guided to the residual material discharge section 142 side, the residual material in the cylinder 141 is discharged from the residual material discharge section 142. In this embodiment, the multiple catalysts 145 arranged in the pyrolysis furnace 140 flow inside the cylinder 141 together with the waste plastics when the cylinder 141 rotates. Because each catalyst 145 is spherical, it has a large contact area with the waste plastic, maximizing the effect of each catalyst 145 in lightening the cracked gas.

 熱分解工程S6において、廃プラスチック中のポリ塩化ビニルは、高温蒸気雰囲気で加熱されることにより水酸化される。本実施形態においては、筒体141内は常圧である。筒体141内に過熱蒸気とともにアルカリ性材料である粉末状の消石灰が供給され、かつ、混入工程S2で廃プラスチックに消石灰が混入されているので、ポリ塩化ビニルの水酸化の際に、ポリ塩化ビニルの塩酸分は消石灰で中和されて固体の塩化カルシウムとなる。 In the thermal decomposition step S6, the polyvinyl chloride in the waste plastic is hydroxylated by heating in a high-temperature steam atmosphere. In this embodiment, the inside of the cylinder 141 is at normal pressure. Powdered hydrated lime, which is an alkaline material, is supplied into the cylinder 141 together with the superheated steam, and since the hydrated lime is mixed into the waste plastic in the mixing step S2, when the polyvinyl chloride is hydroxylated, the hydrochloric acid content of the polyvinyl chloride is neutralized by the hydrated lime to become solid calcium chloride.

 本実施形態においては、過熱蒸気に消石灰が含まれているので、廃プラスチックと消石灰の接触効率が極めて高い。これに加え、混錬工程S3において廃プラスチックと消石灰がムラなく混合しているので、必要最小限の消石灰の添加量でポリ塩化ビニルの水酸化を的確に行うことができる。ポリ塩化ビニルから生成された水酸化物は、さらに加熱されて炭化水素油ガスとなる。また、廃プラスチック中のポリエチレンテレフタレートは、有機酸分が消石灰で中和されて固体の安息香酸カルシウムとなり、熱分解によりベンゼンガスとなる。また、廃プラスチック中のポリプロピレン、ポリスチレン及びポリエチレンは、熱分解により炭化水素油ガスとなる。 In this embodiment, since the superheated steam contains slaked lime, the contact efficiency between the waste plastic and slaked lime is extremely high. In addition, since the waste plastic and slaked lime are mixed evenly in the kneading step S3, the hydroxylation of polyvinyl chloride can be performed accurately with the minimum amount of slaked lime added. The hydroxide generated from polyvinyl chloride is further heated to become hydrocarbon oil gas. In addition, the organic acid content of polyethylene terephthalate in the waste plastic is neutralized with slaked lime to become solid calcium benzoate, which is thermally decomposed to become benzene gas. In addition, polypropylene, polystyrene, and polyethylene in the waste plastic are thermally decomposed to become hydrocarbon oil gas.

 熱分解炉140で生じた塩化カルシウム及び安息香酸カルシウムは、残材として残材排出部142から排出される。熱分解炉140で生じた炭化水素油ガス及びベンゼンガスは、分解ガスとして分解ガス送出部143から次工程の装置へ送出される。本実施形態においては、分解ガスは、高温蒸気とともに送出される。熱分解炉140から送出された分解ガス及び高温蒸気は、冷却装置150で冷却された後(冷却工程S7)、回収装置160で分解油及び水として回収される(回収工程S8)。本実施形態においては、回収装置160で回収された水は、冷却装置150及びボイラ170へ送出され、冷却装置150における分解ガスの冷却と、ボイラ170における廃プラスチックの熱分解に再度利用される。 Calcium chloride and calcium benzoate produced in the pyrolysis furnace 140 are discharged as residue from the residue discharge section 142. The hydrocarbon oil gas and benzene gas produced in the pyrolysis furnace 140 are sent as cracked gas from the cracked gas delivery section 143 to the next process device. In this embodiment, the cracked gas is sent out together with high-temperature steam. The cracked gas and high-temperature steam sent out from the pyrolysis furnace 140 are cooled in the cooling device 150 (cooling step S7) and then recovered as cracked oil and water in the recovery device 160 (recovery step S8). In this embodiment, the water recovered in the recovery device 160 is sent to the cooling device 150 and boiler 170, and is reused for cooling the cracked gas in the cooling device 150 and for thermally decomposing waste plastic in the boiler 170.

 以上のように構成された油化システム100によれば、廃プラスチックの加熱を熱分解炉140へ導入される過熱蒸気により直接的に行うようにしたので、内筒と外筒の間に加熱流体を流通させるものと比べて、廃プラスチックへの熱伝達効率を飛躍的に向上することができる。また、熱分解炉140において局所的に高温となる部位はなく、筒体141の内面の焦げ付き、コーキングを抑制することができる。 In the oilification system 100 configured as described above, the waste plastic is heated directly by the superheated steam introduced into the pyrolysis furnace 140, which dramatically improves the efficiency of heat transfer to the waste plastic compared to systems that circulate a heated fluid between the inner and outer cylinders. In addition, there are no parts in the pyrolysis furnace 140 that become locally hot, which makes it possible to suppress scorching and caulking on the inner surface of the cylinder 141.

 これに加え、熱分解炉140へ過熱蒸気が供給されることから、外部から気体が供給されずに熱分解ガスのみが内部に充満する従来のもの(例えば、特許文献1)に設けられているような、分解ガスの大気中への漏洩防止のための精巧な気密シールは不要である。また、従来のものの場合、万が一、分解ガスが漏洩してしまうと火災・爆発事故となることがあり、実際にそのような事故例は多い。これに対し、本実施形態の油化システム100であれば、熱分解炉140内の酸素濃度が比較的低く設定されていることから、万が一、熱分解炉140から内部の気体が漏洩しても直ちに引火等することはない。従って、熱分解ガスに起因する火災等のリスクを大幅に低減することができる。 In addition, because superheated steam is supplied to the pyrolysis furnace 140, there is no need for an elaborate airtight seal to prevent the decomposition gas from leaking into the atmosphere, as is provided in conventional systems (e.g., Patent Document 1) in which no gas is supplied from the outside and only pyrolysis gas fills the inside. In addition, in the case of conventional systems, if the decomposition gas leaks, it can cause a fire or explosion, and there have been many cases of such accidents. In contrast, in the oil production system 100 of this embodiment, the oxygen concentration in the pyrolysis furnace 140 is set relatively low, so that even if the gas inside the pyrolysis furnace 140 leaks, it will not immediately ignite. Therefore, the risk of fires and other accidents caused by pyrolysis gas can be significantly reduced.

 また、本実施形態の油化システム100によれば、廃プラスチックが圧入パイプ130で圧送フィーダ120と独立して温度制御されるので、熱分解炉140へ進入する廃プラスチックの温度制御を的確に行うことができる。これにより、廃プラスチックに比較的低温で気化する材料が含まれている場合であっても、加熱された廃プラスチックの一部が熱分解炉へ進入する前に熱分解することはなく、熱分解ガスが廃プラスチックの投入口側へ逆流することはない。従って、廃プラスチックを安定して熱分解炉140へ投入することができ、熱分解ガスの逆流に起因する火災等を防止することができる。 Furthermore, according to the oilification system 100 of this embodiment, the temperature of the waste plastic is controlled independently of the pressure feeder 120 by the pressure-in pipe 130, so that the temperature of the waste plastic entering the pyrolysis furnace 140 can be accurately controlled. As a result, even if the waste plastic contains materials that vaporize at relatively low temperatures, some of the heated waste plastic will not be pyrolyzed before entering the pyrolysis furnace, and pyrolysis gas will not flow back toward the waste plastic inlet. Therefore, the waste plastic can be stably fed into the pyrolysis furnace 140, and fires and other accidents caused by the backflow of pyrolysis gas can be prevented.

 また、例えば、特許文献1に記載のもののように、熱分解炉への廃プラスチックの投入部分に二軸スクリューフィーダが配置されている場合、熱分解ガスの逆流により火災、爆発等のおそれがあるため、上流側に液封タンク等の逆流防止機構を設置する必要がある。本実施形態の油化システム100では、溶融状態の廃プラスチックを、圧密状態で圧入パイプ130を通じて熱分解炉140へ連続的に投入しているため、熱分解ガスの逆流は生じない。 Furthermore, for example, as described in Patent Document 1, when a twin-shaft screw feeder is placed at the point where waste plastic is fed into the pyrolysis furnace, a backflow prevention mechanism such as a liquid tank must be installed upstream to prevent fires, explosions, etc. due to the backflow of pyrolysis gas. In the oilification system 100 of this embodiment, molten waste plastic is continuously fed into the pyrolysis furnace 140 in a compressed state through the pressure-in pipe 130, so there is no backflow of pyrolysis gas.

 また、例えば、特許文献1に記載のもののように、熱分解炉への廃プラスチックの投入部分に二軸スクリューフィーダが配置されている場合、各スクリューの間隙、スクリューとシリンダの間の細隙等に詰まった異物や、スクリューに作用するせん断摩擦により、スクリューが摩耗が進展すると、廃プラスチックの熱分解炉への供給能力が低下する。これに対し、本実施形態の油化システム100では、熱分解炉140への投入部分に配置される圧力パイプ130が、断面一定で比較的大径であることから、異物が詰まったり、局所的なせん断摩擦が作用することはなく、廃プラスチックの熱分解炉140への供給能力が低下することは基本的にはない。仮に、圧力パイプ130が摩耗等したとしても、圧力パイプ130を交換すればよく、肉盛り等のような保守作業は不要である。 In addition, for example, as described in Patent Document 1, when a twin-screw feeder is placed at the waste plastic inlet to the pyrolysis furnace, the screw wears out due to foreign matter stuck in the gaps between the screws and the narrow gaps between the screws and the cylinder, and shear friction acting on the screw, which reduces the supply capacity of waste plastic to the pyrolysis furnace. In contrast, in the oilification system 100 of this embodiment, the pressure pipe 130 placed at the inlet to the pyrolysis furnace 140 has a constant cross section and a relatively large diameter, so it is not clogged with foreign matter or subjected to localized shear friction, and the supply capacity of waste plastic to the pyrolysis furnace 140 does not generally decrease. Even if the pressure pipe 130 wears out, it is sufficient to replace the pressure pipe 130, and maintenance work such as padding is not required.

 また、熱分解炉140の筒体141内に球体の触媒145を配置したので、分解油の軽質化を図ることができる。また、触媒145は球体であるので交換、補充等が容易であり、メンテナンス性に優れている。 In addition, a spherical catalyst 145 is placed inside the cylindrical body 141 of the pyrolysis furnace 140, which makes it possible to lighten the quality of the cracked oil. In addition, because the catalyst 145 is spherical, it is easy to replace and replenish, making it easy to maintain.

 また、廃プラスチック中のポリ塩化ビニルについて、熱分解炉140にて消石灰及び水蒸気と化合させるようにしたので、熱分解炉140への投入前に脱塩素等を行う必要はない。これに対し、熱分解工程の前段で廃プラスチックを300℃以上350℃以下となるよう加熱し、塩化ビニルのみを選択的に熱分解させて塩化水素の形で脱塩素を行う従来技術では、脱塩素のための装置及び工程を熱分解のための装置及び工程と別途設ける必要がある。また、この従来技術では、ポリ塩化ビニルは、塩酸と炭に分解されることとなり、リサイクル品としての活用が制限されるという問題点もあるが、本実施形態の油化システム100ではこの問題点が解消されている。また、廃プラスチックに消石灰を混入させているので、ポリエチレンテレフタレートについても中和され、安息香酸等による腐食生成物に起因した配管等の閉塞も防止される。 Also, since the polyvinyl chloride in the waste plastic is combined with slaked lime and steam in the pyrolysis furnace 140, there is no need to perform dechlorination or the like before feeding it into the pyrolysis furnace 140. In contrast, in the conventional technology in which the waste plastic is heated to 300°C or higher and 350°C or lower in the first stage of the pyrolysis process, and only the vinyl chloride is selectively pyrolyzed and dechlorinated in the form of hydrogen chloride, it is necessary to provide a device and process for dechlorination separately from the device and process for pyrolysis. In addition, in this conventional technology, polyvinyl chloride is decomposed into hydrochloric acid and charcoal, which is problematic in that its use as a recycled product is limited, but this problem is solved in the oilification system 100 of this embodiment. In addition, since slaked lime is mixed into the waste plastic, polyethylene terephthalate is also neutralized, and blockage of pipes, etc. due to corrosion products caused by benzoic acid, etc. is prevented.

 また、本実施形態の油化システム100によれば、添加物を過熱蒸気とともに熱分解炉140へ導入するようにしたので、廃プラスチックと添加物の接触効率が極めて高く、添加物と廃プラスチックの有効な反応が実現される。すなわち、原料の投入側からのみ添加物を混入させる従来のもののように、添加物と効果が十分に得られないということはない。これに加え、原料の投入側から添加される添加物についても、混錬工程S3において廃プラスチックと添加物がムラなく混合しているので、廃プラスチックと添加物の接触効率の向上が図られている。 Furthermore, according to the oil production system 100 of this embodiment, the additives are introduced into the pyrolysis furnace 140 together with the superheated steam, so the contact efficiency between the waste plastics and the additives is extremely high, and an effective reaction between the additives and the waste plastics is achieved. In other words, unlike conventional systems in which the additives are mixed only from the raw material input side, there is no lack of additive effects. In addition, for the additives added from the raw material input side, the waste plastics and additives are mixed evenly in the kneading process S3, improving the contact efficiency between the waste plastics and the additives.

 図3及び図4は本発明の第2の実施形態を示し、図3は廃プラスチックの油化システム(アルミニウムの回収システム)の模式図、図4は廃プラスチックの油化方法(アルミニウムの回収方法)のフローチャートである。 Figures 3 and 4 show a second embodiment of the present invention, where Figure 3 is a schematic diagram of a waste plastic oil production system (aluminum recovery system) and Figure 4 is a flowchart of a waste plastic oil production method (aluminum recovery method).

 図3に示す廃プラスチックの油化システム200は、アルミニウムが含まれる廃プラスチックからアルミニウムを好適に分離して回収することができる。アルミシートにプラスチック樹脂をコーティングした包装材のようなアルミ構成品は、廃棄物となった際にリサイクルすることは困難であり大きな課題となっている。アルミ構成品の廃棄物を大量かつ連続的に処理可能な装置、方法等が確立しておらず、現状、アルミ構成品の廃棄物は、焼却処理の後、埋立処分されることが殆どである。本実施形態の廃プラスチックの油化システム200及び廃プラスチックの油化方法は、この課題を解決することができ、アルミニウムの回収システム及びアルミニウムの回収方法としても利用することができる。 The waste plastic oil conversion system 200 shown in FIG. 3 can effectively separate and recover aluminum from waste plastics that contain aluminum. It is difficult to recycle aluminum components, such as packaging materials made of aluminum sheets coated with plastic resin, when they become waste, which is a major issue. There are no established devices or methods capable of continuously processing large amounts of aluminum component waste, and currently, most aluminum component waste is incinerated and then disposed of in landfills. The waste plastic oil conversion system 200 and waste plastic oil conversion method of this embodiment can solve this issue, and can also be used as an aluminum recovery system and aluminum recovery method.

 図3に示すように、この廃プラスチックの油化システム200は、第1の実施形態の廃プラスチックの油化システム100に残材流路210及び残材受けタンク220を付加したものである。本実施形態の廃プラスチックの油化システム200は、残材流路210及び残材受けタンク220を除いて、第1の廃プラスチックの油化システム100と同様の構成であり、これらの構成についてはここでは説明を省略する。 As shown in FIG. 3, this waste plastic oil production system 200 is the same as the first embodiment of the waste plastic oil production system 100 with the addition of a residue flow path 210 and a residue receiving tank 220. The waste plastic oil production system 200 of this embodiment has the same configuration as the first waste plastic oil production system 100, except for the residue flow path 210 and the residue receiving tank 220, and a description of these configurations will be omitted here.

 残材流路210は、熱分解路140の下流側下部と残材受けタンク220の上部とを接続する。残材流路210及び残材受けタンク220は、内面を常時400℃以上とすることが好ましく、例えば400℃以上500℃以下に制御される。これにより、残材は、温度制御された状態で熱分解炉140から残材受けタンク220へ移送される。 The residue flow path 210 connects the downstream lower part of the pyrolysis path 140 with the upper part of the residue receiving tank 220. It is preferable that the inner surfaces of the residue flow path 210 and the residue receiving tank 220 are always kept at 400°C or higher, and are controlled to, for example, 400°C or higher and 500°C or lower. This allows the residue to be transferred from the pyrolysis furnace 140 to the residue receiving tank 220 in a temperature-controlled state.

 以上のように構成された廃プラスチックの油化システム200における廃プラスチックの油化方法について、図4のフローチャートを参照して説明する。熱分解炉140に上流部からアルミニウム含有廃プラスチックを圧密状態で注入した後、熱分解炉140の内部で攪拌しつつ、過熱蒸気との直接接触による熱伝導・熱分解が行われる。図4に示すように、本実施形態の廃プラスチックの油化方法は、第1の実施形態の廃プラスチックの油化方法のステップS1~S8に、アルミニウム回収工程S9を付加したものである。本実施形態の廃プラスチックの油化方法は、アルミニウム回収工程S9を除いては、基本的に第1の廃プラスチックの油化方法と同様である。 The method of converting waste plastics into oil in the waste plastic conversion system 200 configured as described above will be described with reference to the flowchart in Figure 4. After aluminum-containing waste plastics are injected in a compressed state from the upstream part into the pyrolysis furnace 140, the waste plastics are stirred inside the pyrolysis furnace 140 and heat conduction and thermal decomposition are carried out by direct contact with superheated steam. As shown in Figure 4, the method of converting waste plastics into oil in this embodiment is obtained by adding an aluminum recovery step S9 to steps S1 to S8 of the method of converting waste plastics into oil in the first embodiment. The method of converting waste plastics into oil in this embodiment is basically the same as the first method of converting waste plastics into oil, except for the aluminum recovery step S9.

 まず、アルミニウム含有廃プラスチックが破砕された状態でホッパー110の投入口111へ投入される(投入工程S1)。次いで、アルミニウム含有廃プラスチックにホッパー110の混入口112を通じて消石灰が混入される(混入工程S2)。消石灰が混入されたアルミニウム含有廃プラスチックは、圧送フィーダ120で混錬されつつ圧送される(混錬工程S3)。消石灰とともに混錬されたアルミニウム含有廃プラスチックは、圧入パイプ130で所定の温度まで加熱される(温度制御工程S4)。温度制御工程S4で所定の温度とされたアルミニウム含有廃プラスチックは、圧入パイプ130から熱分解炉140へ圧入される(圧入工程S5)。 First, aluminum-containing waste plastics are crushed and fed into the inlet 111 of the hopper 110 (feeding step S1). Next, slaked lime is mixed into the aluminum-containing waste plastics through the mixing inlet 112 of the hopper 110 (mixing step S2). The aluminum-containing waste plastics mixed with the slaked lime are mixed and pressure-fed by the pressure feeder 120 (mixing step S3). The aluminum-containing waste plastics mixed with the slaked lime are heated to a predetermined temperature in the pressure-in pipe 130 (temperature control step S4). The aluminum-containing waste plastics that have been brought to the predetermined temperature in the temperature control step S4 are pressure-injected from the pressure-in pipe 130 into the pyrolysis furnace 140 (pressing step S5).

 熱分解炉140へ投入されたアルミニウム含有廃プラスチックは、過熱蒸気により加熱されてプラスチック成分が熱分解される(熱分解工程S6)。前述のように、筒体141内へ導入される過熱蒸気の温度は600℃以上700℃以下であり、筒体141内の温度は400℃以上500℃以下に制御される。尚、導入される過熱蒸気の温度は必ずしも600℃以上とする必要はなく、400℃以上700℃以下の範囲内で、アルミニウム含有廃プラスチックの処理に適した温度に調整することができる。アルミニウム含有廃プラスチックのプラスチック成分が熱分解によりガス化された結果、熱分解炉140内には固体のアルミニウムが残留する。前述のように、熱分解工程S6における通常運転時の筒体141の回転方向は、筒体141内の残材の残材排出部142近傍での滞留が抑制される方向(逆方向)とされる。熱分解炉140で生じた分解ガスは、冷却装置150で冷却された後(冷却工程S7)、回収装置160で分解油として回収される(回収工程S8)。本実施形態においても、アルミニウム含有廃プラスチックのプラスチック成分の処理について、第1の実施形態と同様の作用効果を得ることができる。 The aluminum-containing waste plastics fed into the pyrolysis furnace 140 are heated by superheated steam to pyrolyze the plastic components (pyrolysis step S6). As described above, the temperature of the superheated steam introduced into the cylinder 141 is 600°C or higher and 700°C or lower, and the temperature inside the cylinder 141 is controlled to 400°C or higher and 500°C or lower. The temperature of the superheated steam introduced does not necessarily have to be 600°C or higher, and can be adjusted to a temperature suitable for processing the aluminum-containing waste plastics within the range of 400°C or higher and 700°C or lower. As a result of the plastic components of the aluminum-containing waste plastics being gasified by pyrolysis, solid aluminum remains in the pyrolysis furnace 140. As described above, the rotation direction of the cylinder 141 during normal operation in the pyrolysis step S6 is set to a direction (reverse direction) that suppresses the retention of residual materials in the cylinder 141 near the residual material discharge section 142. The decomposition gas generated in the pyrolysis furnace 140 is cooled in the cooling device 150 (cooling step S7) and then recovered as decomposition oil in the recovery device 160 (recovery step S8). In this embodiment, too, the same effect as in the first embodiment can be obtained for the treatment of the plastic components of aluminum-containing waste plastic.

 熱分解炉140へのアルミニウム含有廃プラスチックの圧入を停止し、筒体141を順方向に回転させると、筒体141内の残材は残材排出部142から排出される。熱分解炉140に残留したアルミニウムは、塩化カルシウム及び安息香酸カルシウムとともに残材として残材排出部142から排出される。残材排出部142から排出された残材は、残材流路210を通じて残材受けタンク220へ移送される。アルミニウム含有廃プラスチックのアルミニウムは、残材受けタンク220で回収される(アルミニウム回収工程S9)。本実施形態においては、残材流路210及び残材受けタンク220は、400℃未満とならないよう制御されるため、精度よくアルミニウム材を回収することができる。 When the pressure feeding of aluminum-containing waste plastics into the pyrolysis furnace 140 is stopped and the cylinder 141 is rotated in the forward direction, the residual material in the cylinder 141 is discharged from the residual material discharge section 142. The aluminum remaining in the pyrolysis furnace 140 is discharged as residual material from the residual material discharge section 142 together with calcium chloride and calcium benzoate. The residual material discharged from the residual material discharge section 142 is transferred to the residual material receiving tank 220 through the residual material flow path 210. The aluminum of the aluminum-containing waste plastics is recovered in the residual material receiving tank 220 (aluminum recovery process S9). In this embodiment, the residual material flow path 210 and the residual material receiving tank 220 are controlled so as not to fall below 400°C, so that the aluminum material can be recovered with high precision.

 本実施形態のアルミニウムの回収方法によれば、アルミニウム含有廃プラスチックを大量かつ連続的に処理することができる。また、アルミニウムを酸化しない状態で回収することができ、再生材料として活用することができる。また、一般的なアルミニウム材の製造過程のように大量の二酸化炭素を放出することはなく、二酸化炭素の削減効果を得ることができる。 The aluminum recovery method of this embodiment allows for continuous processing of large amounts of aluminum-containing waste plastics. In addition, aluminum can be recovered in an unoxidized state, allowing it to be used as a recycled material. In addition, large amounts of carbon dioxide are not emitted, as is the case with the general aluminum material manufacturing process, and this can result in a reduction in carbon dioxide emissions.

 ここで、第2の実施形態においては、アルミニウムが含まれる廃プラスチックからアルミニウムを回収するものを示したが、廃プラスチックにアルミニウムとともに他の金属が含まれる場合は、廃プラスチックからアルミニウムとともに他の金属も回収することができる。この場合、熱分解により炭化水素油の資源を得るとともに、有用なアルミニウム等の金属資源を回収することができる。 In the second embodiment, aluminum is recovered from aluminum-containing waste plastics. However, if the waste plastics contain other metals as well as aluminum, the other metals can be recovered from the waste plastics along with the aluminum. In this case, hydrocarbon oil resources can be obtained by pyrolysis, and useful metal resources such as aluminum can be recovered.

 尚、前記各実施形態においては、油化対象の廃プラスチックとして、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリプロピレン、ポリスチレン及びポリエチレンが含まれるものを示したが、廃プラスチックに含まれるブラスチック材料はどのようなものであっても対応可能である。また、廃プラスチックに消石灰を添加するものを示したが、消石灰以外のアルカリ性材料を用いてもよく、例えばアルカリ性材料として生石灰を用いることもできる。さらに、油化対象の廃プラスチックにポリ塩化ビニル及びポリエチレンテレフタレートが含まれていなければ、必ずしもアルカリ性材料を添加する必要はない。 In the above embodiments, the waste plastics to be converted into oil are shown to include polyvinyl chloride, polyethylene terephthalate, polypropylene, polystyrene, and polyethylene, but any type of plastic material contained in the waste plastics can be used. Also, although slaked lime is added to the waste plastics, an alkaline material other than slaked lime may be used, for example quicklime may be used as the alkaline material. Furthermore, if the waste plastics to be converted into oil do not include polyvinyl chloride and polyethylene terephthalate, it is not necessarily necessary to add an alkaline material.

 また、前記各実施形態においては、原料側の混入口112と蒸気側の混入装置180の両方から添加物を添加するものを示したが、原料側と蒸気側のいずれか一方から添加物を添加するものであってもよい。また、添加物は任意に変更することができ、アルカリ性材料の他、例えば触媒材料を選択することもできる。尚、添加物が不要であれば、原料側混入機構及び蒸気側混入装置を設けない構成としてもよい。さらに、触媒が不要であれば、筒体内の球状の触媒を設けない構成としてもよい。 In addition, in each of the above embodiments, additives are added from both the mixing inlet 112 on the raw material side and the mixing device 180 on the steam side, but additives may be added from either the raw material side or the steam side. The additives can be changed as desired, and in addition to alkaline materials, catalytic materials, for example, can be selected. If additives are not required, the raw material side mixing mechanism and the steam side mixing device may not be provided. Furthermore, if a catalyst is not required, the spherical catalyst inside the cylinder may not be provided.

 また、前記各実施形態においては、廃プラスチックの送出機構として圧送フィーダ120を用いたものを示したが、例えば、ロータリポンプのような他の送出機構を用いてもよい。また、ホッパー110を通じて圧送フィーダ120へ廃プラスチックを供給するものを示したが、例えば、ロールからシート状の廃プラスチックを直接的に圧送フィーダ120へ供給するようにしてもよい。 In addition, in each of the above embodiments, the pressure feeder 120 is used as the waste plastic discharge mechanism, but other discharge mechanisms such as a rotary pump may be used. In addition, the waste plastic is supplied to the pressure feeder 120 through the hopper 110, but for example, sheet-shaped waste plastic may be supplied directly from a roll to the pressure feeder 120.

 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。  Although the embodiments of the present invention have been described above, the invention as claimed in the claims is not limited to the embodiments described above. It should also be noted that not all of the combinations of features described in the embodiments are necessarily essential to the means for solving the problems of the invention.

 100  油化システム
 110  ホッパー
 111  投入口
 112  混入口
 120  圧送フィーダ
 121  筒体
 122  押出スクリュー
 123  モータ
 130  圧入パイプ
 140  熱分解炉
 141  筒体
 141a ガイド部
 142  残渣排出部
 143  分解ガス送出部
 144  蒸気導入部
 145  触媒
 150  冷却装置
 160  回収装置
 170  ボイラー
 180  蒸気側混入装置
 200  油化システム
 210  残材流路
 220  残材受けタンク
 S1  投入工程
 S2  混入工程
 S3  混錬工程
 S4  温度制御工程
 S5  圧入工程
 S6  熱分解工程
 S7  冷却工程
 S8  回収工程
 S9  アルミニウム回収工程
LIST OF SYMBOLS 100 Oil production system 110 Hopper 111 Feeding port 112 Mixing port 120 Pressure feeder 121 Cylindrical body 122 Extrusion screw 123 Motor 130 Pressing pipe 140 Pyrolysis furnace 141 Cylindrical body 141a Guide section 142 Residue discharge section 143 Cracked gas delivery section 144 Steam introduction section 145 Catalyst 150 Cooling device 160 Recovery device 170 Boiler 180 Steam side mixing device 200 Oil production system 210 Residual material flow path 220 Residual material receiving tank S1 Feeding process S2 Mixing process S3 Kneading process S4 Temperature control process S5 Pressing process S6 Pyrolysis process S7 Cooling process S8 Recovery process S9 Aluminum recovery process

Claims (9)

 廃プラスチックを熱分解する熱分解炉を備えた廃プラスチックの油化システムであって、
 前記熱分解炉は、炉内へ過熱蒸気を導入する蒸気導入部を有し、
 前記廃プラスチックは、前記過熱蒸気により直接的に加熱されて熱分解される廃プラスチックの油化システム。
A waste plastic oil production system having a pyrolysis furnace for pyrolyzing waste plastic,
The pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace,
A waste plastic oil production system in which the waste plastic is directly heated and pyrolyzed by the superheated steam.
 前記過熱蒸気に前記廃プラスチック用の添加剤を混入させる蒸気側混入装置を有する請求項1に記載の廃プラスチックの油化システム。 The waste plastic oil production system according to claim 1, further comprising a steam-side mixing device for mixing an additive for the waste plastic into the superheated steam.  前記熱分解炉へ前記廃プラスチックを送出する送出機構を備え、
 前記送出機構と前記熱分解炉の間に配置され、前記廃プラスチックの温度制御を行い、温度制御された状態で前記廃プラスチックを前記熱分解炉へ圧入する圧入パイプを設けた請求項1に記載の廃プラスチックの油化システム。
A delivery mechanism is provided for delivering the waste plastic to the pyrolysis furnace,
2. The waste plastic oil production system as described in claim 1, further comprising an injection pipe disposed between the discharge mechanism and the pyrolysis furnace, for controlling the temperature of the waste plastic and for injecting the waste plastic into the pyrolysis furnace under temperature control.
 前記熱分解炉は、横置きの円筒状の筒体と、前記筒体の内部に配置された球状の触媒を有する請求項3に記載の廃プラスチックの油化システム。 The waste plastic oil production system according to claim 3, wherein the pyrolysis furnace has a horizontally placed cylindrical body and a spherical catalyst placed inside the body.  前記送出機構により送出される前記廃プラスチックに添加剤を混入させる原料側混入機構を有する請求項4に記載の廃プラスチックの油化システム。 The waste plastic oil production system according to claim 4, further comprising a raw material mixing mechanism for mixing an additive into the waste plastic discharged by the discharge mechanism.  前記廃プラスチックは、アルミニウム含有廃プラスチックであり、
 前記アルミニウム含有廃プラスチックは、前記過熱蒸気により直接的に加熱され、前記アルミニウム含有廃プラスチックのプラスチック成分が熱分解されてアルミニウムが残留する請求項1から5のいずれか1項に記載の廃プラスチックの油化システム。
The waste plastic is an aluminum-containing waste plastic,
6. A waste plastic oil production system according to claim 1, wherein the aluminum-containing waste plastic is directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastic are thermally decomposed to leave aluminum.
 前記熱分解炉に接続され、前記熱分解炉から排出される前記アルミニウムを含む残材が流通する残材流通路と、
 前記残材流通路に接続された残材受け入れタンクと、を備え、
 前記残材流通路及び前記残材受け入れタンクは、前記残材の温度制御を行い、温度制御された状態で前記残材を回収する請求項6に記載の廃プラスチックの油化システム。
a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
A remnant receiving tank connected to the remnant flow passage,
7. The waste plastic oil production system according to claim 6, wherein the waste material flow passage and the waste material receiving tank perform temperature control of the waste material, and the waste material is collected in a temperature-controlled state.
 アルミニウム含有廃プラスチックから廃プラスチックを分離してアルミニウムを回収するアルミニウムの回収システムであって、
 前記アルミニウム含有廃プラスチックのプラスチック成分を熱分解する熱分解炉を備え、
 前記熱分解炉は、炉内へ過熱蒸気を導入する蒸気導入部を有し、
 前記アルミニウム含有廃プラスチックは、前記過熱蒸気により直接的に加熱され、前記アルミニウム含有廃プラスチックのプラスチック成分が熱分解されてアルミニウムが残留するアルミニウムの回収システム。
An aluminum recovery system for recovering aluminum by separating waste plastic from aluminum-containing waste plastic, comprising:
A pyrolysis furnace is provided for pyrolyzing the plastic components of the aluminum-containing waste plastic,
The pyrolysis furnace has a steam inlet for introducing superheated steam into the furnace,
The aluminum-containing waste plastic is directly heated by the superheated steam, and the plastic components of the aluminum-containing waste plastic are thermally decomposed to leave aluminum in the aluminum recovery system.
 前記熱分解炉に接続され、前記熱分解炉から排出される前記アルミニウムを含む残材が流通する残材流通路と、
 前記残材流通路に接続された残材受け入れタンクと、を備え、
 前記残材流通路及び前記残材受け入れタンクは、前記残材の温度制御を行い、温度制御された状態で前記残材を回収する請求項8に記載のアルミニウムの回収システム。
a residue flow passage connected to the pyrolysis furnace, through which the aluminum-containing residue discharged from the pyrolysis furnace flows;
A remnant receiving tank connected to the remnant flow passage,
9. The aluminum recovery system according to claim 8, wherein the waste material flow passage and the waste material receiving tank perform temperature control of the waste material, and recover the waste material in a temperature-controlled state.
PCT/JP2023/044209 2023-05-08 2023-12-11 Waste plastic-to-oil conversion system and recovery system for aluminum WO2024232117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-076963 2023-05-08
JP2023076963 2023-05-08

Publications (1)

Publication Number Publication Date
WO2024232117A1 true WO2024232117A1 (en) 2024-11-14

Family

ID=93430162

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/044209 WO2024232117A1 (en) 2023-05-08 2023-12-11 Waste plastic-to-oil conversion system and recovery system for aluminum
PCT/JP2024/016982 WO2024232366A1 (en) 2023-05-08 2024-05-07 Waste-plastic liquefaction system, and piping for outlet portion of pyrolysis furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/016982 WO2024232366A1 (en) 2023-05-08 2024-05-07 Waste-plastic liquefaction system, and piping for outlet portion of pyrolysis furnace

Country Status (1)

Country Link
WO (2) WO2024232117A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089659A (en) * 1996-09-11 1998-04-10 Densen Sogo Gijutsu Center Device and method for discharging pyrolysis residue
JP3064131U (en) * 1999-05-20 1999-12-24 株式会社 アイビ・プロテック Continuous pyrolysis pyrolysis oil conversion unit for plastics
JP2012011299A (en) * 2010-06-30 2012-01-19 Altis:Kk Pyrolyzer, dechlorination treatment apparatus, pyrolysis method and dechlorination method
JP2015160163A (en) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 Recovery method and recovery system of valuable from waste electronic apparatus or the like by steam gasification
WO2020175350A1 (en) * 2019-02-28 2020-09-03 三菱マテリアル株式会社 Method for treating waste electronic substrate
JP2021175788A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064654A (en) * 1999-08-25 2001-03-13 Mitsubishi Heavy Ind Ltd System for making waste plastic into oil
JP2001240873A (en) * 2000-03-01 2001-09-04 Nippon Shoene Kankyo Seihin:Kk Apparatus for pyrolytic conversion of plastic into oil
JP2002001285A (en) * 2000-06-15 2002-01-08 Meidensha Corp Method, apparatus and equipment for heat-treating matter to be treated containing combustible component
JP4295964B2 (en) * 2002-09-04 2009-07-15 株式会社東芝 Waste plastic processing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089659A (en) * 1996-09-11 1998-04-10 Densen Sogo Gijutsu Center Device and method for discharging pyrolysis residue
JP3064131U (en) * 1999-05-20 1999-12-24 株式会社 アイビ・プロテック Continuous pyrolysis pyrolysis oil conversion unit for plastics
JP2012011299A (en) * 2010-06-30 2012-01-19 Altis:Kk Pyrolyzer, dechlorination treatment apparatus, pyrolysis method and dechlorination method
JP2015160163A (en) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 Recovery method and recovery system of valuable from waste electronic apparatus or the like by steam gasification
WO2020175350A1 (en) * 2019-02-28 2020-09-03 三菱マテリアル株式会社 Method for treating waste electronic substrate
JP2021175788A (en) * 2020-04-27 2021-11-04 東北発電工業株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Also Published As

Publication number Publication date
WO2024232366A1 (en) 2024-11-14

Similar Documents

Publication Publication Date Title
US7655215B2 (en) Method and apparatus for producing synthesis gas from waste materials
US6172275B1 (en) Method and apparatus for pyrolytically decomposing waste plastic
TWI830098B (en) Process for the depolymerization of plastic waste material
EP1785248A1 (en) Method for thermally treating used tires and device for carrying out said method
JP2024503111A (en) Conversion of waste plastic into petrochemical products
WO2020073092A1 (en) Process of treating carbonaceous material and apparatus therefor
JP5175721B2 (en) Method for cutting carbon chain of organic molecule of solid material and related apparatus
EP3347436B1 (en) Flash pyrolysis reactor
WO2024232117A1 (en) Waste plastic-to-oil conversion system and recovery system for aluminum
EP3145649B1 (en) Method and apparatus for utilization of plastic and other waste materials
JP2013103998A (en) Waste plastic catalytic cracking liquefaction apparatus and catalytic cracking liquefaction method
JP2012188663A (en) Apparatus and method for catalytically cracking and liquefying plastic
US9005537B1 (en) Continuous flow, high capacity system for rapidly converting the combination natural gas and coal to liquid fuels
KR20240000524A (en) Plastic material processing methods and devices
CN116850903A (en) Gas-solid reactor for on-line improving solid reaction activity
JP6369694B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
JP2002120223A (en) Waste plastic dechlorination equipment
JP3717775B2 (en) Waste plastic dechlorination equipment
WO2025037405A1 (en) Desalination unit and desalination method
CN116018203B (en) Plastic conversion feeding system
JP7258270B1 (en) Method for producing pyrolysis oil from waste plastic, and waste plastic oil conversion plant
US12366412B2 (en) Plastic conversion feed system
JP2020037679A (en) Thermal decomposing method of organic material
JP2007056273A (en) Waste plastic dechlorination equipment
JPH10245567A (en) Treatment apparatus for waste plastic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23936665

Country of ref document: EP

Kind code of ref document: A1