[go: up one dir, main page]

WO2024230585A1 - 动力组件及表面清洁设备 - Google Patents

动力组件及表面清洁设备 Download PDF

Info

Publication number
WO2024230585A1
WO2024230585A1 PCT/CN2024/090826 CN2024090826W WO2024230585A1 WO 2024230585 A1 WO2024230585 A1 WO 2024230585A1 CN 2024090826 W CN2024090826 W CN 2024090826W WO 2024230585 A1 WO2024230585 A1 WO 2024230585A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous plate
power assembly
power
silencer
present application
Prior art date
Application number
PCT/CN2024/090826
Other languages
English (en)
French (fr)
Inventor
杜守鹏
梁彬雄
魏贤志
晋腾龙
于墨臣
周永飞
Original Assignee
深圳洛克创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳洛克创新科技有限公司 filed Critical 深圳洛克创新科技有限公司
Publication of WO2024230585A1 publication Critical patent/WO2024230585A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/002Details, component parts, or accessories especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation

Definitions

  • the present application relates to the technical field of cleaning equipment, and in particular to a power assembly and surface cleaning equipment.
  • Negative pressure fans generate noise during operation.
  • Conventional noise reduction methods for fans include soft rubber vibration reduction, silencer cotton sound absorption, etc. These methods have limited noise reduction effects and still produce relatively sharp noises, affecting user experience.
  • the purpose of the present application is to provide a power assembly and a surface cleaning device, which can reduce the noise of a fan in the power assembly.
  • the present application provides a power assembly, including:
  • a power source configured to provide fluid power
  • a silencer cavity is disposed around the power source, the silencer cavity having an axial depth and a radial depth, the radial depth is configured to silence noise in a first frequency range, and the axial depth is configured to silence noise in a second frequency range;
  • the axial depth is at least 20 mm and not more than 120 mm.
  • the power assembly further comprises:
  • a silencer cover is arranged around the power source, and the silencer cover comprises a porous plate and an outer side wall, wherein the silencer chamber is located between the porous plate and the outer side wall.
  • the diameter of the holes in the multi-well plate is at least 1 mm and no more than 5 mm.
  • the number of wells in the multi-well plate is at least 100 and no more than 1400.
  • the distance between the porous plate and the central axis of the soundproof cover is at least 20 mm and no more than 55 mm.
  • the thickness of the porous plate is at least 1 mm and no more than 4 mm.
  • the radial depth of the muffler cavity is at least 3 mm and no more than 15 mm.
  • the cross-section of the silencing chamber is a U-shaped structure.
  • the bottom of the U-shaped structure has no sound-absorbing hole.
  • the soundproofing cover further comprises:
  • An assembly bracket is disposed on the inner side of the porous plate and is configured to fix the muffler cover through the assembly bracket.
  • the first frequency range is at least 3000 Hz and no more than 8000 Hz
  • the second frequency range is at least 500 Hz and no more than 3200 Hz.
  • the rotation speed of the power source is at least 70,000 r/min and no more than 90,000 r/min.
  • the plurality of holes in the multi-well plate are evenly distributed in the multi-well plate.
  • An embodiment of the present application provides a surface cleaning device, comprising a power assembly as described in any one of the above.
  • the present application provides a power assembly, including:
  • a housing comprising an air outlet and a water outlet
  • a power source located within the housing and configured to provide fluid power
  • a muffler cover is disposed between the power source and the housing, the muffler cover comprising a porous plate and an outer side wall;
  • the water vapor in the working airflow condenses into liquid on the porous plate and/or the outer wall and is discharged from the water outlet, and the working airflow that has not condensed into liquid is discharged from the air outlet.
  • the air outlet is located on the side of the shell, and the water outlet is located on the bottom of the shell.
  • the power assembly further comprises:
  • a first air passage connecting the air outlet of the fan to the bottom of the muffler cover
  • a second air passage connecting the bottom of the muffler cover to the air outlet of the shell;
  • the working airflow sequentially flows through the power source, the first air path, the second air path and the air outlet before being discharged.
  • the first air path includes the following paths:
  • the first air path includes the following paths:
  • the air From the air outlet of the fan, the air enters between the porous plate and the outer wall along the porous plate, returns to the porous plate through the outer wall, and then extends downward along the inner wall of the porous plate to the bottom of the muffler cover.
  • the second air path includes the following path:
  • the air outlet of the shell is extended upward from the bottom of the muffler cover along the outer periphery of the outer side wall.
  • the porous plate and the outer side wall form a connecting structure with a U-shaped cross-section.
  • the bottom surface of the U-shaped connecting structure includes at least one water outlet.
  • the soundproofing cover further comprises:
  • the hollow assembly bracket is arranged on the inner side of the porous plate and configured to allow the working airflow or condensed water to pass through.
  • An embodiment of the present application provides a surface cleaning device, comprising a power assembly as described in any one of the above.
  • FIG1 is a schematic diagram of the overall structure of a power assembly in some embodiments of the present application.
  • FIG2 is a schematic cross-sectional view of a power assembly according to some embodiments of the present application.
  • FIG3 is a schematic diagram of the water flow path structure of the power assembly of some embodiments of the present application.
  • FIG4 is a schematic diagram of the water flow path structure of the power assembly of other embodiments of the present application.
  • FIG5 is a schematic diagram of the wind path structure of the power assembly of some embodiments of the present application.
  • FIG6 is a schematic diagram of the wind path structure of the power assembly of other embodiments of the present application.
  • FIG7 is a schematic diagram of the overall structure of a soundproof cover in some embodiments of the present application.
  • FIG8 is a schematic diagram of a cross-sectional structure of a soundproof cover according to some embodiments of the present application.
  • FIG. 9 is a schematic diagram of the cross-sectional structure of the muffler cavity in some embodiments of the present application.
  • Power assembly 100 housing 10, air outlet 11, water outlet 12, power source 20, air inlet 21,
  • the air outlet 22 the muffler cover 30 , the porous plate 31 , the outer wall 32 , the through hole 311 , the water outlet 312 , the assembly bracket 313 , and the muffler chamber 34 .
  • first, second, third, etc. may be used to describe in the embodiments of the present application, these should not be limited to these terms. These terms are only used to distinguish.
  • the first may also be referred to as the second, and similarly, the second may also be referred to as the first.
  • the main unit component of the surface cleaning device provides suction power for the cleaning device.
  • the working airflow enters the main unit component and then is discharged. During this process, some water vapor will enter the main unit component along with the working airflow. In related technologies, the water vapor can be discharged from the air outlet of the main unit component along with the working airflow. However, sometimes the water vapor cannot be discharged cleanly, resulting in some water vapor being deposited in the main unit component. Long-term accumulation will affect the service life of the main unit component.
  • An embodiment of the present application provides a power component, comprising: a shell, the shell comprising an air outlet and a water outlet; a power source, located in the shell and configured to provide working fluid power; a silencer, arranged between the power source and the shell, the silencer comprising a porous plate and an outer side wall; wherein the working airflow carrying water vapor is condensed on the porous plate and/or the outer side wall and then discharged from the water outlet.
  • the power component provided in the embodiment of the present application has a drainage path and an exhaust path. After the working airflow enters from the air inlet of the fan, the water contained therein condenses on the mesh plate of the silencer hood and/or the outer wall of the silencer hood, flows down along the wall under the action of gravity, and then flows out from the water outlet, and the separated gas is discharged from the air outlet, so that the power component can separate the water and gas of the working airflow entering the fan, and discharge the gas and water from the power component at the same time, thereby optimizing the use of the power component.
  • FIG1 is a schematic diagram of the overall structure of the power assembly of some embodiments of the present application
  • FIG2 is a schematic diagram of the cross-sectional structure of the power assembly of some embodiments of the present application.
  • the power assembly can be calibrated by defining the following three mutually perpendicular axes: the transverse axis Y, the front-rear axis X, and the central vertical axis Z.
  • the central vertical axis Z is the axial direction of the power assembly, and the direction perpendicular to the axial direction is the radial direction, which is located in the XY plane, wherein the direction opposite to the arrow along the front-rear axis X is marked as "rearward", and the direction along the arrow along the front-rear axis X is marked as "forward".
  • the direction of the arrow along the transverse axis Y is the "left side” of the power assembly, and the direction opposite to the arrow along the transverse axis Y is the “right side” of the power assembly.
  • the vertical axis Z is the direction extending upward along the bottom surface of the power assembly, and the direction of the arrow along the vertical axis Z is the “upper side” of the power assembly, and the direction opposite to the arrow along the vertical axis Z is the "lower side” of the power assembly.
  • the embodiment of the present application provides a power assembly 100, which is configured to provide power for cleaning work.
  • the power assembly 100 includes a housing 10. 10 can be columnar, such as cylindrical, the shell 10 includes an air outlet 11 and a water outlet 12, the air outlet 11 is used to discharge the basically dry air in the working airflow, and the water outlet 12 is used to discharge the water vapor mixed in the working airflow;
  • the power component 100 also includes a power source 20, the power source 20 is located in the shell 10, the power source 20 is configured to provide fluid power, the power source 20 can specifically be a suction source, such as a fan, the power source 20 has an air inlet 21 and an air outlet 22;
  • the power component 100 also includes a silencer 30, the silencer 30 is arranged between the power source 20 and the shell 10, the silencer 30 is used to reduce the noise generated during the flow of the working airflow, the silencer 30 includes a porous plate 31 and an outer wall 32; wherein, the working airflow carrying water vapor is condensed
  • FIG3 is a schematic diagram of the water flow path structure of the power components of some embodiments of the present application
  • FIG4 is a schematic diagram of the water flow path structure of the power components of some other embodiments of the present application; as shown in FIG3, the arrows in FIG3 roughly indicate the flow direction of the working airflow, and the working airflow carrying water vapor enters from the air inlet 21 of the power source 20 and is discharged from the air outlet 22 of the power source 20.
  • the working airflow intensity is not large, the working airflow is blocked by the porous plate 31, and the working airflow carrying water vapor condenses on the porous plate 31 and then flows along the porous plate 31.
  • the arrows in FIG4 roughly indicate the flow direction of the working airflow.
  • the working airflow carrying water vapor enters from the air inlet 21 of the power source 20 and is discharged from the air outlet 22 of the power source 20.
  • the working airflow intensity is large enough, the working airflow passes through the porous plate 31 and is blocked by the outer wall 32.
  • the working airflow carrying water vapor condenses on the outer wall 32 and then flows down along the outer wall 32, and finally is discharged from the water outlet 12 on the bottom surface of the shell 10.
  • the working airflow carrying water vapor partially flows down along the porous plate 31 and partially flows down along the outer wall 32. Condensed water will be formed in both parts and then discharged from the water outlet 12 on the bottom surface of the shell 10.
  • the air outlet 11 of the shell 10 is located on the side of the shell.
  • the air outlet 11 is located at a preset height from the bottom of the shell 10, such as 1/3 of the height of the shell, so as to avoid impurities entering the shell due to the air outlet height being too low.
  • the water outlet 12 is located on the bottom of the shell 10. The water condenses and gathers on the porous plate 31 and/or the outer wall 32 and is discharged from the water outlet 12 on the bottom of the shell, so as to avoid water accumulation in the shell.
  • each air outlet 11 is a strip structure extending roughly along the axial direction, such as a rectangle, a runway shape, an ellipse, etc.
  • the air outlet of the strip structure is consistent with the flow direction of the working airflow, which is more conducive to the discharge of the airflow.
  • FIG5 is a schematic diagram of the wind path structure of the power assembly of some embodiments of the present application
  • FIG6 is a schematic diagram of the wind path structure of the power assembly of other embodiments of the present application
  • the arrows in FIG5 roughly indicate the flow direction of the working airflow
  • the power assembly 100 also includes a first air path
  • the first air path connects the air outlet 22 of the fan to the bottom of the muffler cover 30, and the bottom of the muffler cover 30 and the bottom surface of the shell are hollow structures, and the hollow structure allows the working airflow to pass through.
  • the first air path described in this embodiment refers to the airflow from the air outlet 22 of the fan to the muffler cover.
  • the first air path includes the following path: from the air outlet 22 of the fan, it extends downward along the inner wall of the porous plate 31 to the bottom of the muffler hood 30, that is, after the working airflow comes out of the air outlet of the fan, when the working airflow intensity is not large enough, the working airflow is blocked by the porous plate, and the working airflow mainly flows downward along the inner wall of the porous plate until the hollow structure at the bottom of the muffler hood.
  • the arrows in Figure 6 roughly indicate the flow direction of the working airflow
  • the first air path also includes the following path: from the air outlet 22 of the fan, along the porous plate 31, enter between the porous plate 31 and the outer side wall 32, return to the porous plate 31 through the outer side wall 32, and then extend downward along the inner wall of the porous plate 31 to the bottom of the muffler hood 30. That is, after the airflow is blown out from the air outlet 22 of the fan, when the airflow intensity is large enough, the airflow will enter between the porous plate 31 and the outer wall 32 from the holes of the porous plate 31, and then be reflected by the outer wall 32.
  • the airflow moves downward along the outer wall 32 for a distance and then returns to the porous plate 31, and then extends downward along the inner wall of the porous plate 31 to the bottom of the muffler 30.
  • the above two first air paths do not necessarily exist independently, and sometimes they may cross each other, but the basic direction is to move downward after coming out of the air outlet.
  • the power assembly 100 further includes a second air passage, which connects the bottom of the muffler cover 30 to the air outlet 11 of the housing 10.
  • the second air passage includes the following path: extending upward from the bottom of the muffler cover 30 along the outer periphery of the outer wall 32 to the air outlet 11 of the housing 10. After the working airflow reaches the bottom of the muffler cover 30 through the first air passage, it passes through the hollow structure at the bottom of the muffler cover 30 and reaches the gap between the muffler cover 30 and the housing 10. The working airflow moves upward along the gap until it is discharged from the air outlet 11 of the housing 10.
  • the power assembly 100 In response to the power source 20 being turned on, the power assembly 100 causes the working airflow to flow through the power source 20, the first air path, the second air path and the air outlet 11 in sequence before being discharged, thereby completing the discharge of the working airflow that is substantially free of moisture.
  • FIG7 is a schematic diagram of the overall structure of the muffler in some embodiments of the present application
  • FIG8 is a schematic diagram of the cross-sectional structure of the muffler in some embodiments of the present application.
  • the structure of the muffler 30 is roughly a columnar structure, and the porous plate 31 and the outer side wall 32 constitute the side wall of the double-layer structure, the side wall of the double-layer structure is an open structure at the top, and the porous plate 31 and the outer side wall 32 are a connecting structure at the bottom, thereby forming a connecting structure with a U-shaped cross section.
  • the porous plate 31 includes a plurality of through holes 311, and the through holes 311 are for the working airflow to pass through.
  • the bottom surface of the U-shaped connecting structure includes at least one water outlet 312.
  • the working airflow carrying water vapor condenses on the outer wall 32 and then flows down along the outer wall 32, then flows out of the silencer 30 through the water outlet 312, reaches the bottom surface of the shell 10, and is then discharged from the water outlet 12.
  • the silencer 30 also includes a hollow assembly bracket 313, and the assembly bracket 313 is arranged on the inner side of the porous plate 31.
  • the silencer 30 is assembled to the bottom surface of the shell 10 through the assembly bracket 313.
  • the assembly bracket 313 is a hollow structure for the working airflow or condensed water to pass through.
  • the assembly bracket 313, the porous plate 31 and the outer wall 32 are integrally formed.
  • the present application provides a surface cleaning device, comprising a power unit as described in any one of the above Piece.
  • the power component provided in the embodiment of the present application has a drainage path and an exhaust path. After the working airflow enters from the air inlet of the fan, the moisture contained therein condenses on the mesh plate of the silencer hood and/or the outer wall of the silencer hood, flows down along the wall under the action of gravity, and then flows out from the water outlet, and the separated gas is discharged from the air outlet, so that the power component can separate the water and gas of the working airflow entering the fan, and discharge the gas and water from the power component at the same time, thereby optimizing the use of the power component.
  • the fan will generate noise during operation.
  • Conventional noise reduction methods for fans include soft rubber vibration reduction, sound-absorbing cotton, etc. These methods have limited noise reduction effects and there is still sharp noise.
  • a single-layer mesh can be used for noise reduction.
  • the mesh noise reduction can only eliminate part of the noise, and some noise still affects the user experience.
  • An embodiment of the present application provides a power component, including: a power source, configured to provide fluid power; a silencer cavity, arranged around the power source, the silencer cavity having an axial depth and a radial depth, the radial depth being configured to silence noise in a first frequency range, and the axial depth being configured to silence noise in a second frequency range; wherein the axial depth is at least 20 mm and not more than 120 mm.
  • the power assembly provided in the embodiment of the present application has a silencer cavity, and the silencer cavity has an axial depth and a radial depth.
  • the axial depth is at least 20 mm and not more than 120 mm.
  • the silencer cavity of the present application can eliminate noise in the range of at least 500 Hz and not more than 3200 Hz through a combination of axial and radial silencers, especially through a silencer cavity structure with an axial depth of at least 20 mm and not more than 120 mm, and ultimately can achieve a silencer effect in the range of 500-8000 Hz, which can basically cover the noise frequency of existing home handheld devices and improve the user experience.
  • the embodiment of the present application provides a power assembly 100, and the relevant structure of the power assembly 100 is the same as the structure of the above-mentioned embodiment.
  • the same structure has the same function and the same technical effect, so some contents will not be repeated in this embodiment.
  • the power assembly 100 includes a shell 10.
  • the shell 10 can be cylindrical, such as cylindrical.
  • the shell is used to accommodate related devices, such as a circuit control board, etc.
  • the shell is usually formed of metal, alloy, plastic or other organic materials; a power source 20, the power source 20 is located in the shell 10, approximately located on the central axis of the shell 10, the power source 20 is configured to provide working power, so that the working airflow enters from the air inlet 21 of the power source 20 and is discharged from the air outlet 22.
  • the power source 20 can specifically be a suction source, such as a fan.
  • the power source 20 rotates at a certain speed according to the adjustable power to output power. For example, the speed of the power source is at least 70000r/min and not more than 90000r/min; the power assembly 100 also includes a silencer.
  • the silencer cavity 34 is roughly arranged on the central axis, and is arranged around the power source 20 between the shell 10 and the power source 20.
  • the working airflow is discharged from the air outlet 22 of the power source 20 until it is discharged from the shell air outlet 11 to the outside of the power component 100.
  • the flow of the working airflow will bring working noise.
  • the silencer cavity 34 can greatly reduce the noise in the process.
  • the silencer cavity 34 has an axial depth and a radial depth.
  • the radial depth is configured to silence the noise in the first frequency range
  • the axial depth is configured to silence the noise in the second frequency range.
  • the first frequency range is at least 3000 Hz and not more than 8000 Hz
  • the second frequency range is at least 500 Hz and not more than 3200Hz
  • the axial depth is at least 20mm and not more than 120mm.
  • the power assembly 100 further includes a muffler cover 30, which is arranged around the power source, for example, the muffler cover 30 is arranged between the power source 20 and the housing 10, and the muffler cover 30 includes a porous plate 31 and an outer side wall 32, wherein the muffler chamber 34 is located between the porous plate 31 and the outer side wall 32, that is, the muffler cover 30 is a cylindrical structure with a double-layer structure, a muffler chamber is formed between the double-layer structure, and the muffler chamber surrounds the central axis to form a connecting structure, and the muffler chamber has an axial depth and a radial depth, the axial depth is roughly the distance from the bottom to the top of the muffler chamber, which is also roughly equivalent to the height of the porous plate 31 or the outer side wall 32, and the radial depth is the spacing between the porous plate 31 and the outer side wall 32.
  • the cross section of the muffler cavity is a U-shaped structure.
  • the bottom of the U-shaped structure has no muffler holes but only a few water outlet holes, so that the bottom of the U-shaped structure can have enough sound wave reflections to form axial muffler.
  • the working airflow generated by the power source 20 propagates outward through the porous plate 31.
  • the specific airflow propagation path is as described in the above embodiments, which will not be repeated here.
  • the airflow will generate noise of various frequencies.
  • filtering and silencing can be achieved, that is, filtering out the sound of a certain frequency range.
  • the effect of filtering and silencing is related to the density of the holes (that is, the number of holes per unit area, the diameter of the holes, and the thickness of the porous plate. The greater the density of the holes, the higher the sound elimination band, and the greater the thickness of the porous plate, the lower the sound elimination band.
  • the sound waves can propagate and reflect in the axial and radial directions of the silencer cavity 34, thereby superimposing and causing the total energy of the sound to attenuate to achieve a silencer effect; wherein, as shown in area B of FIG9 , radial reflection silencer and porous filtering silencer are interrelated, and silencer in the frequency band of approximately 3000Hz-8000Hz can be better achieved; experimental verification shows that the radial depth of the silencer cavity is at least 3mm and not more than 15mm, which can effectively eliminate noise in the frequency band of 3000Hz-8000Hz, and the optional radial depth is 5mm, 8mm, 10mm, 12mm, etc.
  • the above radial depth cannot eliminate the low- and medium-frequency noise below 3000 Hz
  • the axial reflection silencing can eliminate the low- and medium-frequency noise below 3000 Hz by properly controlling the axial depth parameters.
  • area A of FIG9 the sound is reflected and refracted by the outer wall 32 of the silencer cavity, the porous plate 31, and the bottom surface of the silencer cavity, forming a mutually superimposed propagation mode roughly along the axial direction of the silencer cavity.
  • the medium and low frequency noise below 3000 Hz can be effectively eliminated, for example, the noise in the frequency band of at least 500 Hz and not more than 3200 Hz or at least 1000 Hz and not more than 3000 Hz can be eliminated, wherein the optional axial depth is at least 25 mm and not more than 80 mm, for example 40 mm, 50 mm, 60 mm, 70 mm, etc.
  • the sound waves are radially and axially silenced by the porous silencer cavity.
  • the total sound energy in a specific frequency band (such as 500Hz-8000Hz) is attenuated, thereby achieving the ultimate silencer effect.
  • the sound frequency range corresponding to the fan rotation is approximately: at least 1150Hz and not more than 3200Hz, which can be calculated as follows:
  • the noise range of the fan is basically at least 500Hz and not more than 8000Hz. Therefore, the silencer chamber of the present application can cover all operating speed ranges of conventional fans.
  • the pore size and pore density jointly affect the total area ratio of the holes per unit area of the porous plate.
  • the pore size should not be too large and the pore density should be very sparse.
  • the total area ratio of the holes should not exceed 3%.
  • this parameter setting will seriously affect the smoothness of the wind path of the power component, which will adversely affect the main function of the fan (negative pressure performance). Therefore, conventional pore size and pore density cannot eliminate medium and low frequency noise below 3000Hz.
  • the radial dimension of the silencer cavity needs to be more than 20 mm, which will cause the radial dimension of the silencer cover to be too large, thereby making the outer diameter of the power component too large and unsuitable for home handheld devices. Therefore, conventional radial dimensions cannot eliminate low- and medium-frequency noises below 3000 Hz.
  • the thickness of the porous plate needs to be at least 7 mm.
  • a porous plate that is too thick cannot be formed by injection molding, because to complete a cylindrical porous plate with uniform pore size, when its thickness is greater than 7 mm, it is very difficult to manufacture.
  • a porous plate that is too thick will also increase the weight of the silencer, thereby increasing the weight of the power assembly and affecting the user experience. Therefore, the conventional porous plate thickness cannot eliminate low- and medium-frequency noises below 3000 Hz.
  • the various parameters of the porous plate in the embodiment of the present application are configured as follows: the diameter of the holes in the porous plate is at least 1mm and not more than 5mm, and can be selected as 2mm or 3mm.
  • the number of holes in the porous plate is at least 100 and not more than 1400, and can be selected as 1058, 1200, etc.
  • the distance from the porous plate to the central axis of the silencer is 2000 Hz.
  • the distance is at least 20 mm and not more than 55 mm, and may be 30 mm, 37 mm, 45 mm, etc.
  • the thickness of the porous plate is at least 1 mm and not more than 4 mm, and may be 1.5 mm, 2 mm, 3 mm, etc.
  • the silencer cover of the embodiment of the present application adopts the above parameter definition, which can effectively eliminate noise of at least 3000 Hz and not more than 8000 Hz, and does not affect the actual application and processing technology of the silencer cover.
  • the parameter adjustment limitations of the filter silencer and radial reflection silencer of the silencer in actual applications, combined with the axial depth parameter, can eliminate the effect of noise of at least 500Hz and not more than 3200Hz, and can comprehensively eliminate noise of approximately 500-8000Hz.
  • the axial silencing in the silencing chamber can be compensated, and the elimination of medium and low frequency noises below 3000 Hz can be better achieved; after experimental verification, when the axial height of the porous plate 31 is at least 20 mm and not more than 120 mm, it can compensate for the elimination of medium and low frequency noises below 3000 Hz, for example, it can eliminate noises in the frequency band of at least 500 Hz and not more than 3200 Hz or at least 1000 Hz and not more than 3000 Hz, wherein the optional axial height is at least 25 mm and not more than 80 mm, such as 40 mm, 50 mm, 60 mm, 70 mm, etc.
  • the power assembly provided in the embodiment of the present application has a silencer cavity, which has an axial depth and a radial depth.
  • the radial depth is configured to silence noise in a first frequency range, for example, to eliminate noise in a range of at least 3000 Hz and not more than 8000 Hz, and in conjunction with the aperture, number, thickness and other parameters of the porous plate, further eliminate noise in a range of at least 3000 Hz and not more than 8000 Hz.
  • the silencer cavity has an axial depth of at least 20 mm and not more than 120 mm, and the axial depth is configured to silence noise in a second frequency range, for example, to eliminate noise in a range of 500-3000 Hz. Therefore, the silencer cavity of the present application can achieve a silencer effect in the range of 500-8000 Hz through a combination of axial and radial silencers, covering the noise frequency of existing household handheld devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)

Abstract

一种动力组件(100)及表面清洁设备,动力组件(100)包括:动力源(20),配置为提供流体动力;消音腔(34),环绕动力源(20)设置,消音腔(34)具有轴向深度和径向深度,径向深度配置为对第一频率范围的噪音进行消音,轴向深度配置为对第二频率范围的噪音进行消音;其中,轴向深度为至少是20mm且不超过120mm。

Description

动力组件及表面清洁设备
本申请要求于2023年5月06日提交中国专利局、申请号为202310506113.8,申请名称为“动力组件及表面清洁设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及清洁设备技术领域,具体而言,涉及一种动力组件及表面清洁设备。
背景技术
近年来,随着科学技术的发展,各种清洁用品层出不穷,这些清洁用品减轻了人们在清洁、清扫方面工作的负担,满足了人们的需求、给人们生活提供了极大的便利。
负压风机在工作过程中会产生噪音,常规的风机降噪方法包括软胶减振、消音棉吸声等,该些方法降噪效果有限,仍然有较尖锐的噪音,影响用户体验。
申请内容
本申请目的在于提供一种动力组件及表面清洁设备,能够降低动力组件中风机的噪音。
本申请实施例提供一种动力组件,包括:
动力源,配置为提供流体动力;
消音腔,环绕所述动力源设置于,所述消音腔具有轴向深度和径向深度,所述径向深度配置为对第一频率范围的噪音进行消音,所述轴向深度配置为对第二频率范围的噪音进行消音;
其中,所述轴向深度为至少是20mm且不超过120mm。
在一些实施例中,所述动力组件还包括:
消音罩,环绕所述动力源设置,所述消音罩包括多孔板和外侧壁,其中,所述消音腔位于所述多孔板和外侧壁之间。
在一些实施例中,所述多孔板中孔的直径为至少是1mm且不超过5mm。
在一些实施例中,所述多孔板中孔的数量为至少是100个且不超过1400个。
在一些实施例中,所述多孔板到所述消音罩中心轴的距离为至少是20mm且不超过55mm。
在一些实施例中,所述多孔板的厚度为至少是1mm且不超过4mm。
在一些实施例中,所述消音腔的径向深度为至少是3mm且不超过15mm。
在一些实施例中,所述消音腔截面为U型结构。
在一些实施例中,所述U型结构底部无消音孔。
在一些实施例中,所述消音罩还包括:
装配支架,设置于所述多孔板的内侧,配置为通过所述装配支架固定所述消音罩。
在一些实施例中,所述第一频率范围为至少是3000Hz且不超过8000Hz,所述第二频率范围为至少是500Hz且不超过3200Hz。
在一些实施例中,所述动力源的转速为至少是70000r/min且不超过90000r/min。
在一些实施例中,所述多孔板中多个孔均匀分布于所述多孔板。
本申请实施例提供一种表面清洁设备,包括如上任意一项所述的动力组件。
本申请实施例提供一种动力组件,包括:
壳体,所述壳体包括出风口和出水口;
动力源,位于所述壳体内,配置为提供流体动力;
消音罩,设置于所述动力源和所述壳体之间,所述消音罩包括多孔板和外侧壁;
其中,工作气流中的水气在所述多孔板和/或所述外侧壁上凝结成液体后从所述出水口排出,未凝结成液体的工作气流从所述出风口排出。
在一些实施例中,所述出风口位于所述壳体侧面,所述出水口位于所述壳体底面。
在一些实施例中,所述动力组件还包括:
第一风路,连通所述风机的出气口至所述消音罩底部;
第二风路,连通所述消音罩底部至所述壳体的出风口;
其中,响应于所述动力源的开启,工作气流依次流经所述动力源、所述第一风路、所述第二风路及所述出风口后排出。
在一些实施例中,所述第一风路包括如下路径:
从所述风机的出气口,沿所述多孔板的内壁向下延伸至所述消音罩底部。
在一些实施例中,所述第一风路包括如下路径:
从所述风机的出气口,沿所述多孔板进入所述多孔板和所述外侧壁之间,经所述外侧壁折返出所述多孔板,再沿所述多孔板的内壁向下延伸至所述消音罩底部。
在一些实施例中,所述第二风路包括如下路径:
从所述消音罩底部向上沿所述外侧壁的外周延伸至所述壳体的出风口。
在一些实施例中,所述多孔板和外侧壁形成截面为U型的连通结构。
在一些实施例中,所述U型的连通结构底面包括至少一个出水孔。
在一些实施例中,所述消音罩还包括:
镂空的装配支架,设置于所述多孔板的内侧,配置为供工作气流或凝结水通过。
本申请实施例提供一种表面清洁设备,包括如上任意一项所述的动力组件。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本申请的一些实施例的动力组件的整体结构示意图;
图2为本申请的一些实施例的动力组件的截面结构示意图;
图3为本申请的一些实施例的动力组件的水流路径结构示意图;
图4为本申请的另一些实施例的动力组件的水流路径结构示意图;
图5为本申请的一些实施例的动力组件的风路路径结构示意图;
图6为本申请的另一些实施例的动力组件的风路路径结构示意图;
图7为本申请的一些实施例的消音罩的整体结构示意图;
图8为本申请的一些实施例的消音罩的截面结构示意图;
图9为本申请的一些实施例的消音腔的截面结构示意图。
附图标记说明:
动力组件100、壳体10、出风口11、出水口12、动力源20、进气口21、
出气口22、消音罩30、多孔板31、外侧壁32、通孔311、出水孔312、装配支架313、消音腔34。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述,但这些不应限于这些术语。这些术语仅用来将区分开。例如,在不脱离本申请实施例范围的情况下,第一也可以被称为第二,类似地,第二也可以被称为第一。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本申请的可选实施例。
表面清洁设备的主机组件为清洁设备的工作提供抽吸动力,工作气流会进入主机组件然后排出,在此过程中,会有部分水气随着工作气流进入主机组件,相关技术中,可以使水气随着工作气流一起从主机组件的出风口排出,但有时候不能排离干净,导致部分水气沉积在主机组件内,长时间累计会影响主机组件的使用寿命。
本申请实施例提供一种动力组件,包括:壳体,所述壳体包括出风口和出水口;动力源,位于所述壳体内,配置为提供工作流体动力;消音罩,设置于所述动力源和所述壳体之间,所述消音罩包括多孔板和外侧壁;其中,载有水气的工作气流在所述多孔板和/或所述外侧壁上凝结后从所述出水口排出。
本申请实施例提供的动力组件具有排水路径和排风路径,工作气流从风机进气口进入后,其中含的水在消音罩网孔板和/或消音罩外侧壁上凝结,在重力作用下沿壁面流下,进而从出水口流出,分离的气体则从出风口排出,从而使动力组件能够对进入风机的工作气流进行水气分离,同时将气体和水排出动力组件,优化了动力组件的使用。
具体的,本申请实施例提供一种动力组件,作为一种举例,图1为本申请的一些实施例的动力组件的整体结构示意图;图2为本申请的一些实施例的动力组件的截面结构示意图。
为了更加清楚地描述动力组件的行为,如图1所示,进行如下方向定义:动力组件可通过界定的如下三个相互垂直轴行进标定:横向轴Y、前后轴X及中心垂直轴Z。中心垂直轴Z为动力组件的轴向,与轴向垂直的为径向,径向位于XY平面内,其中,沿着前后轴X的箭头相反的方向标示为“后向”,且沿着前后轴X的箭头方向标示为“前向”。沿着横向轴Y的箭头的方向为动力组件的“左侧”,沿着横向轴Y的箭头的相反方向为动力组件的“右侧”。垂直轴Z为沿动力组件底面向上延伸的方向,沿着垂直轴Z的箭头的方向为动力组件的“上侧”,沿着垂直轴Z的箭头的相反方向为动力组件的“下侧”。
具体的,如图1和图2所示,本申请实施例提供一种动力组件100,动力组件100配置为为清洁工作提供动力,动力组件100包括壳体10,壳体 10可以为柱形,例如圆柱形,所述壳体10包括出风口11和出水口12,出风口11用于排出工作气流中的基本干燥的气流,出水口12用于排出工作气流中夹杂的水气;动力组件100还包括动力源20,动力源20位于所述壳体10内,动力源20配置为提供流体动力,动力源20具体可为抽吸源,例如风机,动力源20具有进气口21和出气口22;动力组件100还包括消音罩30,消音罩30设置于所述动力源20和所述壳体10之间,消音罩30用于减小工作气流流动过程中产生的噪音,所述消音罩30包括多孔板31和外侧壁32;其中,载有水气的工作气流在所述多孔板31和/或所述外侧壁32上凝结成液体后从所述出水口12排出,未凝结成液体的工作气流从所述出风口11排出。凝结的水能够及时的从出水口排出,使动力组件内基本始终保持无残留水的状态,能够提升动力组件的使用寿命,也能避免污水从出风口排出对环境造成污染。
图3为本申请的一些实施例的动力组件的水流路径结构示意图;图4为本申请的另一些实施例的动力组件的水流路径结构示意图;如图3所示,图3中的箭头大致表示了工作气流的流动方向,载有水气的工作气流从动力源20的进气口21进入,从动力源20的出气口22排出,当工作气流强度不大时,工作气流受到多孔板31的阻挡,载有水气的工作气流在所述多孔板31上凝结后沿多孔板31下流,最后从壳体10底面的出水口12排出;如图4所示,图4中的箭头大致表示了工作气流的流动方向,载有水气的工作气流从动力源20的进气口21进入,从动力源20的出气口22排出,当工作气流强度足够大时,工作气流从多孔板31穿过,受到外侧壁32的阻挡,载有水气的工作气流在外侧壁32上凝结后沿外侧壁32下流,最后从壳体10底面的出水口12排出。在一些实施例中,载有水气的工作气流部分沿多孔板31下流,部分沿外侧壁32下流,两部分都会有凝结水形成,然后从壳体10底面的出水口12排出。
在一些实施例中,如图1所示,所述壳体10的出风口11位于所述壳体侧面,可选的,出风口11位于离壳体10底面具有预设高度的位置,例如壳体高度1/3处,从而避免由于出风口高度过低而导致杂质进入壳体内。同时,所述出水口12位于所述壳体10底面上,水流从多孔板31和/或所述外侧壁32上凝结并汇集后从壳体底面的出水口12排出,从而避免壳体内积水。出风口11为多个,每个出风口11的形状为大致沿轴向延伸的条形结构,例如矩形、跑道形、椭圆形等,条形结构的出风口与工作气流的流动方向一致,更有利于排出气流。
图5为本申请的一些实施例的动力组件的风路路径结构示意图;图6为本申请的另一些实施例的动力组件的风路路径结构示意图;在一些实施例中,如图5所示,图5中的箭头大致表示了工作气流的流动方向,所述动力组件100还包括第一风路,第一风路连通所述风机的出气口22至所述消音罩30的底部,消音罩30的底部与壳体底面之间为镂空结构,镂空结构可以使工作气流通过,本实施例所述的第一风路是指从风机的出气口22出来到消音 罩30的底部的气流经过的路径。在一些实施例中,如图5所示,所述第一风路包括如下路径:从所述风机的出气口22,沿所述多孔板31的内壁向下延伸至所述消音罩30底部,即工作气流从风机的出气口出来后,当工作气流强度不够大时,工作气流受多孔板的阻挡,工作气流主要是沿所述多孔板的内壁向下流动直至所述消音罩底部的镂空结构处。在一些实施例中,如图6所示,图6中的箭头大致表示了工作气流的流动方向,所述第一风路还包括如下路径:从所述风机的出气口22,沿所述多孔板31进入所述多孔板31和所述外侧壁32之间,经所述外侧壁32折返回所述多孔板31,再沿所述多孔板31的内壁向下延伸至所述消音罩30底部。即气流从所述风机的出气口22吹出来后,当气流强度足够大,气流会从所述多孔板31的孔进入所述多孔板31和所述外侧壁32之间,然后经所述外侧壁32反射,气流沿外侧壁32向下运动一段距离后折返回所述多孔板31内,再沿所述多孔板31的内壁向下延伸至所述消音罩30底部。可选的,上述两种第一风路并不一定是独立存在的,有时会交叉存在,但基本方向都是从出风口出来后向下运动。
图5和图6中的箭头大致表示了工作气流的流动方向,所述动力组件100还包括第二风路,所述第二风路连通所述消音罩30底部至所述壳体10的出风口11;具体的,所述第二风路包括如下路径:从所述消音罩30底部向上沿所述外侧壁32的外周延伸至所述壳体10的出风口11。工作气流经过第一风路到达消音罩30底部后,从消音罩30底部的镂空结构穿过,到达消音罩30与壳体10之间的间隙,工作气流沿该间隙向上运动直至从壳体10的出风口11排出。
所述动力组件100响应于所述动力源20的开启,工作气流依次流经所述动力源20、所述第一风路、所述第二风路及所述出风口11后排出,完成了基本不含水气的工作气流的排出。
图7为本申请的一些实施例的消音罩的整体结构示意图;图8为本申请的一些实施例的消音罩的截面结构示意图。在一些实施例中,如图7-图8所示,消音罩30的结构大致为柱状结构,所述多孔板31和外侧壁32构成双层结构的侧壁,双层结构的侧壁在顶部为开放结构,多孔板31和外侧壁32在底部为连通结构,从而形成截面为U型的连通结构。多孔板31包括多个通孔311,通孔311供工作气流通过。
在一些实施例中,如图8所示,所述U型的连通结构底面包括至少一个出水孔312,载有水气的工作气流在外侧壁32上凝结后沿外侧壁32下流,然后经过出水孔312流出消音罩30,到达壳体10底面,再从所述出水口12排出。
在一些实施例中,如图8所示,所述消音罩30还包括镂空的装配支架313,装配支架313设置于所述多孔板31的内侧,消音罩30通过装配支架313装配到壳体10的底面,装配支架313为镂空结构,供工作气流或凝结水通过,可选的,装配支架313、多孔板31以及外侧壁32一体成型。
本申请实施例提供一种表面清洁设备,包括如上任意一项所述的动力组 件。
本申请实施例提供的动力组件具有排水路径和排风路径,工作气流从风机进气口进入后,其中所含水份在消音罩网孔板和/或消音罩外侧壁上凝结,在重力作用下沿壁面流下,进而从出水口流出,分离的气体则从出风口排出,从而使动力组件能够对进入风机的工作气流进行水气分离,同时将气体和水排出动力组件,优化了动力组件的使用。
风机在工作过程中会产生噪音,常规的风机降噪方法包括软胶减振、消音棉吸声等,该些方法降噪效果有限,仍然有较尖锐的噪音,相关技术中可以采用单层网孔进行消音,但是,网孔消音也仅能消除部分噪音,部分噪音仍然影响用户体验。
本申请实施例提供一种动力组件,包括:动力源,配置为提供流体动力;消音腔,环绕所述动力源设置,所述消音腔具有轴向深度和径向深度,所述径向深度配置为对第一频率范围的噪音进行消音,所述轴向深度配置为对第二频率范围的噪音进行消音;其中,所述轴向深度为至少是20mm且不超过120mm。
本申请实施例提供的动力组件具有消音腔,消音腔具有轴向深度和径向深度,轴向深度为至少是20mm且不超过120mm,本申请的消音腔通过轴向和径向的消音组合,特别是通过轴向深度为至少是20mm且不超过120mm的消音腔结构,可以消除至少是500Hz且不超过3200Hz范围内的噪音,最终可以实现500-8000Hz范围内的消音效果,基本能够覆盖现有家用手持设备的噪音频率,提升了用户体验。
具体的,本申请实施例提供一种动力组件100,动力组件100的相关结构与上述实施例结构相同,相同的结构具有相同的功能和相同的技术效果,故部分内容本实施例不再赘述。如图1和图9所示,动力组件100包括壳体10,壳体10可以为柱形,例如圆柱形,壳体用于容纳相关器件,例如电路控制板等,壳体通常由金属、合金、塑料或其他有机材料形成;动力源20,动力源20位于所述壳体10内,大致位于壳体10的中心轴线上,动力源20配置为提供工作动力,使工作气流从动力源20的进气口21进入,从出气口22排出,动力源20具体可为抽吸源,例如风机,动力源20按照可调功率以一定转速旋转输出动力,例如,所述动力源的转速为至少是70000r/min且不超过90000r/min;动力组件100还包括消音腔34,消音腔34大致设置于中心轴线上,且环绕所述动力源20设置于所述壳体10和动力源20之间,工作气流从动力源20的出气口22排出直至从壳体出风口11排出动力组件100外部的路径中,会因为工作气流的流动带来工作噪音,消音腔34可以大大降低该过程中的噪音,具体的,所述消音腔34具有轴向深度和径向深度,所述径向深度配置为对第一频率范围的噪音进行消音,所述轴向深度配置为对第二频率范围的噪音进行消音,作为一种举例,所述第一频率范围为至少是3000Hz且不超过8000Hz,所述第二频率范围为至少是500Hz且不超过 3200Hz;其中,所述轴向深度为至少是20mm且不超过120mm,通过轴向深度为至少是20mm且不超过120mm的消音腔结构,可以消除至少是500Hz且不超过3200Hz范围内的噪音,通过径向深度可以消除至少是3000Hz且不超过8000Hz范围内的噪音。
在一些实施例中,如图7所示,所述动力组件100还包括消音罩30,消音罩30环绕所述动力源设置,例如消音罩30设置于所述动力源20和所述壳体10之间,所述消音罩30包括多孔板31和外侧壁32,其中,所述消音腔34位于所述多孔板31和外侧壁32之间,也就是说,消音罩30为一个具有双层结构的柱体结构,双层结构之间形成消音腔,消音腔环绕中心轴线形成连通结构,消音腔具有轴向深度和径向深度,轴向深度大致为从消音腔的底部到顶部的距离,也大致相当于多孔板31或外侧壁32的高度,径向深度为多孔板31和外侧壁32之间的间距。多孔板31中的孔一般为均匀的分布于多孔板31的整个柱面,以利于工作气流的流通,也有利于噪音的均匀消除,孔径的大小也基本为一致的,能够降低加工的难度。
在一些实施例中,所述消音腔截面为U型结构。所述U型结构底部无消音孔,只有少数的几个出水孔,以使U型结构底部能够有足够多的声波反射,从而形成轴向上的消音。
动力源20产生的工作气流经过多孔板31向外传播,具体的气流传播路径参见如上各实施例所述,在此不做赘述,气流在传播过程中,会产生各种频率的噪音。声音经过多孔板31时可实现滤波消音,即滤除某一频率范围的声音,滤波消音的效果与孔的密度(即单位面积内孔的数量、孔的直径以及多孔板的厚度相关,其中,孔的密度越大,消音频段越高,多孔板的厚度越大,消音频段越低。
如图9的区域A和区域B所示,声音通过多孔板31进入消音腔34后,在消音腔34的外侧壁32和多孔板31之间进行声音的反射、折射传播时,入射声波与反射声波叠加会进行消音,当入射声波与反射声波叠加相位相差180度时,能够达到最大限度的消音,因此,合理控制消音腔的径向深度和轴向深度会影响到消音的效果。
在一些实施例中,声音进入消音腔34后,声波可在消音腔34的轴向和径向上传播反射,从而发生叠加,使声音的总能量发生衰减达到消音的效果;其中,如图9的区域B所示,径向反射消音与多孔滤波消音环节相互关联,可以较好实现大致为3000Hz-8000Hz频段的消音;经过实验验证,所述消音腔的径向深度为至少是3mm且不超过15mm时能够有效消除3000Hz-8000Hz频段的噪音,可选的径向深度为5mm,8mm,10mm,12mm等。
但上述径向深度并不能消除3000Hz以下的中低频噪音,而合理控制轴向深度参数,轴向的反射消音则可以消除3000Hz以下的中低频噪音,如图9的区域A所示,声音经过消音腔外侧壁32、多孔板31、以及消音腔底面的反射、折射,形成大致沿消音腔轴向上的相互叠加的传播方式。可以较好 实现大致为3000Hz以下的中低频噪音;经过实验验证,所述消音腔的轴向深度为至少是20mm且不超过120mm时能够有效消除3000Hz以下的中低频噪音,例如可以消除至少是500Hz且不超过3200Hz或者至少是1000Hz且不超过3000Hz频段的噪音,其中,可选的轴向深度为至少是25mm且不超过80mm,例如40mm、50mm、60mm、70mm等。
如上所述,声波经过多孔消音腔径向消音和轴向消音,经过多次叠加消音后,特定频段(例如500Hz-8000Hz)的声音总能量发生衰减,共同实现最终的消音效果。
当风机工作转速范围处于至少是70000r/min且不超过90000r/min时,例如工作转速为72000r/min时,由于风机旋转所对应产生的声音频率范围大致为:至少是1150Hz且不超过3200Hz,其可以通过如下方式进行计算,
转速对应声音频率=轴频=工作频率,例如工作转速为72000r/min时,计算过程如下,72000/60=1333转/秒=1200Hz,属于中低频。
当风机工作转速范围处于其他范围时,会产生更高频率范围的噪音,由于常规的动力组件,风机的噪音范围基本位于至少是500Hz且不超过8000Hz范围内,因此,本申请消音腔能够覆盖常规风机的所有工作转速范围。
实验验证,当要通过多孔板的厚度、孔的密度、孔的直径或消音腔的径向尺寸消除3000Hz以下的中低频噪音时,必须满足如下条件:
第一、孔径和孔密度共同影响多孔板单位面积内孔的面积总和占比,要实现较低频段的消音,需要孔径不能太大,同时孔密度要非常稀疏,孔面积总和占比不能超过3%,但这种参数设置会严重影响动力组件的风路通畅,使得风机的主要功能(负压性能)受到不利影响,因此,常规孔径和孔密度不能消除3000Hz以下的中低频噪音。
第二、要消除3000Hz以下的中低频噪音,消音腔的径向尺寸需要20mm以上,而这会导致消音罩的径向尺寸过大,从而使得动力组件的外围直径过大,无法适用于家用手持设备,因此,常规的径向尺寸也不能消除3000Hz以下的中低频噪音。
第三、要消除3000Hz以下的中低频噪音,多孔板的厚度需要至少7mm以上的厚度,但是过厚的多孔板无法通过注塑加工成型,因为要完成圆柱形的且具有均匀孔径的多孔板,当其厚度大于7mm时,制造具有很高的难度,且太厚的多孔板也会增加消音罩的重量,进而增加动力组件的重量,影响用户使用体验,因此,常规的多孔板厚度也不能消除3000Hz以下的中低频噪音。
可见,上述消音罩中影响消音效果的主要参数由于实际应用的限制,只能消除至少是3000Hz且不超过8000Hz的噪声。因此,为了兼顾工作气流通畅、动力组件尺寸以及降低制造工艺的多方面需求,本申请实施例中多孔板的各参数配置如下:所述多孔板中孔的直径为至少是1mm且不超过5mm,可选的如2mm或3mm等。所述多孔板中孔的数量为至少是100个且不超过1400个,可选的如1058个、1200个等。所述多孔板到所述消音罩中心轴的 距离为至少是20mm且不超过55mm,可选的如30mm、37mm、45mm等。所述多孔板的厚度为至少是1mm且不超过4mm,可选的如1.5mm、2mm、3mm等。综上,本申请实施例消音罩采用如上参数限定,能够有效的消除至少是3000Hz且不超过8000Hz的噪声,且不影响消音罩的实际应用及加工工艺。
对于消音罩的滤波消音和径向反射消音在实际应用中参数调整的限制,结合轴向深度参数可以消除至少是500Hz且不超过3200Hz噪声的作用,综合可以消除大致500-8000Hz的噪音。
如图9的区域C所示,工作气流在多孔板31内壁上下流通时,声音经过多孔板31以及壳体底面的反射、折射,形成大致沿多孔板31轴向上的相互叠加的传播方式。可以对消音腔内轴向的消音进行弥补,更好的实现大致为3000Hz以下的中低频噪音的消除;经过实验验证,所述多孔板31的轴向高度为至少是20mm且不超过120mm时能够对消除3000Hz以下的中低频噪音有补偿作用,例如可以消除至少是500Hz且不超过3200Hz或者至少是1000Hz且不超过3000Hz频段的噪音,其中,可选的轴向高度为至少是25mm且不超过80mm,例如40mm、50mm、60mm、70mm等。
本申请实施例提供的动力组件具有消音腔,消音腔具有轴向深度和径向深度,径向深度配置为对第一频率范围的噪音进行消音,例如对至少是3000Hz且不超过8000Hz范围的噪音进行消除,并且配合多孔板的孔径、数量、厚度等参数,进一步消除至少是3000Hz且不超过8000Hz范围的噪音,同时,消音腔具有的轴向深度为至少是20mm且不超过120mm,轴向深度配置为对第二频率范围的噪音进行消音,例如对500-3000Hz范围的噪音进行消除,因此,本申请的消音腔通过轴向和径向的消音组合,可以实现500-8000Hz范围内的消音效果,覆盖现有家用手持设备的噪音频率。
最后应说明的是:本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种动力组件,其中,包括:
    动力源,配置为提供流体动力;
    消音腔,环绕所述动力源设置,所述消音腔具有轴向深度和径向深度,所述径向深度配置为对第一频率范围的噪音进行消音,所述轴向深度配置为对第二频率范围的噪音进行消音;
    其中,所述轴向深度为至少是20mm且不超过120mm。
  2. 如权利要求1所述的动力组件,其中,所述动力组件还包括:
    消音罩,环绕所述动力源设置,所述消音罩包括多孔板和外侧壁,其中,所述消音腔位于所述多孔板和外侧壁之间。
  3. 如权利要求2所述的动力组件,其中,所述多孔板中孔的直径为至少是1mm且不超过5mm。
  4. 如权利要求2所述的动力组件,其中,所述多孔板中孔的数量为至少是100个且不超过1400个。
  5. 如权利要求2所述的动力组件,其中,所述多孔板到所述消音罩中心轴的距离为至少是20mm且不超过55mm。
  6. 如权利要求2所述的动力组件,其中,所述多孔板的厚度为至少是1mm且不超过4mm。
  7. 如权利要求1所述的动力组件,其中,所述消音腔的径向深度为至少是3mm且不超过15mm。
  8. 如权利要求1所述的动力组件,其中,所述消音腔截面为U型结构。
  9. 如权利要求8所述的动力组件,其中,所述U型结构底部无消音孔。
  10. 如权利要求2所述的动力组件,其中,所述消音罩还包括:
    装配支架,设置于所述多孔板的内侧,配置为通过所述装配支架固定所述消音罩。
  11. 如权利要求1所述的动力组件,其中,所述第一频率范围为至少是3000Hz且不超过8000Hz,所述第二频率范围为至少是500Hz且不超过3200Hz。
  12. 如权利要求1所述的动力组件,其中,所述动力源的转速为至少是70000r/min且不超过90000r/min。
  13. 如权利要求2所述的动力组件,其中,所述多孔板中多个孔均匀分布于所述多孔板。
  14. 一种表面清洁设备,其中,包括权利要求1-13中任意一项所述的动力组件。
PCT/CN2024/090826 2023-05-06 2024-04-30 动力组件及表面清洁设备 WO2024230585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310506113.8A CN116816730A (zh) 2023-05-06 2023-05-06 一种动力组件及表面清洁设备
CN202310506113.8 2023-05-06

Publications (1)

Publication Number Publication Date
WO2024230585A1 true WO2024230585A1 (zh) 2024-11-14

Family

ID=88119332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/090826 WO2024230585A1 (zh) 2023-05-06 2024-04-30 动力组件及表面清洁设备

Country Status (3)

Country Link
CN (1) CN116816730A (zh)
TW (1) TW202445024A (zh)
WO (1) WO2024230585A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN220081788U (zh) * 2023-05-06 2023-11-24 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备
CN116816730A (zh) * 2023-05-06 2023-09-29 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113477A (ja) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd 電動送風機及びそれを用いた電気掃除機
CN215777823U (zh) * 2021-09-15 2022-02-11 万可科技(深圳)有限公司 具有静音功能的洗地机以及洗地机的吸力装置
CN114567118A (zh) * 2022-03-20 2022-05-31 添可智能科技有限公司 一种清洁设备及电机组件
CN115832512A (zh) * 2022-11-14 2023-03-21 添可智能科技有限公司 动力组件、清洁设备及机器人
CN116816730A (zh) * 2023-05-06 2023-09-29 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备
CN220081788U (zh) * 2023-05-06 2023-11-24 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备
CN220337154U (zh) * 2023-05-06 2024-01-12 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113477A (ja) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd 電動送風機及びそれを用いた電気掃除機
CN215777823U (zh) * 2021-09-15 2022-02-11 万可科技(深圳)有限公司 具有静音功能的洗地机以及洗地机的吸力装置
CN114567118A (zh) * 2022-03-20 2022-05-31 添可智能科技有限公司 一种清洁设备及电机组件
CN115832512A (zh) * 2022-11-14 2023-03-21 添可智能科技有限公司 动力组件、清洁设备及机器人
CN116816730A (zh) * 2023-05-06 2023-09-29 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备
CN220081788U (zh) * 2023-05-06 2023-11-24 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备
CN220337154U (zh) * 2023-05-06 2024-01-12 深圳洛克创新科技有限公司 一种动力组件及表面清洁设备

Also Published As

Publication number Publication date
CN116816730A (zh) 2023-09-29
TW202445024A (zh) 2024-11-16

Similar Documents

Publication Publication Date Title
WO2024230585A1 (zh) 动力组件及表面清洁设备
CN220337154U (zh) 一种动力组件及表面清洁设备
WO2016061829A1 (zh) 一种降噪静音油烟机及排烟管
CN106050751A (zh) 一种吸油烟机的消声器
CN111622990A (zh) 降噪装置及燃气热水器
CN110925240A (zh) 一种可调频降噪的离心通风机及其蜗壳
CN107345679A (zh) 一种降噪装置及具有该降噪装置的吸油烟机
WO2024230111A1 (zh) 动力组件及表面清洁设备
CN205306900U (zh) 一种吸尘器消音装置
CN112233637B (zh) 降噪装置及燃气热水器
CN209430261U (zh) 一种柴油发电机消声器
CN113775572B (zh) 一种高速高压离心鼓风机降噪结构及其降噪方法
WO2024230589A1 (zh) 电机组件及表面清洁设备
CN220067054U (zh) 电机组件及表面清洁设备
CN213524212U (zh) 一种电吹风
CN212985555U (zh) 采用轴流风机的烟机
TWM661519U (zh) 動力組件及表面清潔設備
CN216868599U (zh) 排风装置及集成灶
CN204329117U (zh) 一种静音式吸油烟机
CN106949099B (zh) 吸尘器用电机风泵
CN205895706U (zh) 一种吸油烟机的消声器
CN211370653U (zh) 一种具有消音功能的立式空压机
CN213510794U (zh) 一种发动机用气流消音器
CN208720485U (zh) 一种用于暖通空调通风系统的消声器
CN206268700U (zh) 双层微孔消音器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24802867

Country of ref document: EP

Kind code of ref document: A1